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Negative energy densities in quantum field theory with a background potential
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We present a general procedure for calculating one-loop “Casimir” energy densities for a scalar field
coupled to a fixed potential in renormalized quantum field theory. We implement direct subtraction of coun-
terterms computed precisely in dimensional regularization with a definite renormalization scheme. Our proce-
dure allows us to test quantum field theory energy conditions in the presence of background potentials spheri-
cally symmetric in some dimensions and independent of others. We explicitly calculate the energy density for
several examples. For a square barrier, we find that the energy is negative and divergent outside the barrier, but
there is a compensating divergent positive contribution near the barrier on the inside. We also carry out
calculations with exactly solvable sécpotentials, which arise in the study of solitons and domain walls.
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I. INTRODUCTION In this paper, we reconsider the question of the energy
density in such systems. To avoid the subtleties associated
The weak energy condition of general relativity, the re-with the Casimir problem, we consider a quantum field in the
quirement that there be no negative energy densities, is sufresence of a background potentiad., a field with a mass
ficient to prevent the appearance of exotic features such amat depends on positipnin such an approach, one can
compactly generated closed timelike curygband superlu-  choose a potential that depends only on one spatial dimen-
minal travel[2]. Quantum field theory appears to violate this sjon, and simulate the parallel plates in the Casimir problem.
Condition, hOWeVer. One example iS the Standard Cas|m|By genera”zing the approach of Re[§_8] to local densi-
system of parallel plates, for which there is a negative energyes "we can precisely cancel the divergences in the calcula-
density between the plates. However, this is an idealized sy$;on, in a definite renormalization scheme.
tem, which assumes a perfect conductor with an infinitely Referencd 9] considered similar problems for the special

sharp and flgt edge. A real_matenal will have a rough surfac%ase of reflectionless potentials, such as the potentials for the
at the atomic scale and will also appear transparent to Vergupersymmetric kink and sine-Gordon models. Here we
high energy modes. Since the Casimir energy is a sum over . o
aI?energig}s/, it will always include modes fg}r/ which theseprese_nt a g_eneral approqch su|tab|_e for_numencal computa-
effects are relevant, so this idealization could affect the valu%?nd Iln [al%?'tlror? to ?narI]):]tilc calcurlat|olns n efxallcfth: tsholvatblg
of the sum. In addition, since the boundary condition is im- foces. . f ese ZC i que[jl;l? € aiso usetul for the study
posed externally, there is no measure of the energy that' ~asimir forces and Stressgall.

would be required to maintain it.

Although there are other ways to produce negative energy

densities, for example, a superposition of states with zero To jllustrate our method, we will first consider a simple
and two photons, these cases are constrained by averaggfhdel. We take a real, massless scalar field 4l 2limen-
energy conditions, which require the energy to be positivesjons in the background of a repulsive potentiathat de-
when averaged along an entire geodesic. They are also COPends on one spatial dimension but not the other.
strained by quantum inequaliti¢§], which limit the total We start with the Hamiltonian density

negative energy that can exist when averaging over a certain

II. A SIMPLE MODEL

period of time. Thus it is important to understand problems 1., ) )
of the Casimir type if we want to know whether quantum H=5[¢"+(Ve)"+Ve] 1)
field theory protects general relativity against negative ener-
gies. and expand the fielgb in terms of small oscillations, giving
. soyn= [ R[T =
* ; . ; X,y,0)=
Electronic address: ngraham@middlebury.edu y —» \2mJo 27w(p)

TElectronic address: kdo@cosmos.phy.tufts.edu
'Recently, Helfer and Lang3] showed that a frequency-

independent dielectric would not be expected to give negative en- XX:Z 3 [¥K(x)e™e Iw(p)ta)k(,p

ergy densities, but SopoJd] showed that negative energy densi- ’

ties can be achieved in a Casimir system with Drude-model plates, + Wk((x)*e_ipyei“’(p)ta’k{pT], 2
as long as the spacing is very large compared to the plasma wave-

length. where w(p) = Vk?+p?. The Jf(x) are normal mode wave
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functions, which can be taken to be real. The sum is over the We can relate the norms of the mode wave functions to
symmetric mode,, (x), and the antisymmetric mode, the Green’s function bysee, for example, Ref12])

¥ (X). They satisfy

= () + VOO () =K P(%) )

where prime denotes differentiation with respectxfowith
the normalization

|” ax w om0

and
|” awioouo-2mak-k), @
xX=+,— —

which gives g (9(x) =coskx and #, (V(x)=sinkx as the
solutions in the free cas#®,(x)=0.
The energy density is then

(= dp(= dk
<H>_f,mﬂfo 2mw(p)
1
X,(;, (E[w(p)2+p2+V(x)]¢f§(x)2+ P (x)%).

)
We write
2

1d
¢’(X)2=§d72¢(x)2—¢"(x)¢(x) (6)

and then use Ed3) to obtain

© dp (> dk
2w 0 2mw(p)

x >
X=+.-

(H)=

w(p)zw’((x)zﬂle—z[lﬂX(X)z] ()
O T G

P(X)%2=2k Im G(x,%,K), 9)

X=+.-
whereG(x,x’,k) is the Green’s function, which satisfies

—G"(x,x",k) +V(X)G(x,x", k) —k?’G(x,x",k) = 86(x—x")
(10

and has only outgoing waves-€*) at infinity.
The Green’s function has the symmetry property

G(x,x",k)=G(x,x",—k*)*, so for realk we can write

2= K kK _
P 7=7 X%, K) = = G(x,%, — k). (12)

x=+.-

Thus we can compute the energy by extending the range of
integration to—o, and usingG®(x,x,k)=i/(2k),

F( n+1)

. 2 SR kG k_1_V(x)

(H)ren= (477)—(n+3)/2 _mw T (X,%,k) 2K2
n+1 k d?

dk, (12

T2 g2 XN

where, since we are taking the massless limit k.

Next we would like to convert this expression into a con-
tour integral by closing the contour at infinity in the upper
half plane. The contour at infinity does not contribute, be-

The integral is highly divergent, but by using dimensionalcause for large, positive li
regularization and introducing counterterms into the Hamil-
tonian, as discussed in Sec. lll, we can render the integral

finite. We then integrate out the transverse modes, giving

2

r n+1
fwdk
2(4m)+D2)g .

<H> ren

x > {w““ PE(x)?= 1+—z\;(kX))w§<°><x>2}
X=+,-

n+1 d? .
to d—xz[lﬂk(x)] . €)

V(X)

T+O(k_4)'

2k
i—G(x,x,k)—>1+ (13

Singularities in the Green'’s function in the upper half plane
correspond to normalizable eigenfunctions of the Hamil-
tonian, which represent bound states. Since the Hamiltonian
is Hermitian, the bound states must have real energies, so the
singularities must lie on the imaginary axis and havekim
<u whereu is the mass. In this example, we have a repul-
sive potential and a massless particle, each of which is suf-
ficient to ensure that there are no bound states at all. Thus the

wheren is the number of transverse dimensions, later to b&sreen’s function has no singularities for ke 0, and the
set to 1. The Hamiltonian has been renormalized by subtractnly contribution to the integral comes from the branch cut
ing a constant term for the vacuum energy and a term proalong the positive imaginary axis coming froaf**. Inte-
portional to the potential, which is sufficient to render it fi- grating around the branch cut and using E@®) and (40)

nite in 2+1 dimensions.

below gives
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1 F n1
2(4 )(n+l)/2l" n+3

<H>ren: -

2
and then settingi=1 gives
(H) ——ifwd 2k3G(X,X,i k) — 2+M
ren— 8’7T 0 K K A TK K 2
d2
—Kd—XzG(X,X,iK) . (15)

2kG(X,x,k)—1+

PHYSICAL REVIEW D67, 085014 (2003

V(x) n+1 d?
WG(X,X,k) dx

2% T 2k (14)

where w(p)=Vk?>+p?+ u?, the bound state energies are
o (p)=p?+u? —«j %, and the sum ovet gives the par-
tial wave expansion in then nontrivial dimensions.

The degeneracy factdd}' in each partial wave is given
by the dimension of the space of symmetric tensors With
indices, each running from 1 tm, with all traces(contrac-
tions) removed[15]. By the symmetry of the indices, this
dimension is given by the number of ways to mdkidices
out of 0 or more 1's, 0, or more 2’s, and so on, which is the

Once one has computed the Green’s function, this integral inumber of distinct ways to place—1 dividers intom+ ¢
straightforward, though it may be necessary to resort to nu—1 slots. Removing all the traces requires subtracting the
merical techniques. We show the calculation for some exsame quantity witi! replaced byl —2. We thus obtain

ample potentials in Sec. IV below.

IIl. CALCULATIONAL METHOD
A. Model

We will now consider the more general case of a real
scalar field of masg in the background of a potential that is
spherically symmetric inm nontrivial coordinates, which we

label by x, and independent of the remainingrivial coor-
dinates, which we label by. The energy density is

H= %[¢2+(V¢)2+V(r)¢2+uz¢z]
1/. 1
=5 ¢2+§V2(¢2)— PVZP+V(r)*+ M2¢2) :
(16)
wherer =|x|. Decomposing the quantum fieltlin terms of

modes gives
#(r, Q1)

m2
. / f o s

1
> W[‘f”f(”*mz(m*?

J i

« ipyeiwf(p)tajMpzT

+4j (Y7 (Q)ePe” v Ptg o

—ipyaio(p)taflzt
e e ak'p

[y

U], (Q)ePe o0l |, a7

m_(m+€—1)! (m++€¢—3)!
CTo(m=1)  (£-2)!(m—1)!
L(m+¢—2)
(m+2¢—2). (18)

TT(m—1)T(f+1)

The wave functiona//ﬁ(r) are the eigenstates of the time-
independent radial Schdinger equation

d> m-1d ¢({+m-2) P
-—= —+ 2 +V(r) | ¢ (r)

=Kk2y(r),

which in general comprise both bound and scattering states.
The wavefunctions and creation and annihilation operators
are normalized as follows. For the spherical harmonics,

(19

f YO Y ()0 =808, (20)
for continuum states,
2,n.m/2 . .
—mfo ™ g (1)* i (N dr=md(k—k'),
F(E)
o'e! el
[ak ZT’ I z T] [a k/'pz]zo!
o, ,
[a .8, 2 11=0(k=K)8(p=p )8 deyr, (2D

and for bound states,

2,n_m/2

m fo rm_le((r)(ﬂf;(r)dr:éjj’5€€’ :
F(i)
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n

dp ol ()12
(277)”[; W (p)| (1)

Gt 06 1Al 200 1
a2 =rals 2 =0, ()~ (H)o=5 3 07 [
[aJ p' & ‘r] 5(p_p’)5€€,5€%£. (22) j —w(p)[|tﬂk(r)|2—|t// (0)(r |2]

Using these expressions, we obtain the vacuum expectation

value of the Hamiltonian +ED2( ()2
4°T
(H)=5 o (P (n)]? dk 1
2
( ) +f0 — w(p)lwr )| H (27)
~dk ol2e L2 TPNE:
" fo 77 o(PIY(NI*+ 2P T ol(p) ()] By completeness, in each partial wave we have
=dk
“J= wp)Wk(”'z) @3 S lojn+ [ Svior- i @m-o. @9

whereszdzlderr[(m—1)/r](d/dr) is the radial Laplac- so we can implement a local version of the Levinson’s theo-
ian. rem subtraction used in Rd#6], giving

B. Renormalization with one subtraction

()~ (H)o=5 = o7

For positive integem andn, this quantity diverges, as we
expect since we have not yet included the contribution of the
counterterms. Therefore we will calculate the result using
analytic continuation inm and n from values where it is
convergent. After introducing counterterms also depending

(2m)"

X 2 (of (p) = VpZ+ ud)|y ()|

on m and n, we will then let the dimensions go to their wdk .
physical values while holding the renormalization conditions + jo ?(w(p)— VP2 + w2 (| g (r)]?
fixed.

The first counterterm we will introduce renormalizes the 1
cosmological constant. It is simply an overall constant in the —| ,/,ﬁ (O)(r)|2)+ _|;)r2 f(r)|2
Hamiltonian, and is fixed by the renormalization condition 4

that the energy density of the trivial backgrouvi¢(r) =0 is
zero. The free wave functions are given by J'wdk 1 P (r)|2”
k

7T w(p)
m
F(E)

i O(r)= K52 rm/?‘Jm/Z-H?—l(kr): (24)

(29

This subtraction is necessary to avoid the appearance of spu-
rious infrared singularities in calculations in one space di-
mension. These singularities also appear in dimensions less
than one, which we will need to consider as part of the di-
which, by the Bessel function identity mensional regularization process.

Next we carry out the integral, using

i (2q+20)T(2q+4) , T'(2q+1)(z\*
2)'=——1\5
S T+ Y Tpgenzl2 f Nt
(25 277)”( %)
satisfy the completeness relation s f 0" ldp (VpZtod)@
1 km*l ( )(4 )n/2
mp € (0) |2 —
> DY) “ame m @9
2l'\ = n+a n+a
2 =)
— (30)
independent of. Subtracting the energy in the trivial back- _a ni2
r (4)
ground we have
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where we have done the integral by analytic continuation 7)., =(H)—(H)o—(H,)
from values ofa andn where it converges. We thus obtain

F( n+1
n+1 - _ 2 -
I\ — - 2(4) N+ 12

(H)=(H)o=~ 2am) DR

@ DY 2 [(w)M = 1|yt (r))2

X D?“[E [(w])" 1= w1y (r)|2
¢ ! °°d|( n+1 n+1
+f0 ;(w —u")

»dk
SN n+1 on+1
+f0 - (o u')

V(r)

KL= [ O 2] X 1= O P ”(Z_m)ﬁ)]

+1
+nTD?(Ej (o))" ()] +"Z—1DE(Z (o))" gy (r)|?

]
=dk
n— odk

*fo?‘” 1|¢/ﬁ<r>|2”, (3D +j0;w"-1|¢£<r>|2ﬂ- 39

where w=k?’+u? for the scattering states and)f We will use
= \u?— k[ 2 for the bound states witk=i | .

Next, we must include the contribution of the counterterm |¢/fﬁ(r)|2= 2k Im G(r,r k), (36)
proportional toV(r), which is introduced to cancel the tad-

pole graph. In dimensional regularization, the contribution towhere the Green’s function is defined by
the Hamiltonian from this counterterm is

F(l_n_m> —=DrGy(r,r',k)+ V(r)+r—2—k G(r,r',k)
2 -
H1:2(47T)(m+n+1)/2'U“ (), (32 =5M(r—r’) (37)

with the boundary conditions that it is regular at the origin
so by using and has only outgoing waves~g'X") at infinity. Using
G(r,r,—k)=G(r,r,k)*, we can rewrite Eq(35) as

°°dk n+1 n+1y,m—3
R (H)ar= ()~ (Fyo= ()
m—2 1-m—n F(—E
" )
:Iuernfl 1 (33) 2(47T)(n+1)/2
27TF<—T)
x2, DY 2 [(w)"" L= u" 1]yl (r)|?

and Eq.(26) we have dk
n+l__  n+1
+f - (w u')

F( n+1 ’°°
2 Y LT k v(r)
Hl:_W; D, fo ?(w l_,Uv l) Xi— G€(r,r,k)—G((°)(r,r,k) 1+(2—m)?”
V(r n+1
x<2—m)%|wﬁ<°)<r>|2 (34 +TDE($ ()" (r)]?
=dk Kk
so that +f, ?w” 1i—Gg(r,r,k)) . (39
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These subtractions are sufficient to render the theory finitéhe two-point function, which is just. We define the renor-
for m+n<3. However, it appears that if we set=1, the  malization scaleVl by takingc=—TII(M?). With this defi-
gamma function will cause E¢38) to diverge. In fact, as we nition, we have

will see in Appendix B, it does not, because the quantity in )

brackets vanishes. But here we will keegeneral and in- o= I—fld)\

stead close the contour of integration in the upper hkalf 2Jo

plane. For sufficiently smatfi the contour at infinity does not

contribute. There is a pole for each bound stat&=atE;, » dE d""™Mq 1

whereE; < u is the bound state energy, and the contributions 2 ntm =2 _2_ 2 N 2
from th(Jase poles exactly cancel the sum over bound states 27 (2m) E =g p MO (LM Hie)

[16] in Eg. (38). Thus the final result is just given by the 1 ®  ghtm-l
contribution from the branch cut along the imaginary axis n f 5 5 dg, (42
from u to o« resulting frome"**, which contributes 2(477)(n+m)/2p(¥> 0 w(40°—M?)
: . : _(n+1)m
Q““[l"“—(—')nH]:Z'Q”HS'nT: (39  whereqis the total momentum and we have integrated over

the Feynman parametar and the loop energi. Typically
we will chooseM?= u?, except in the case of massless theo-
ries, where to avoid infrared singularities we will choose a
spacelike renormalization poitM?<0.
_ ™ (40) This regulated expression is defined precisely as an ana-
rz+1)I'(-2) lytic function of the dimension. Our goal is now to rewrite it
in a way that allows us to incorporate it into our expression
we have for the energy, E_q(41),_which is also given as an analytic
function of the dimension. We express Eg6) in terms of
Green’s functions and analytically continue to express Eq.

whereQ = \/k?— u? andk=i«. Then using the identity

sinmz=

(H)rer=(H) — (H)o— (Ha) (42 as
l ©
—_ m n+1
= 3 ; D} fMdK 2kQ) - 1
2(4m) | —= = n+3
2 2(47) (1)L
X[ G(r,r,i)—GO(r rik) - 1 M1
Xf Q" (k,M) dx
y

n+1

(47T)m/2_1 (T)
o+l 2I' 5
4

V(r)
—_ 2_ -
x(l (2—m) 22

Q" ID2G(r,r,ik)

1

(41) =
2(477)(”+1)/2F($)

We can now put in integer values af and n without any

divergence, as long as+n<3. Eq.(41) can also be effi- o o .

ciently evaluated numericallyl1]. x; D?‘J Q" (k,M)26GO(r 1 i k)dK,
y73

C. Higher subtractions (43

When we haven+n=3 space dimensions, we will need e A ; ;
. P wheref(x,M) is given in terms of the hypergeometric func-
to introduce a second countertergGV(x)®. The first sub- 4o, as(K )isg yperg

traction is particularly easy to define because there is a natu-
ral scheme, specified by the complete cancellation of the

tadpole graph. Higher subtractions require a definition in fCe M= 2(m—4)(m—-2)(2x)> ™
terms of a renormalization scale, which can be chosen arbi- (1, M)= mar
trarily. In choosing this scale, we must be able to relate it to (4K>— Mz)ngZSin( 7)
physical inputs, such as masses and coupling constants, in
order to define a predictive theory. m 3 2
To define the counterterm precisely, we consider the two- X oF 1( 5,3— CEbL ﬁ) (44)
point functionIT1(p?) in dimensional regularization. It di- M*—4x

verges as we approach the physical dimension. The diver-
gence is canceled by the contribution of the counterterm t@as we show in Appendix A.
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Since we will eventually take the limit whera becomes ing divergencé. We fix this counterterm by subtracting the
an integer, we note that tadpole diagram with the composite operator carrying mo-
mentump?=M'2. Aside from this change, it is analogous to
the tadpole subtraction above, with?V(r) replaced by
122 —M? D2V(r). The scaleM’ is then specified through the renor-
f(k,M)= —————— for m=1, roe o .
2k2(4Kk%—M?2)2 malization condition on the composite operatand would
typically be chosen equal t¥). As with M, a massless
theory will require spacelikevl’><0, while in a massive
theory we may seM’ = . Thus we obtain the contribution

f(k,M)=

2 2 2
Tk (4 —M?) I (m+n—1) 1
21)= T
M 4(n+1) n+1
4K2arctan\/ﬁ 2(4,”_)(n+1)/21-* o
X\ 1+ \/ﬁ for m—2, -
Mya4x“—M xS D;,"j dr Q" 126G (r 1 i k)
[4 "
and )
Drv(r)
f(e,M)= 212(41%—M?) for m=3. (45) This term is a total derivative, so it does not contribute to the

total energy. We can split the contribution of this term be-
tween the bulk and derivative terms so that it renders them

Equation (43) is now in a form where we can include it both separately finite at integer dimensions, giving

under the integral sign in E¢41) and obtain 1 .
<H>ren:_ nt+3 2 D?f dx
— (n+1)/2p 4 “
(H)rer=(H) = (H)o— (H1) = (H2) 2(4m) -
_ 1 XZK(Q”+1 G(r,r,ic)—GO(r,r,ik)
2(4ar)(n 1 nts
2
V(r)
) X 1——2 S (2=m)+V(r)*f(x,M)
Xz D?f drx 2ky Q"1 G(r,r,ik) “
Lo o
(0) . V(r) 8(K2_M/2)QZ( m)
=Gyr,rik)| 1— 5 2(2—m)
“ n+1 _ D2V(r)
———Q" Y DG (r i)t ———
2 N+l 12 - 4 2(k>—M'?)
V(D)2 M) | | === Q" IDIG (1K) |
(46) X(Z—m)G%O)(r,r,iK))). (49)

_ By Eq. (26), the sum overf of the free Green’s function
Before we can take the limit whera+n=3, however, there  qaighted by the degeneracy factor is independent sb we
is one more potential divergence in E46). Our subtraction . pull the derivative outside in the last line, giving
has cancelled the terms of order\(r)/«? andV(r)/«* in '
the largex expansion of the norm of the wave functions. But
there could QISO be a t_erm Pf ordBrrZV(r)/K“, which .W'". 2lf we had chosen conformal instead of minimal coupling for the
generate a divergence in this case. In the renormalization %Ids, which corresponds to adding the extra tef{m+n
the composite operatof,,, we have a renormalization —1)[4(m+n)11(9,0,—0,,0,7") #? in the original Lagrangian,
counterterm ¢'12)[(m+n—=1)[4(m+n)]]1(d,9,  the divergent term would have cancelled automatically between the
—gW&)\ﬂ") ¢* [13]. Since we are considering juSt, here,  bulk term and the surface term and no renormalization would be
this  counterterm  becomes c'(2)[(m+n—1)[4(m  necessary. However, conformally coupled theories halassical
+n)]]V2¢2, exactly the form needed to cancel the remain-violations of the energy conditiorjd.4].
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1 * \%
(H)ren= — 3 E D?‘f dx ZK(QHH' Gg(r,r,iK)—G%O)(r,r,iK) 1- (rz)(Z—m)
e R 2
D2V(r) n+1 , V(r)
+V(r)2f(K,M)—m(2—m)2‘|]—TQ lDr GAr,r,m)—km
><(2—m)G§°>(r,r,iK))). (49

In this form, we see explicitly that the subtraction has cancelled the leading terms fotahgehe surface term, inside the
derivative we have implemented the same subtraction of the leading behavior of the Green’s function as we found for the
tadpole graph in the bulk term; in the bulk term, we have subtracted the leading term proportibﬁ‘d(tc) [which is derived
explicitly for m=1 in Eq. (B11)]. For the purposes of calculation, however, it is often easier to work with the combined
expression

1 o n+1
(H)en=— 3 > D,;“f kQN1 (1——2D,2 G(r,r,ic)—GO(r,r,ik)
(amyeenep| 2] 0 a0
(2—m)V(r) (2—m)D?V(r)
X|1- ———+V(N?f(k,M)+ —————(m+n—1) | |d«. (50
( 2k? 8(k2—M'2)Q2
|
IV. EXAMPLES WITH ONE RELEVANT DIMENSION AND 1
ONE IRRELEVANT DIMENSION (H)ren= —
(n+1)! n+3
A. The general case 2(4m) T >
To illustrate our method, we would like to carry out some
sample calculations in the caseraf=1 andn=1. Since we * nt1 oo V(r)
are in 2+1 dimensions, we only need one subtraction, pro- X u de € 2kG(r.r k) =1+ 2,2
portional toV(x). For m=1, the sum over partial waves
reduces to a sum over the symmetric and antisymmetric n+1 _
channels. The free wave functions thus become T2 kDrG(r,r,ik) (55
o O(x)=coskx, ¢ O(x)=sinkx, (51)
and forn=1 we have
so that
+(0)( |2 —(0)/y)[2 1 (- 2 ; v(r)
| Q0012+ |, Ox)2=1. (52 (Hyer=— g | dr Q2 2kG(r,rin) =1+ ——
™) 2K
We can sum over the two modes to get the overall Green’s k d? G(rrin) (56
i —— —G(r,r,ik) |,
function 02 dx?

G(x,x,K)=G"(x,x,k) + G~ (x,x,k), (53 . o
which reduces to Eq(1l5) when u=0. For simplicity, we
will consider the massless case for the remainder of this sec-

with tion.
G(O)(X,XJ(): '_ (54) B. Outside a potential with compact support
2k We next consider a potential that vanishes for|®|>a
and calculate the energy density in this region. In this case,
Then from Eq.(41) we have the only counterterm is the vacuum energy, and we get
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Thus, outside the barrier, the energy is
K’ [2kG(X,X, k) —1]

1 0
<H>ren: - _f dx
8mJo oc k2e 2“3 tanh 2’a

0
H =——J K
(Mren 8mJo 2k’ +(k?+ k'?)tanh 2¢’a

d2
—KwG(X,X,K) . (57)
Vo (= g2e 290~ Ytanh 29’
The Green'’s function fok,x’'>a is - 87Tafo dq 2qq’ +(92+q'?)tanh "’

G(x,x’,k)=i[e‘“"(@rr(k)eikx<]e”<x>, (58) (63

where we have defined the dimensionless quantities

wherer (k) is the reflection amplitude. Thus =x/a, q=«a, andq’ = \/q?+v = k'a wherev =V,a?. Note
. _ . that the integrand cannot be less than 0, so the energy outside
2kG(X,X,ik)=1+r(ik)e (59 the barrier is always negative.

Far from the potential, specifically whene—1>1/\v

and and y—1>1/v, the contribution comes primarily from
1 [« _ <\lv, and thusg’' ~ \vu. The integral is then
(H)rengfo dx Kk?r(ik)e 2 (60 - dqee 20~ L
J = 3 (64)
In the largex limit, only small x contribute in the integral. 0 v 4y-D%
As a result, the integral depends only of0)=—1 (at k
; . and
=0 we always have perfect reflectidnso we can approxi-
mate
<H>ren~ 327T(X—a)3 (65)

1 (= 1
H) o= — —f dr K2e 2= — . (61)
(Hier=~ g 0 32mx° in agreement with Eq62).

Close to the potential, specifically when-1<1/\/u and
C. Square barrier y—1<1, the contribution comes mostly froms v and

Next we consider a square barrier with=V, for |x| q>1. Thusq’~q and tanh @’~1. The integral becomes

<a andV=0 otherwise. In this case, we can compute the 1

normal mode wave functions in closed form, but must do a 8y—1) (66)
numerical integration at the end. Outside the barrier, the en- y
ergy is given by Eq(60) with and
Voe?“@tanh 2’ a V
r=-— 62 ~ 9
2kk'+(k?+k'?)tanh 2'a 62 (Hren 64m(x—a)’ (67)
and k'?=k?+V,. Inside the barrier, we have
|
i [k'cosk’(x.+a)—iksink’(x.+a)][k'cosk’(x~—a)+ik sink’ (X~ —a
S = (x-+a) (et a)ll (x-~2) (x-—a)] .
k' 2kk’cos X'a—i(k?*+k'?)sin2k’a
wherek’ = \k?—V,, so we can write
_ 1 (k?+k'?)cosh &'a+2kk'sinh 2«'a+ V,cosh &'
G(X,X, k)= — - . (69
2k’ 2kk'cosh &’a+ (k?+ k'?)sinh 2«'a
We can then split the energy into two parts,
(H)ren=Eo+E1(x), (70

whereE,; depends on position, b, does not.

3The only exceptions to this rule are potentials with a bound state precisely at thrgsadld, which include reflectionless potentials.
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The position-independent part is

E0=

PHYSICAL REVIEW D 67, 085014 (2003

2, Vo

e

1 (= | &% (k®+k'?coshx’a+2kk’sinh2«’'a .
KY — — K
k' 2kk'cosh 2’ a+ (k?+ k'?)sinh 2«’a 2

Ve 1 2k+ «'tanh 2'a

o —
8mJo 2k’ 2kk'+(k?+k'?)tanh2’a

Via (= 1 2q+q'tanh 2y’

and is always negative. In the limit where>1, we can
approximate tanh@~1 to get

Eo=— o (72

The position-dependent part is
E1(x)

B 1 fwd K

“8mlo k

" (2k'?— k?)V, cosh 2'x
2kk'cosh 2’a+ (k?+ k'?)sinh 2«'a

_ V, (~qdq (29'>—qg*)cosh )’y

~8malo q' 2qq'coshdy’ +(g2+q’?)sinh 2y’
(73

and is always positive.

FIG. 1. Energy density in units 8f3'2 for the square barrier of
width 1 and heights 0.0&dashed, 1 (solid), and 5(dotted. As V,

- 87 o q2_(:1’ 299’ +(g°+q’?)tanh '

(71)

Note that the dominant term in the integrand in E) is
suppressed bg 24’ (1= <g=2®(1-Y)  Thys, far from the
edge of the potential, where-ly>1/\lu, E; is negligible.

Close to the edge of the potential, with-¥<1/\v and
1-y<1, the integral is I8(1—y)] and

Vo
B0~ Samia—x) 749
which cancels, in a principal value sense, the divergence out-
side the barrier.

The sign of the energy density at the center of the barrier
depends on the competition between the position-dependent
and position-independent parts. For large the position-
dependent part is suppressed in the center, and the energy
density is negative. For small, it is positive. The total
energy density is shown for several valueyah Fig. 1.

It has long been known that the energy density near a
perfectly reflecting boundary is zero if one uses the “confor-
mally coupled” stress-energy tensor, but diverges if one uses
the minimally coupled one, as we have done above.
Kennedy, Critchley, and Dowk€dr8] argue that since the
total energy is the same in the two cases, there must be a
surface energy associated with the perfect conductor in the
minimal case. Ford and Svaitgt9] found that the surface
energy could be seen by allowing the boundary to fluctuate.

Here, we can see the situation by approximating a perfect
conductor by a square barrier withfixed andVy—o. We
can produce the conformal Hamiltonian density by including
half the value of the total derivative term:

1. 1 1
Hconforma™ §¢2+§V2( ¢2) - §¢V2¢+V(I’)¢2. (75

This choice gives zero energy outside the barrier and re-
moves the divergence of the energy density everywhere in-
side. With the minimally coupled Hamiltonian, the energy
outside goes to Eq(65) asV, becomes large, while the
positive energy inside clusters ever closer to the boundary, as

increases, the positive energy becomes concentrated more and m&@own in Fig. 1. Since the change to the total derivative term

near the edge of the barrier. In units @§?, the outside energy

does not affect the total energy, we can see that the “surface

decreases with/,, but in absolute terms it approaches a fixed limit energy” located just inside the boundary cancels the diver-

given by Eq.(65).

gent negative energy outside.
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V. EXAMPLES WITH ONE RELEVANT DIMENSION AND
TWO IRRELEVANT DIMENSIONS

A. The general case

To carry out calculations in 81 dimensions, we now

need subtractions proportional ¥(x), V(x)?, andV”"(x).

We will use the renormalization scheme defined in Sec. lll.

For m=1, using Eq.(45) and evaluating Eq(50) with m
=1 andn=2 gives

1 o
- 3 i
(H)er= 12772fu drx Q7 2kG(X,X,i k)
3k d? SOuxin) 1+V(x)
- X, X0 K) —
202 dx? 2K2

V(x)?(12«*>—M?)
2k%(4K*—=M?)?

4(K2_M12)QZ !
(76)

PHYSICAL REVIEW D67, 085014 (2003

C. Square barrier

Outside a square barrier with widthand heightV,, the
reflection coefficient is given by E¢62), and the energy is

0 Vo fw ke 2= tanh 2'a
=—— K
ren 67 Jo 2k’ +(k?+ k'?)tanh 2¢’a

Ve fmd g®e 290" Vtanh gy’
672a2), 299’ +(g?+q'?tanh '
(80)

Far from the potential, we approximatg~ \v>q. The in-
tegral is

~dgofe-200-1) 3
| ac - . (81)
0 v 8(y—1)"
and
! 82
<H>ren~_my (82

where the Green’s function has again been summed over thg agreement with Eq(79).

symmetric and antisymmetric channels. Again, we will re-

strict our attention to massless fields for simplicity.

B. Outside a potential with compact support

Close to the potential, we approximatg’'~q and
tanh 2)'~1. The integral becomes

The wave functions and Green’s functions are just as iy
Sec. IV. Again, since the potential vanishes, the only coun-

terterm is the vacuum energy. Thus E@6) reduces to

K[2kG(X,X,k)—1]

1 0
(H)ren=— Wfo dx

d2
- EKZWG(X,X,K) (77)
outside the potential, and so from E&9),
1 (= .
<H>ren:_f de &3r(ix)e 2, (78)
6m2Jo

In the largex limit, we can again take(ix)~r(0)=—1, to
get

1 ” 34— 2KX
(H)ren=— p 0 dx ke == (79
v

16m2x4

a well-known result.

1
16y—1)? 63
(H)rer=— 962x—a)?" (84

Inside the potential, we need the renormalized form,

(H) ! fwd | 2xG— 142
—_ — — K K KGO — —
N 12742)0 2k2
12k2—=MAV(x)2\ 3 . d?
(12 IV(X) 2%l @
2k%(4k*—M?2 | 2 dx?

whereM?<0 is the spacelike renormalization point.
For the square barrier, we get a position-independent part:

o= 5oz @
0=~ 122 ), 9%

x[ k* (k?+ k'?)cosh &’a+2kk'sinh 2’ a

k' 2kk'cosh ’'a+ (k?+ k'?)sinh 2«’a

3

kVo Kk(12x%+ MZ)VS
2 2(4k*+M?)?

V3 °°d K 2k+k'tanh 2¢'a
= —— K 1
127° Jo 2k’ 2k’ +(k?+k'?)tanh %'a

085014-11



N. GRAHAM AND K. D. OLUM PHYSICAL REVIEW D 67, 085014 (2003

k(122 + M2) These results do not reflect any contribution from the
_— V”(x) counterterm. In this case it vanishes for pl|#a,
2(4K%+M?)? since the potential is constant. Furthermore, the contribution
2 , , to the total energy from this term is also zero, since it is a
_ ﬁjw q 2q+q'tanh 2 total derivative. If we imagine that the square barrier repre-
127% ) 29’ 299’ +(g%+q’?)tanh 2y’ sents the limit in which a smooth potential gets steeper and
steeper, we will find large equal and opposite contributions
q(129%+t2?) to the energy localized in the tiny region on both sides of the
_W ' (86) boundary. As long as we average over larger distance scales,
this contribution will always cancel out, so it can be ignored
where2= —M?2 andt=Ma. in the square barrier limit.
We can isolate the dependence on the renormalization
scale by using D. The secR potential in 3+1 dimensions

5 2 5 Finally, we consider the potential analyzed in-2 di-
fwd [i_ M] = 3 |nt;Jr 1 (87) mensions in Ref[10],

o [8q 2(4¢°+t?)?] 16 8
a (49 ) V(x)=c?sech(x/a), (92)
to obtain ) ) ) ) )
which arises frequently in soliton models. It is exactly solv-
VS 3 M2 1 able in terms of associated Legendre functions. &@?
Eo=— 2| 72Ny T g =—{¢(¢+1) with integer€ it becomes reflectionless. The
1277116V, 8 , . o~ S
Green’s function at coincident points is
+J'wd q 2g+q'tanh 2y’ 3 a
0 q 2q/ qur+(q2+q/2)tanh 2]/ 8q/ ’ G(X,X,iK):EF(1+Ka+S)F(Ka_S)
(88)

X P; *4[tanh(x/a)]P; “[ —tanh(x/a)],
In the limit wherev>1, we can approximate tank2-1, (93
the integral gives-7/32, and we obtain
where P(x) is the associated Legendre function as defined
(89) in Re_f. [21] f_or —1<x<1, ands=(\1-4c%a’-1)/2.
' Plugging this into Eq(76), we have

V3
642

Vo 1
" "2

Eo

consistent with the result obtained from the effective poten- 1 (= 5
tial [20]. (H)ren=— PJ dx Q
The position-dependent part is s

a
EF(1+ ka+s)['(ka—s)

1 (= x| 2 AL Pt /
Ei(x)= Wfo dx “0rae) antxda)l
2 22 ' c?sech(x/a
k' 2kk'coshZ'a+(k?+k'?)sinh2«'a 2K
Vo (= c* secl(x/a)(12«>—M?)
~ 12n%a fO 4 2k%(4K>—M?)?
qu (39'%2—q®cosh )’y @0 . c? secl(x/a)(3sech(x/a)—2) @4
q’ 2qq’'coshy’ +(g%+q’?)sinh 29’ 2a%(k?—M'?)0? '
and is always positive. which can then be computed numerically. Figure 2 gives this

Far from the edge of the potenti&; is negligible. Close energy density as a function &ffor particular values of the
to the edge, where we can approximatesq and sinh®  parameters.
~cosh 21~€”/2, the integral becomes[B(1—y)?], and

v VI. CONCLUSIONS
0
Ei()~~ 96m%(a—x)?’ (1) We have seen how to address the question of generation
of negative energies through quantum fluctuations in the ro-
which cancels the divergence outside the barrier. bust language of quantum field theory, where ambiguities
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I Y e —7T ¢ APPENDIX A: CALCULATION OF f
-0.000% By comparing the last line of E¢42) with the first equal-
ity in Eq. (43), we require
-0.001
1 fochJrlel\/;f(K’M) dx
FIG. 2. Quantum energy density due to the potential of(88), n+3\J. I m
for c=1/a, ©=0, andM?=M'?=—1/a? in units wherea=1. 2 2
associated with idealized boundary conditions are absent. 1 = gntmel
This approach implements standard renormalization proce- T T n+m 212 da, (A1)
: . . . 0 w(dw"—M?)
dures and is applicable to generic background potentials that >

are spherically symmetric in some dimensions and indepen-
dent of the rest. Such potentials typically arise, for example, B B .
from topological defects or other extended objects. By using'N€'€ @ = Vq'+ u” and Q= y«’—u°. Let us change vari-
dimensional regularization, we have implemented a precis8P€S On the_lezft fromk to L =€"=«"~ " and on the right
renormalization scheme, using only local subtractions foffoM dt0 L=q" to get

both the first- and second-order diagrams. We expect that this

general formalism, together with fermion scattering theory in 1 J’”’L(nﬂ)mkm_z Vaf(k,M)

fractional dimensions developed in RE8], will allow these n+3\ Jo m

results to be extended to fermions and gauge fields. r 2 r o

In the case of the square barrier, we have recovered the

negative energy associated with perfect reflection at large 1 w L(ntm=2)/2

distances from the barrier, and we have seen that the diver- = f > 5. db (A2)
. " . . n+mj Jo w(4dw?—M?)

gent negative energy outside the barrier is canceled by posi- —5—

tive energy immediately inside. In a realistic example in

which one includes the energy associated with the back- )

ground potential, such cancellations might lead the averagedith <=L+ u” on the left andw= L+~ on the right.

null energy condition to be obeyed even though the wealVe can write

energy condition is violateflLQ]. Finally, we have calculated L L

the energy density for a smooth background representing a f“ o o f” B 2

domain wall in 3+ 1 dimensions. I'l+a)Jo dLL*h(L+p5)= ra+p)Jo dLLAj(L+p5)
Note added in proofReferencg25] has calculated the (A3)

surface tension for a bosonit* kink domain wall(and also

its supersymmetric generalizationsing an on-shell renor- with

malization scheme, in space dimension one through four. In

the language of the present paper, this calculation corre- a=(n+1)/2, (A4)
sponds to the case @f=2/u andc?=—3u?/2 in the po-

tential of Sec. IV D, renormalized withtM =, setting B=(n+m—2)/2, (A5)
m=1 andn to zero through three. The surface tension is

obtained by then integrating this result over the one non- mi2—1

trivial dimension. (The choice ofM’ does not affect this h(x)= Vmx f(\&’M), (AB)
calculation because the total derivative term integrates to F(T)

zero) Using the formulae in the present paper to carry out 2

this calculation, we obtain results in agreement with the
bosonic calculations in Ref25]. 1
0= =75 (A7)
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d\? spherical symmetry, in each partial wa¥ehese sum rules
h()=| = g%/ 10 (A8)  take the form

N

To extend this formula to non-integér we writej in terms 23N fwKZNi 5.(k)— 59k | dk=0

of the hypergeometric function, 2 (= xij) 0 dk e(K) 521 (k) '

d (B1)
M2

'2'M2—4x

0 1 ( 4
X _ — —_—
: 2\ 4x—M?2

1
I'(d) ZFl(E'd ' where the bound states hakg =i, d¢(Kk) is the scatter-

ing phase shift, anéff)(k) is the scattering phase shift com-
(A9) puted at ordes in the Born approximatioA.The N=0 case
gives Levinson’s theorem. Like Levinson's theorem, these
with d=3/2. The operator{ d/dx) just incrementsl in Eq.  identities apply to general potentials in scattering theory and
(A9), so we conjecture that the same relationship holds fohold in each partial wavef individually. Also like
all 6, and thus that the desirddis given by Eqg.(A9) with Levinson’s theorem, they are modified for the case of the
d=3/2+ §=3—m/2. One can check that the conjecture issymmetric channel in one dimension, as discussed in Ref.
correct by explicitly performing the integrals in EGA3), [23].

which both give We have a relationshipll,12 between the phase shift,
1 M2\ B-12 (1 the change in the density of states, and the norm of the wave
_< wl— _) F(— _lg) function
27 4 2
1 dé.(k)
113 M? = =p(K)=p7(k)
Qe dk ¢
XZFl 212 B,21M2—4/_L2 . (Alo) K
272 1 (= . .
Finally we find = —<m) ;fo drr™ g (02 =1 O[],
=
f M—lrmrsm 4 37m/22—m i
(e,M)=2>—T1|5 I AVERYE K (B2)
1 m 3 M2 where the zero superscript indicates a quantity evaluated in
XoFil 535151 ——— the free case. This equation also holds order by order in the
277 272" M2—4,2 Co . . .
Born approximation. Using these relations we can rewrite
B Z(m_4)(m_2)(2K)2—m Eqg. (Bl) as
B Tm
4 2_M2 3—m/23in_ 27Tm/2 -
(4"=M% 2 o] S Mo
'l —
F 13 m.s3. W* All (2>
R PR T Hvewwl ) (ALY

1 (o N
+;f0 k2”<|w£<r>|2—320 |wﬁ<s><r>|2)dk}=o,
APPENDIX B: LOCAL SUM RULES
(B3)
1. General case
We used the analytic properties of the Green’s function asvhere y((r) is the Born approximation to the wave func-
a mathematical tool, enabling us to carry out calculationsion computed at ordes (the free wave function is the order
efficiently on the imaginary axis. In so doing, we avoided thezero term. The identities we need for the present application
apparent singularity in the gamma function coefficient of Eq.are simply the slightly stronger condition that EB3) holds
(35) for oddn. Nonetheless, this expression should be a validor eachr individually, rather than just as an integral. We can
result, finite form+n<3. As in the case of the total energy exploit the connection to the Green’s function that was used
[6], the quantity in brackets must vanish flor=1 in each  in Refs.[22,23 to prove this result as well.
partial wave individually. Furthermore, the combination of  The case oN=0 is particularly simple, because we know
the first two terms in brackets vanishes separately from thehat
total derivative term. These cancellations depend on a local
analogue of the sum rules for the phase shift given in Refs———
[22,23, which we demonstrate below. “In general, these identities continue to hold even if one subtracts
When similar apparent divergences arise in the calculation’ orders in the Born approximation for ary’=N. However,
of the total energy, they are canceled according to generalthere are some restrictions on such oversubtractions in the symmet-
zations of Levinson'’s theoren22,23. For a system with ric channel in one dimensidi23].
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as opposed to the usual

1 o
S g7+ [ Tkl 1Om Pldk=o
J 0

(B4) 5(0)=mn. (BY)
by completeness; it is just the difference between the expec-

tation value of a constant computed in the free and interact- : o
ing bases(After summing over the spectrum, each term iSAnangoust in our problem, EqB4) must be modified to

independent of.) For higherN, we would like to show that

1 1=
3 (Mg 2 |¢?<x>|2—i+;fo NP = 19 21dk=0,

(B10)
N

+5f k2”<|w£<r>|2—2 | O(r)]2 | dk
Tlo =0 wherelL is the size of the system. Subtracting 1/JZeflects
(B5)  the contribution from the stat#(x) = const in the free spec-
trum. This state is “half-bound”: While any potential will
is zero®> We employ the relationship in E¢36) between the have ak=0 state in the symmetric channel, in this case the
norm of the wave function and the Green’s function to re-wave function goes to a constant at infinity. Such states con-
write this expression as tribute to the spectrum with half the usual residue for a
bound state, as the name indicat@enerically a state with
E (— K2~-)N|<ﬂ-€(r)|2 k=0 wil! approach a I.ine with nonzero slopg, in which case
] € i no special treatment is necessaiy.a potential has a half-
bound state, making the potential arbitrarily more attractive
Nt © intr_oduc_:es a new bound state in the theory, and making it
T ﬂck Im Ge(X,X,k)—go Gy”(x,x,k) |dk,  arbitrarily more repulsive eliminates the half-bound sfate.
There will be an analogous contribution to the energy den-
(B7)  sity, so this term will cancel when we pass from E2j7) to
Eqg. (29 and the rest of the derivation of the energy density is
where we have extended the integral to the erkiexis by  ynchanged.
the symmetry of the integrand. To show this expression is For the other sum rules needed in our problem, however,
zero, we would like to do th& integral as a contour, closed e always multiply by enough powers &fto cancel any
in the upper half plane. The singularities in the full Green'sanomalous effects coming from stateskat0. We would
function correspond to bound states, and will exactly cancehaye to be more careful if we do additional Born “oversub-
the explicit contribution from the bound statés6]. The  tractions,” in which case we could encounter additional
Born approximation has no singularitiésince it does not  terms analogous to those found in Re#3]. We can always
see the bound statesThus we are left with the contour at ayoid these problems as long as each ultraviolet Born sub-
infinity. However, it does not contribute because we hav&raction is preceded by a corresponding infrared Levinson
subtracted enough Born approximations to ensure that thgubtraction. For the first Born subtraction, the corresponding

integrand falls like 1k|? at large|k| [24]. Levinson subtraction was done using E@4). Higher
Levinson subtractions would use local analog of the higher
2. The symmetric channel sum rules in Ref[6].

In one dimension, we have to consider the symmetric
channel, which can have additional singularitieskatO.
Such singularities, for example, lead to an extra 1/2 in
Levinson’s theoreni23], relating the phase shift &=0 to For Casimir calculations it will be convenient to slightly
the number of bound states. We have modify the N=1 sum rule. Our renormalization procedure
subtracts not the full first Born approximation, but rather just
a local part of it. However, this replacement does not affect
the sum rule. For example, to apply the results of Sec. Il B
for m=n=1, we write

3. Local subtraction

(B8)

1
55(0): 77( ns_ E

SAs shown in Ref[9], for reflectionless potentials in one dimen-

sion there is a stronger version of the first local sum rule, °A reflectionlesspotential will always have a half-bound state,
2k because it must havég(k) = 55(k) for all k. If this equality is to
E |¢//j(r)|2—' + (02~ 2=0, (B6) hold atk=0, to reconcile Eqs(B8) and (B9) there must be a
i K,-Z‘irk2 half-bound state, which contributes only a half to the number of

which reduces to Eq(B4) when integrated ovek. It might be  bound states. The half-bound state in the free ¢akech is reflec-
possible to find analogous results for the higher sum rules as weltionless is just a consequence of this requirement.
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2 o+l 2 n1q, N1 2
;_ es] ( >—|~+=7 and a"'~1+——loga
© V
=1+J dy%sinZk(y—x)jLu- (B12)
X
V(X) = V'(y) so that in then—1 limit we obtain
=1+ +f dy cos K(y—X)+---
2k? Jx 7 2Kk?
\V; w \ 1
= +%—f dy 4::3/) sin2k(y—x)+ - - - <H>ren=—§§€: D?’[Ej) (o)) log(w])? ] (r)[?
X
»dk
V(x)  V'(x) J°° V”(y) + | —o?logw?
=1+ - - cosK(y—x)+---
22 8kt Jx ) ek = o
V(r)
V(x)  V'(x) = NV(y) X| () 2= gt ©Or)|?] 1+(2—m) ——
=1+ Zkz _W_'_JX dy 16k5 S|n2k(y—x)+~-- |‘r//k( )| |wk ( )l ( )2k2

1

&5 +EDE(Z log( )2/ w{(r)2
and subtract only the term directly proportional g{x), :
rather than all terms that are first order in the strength of the wdk
potential. However, the additional terms, proportional to the +f — 109 w2|¢ﬁ(r)|2> : (B13
derivatives ofV(x), do not introduce any singularities in the 0
integral and do not affect the contour at infinity because they
fall like 1/k* or faster. Therefore, this modification does not
affect the proof of the sum rule. This result allows us to
apply the sum rule to E(q35).

The local sum rule ensures that the scale of the logarithm
does not affect the final result. In addition, the limit-0 is
smooth (except whem=0 andm=1, where we have the
usual infrared divergences of one-dimensional field theory
If we extend the range of integration in E@®13) as in Eq.
With the sum rules in hand, we can now extract a finite(12), and then close the contour in the upper half plane, the

4., One irrelevant dimension

result from Eq.(35). Nearn=1 we have branch cut associated with leg will reproduce Eq(15).
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