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Self-dual cosmic strings and gravitating vortices in gauged sigma models
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Cosmic strings are considered in two types of gauged sigma models, which generalize the gravitating
Abelian Higgs model. The two models differ by whether thel)kinetic term is of the Maxwell or Chern-
Simons form. We obtain the self-duality conditions for a general two-dimensional target space defined in terms
of field dependent “dielectric functions.” In particular, we analyze analytically and numerically the equations
for the case of @) models(two-sphere as target spacand find cosmic string solutions of several kinds as
well as gravitating vortices. We classify the solutions by their flux and topological charge. We note an inter-
esting connection between the Maxwell and Chern-Simons type models, which is responsible for simple
relations between the self-dual solutions of both types. There is however a significant difference between the
two systems, in that only the Chern-Simons type sigma model gives rise to spinning cosmic vortices.
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[. INTRODUCTION well-known two dimensional systems, namely nonlinear
sigma models.

Topological defects are generally believed to have been Nonlinear sigma modelgl4] are very much used as ef-
formed during a series of phase transitions in the early unifective theories describing various systems such as low en-
verse. In particular, many field-theoretical models suggesergy effective QCD, and are also used as “toy models” for
the formation of cosmic stringgor a review, see for instance gauge theories. A generalization of these, where the global
Vilenkin and Shellard 1]). symmetry group or its subgroup is promoted to be local, are

The BOOMERANG result$2], especially concerning the gauged sigma models which appear naturally in supersym-
location of the acoustic peak3,4], essentially rule out grand metric field theories.
unified theory(GUT) scale (10*® GeV) topological defects All these models have been extensively studied for de-
being thesole source of the cosmic microwave backgroundcades. Most of the results were obtained in fMinkowski)
(CMB) anisotropy, which reflects the early universe densitySPacetime, but more recently gravitating solutions were stud-
fluctuations, eventually leading to galaxy formation. How- ied too. However, the grayltatlng sigma _mode'l solutions are
ever, recent analysi5—9] shows that a mixture of cosmic usually taken to be spherically symmetric as in the cases of

strings and inflation is consistent with current CMB data. 9ravitating Skyrmions and texturesee e.g. Volkov and

Independently of a possible role in the large scale strucSsal tsov [15)), although some authors gave attention to cy-

ture formation, and even if their mass scale is lower than thgndrlcally symmetric solutions of the non-gaugkib,17 as

GUT scale, cosmic strings may have also a number of sig\gﬁgrﬁ_ssmingig?rigg ozdae Is with either Maxwelig] or
nificant observable astrophysical effects. Just to mention a Here we will analyze thé gravitating gauged sigma mod-
few: C‘.’S”."C strings could be sources of C_jOUble imeldgs els with a general two-dimensional target space defined in
of gravitational wave$10,11 and of ultrahigh energy cos- o1 of two field dependent “dielectric functions,” which
mic rays[12]. Recently it was even suggested8] that they 5y he viewed as generalized Abelian Higgs models: Max-
can serve as gamma ray burst engines. Thus, cosmic stringgy| type and Chern-Simons type, according to the gauge
are still of considerable interest in cosmology and astrophysield term in the Lagrangian. We will find the general condi-

ICS. tions for self-dual cosmic string solutions and get several
The most popular field-theoretical system, used to modekinds of interesting solutions.
cosmic string generatiofil], is the Abelian Higgs model. We will start by considering, in the next section, static and

There exist, however, other systems which may be used faranslationally invariant solutions of a generic gauged gravi-
the same purpose and are not more complicated. As long asting non-linear sigma model of a Maxwell type, and find
we model cosmic strings as static cylindrically symmetricsimple conditions for the existence of self-dual solutions. In
sources coupled to gravity, which is essentially a two dimenSecs. 1l and IV, we concentrate in thgZ) model and add
sional system, we may borrow circular solutions of otherrotational symmetry to obtain self-dual cosmic string solu-
tions. In Sec. V, we move to the Chern-Simons type of
model, and consider stationafyot stati¢ solutions. First we

*Electronic address: verbin@oumail.openu.ac.il obtain the self-duality conditions for this kind of solutions,
"Electronic address: Soeren@Madsen2TheMax.dk and then we specialize to spinning cosmic vortices. In Sec.
*Electronic address: all@fysik.sdu.dk VI, we discuss the relation between the two types of theories
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and solutions, and we end with a discussion of the topologi- du
cal charges in Sec. VILI. U=0, U'= o] =0, for |®|=v. (2.5
Il. THE GENERALIZED ABELIAN HIGGS MODEL With these normalizations, the Higgs boson mass and gauge

— o .__boson mass are, respectively,
We start by considering a generalization of the Abelian
Higgs model defined by the action U”(v) e?v2E,(v)

mi=——, ma=—0r— . (2.6
&i(v) &(v)

1
= 4 Z * (DED)—
S f d X\/H( 251(|(D|)(D“q)) (D®)~U(|®D) In order to study cosmic string solutions, we assume the
metric and matter fields to be static and symmetric urer
R (2.1  translations. Thus we assume tiAgt and® depend only on
167G the two transverse coordinate’§ and for the metric we use

) , . the following form:
where &, (|®|) and &(|®]|) are non-negative dimensionless

functions, which may be interpreted as Weyl factors of a dSZ=N2(xk)dt2—yij(xk)dx‘dxj—Kz(xk)dzz. 2.7
conformally-flat target space metric of a nonlinear sigma

model with local U1) symmetry[23]. The function&,(|®|) We also require the presence of a magnetic field only, i.e.
plays further the role of a dielectric functi¢@4,25. In what  that the gauge potential will have the form

follows, we use the collective notatiof,, (a=1,2), and .

refer to both as “dielectric functions.” The actidi2.1) also Aﬂdxf‘zAi(xk)dx' (2.8
generalizes the ones considered by L§B6,27]. Further-

more, the actiori2.1) arises in various extended supergravity such that the Maxwell tensor will contain a single magnetic
theorieg[23]. In the general case, we may also add the ternrtomponents:

E(| D)) e F ,, but this term vanishes identically for

1
— ZE|@DF, Frrs

prr '

the configurations considered in the present paper and has no Fodx#/\dx"= —By|y|e;dxX/AdX 29
effect on the field equations. _ _
The field equations derived from the actith1) are where|y|=|det(y;;)|. In order to get the field equations for
static solutions, we compute also the components of the
o*  d&; d du Ricci tensor:
&(|®))D,DHP + s === D , PD#P +—
(|1 21 do] o] 4] —
®  d&, Roo= — 1c Wi(KV'N)
4|<I)| d|(I)|F’“F =0 (2.2
K .
. R33= —=Vi(NV'K
V(& @] FA) =" N VRV

i
_ 0 .y b e 1 1
5 E1(|P[)(@*(D"®) — D (D"®)*) Ri=Rj(7)+ g MIVN+ VK
(2.3
Rio=Riz=0, Rp=0 (2.10

8.6 Rwt 5 51 (|®))((D,®)*(D,P)+(D,®)*(D,P)) whereV, is the covariant derivative with respect to the two-
dimensional metricy;; and R;;(y) the corresponding Ricci
1 tensor.
—U(|®])g,,+ E(P)| gF . Fy,t ZFKAF“QW A significant simplification of this system is obtained if
self-duality conditions are satisfied, i.e. if the system admits
=0. (2.9 a Bogomol'nyi limit [28]. It is well known[16] that in the
usual Higgs model, the flat space considerations can be car-
Conventions:D,L:VM—ieA#, signature ¢,—,—,—) and ried over to curved background M(x') andK(x') are con-
Ry, =, 0%, =, 5+ . stants, say, 1. We will see now that the present generalized
Usually (but not aIway)swe will be interested in poten- Higgs model has also a Bogomol'nyi limit if we keep
tials, which ensure spontaneous symmetry breaking anbl(X')=K(x')=1. If we use these conditions, we find that
which lead to a massive gauge field. That is to say, potentialte (00) and (33) components of Einstein equations will be
with a circle of degenerate minima éay) |®|=v and with  satisfied only if
positive second derivative at. We further normalize the 1
gg:ﬁgtrlal such that it vanishes in the vacuum. Thus, alto U(|<IJ|)=§82(|<I>|)BZ. 2.11)
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Now we turn to the ij) components of the Einstein equa- and get a simple relation between the potential and the two
tions, or even better tG;; which vanish identically. Conse- dielectric functions, which is a necessary condition for the
quently, T;; =0 as well and we get action (2.1) to have self-dual solutions, i.e. a Bogomol'nyi
limit:
1
551(|<I>|)((Di<l>)*(Dj<I>)+(Dj<I>)*(Di<I>))
d|q)|\/252 (PDU(@) +eld|&(|@))=0. (2.19
1
ki
_(551(@“7’ (Dy@)* (D @) +U(|®]) The simplest case where we can apply Eg19 is of
course&,=1, which reproduces immediately the standard

1 . .
—552(|<D|)BZ) ¥;=0. (212 Higgs potential,
a 2 2\2
Using Eq.(2.11), this condition simplifies further and it fol- u(eh= Z(U —|®[%) (2.20
lows that it is equivalent to the curved spacetime version of
the self-duality condition: where the Bogomol'nyi relation between the coupling con-
. stants holds
D@ =i7\[7]€; ¥ D@ (2.13 5
a=e‘la=2. (2.21

where »=*1 corresponds to self-dual or anti-self-dual so- _ .
lutions. This is a first order equation for the Higgs field. Note that here, the vacuum expectation vatuenters into

Analogously, Eq(2.11) is a first order equation for the gauge the potential as an integration constant, and has also a role of

potential. the value of|®| for which the magnetic field vanishes.
We also find the following expression for the two dimen-  The next case is the nonlineat3)sigma model, which is
sional Ricci scalar: obtained by taking’; to be the usual conformal factor fof S

- with a radiusu/2 [14]:
R(y)=—8mG(&(|@[) ) (Di®)* (D;®)+4U(| D))
(2.14 E(|P)=21+]|D|% u?)2. (2.22

which serves as the Einstein equation for the two metic ~ The parametep. sets a second energy scale in the system
Equation(2.2) for the Higgs field becomes a consistency and rendersS; dimensionless. It is very simple to integrate

condition, which constrains the form of the potentialthe Bogomol'nyi constraint(2.17), or equivalently Eq.

u(|®]): (2.19, also in this case and get the following formm|®|)

and potential, which allows a Bogomol'nyi limit in the(8)

82 dé, ; ; ; s
2 _ generalized Abelian Higgs model:
Maxwell equations(2.3) gi B(|®)) 7 L O
axwell equationg2.3) give = .
“ 9 2(1+ 0% u?) S|P 1+|@|2/ p?
ne
(9j(52(|¢’|)5):—751(|¢|)¢9j|q)|2 (2.16 o)) e? 1 (v2—|D[?)2
a 2, 2\2 o 2/ 22"
which is a second order equation for the gauge potential, but 8(1+vu) &) (L1+[®[* 1% (2.24)

it is not an independent one, as is easily shown: If we think

of B as a function of®|, we may use Eq(2.1) and get  Here agairy is an integration constant, which parametrizes
from Eq.(2.19 the following relation, which we will refer to  the minimum of the potential and the field value for which
as the “Bogomol'nyi constraint:” the magnetic field vanishes. Generally there is no relation
d between this scale and the scale We therefore have a
(Ex(|D|)B)+ ne|®|&y(|®|)=0. (2.17)  one-parameter family of potentials in thi3) generalized
dj®[ Abelian Higgs model for any givefi,(|®|), which we may
take at our will. Some special cases wifp(|P|)=1 were
already analyzed by several authors mainly in flat space
[29,30, but also with coupling to gravity18].
A more “symmetric” picture may be obtained by using
the angular variable on’Slefined by

This is actually again the Maxwell equatid2.16) in dis-
guise, and can be used together with E211) to get the
function U(|®|) for any set of given “dielectric functions”
&, a=1,2. In order to do it directly, we need to express the
magnetic fieldB in terms of the potential. If B has a

definite sign, we infer from the Bogomol'nyi constraint that |®|=ptan(©/2). (2.25
E(|®|)B(|®|)=0 for »=+1, and similarly for negative
values, so we may take a square root of Eq1l): Generically, the potential exhibits alJ-symmetry breaking
minimum at |®|=v, but there are two special limits
B=ny2U/&; (218 =0, where the ground state is only a point in target space
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(the north or south poles ofB namely, no symmetry break- O =puf(r)en?,
ing occurs. This pattern of symmetry breaking is reflected by
the Higgs and gauge boson masses, which turn out to hawehere u is a second energy scale, which is generally inde-

A, dx*=A(r)de (3.2

the following equal(due to the self-dualityvalues:

ev

= 2.2
1+v2 u? (229

mH:mA

pendent ofv. We will also assume that the dielectric func-
tions depend ond®| through the dimensionless rati®|/ u
=f only. For further use we define hevéu=g.

As for the boundary conditions, we will see that they will
not be the same for all systems, but will rather have to be

The two cases of symmetric vacuum correspond to vanishingdapted to the specific system. However, since we are inter-

Higgs and gauge masses.
Just as a final check we note that the Higgs potefiigl
(2.20 with (2.21)] is obtained in the limitu—oo from Eq.

ested in solutions with finite energy per unit length and finite
flux, the boundary conditions at infinity should ensure as-
ymptotically vanishing energy density. The usual Nielsen-

(2.24) with &(|®|)=1. The masses which are obtained in Olesen conditions should be generalized such that all three

this limit are the usual ones.
Now we return to the Einstein equati¢®.14) and notice

contributions(scalar gauged kinetic term, potential and Max-
well term) will vanish asymptotically. That is

that for self-dual solutions, its right-hand side is actually a

two-dimensional divergencét must be as we will see in

Sec. VIl), and may be simplified to

167G .
R(y)= ?Vi(VJgZ(M)DBajIOd@D-

(2.27)

lim U(f(r))=0,

r—ow

lim &(f(r))B?(r)=0,

r—o

lim f2(r)&.(f(r))(e A(r)—n)?=0.

r—oo

(3.2

Without loss of generality, we may take the two-dimensional _ _
transverse part of the metric tensor to be conformally flat, i.eln order to proceed, we will concentrate in th€3Dmodel.

yiJ-:HZ(xk) dij so the Einstein equatiof2.14) reduces fur-

ther to

8

G
&,(|®])Bdjlog|®| | =0. (2.28

8" a;| 9;logH — e

This equation is not of first order, but it may get the form of
a two dimensional Laplace equation, if we introduce a “su-
per dielectric function”A(|®|[), which solves the following

equation:

dA
ICDIW: nE(|®|)B(|P]) = v2&(|PHU(|P|)
(2.29
or equivalently the second order equation:

1 d dA

(2.30

Now we can use the functiod, in order to give Eq(2.28
the form of a Laplace equation:

. 871G
5”3,(3’](|09H_T¢4> =0. (23])
Special solutions will be discussed in Sec. IV.

IIl. FLAT SPACE SOLUTIONS

First we discuss flat space solutions within this general

The field equationgwith = +1 which we will mostly use
from now on are the following simple first order set:

rf’

TzeA(r)—n (3.3

A’ eMZ B2_f2

r 20142 &(F)(1+1D)

(3.9

where a prime denotes differentiation with respect.to

We still have a freedom in the functidfy, but we choose
until further notice &,(f)=1. The simplest case, which
yields the closest to the Abelian Higgs flux tube, is the case
B=1 which corresponds to a potential with a minimum
along the equator of%S We thus impose the following addi-
tional boundary conditions:

f(0)=0, A(0)=0 (3.5

and the two last conditions in E3.2) may be replaced by

lim A(r)=nle.

r—o

(3.6

Note that the boundary conditions we took enforceo be
negative andA(r) to be a non-positive decreasing function.
The magnetic fieldB(r) is non-negative and the flugn
units of 27/e) is —eA(»)=—n, which is positive.

There is no known analytical solution of this system, but

framework. As mentioned above, some of the solutions aré is very easy to get numerical solutions. We will comment a

already known but new ones can be easily obtained.

little more about it at the end of this section. Figure 1 con-

In order to study a single cosmic string solution, we taketains the field variables, A andB) in this =1 case. This
the usual cylindrically symmetric Nielsen-Olesen ansatz folis actually the solution discussed already by Mukhelgs.

n flux units:

There is another related solution, which is obtained by re-
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6 ' ' - pyp— which are solutions to the same problem with the reflected
rrrrrrrr potential (83— <2). The boundary conditions should be there-
fore also reflected:

0(0)=0, A(0)=0 (3.12

ImO(r)=m, IlimB(r)=0 (3.12

r—o r—o

Fields

where again the last boundary condition in E82) is auto-
matically satisfied, as noW?&;—0 asymptotically. There
are two unusual features of this family of solutions: First, as
mentioned above, there is no flux quantization, and second,
L : - - ) there does not exist a solution With[z_l but with In|=2

x [29]. Consequently, the energy density is maximal not on the
symmetry axis, but rather on a cylindrical surface whose
radius is of the order of &. Similar behavior is seen in the

FIG. 1. The solution to Eqg3.3), (3.4), for £&=1. O is the

) 2 . ) i '
angular coordinate o5 We also show the dimensionless mag- 5na1ogougn|=2 Nielsen-Olesen flux tubdd].
netic field. The metric field, which is constant in this case, is in-

i . M Another kind of interesting potential is a triple well po-
cluded for comparison with the following figures. The parameters, .. o
B = . . . . tential, whose minima are at the north and south pole and at
used aren=—1, B=1. The dimensionless length coordinate is de-

fined byx=epr. the equator of the target space. In terms of the angular field
0, it has the following simple form:

flecting this solution in the Starget space with respect to the 5 4
equator, i.e. starting a@t=o on thez axis (r=0) and de- U@®)= il Si?(20). (3.13
creasing withr to f=1: 128
lim f(r)=co, lim f(r)=1. (3.7  This potential is obtained by using,(|®|)=7(|®|/u
r—0 r—oe + ul|®|)? andv = w in Eq.(2.24. Actually, £, may be mul-

. ) ) tiplied by an arbitrary constant, thus having the height of the
The reflection property is much more transparent in terms Obotential free. Since the “polar” miniméat ® =0,7) do not
the angular field variabl®, Eq.(2.29, in terms of which  preak the 1) symmetry, we do not expect flux quantization
the boundary conditions on the scalar field are for solutions that approach asymptotically one of these
) minima. On the other hand, solutions which h&e /2 as
0(0)=m, rl'm O(r)=m/2. 38 their asymptotic value, will have of course quantized mag-
o netic flux.

This reflected solution has obviously negative magnetic flux There are thus several kinds of finite energer unit

Another solution, which was discussed already by Schrole.ngth) SOIU“OOS in this system. F@(O):O’.a" three ki_nds
ers[29], corresponds to the limiting case of potential with a With asymptotic value®) =0,m/2,m are realized. The fields
minimum which does not break the(]_) Symmetry_ This @, A andB in FlgS 3, 57 which aCtua”y Correspond to the
corresponds, in our terminology, =0 while u stays finite ~ Chern-Simons type system analyzed in Sec. V depict also the
sov=0. In this case, the minimum of the potential is on thesolutions of the present system with(«) = 7/2,7,0 respec-
north pole of . Finite energy(per unit length solutions still  tively. We will say more about it in Sec. VI.
exist, but they have now different boundary conditions, Similar solutions exist witt® (0)= 7. A different kind of

namely solution starts with a “non-polar” valu¢i.e. ®(0)+0,7],
but for continuity must haven=0. The asymptotic values
0(0)=m, A0)=0 (3.9 correspond to each of the three possible vacua.
The numerical procedure we have used is essentially the
lim ©(r)=0, lim B(r)=0. (3.10  same as in previous work81,32, and we will not elaborate
r—o r—o about it more than the following remark regarding the treat-

ment of boundary conditions. A common practice in humeri-

The last boundary condition in Ed3.2) is automatically cal analysis is to replace the boundary conditions at infinity
satisfied ag— 0 asymptotically. This gives a solution, which with the same boundary conditions at some finite paint,
maps thez axis (r=0) to the south pole of%Band the circle  This works well on the syster(8.3), (3.4), provided thaig is
r—oo to the north pole. Since there is no symmetry breakingnot 0 ore. If we try to shoot fronr ., to 0 in these two cases,
at spatial infinity, the magnetic flux is not quantized butit is easy to seéfrom the equations in terms of the angular
rather takes continuous values. field, ®), that the solutions become constant. We are there-

In order to compare these solutions with {fe 1 ones, it fore forced to replace the boundary condition &nwith
is more instructive to present the “anti-Schroers” solutions,® () = 8+ § where § is a(positive parameter, which is to
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be determined numerically. It turns out, that the continuun ¢ ' ' T p—
of solutions is found by giving slightly different values.
Another remark concerns the classification of solutions
according to the possible choices of boundary conditions. A
is already clear from the flat space solutions, th{8)@ystem
has a reflection symmetry with respect to thee§juatorial sl _
plane(i.e. ® — 7— 0 or f— 1/f) together with8— 1/8. We
may therefore limit ourselves to solutions witt{0)=0
(which for »=+1 are alson<0 solution$ and classify
them according to the asymptotic valu&sc), which are the BB 7O
various minima of the potential function. Time>0 solutions
for the samen and 8 (and hence the same potentjalhich :
start at the “south pole” of target space, are easily obtainec P R
from the n<0 solutions with— 1/8 and further obvious
changes as— —n andA— —A. 0

Fields

IV. GRAVITATING SOLUTIONS FIG. 2. The solution to Eqg4.1)—(4.3), for £&=1. The param-
eters used ara=—1, 8=1, 87Gu?=0.5. Compare with Fig. 1.

In this section we consider gravitating (8) cosmic . . _
strings. It is in fact very easy to get the gravitating self-dualB(0)€2(f(0)) in the last equation can be expressed in terms
cylindrical solutions(i.e. single cosmic string solutiongn ~ Of the dielectric functiort, (f) using Eq.(2.17 and assum-
the Bogomol'nyi limit, since the field equations for the mat- N9 @ vanishing magnetic field ds- 3:
ter (scalar and gaugdields are very similar to those in flat

spacetime. More precisely, they are given by the following %:8W6M2|n|JBfgl(f)df_ (4.6)
first order equations: 2m 0
rf’ For the @3) sigma model&;(f) under consideration here,
T n(eA(r)—n) (4.0 this integral can be explicitly calculated, or we may rather

use the already given expression of the magnetic field—Eq.
which is identical with the Minkowskian onffor »=+1 (4.2). Both ways we get
compare Eq(3.3)], and
S¢  4mwGu?|n|
1 2 2 2 _—=
A mew T 4.2 2 1+p?
H2r 2(1+ B?) &(F)(1+1?)

(4.7

Note that these two last equations are valid for tf@)=0
Einstein equations for the metric fiel@.28 get in the cy- solutions—see final note of previous section. The well-
lindrical case the following form: known usual Higgs resu(t33] is obtained for3=0, while
holding v fixed. On the other hand, we may take another
0. (43 limit to obtain the deficit angle for the “anti-Schroers” solu-
tions by B—oo, while holding w fixed. This gives
(8¢l2m)s=47Gu?|n|. This result applies also to the Schro-
Since we are interested here in cases where the mattgys solutions.
fields tend asymptotically to their vacuum values, the geom- | Fig. 2, we show the fieldsq, A, B, H) for the case
etry of space will evidently be conic with a deficit angle B=1, 8wGu2=0.5; compare with Fig. 1.
given by the usual relation:

!

r

87G
(logH)" — FBSz(f)Ung)’)

V. CHERN-SIMONS TYPE OF THE GENERALIZED

é
ﬁz— lim (r (logH)"). 4.9 HIGGS MODEL
o The possibility of a second field dependent “dielectric
We may obtain more information about the deficit angle byfunction” &, used at the end of Sec. IlI, is much more in-
integrating equatiori4.3) once and using the result at both teresting from another aspect, which is a connection with
ends,r=0 andr —o: D=3 Chern-Simons theory. It turns out that the self-dual
solutions for aD=3 system of a gauged sigma model
op 8wG coupled to pure Chern-Simons theory, are related to those of
27 e InB(0)|&>(F(0)) 4.9 our generalized Higgs system. In other words, we may re-

place the Maxwell term with a Chern-Simons term in the
where we used the boundary conditiof35 and (3.6 D =3 version of the actiori2.1) to get a generalized Chern-
supplemented byH(0)=1,H'(0)=0, and the fact that Simons-HiggsGCSH model. We will find interesting rela-
—nB(0) is always(i.e. for ==1) positive. The factor tions between the self-dual solutions of this GCSH system
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and the previous one, which from now on we call general-conditions for Eq(2.13 to be satisfied. However, we prefer
ized Maxwell-Higgs(GMH) model. to take the more general approach of dealing with the gravi-
There is of course a physical difference between timeiating system from the beginning. We therefore try to repeat
independent solutions in both models, which is the presencehat we did in the previous sections and reqgg=1 in a
of electric charge and electric field in the GCSH model.D =3 version of the static metri(2.7). It turns out that this
However, due to the linear relation between the magneticannot be done “naively,” but some modifications are re-
field and the electric charge density)&|-dependent mag- quired. The reason is the well-known property of Chern-
netic energy density appears, which in flat space mimics exSimons vortices, which should carry also electric charge so
actly the Maxwellian energy density in the GMH system, asthe Maxwell tensor must contain in this case also an electric
will be shown below. This sheds new light on the well- field, and the vortex carries angular momentum as well. This
known self-dual solutions of the Chern-Simons gaugé€8 O addition has important consequences if we treat the gravita-
sigma mode[34—-37]. The self-dual solutions of the Chern- tional field as dynamical, since the angular momentum of the

Simons type of the Abelian Higgs systd88,39, fit also to
this framework by the obvious choi@g(|®|)=1. In order
to demonstrate these relations we write e 3 action:

Chern-Simons field forces the gravitational field to be sta-
tionary and not simply static. We therefore parametrize the
D=3 metric by

1 ds?=N2(x*)(dt+L;(x)dx)2— y;;(x)dx'dx  (5.6)
S=fd3XVI9| 5&(|®))(D,@)* (D*D)—U(|D])
2 and write for the gauge field
K €Y 1 A dx*=Ag(x¥)dt+ A (x¥)dx. (5.7
-~ - o 0 i
+32 \/HAAFM + 167763R> (5.1)

In order to get the field equations for stationary solutions,

where all the geometrical terms here are 3-dimensional, anff® introduce also the following notation:

x IS a positive parametefit cannot be a field-dependent A—A AL

function, as in the GMH case, because it would break gauge A

invariance with dimensions of 1/length. Actually, the fields — =

here have different dimensionalities thanbn=4, but the Di=di—ieA

self-dual solutions of the GMH system are identicalDn

=3 andD =4, so the comparison becomes trivial. Lij=aiL;—diLi=[rle;j¢
The field equations of this system are _

Fij=0A— A= —[7]€B (5.8
d*  d& ® du o
&(|e|)D,D* <I>+2|q)| d|<I>|D ODHD+ — @[ d|<IJ| and compute the components of the Ricci tensor:
(5.2 4
i N 2

aSa e6,(B]) (@ (D)~ d(D"b)*)
5 w=l'= 588 'P) - v

o i (5.3 Ro=— €19,(N%0) (5.9

' o 2N\/_ '
1R+1£d> D,®)*(D,®)+(D,®)*(D, d
—2U(|®[)g,,=0 (5.9

whereV, is the covariant derivative with respect to the two-
Spontaneous symmetry breaking occurs if the potential has@mensmnal metricy;; and R(y) the corresponding Ricci
circle of degenerate minima, just as for the GMH systemscalar.
The mass of the Higgs field is given by the same expression Now we imposeN=1 and find that th€¢00) component of
as for GMH, Eq.(2.6), but the masgsquared of the gauge  Einstein equation$5.4) will be satisfied only with the fol-
field is now lowing condition on the potential:

2 25 2 2 €2
mg= | S 55 U() = 5 |B[28, (|0 (Ag 2 510

320Gy’

In order to find static self-dual solutions in flat space, oneFrom the {j) Einstein equationgor better from theG'l
may proceed by dropping the curvature terms and look foequationg we find the form of the self-duality equation in
this case
(5.1)

'Compare Deser and YarjgO]. Eiq):i 7|yl €ij yikﬁkq)
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as well as the following expression for the two dimensional Now we consider some special cases that allow self-dual
Ricci scalar: solutions. We will then concentrate in rotationally symmetric
o L solutions, i.e. gravitating vortices.
R(y)=€?—8nG3(&(|®|)y"(D;®)* (D;®)+4U(|D])).
(5.12 A. £(®))=1
Due to the self-duality, the other field equations simplify as  This is the Chern-Simons version of the usual Higgs

follows. The non-diagonal Einstein equations give model, which we may consider either in flat space or coupled
to gravity. Integration of Eq(5.18) is trivial and gives

86 =16mG3me|P| & (|D|)Agd; | D] (5.13
ne
The spatial Chern-Simons equations give Ao=5 (v 2—[®[?) (5.22
GAg=— —| D& (|D|) ;| D] (5.14 wherev is an integration constant. In flat spate 0 and Eq.

(5.10 gives immediately the well-knowi88,39 sixth order
potential:
which is used in the time component of the Chern-Simons

equations to obtain an expression Bir e’
U(l®) = —Il@*v*—|®*2 (5.23

. e2 8k
B=| (+—|®[%1(|®]) |Ao. (5.19 -
K In the case of a gravitating system, we solve f6®|) and

find
Finally, the equation for the Higgs field gives another func-

tional relation between the potential and the other quantities: (@)= 27-rG3

(o—(v2=|D[»?) (5.24

duU
7| ®|€y(| BB+

2A 2 9 ®[%2£,)=0

(5.16
e4
Actually it is not an independent equation, since by substitu-U(|®|)= — [|®[* (v~ |®|*)*~ 7G;(— (v~ |P[*)?)?]
tion of Eq.(5.10 in Eqg. (5.16), one may get back E¢5.15. 8x?

The two differential equations foft(xX) and Aq(x¥) may (5.29
be also converted into equations 6 ®|) andAy(|P|):

whereo=4«k?c/e?. The potential is easily found to be

which has an unbounded additional term, thus rendering the
whole system possibly unstable. Notwithstanding the pos-

=167G37e|D| &, (|D|)A,, (5.17 sible instability, this potential was discussed by several au-

d|q>| thors[19—-27 and vortex solutions were also obtained. There

dA is a simple and natural way to cure the ill-behaved potential,
1] =— Zio|g,0)) (5.18 which is generalizing this system to th€3D sigma model.

B. £4(®])=V(1+|®|%u?)?

This is the Chern-Simons gauged3Psigma model con-
€=87TG3K(C—A§). (5.19 sidered in flat background by some auth¢Bt-37,41.
Within the present framework the analysis is straightforward.

where ¢ is an integration constant, which should be non-First we integrate Eq5.18 and find
negative for solutions with finite angular momentgwhere
€ vanishes asymptotically B nep?  BP—|®|%u?

As in the gravitating GMH model, the right hand side of AO_ZK(1+B2) 14|02 u? ' (5.26
Eqg. (5.12 is a two-dimensional divergence and we find

and we find a simple expression 6fin terms ofAy:

In flat spacef =0 and Eq.(5.10 gives immediately the fol-

1 ce' lowi tential:
R(7)= 167Gk | —— 7/ Agdjlog @[+ mLJ> owing potentia
Y
eut 0P|l
vieh= 8k3(1+pH)2  (1+]®[%u?)*
If we use a conformally flat metric, E¢5.20 can be rewrit- (5.27

ten as
Some authors have already discussed the self-dual solutions
3K ‘ _ 2 in flat space for special cases of the potential, which from
A°&'|09|¢)|) =87mGarcHL. this point of view are just special values 8f =0 [34,36]
(5.2) andB=1 [37]. This general form of the potential appeared

. 87G
oY d; &llog H-—
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already(in a different parametrizationin Ref.[36], but only
the caseB=0 was discussed there. Kimm et f85] have

studied the general case in flat space and found three kinds of
flux tube solutions characterized by the asymptotic value of

f(r), which (for f(0)=0) may be either 03 or «.
If this Chern-Simons gauged (8 model is coupled to

gravity, we find that the ill-behaved potential from the Higgs
system becomes now bounded from below. First we integrate

Eq. (5.17 either directly or using Eqg5.19 and (5.26) to
get

(B%—|®|% u?)?
(1+]0[2/2)2

27G,e?u’

D= f<(1—|—,82)2

(@ (5.28

where the role of the integration constant is playedNoy
defined byx = (1+ 8?)20/u*. Then we find from Eq(5.10
a new potential withh as an additiona(non-negative free
parameter:

4 4

 e'u |D|2(B%—| D% u?)?
U<|<D|>—8K2(1+Bz)2 (1+]| D% u?)*
_ aGaut [ (B[0P p?)? ?
(1+B2)? (1+|@|7u?? ) |

(5.29

This potential is clearly bounded from below, thus restorin

the stability. Moreover, it has always a local minimum at.

|®|=v=pBu, which breaks the (1) local symmetry. The
extremal points ai®|=0 and |®|—=, which are W1)-
symmetric, may be either minima or maxima depending o
the following conditions:

B2(1+ B?) +4mwGau?(B*—N)>0 minimum at|®|=0
(5.30

1+ B2+ 47Gau?(1—\)>0 minimum at |®|—co.

PHYSICAL REVIEW D67, 085019 (2003

Lo _
H?r

(5.32

where the dependence 6fon f is obtained from Eq(5.28).
The self-duality equation for the scalar field is now
(n=+1 as usual

[ I—
TzeA(r)—n (5.33
where for brevity we denothA—AoL(p. The equation for

K(r) may be easily obtained from E¢6.15), expressing’
andA, in terms off:

E__ 63M4 ,32_f2 27763#2 )\_(Bz_fz)z)
H2r 2k%(1+B%) 1+f2 | (1+B%)? (1+f2)?
f2
+ — . 5.3
(1+f2)2 (634

Einstein equations for the metric fiel&.21) reduce in this
case to the following:

7G3k !

e

=0.
(5.39

he reflection symmetry observed in the GMH system exists
in the GCSH system as well, provided is also rescaled
according to itsB dependence. We may therefore limit our-

r((logH)’—8 Ao(logf)’)—8wG3KcL<P}

r.Felves to solutions witfi(0)=0 as before. Clearly there are

three kinds of solutions classified by the three possible val-
ues whichf () may take, according to the different minima
of the potential. However, these three valug¢&), U(v)
andU(«) are generally different from each other, and each
of them vanishes for a different value ®f Since vanishing
value of the potential minimum is an essential property of

The potential of the gravitating Chern-Simons type of theour localized solutions, we encounter here a situation which

usual Higgs system, is obtained in the limit-oc (with A u*
and Bu kept finite.

Actually a special case of this potential far=0 was
recently obtained by Abou-Zeid and Samtleljdd] from a
different direction of three dimension&l=2 supergravity
theory. We will see thak #0 yields interesting solutions as
well.

Now we concentrate in rotationally symmetric solutions,

differs from that in flat spacg35], where all three possible
boundary conditions are realized for the same potential. In
the gravitating case, each kind is realized for a different
value ofA. The flux tube solutions with quantized flux and
the usual boundary conditiof(«)= g exist for A =0 only.
Representative solutions are depicted in Figs. 3 and 4. The
two other solution types withi(ec) =0,c exist for A= %1,
respectively and are depicted in Figs. 5—8. We may therefore

i.e. we use the Nielsen-Olesen ansatz including the timéummarize the situation by the following relations:

component of the gauge potential:

D=pf(r)eme, A,dx*=Ay(r)dt+A(r)de (5.31)

with the additional requirement that all the metric compo-

nents depend ononly.

The field equations for self-dual rotationally symmetric
solutions are quite similar to the ones of the GMH model

with two additional equations: FoA, and for the metric
component ,(r) (L, now vanishes The dependence &
onf is obvious from Eq(5.26. ForL ,(r) we have

A=p%=lim f(r)=0

r—oo

A=0=Im f(r)=

r—oo

(5.3

A=1=lim f(r)=co,

r—ow

A special case i& = =1 which allows both boundary con-
ditions[ (o) =0,0] for the same potential.
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eA - [ | eA
5r " ? ------- T 5P e e ]
10B/(en) i = 10B/(en’) S
eply - -~ eply -
4r E 4
&r E 3

Fields
Fields

FIG. 3. The solution to Eq¥5.32—(5.35, with the boundary FIG. 5. The solution to Eq945.32—(5.39, with the boundary
condition f()=B. The parameters used ame= —1, =1, x/eu condition f () =0. The parameters used ame= — 1, B=1, x/eu
=1, 87G,u?=0, i.e. gravity is not included. Notice that we mag- =1, 87G;u?=0, i.e. gravity is not included. The curves in this
nify the magnetic field by a factor 10 here and in the subsequenfigure represent also the corresponding solution for the GMH sys-
figures. The gauge field tends to its asymptotic value slower than item with the triple well potential—see remark below E§.2).
the previous case as is seen from the valueAat x= 20 which is
somewhat above -1. The curves in this figure represent also thEor vanishingc [or Ag() or \, i.e. quantized flukwe find
corresponding solution for the GMH system with the triple well

otential—see remark below E(6.2). 13 8mGsk B
P ®2 £= -—= nAO(0)=87-rGg,u2|n|f f&,(f)df
Note that all three kinds of boundary conditions ensure 0 (5.39

also a vanishing asymptotic value of the angular momentum

density€, which is a necessary condition for a finite angularinat is the same as the res(#t6) for the GMH model. For
momentum. The gauge potentia) need not always vanish the Q3) case under consideration here, we find the same

asymptotically. It does only in th&(c«c) = 3 case. expression as we had in the case ¢8GGMH:
For all these three kinds of boundary conditions, the mat-
ter fields tend asymptotically to their vacuum values. Thus S¢  4mGavn|

asymptotically, the geometry of space-time will be a rotating m . a2 lim f(r)=g. (5.39
conic metric. The angular deficit may be easily obtained ™ 1+8 r—oo

from Eq. (5.35 to be . . .
The angular deficit for the other solutions without flux quan-

S 8mG3k tization (i.e. non-vanishing or \) can be easily calculated in
m e LNA0)+Ag(=)(eA*) —N)]. the Q3) model from Eq.(5.37):
(5.37 .
® ' ' ! Q — e(;_\) :
i °r o)
sk o | ST —
10B/(en®)
eply —--— 4+ P -4

Fields

Fields

L L L L
30 35 40 45 50

FIG. 6. The solution to Eq945.32—(5.39, with the boundary
FIG. 4. The solution to Eq95.32—(5.39, with the boundary  condition f(«) =. The parameters used ane- —1, 8=1, x/eu
condition f()=B. The parameters used ame= —1, 8=1, kleu =1, 87G3u?=0.0625, i.e. gravity is included. Compare with Fig.
=1, 8wG,u?=0.5, i.e. gravity is included. Compare with Fig. 3. 5.
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i — ' ' ' ' ' ' ' ' integratingT?D over all two-space. The angular momentum
i —- | also determines the asymptotic value of the metric compo-
,,,,,, T ioBed P nentL,(r) such that
i /,,/" 1 6(p
1-o5—|Ly(°)=—4GJ. (5.42
3t . 2
A . This relation is most easily obtained in a Gaussian normal

coordinate system, in which the line element is written as:
1 ds?=—dp?+h,gdx*dx? (x*=t,p). Since h,z depends
only onp, the components of the Ricci tensor have the fol-

o e lowing simple form in terms of the extrinsic curvatw(%:
al i
. . . . . . . . . 1 9 1 dh
0 5 10 15 20 'is 30 35 40 45 50 RE:W%(J'ng)’ Kg:_zhayf_
(5.43

FIG. 7. The solution to Eq95.32—(5.39, with the boundary

c_oildgiogf(o;)_:oo._ The pe}tramete;s_ usle;i ?T\I_t.l’ Bt: lt K/e"% It turns out that we can compute the angular momentum
=5 Omsu” =1, 1€ gravily 1s not Inciuded. Notice thal We ShOW iy ctly without even the self-duality assumption, due to the

—eA The curves in this figure represent also the correspondin%imme identity which holds for solutions of the flux tube
solution for the GMH system with the triple well potential—see form (5.31):

remark below Eq(6.2).

eTo=(n—eA(r))j°. (5.44
S¢ AmGyu’p’e|lA(=)| . .
> 5 , limf(r)=0 (5.40 Now we use the time component of the Chern-Simons equa-
1+p r—e tion (5.3), to write j° in terms ofB and get
P e A(x) J_ZTrKJw B A _ TK on o)A (00
5-=4mGau?———n|, lImf(==. (541 = 7o J, (MTEAMATr= " 2n=eAle)AC).
i B o (5.45

Solutions which break the @) symmetry asymptotically
Note the dependence on the unquantized magnetic flux refrave quantized angular momentum of
resented here b (). Thus we have in these cases a con-
tinuum of values for the angular deficit for a given potential TK

andn and f (=) values. J= gnz (5.49

We end this section by computing the angular momentumyhile otherwise, there is no flux quantization and we cannot
J of the rotationally symmetric solutions, which we get by say about the angular momentum more than the right hand
side of Eq.(5.45. Note that the angular momentum in Eq.

T—e ' ' ' ' ' ' ' (5.406) is a very general result independent of all details of the
i fp— oA T ] theory, except the existence of symmetry breaking vacuum in
S ;gﬁfeue) the potential. We note further that all solutions have the same
WL ’ i sign of angular momentum, which is a manifestation of par-
ity violation.

VI. CORRESPONDENCE BETWEEN MAXWELL AND
2r ] CHERN-SIMONS TYPE OF THE GENERALIZED HIGGS
MODEL

Fields

We note that in flat space, the electric energy density of
the Chern-Simons field plays an equivalent role to that of the
magnetic energy density in the GMH model. Moreover, due
T . . . . . . . ] to Eq. (5.19, there is a relation between the magnetic and

0 s 1o 15 20 2 3 s 4 4 s electric terms, thus enabling us to eliminate the sciadhac-

* tric) potential from the equations and to give them a form

FIG. 8. The solution to Eqg5.32—(5.35), with the boundary identical to those of the GMH model.
condition f()=0. The parameters used ame= —1, =1, x/eu Comparison of the Bogomol'nyi constraints in both cases,
=1, 8mG,u?=0.15, i.e. gravity is included. Compare with Fig. 7. Egs.(2.17) and(5.18), gives a relation between the magnetic
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field in the GMH model and the time component of the VIl. TOPOLOGICAL CHARGE

gauge potential in the GCSH model. The quantization of magnetic flux is intimately connected

with the fact that the minimum of the potential breaks the

EB=KAg. 6.0 Jocal U(1) symmetry. Consequently, the magnetic flux num-

ber is the index, or winding number, of the map defined by

Further comparison of the magnetic field appearing in thighe scalar fields from infinite distance from the flux tube to
equation with the one in Ed5.15 (with €=0) or the po- the vacuum manifold.

tentials[Egs.(2.11) and(5.10 (with €=0)], yields the fol- If however, the target space is compact, there exists a
lowing characteristic relation for the generalized Maxwell-further possibility of homotopy classification of the maps
Higgs model: defined by the fields from “real” space to target space. We
can use, as a ground of the present discussion, the well-
P known notions from sigma models defined in three space-
(D)) =e?|®|2&,(|D|). (6.2  time dimensiong14]. The GCSH model is naturally three

dimensional, but the GMH model should be thought of here
) as three dimensional as well. In this case, the scalar fields
Thus all the flat space self-dual solutions to De=3 sys-  map the two dimensional physical space into target space.

tem, studied in Sec. V, are also self-dual solutions tolBhe e have therefore an identically conserved topological cur-
=4 GMH model of Sec. lll, provided we us® consistent  rent defined by

with Eq. (6.2). Consequently, the curves in Figs. 3, 5, 7 rep-

resent also the corresponding fields of the GMH model with

the triple well potential3.13 and the appropriate dielectric KM= — €

function mentioned together with that potential. 20|
However, the presence of an electric field in the=3 (7.1

Chern-Simons theory, in addition to the magnetic field, is

responsible for the existence of angular momentum, whickyhere(); is the target space volume, arkf|®|) is defined

calls for corrections to this simple correspondence Wherby

gravity is considered dynamical. It is straightforwagal-

though tediousto show that there does not exist spinning dF

gravitating self-dual flux tubes in the GMH model. There- = =[Py (|P)). (7.2

fore, we have only static versus stationary correspondence, d|®|

and all we can hope for is equivalence of the two-

dimensional spatial metrics in addition to the scalar and vecThis is a gauge invariant generalization of the standard non-

tor correspondence. This turns out to be the case, providegauged sigma model current, whose time component integral

we also impose&=oc=A=0. over all space is the winding number, or index, of the map
Equation (6.1) is evidently still valid in the gravitating defined by the sigma model fields. Note tif&{d|) is con-

case and should be accompanied BB whereB is the  nected to A(|®|) [defined in Eq.(2.30] by eF(|®|)

Auv

GMH magnetic field defined by Eq2.9 and B—in Eq. _=—|<I>|dA_/d|(I>|, up to a possible additive constant. By the
(5.8). Thus we get the relation instead of H§.2): field equations of the GCSH model, it is also relatedydoy
kAy(|®])=— neF(|®|), up to an additive constant. Unlike
2 previous author$30,35—31, we fix the additive constant of
=e?|P[2E,(|D|) + k. (6.3  F such thatF vanishes a§®|—, irrespective of the
E(|P]) boundary conditions imposed on the solutions. This way, we

can treat uniformly all sigma models differing only by the
Note that now the potentials are not equal in both cases, buydotential term. For the special(8 “dielectric function,”

there is anf-dependent difference: given in Eq.(2.22, we may write the topological charge
(and current in terms of & (|®|) only, since F(|®|)
£2 =— u?J& (|®])/2. In this case, we have al$d;=mu? and
Um=Ucs— 321Gy’ (6.4 the apparent dependence on the sgaldisappears.

The fact that this gauge invariant current has still a topo-

logical meaning is clearly seen by the fact that it is actually

_ As for the metric tensor, it is easy to see that both expresge non-gauged sigma model current with an addition, which
sions for the Ricci scalar, Eq$2.27) and (5.20, become g 4 divergence of an anti-symmetric tensor:
identical due to Eq(6.1), thus resulting in equal 2-metrics in

the two cases.

\p . Auv
Actually, thosef-dependent modifications should be ex- N . %
pressed in terms of functions that appear in the Lagrangian, K= ZQT\/H ('51(@')(&”@) (9,®)
and should be considered as function$df. We will not do
this explicitly, since it is straightforward and does not add
any more insight into the physical picture. +2eV,[F(PDA,] . 7.3
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Indeed, the first term of Eq.7.3) can also be written as a Another property, which we can note here, is the relation
divergence of an anti-symmetric tensor, so we have the altewith the Euler number of the 2-surface generated by the self-

native form: dual GMH solutions. The Euler number is given by
K"=V,K~?, 1
X==7- f dx\TyIR() (7.6
qurTUPDE (D% 9, — D, D*) + 26 A
209l | |®|2 A r “* while for (say self-dual solutions f=1), we may write the

(7.4  topological charge as

Integration of the time component of the topological cur- 1 .
rent provides us with the topological chariewhich char- T=-5a- d>\[1(&x(|@]) ¥ (D;@)* (D)
acterizes the solutions from the homotopy point of view. For T

our stationary solutions, we write the two equivalent expres- 5 e _
sions: +26,1 BB~ 5 Fw) AR (1
r—oo
1 .
T=- ﬁf d?x(i €&y (|P])(D;@)* (D;P) By the field equation$2.11) and(2.14), we see that the first
T term is just proportional to the Euler number, so we have a
—ZGWB}"(M’D) simple relation between the topological charge, the Euler
number and the magnetic flux, which we denote her&by
i -
-7 20, d*xe £1(| D)) (3, P)* (4, ) X e]:(v)\p_o g
4G+ Qr 7.8
e .
— —F(w) % A,dx (7.5 _ _ _
Oy r—o For the @3) system, Eq(7.8) yields the following relation:
wherew is the asymptotic value dfb|. We stress the differ- oy
ence betweem, which corresponds to a property of a solu- 27T+ X +——=0. (7.9
tion, andv which is a parameter in the potential.need not 2Gu® 1+p?

be equal ta (although it may bg as happens for solutions

of the GCSH model discussed in Sec. V, or solutions to thd-or asymptotically conic space, the Euler number is related
GMH model with the potentia(3.13, which may have all to the deficit angle by = d¢/2m, so Eq.(7.8) is easily veri-
three asymptotic values=0p,%. fied by using Eq(4.7).

Note thatT cannot be expressed as a surface inte@ed Next we turn to the GCSH model, where things are quite
tually line integral inD=2+1) since the winding number, similar. The topological current and charge are still given by
i.e. the(non-gaugerisigma model contribution dk'°, does  EQs.(7.1)—(7.5). However, since the self-duality condition is
not satisfy Stokes theorem. The second term is however aow modified by replacing; by A;, it is useful to write the
boundary term, and we note that it vanishes for solutions fotopological charge also in a way that is ready for direct use
which |®|—o asr—c. In the Q3) model, these are solu- of the modified self-duality. We therefore write the topologi-
tions which do not break the () symmetry asymptotically. cal charge density as
Another possibility is solutions which do break the(1)J

symmetry asymptotically, and thus do not cover all target el o o
space. This kind of solutions have non-integer winding num- KO=— ——=1i&(|®])(D;®)*(D;P)
ber, but the topological charge has also a magnetic flux con- ZQT\/H
tribution, which may compensate for this fact. }'(|q>|)§
This is exactly what happens for the self-dual cylindri- 1 2ed by e
cally symmetric solutions of the @) GMH model, where 2e4 [ F(IPDAL] Qr (7.10

we find that in all case§ =n. If the solution tends to a

symmetry breaking vacuum, the boundary term of &g5) Note however that the surface term vanishes only for quan-
does not vanish and evaluatesrtf{1+ »?), where we de- tized flux solutions[c=\=0, Ao(w)=0]. If we proceed
fine w=w/u. The winding number, which is the first term, is along similar lines as for the GMH case, we easily find the
easily found to benw?/(1+ »?). They both add up to give same relation between the topological charge, Euler number
T=n. In the casew— =, where the solution does not break and the magnetic flux, i.e. E47.8). It simplifies again for
asymptotically the (1) symmetry, the flux contribution van- the Q3) model to Eq.(7.9).

ishes but the first is an integer and we det n again. The Finally, we use this relation in order to calculate the to-
third possibility, =0 is however an exception: In this case, pological charge for the solutions with quantized as well as
the winding number vanishes but we have a flux contributiomon-quantized flux, which is obtained directly from Eqg.

to getT=eA(x). (7.5:
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eA(x), w=0, string or vortex. This was obtained even for very simple and
symmetric models, like 3) with the potential(3.13. We
T=yn w=uv, (7.1D believe that the astrophysical and cosmological conse-
n, W— 0, quences deserve further studies.

Another continuation and generalization of our work is to
A nice check of our results is that we can easily reproduce byonsider theories with a more extended field content. One
substitution in Eq(7.9) the expression.39—(5.41) for the  natural possibility is to gauge a U(X)U(1) subgroup of the
deficit angles. global symmetry group of a GB) non-linear sigma model
noticing that CI2) can be parametrized by two complex
VIIl. OUTLOOK coordinates. One can therefore expect that in analogy with
the way the @) model [with S°~CP(1) as target spafe
We have shown that the inclusion of dielectric functionsgeneralizes the ordinary cosmic string, the gauged2CP
gives the possibility of dramatic changes in the long rangemodel generalizes the superconducting cosmic string
behavior of scalar, gauge and metric fields around a cosmi3,44.
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