
PHYSICAL REVIEW D 67, 085014 ~2003!
Negative energy densities in quantum field theory with a background potential
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We present a general procedure for calculating one-loop ‘‘Casimir’’ energy densities for a scalar field
coupled to a fixed potential in renormalized quantum field theory. We implement direct subtraction of coun-
terterms computed precisely in dimensional regularization with a definite renormalization scheme. Our proce-
dure allows us to test quantum field theory energy conditions in the presence of background potentials spheri-
cally symmetric in some dimensions and independent of others. We explicitly calculate the energy density for
several examples. For a square barrier, we find that the energy is negative and divergent outside the barrier, but
there is a compensating divergent positive contribution near the barrier on the inside. We also carry out
calculations with exactly solvable sech2 potentials, which arise in the study of solitons and domain walls.
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I. INTRODUCTION

The weak energy condition of general relativity, the r
quirement that there be no negative energy densities, is
ficient to prevent the appearance of exotic features suc
compactly generated closed timelike curves@1# and superlu-
minal travel@2#. Quantum field theory appears to violate th
condition, however. One example is the standard Cas
system of parallel plates, for which there is a negative ene
density between the plates. However, this is an idealized
tem, which assumes a perfect conductor with an infinit
sharp and flat edge. A real material will have a rough surf
at the atomic scale and will also appear transparent to v
high energy modes. Since the Casimir energy is a sum o
all energies, it will always include modes for which the
effects are relevant, so this idealization could affect the va
of the sum. In addition, since the boundary condition is i
posed externally, there is no measure of the energy
would be required to maintain it.1

Although there are other ways to produce negative ene
densities, for example, a superposition of states with z
and two photons, these cases are constrained by aver
energy conditions, which require the energy to be posit
when averaged along an entire geodesic. They are also
strained by quantum inequalities@5#, which limit the total
negative energy that can exist when averaging over a ce
period of time. Thus it is important to understand proble
of the Casimir type if we want to know whether quantu
field theory protects general relativity against negative en
gies.

*Electronic address: ngraham@middlebury.edu
†Electronic address: kdo@cosmos.phy.tufts.edu
1Recently, Helfer and Lang@3# showed that a frequency

independent dielectric would not be expected to give negative
ergy densities, but Sopova@4# showed that negative energy dens
ties can be achieved in a Casimir system with Drude-model pla
as long as the spacing is very large compared to the plasma w
length.
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In this paper, we reconsider the question of the ene
density in such systems. To avoid the subtleties associ
with the Casimir problem, we consider a quantum field in t
presence of a background potential~i.e., a field with a mass
that depends on position!. In such an approach, one ca
choose a potential that depends only on one spatial dim
sion, and simulate the parallel plates in the Casimir proble
By generalizing the approach of Refs.@6–8# to local densi-
ties, we can precisely cancel the divergences in the calc
tion in a definite renormalization scheme.

Reference@9# considered similar problems for the spec
case of reflectionless potentials, such as the potentials fo
supersymmetric kink and sine-Gordon models. Here
present a general approach suitable for numerical comp
tion, in addition to analytic calculations in exactly solvab
models@10#. These techniques are also useful for the stu
of Casimir forces and stresses@11#.

II. A SIMPLE MODEL

To illustrate our method, we will first consider a simp
model. We take a real, massless scalar field in 211 dimen-
sions in the background of a repulsive potentialV that de-
pends on one spatial dimension but not the other.

We start with the Hamiltonian density

H5
1

2
@ḟ21~¹f!21Vf2# ~1!

and expand the fieldf in terms of small oscillations, giving

f~x,y,t !5E
2`

` dp

A2p
E

0

` dk

A2pv~p!

3 (
x51,2

@ck
x~x!eipye2 iv(p)tak,p

x

1ck
x~x!* e2 ipyeiv(p)tak,p

x †#, ~2!

wherev(p)5Ak21p2. The ck
x(x) are normal mode wave

n-

s,
ve-
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functions, which can be taken to be real. The sum is over
symmetric mode,ck

1(x), and the antisymmetric mode
ck

2(x). They satisfy

2ck
x9~x!1V~x!ck

x~x!5k2ck
x~x! ~3!

where prime denotes differentiation with respect tox, with
the normalization

E
2`

`

dx ck
1~x!ck8

2
~x!50

and

(
x51,2

E
2`

`

dxck
x~x!ck8

x
~x!52pd~k2k8!, ~4!

which givesck
1(0)(x)5coskx and ck

2(0)(x)5sinkx as the
solutions in the free case,V(x)50.

The energy density is then

^H&5E
2`

` dp

2pE0

` dk

2pv~p!

3 (
x51,2

H 1

2
@v~p!21p21V~x!#ck

x~x!21ck
x8~x!2J .

~5!

We write

c8~x!25
1

2

d2

dx2 c~x!22c9~x!c~x! ~6!

and then use Eq.~3! to obtain

^H&5E
2`

` dp

2pE0

` dk

2pv~p!

3 (
x51,2

Fv~p!2ck
x~x!21

1

4

d2

dx2@ck
x~x!2#G . ~7!

The integral is highly divergent, but by using dimension
regularization and introducing counterterms into the Ham
tonian, as discussed in Sec. III, we can render the inte
finite. We then integrate out the transverse modes, giving

^H& ren52

GS 2
n11

2 D
2~4p!(n11)/2E0

`dk

p

3 (
x51,2

H vn11Fck
x~x!22S 11

V~x!

2k2 Dck
x(0)~x!2G

1
n11

4
vn21

d2

dx2 @ck
x~x!2#J , ~8!

wheren is the number of transverse dimensions, later to
set to 1. The Hamiltonian has been renormalized by subtr
ing a constant term for the vacuum energy and a term p
portional to the potential, which is sufficient to render it
nite in 211 dimensions.
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We can relate the norms of the mode wave functions
the Green’s function by~see, for example, Ref.@12#!

(
x51,2

ck
x~x!252k Im G~x,x,k!, ~9!

whereG(x,x8,k) is the Green’s function, which satisfies

2G9~x,x8,k!1V~x!G~x,x8,k!2k2G~x,x8,k!5d~x2x8!
~10!

and has only outgoing waves (;eikuxu) at infinity.
The Green’s function has the symmetry prope

G(x,x8,k)5G(x,x8,2k* )* , so for realk we can write

(
x51,2

ck
x~x!25

k

i
G~x,x,k!2

k

i
G~x,x,2k!. ~11!

Thus we can compute the energy by extending the rang
integration to2`, and usingG(0)(x,x,k)5 i /(2k),

^H& ren52

GS 2
n11

2 D
~4p!(n13)/2E2`

`

vn11F2k

i
G~x,x,k!212

V~x!

2k2

1
n11

2

k

iv2

d2

dx2G~x,x,k!Gdk, ~12!

where, since we are taking the massless limit,v5Ak2.
Next we would like to convert this expression into a co

tour integral by closing the contour at infinity in the upp
half plane. The contour at infinity does not contribute, b
cause for large, positive Imk,

2k

i
G~x,x,k!→11

V~x!

2k2 1O~k24!. ~13!

Singularities in the Green’s function in the upper half pla
correspond to normalizable eigenfunctions of the Ham
tonian, which represent bound states. Since the Hamilton
is Hermitian, the bound states must have real energies, so
singularities must lie on the imaginary axis and have Imk
,m wherem is the mass. In this example, we have a rep
sive potential and a massless particle, each of which is
ficient to ensure that there are no bound states at all. Thus
Green’s function has no singularities for Imk>0, and the
only contribution to the integral comes from the branch c
along the positive imaginary axis coming fromvn11. Inte-
grating around the branch cut and using Eqs.~39! and ~40!
below gives
4-2



^H& ren52
1 E`

kn11F2kG~x,x,k!211
V~x!

2 1
n11 d2

2 G~x,x,k!Gdk ~14!
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2~4p!(n11)/2GS n13

2 D 0 2k 2k dx
al
n
ex

ea
is

re

s

he

the

-

tes.
tors
and then settingn51 gives

^H& ren52
1

8pE0

`

dk F2k3G~x,x,ik!2k21
V~x!

2

2k
d2

dx2 G~x,x,ik!G . ~15!

Once one has computed the Green’s function, this integr
straightforward, though it may be necessary to resort to
merical techniques. We show the calculation for some
ample potentials in Sec. IV below.

III. CALCULATIONAL METHOD

A. Model

We will now consider the more general case of a r
scalar field of massm in the background of a potential that
spherically symmetric inm nontrivial coordinates, which we
label byx, and independent of the remainingn trivial coor-
dinates, which we label byy. The energy density is

H5
1

2
@ḟ21~¹f!21V~r !f21m2f2#

5
1

2 S ḟ21
1

2
¹2~f2!2f¹2f1V~r !f21m2f2D ,

~16!

wherer 5uxu. Decomposing the quantum fieldf in terms of
modes gives

f~r ,V,t !

5(
,,,zA2pm/2

GS m

2 D E
dnp

~2p!n/2

1

A2

3S (
j

1

Av j
,

@c j
,~r !* Y,,z

m ~V!* e2 ipyeiv j
,(p)taj ,p

,,z †

1c j
,~r !Y,,z

m ~V!eipye2 iv j
,(p)taj ,p

,,z#

1E
0

` dk

Apv~p!
@ck

,~r !* Y,,z

m ~V!* e2 ipyeiv(p)tak,p
,,z †

1ck
,~r !Y,,z

m ~V!eipye2 iv(p)tak,p
,,z# D , ~17!
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where v(p)5Ak21p21m2, the bound state energies a
v j

,(p)5Ap21m22k j
, 2, and the sum over, gives the par-

tial wave expansion in them nontrivial dimensions.
The degeneracy factorD,

m in each partial wave is given
by the dimension of the space of symmetric tensors with,
indices, each running from 1 tom, with all traces~contrac-
tions! removed@15#. By the symmetry of the indices, thi
dimension is given by the number of ways to make, indices
out of 0 or more 1’s, 0, or more 2’s, and so on, which is t
number of distinct ways to placem21 dividers intom1,
21 slots. Removing all the traces requires subtracting
same quantity with, replaced by,22. We thus obtain

D,
m5

~m1,21!!

,! ~m21!!
2

~m1,23!!

~,22!! ~m21!!

5
G~m1,22!

G~m21!G~,11!
~m12,22!. ~18!

The wave functionsck
,(r ) are the eigenstates of the time

independent radial Schro¨dinger equation

S 2
d2

dr2
2

m21

r

d

dr
1

,~,1m22!

r 2
1V~r !D ck

,~r !

5k2ck
,~r !, ~19!

which in general comprise both bound and scattering sta
The wavefunctions and creation and annihilation opera
are normalized as follows. For the spherical harmonics,

E Y,,z

m ~V!* Y
,8,

z8
m

~V!dV5d,,8d,z,
z8
, ~20!

for continuum states,

2pm/2

GS m

2 D E0

`

r m21ck
,~r !* ck8

,
~r !dr5pd~k2k8!,

@ak,p
,,z †,a

k8,p8

,8,z8 †#5@ak,p
,,z ,a

k8,p

,8,z8#50,

@ak,p
,,z ,a

k8,p

,8,z8 †#5d~k2k8!d~p2p8!d,,8d,z,
z8
, ~21!

and for bound states,

2pm/2

GS m

2 D E0

`

r m21c j
,~r !c j 8

,8~r !dr5d j j 8d,,8 ,
4-3
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@aj ,p
,,z †,a

j 8,p8

,8,z8 †#5@aj ,p
,,z ,a

j 8,p8

,8,z8 #50,

@aj ,p
,,z ,a

j 8,p8

,8,z8 †#5d j j 8d~p2p8!d,,8d,z,
z8
. ~22!

Using these expressions, we obtain the vacuum expecta
value of the Hamiltonian

^H&5
1

2 (
,

D,
mE dnp

~2p!n F(j
v j

,~p!uc j
,~r !u2

1E
0

`dk

p
v~p!uck

,~r !u21
1

4
Dr

2S (
j

1

v j
,~p!

uc j
,~r !u2

1E
0

`dk

p

1

v~p!
uck

,~r !u2D G , ~23!

whereDr
25d2/dr21@(m21)/r #(d/dr) is the radial Laplac-

ian.

B. Renormalization with one subtraction

For positive integerm andn, this quantity diverges, as w
expect since we have not yet included the contribution of
counterterms. Therefore we will calculate the result us
analytic continuation inm and n from values where it is
convergent. After introducing counterterms also depend
on m and n, we will then let the dimensions go to the
physical values while holding the renormalization conditio
fixed.

The first counterterm we will introduce renormalizes t
cosmological constant. It is simply an overall constant in
Hamiltonian, and is fixed by the renormalization conditi
that the energy density of the trivial backgroundV(r )50 is
zero. The free wave functions are given by

ck
, (0)~r !5Apk

GS m

2 D
2pm/2

1

r m/221
Jm/21,21~kr !, ~24!

which, by the Bessel function identity

(
,50

`
~2q12, !G~2q1, !

G~,11!
Jq1,~z!25

G~2q11!

G~q11!2 S z

2D 2q

,

~25!

satisfy the completeness relation

(
,

D,
muck

, (0)~r !u25
1

~4p!m/221

km21

2GS m

2 D , ~26!

independent ofr. Subtracting the energy in the trivial back
ground we have
08501
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^H&2^H&05
1

2 (
,

D,
mE dnp

~2p!n F(j
v j

,~p!uc j
,~r !u2

1E
0

`dk

p
v~p!@ uck

,~r !u22uck
, (0)~r !u2#

1
1

4
Dr

2S (
j

1

v j
,~p!

uc j
,~r !u2

1E
0

`dk

p

1

v~p!
uck

,~r !u2D G . ~27!

By completeness, in each partial wave we have

(
j

uc j
,~r !u21E

0

`dk

p
@ uck

,~r !u22uck
, (0)~r !u2#50, ~28!

so we can implement a local version of the Levinson’s th
rem subtraction used in Ref.@6#, giving

^H&2^H&05
1

2 (
,

D,
mE dnp

~2p!n

3F(
j

~v j
,~p!2Ap21m2!uc j

,~r !u2

1E
0

`dk

p
„v~p!2Ap21m2

…„uck
,~r !u2

2uck
, (0)~r !u2

…1
1

4
Dr

2S (
j

1

v j
,~p!

uc j
,~r !u2

1E
0

`dk

p

1

v~p!
uck

,~r !u2D G . ~29!

This subtraction is necessary to avoid the appearance of
rious infrared singularities in calculations in one space
mension. These singularities also appear in dimensions
than one, which we will need to consider as part of the
mensional regularization process.

Next we carry out thep integral, using

E dnp

~2p!n
~Ap21q2!a

5
2

GS n

2D ~4p!n/2
E

0

`

pn21dp ~Ap21q2!a

5

GS 2
n1a

2 Dqn1a

GS 2
a

2D ~4p!n/2

, ~30!
4-4
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where we have done the integral by analytic continuat
from values ofa andn where it converges. We thus obtain

^H&2^H&052

GS 2
n11

2 D
2~4p!(n11)/2

3(
,

D,
mF(

j
@~v j

,!n112mn11#uc j
,~r !u2

1E
0

`dk

p
~vn112mn11!

3@ uck
,~r !u22uck

, (0)~r !u2#

1
n11

4
Dr

2S (
j

~v j
,!n21uc j

,~r !u2

1E
0

`dk

p
vn21uck

,~r !u2D G , ~31!

where v5Ak21m2 for the scattering states andv j
,

5Am22k j
, 2 for the bound states withk5 ik j

, .
Next, we must include the contribution of the counterte

proportional toV(r ), which is introduced to cancel the tad
pole graph. In dimensional regularization, the contribution
the Hamiltonian from this counterterm is

H15

GS 12n2m

2 D
2~4p!(m1n11)/2

mm1n21V~r !, ~32!

so by using

E
0

`dk

p
~vn112mn11!km23

5mm1n21

GS m22

2 DGS 12m2n

2 D
2pGS 2

n11

2 D ~33!

and Eq.~26! we have

H152

GS 2
n11

2 D
2~4p!(n11)/2 (

,
D,

mE
0

`dk

p
~vn112mn11!

3~22m!
V~r !

2k2
uck

, (0)~r !u2 ~34!

so that
08501
n

o

^H& ren[^H&2^H&02^H1&

52

GS 2
n11

2 D
2~4p!(n11)/2

3(
,

D,
mF(

j
@~v j

,!n112mn11#uc j
,~r !u2

1E
0

`dk

p
~vn112mn11!

3F uck
,~r !u22uck

, (0)~r !u2S 11~22m!
V~r !

2k2 D G
1

n11

4
Dr

2S (
j

~v j
,!n21uc j

,~r !u2

1E
0

`dk

p
vn21uck

,~r !u2D G . ~35!

We will use

uck
,~r !u252k Im G,~r ,r ,k!, ~36!

where the Green’s function is defined by

2Dr
2G,~r ,r 8,k!1S V~r !1

,~,1m21!

r 2
2k2D G,~r ,r 8,k!

5d (m)~r 2r 8! ~37!

with the boundary conditions that it is regular at the orig
and has only outgoing waves (;eikr) at infinity. Using
G(r ,r ,2k)5G(r ,r ,k)* , we can rewrite Eq.~35! as

^H& ren[^H&2^H&02^H1&

52

GS 2
n11

2 D
2~4p!(n11)/2

3(
,

D,
mF(

j
@~v j

,!n112mn11#uc j
,~r !u2

1E
2`

` dk

p
~vn112mn11!

3
k

i FG,~r ,r ,k!2G,
(0)~r ,r ,k!S 11~22m!

V~r !

2k2 D G
1

n11

4
Dr

2S (
j

~v j
,!n21uc j

,~r !u2

1E` dk
vn21

k
G,~r ,r ,k! D G . ~38!
2` p i

4-5
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These subtractions are sufficient to render the theory fi
for m1n,3. However, it appears that if we setn51, the
gamma function will cause Eq.~38! to diverge. In fact, as we
will see in Appendix B, it does not, because the quantity
brackets vanishes. But here we will keepn general and in-
stead close the contour of integration in the upper hak
plane. For sufficiently smalln the contour at infinity does no
contribute. There is a pole for each bound state atk5 iE j ,
whereEj,m is the bound state energy, and the contributio
from these poles exactly cancel the sum over bound st
@16# in Eq. ~38!. Thus the final result is just given by th
contribution from the branch cut along the imaginary a
from m to ` resulting fromvn11, which contributes

Vn11@ i n112~2 i !n11#52iVn11 sin
~n11!p

2
, ~39!

whereV5Ak22m2 andk5 ik. Then using the identity

sinpz52
p

G~z11!G~2z!
~40!

we have

^H& ren[^H&2^H&02^H1&

52
1

2~4p!(n11)/2GS n13

2 D (
,

D,
mE

m

`

dk 2kVn11

3FG,~r ,r ,ik!2G,
(0)~r ,r ,ik!

3S 12~22m!
V~r !

2k2 D 2
n11

4
Vn21Dr

2G,~r ,r ,ik!G .

~41!

We can now put in integer values ofm and n without any
divergence, as long asm1n,3. Eq. ~41! can also be effi-
ciently evaluated numerically@11#.

C. Higher subtractions

When we havem1n53 space dimensions, we will nee
to introduce a second counterterm,1

2 cV(x)2. The first sub-
traction is particularly easy to define because there is a n
ral scheme, specified by the complete cancellation of
tadpole graph. Higher subtractions require a definition
terms of a renormalization scale, which can be chosen a
trarily. In choosing this scale, we must be able to relate i
physical inputs, such as masses and coupling constant
order to define a predictive theory.

To define the counterterm precisely, we consider the tw
point function P(p2) in dimensional regularization. It di
verges as we approach the physical dimension. The di
gence is canceled by the contribution of the counterterm
08501
te

s
es

u-
e

n
i-

o
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the two-point function, which is justc. We define the renor-
malization scaleM by taking c52P(M2). With this defi-
nition, we have

c5
i

2E0

1

dl

3E dE

2p

dn1mq

~2p!n1m

1

„E22q22m21M2l~12l!1 i e…2

5
1

2~4p!(n1m)/2GS n1m

2 D E0

` qn1m21

v~4v22M2!
dq, ~42!

whereq is the total momentum and we have integrated o
the Feynman parameterl and the loop energyE. Typically
we will chooseM25m2, except in the case of massless the
ries, where to avoid infrared singularities we will choose
spacelike renormalization pointM2,0.

This regulated expression is defined precisely as an a
lytic function of the dimension. Our goal is now to rewrite
in a way that allows us to incorporate it into our express
for the energy, Eq.~41!, which is also given as an analyti
function of the dimension. We express Eq.~26! in terms of
Green’s functions and analytically continue to express
~42! as

c5
1

2~4p!(n11)/2GS n13

2 D
3E

m

`

Vn11f ~k,M !
1

~4p!m/221

km21

2GS m

2 D dk

5
1

2~4p!(n11)/2GS n13

2 D
3(

,
D,

mE
m

`

Vn11f ~k,M !2kG,
(0)~r ,r ,ik!dk,

~43!

wheref (k,M ) is given in terms of the hypergeometric fun
tion as

f ~k,M !5
2~m24!~m22!~2k!22m

~4k22M2!32m/2 sinS mp

2 D
3 2F1S 1

2
,32

m

2
,
3

2
,

M2

M224k2D ~44!

as we show in Appendix A.
4-6
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Since we will eventually take the limit wherem becomes
an integer, we note that

f ~k,M !5
12k22M2

2k2~4k22M2!2
for m51,

f ~k,M !5
1

pk2~4k22M2!

3S 11

4k2 arctan
M

A4k22M2

MA4k22M2
D for m→2,

and

f ~k,M !5
1

2k2~4k22M2!
for m53. ~45!

Equation ~43! is now in a form where we can include
under the integral sign in Eq.~41! and obtain

^H& ren[^H&2^H&02^H1&2^H2&

52
1

2~4p!(n11)/2GS n13

2 D
3(

,
D,

mE
m

`

dk 2kH Vn11FG,~r ,r ,ik!

2G,
(0)~r ,r ,ik!S 12

V~r !

2k2
~22m!

1V~r !2f ~k,M !G D 2
n11

4
Vn21Dr

2G,~r ,r ,ik!J .

~46!

Before we can take the limit wherem1n53, however, there
is one more potential divergence in Eq.~46!. Our subtraction
has cancelled the terms of order 1,V(r )/k2 andV(r )/k4 in
the large-k expansion of the norm of the wave functions. B
there could also be a term of orderDr

2V(r )/k4, which will
generate a divergence in this case. In the renormalizatio
the composite operatorTmn , we have a renormalization
counterterm (c8/2)@(m1n21)/@4(m1n)##(]m]n

2gmn]l]l)f2 @13#. Since we are considering justT00 here,
this counterterm becomes (c8/2)@(m1n21)/@4(m
1n)##¹2f2, exactly the form needed to cancel the rema
08501
t

of

-

ing divergence.2 We fix this counterterm by subtracting th
tadpole diagram with the composite operator carrying m
mentump25M 82. Aside from this change, it is analogous
the tadpole subtraction above, withV2V(r ) replaced by
Dr

2V(r ). The scaleM 8 is then specified through the reno
malization condition on the composite operator~and would
typically be chosen equal toM ). As with M, a massless
theory will require spacelikeM 82,0, while in a massive
theory we may setM 85m. Thus we obtain the contribution

^H28&52
~m1n21!

4~n11!

1

2~4p!(n11)/2GS n11

2 D
3(

,
D,

mE
m

`

dk Vn212kG,
(0)~r ,r ,ik!

3
Dr

2V~r !

k22M 82
~22m!. ~47!

This term is a total derivative, so it does not contribute to
total energy. We can split the contribution of this term b
tween the bulk and derivative terms so that it renders th
both separately finite at integer dimensions, giving

^H& ren52
1

2~4p!(n11)/2GS n13

2 D (
,

D,
mE

m

`

dk

32kS Vn11H G,~r ,r ,ik!2G,
(0)~r ,r ,ik!

3F12
V~r !

2k2
~22m!1V~r !2f ~k,M !

2
Dr

2V~r !

8~k22M 82!V2
~22m!2G J

2
n11

4
Vn21S Dr

2G,~r ,r ,ik!1
Dr

2V~r !

2~k22M 82!

3~22m!G,
(0)~r ,r ,ik!D D . ~48!

By Eq. ~26!, the sum over, of the free Green’s function
weighted by the degeneracy factor is independent ofr, so we
can pull the derivative outside in the last line, givin

2If we had chosen conformal instead of minimal coupling for t
fields, which corresponds to adding the extra term12 @(m1n
21)/@4(m1n)##(]m]n2gmn]l]l)f2 in the original Lagrangian,
the divergent term would have cancelled automatically between
bulk term and the surface term and no renormalization would
necessary. However, conformally coupled theories haveclassical
violations of the energy conditions@14#.
4-7
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2~4p!(n11)/2GS n13

2 D , m 2k2

1V~r !2f ~k,M !2
Dr

2V~r !

8~k22M 82!V2
~22m!2G J 2

n11

4
Vn21Dr

2S G,~r ,r ,ik!1
V~r !

2~k22M 82!

3~22m!G,
(0)~r ,r ,ik!D D . ~49!

In this form, we see explicitly that the subtraction has cancelled the leading terms for largek: In the surface term, inside th
derivative we have implemented the same subtraction of the leading behavior of the Green’s function as we found
tadpole graph in the bulk term; in the bulk term, we have subtracted the leading term proportional toDr

2V(r ) @which is derived
explicitly for m51 in Eq. ~B11!#. For the purposes of calculation, however, it is often easier to work with the comb
expression

^H& ren52
1

~4p!(n11)/2GS n13

2 D (
,

D,
mE

m

`

kVn11F S 12
n11

4V2
Dr

2D G,~r ,r ,ik!2G,
(0)~r ,r ,ik!

3S 12
~22m!V~r !

2k2
1V~r !2f ~k,M !1

~22m!Dr
2V~r !

8~k22M 82!V2
~m1n21!D Gdk. ~50!
e

ro
s
tr

n

sec-

se,
IV. EXAMPLES WITH ONE RELEVANT DIMENSION AND
ONE IRRELEVANT DIMENSION

A. The general case

To illustrate our method, we would like to carry out som
sample calculations in the case ofm51 andn51. Since we
are in 211 dimensions, we only need one subtraction, p
portional to V(x). For m51, the sum over partial wave
reduces to a sum over the symmetric and antisymme
channels. The free wave functions thus become

ck
1 (0)~x!5coskx, ck

2 (0)~x!5sinkx, ~51!

so that

uck
1 (0)~x!u21uck

2 (0)~x!u251. ~52!

We can sum over the two modes to get the overall Gree
function

G~x,x,k!5G1~x,x,k!1G2~x,x,k!, ~53!

with

G(0)~x,x,k!5
i

2k
. ~54!

Then from Eq.~41! we have
08501
-

ic

’s

^H& ren52
1

2~4p!(n11)/2GS n13

2 D
3E

m

`

dk Vn11F2kG~r ,r ,ik!211
V~r !

2k2

2
n11

2V2
kDr

2G~r ,r ,ik!G ~55!

and forn51 we have

^H& ren52
1

8pEm

`

dk V2F2kG~r ,r ,ik!211
V~r !

2k2

2
k

V2

d2

dx2
G~r ,r ,ik!G , ~56!

which reduces to Eq.~15! when m50. For simplicity, we
will consider the massless case for the remainder of this
tion.

B. Outside a potential with compact support

We next consider a potential that vanishes for alluxu.a
and calculate the energy density in this region. In this ca
the only counterterm is the vacuum energy, and we get
4-8
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^H& ren52
1

8pE0

`

dk Fk2@2kG~x,x,k!21#

2k
d2

dx2 G~x,x,k!G . ~57!

The Green’s function forx,x8.a is

G~x,x8,k!5
i

2k
@e2 ikx,1r ~k!eikx,#eikx., ~58!

wherer (k) is the reflection amplitude. Thus

2kG~x,x,ik!511r ~ ik!e22kx ~59!

and

^H& ren5
1

8pE0

`

dk k2r ~ ik!e22kx. ~60!

In the largex limit, only small k contribute in the integral.
As a result, the integral depends only onr (0)521 ~at k
50 we always have perfect reflection3!, so we can approxi-
mate

^H& ren'2
1

8pE0

`

dk k2e22kx52
1

32px3 . ~61!

C. Square barrier

Next we consider a square barrier withV5V0 for uxu
,a and V50 otherwise. In this case, we can compute
normal mode wave functions in closed form, but must d
numerical integration at the end. Outside the barrier, the
ergy is given by Eq.~60! with

r 52
V0e2ka tanh 2k8a

2kk81~k21k82!tanh 2k8a
~62!

andk825k21V0.
08501
e
a
n-

Thus, outside the barrier, the energy is

^H& ren52
V0

8pE0

`

dk
k2e22k(x2a) tanh 2k8a

2kk81~k21k82!tanh 2k8a

52
V0

8paE0

`

dq
q2e22q(y21) tanh 2q8

2qq81~q21q82!tanh 2q8
,

~63!

where we have defined the dimensionless quantitiesy
5x/a, q5ka, andq85Aq21v5k8a wherev5V0a2. Note
that the integrand cannot be less than 0, so the energy ou
the barrier is always negative.

Far from the potential, specifically wherey21@1/Av
and y21@1/v, the contribution comes primarily fromq
!Av, and thusq8'Av. The integral is then

E
0

`dqq2e22q(y21)

v
5

1

4~y21!3v
~64!

and

^H& ren'2
1

32p~x2a!3 ~65!

in agreement with Eq.~61!.
Close to the potential, specifically wheny21!1/Av and

y21!1, the contribution comes mostly fromq@Av and
q@1. Thusq8'q and tanh 2q8'1. The integral becomes

1

8~y21!
~66!

and

^H& ren'2
V0

64p~x2a!
. ~67!

Inside the barrier, we have
.

G~x,x8,k!5
i

k8

@k8cosk8~x,1a!2 ik sink8~x,1a!#@k8cosk8~x.2a!1 ik sink8~x.2a!#

2kk8cos 2k8a2 i ~k21k82!sin 2k8a
, ~68!

wherek85Ak22V0, so we can write

G~x,x,ik!5
1

2k8

~k21k82!cosh 2k8a12kk8sinh 2k8a1V0 cosh 2k8x

2kk8cosh 2k8a1~k21k82!sinh 2k8a
. ~69!

We can then split the energy into two parts,

^H& ren5E01E1~x!, ~70!

whereE1 depends on position, butE0 does not.

3The only exceptions to this rule are potentials with a bound state precisely at threshold@12,17#, which include reflectionless potentials
4-9



N. GRAHAM AND K. D. OLUM PHYSICAL REVIEW D 67, 085014 ~2003!
The position-independent part is

E052
1

8pE0

`

dkH k3

k8

~k21k82!cosh 2k8a12kk8sinh 2k8a

2kk8cosh 2k8a1~k21k82!sinh 2k8a
2k21

V0

2 J
52

V0
2

8pE0

`

dk
1

2k8

2k1k8tanh 2k8a

2kk81~k21k82!tanh 2k8a

52
V0

2a

8p E
0

`

dq
1

2q8

2q1q8tanh 2q8

2qq81~q21q82!tanh 2q8
~71!
out-
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and is always negative. In the limit wherev@1, we can
approximate tanh 2q8'1 to get

E052
V0

3/2

12p
. ~72!

The position-dependent part is

E1~x!

5
1

8pE0

`

dk
k

k8

3
~2k822k2!V0 cosh 2k8x

2kk8cosh 2k8a1~k21k82!sinh 2k8a

5
V0

8paE0

` qdq

q8

~2q822q2!cosh 2q8y

2qq8cosh 2q81~q21q82!sinh 2q8
~73!

and is always positive.

FIG. 1. Energy density in units ofV0
3/2 for the square barrier o

width 1 and heights 0.05~dashed!, 1 ~solid!, and 5~dotted!. As V0

increases, the positive energy becomes concentrated more and
near the edge of the barrier. In units ofV0

3/2, the outside energy
decreases withV0, but in absolute terms it approaches a fixed lim
given by Eq.~65!.
08501
Note that the dominant term in the integrand in Eq.~73! is
suppressed bye22q8(12y),e22Av(12y). Thus, far from the
edge of the potential, where 12y@1/Av, E1 is negligible.

Close to the edge of the potential, with 12y!1/Av and
12y!1, the integral is 1/@8(12y)# and

E1~x!'2
V0

64p~a2x!
~74!

which cancels, in a principal value sense, the divergence
side the barrier.

The sign of the energy density at the center of the bar
depends on the competition between the position-depen
and position-independent parts. For largev, the position-
dependent part is suppressed in the center, and the en
density is negative. For smallv, it is positive. The total
energy density is shown for several values ofv in Fig. 1.

It has long been known that the energy density nea
perfectly reflecting boundary is zero if one uses the ‘‘conf
mally coupled’’ stress-energy tensor, but diverges if one u
the minimally coupled one, as we have done abo
Kennedy, Critchley, and Dowker@18# argue that since the
total energy is the same in the two cases, there must b
surface energy associated with the perfect conductor in
minimal case. Ford and Svaiter@19# found that the surface
energy could be seen by allowing the boundary to fluctua

Here, we can see the situation by approximating a per
conductor by a square barrier witha fixed andV0→`. We
can produce the conformal Hamiltonian density by includi
half the value of the total derivative term:

Hconformal5
1

2
ḟ21

1

8
¹2~f2!2

1

2
f¹2f1V~r !f2. ~75!

This choice gives zero energy outside the barrier and
moves the divergence of the energy density everywhere
side. With the minimally coupled Hamiltonian, the ener
outside goes to Eq.~65! as V0 becomes large, while the
positive energy inside clusters ever closer to the boundary
shown in Fig. 1. Since the change to the total derivative te
does not affect the total energy, we can see that the ‘‘surf
energy’’ located just inside the boundary cancels the div
gent negative energy outside.

ore
4-10
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V. EXAMPLES WITH ONE RELEVANT DIMENSION AND
TWO IRRELEVANT DIMENSIONS

A. The general case

To carry out calculations in 311 dimensions, we now
need subtractions proportional toV(x), V(x)2, and V9(x).
We will use the renormalization scheme defined in Sec.
For m51, using Eq.~45! and evaluating Eq.~50! with m
51 andn52 gives

^H& ren52
1

12p2Em

`

dk V3F2kG~x,x,ik!

2
3k

2V2

d2

dx2
G~x,x,ik!211

V~x!

2k2

2
V~x!2~12k22M2!

2k2~4k22M2!2
2

V9~x!

4~k22M 82!V2G ,

~76!

where the Green’s function has again been summed ove
symmetric and antisymmetric channels. Again, we will
strict our attention to massless fields for simplicity.

B. Outside a potential with compact support

The wave functions and Green’s functions are just as
Sec. IV. Again, since the potential vanishes, the only co
terterm is the vacuum energy. Thus Eq.~76! reduces to

^H& ren52
1

12p2E
0

`

dk Fk3@2kG~x,x,k!21#

2
3

2
k2

d2

dx2 G~x,x,k!G ~77!

outside the potential, and so from Eq.~59!,

^H& ren5
1

6p2E0

`

dk k3r ~ ik!e22kx. ~78!

In the largex limit, we can again taker ( ik)'r (0)521, to
get

^H& ren52
1

6p2E0

`

dk k3e22kx52
1

16p2x4
, ~79!

a well-known result.
08501
I.

he
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C. Square barrier

Outside a square barrier with widtha and heightV0, the
reflection coefficient is given by Eq.~62!, and the energy is

^H& ren52
V0

6p2E
0

`

dk
k3e22k(x2a) tanh 2k8a

2kk81~k21k82!tanh 2k8a

52
V0

6p2a2E
0

`

dq
q3e22q(y21) tanh 2q8

2qq81~q21q82!tanh 2q8
.

~80!

Far from the potential, we approximateq8'Av@q. The in-
tegral is

E
0

`dqq3e22q(y21)

v
5

3

8~y21!4v
~81!

and

^H& ren'2
1

16p2~x2a!4 , ~82!

in agreement with Eq.~79!.
Close to the potential, we approximateq8'q and

tanh 2q8'1. The integral becomes

1

16~y21!2 ~83!

and

^H& ren'2
V0

96p2~x2a!2 . ~84!

Inside the potential, we need the renormalized form,

^H& ren52
1

12p2E0

`

dk Fk3S 2kG211
V~x!

2k2

2
~12k22M2!V~x!2

2k2~4k22M2!2 D 2
3

2
k2

d2

dx2
GG , ~85!

whereM2,0 is the spacelike renormalization point.
For the square barrier, we get a position-independent p

E052
1

12p2E
0

`

dk

3H k4

k8

~k21k82!cosh 2k8a12kk8sinh 2k8a

2kk8cosh 2k8a1~k21k82!sinh 2k8a
2k3

1
kV0

2
2

k~12k21M̃2!V0
2

2~4k21M̃2!2 J
52

V0
2

12p2E
0

`

dk H k

2k8

2k1k8tanh 2k8a

2kk81~k21k82!tanh 2k8a
4-11
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2
k~12k21M̃2!

2~4k21M̃2!2J
52

V0
2

12p2E
0

`

dq H q

2q8

2q1q8tanh 2q8

2qq81~q21q82!tanh 2q8

2
q~12q21t2!

2~4q21t2!2J , ~86!

whereM̃252M2 and t5M̃a.
We can isolate the dependence on the renormaliza

scale by using

E
0

`

dqH 3

8q8
2

q~12q21t2!

2~4q21t2!2J 5
3

16
ln

t2

v
1

1

8
~87!

to obtain

E052
V0

2

12p2 S 3

16
ln

M̃2

V0
1

1

8

1E
0

`

dq H q

2q8

2q1q8tanh 2q8

2qq81~q21q82!tanh 2q8
2

3

8q8
J D .

~88!

In the limit wherev@1, we can approximate tanh 2q8'1,
the integral gives27/32, and we obtain

E05
V0

2

64p2 F ln
V0

M̃2
1

1

2G , ~89!

consistent with the result obtained from the effective pot
tial @20#.

The position-dependent part is

E1~x!5
1

12p2E
0

`

dk

3
k2

k8

~3k822k2!V0 cosh 2k8x

2kk8cosh 2k8a1~k21k82!sinh 2k8a

5
V0

12p2a2E
0

`

dq

3
q2

q8

~3q822q2!cosh 2q8y

2qq8cosh 2q81~q21q82!sinh 2q8
~90!

and is always positive.
Far from the edge of the potential,E1 is negligible. Close

to the edge, where we can approximateq8'q and sinh 2q
'cosh 2q'e2q/2, the integral becomes 1/@8(12y)2#, and

E1~x!'2
V0

96p2~a2x!2 , ~91!

which cancels the divergence outside the barrier.
08501
n

-

These results do not reflect any contribution from t
V9(x) counterterm. In this case it vanishes for alluxuÞa,
since the potential is constant. Furthermore, the contribu
to the total energy from this term is also zero, since it is
total derivative. If we imagine that the square barrier rep
sents the limit in which a smooth potential gets steeper
steeper, we will find large equal and opposite contributio
to the energy localized in the tiny region on both sides of
boundary. As long as we average over larger distance sc
this contribution will always cancel out, so it can be ignor
in the square barrier limit.

D. The sech2 potential in 3¿1 dimensions

Finally, we consider the potential analyzed in 211 di-
mensions in Ref.@10#,

V~x!5c2 sech2~x/a!, ~92!

which arises frequently in soliton models. It is exactly so
able in terms of associated Legendre functions. Forc2a2

52,(,11) with integer, it becomes reflectionless. Th
Green’s function at coincident points is

G~x,x,ik!5
a

2
G~11ka1s!G~ka2s!

3Ps
2ka@ tanh~x/a!#Ps

2ka@2tanh~x/a!#,

~93!

where Pn
m(x) is the associated Legendre function as defin

in Ref. @21# for 21,x,1, and s5(A124c2a221)/2.
Plugging this into Eq.~76!, we have

^H& ren52
1

12p2Em

`

dk V3Fa

2
G~11ka1s!G~ka2s!

3S 2k2
3k

2V2

d2

dx2D Ps
2ka@ tanh~x/a!#

3Ps
2ka@2tanh~x/a!#211

c2 sech2~x/a!

2k2

2
c4 sech4~x/a!~12k22M2!

2k2~4k22M2!2

1
c2 sech2~x/a!„3sech2~x/a!22…

2a2~k22M 82!V2 G , ~94!

which can then be computed numerically. Figure 2 gives t
energy density as a function ofx for particular values of the
parameters.

VI. CONCLUSIONS

We have seen how to address the question of genera
of negative energies through quantum fluctuations in the
bust language of quantum field theory, where ambiguit
4-12
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associated with idealized boundary conditions are abs
This approach implements standard renormalization pro
dures and is applicable to generic background potentials
are spherically symmetric in some dimensions and indep
dent of the rest. Such potentials typically arise, for examp
from topological defects or other extended objects. By us
dimensional regularization, we have implemented a pre
renormalization scheme, using only local subtractions
both the first- and second-order diagrams. We expect that
general formalism, together with fermion scattering theory
fractional dimensions developed in Ref.@8#, will allow these
results to be extended to fermions and gauge fields.

In the case of the square barrier, we have recovered
negative energy associated with perfect reflection at la
distances from the barrier, and we have seen that the d
gent negative energy outside the barrier is canceled by p
tive energy immediately inside. In a realistic example
which one includes the energy associated with the ba
ground potential, such cancellations might lead the avera
null energy condition to be obeyed even though the w
energy condition is violated@10#. Finally, we have calculated
the energy density for a smooth background representin
domain wall in 311 dimensions.

Note added in proof. Reference@25# has calculated the
surface tension for a bosonicf4 kink domain wall~and also
its supersymmetric generalization! using an on-shell renor
malization scheme, in space dimension one through fou
the language of the present paper, this calculation co
sponds to the case ofa52/m and c2523m2/2 in the po-
tential of Sec. IV D, renormalized withM5m, setting
m51 and n to zero through three. The surface tension
obtained by then integrating this result over the one n
trivial dimension. ~The choice ofM8 does not affect this
calculation because the total derivative term integrates
zero.! Using the formulae in the present paper to carry
this calculation, we obtain results in agreement with
bosonic calculations in Ref.@25#.
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APPENDIX A: CALCULATION OF f

By comparing the last line of Eq.~42! with the first equal-
ity in Eq. ~43!, we require

1

GS n13

2 D Em

`

Vn11km21
Ap f ~k,M !

GS m

2 D dk

5
1

GS n1m

2 D E0

` qn1m21

v~4v22M2!
dq, ~A1!

wherev5Aq21m2 andV5Ak22m2. Let us change vari-
ables on the left fromk to L5V25k22m2 and on the right
from q to L5q2 to get

1

GS n13

2 D E0

`

L (n11)/2km22
Ap f ~k,M !

GS m

2 D dL

5
1

GS n1m

2 D E0

` L (n1m22)/2

v~4v22M2!
dL ~A2!

with k5AL1m2 on the left andv5AL1m2 on the right.
We can write

1

G~11a!
E

0

`

dLLah~L1m2!5
1

G~11b!
E

0

`

dLLb j ~L1m2!

~A3!

with

a5~n11!/2, ~A4!

b5~n1m22!/2, ~A5!

h~x!5
Apxm/221f ~Ax,M !

GS m

2 D , ~A6!

j ~x!5
1

Ax~4x2M2!
. ~A7!

Denote the difference in the exponents asd5a2b5(3
2m)/2. If d is a positive integer, the desired relationship
just integration by parts, and
4-13
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h~x!5S 2
d

dxD
d

j ~x!. ~A8!

To extend this formula to non-integerd, we write j in terms
of the hypergeometric function,

j ~x!5
1

2Ap
S 4

4x2M2D d

G~d! 2F1S 1

2
,d;

3

2
;

M2

M224x
D ,

~A9!

with d53/2. The operator (2d/dx) just incrementsd in Eq.
~A9!, so we conjecture that the same relationship holds
all d, and thus that the desiredh is given by Eq.~A9! with
d53/21d532m/2. One can check that the conjecture
correct by explicitly performing the integrals in Eq.~A3!,
which both give

1

2Ap
S m22

M2

4 D b21/2

GS 1

2
2b D

3 2F1S 1

2
,
1

2
2b;

3

2
;

M2

M224m2D . ~A10!

Finally we find

f ~k,M !5
1

2p
GS m

2 DGS 32
m

2 D S 4

4k22M2D 32m/2

k22m

3 2F1S 1

2
,32

m

2
;
3

2
;

M2

M224k2D
5

2~m24!~m22!~2k!22m

~4k22M2!32m/2 sin
pm

2

3 2F1S 1

2
,32

m

2
;
3

2
;

M2

M224k2D . ~A11!

APPENDIX B: LOCAL SUM RULES

1. General case

We used the analytic properties of the Green’s function
a mathematical tool, enabling us to carry out calculatio
efficiently on the imaginary axis. In so doing, we avoided t
apparent singularity in the gamma function coefficient of E
~35! for oddn. Nonetheless, this expression should be a va
result, finite form1n,3. As in the case of the total energ
@6#, the quantity in brackets must vanish forn51 in each
partial wave individually. Furthermore, the combination
the first two terms in brackets vanishes separately from
total derivative term. These cancellations depend on a lo
analogue of the sum rules for the phase shift given in R
@22,23#, which we demonstrate below.

When similar apparent divergences arise in the calcula
of the total energy, they are canceled according to gene
zations of Levinson’s theorem@22,23#. For a system with
08501
r

s
s

.
d

e
al
s.

n
li-

spherical symmetry, in each partial wave, these sum rules
take the form

(
j

~2k, j
2 !N1E

0

`

k2N
d

dk S d,~k!2(
s51

N

d,
(s)~k!D dk50,

~B1!

where the bound states havek, j5 ik, j , d,(k) is the scatter-
ing phase shift, andd,

(s)(k) is the scattering phase shift com
puted at orders in the Born approximation.4 The N50 case
gives Levinson’s theorem. Like Levinson’s theorem, the
identities apply to general potentials in scattering theory a
hold in each partial wave, individually. Also like
Levinson’s theorem, they are modified for the case of
symmetric channel in one dimension, as discussed in R
@23#.

We have a relationship@11,12# between the phase shif
the change in the density of states, and the norm of the w
function

1

p

dd,~k!

dk
5r,~k!2r,

(0)~k!

5
2pm/2

GS m

2 D
1

pE0

`

drr m21@ uck
,~r !u22uck

,(0)~r !u2#,

~B2!

where the zero superscript indicates a quantity evaluate
the free case. This equation also holds order by order in
Born approximation. Using these relations we can rew
Eq. ~B1! as

2pm/2

GS m

2 D E drr m21F(
j

~2k, j
2 !Nuc j

,~r !u2

1
1

pE0

`

k2NS uck
,~r !u22(

s50

N

uck
,(s)~r !u2D dkG50,

~B3!

whereck
,(s)(r ) is the Born approximation to the wave func

tion computed at orders ~the free wave function is the orde
zero term!. The identities we need for the present applicati
are simply the slightly stronger condition that Eq.~B3! holds
for eachr individually, rather than just as an integral. We c
exploit the connection to the Green’s function that was u
in Refs.@22,23# to prove this result as well.

The case ofN50 is particularly simple, because we kno
that

4In general, these identities continue to hold even if one subtr
N8 orders in the Born approximation for anyN8>N. However,
there are some restrictions on such oversubtractions in the sym
ric channel in one dimension@23#.
4-14
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(
j

uc j
,~r !u21

1

pE0

`

@ uck
,~r !u22uck

,(0)~r !u2#dk50

~B4!

by completeness; it is just the difference between the exp
tation value of a constant computed in the free and inter
ing bases.~After summing over the spectrum, each term
independent ofr.! For higherN, we would like to show that

(
j

~2k, j
2 !Nuc j

,~r !u2

1
1

pE0

`

k2NS uck
,~r !u22(

s50

N

uck
,(s)~r !u2D dk

~B5!

is zero.5 We employ the relationship in Eq.~36! between the
norm of the wave function and the Green’s function to
write this expression as

(
j

~2k, j
2 !Nuc j

,~r !u2

1
1

pE2`

`

k2N11 ImS G,~x,x,k!2(
s50

N

G,
(s)~x,x,k!D dk,

~B7!

where we have extended the integral to the entirek axis by
the symmetry of the integrand. To show this expression
zero, we would like to do thek integral as a contour, close
in the upper half plane. The singularities in the full Gree
function correspond to bound states, and will exactly can
the explicit contribution from the bound states@16#. The
Born approximation has no singularities~since it does not
see the bound states!. Thus we are left with the contour a
infinity. However, it does not contribute because we ha
subtracted enough Born approximations to ensure that
integrand falls like 1/uku2 at largeuku @24#.

2. The symmetric channel

In one dimension, we have to consider the symme
channel, which can have additional singularities atk50.
Such singularities, for example, lead to an extra 1/2
Levinson’s theorem@23#, relating the phase shift atk50 to
the number of bound states. We have

dS~0!5pS nS2
1

2D ~B8!

5As shown in Ref.@9#, for reflectionless potentials in one dimen
sion there is a stronger version of the first local sum rule,

(
j

ucj~r!u2
2kj

kj
21k2

1uck~r!u22uck
(0)~r!u250, ~B6!

which reduces to Eq.~B4! when integrated overk. It might be
possible to find analogous results for the higher sum rules as w
08501
c-
t-

-

is

el

e
he

c

n

as opposed to the usual

d~0!5pn. ~B9!

Analogously in our problem, Eq.~B4! must be modified to

(
j

uc j
S~x!u22

1

2L
1

1

pE0

`

@ uck
S~r !u22uck

S(0)~x!u2#dk50,

~B10!

whereL is the size of the system. Subtracting 1/(2L) reflects
the contribution from the statec(x)5const in the free spec
trum. This state is ‘‘half-bound’’: While any potential wil
have ak50 state in the symmetric channel, in this case
wave function goes to a constant at infinity. Such states c
tribute to the spectrum with half the usual residue for
bound state, as the name indicates.~Generically a state with
k50 will approach a line with nonzero slope, in which ca
no special treatment is necessary.! If a potential has a half-
bound state, making the potential arbitrarily more attract
introduces a new bound state in the theory, and makin
arbitrarily more repulsive eliminates the half-bound stat6

There will be an analogous contribution to the energy d
sity, so this term will cancel when we pass from Eq.~27! to
Eq. ~29! and the rest of the derivation of the energy density
unchanged.

For the other sum rules needed in our problem, howe
we always multiply by enough powers ofk to cancel any
anomalous effects coming from states atk50. We would
have to be more careful if we do additional Born ‘‘oversu
tractions,’’ in which case we could encounter addition
terms analogous to those found in Ref.@23#. We can always
avoid these problems as long as each ultraviolet Born s
traction is preceded by a corresponding infrared Levins
subtraction. For the first Born subtraction, the correspond
Levinson subtraction was done using Eq.~B4!. Higher
Levinson subtractions would use local analog of the hig
sum rules in Ref.@6#.

3. Local subtraction

For Casimir calculations it will be convenient to slight
modify the N51 sum rule. Our renormalization procedu
subtracts not the full first Born approximation, but rather ju
a local part of it. However, this replacement does not aff
the sum rule. For example, to apply the results of Sec. II
for m5n51, we write

ll.

6A reflectionlesspotential will always have a half-bound stat
because it must havedS(k)5dA(k) for all k. If this equality is to
hold at k50, to reconcile Eqs.~B8! and ~B9! there must be a
half-bound state, which contributes only a half to the number
bound states. The half-bound state in the free case~which is reflec-
tionless! is just a consequence of this requirement.
4-15
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(
x51,2

uck~x!u2

511E
x

`

dy
V~y!

k
sin 2k~y2x!1•••

511
V~x!

2k2
1E

x

`

dy
V8~y!

2k2
cos 2k~y2x!1•••

511
V~x!

2k2
2E

x

`

dy
V9~y!

4k3
sin 2k~y2x!1•••

511
V~x!

2k2
2

V9~x!

8k4
2E

x

`

dy
V-~y!

8k4
cos 2k~y2x!1•••

511
V~x!

2k2
2

V9~x!

8k4
1E

x

`

dy
V-8~y!

16k5
sin 2k~y2x!1•••

~B11!

and subtract only the term directly proportional toV(x),
rather than all terms that are first order in the strength of
potential. However, the additional terms, proportional to
derivatives ofV(x), do not introduce any singularities in th
integral and do not affect the contour at infinity because t
fall like 1/k4 or faster. Therefore, this modification does n
affect the proof of the sum rule. This result allows us
apply the sum rule to Eq.~35!.

4. One irrelevant dimension

With the sum rules in hand, we can now extract a fin
result from Eq.~35!. Nearn51 we have
ev

Le
.

ys

n

ra

08501
e
e

y
t

GS 2
n11

2 D'
2

n21
and an21'11

n21

2
loga2

~B12!

so that in then→1 limit we obtain

^H& ren52
1

8p (
,

D,
mH (

j
~v j

,!2 log~v j
,!2uc j

,~r !u2

1E
0

`dk

p
v2 logv2

3F uck
,~r !u22uck

, (0)~r !u2S 11~22m!
V~r !

2k2 D G
1

1

2
Dr

2S (
j

log~v j
,!2uc j

,~r !u2

1E
0

`dk

p
logv2uck

,~r !u2D J . ~B13!

The local sum rule ensures that the scale of the logari
does not affect the final result. In addition, the limitm→0 is
smooth~except whenn50 andm51, where we have the
usual infrared divergences of one-dimensional field theo!.
If we extend the range of integration in Eq.~B13! as in Eq.
~12!, and then close the contour in the upper half plane,
branch cut associated with logv2 will reproduce Eq.~15!.
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