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Self-dual cosmic strings and gravitating vortices in gauged sigma models
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Cosmic strings are considered in two types of gauged sigma models, which generalize the gravitating
Abelian Higgs model. The two models differ by whether the U~1! kinetic term is of the Maxwell or Chern-
Simons form. We obtain the self-duality conditions for a general two-dimensional target space defined in terms
of field dependent ‘‘dielectric functions.’’ In particular, we analyze analytically and numerically the equations
for the case of O~3! models~two-sphere as target space!, and find cosmic string solutions of several kinds as
well as gravitating vortices. We classify the solutions by their flux and topological charge. We note an inter-
esting connection between the Maxwell and Chern-Simons type models, which is responsible for simple
relations between the self-dual solutions of both types. There is however a significant difference between the
two systems, in that only the Chern-Simons type sigma model gives rise to spinning cosmic vortices.
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I. INTRODUCTION

Topological defects are generally believed to have b
formed during a series of phase transitions in the early u
verse. In particular, many field-theoretical models sugg
the formation of cosmic strings~for a review, see for instanc
Vilenkin and Shellard@1#!.

The BOOMERANG results@2#, especially concerning the
location of the acoustic peaks@3,4#, essentially rule out grand
unified theory~GUT! scale (;1016 GeV) topological defects
being thesolesource of the cosmic microwave backgrou
~CMB! anisotropy, which reflects the early universe dens
fluctuations, eventually leading to galaxy formation. Ho
ever, recent analysis@5–9# shows that a mixture of cosmi
strings and inflation is consistent with current CMB data.

Independently of a possible role in the large scale str
ture formation, and even if their mass scale is lower than
GUT scale, cosmic strings may have also a number of
nificant observable astrophysical effects. Just to mentio
few: Cosmic strings could be sources of double images@1#,
of gravitational waves@10,11# and of ultrahigh energy cos
mic rays@12#. Recently it was even suggested@13# that they
can serve as gamma ray burst engines. Thus, cosmic st
are still of considerable interest in cosmology and astroph
ics.

The most popular field-theoretical system, used to mo
cosmic string generation@1#, is the Abelian Higgs model
There exist, however, other systems which may be used
the same purpose and are not more complicated. As lon
we model cosmic strings as static cylindrically symmet
sources coupled to gravity, which is essentially a two dim
sional system, we may borrow circular solutions of oth
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well-known two dimensional systems, namely nonline
sigma models.

Nonlinear sigma models@14# are very much used as e
fective theories describing various systems such as low
ergy effective QCD, and are also used as ‘‘toy models’’ f
gauge theories. A generalization of these, where the glo
symmetry group or its subgroup is promoted to be local,
gauged sigma models which appear naturally in supers
metric field theories.

All these models have been extensively studied for
cades. Most of the results were obtained in flat~Minkowski!
spacetime, but more recently gravitating solutions were st
ied too. However, the gravitating sigma model solutions
usually taken to be spherically symmetric as in the case
gravitating Skyrmions and textures~see e.g. Volkov and
Gal’tsov @15#!, although some authors gave attention to c
lindrically symmetric solutions of the non-gauged@16,17# as
well as the gauged models with either Maxwell@18# or
Chern-Simons terms@19–22#.

Here we will analyze the gravitating gauged sigma mo
els with a general two-dimensional target space defined
terms of two field dependent ‘‘dielectric functions,’’ whic
may be viewed as generalized Abelian Higgs models: M
well type and Chern-Simons type, according to the gau
field term in the Lagrangian. We will find the general cond
tions for self-dual cosmic string solutions and get seve
kinds of interesting solutions.

We will start by considering, in the next section, static a
translationally invariant solutions of a generic gauged gra
tating non-linear sigma model of a Maxwell type, and fin
simple conditions for the existence of self-dual solutions.
Secs. III and IV, we concentrate in the O~3! model and add
rotational symmetry to obtain self-dual cosmic string so
tions. In Sec. V, we move to the Chern-Simons type
model, and consider stationary~not static! solutions. First we
obtain the self-duality conditions for this kind of solution
and then we specialize to spinning cosmic vortices. In S
VI, we discuss the relation between the two types of theo
©2003 The American Physical Society19-1
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and solutions, and we end with a discussion of the topolo
cal charges in Sec. VII.

II. THE GENERALIZED ABELIAN HIGGS MODEL

We start by considering a generalization of the Abel
Higgs model defined by the action

S5E d4xAuguS 1

2
E1~ uFu!~DmF!* ~DmF!2U~ uFu!

2
1

4
E2~ uFu!FmnFmn1

1

16pG
RD ~2.1!

whereE1(uFu) andE2(uFu) are non-negative dimensionles
functions, which may be interpreted as Weyl factors o
conformally-flat target space metric of a nonlinear sig
model with local U~1! symmetry@23#. The functionE2(uFu)
plays further the role of a dielectric function@24,25#. In what
follows, we use the collective notationEa , (a51,2), and
refer to both as ‘‘dielectric functions.’’ The action~2.1! also
generalizes the ones considered by Lohe@26,27#. Further-
more, the action~2.1! arises in various extended supergrav
theories@23#. In the general case, we may also add the te
E3(uFu)emnrsFmnFrs , but this term vanishes identically fo
the configurations considered in the present paper and ha
effect on the field equations.

The field equations derived from the action~2.1! are

E1~ uFu!DmDmF1
F*

2uFu
dE1

duFu
DmFDmF1

F

uFu
dU

duFu

1
F

4uFu
dE2

duFu
FmnFmn50 ~2.2!

¹m~E2~ uFu!Fmn!5 j n

52
i

2
eE1~ uFu!„F* ~DnF!2F~DnF!* …

~2.3!

1

8pG
Rmn1

1

2
E1~ uFu!~~DmF!* ~DnF!1~DnF!* ~DmF!!

2U~ uFu!gmn1E2~ uFu!S gklFmkFln1
1

4
FklFklgmnD

50. ~2.4!

Conventions:Dm5¹m2 ieAm , signature (1,2,2,2) and
Rlmn

k 5]nGlm
k 2]mGln

k 1•••.
Usually ~but not always! we will be interested in poten

tials, which ensure spontaneous symmetry breaking
which lead to a massive gauge field. That is to say, poten
with a circle of degenerate minima at~say! uFu5v and with
positive second derivative atv. We further normalize the
potential such that it vanishes in the vacuum. Thus, a
gether
08501
i-

a
a

no

d
ls

-

U50, U85
dU

duFu
50, for uFu5v. ~2.5!

With these normalizations, the Higgs boson mass and ga
boson mass are, respectively,

mH
2 5

U9~v !

E1~v !
, mA

25
e2v2E1~v !

E2~v !
. ~2.6!

In order to study cosmic string solutions, we assume
metric and matter fields to be static and symmetric undez
translations. Thus we assume thatAm andF depend only on
the two transverse coordinatesxk, and for the metric we use
the following form:

ds25N2~xk!dt22g i j ~xk!dxidxj2K2~xk!dz2. ~2.7!

We also require the presence of a magnetic field only,
that the gauge potential will have the form

Amdxm5Ai~xk!dxi ~2.8!

such that the Maxwell tensor will contain a single magne
componentB:

Fmndxm`dxn52BAugue i j dxi`dxj ~2.9!

whereugu5udet(g i j )u. In order to get the field equations fo
static solutions, we compute also the components of
Ricci tensor:

R0052
N

K
¹i~K¹ iN!

R335
K

N
¹i~N¹ iK !

Ri j 5Ri j ~g!1
1

N
¹i¹jN1

1

K
¹i¹jK

Ri05Ri350, R0350 ~2.10!

where¹i is the covariant derivative with respect to the tw
dimensional metricg i j and Ri j (g) the corresponding Ricc
tensor.

A significant simplification of this system is obtained
self-duality conditions are satisfied, i.e. if the system adm
a Bogomol’nyi limit @28#. It is well known @16# that in the
usual Higgs model, the flat space considerations can be
ried over to curved background ifN(xi) andK(xi) are con-
stants, say, 1. We will see now that the present general
Higgs model has also a Bogomol’nyi limit if we kee
N(xi)5K(xi)51. If we use these conditions, we find th
the ~00! and ~33! components of Einstein equations will b
satisfied only if

U~ uFu!5
1

2
E2~ uFu!B2. ~2.11!
9-2



a-
-

-
o

o
ld.
e

n-

cy
ia

b
in

he

at

two
he
yi

rd

n-

le of

em
te

es
h
ion

ace

g

ce

SELF-DUAL COSMIC STRINGS AND GRAVITATING . . . PHYSICAL REVIEW D67, 085019 ~2003!
Now we turn to the (i j ) components of the Einstein equ
tions, or even better toGi j which vanish identically. Conse
quently,Ti j 50 as well and we get

1

2
E1~ uFu!~~DiF!* ~D jF!1~D jF!* ~DiF!!

2S 1

2
E1~ uFu!gkl~DkF!* ~DlF!1U~ uFu!

2
1

2
E2~ uFu!B2Dg i j 50. ~2.12!

Using Eq.~2.11!, this condition simplifies further and it fol
lows that it is equivalent to the curved spacetime version
the self-duality condition:

DiF5 ihAugue i j g
jkDkF ~2.13!

whereh561 corresponds to self-dual or anti-self-dual s
lutions. This is a first order equation for the Higgs fie
Analogously, Eq.~2.11! is a first order equation for the gaug
potential.

We also find the following expression for the two dime
sional Ricci scalar:

R~g!528pG~E1~ uFu!g i j ~DiF!* ~D jF!14U~ uFu!!
~2.14!

which serves as the Einstein equation for the two metricg i j .
Equation~2.2! for the Higgs field becomes a consisten

condition, which constrains the form of the potent
U(uFu):

heuFuE1~ uFu!B1
dU

duFu
1

B2

2

dE2

duFu
50. ~2.15!

Maxwell equations~2.3! give

] j„E2~ uFu!B…52
he

2
E1~ uFu!] j uFu2 ~2.16!

which is a second order equation for the gauge potential,
it is not an independent one, as is easily shown: If we th
of B as a function ofuFu, we may use Eq.~2.11! and get
from Eq.~2.15! the following relation, which we will refer to
as the ‘‘Bogomol’nyi constraint:’’

d

duFu
„E2~ uFu!B…1heuFuE1~ uFu!50. ~2.17!

This is actually again the Maxwell equation~2.16! in dis-
guise, and can be used together with Eq.~2.11! to get the
function U(uFu) for any set of given ‘‘dielectric functions’’
Ea , a51,2. In order to do it directly, we need to express t
magnetic fieldB in terms of the potentialU. If B has a
definite sign, we infer from the Bogomol’nyi constraint th
E2(uFu)B(uFu)>0 for h511, and similarly for negative
values, so we may take a square root of Eq.~2.11!:

B5hA2U/E2 ~2.18!
08501
f

-

l

ut
k

and get a simple relation between the potential and the
dielectric functions, which is a necessary condition for t
action ~2.1! to have self-dual solutions, i.e. a Bogomol’n
limit:

d

duFu
A2E2~ uFu!U~ uFu!1euFuE1~ uFu!50. ~2.19!

The simplest case where we can apply Eq.~2.19! is of
courseEa51, which reproduces immediately the standa
Higgs potential,

U~ uFu!5
a

4
~v22uFu2!2 ~2.20!

where the Bogomol’nyi relation between the coupling co
stants holds

a[e2/a52. ~2.21!

Note that here, the vacuum expectation valuev enters into
the potential as an integration constant, and has also a ro
the value ofuFu for which the magnetic field vanishes.

The next case is the nonlinear O~3! sigma model, which is
obtained by takingE1 to be the usual conformal factor for S2

with a radiusm/2 @14#:

E1~ uFu!51/~11uFu2/m2!2. ~2.22!

The parameterm sets a second energy scale in the syst
and rendersE1 dimensionless. It is very simple to integra
the Bogomol’nyi constraint~2.17!, or equivalently Eq.
~2.19!, also in this case and get the following form ofB(uFu)
and potential, which allows a Bogomol’nyi limit in the O~3!
generalized Abelian Higgs model:

B~ uFu!5
he

2~11v2/m2!

1

E2~ uFu!
v22uFu2

11uFu2/m2
~2.23!

U~ uFu!5
e2

8~11v2/m2!2

1

E2~ uFu!
~v22uFu2!2

~11uFu2/m2!2
.

~2.24!

Here againv is an integration constant, which parametriz
the minimum of the potential and the field value for whic
the magnetic field vanishes. Generally there is no relat
between this scale and the scalem. We therefore have a
one-parameter family of potentials in this O~3! generalized
Abelian Higgs model for any givenE2(uFu), which we may
take at our will. Some special cases withE2(uFu)51 were
already analyzed by several authors mainly in flat sp
@29,30#, but also with coupling to gravity@18#.

A more ‘‘symmetric’’ picture may be obtained by usin
the angular variable on S2 defined by

uFu5m tan~Q/2!. ~2.25!

Generically, the potential exhibits a U~1!-symmetry breaking
minimum at uFu5v, but there are two special limitsv
50,̀ , where the ground state is only a point in target spa
9-3
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~the north or south poles of S2); namely, no symmetry break
ing occurs. This pattern of symmetry breaking is reflected
the Higgs and gauge boson masses, which turn out to h
the following equal~due to the self-duality! values:

mH5mA5
ev

11v2/m2
. ~2.26!

The two cases of symmetric vacuum correspond to vanish
Higgs and gauge masses.

Just as a final check we note that the Higgs potential@Eq.
~2.20! with ~2.21!# is obtained in the limitm→` from Eq.
~2.24! with E2(uFu)51. The masses which are obtained
this limit are the usual ones.

Now we return to the Einstein equation~2.14! and notice
that for self-dual solutions, its right-hand side is actually
two-dimensional divergence~it must be as we will see in
Sec. VII!, and may be simplified to

R~g!5
16pG

he
¹i~g i j E2~ uFu!B] j loguFu!. ~2.27!

Without loss of generality, we may take the two-dimensio
transverse part of the metric tensor to be conformally flat,
g i j 5H2(xk)d i j so the Einstein equation~2.14! reduces fur-
ther to

d i j ] i S ] j logH2
8pG

he
E2~ uFu!B] j loguFu D50. ~2.28!

This equation is not of first order, but it may get the form
a two dimensional Laplace equation, if we introduce a ‘‘s
per dielectric function’’A(uFu), which solves the following
equation:

uFu
dA

duFu
5hE2~ uFu!B~ uFu!5A2E2~ uFu!U~ uFu!

~2.29!

or equivalently the second order equation:

1

uFu
d

duFu S uFu
dA

duFu D1eE1~ uFu!50. ~2.30!

Now we can use the functionA, in order to give Eq.~2.28!
the form of a Laplace equation:

d i j ] i] j S logH2
8pG

e
AD50. ~2.31!

Special solutions will be discussed in Sec. IV.

III. FLAT SPACE SOLUTIONS

First we discuss flat space solutions within this gene
framework. As mentioned above, some of the solutions
already known but new ones can be easily obtained.

In order to study a single cosmic string solution, we ta
the usual cylindrically symmetric Nielsen-Olesen ansatz
n flux units:
08501
y
ve

g

l
.

f
-

l
re

e
r

F5m f ~r !einw, Amdxm5A~r !dw ~3.1!

wherem is a second energy scale, which is generally ind
pendent ofv. We will also assume that the dielectric fun
tions depend onuFu through the dimensionless ratiouFu/m
5 f only. For further use we define herev/m[b.

As for the boundary conditions, we will see that they w
not be the same for all systems, but will rather have to
adapted to the specific system. However, since we are in
ested in solutions with finite energy per unit length and fin
flux, the boundary conditions at infinity should ensure a
ymptotically vanishing energy density. The usual Nielse
Olesen conditions should be generalized such that all th
contributions~scalar gauged kinetic term, potential and Ma
well term! will vanish asymptotically. That is

lim
r→`

U„f ~r !…50, lim
r→`

E2„f ~r !…B2~r !50,

lim
r→`

f 2~r !E1„f ~r !…„eA~r !2n…250. ~3.2!

In order to proceed, we will concentrate in the O~3! model.
The field equations~with h511 which we will mostly use
from now on! are the following simple first order set:

r f 8

f
5eA~r !2n ~3.3!

A8

r
52

em2

2~11b2!

b22 f 2

E2~ f !~11 f 2!
~3.4!

where a prime denotes differentiation with respect tor.
We still have a freedom in the functionE2, but we choose

until further notice E2( f )51. The simplest case, whic
yields the closest to the Abelian Higgs flux tube, is the ca
b51 which corresponds to a potential with a minimu
along the equator of S2. We thus impose the following addi
tional boundary conditions:

f ~0!50, A~0!50 ~3.5!

and the two last conditions in Eq.~3.2! may be replaced by

lim
r→`

A~r !5n/e. ~3.6!

Note that the boundary conditions we took enforcen to be
negative andA(r ) to be a non-positive decreasing functio
The magnetic fieldB(r ) is non-negative and the flux~in
units of 2p/e) is 2eA(`)52n, which is positive.

There is no known analytical solution of this system, b
it is very easy to get numerical solutions. We will commen
little more about it at the end of this section. Figure 1 co
tains the field variables (Q, A andB) in this b51 case. This
is actually the solution discussed already by Mukherjee@30#.
There is another related solution, which is obtained by
9-4
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flecting this solution in the S2 target space with respect to th
equator, i.e. starting atf 5` on thez axis (r 50) and de-
creasing withr to f 51:

lim
r→0

f ~r !5`, lim
r→`

f ~r !51. ~3.7!

The reflection property is much more transparent in terms
the angular field variableQ, Eq. ~2.25!, in terms of which
the boundary conditions on the scalar field are

Q~0!5p, lim
r→`

Q~r !5p/2. ~3.8!

This reflected solution has obviously negative magnetic fl
Another solution, which was discussed already by Sch

ers @29#, corresponds to the limiting case of potential with
minimum which does not break the U~1! symmetry. This
corresponds, in our terminology, tob50 while m stays finite
sov50. In this case, the minimum of the potential is on t
north pole of S2. Finite energy~per unit length! solutions still
exist, but they have now different boundary condition
namely

Q~0!5p, A~0!50 ~3.9!

lim
r→`

Q~r !50, lim
r→`

B~r !50. ~3.10!

The last boundary condition in Eq.~3.2! is automatically
satisfied asf→0 asymptotically. This gives a solution, whic
maps thez axis (r 50) to the south pole of S2 and the circle
r→` to the north pole. Since there is no symmetry break
at spatial infinity, the magnetic flux is not quantized b
rather takes continuous values.

In order to compare these solutions with theb51 ones, it
is more instructive to present the ‘‘anti-Schroers’’ solution

FIG. 1. The solution to Eqs.~3.3!, ~3.4!, for E251. Q is the
angular coordinate onS2. We also show the dimensionless ma
netic field. The metric field, which is constant in this case, is
cluded for comparison with the following figures. The paramet
used aren521, b51. The dimensionless length coordinate is d
fined byx5emr .
08501
f

.
-

,

g
t

,

which are solutions to the same problem with the reflec
potential (b→`). The boundary conditions should be ther
fore also reflected:

Q~0!50, A~0!50 ~3.11!

lim
r→`

Q~r !5p, lim
r→`

B~r !50 ~3.12!

where again the last boundary condition in Eq.~3.2! is auto-
matically satisfied, as nowf 2E1→0 asymptotically. There
are two unusual features of this family of solutions: First,
mentioned above, there is no flux quantization, and seco
there does not exist a solution withunu51 but with unu>2
@29#. Consequently, the energy density is maximal not on
symmetry axis, but rather on a cylindrical surface who
radius is of the order of 1/em. Similar behavior is seen in the
analogousunu>2 Nielsen-Olesen flux tubes@1#.

Another kind of interesting potential is a triple well po
tential, whose minima are at the north and south pole an
the equator of the target space. In terms of the angular fi
Q, it has the following simple form:

U~Q!5
e2m4

128
sin2~2Q!. ~3.13!

This potential is obtained by usingE2(uFu)5 1
4 (uFu/m

1m/uFu)2 andv5m in Eq. ~2.24!. Actually, E2 may be mul-
tiplied by an arbitrary constant, thus having the height of
potential free. Since the ‘‘polar’’ minima~at Q50,p) do not
break the U~1! symmetry, we do not expect flux quantizatio
for solutions that approach asymptotically one of the
minima. On the other hand, solutions which haveQ5p/2 as
their asymptotic value, will have of course quantized ma
netic flux.

There are thus several kinds of finite energy~per unit
length! solutions in this system. ForQ(0)50, all three kinds
with asymptotic valuesQ50,p/2,p are realized. The fields
Q, Ā andB̄ in Figs. 3, 5, 7 which actually correspond to th
Chern-Simons type system analyzed in Sec. V depict also
solutions of the present system withQ(`)5p/2,p,0 respec-
tively. We will say more about it in Sec. VI.

Similar solutions exist withQ(0)5p. A different kind of
solution starts with a ‘‘non-polar’’ value@i.e. Q(0)Þ0,p],
but for continuity must haven50. The asymptotic values
correspond to each of the three possible vacua.

The numerical procedure we have used is essentially
same as in previous works@31,32#, and we will not elaborate
about it more than the following remark regarding the tre
ment of boundary conditions. A common practice in nume
cal analysis is to replace the boundary conditions at infin
with the same boundary conditions at some finite point,r ` .
This works well on the system~3.3!, ~3.4!, provided thatb is
not 0 or`. If we try to shoot fromr ` to 0 in these two cases
it is easy to see~from the equations in terms of the angul
field, Q), that the solutions become constant. We are the
fore forced to replace the boundary condition onQ with
Q(`)5b6d whered is a ~positive! parameter, which is to

-
s
-

9-5
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be determined numerically. It turns out, that the continu
of solutions is found by givingd slightly different values.

Another remark concerns the classification of solutio
according to the possible choices of boundary conditions
is already clear from the flat space solutions, the O~3! system
has a reflection symmetry with respect to the S2 equatorial
plane~i.e. Q→p2Q or f→1/f ) together withb→1/b. We
may therefore limit ourselves to solutions withf (0)50
~which for h511 are alson,0 solutions! and classify
them according to the asymptotic valuesf (`), which are the
various minima of the potential function. Then.0 solutions
for the sameh andb ~and hence the same potential!, which
start at the ‘‘south pole’’ of target space, are easily obtain
from the n,0 solutions withb→1/b and further obvious
changes asn→2n andA→2A.

IV. GRAVITATING SOLUTIONS

In this section we consider gravitating O~3! cosmic
strings. It is in fact very easy to get the gravitating self-du
cylindrical solutions~i.e. single cosmic string solutions! in
the Bogomol’nyi limit, since the field equations for the ma
ter ~scalar and gauge! fields are very similar to those in fla
spacetime. More precisely, they are given by the follow
first order equations:

r f 8

f
5h~eA~r !2n! ~4.1!

which is identical with the Minkowskian one@for h511
compare Eq.~3.3!#, and

A8

H2r
52

hem2

2~11b2!

b22 f 2

E2~ f !~11 f 2!
. ~4.2!

Einstein equations for the metric field~2.28! get in the cy-
lindrical case the following form:

F r S ~ logH !82
8pG

he
BE2~ f !~ log f !8D G850. ~4.3!

Since we are interested here in cases where the m
fields tend asymptotically to their vacuum values, the geo
etry of space will evidently be conic with a deficit ang
given by the usual relation:

dw

2p
52 lim

r→`

„r ~ logH !8…. ~4.4!

We may obtain more information about the deficit angle
integrating equation~4.3! once and using the result at bo
ends,r 50 andr→`:

dw

2p
5

8pG

e
unB~0!uE2„f ~0!… ~4.5!

where we used the boundary conditions~3.5! and ~3.6!
supplemented byH(0)51, H8(0)50, and the fact that
2nB(0) is always ~i.e. for h561) positive. The factor
08501
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B(0)E2„f (0)… in the last equation can be expressed in ter
of the dielectric functionE1( f ) using Eq.~2.17! and assum-
ing a vanishing magnetic field asf→b:

dw

2p
58pGm2unu E

0

b

fE1~ f !d f . ~4.6!

For the O~3! sigma modelE1( f ) under consideration here
this integral can be explicitly calculated, or we may rath
use the already given expression of the magnetic field—
~4.2!. Both ways we get

dw

2p
5

4pGv2unu

11b2
. ~4.7!

Note that these two last equations are valid for thef (0)50
solutions—see final note of previous section. The we
known usual Higgs result@33# is obtained forb50, while
holding v fixed. On the other hand, we may take anoth
limit to obtain the deficit angle for the ‘‘anti-Schroers’’ solu
tions by b→`, while holding m fixed. This gives
(dw/2p)S54pGm2unu. This result applies also to the Schro
ers solutions.

In Fig. 2, we show the fields (Q, A, B, H) for the case
b51, 8pGm250.5; compare with Fig. 1.

V. CHERN-SIMONS TYPE OF THE GENERALIZED
HIGGS MODEL

The possibility of a second field dependent ‘‘dielectr
function’’ E2, used at the end of Sec. III, is much more i
teresting from another aspect, which is a connection w
D53 Chern-Simons theory. It turns out that the self-du
solutions for aD53 system of a gauged sigma mod
coupled to pure Chern-Simons theory, are related to thos
our generalized Higgs system. In other words, we may
place the Maxwell term with a Chern-Simons term in t
D53 version of the action~2.1! to get a generalized Chern
Simons-Higgs~GCSH! model. We will find interesting rela-
tions between the self-dual solutions of this GCSH syst

FIG. 2. The solution to Eqs.~4.1!–~4.3!, for E251. The param-
eters used aren521, b51, 8pGm250.5. Compare with Fig. 1.
9-6
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and the previous one, which from now on we call gener
ized Maxwell-Higgs~GMH! model.

There is of course a physical difference between tim
independent solutions in both models, which is the prese
of electric charge and electric field in the GCSH mod
However, due to the linear relation between the magn
field and the electric charge density, auFu-dependent mag
netic energy density appears, which in flat space mimics
actly the Maxwellian energy density in the GMH system,
will be shown below. This sheds new light on the we
known self-dual solutions of the Chern-Simons gauged O~3!
sigma model@34–37#. The self-dual solutions of the Chern
Simons type of the Abelian Higgs system@38,39#, fit also to
this framework by the obvious choiceE1(uFu)51. In order
to demonstrate these relations we write theD53 action:

S5E d3xAuguS 1

2
E1~ uFu!~DmF!* ~DmF!2U~ uFu!

1
k

4

elmn

Augu
AlFmn1

1

16pG3
RD ~5.1!

where all the geometrical terms here are 3-dimensional,
k is a positive parameter~it cannot be a field-dependen
function, as in the GMH case, because it would break ga
invariance! with dimensions of 1/length. Actually, the field
here have different dimensionalities than inD54, but the
self-dual solutions of the GMH system are identical inD
53 andD54, so the comparison becomes trivial.

The field equations of this system are

E1~ uFu!DmDmF1
F*

2uFu
dE1

duFu
DmFDmF1

F

uFu
dU

duFu
50

~5.2!

k

2

elmn

Augu
Flm5 j n52

i

2
eE1~ uFu!„F* ~DnF!2F~DnF!* …

~5.3!

1

8pG3
Rmn1

1

2
E1~ uFu!~~DmF!* ~DnF!1~DnF!* ~DmF!!

22U~ uFu!gmn50. ~5.4!

Spontaneous symmetry breaking occurs if the potential h
circle of degenerate minima, just as for the GMH syste
The mass of the Higgs field is given by the same expres
as for GMH, Eq.~2.6!, but the mass~squared! of the gauge
field is now1

mA
25S e2v2E1~v !

k D 2

. ~5.5!

In order to find static self-dual solutions in flat space, o
may proceed by dropping the curvature terms and look

1Compare Deser and Yang@40#.
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conditions for Eq.~2.13! to be satisfied. However, we prefe
to take the more general approach of dealing with the gra
tating system from the beginning. We therefore try to rep
what we did in the previous sections and requireg0051 in a
D53 version of the static metric~2.7!. It turns out that this
cannot be done ‘‘naively,’’ but some modifications are r
quired. The reason is the well-known property of Che
Simons vortices, which should carry also electric charge
the Maxwell tensor must contain in this case also an elec
field, and the vortex carries angular momentum as well. T
addition has important consequences if we treat the grav
tional field as dynamical, since the angular momentum of
Chern-Simons field forces the gravitational field to be s
tionary and not simply static. We therefore parametrize
D53 metric by

ds25N2~xk!~dt1Li~xl !dxi !22g i j ~xk!dxidxj ~5.6!

and write for the gauge field

Amdxm5A0~xk!dt1Ai~xk!dxi . ~5.7!

In order to get the field equations for stationary solutio
we introduce also the following notation:

Āi5Ai2A0Li

D̄ i5] i2 ieĀi

Li j 5] iL j2] jL i5Augue i j ,

F̄ i j 5] i Ā j2] j Āi52Augue i j B̄ ~5.8!

and compute the components of the Ricci tensor:

R0052N¹i¹
iN2

N4

2
,2

R0
i 52

1

2NAugu
e i j ] j~N3, ! ~5.9!

Ri j 5
1

N
¹ i¹ jN1

1

2
„R~g!2N2,2

…g i j

where¹i is the covariant derivative with respect to the tw
dimensional metricg i j and R(g) the corresponding Ricc
scalar.

Now we imposeN51 and find that the~00! component of
Einstein equations~5.4! will be satisfied only with the fol-
lowing condition on the potential:

U~ uFu!5
e2

2
uFu2E1~ uFu!~A0!22

,2

32pG3
. ~5.10!

From the (i j ) Einstein equations~or better from theGi j

equations!, we find the form of the self-duality equation i
this case

D̄ iF5 ihAugue i j g
jkD̄kF ~5.11!
9-7
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as well as the following expression for the two dimensio
Ricci scalar:

R~g!5,228pG3~E1~ uFu!g i j ~D̄ iF!* ~D̄ jF!14U~ uFu!!.
~5.12!

Due to the self-duality, the other field equations simplify
follows. The non-diagonal Einstein equations give

] i,516pG3heuFuE1~ uFu!A0] i uFu. ~5.13!

The spatial Chern-Simons equations give

] iA052
he

k
uFuE1~ uFu!] i uFu ~5.14!

which is used in the time component of the Chern-Simo
equations to obtain an expression forB̄:

B̄5S ,1
e2

k
uFu2E1~ uFu! DA0 . ~5.15!

Finally, the equation for the Higgs field gives another fun
tional relation between the potential and the other quantit

heuFuE1~ uFu!B̄1
dU

duFu
2

e2

2
~A0!2

d

duFu ~ uFu2E1!50.

~5.16!

Actually it is not an independent equation, since by subst
tion of Eq.~5.10! in Eq. ~5.16!, one may get back Eq.~5.15!.

The two differential equations for,(xk) andA0(xk) may
be also converted into equations for,(uFu) andA0(uFu):

d,

duFu
516pG3heuFuE1~ uFu!A0 , ~5.17!

dA0

duFu
52

he

k
uFuE1~ uFu! ~5.18!

and we find a simple expression of, in terms ofA0:

,58pG3k~c2A0
2!. ~5.19!

where c is an integration constant, which should be no
negative for solutions with finite angular momentum~where
, vanishes asymptotically!.

As in the gravitating GMH model, the right hand side
Eq. ~5.12! is a two-dimensional divergence and we find

R~g!516pG3k¹iS 1

he
g i j A0] j loguFu1

ce i j

Augu
L j D .

~5.20!

If we use a conformally flat metric, Eq.~5.20! can be rewrit-
ten as

d i j ] i S ] j logH2
8pG3k

he
A0] j loguFu D58pG3kcH2,.

~5.21!
08501
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Now we consider some special cases that allow self-d
solutions. We will then concentrate in rotationally symmet
solutions, i.e. gravitating vortices.

A. E1„Fz…Ä1

This is the Chern-Simons version of the usual Hig
model, which we may consider either in flat space or coup
to gravity. Integration of Eq.~5.18! is trivial and gives

A05
he

2k
~v22uFu2! ~5.22!

wherev is an integration constant. In flat space,50 and Eq.
~5.10! gives immediately the well-known@38,39# sixth order
potential:

U~ uFu!5
e4

8k2
uFu2~v22uFu2!2. ~5.23!

In the case of a gravitating system, we solve for,(uFu) and
find

,~ uFu!5
2pG3e2

k
~s2~v22uFu2!2! ~5.24!

wheres54k2c/e2. The potential is easily found to be

U~ uFu!5
e4

8k2
@ uFu2~v22uFu2!22pG3~s2~v22uFu2!2!2#

~5.25!

which has an unbounded additional term, thus rendering
whole system possibly unstable. Notwithstanding the p
sible instability, this potential was discussed by several
thors@19–22# and vortex solutions were also obtained. The
is a simple and natural way to cure the ill-behaved potent
which is generalizing this system to the O~3! sigma model.

B. E1„Fz…Ä1Õ„1¿zFz2Õµ2
…

2

This is the Chern-Simons gauged O~3! sigma model con-
sidered in flat background by some authors@34–37,41#.
Within the present framework the analysis is straightforwa
First we integrate Eq.~5.18! and find

A05
hem2

2k~11b2!

b22uFu2/m2

11uFu2/m2
. ~5.26!

In flat space,50 and Eq.~5.10! gives immediately the fol-
lowing potential:

U~ uFu!5
e4m4

8k2~11b2!2

uFu2~b22uFu2/m2!2

~11uFu2/m2!4
.

~5.27!

Some authors have already discussed the self-dual solu
in flat space for special cases of the potential, which fr
this point of view are just special values ofb: b50 @34,36#
andb51 @37#. This general form of the potential appeare
9-8
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already~in a different parametrization! in Ref. @36#, but only
the caseb50 was discussed there. Kimm et al.@35# have
studied the general case in flat space and found three kind
flux tube solutions characterized by the asymptotic value
f (r ), which ~for f (0)50) may be either 0,b or `.

If this Chern-Simons gauged O~3! model is coupled to
gravity, we find that the ill-behaved potential from the Hig
system becomes now bounded from below. First we integ
Eq. ~5.17! either directly or using Eqs.~5.19! and ~5.26! to
get

,~ uFu!5
2pG3e2m4

k~11b2!2 S l2
~b22uFu2/m2!2

~11uFu2/m2!2 D ~5.28!

where the role of the integration constant is played byl
defined byl5(11b2)2s/m4. Then we find from Eq.~5.10!
a new potential withl as an additional~non-negative! free
parameter:

U~ uFu!5
e4m4

8k2~11b2!2 F uFu2~b22uFu2/m2!2

~11uFu2/m2!4

2
pG3m4

~11b2!2 S l2
~b22uFu2/m2!2

~11uFu2/m2!2 D 2G .

~5.29!

This potential is clearly bounded from below, thus restor
the stability. Moreover, it has always a local minimum
uFu5v5bm, which breaks the U~1! local symmetry. The
extremal points atuFu50 and uFu→`, which are U~1!-
symmetric, may be either minima or maxima depending
the following conditions:

b2~11b2!14pG3m2~b42l!.0 minimum at uFu50
~5.30!

11b214pG3m2~12l!.0 minimum at uFu→`.

The potential of the gravitating Chern-Simons type of t
usual Higgs system, is obtained in the limitm→` ~with lm4

andbm kept finite!.
Actually a special case of this potential forl50 was

recently obtained by Abou-Zeid and Samtleben@42# from a
different direction of three dimensionalN52 supergravity
theory. We will see thatlÞ0 yields interesting solutions a
well.

Now we concentrate in rotationally symmetric solution
i.e. we use the Nielsen-Olesen ansatz including the t
component of the gauge potential:

F5m f ~r !einw, Amdxm5A0~r !dt1A~r !dw ~5.31!

with the additional requirement that all the metric comp
nents depend onr only.

The field equations for self-dual rotationally symmet
solutions are quite similar to the ones of the GMH mod
with two additional equations: ForA0 and for the metric
componentLw(r ) (Lr now vanishes!. The dependence ofA0
on f is obvious from Eq.~5.26!. For Lw(r ) we have
08501
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Lw8

H2r
5, ~5.32!

where the dependence of, on f is obtained from Eq.~5.28!.
The self-duality equation for the scalar field is no
(h511 as usual!:

r f 8

f
5eĀ~r !2n ~5.33!

where for brevity we denoteĀ5A2A0Lw . The equation for
Ā(r ) may be easily obtained from Eq.~5.15!, expressing,
andA0 in terms off:

Ā8

H2r
52

e3m4

2k2~11b2!

b22 f 2

11 f 2 F 2pG3m2

~11b2!2 S l2
~b22 f 2!2

~11 f 2!2 D
1

f 2

~11 f 2!2G . ~5.34!

Einstein equations for the metric field~5.21! reduce in this
case to the following:

F r S ~ logH !82
8pG3k

e
A0~ log f !8D28pG3kcLwG850.

~5.35!

The reflection symmetry observed in the GMH system ex
in the GCSH system as well, providedl is also rescaled
according to itsb dependence. We may therefore limit ou
selves to solutions withf (0)50 as before. Clearly there ar
three kinds of solutions classified by the three possible v
ues whichf (`) may take, according to the different minim
of the potential. However, these three valuesU(0), U(v)
andU(`) are generally different from each other, and ea
of them vanishes for a different value ofl. Since vanishing
value of the potential minimum is an essential property
our localized solutions, we encounter here a situation wh
differs from that in flat space@35#, where all three possible
boundary conditions are realized for the same potential
the gravitating case, each kind is realized for a differe
value ofl. The flux tube solutions with quantized flux an
the usual boundary conditionf (`)5b exist for l50 only.
Representative solutions are depicted in Figs. 3 and 4.
two other solution types withf (`)50,̀ exist for l5b4,1,
respectively and are depicted in Figs. 5–8. We may there
summarize the situation by the following relations:

l5b4⇒ lim
r→`

f ~r !50

l50⇒ lim
r→`

f ~r !5b ~5.36!

l51⇒ lim
r→`

f ~r !5`.

A special case isl5b51 which allows both boundary con
ditions @ f (`)50,̀ # for the same potential.
9-9
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Note that all three kinds of boundary conditions ens
also a vanishing asymptotic value of the angular momen
density,, which is a necessary condition for a finite angu
momentum. The gauge potentialA0 need not always vanish
asymptotically. It does only in thef (`)5b case.

For all these three kinds of boundary conditions, the m
ter fields tend asymptotically to their vacuum values. Th
asymptotically, the geometry of space-time will be a rotat
conic metric. The angular deficit may be easily obtain
from Eq. ~5.35! to be

dw

2p
52

8pG3k

e
@nA0~0!1A0~`!„eA~`!2n…#.

~5.37!

FIG. 3. The solution to Eqs.~5.32!–~5.35!, with the boundary
condition f (`)5b. The parameters used aren521, b51, k/em
51, 8pG3m250, i.e. gravity is not included. Notice that we ma
nify the magnetic field by a factor 10 here and in the subsequ
figures. The gauge field tends to its asymptotic value slower tha

the previous case as is seen from the value ofeĀ at x520 which is
somewhat above -1. The curves in this figure represent also
corresponding solution for the GMH system with the triple w
potential—see remark below Eq.~6.2!.

FIG. 4. The solution to Eqs.~5.32!–~5.35!, with the boundary
condition f (`)5b. The parameters used aren521, b51, k/em
51, 8pG3m250.5, i.e. gravity is included. Compare with Fig. 3
08501
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For vanishingc @or A0(`) or l, i.e. quantized flux# we find

dw

2p
52

8pG3k

e
nA0~0!58pG3m2unu E

0

b

fE1~ f !d f

~5.38!

that is the same as the result~4.6! for the GMH model. For
the O~3! case under consideration here, we find the sa
expression as we had in the case of O~3!-GMH:

dw

2p
5

4pG3v2unu

11b2
, lim

r→`

f ~r !5b. ~5.39!

The angular deficit for the other solutions without flux qua
tization~i.e. non-vanishingc or l) can be easily calculated in
the O~3! model from Eq.~5.37!:

nt
in

he

FIG. 5. The solution to Eqs.~5.32!–~5.35!, with the boundary
condition f (`)5`. The parameters used aren521, b51, k/em
51, 8pG3m250, i.e. gravity is not included. The curves in th
figure represent also the corresponding solution for the GMH s
tem with the triple well potential—see remark below Eq.~6.2!.

FIG. 6. The solution to Eqs.~5.32!–~5.35!, with the boundary
condition f (`)5`. The parameters used aren521, b51, k/em
51, 8pG3m250.0625, i.e. gravity is included. Compare with Fi
5.
9-10
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dw

2p
5

4pG3m2b2euA~`!u

11b2
, lim

r→`

f ~r !50 ~5.40!

dw

2p
54pG3m2UeA~`!

11b2
2nU , lim

r→`

f ~r !5`. ~5.41!

Note the dependence on the unquantized magnetic flux
resented here byA(`). Thus we have in these cases a co
tinuum of values for the angular deficit for a given potent
andn and f (`) values.

We end this section by computing the angular moment
J of the rotationally symmetric solutions, which we get b

FIG. 7. The solution to Eqs.~5.32!–~5.35!, with the boundary
condition f (`)50. The parameters used aren521, b51, k/em
51, 8pG3m250, i.e. gravity is not included. Notice that we sho

2eĀ. The curves in this figure represent also the correspond
solution for the GMH system with the triple well potential—se
remark below Eq.~6.2!.

FIG. 8. The solution to Eqs.~5.32!–~5.35!, with the boundary
condition f (`)50. The parameters used aren521, b51, k/em
51, 8pG3m250.15, i.e. gravity is included. Compare with Fig.
08501
p-
-
l

integratingTw
0 over all two-space. The angular momentu

also determines the asymptotic value of the metric com
nentLw(r ) such that

S 12
dw

2p DLw~`!524GJ. ~5.42!

This relation is most easily obtained in a Gaussian norm
coordinate system, in which the line element is written
ds252dr21habdxadxb (xa5t,w). Since hab depends
only on r, the components of the Ricci tensor have the f
lowing simple form in terms of the extrinsic curvatureKb

a :

Rb
a5

1

Auhu

]

]r
~AuhuKb

a!, Kb
a52

1

2
hag

]hgb

]r
.

~5.43!

It turns out that we can compute the angular moment
directly without even the self-duality assumption, due to t
simple identity which holds for solutions of the flux tub
form ~5.31!:

eTw
05„n2eA~r !…j 0. ~5.44!

Now we use the time component of the Chern-Simons eq
tion ~5.3!, to write j 0 in terms ofB and get

J5
2pk

e E
0

`

„n2eA~r !…A8dr5
pk

e
„2n2eA~`!…A~`!.

~5.45!

Solutions which break the U~1! symmetry asymptotically
have quantized angular momentum of

J5
pk

e2
n2 ~5.46!

while otherwise, there is no flux quantization and we can
say about the angular momentum more than the right h
side of Eq.~5.45!. Note that the angular momentum in E
~5.46! is a very general result independent of all details of
theory, except the existence of symmetry breaking vacuum
the potential. We note further that all solutions have the sa
sign of angular momentum, which is a manifestation of p
ity violation.

VI. CORRESPONDENCE BETWEEN MAXWELL AND
CHERN-SIMONS TYPE OF THE GENERALIZED HIGGS

MODEL

We note that in flat space, the electric energy density
the Chern-Simons field plays an equivalent role to that of
magnetic energy density in the GMH model. Moreover, d
to Eq. ~5.15!, there is a relation between the magnetic a
electric terms, thus enabling us to eliminate the scalar~elec-
tric! potential from the equations and to give them a fo
identical to those of the GMH model.

Comparison of the Bogomol’nyi constraints in both cas
Eqs.~2.17! and~5.18!, gives a relation between the magne

g
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field in the GMH model and the time component of t
gauge potential in the GCSH model:

E2B5kA0 . ~6.1!

Further comparison of the magnetic field appearing in t
equation with the one in Eq.~5.15! ~with ,50) or the po-
tentials@Eqs.~2.11! and ~5.10! ~with ,50)], yields the fol-
lowing characteristic relation for the generalized Maxwe
Higgs model:

k2

E2~ uFu!
5e2uFu2E1~ uFu!. ~6.2!

Thus all the flat space self-dual solutions to theD53 sys-
tem, studied in Sec. V, are also self-dual solutions to theD
54 GMH model of Sec. III, provided we useE2 consistent
with Eq. ~6.2!. Consequently, the curves in Figs. 3, 5, 7 re
resent also the corresponding fields of the GMH model w
the triple well potential~3.13! and the appropriate dielectri
function mentioned together with that potential.

However, the presence of an electric field in theD53
Chern-Simons theory, in addition to the magnetic field,
responsible for the existence of angular momentum, wh
calls for corrections to this simple correspondence wh
gravity is considered dynamical. It is straightforward~al-
though tedious! to show that there does not exist spinni
gravitating self-dual flux tubes in the GMH model. Ther
fore, we have only static versus stationary corresponde
and all we can hope for is equivalence of the tw
dimensional spatial metrics in addition to the scalar and v
tor correspondence. This turns out to be the case, prov
we also imposec5s5l50.

Equation ~6.1! is evidently still valid in the gravitating
case and should be accompanied byB5B̄ where B is the
GMH magnetic field defined by Eq.~2.9! and B̄—in Eq.
~5.8!. Thus we get the relation instead of Eq.~6.2!:

k2

E2~ uFu!
5e2uFu2E1~ uFu!1k,. ~6.3!

Note that now the potentials are not equal in both cases,
there is an,-dependent difference:

UM5UCS2
,2

32pG3
. ~6.4!

As for the metric tensor, it is easy to see that both expr
sions for the Ricci scalar, Eqs.~2.27! and ~5.20!, become
identical due to Eq.~6.1!, thus resulting in equal 2-metrics i
the two cases.

Actually, those,-dependent modifications should be e
pressed in terms of functions that appear in the Lagrang
and should be considered as functions ofuFu. We will not do
this explicitly, since it is straightforward and does not a
any more insight into the physical picture.
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VII. TOPOLOGICAL CHARGE

The quantization of magnetic flux is intimately connect
with the fact that the minimum of the potential breaks t
local U~1! symmetry. Consequently, the magnetic flux nu
ber is the index, or winding number, of the map defined
the scalar fields from infinite distance from the flux tube
the vacuum manifold.

If however, the target space is compact, there exist
further possibility of homotopy classification of the ma
defined by the fields from ‘‘real’’ space to target space. W
can use, as a ground of the present discussion, the w
known notions from sigma models defined in three spa
time dimensions@14#. The GCSH model is naturally thre
dimensional, but the GMH model should be thought of he
as three dimensional as well. In this case, the scalar fi
map the two dimensional physical space into target spa
We have therefore an identically conserved topological c
rent defined by

Kl52
elmn

2VTAugu
~ iE1~ uFu!~DmF!* ~DnF!1eF~ uFu!Fmn!

~7.1!

whereVT is the target space volume, andF(uFu) is defined
by

dF
duFu

5uFuE1~ uFu!. ~7.2!

This is a gauge invariant generalization of the standard n
gauged sigma model current, whose time component inte
over all space is the winding number, or index, of the m
defined by the sigma model fields. Note thatF(uFu) is con-
nected to A(uFu) @defined in Eq. ~2.30!# by eF(uFu)
52uFudA/duFu, up to a possible additive constant. By th
field equations of the GCSH model, it is also related toA0 by
kA0(uFu)52heF(uFu), up to an additive constant. Unlik
previous authors@30,35–37#, we fix the additive constant o
F such thatF vanishes asuFu→`, irrespective of the
boundary conditions imposed on the solutions. This way,
can treat uniformly all sigma models differing only by th
potential term. For the special O~3! ‘‘dielectric function,’’
given in Eq. ~2.22!, we may write the topological charg
~and current! in terms of E1(uFu) only, since F(uFu)
52m2AE1(uFu)/2. In this case, we have alsoVT5pm2 and
the apparent dependence on the scalem disappears.

The fact that this gauge invariant current has still a top
logical meaning is clearly seen by the fact that it is actua
the non-gauged sigma model current with an addition, wh
is a divergence of an anti-symmetric tensor:

Kl52
elmn

2VTAugu H ( iE1~ uFu!~]mF!* ~]nF!

12e¹m@F~ uFu!An# J . ~7.3!
9-12
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Indeed, the first term of Eq.~7.3! can also be written as
divergence of an anti-symmetric tensor, so we have the a
native form:

Kn5¹mKmn,

Kmn5
F~ uFu!emnl

2VTAugu
S i

uFu2
~F* ]lF2F]lF* !12eAlD .

~7.4!

Integration of the time component of the topological cu
rent provides us with the topological chargeT, which char-
acterizes the solutions from the homotopy point of view. F
our stationary solutions, we write the two equivalent expr
sions:

T52
1

2VT
E d2x~ i e i j E1~ uFu!~DiF!* ~D jF!

22eAuguBF~ uFu!!

52
i

2VT
E d2xe i j E1~ uFu!~] iF!* ~] jF!

2
e

VT
F~w! R

r→`
Aidxi ~7.5!

wherew is the asymptotic value ofuFu. We stress the differ-
ence betweenw, which corresponds to a property of a sol
tion, andv which is a parameter in the potential.w need not
be equal tov ~although it may be!, as happens for solution
of the GCSH model discussed in Sec. V, or solutions to
GMH model with the potential~3.13!, which may have all
three asymptotic valuesw50,v,`.

Note thatT cannot be expressed as a surface integral~ac-
tually line integral inD5211) since the winding number
i.e. the~non-gauged! sigma model contribution ofKi0, does
not satisfy Stokes theorem. The second term is howev
boundary term, and we note that it vanishes for solutions
which uFu→` as r→`. In the O~3! model, these are solu
tions which do not break the U~1! symmetry asymptotically.
Another possibility is solutions which do break the U~1!
symmetry asymptotically, and thus do not cover all tar
space. This kind of solutions have non-integer winding nu
ber, but the topological charge has also a magnetic flux c
tribution, which may compensate for this fact.

This is exactly what happens for the self-dual cylind
cally symmetric solutions of the O~3! GMH model, where
we find that in all casesT5n. If the solution tends to a
symmetry breaking vacuum, the boundary term of Eq.~7.5!
does not vanish and evaluates ton/(11v2), where we de-
fine v5w/m. The winding number, which is the first term,
easily found to benv2/(11v2). They both add up to give
T5n. In the casev→`, where the solution does not brea
asymptotically the U~1! symmetry, the flux contribution van
ishes but the first is an integer and we getT5n again. The
third possibility,v50 is however an exception: In this cas
the winding number vanishes but we have a flux contribut
to getT5eA(`).
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Another property, which we can note here, is the relat
with the Euler number of the 2-surface generated by the s
dual GMH solutions. The Euler number is given by

x52
1

4pE d2xAuguR~g! ~7.6!

while for ~say! self-dual solutions (h51), we may write the
topological charge as

T52
1

2VT
E d2xAugu~E1~ uFu!g i j ~DiF!* ~D jF!

12E2~ uFu!B2!2
e

VT
F~v ! R

r→`
Aidxi . ~7.7!

By the field equations~2.11! and~2.14!, we see that the firs
term is just proportional to the Euler number, so we hav
simple relation between the topological charge, the Eu
number and the magnetic flux, which we denote here byC:

T1
x

4GVT
2

eF~v !C

VT
50. ~7.8!

For the O~3! system, Eq.~7.8! yields the following relation:

2pT1
x

2Gm2
1

eC

11b2
50. ~7.9!

For asymptotically conic space, the Euler number is rela
to the deficit angle byx5dw/2p, so Eq.~7.8! is easily veri-
fied by using Eq.~4.7!.

Next we turn to the GCSH model, where things are qu
similar. The topological current and charge are still given
Eqs.~7.1!–~7.5!. However, since the self-duality condition
now modified by replacingAi by Āi , it is useful to write the
topological charge also in a way that is ready for direct u
of the modified self-duality. We therefore write the topolog
cal charge density as

K052
e i j

2VTAugu H iE1~ uFu!~D̄ iF!* ~D̄ jF!

12e] i@F~ uFu!A0L j #J 1
eF~ uFu!B̄

VT
. ~7.10!

Note however that the surface term vanishes only for qu
tized flux solutions@c5l50, A0(w)50#. If we proceed
along similar lines as for the GMH case, we easily find t
same relation between the topological charge, Euler num
and the magnetic flux, i.e. Eq.~7.8!. It simplifies again for
the O~3! model to Eq.~7.9!.

Finally, we use this relation in order to calculate the t
pological charge for the solutions with quantized as well
non-quantized flux, which is obtained directly from E
~7.5!:
9-13
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T5H eA~`!, w50,

n, w5v,

n, w→`.

~7.11!

A nice check of our results is that we can easily reproduce
substitution in Eq.~7.9! the expressions~5.39!–~5.41! for the
deficit angles.

VIII. OUTLOOK

We have shown that the inclusion of dielectric functio
gives the possibility of dramatic changes in the long ran
behavior of scalar, gauge and metric fields around a cos
r
e,

,’’

B
,’

ou

08501
y

e
ic

string or vortex. This was obtained even for very simple a
symmetric models, like O~3! with the potential~3.13!. We
believe that the astrophysical and cosmological con
quences deserve further studies.

Another continuation and generalization of our work is
consider theories with a more extended field content. O
natural possibility is to gauge a U(1)3U(1) subgroup of the
global symmetry group of a CP~2! non-linear sigma mode
noticing that CP~2! can be parametrized by two comple
coordinates. One can therefore expect that in analogy w
the way the O~3! model @with S2;CP(1) as target space#
generalizes the ordinary cosmic string, the gauged CP~2!
model generalizes the superconducting cosmic str
@43,44#.
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