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Standard model Higgs boson from higher dimensional gauge fields
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We consider the possibility that the standard model Higgs fields may originate from extra components of
higher dimensional gauge fields. Theories of this type considered before have had problems accommodating
the standard model fermion content and Yukawa couplings different from the gauge coupling. Considering
orbifolds based on Abelian discrete groups we are led to a 6 dimensionalG2 gauge theory compactified on
T2/Z4. This theory can naturally produce the SM Higgs fields with the right quantum numbers while predicting
the value of the weak mixing angle sin2uW50.25 at the tree level, close to the experimentally observed one.
The quartic scalar coupling for the Higgs boson is generated by the higher dimensional gauge interaction and
predicts the existence of a light Higgs boson. We point out that one can write a quadratically divergent
counterterm for Higgs boson mass localized to the orbifold fixed point. However, we calculate these operators
and show that higher dimensional gauge interactions do not generate them at least at one loop. Fermions are
introduced at orbifold fixed points, making it easy to accommodate the standard model fermion content.
Yukawa interactions are generated by Wilson lines. They may be generated by the exchange of massive bulk
fermions, and the fermion mass hierarchy can be obtained. Around a TeV, the first KK modes would appear as
well as additional fermion modes localized at the fixed point needed to cancel the quadratic divergences from
the Yukawa interactions. The cutoff scale of the theory could be a few times 10 TeV.

DOI: 10.1103/PhysRevD.67.085012 PACS number~s!: 12.60.Cn, 11.10.Kk, 11.15.Ex, 12.10.Kt
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I. INTRODUCTION

Theories with light elementary scalars seem unnatu
since their masses receive quadratically divergent loop
rections, thus one would expect their masses to be pushe
to the cutoff scale of the theory. This results in the we
known hierarchy problem of the standard model~SM!. The
different approaches to solving the hierarchy problem
clude eliminating the Higgs scalar entirely from the theo
~technicolor!, lowering the cutoff scale~large extra dimen-
sions and the Randall-Sundrum model!, or embedding the
Higgs field in a multiplet of a symmetry group larger tha
the 4D Poincare´ group ~supersymmetry!.

It was observed quite a long time ago that, in addition
supersymmetry, there may be other extensions of the
Poincare´ group where scalars could be embedded into,
thus perhaps protect their masses from quadratic di
gences. The most natural such choice would be to use
Poincare´ group of a higher dimensional gauge theo
thereby embedding elementary scalars into higher dim
sional gauge multiplets. In 1979 Manton@1# ~and subse-
quently several others@2#! considered this possibility, wher
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an extra dimensional theory is compactified in the prese
of a monopole in the extra dimensions. The monopole ba
ground would then break higher dimensional gauge inv
ance down to the SM group and result in a negative m
square for some of the 4D scalars contained in the hig
dimensional gauge fields, thus resulting in successful e
troweak symmetry breaking. However it seems very diffic
to incorporate fermion matter fields into these theories. Fo
review of such models see@3#; for recent new ideas in this
direction see@4#. The idea of gauge symmetry breaking v
vacuum expectation values~VEV’s! of scalars contained in
the higher dimensional gauge fields was further develope
the 80’s by Hosotani@5#, and was studied in detail in a strin
theory context@6# ~for an early string realization of TeV siz
extra dimensions see@7#!. For more recent work on the field
theory side see@8–12#. The four dimensional ‘‘little Higgs’’
boson models motivated by this higher dimensional mec
nism for electroweak symmetry breaking were construc
and investigated in@13–15#.

Since our world is not supersymmetric, the key quest
in supersymmetric extensions of the SM is to decide wh
operators are softly breaking supersymmetry that do not
introduce quadratic divergences and thus the hierarchy p
lem. Analogously, since we know that our world does n
have exact higher dimensional Poincare´ invariance, this sym-
metry needs to be broken, usually via compactification of
extra dimensions. Therefore an important task is to und
©2003 The American Physical Society12-1
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stand in the context of these models what kind of compa
fications would maintain the absence of quadratic div
gences, and thus correspond to soft breaking of
symmetry. Clearly compactification on tori would not rei
troduce quadratic divergences; however such compacti
tions are phenomenologically not so interesting since they
not reduce the gauge group of the higher dimensional the
therefore one could only obtain scalar fields in adjoint re
resentations, which cannot reproduce the SM. The next s
plest possibility is compactification on orbifolds@16#, which
we will be considering in this paper. This enables one
reduce the size of the unbroken gauge group by geom
cally identifying regions in the extra dimensional space, a
thus allows one to obtain representations other than adjo
under the unbroken gauge group to appear as 4D scala
the effective theory. Orbifold theories, with or withou
Scherk-Schwarz compactification@17#, have recently been
used to find a variety of interesting models of grand unifi
theory ~GUT! @18,19# and supersymmetry breaking@20,21#.
5D theories compactified onS1/Z2 do not naturally contain
quartic couplings for the scalars in the gauge fields. The
fore one is compelled to look at 6D theories where the qu
tic scalar couplings are generated by the higher dimensi
gauge interactions. In the first part of the paper we cons
all possible models based on Abelian 6D manifolds us
inner automorphisms which could lead to the SM as the
energy effective theory. We identify the necessary compa
fications for the different choices of the gauge groups, fi
the resulting 4D scalars that could serve as SM Higgs fie
and calculate the prediction for the weak mixing angle in
absence of brane induced gauge kinetic terms. During
process we will identify a 6D gauge theory based on theG2
gauge group compactified onT2/Z4 ~or generally onT2/Zk
for k>4) as the phenomenologically preferred choice
theories of this sort. For this model we calculate the K
spectrum of the orbifold theory and the quartic scalar c
pling induced by the gauge interactions.

However, an important part of the program is to che
whether orbifold compactifications reintroduce quadratic
vergences or not. In 5D theories compactified onS1/Z2 there
are no operators allowed by gauge and Lorentz invaria
@11# that could reintroduce the quadratic divergences.1 But in
order to get the quartic scalar coupling and also to be abl
use aZ4 orbifold projection we are considering 6D theorie
In these models, we point out, there exist operators which
a priori not forbidden by the Lorentz and gauge symmetr
of the orbifold theory, and thus could reintroduce the qu
dratic divergence. These operators at the same time gen
tadpole terms in the effective action, thus the presence
such operators would clearly be disastrous for a reali
model. Thus one needs to investigate under what circ
stances these tadpoles would be generated. This will be
focus of the second part of this paper. We identify the pot

1The result concerns pure gauge theories in the bulk. Once m
is introduced, in a supersymmetric context for instance, some ga
invariant quadratic divergences can be generated at orbifold fi
points @22#.
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tially divergent brane induced operators for the 6D theori
and show that forZ2 orbifolds parity invariance of gauge
interactions forbids the generation of this tadpole term. Ho
ever, for more complicated orbifolds parity invariance is br
ken by the orbifolding, and thus we do not have a symme
argument for the absence of the tadpole terms. Instead
explicitly calculate the one loop contribution for the tadpo
term for theT2/Z4 theory both based on anSU(3) and aG2

gauge group, and find that the gauge contributions to
tadpole vanish. It is argued that even if generated at hig
loop order this term will not destabilize the weak scale, d
to the low value of the 6D cutoff scale.

Finally we consider adding fermions to the model at t
orbifold fixed points. Electroweak symmetry breaking is th
triggered by the large top Yukawa coupling. Fermions a
introduced at orbifold fixed points. Direct coupling of th
fermions to the Higgs scalars would reintroduce the q
dratic divergences. However, one can generate fermion b
ear interactions involving nonlocal Wilson-line operato
which contain the necessary Yukawa couplings for the l
tons, by integrating out vectorlike bulk fermions whic
couple to the fermions localized at the orbifold fixed poin
For the quarks however one has to assume the existenc
these nonlocal operators in an effective theory appro
without being able to rely on an explicit mechanism to ge
erate them. We calculate the contribution of the Yukawa
teractions to the Higgs effective potential, and sketch
spectrum of the theory.

II. THE CHOICE OF THE GAUGE GROUP

As discussed in the Introduction, we would like to fin
Abelian orbifolds of 6D gauge theories based on the ga
groupG which could reproduce the bosonic sector of the S
without explicitly introducing elementary scalars into th
theory. We will restrict ourselves to orbifolds using inn
automorphisms, that is we use elementsU of the groupG
when doing the orbifold identifications. Since we are usi
Abelian subgroups of the original gauge group, the rank
the gauge group will not be reduced@23,16#. Since we want
to obtain theSU(2)3U(1) electroweak gauge group afte
orbifolding, the rank ofG has to be two. Thus there are on
six possibilities:G5U(1)3U(1), SU(2)3U(1), SO(4)
;SU(2)3SU(2), SU(3), SO(5) or G2. The first two pos-
sibilities are clearly unacceptable sinceU(1)3U(1) is not
large enough to accommodate the SM group, whileSU(2)
3U(1) cannot produce scalar fields that are not in the
joint of SU(2)3U(1). Thus they can clearly not produce
SM Higgs doublet. The other four gauge groups remain
tential candidates, and we will consider them one by o
below.2

ter
ge
d

2There is another possibility that the rank of the unbroken ga
group is higher than two, while the unwanted part of the gro
breaks itself because of the anomaly@9#. In this case, one needs t
rely on the Green-Schwarz mechanism for anomaly cancellatio
the full theory.
2-2
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A. GÄSO„4…

Since we are interested in Abelian orbifolds usi
SO(4).„SU(2)3SU(2)…/Z2 group elements, the orbifold
boundary condition can only be in its maximal torus,3

U5S cosu1 2sinu1 0 0

sinu1 cosu1 0 0

0 0 cosu2 2sinu2

0 0 sinu2 cosu2

D . ~2.1!

For genericu1,2, the group is broken asSO(4)→SO(2)
3SO(2). Whenu15u2, the unbroken group is enhanced
„SU(2)3U(1)…/Z2. However, the adjoint representation
SO(4) decomposes as (3,1)1(1,3)→3011011111121
and hence there is no candidate for the Higgs doublet.
nally whenu15u25p, the entireSO(4) is unbroken. None
of these possibilities is acceptable, thus we exclude the
G5SO(4).

B. GÄSO„5…

The maximal torus forSO(5) is

U5S cosu1 2sinu1 0 0 0

sinu1 cosu1 0 0 0

0 0 cosu2 2sinu2 0

0 0 sinu2 cosu2 0

0 0 0 0 1

D .

~2.2!

For genericu1,2, the group is broken asSO(5)→SO(2)
3SO(2). Whenu250, the unbroken group is enhanced
SO(3)3SO(2).„SU(2)/Z2…3U(1). However, the adjoint
representation ofSO(5) decomposes as10→301101361
and hence there is no candidate for the Higgs doublet. If
were to use the triplet anyway for electroweak symme
breaking, ther parameter would not be one at the tree lev

When u15u2, the unbroken group is enhanced
„SU(2)3U(1)…/Z2,SO(4),SO(5), a different embed-
ding of the electroweak group intoSO(5). Theadjoint rep-
resentation decomposes as10→3011611101261/2, and
hence we can obtain Higgs doublets. We however fi
sin2uW51/2. This would mean that the dominant contrib
tion to the gauge couplings would have to come from
brane induced gauge kinetic terms, which is quite an unn
ral assumption. Thus we exclude the caseG5SO(5).

C. GÄSU„3…

BreakingSU(3) to SU(2)3U(1) can be achieved usin
any of theSU(3) group elements

3A maximal torus of the group is the maximal Abelian subgro
generated by Cartan subalgebra, and is topologically a torus.
08501
i-

se

e
y
l.

d

e
u-

Uk5diag~vk ,vk ,vk
22!, ~2.3!

wherev5e2p i /k, except fork53 @in that caseUk}1 and the
gauge group would remainSU(3)]. Since (Uk)

k51, we can
have aT2/Zk orbifold for any value ofk that would break
SU(3)→SU(2)3U(1). Let us nowconsider the decompo
sition of the adjoint ofSU(3) under this breaking:8→30
110123 where 23 is a complex doublet, and theU(1) gen-
erator is diag(1,1,22)5A12T8 in the SU(3) fundamental.
If we want to redefine the normalization of theU(1) genera-
tor so that the Higgs field has the standard 1/2U(1)Y charge,
we get that the low-energy gauge couplings would be rela
to the SU(3) coupling g3 by g5g3 , g85A3g3, which
would result in sin2uW53/4. This would mean that the dom
nant contribution to the gauge couplings would again have
come from the brane induced gauge kinetic terms, there
we will not consider this possibility either.

D. GÄG2

This is the most interesting possibility.G2 has two maxi-
mal subgroups,SU(3) andSU(2)3SU(2). Thedecompo-
sition of the G2 adjoint under theSU(3) subgroup is14
→81313̄, where313̄ form a complex3. We can try to
break the gauge group to theSU(2)3U(1) contained within
theSU(3) subgroup. For this we can use group elements
are contained within theSU(3) subgroup, and use the sam
Uk elements as in Eq.~2.3!. In order to find out what the
unbroken gauge group for the various choices ofk are, we
need to find out which generators remain invariant under
Zk transformation given byUk . For k52 the SU(2)
3U(1) subgroup of theSU(3) subgroup ofG2 remains
unbroken. However, in the case ofk52 the orbifold action is
U25diag(21,21,1), which means that there are two add
tional generators from the313̄ which remain invariant, and
the low-energy gauge group will in fact be enlarged
SU(2)3SU(2) instead of the desiredSU(2)3U(1). Thus
k52 is excluded. The casek53 is also excluded, since simi
larly to theG5SU(3) case discussed above the low-ener
gauge group will be enlarged toSU(3). However, for any
other value ofk>4 the low-energy gauge group is indee
SU(2)3U(1). Thevalue of the low-energy gauge coupling
will depend on which scalar will get an expectation valu
since now there could be two possibilities: the doublet t
originates from the adjoint ofSU(3) or the doublet from the
3 of SU(3). Wehave seen above that if it is the doublet fro
theSU(3) adjoint which is playing the role of the SM Higg
boson, we would get a prediction for sin2uW53/4, which is
too far from the observed value. The situation is howe
different, if the Higgs boson is contained in the3 of SU(3).
In this case the Higgs quantum numbers are given by21,
again with theU(1) normalization diag(1,1,22) in the
SU(3) fundamental. Once we redefine the normalization
U(1)Y so that this Higgs has the standard 1/2 charge we
that ~see the Appendixes for more details! g5gG2

/A2,g8

5gG2
/A6, and thus we find the prediction for sin2uW51/4,

which is close to the observed value. The difference can
made up either by small corrections from brane induced
2-3
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CSÁKI, GROJEAN, AND MURAYAMA PHYSICAL REVIEW D 67, 085012 ~2003!
netic terms or from running between the compactificat
scale and theZ mass scale. This is similar to the proposal
@24#, and one needs to check the phenomenological c
straints on such models, as done in@25#. Note that the mode
also contains the second scalar field coming from theSU(3)
adjoint. It is anSU(2) doublet but it has hypercharge 3/
We will be able to generate a positive quadratically diverg
correction to its mass square and thus this scalar will n
rally decouple from the low energy effective theory.

Thus we have found that the phenomenologically p
ferred models are based on a 6DG2 gauge theory, with aZk
orbifold for k>4. From now on we will concentrate on th
simplest possibility with aZ4 orbifold. Note that the sin2uW
values obtained for the three possible gauge groups con
ered here are the same values that Manton found@1# for the
theories with monopole backgrounds. This is not surprisi
since these predictions are purely based on group the
Thus our conclusion is similar to Manton’s that the preferr
models are based on theG2 gauge group.

III. THE KK SPECTRUM OF THE 6D G2 ON T2ÕZ4

A. KK decomposition and spectrum

The decomposition of theG2 fundamental under the
SU(3) subgroup is7→313̄11. A useful basis for the gen
erators in the fundamental ofG2 is given in Appendix A. The
Z4 orbifold symmetry acts on space-time as ap/2 rotation on
the extra dimensional coordinates, as visualized on Fig
The orbifold projection on gauge fields is defined by its a
tion on the fundamental representation:

f~x,2z,y!5Uf~x,y,z!

with

U5diag~ i ,i ,21,2 i ,2 i ,21,1!. ~3.1!

FIG. 1. Symmetries of the orbifold.T corresponds to torus iden
tification while O is the action of the orbifold symmetry. The fun
damental domain of the orbifold space-time is the squarepR
3pR ~however, for convenience, we will still normalize the K
modes by integration over the fundamental domain of the tor!.
Two points are left invariant by the orbifold action: the origi
(0,0), and the point (pR,pR). At these points, theG2 gauge group
of the bulk is broken toSU(2)3U(1) and gauge invariant poten
tially dangerous operators could in principle be generated.
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The consistency of the orbifold projection with the gau
symmetry dictates the transformation of the gauge fields

Am~x,2z,y!5UAm~x,y,z!U†,

Ay~x,2z,y!52UAz~x,y,z!U†,

Az~x,2z,y!5UAy~x,y,z!U†. ~3.2!

In our gauge basis, the action is written

AM
a ~x,2z,y!5L̃abR̃M

NAN
b ~x,y,z!, ~3.3!

whereL̃ and R̃ are 14314 and 636 nondiagonal matrices
given for completeness in Appendix A. To perform th
Kaluza-Klein decomposition, it is easier to first diagonali
the orbifold action, which is achieved by defining light-con
like space-time coordinates for the extra dimensions:

u65
1

A2
~y6 iz!, i.e., A6

a 5
1

A2
~Ay

a7 iAz
a!. ~3.4!

Note that the metric is no longer diagonal and as a con
quence, the gauge propagator will for instance connect
index 1 to a 2 one:

ds25dt22dx3
222du1du2,

i.e.,

g5diagS 1,21,21,21,S 21

21 D D . ~3.5!

We also need to redefine generators with well-defined hyp
charge:

T165
1

A2
~T46 iT5!, i.e., AM

165
1

A2
~AM

4 7 iAM
5 !,

T265
1

A2
~T66 iT7!, i.e., AM

265
1

A2
~AM

6 7 iAM
7 !.

~3.6!

Since the generators are non-Hermitian, the metric in
gauge indices is nondiagonal and as a consequence the g
propagator will for instance connect an index 11 to a 12 one
or an index 9 to an index 12:
2-4
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1

1

As announced, in these systems of coordinates, the action of the orbifold is diagonal and is simply@for short, we denoteu
5(u1,u2) andau5(au1,a* u2)]:

AM
a ~x,iu !5LabRM

NAN
b ~x,u! ~3.8!

with

R5diag~1,1,1,1,2 i ,i ! and L5diag~1,1,1,2 i ,i ,2 i ,i ,1,i ,i ,21,2 i ,2 i ,21!. ~3.9!

An eigenstateF associated to an eigenvaluet, i.e., satisfying

F~x,iu !5tF~x,u!, ~3.10!

can be written from an unconstrained field on the torus,

F~x,u!5
1

4
„w~x,u!1t3w~x,iu !1t2w~x,2u!1tw~x,2 iu !…, ~3.11!

which leads to the KK decomposition~we chose to normalize the wave functions of the KK modes on the fundamental do
of the torus, i.e., the 4D effective action is obtained by integration of the 6D action over the fundamental domain of the!:

F~x,u!5 (
py ,pz51

` f py ,pz
~u!1t f 2pz ,py

~u!1t2f 2py ,2pz
~u!1t3f py ,2pz

~u!

4pR
F (py ,pz)~x!

1 (
p51

`
f p,0~u!1t f 0,p~u!1t2f 2p,0~u!1t3f p,0~u!

4pR
F (p)~x!1

1

2pR
F (0)~x!, ~3.12!
re

ib
on
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b

-

-
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e
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-
asy
D

where f py ,pz
(u) are the KK wave functions on the squa

torus:

f py ,pz
~u!5expi S 1

A2R
~py2 ipz!u

11
1

A2R
~py1 ipz!u

2D .

~3.13!

Note that the last term in the KK decomposition~3.12! is
present only for an orbifold invariant field, i.e., fort51.
Indeed the other orbifold eigenvalues are not compat
with a flat wave function, at least in the absence of a disc
tinuity ~discontinuities cannot be encountered for boso
fields whose equations of motion are of second order!.

The KK modesF (py ,pz)(x), F (p)(x), and F (0)(x) are
canonically normalized in 4D and their masses are given

m(py ,pz)
2 5

py
21pz

2

R2
, m(p)

2 5
p2

R2
, m(0)

2 50. ~3.14!
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At the massless level, the spectrum containsSU(2)3U(1)
gauge bosons,Am

1,2,3,8, as well as two complex scalar dou
blets: one doublet coming from theSU(3) adjoint represen-
tation, H5(A

2

11,A
2

21)5(A
1

12 ,A
1

22)* , which has hyper-
charge 3/2 in the normalizationY5diag(1/2,1/2,21) and the
other one coming from theSU(3) fundamental and anti
fundamentalh5(A1

9 ,A1
10)5(A2

12,A2
13)* , with hypercharge

1/2. In order to get the preferred value of sin2uW in the low-
energy theory, the SM Higgs boson should be identified w
the hypercharge 1/2 field, while the other scalar should
get a VEV. We will see that introducing fermions into th
picture could naturally achieve this breaking pattern.

B. Higgs quartic coupling from 6D gauge interaction

The 6D action contains a four gauge bosons interac
term due to the non-Abelian nature ofG2 and, after compac-
tification, the term Tr(FyzF

yz) gives rise to a quartic poten
tial for the Higgs scalars. From the analysis above, it is e
to write theAy and Az gauge matrices in terms of the 4
canonically normalized Higgs fields:
2-5



Ay5
1

4A2pR

¨

H1 A1

3
h2* A2

3
h1

H2 2A1

3
h1* A2

3
h2

H1* H2* 2A1

3
h2* A1

3
h1*

2A1

3
h2 2H1* 2A2

3
h1*

A1

3
h1 2H2* 2A2

3
h2*

A1

3
h2 2A1

3
h1 2H1 2H2

©
, ~3.15!
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A2

3
h1* A2

3
h2* 2A2

3
h1 2A2

3
h2

Az5
2 i

4A2pR

¨

H1 A1

3
h2* 2A2

3
h1

H2 2A1

3
h1* 2A2

3
h2

2H1* 2H2* 2A1

3
h2* A1

3
h1*

A1

3
h2 H1* 2A2

3
h1*

2A1

3
h1 H2* 2A2

3
h2*

2A1

3
h2 A1

3
h1 2H1 2H2

A2

3
h1* A2

3
h2* A2

3
h1 A2

3
h2

©
. ~3.16!
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Here, h(H) denotes the doublet scalar of hyperchar
1/2 (3/2). After compactification to 4D, we obtain the fo
lowing quartic coupling:

V5
1

6
g4D

2
„uhu413uHu413~H†sah!~h†saH !26uhu2uHu2

…,

~3.17!

where sa,a51, . . . ,3, are thePauli matrices andg4D

5g6D
G2/(2A2pR) is the gauge coupling of the low energ

SU(2) gauge group in 4D.
As we will see later, the doubletH of hypercharge 3/2

acquires a quadratically divergent positive mass squared
decouples, while the mass squared of the doubleth of hyper-
charge 1/2 can be protected by a cancellation. Therefoh
plays the role of the standard model Higgs boson. The q
tic couplingg4D

2 /6 then predicts that the tree-level Higgs b
08501
e

nd

r-

son mass ismh
25 1

3 g4D
2 v25MZ

25(91 GeV)2. This is similar
to the situation in the MSSM, where themaximaltree-level
value of the Higgs boson mass isMZ . Loop corrections to
the quartic scalar coupling will modify this prediction an
push the Higgs boson mass to somewhat higher values.

IV. POTENTIALLY DIVERGENT BRANE INDUCED MASS
AND TADPOLE OPERATORS

After identifying the interesting class of 6D models fo
electroweak symmetry breaking, one needs to ask whe
quadratically divergent mass terms are indeed absent f
this theory or not. The full higher dimensional gauge gro
is operational in the bulk, and therefore one does not exp
quadratically divergent mass terms to be generated in
bulk. However, the gauge invariance is reduced at the o
fold fixed points, and one needs to find out if any bra
2-6
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localized operators that would give quadratically diverg
corrections to the Higgs boson mass could be generated

A. General discussion

Gauge invariant operators are built using the field stren
tensorFAB . One could think that due to the reduced gau
invariance at the orbifold fixed points one could use direc
the 4D scalar components of the gauge fields correspon
to the broken generators. This is however not the case
shown in @11#. The reason is that the gauge transformat
parameterja has the same KK expansion as the gauge fie
themselves. This means that while for the broken genera
j âu f p50, its derivatives with respect to the extra dime
sional coordinates do not vanish,] ij

âu f p5” 0. Thus there is a
residual shift symmetry left from the higher dimension
gauge invariance even for the broken generators, pro
tional to the derivative of the gauge parameter, and one ne
to consider invariants built from the field strength tens
FAB(0) ~in this section, the position ‘‘0’’ refers to the fixe
point!. SinceFAB(0) transforms properly under gauge tran
formations, its transformation law does not contain any
rivative pieces, and therefore it only transforms under
unbroken gauge group asFAB(0)→g(0)FAB(0)g(0)21 for
a finite gauge transformationg(0) of the unbroken gauge
group, since the gauge transformation parameters for the
ken generators vanish at the fixed point. The elements
longing to the broken part of the group do not affectFAB(0)
at the fixed point. The potentially dangerous operators
linear in F, since their coefficient could be quadratically d
vergent. Clearly, in 5D there is no such operator allowed
Lorentz invariance, however in 6D the operator

Tr„UFyz~0!… ~4.1!

is allowed, whereU is the group element used for the orb
fold projection. This operator is clearly gauge invaria
since under gauge transformations

Tr„UFyz~0!…→Tr„Ug~0!Fyz~0!g~0!21
…5 Tr„UFyz~0!…,

~4.2!

sinceU commutes with the elements of the unbroken gau
group. Similarly, any operator of the form Tr„UnFyz(0)… for
n50, . . . ,k21 would also be allowed, but as we will se
below these all lead to the same set of allowed operator
the fixed point.

For the case of SU(3)→SU(2)3U(1) and G2
→SU(2)3U(1) using the orbifold based onU
5diag(i ,i ,21) this operator will be proportional toFyz

8 (0),
where the 8 index refers to the unbrokenU(1) generator
within SU(3). This term would contain atadpole for the
scalar components ofA8, and through thef bc

8Ay
bAz

c term
contained within the field strength also mass terms for
scalars that are supposed to play the role of the SM Hi
boson. Therefore it is essential to find out under what
cumstances these operators are generated.

Generically, the operator in Eq.~4.1! will pick out the
field strength tensor corresponding to the unbrokenU(1)
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components.4 This can be seen by examining the group m
trix structure of Tr(UFyz)5Tr(UTa)Fyz

a . The orbifold pro-
jection is telling us thatUTaU†5taTa, where t is the Zk
parity of the particular generator. From this (
2ta)Tr(UTa)50, thus Eq.~4.1! can only contain element
from the unbroken group. However, all elements of the u
broken Lie algebra can be written as commutators of ot
Lie algebra elements in the unbroken group, unless it is c
responding to aU(1) factor.5 Since U commutes with the
unbroken generators the contributions to Eq.~4.1! vanish for
all elements in the non-Abelian component of the unbrok
part of the gauge group, and only the unbrokenU(1) factors
can contribute.

Next we show that in the case of aZ2 orbifold parity
invariance forbids the generation of Eq.~4.1!, however for
Z4 or other higherZk there is no discrete symmetry to forbi
this operator.

B. Z2 orbifold

First we consider aT2/Z2 orbifold. The orbifold boundary
condition under Z2 (y→2y,z→2z) for a bulk scalar
f(xm,y,z) is

f~x,2y,2z!5Uf~x,y,z!. ~4.3!

U is an element of the gauge group that satisfiesU251. We
want to show that there is parity invariance in the Yan
Mills-scalar theory. Obviously the Yang-Mills-scalar theo
on two-dimensional torus is parity invariant. Therefore t
only condition to check is if the orbifold boundary conditio
is consistent with parity. In even-dimensional space, parit
defined by flipping only one~or an odd number of! spatial
coordinate. Let us considery→2y,z→z. Under this parity,
the left-hand side~LHS! of Eq. ~4.3! becomesf(y,2z),
while the RHSUf(2y,z). Because Eq.~4.3! must hold for
any y and z, f(y,2z)5Uf(2y,z), and the parity-
transformed Eq.~4.3! holds. In other words, the conditio
Eq. ~4.3! is parity invariant.

The orbifold boundary condition for the gauge field
obtained from the requirement that the covariant derivat
of the bulk scalar transforms covariantly under the orbifo
boundary condition:

Am~x,2y,2z!5UAm~x,y,z!U†,

Ay~x,2y,2z!52UAy~x,y,z!U†,

Az~x,2y,2z!52UAz~x,y,z!U†. ~4.4!

Now we try to identify the parity transformation of th
gauge field that preserves Eq.~4.4!. The gauge field trans
forms under parity normally as

Ay~y,z!→2Ay~2y,z!, ~4.5!

4We thank M. Quiro´s for this remark.
5Mathematically, we are saying that the derived algebra o

semisimple algebra is the algebra itself.
2-7
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Az~y,z!→Az~2y,z!.

Again, it is easy to see that the parity preserves the orbi
boundary condition. Under the parity, the operator of o
concern Tr(UFyz) transforms to2Tr(UFyz). Therefore,
parity invariant interactions would no induce this term.

If there are bulk fermions present, one needs to chec
parity invariance is broken or not. Clearly for vectorlike fe
mions one can extend the definition of parity in the us
way, and we expect that Eq.~4.1! would not be generated
For more complicated representations one would have to
form an explicit calculation to check for the presence of t
term.

C. Z4 orbifold

Next we consider aT2/Z4 orbifold. The orbifold boundary
condition under Z4 (y→2z,z→y) for a bulk scalar
f(xm,y,z) is

f~2z,y!5Uf~y,z!. ~4.6!

U is an element of the gauge group that satisfiesU451. We
will now show that one cannot define a parity invariance
this theory. Obviously the Yang-Mills-scalar theory on tw
dimensional torus is parity invariant. Therefore the only co
dition to check is if the orbifold boundary condition is co
sistent with parity. Let us considery→2y,z→z. Under this
parity, the LHS of Eq.~4.6! becomesf(z,y), while the RHS
becomesUf(2y,z). Because Eq.~4.6! must hold for anyy
and z, f(z,y)5U21f(2y,z), and the parity-transformed
equation reads

U21f~2y,z!5Uf~2y,z!. ~4.7!

This equation is inconsistent unlessU251. Therefore, the
naive definition of parity is not a symmetry of the theory.

One modification allows for a similar symmetry, whic
actually is aCP rather thanP. At the same time of flipping
the sign of y, we take complex conjugate off, namely
f(y,z)→f* (2y,z). Then Eq.~4.6! becomes

f* ~z,y!5Uf* ~2y,z!. ~4.8!

Using the same line of reasoning as before, the LHS is
written as

U21* f* ~2y,z!5Uf* ~2y,z!. ~4.9!

This equation is consistent ifU* U51. Indeed in the ‘‘uni-
tary gauge’’ where we treatU as a fixed gauge element, w
can always diagonalizeU to be a pure phase matrix. The
this condition is indeed satisfied. Therefore, theCP symme-
try is still intact.

Under thisCP, the bulk fields are complex conjugate
and correspondingly, the gauge fields must be brought
the conjugate representationTa→2Tat. Then the transfor-
mation properties of the gauge fields are

Ay~y,z!→Ay
t ~2y,z!, ~4.10!
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Az~y,z!→2Az
t ~2y,z!.

Under theCP, the operator of our concern Tr(UFyz)
transforms to1Tr(UFyz

t ). Because the trace is transpos
invariant, it is Tr(UTFyz)5Tr(UFyz). Therefore the operato
is CP invariant and henceCP does not forbid its generation
from loops.

However, there is another modification of parity that m
be preserved by the orbifold boundary condition. Instead
the naive parityf(y,z)→f(2y,z), we allow a gauge trans
formation on top of it,f(y,z)→Pf(2y,z) for PPG. Un-
der this parity, the LHS of Eq.~4.6! becomesPf(z,y),
while the RHS becomesUPf(2y,z). Because Eq.~4.6!
must hold for anyy andz, f(z,y)5U21f(2y,z), and the
parity-transformed equation reads

PU21f~2y,z!5UPf~2y,z!. ~4.11!

This equation is consistent ifPU215UP. The question is if
you can find suchP within the gauge group. We will show in
Appendix B that one can indeed find a group element t
satisfies this constraint for the case whenG2 is broken to
SU(2)3U(1) by the Z4 orbifold. However, this modified
parity still does not forbid the tadpole in Eq.~4.1!. Under this
parity,

Tr~UFyz!→Tr„UP~2Fyz!P
21

…52Tr~U* Fyz!. ~4.12!

Therefore, the allowed combination is

i „Tr~UFyz!2Tr~U* Fyz!… ~4.13!

while the sum is forbidden. This is still not enough to forb
the mass term for the Higgs component.

V. TADPOLE CANCELLATION FOR Z4 ORBIFOLDS

We have seen above, that forZ2 orbifolds parity forbids
the generation of the tadpole~4.1!, however for higherZk ~as
is needed for theG2 model! we could not identify such a
symmetry. Therefore we need to explicitly calculate the c
efficient of the tadpole term to see whether or not it is inde
generated. For this, we need to find the propagators on aZ4
orbifold spacetime, which can be done by generalizing
work of Georgi, Grant and Hailu@26#.

A. Propagators for Z4

The orbifold constraints on the gauge fields,AM
a , can be

implemented in terms of a set of unconstrained gauge fie
on the torus,A M

a :

AM
a ~x,u!5

1

4
„A M

a ~x,u!1~R21!M
M8~L21!aa8AM8

a8 ~x,iu !

1~R22!M
M8~L22!aa8AM8

a8 ~x,2u!

1~R23!M
M8~L23!aa8AM8

a8 ~x,2 iu !…. ~5.1!

In order to avoid further mixing of the fields we will choos
to work in the Feynman gaugej51. The propagator for the
2-8
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unconstrained fieldsA takes its usual expression in th
gauge~we denote bydp2q

(2) the productdp12q1
dp22q2

):

^A M
a ~p!ĀN

b ~q!&5GMN
ab ~p!dp2q

(2) 52 i
g̃abgMN

p222p1p2

dp2q
(2) ,

~5.2!

wheregMN and g̃ab are the space-time metric and the gau
metric defined in Sec. III. Using the unitarity of the matric
R andL and the fact that the unconstrained propagator
isfies @p65(py7pz)/A2, p5(p1 ,p2), and ap
5(ap1 ,a* p2)]

~R21!M
M8~L21!aa8GM8N

a8b
~pm ,2 ip !

5GMN8
ab8 ~pm ,p!RN

N8Lbb8 ~5.3!

we obtain the gauge propagator on theZ4 orbifolded torus:

^AM
a ~p!ĀN

b ~q!&5
GMN8

ab8 ~p!

4
~dN

N8dbb8dp2q
(2) 1RN

N8Lbb8dp1 iq
(2)

1RN
2 N8L2bb8dp1q

(2) 1RN
3 N8L3bb8dp2 iq

(2) !.

~5.4!

In the same way, from the unconstrained ghost propaga

^C a~p!C̄b~q!&5Gab~p!dp2q
(2) 5 i

g̃ab

p222p1p2

dp2q
(2) ,

~5.5!
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we obtain the ghost propagator on the orbifold torus:

^Ca~p!C̄b~q!&5
Gab~p!

4
~dbb8dp2q

(2) 1Lbb8dp1 iq
(2)

1L2bb8dp1q
(2) 1L3bb8dp2 iq

(2) !. ~5.6!

Note that these relations can be easily generalized now
generalZk orbifold of T2. The only difference will be that
the propagators will in general containk terms, with thenth
term containingLn, and the matrixR will be replaced by
R5 diag(1,1,1,1,e22p i /k,e2p i /k). The momentum conserving
delta functions on thenth term in the propagator is obtaine
by expandingdp2(Rnq)

(2) , wheren50,1, . . . ,k21.

B. Explicit calculation of the tadpoles for G2

and SU„3… on T2ÕZ4

Using the above propagators we can now easily calcu
the contribution to the tadpole~4.1!. As discussed before
there can only be a contribution to theU(1) factorF12

8 . The
Feynman rule for the gauge three-point function and
ghost-ghost-gauge coupling are the conventional ones

FIG. 2. The gauge and ghost contributions to the tadpole
operator~4.1!.
g fabc@gMN~q2p!R1gNR~r 2q!M1gRM~p2r !N# g fabcqM
by
ge

is
where the structure constantsf abc are given by

f abc522i tr~Ta@Tb,Tc# !, i.e., @Tb,Tc#5 i f bcdg̃daT
a.

~5.7!

Note that the vertices are conserving the 6D momenta.
violations of translational invariance in the extra dimensio
appears only through the propagators. By momentum con
vation, the in-going 4D momentum in the tadpole diagra
in Fig. 2 is vanishing. The momentum along the extra dim
e
s
er-
s
-

sions circulating in the loop is related to the in-going one
the delta functions of the propagator. Explicitly the gau
tadpole diagram in Fig. 2~a! is given by

TadGaM
a 5

1

2E d4q

~2p!4
g fabc

„~r 1q!MgNR2~p1q!RdM
N

1~p2r !NdM
R
…^AN

b ~q!AR
c ~r !&. ~5.8!

Note that the factor 1/2 in the expression of the tadpole
2-9
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just a symmetry factor. Explicitly evaluating these terms
find that the only nonvanishing components of the gau
tadpole are~in the j51 gauge for theG2 model onT2/Z4)

TadGa1
8 52gA2

3E d4q

~2p!4

p1

qmqm2p1p2

,

~5.9!

TadGa2
8 5gA2

3E d4q

~2p!4

p2

qmqm2p1p2

.

The ghost tadpole diagram in Fig. 2~b! is given by

TadGhM
a 52E d4q

~2p!4
g fabc~2qM !^Cb~q!C̄c~r !&.

~5.10!

Note that the minus sign is due to the anticommuting nat
of the ghosts. The only nonvanishing components for theG2
case are

TadGh1
8 5gA2

3E d4q

~2p!4

p1

qmqm2p1p2

,

TadGh2
8 52gA2

3E d4q

~2p!4

p2

qmqm2p1p2

. ~5.11!

The gauge and ghost loops exactly cancel each other an
tadpole is generated at one loop.

Note that in theSU(3) model, the same result holds wit
slightly different numerical coefficients, the factorA2/3 be-
ing replaced byA3/2. Due to the power law running of th
gauge couplings, the cutoff scale of the 6D theory canno
pushed much higher than a few times 10; TeV. Therefore,
even if generated at higher loop, the tadpole operators
not destabilize the weak scale. From a theoretical poin
view, however, it will be extremely interesting to know
such operators are generated at any perturbative level.

VI. INTRODUCING FERMIONS AND YUKAWA
COUPLINGS

The fermion sector has been the common difficulty w
the Higgs boson originating in higher-dimensional gau
bosons. In the original incarnation by Manton@1#, the chiral
fermions could not be obtained because the groupG2 is real.
In general, obtaining the correct standard model ferm
content is a challenge. Another problem is that the Hig
doublet is a higher-dimensional gauge boson, and henc
coupling is dictated by the gauge symmetry. It appears a
trary Yukawa couplings are not allowed.

The main new ingredient in our model is the orbifold. A
the orbifold fixed point, we can introduce fermions th
transform only under the unbrokenSU(2)3U(1) rather
than the full G2. Therefore we can introduce the corre
fermion content of the standard model without difficult
Once the fermions are at the fixed point, their Yukawa c
plings are not directly tied to the gauge interactions in
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bulk. Using the Wilson line operator, we can now write a
bitrary Yukawa couplings we need.

A. Yukawa couplings from Wilson line interactions

We have seen that one can build a successful model o
bosonic sector of the SM based on extra dimensional ga
theories. This sector has no one loop quadratic divergen
and the zero modes reproduce the bosonic matter conte
the SM plus a single scalar doublet with hypercharge 3/2
principle there are two possibilities for introducing fermion
they can be in the bulk or at the orbifold fixed points. Sin
the Higgs boson is part of the extra dimensional gauge fi
then if fermions are introduced in the bulk their Yukaw
couplings will be determined by the bulkG2 gauge coupling,
and the Yukawa couplings for the different families will b
equal. Thus it seems very difficult to obtain a realistic fe
mion mass pattern this way. Therefore the fermions sho
be introduced at the fixed points. This is a generic conclus
for models where the Higgs boson is part of the extra dim
sional gauge field. In the particular case at hand, ther
another reason why the SM fermions should be at the fi
point: since the embedding of the SM intoG2 is via the
SU(3) subgroup ofG2 we hit the usual problem of embed
ding quarks intoSU(3): their hypercharges are fractiona
with respect to the hypercharge unit ofSU(3), sothere is no
representation that would give the correctU(1)Y quantum
numbers.

Once the SM fermions are introduced at the orbifold fix
points, one could try to directly linearly couple the SM fe
mions to the Higgs field at the fixed point. However th
clearly reintroduces the quadratic divergences already at
one loop level, and is clearly not a desirable solution. A
introducing Yukawa couplings this way explicitly breaks th

shift symmetry,Ai
â→Ai

â1] ij
â in its infinitesimal form (â

corresponds a broken generator index andi 5y,z), which is
the remnant of higher dimensional gauge invariance at
fixed points. Thus one would like to look for operators th
do not break this shift symmetry. This can be achieved
using operators that involve Wilson lines between the fix
points ~the two fixed points may also coincide! W

5Pei *Aidxi
. Since the gauge transformation parameter

the broken generators vanishes at the fixed pointsj âu f p50,
the Wilson line will be invariant under this symmetry. In
spired by this observation we will construct interaction ter
containing Wilson lines. We will require the cancellation
one-loop quadratic divergences from the newly induced c
plings.

One may wonder where such Yukawa couplings involvi
Wilson lines could originate from. It is worth recalling tha
fermions at the fixed points can arise in the twisted secto
string theory. They are ‘‘localized’’ because the string win
around the fixed point, and are therefore not strictly at
fixed point. They are spread out around the fixed point fo
finite distance. If this spreading is large enough, the ‘‘wa
functions’’ for states at different fixed points can overlap a
can have couplings. For instance, Ref.@27# tried to generate
Yukawa hierarchy using states at different fixed points. In
low-energy effective field theory description of couplings
twisted-sector states at different fixed points, the gauge
2-10
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variance requires that the couplings come together with
Wilson lines. Therefore we expect that nonlocal interactio
with Wilson lines are natural in this context.

It is an interesting question if we can generate Yuka
couplings with Wilson lines in a purely field-theoretical co
struction. We will argue that it is natural to expect the a
pearance of these operators once some massive bulk fe
ons which could mix with fields at the fixed points a
integrated out. To illustrate this, consider a simple exam
with a single extra dimension compactified on a circle. A
sume that there is a massive 5D fermionc living in the bulk,
and that a constantAy gauge field is turned on. The fermio
propagator in the presence of the constant gauge field is

^c̄~p!c~p!&5
i

pmgm2pyg
y1gAyg

y2m2 i e
. ~6.1!

The quantization condition forpy will be py52pn/L
1gAy . The propagator in coordinate space along the e
dimension will then be

^c̄~pm ,y1!c~pm ,y2!&5 (
py52pn/L1gAy

eipy(y12y2)

3
i

pmgm2pyg
y1gAyg

y2m2 i e
.

~6.2!

Shifting the summation topy85py2gAy we get that

^c̄~pm ,y1!c~pm ,y2!&Ay

5eigAy(y22y1)^c̄~pm ,y1!c~pm ,y2!&Ay50 . ~6.3!

Thus the Wilson line appears in the propagator. Thus if th
are couplings of the form

E d5x„c̄~DAgA2m!c1d~y1!c̄~y1!x~y1!

1d~y2!j̄~y2!c~y2!…, ~6.4!

a nonlocal interaction term of the form

W5E d4xCj̄~y2!eig*
y1

y2Aydyx~y1! ~6.5!

will be generated. Thus one would expect that such opera
could generically appear in a theory after the massive fer
ons are integrated out. However, since it involves the m
sive fermion propagator, the coefficientC of this will include
the suppression factore2muy12y2u. Therefore in order to get a
sizable coupling the bulk fermion should not be mu
heavier than the inverse radius of the extra dimension.
the other hand, the exponential factor could be used to g
erate fermion mass hierarchies by varying the bulk mas
the fermion that is being integrated out. This procedure
integrating out heavy fermions thus can give the opera
needed to generate the Yukawa couplings for the lepto
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Note that this is nothing but the Froggatt-Nielsen mechan
@28# except that the summation over the entire KK tower
the ‘‘Froggatt-Nielsen fermion’’ gives an exponential rath
than a power suppression. Because the generated Yuk
couplings depend exponentially on the mass of the bulk
mion, it is easy to generate a large hierarchy among Yuka
couplings. We find this an attractive mechanism to expl
the fermion mass hierarchy. Moreover, the mass of the b
fermion is protected by chiral symmetry, and hence the
diative correction to the fermion mass is proportional to t
bare mass. Therefore this mechanism is technically natu

However, for the quarks there is an added difficulty due
the fractionalU(1)Y charges of the quarks. Such fields c
not mix with bulk fermions, and therefore some oth
mechanism is needed to generate the Wilson line inte
tions.

A comment on the gauge anomaly is in order. When le
handed and right-handed fermions are split on different fix
points, the four-dimensional gauge anomaly is not cance
at each fixed point. It requires the anomaly flow from o
fixed point to the other. This can be easily done by integr
ing the five-dimensional Chern-Simon term from one fix
point to the other. It is well known that the gauge variation
the Chern-Simon term is a total derivative, whose surfa
term precisely gives the four-dimensional Wess-Zumino c
sistent anomaly~see, e.g., Ref.@29#!. This is not an accident
it is a direct consequence of family’s index theorem@30#.
Note that bulk massive fermions are vectorlike by definiti
and do not contribute to six-dimensional nor fou
dimensional gauge anomalies.

B. One-loop radiative corrections to Higgs boson mass from
Yukawa couplings

The Wilson line transforms as a fundamental under
gauge groupG2 at the starting point of the integration, and
an anti-fundamental under the gauge group at the end p
of integration. If the starting and ending points coincide th
the Wilson line will be in the adjoint representation. O
course since in our case the endpoints of integration are
orbifold fixed points, and only theSU(2)3U(1) subgroup
of G2 is active at the fixed points, the Wilson line also on
transforms underSU(2)3U(1) at the fixed points. The Wil-
son line can be represented as a 737 matrix Wb

a

5Pei *Aidxi
. We arrange one generation of quarks into sev

component vectors of the form

QL5S uL

dL

0

0

0

0

0

D 5P1q̃L , UR5S 0

0

0

0

0

uR

0

D 5P2ũR ,
2-11
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DR5S 0

0

0

0

0

0

dR

D 5P3d̃R , ~6.6!

where thePi projection operators are

P15diag~1,1,0,0,0,0,0!, P25diag~0,0,0,0,0,1,0!,

P35diag~0,0,0,0,0,0,1!. ~6.7!

At this point it should be noted that the quarks transform
the usual way under the unbrokenSU(2) symmetry at the
fixed point. As far as the hypercharges are concerned h
ever, the naive action ofA6T8 would not give the SM num-
bers ~we are saying nothing but the fact that the quar
because of their fractional charges, cannot be embedded
full representations ofG2). Fortunately, we are free to defin
the quarks hypercharges as we want and therefore we
assign them their SM values, which will allow us to co
structSU(2)3U(1) invariant interactions.

Let us consider the interaction term of the form

LYukawa5muŪRWuQL1mdD̄RWdQL . ~6.8!

The one loop quadratic divergence from the Colem
Weinberg formula is then given by

3L2

16p2
„mu

2 Tr~P2WuP1P1Wu
†P2!1md

2 Tr~P3WdP1P1Wd
†P3!…

5
3L2

16p2
„mu

2 Tr~P2WuP1Wu
†!1md

2 Tr~P3WdP1Wd
†!….

~6.9!

Thus the quadratic divergences will cancel if either the p
jectorP1 or P2,3 commutes with the Wilson lineW. Since we
only want to avoid quadratic divergences for the hypercha
1/2 Higgs boson, the requirement really is that the projec
should commute with the matrix in~3.15!-~3.16! with H
→0. This is not true for the projectors in Eq.~6.7!, but can
be fixed analogously to the mechanism employed in li
Higgs theories@13# by introducing more fermions at th
fixed point, that is by filling more of the diagonal comp
nents ofP1 or of P2 andP3. The simplest possibility is to fill
P1 to be the identity matrix. In this case it clearly will com
mute withW and there will beno quadratic divergences fo
any fieldsbut only a contribution to the vacuum energy. T
origin of the cancellation of the quadratic divergences w
08501
w-

,
to

ill

-

-

e
r

e

l

then be the chiral symmetry between the newly introduc
color triplet fermions and the doublet quarks@13#.

However, from a phenomenological point of view, on
can get away from dangerous divergences by introduc
fewer fields. In fact, introducing a single color triplet field
the third family xL such thatP15diag(1,1,0,0,0,1,0) suf-
fices. Indeed, by examination of Eq.~6.9!, we get that the
quadratic divergences in the SM Higgs boson mass from
top Yukawa coupling do cancel; we are left with quadra
divergences from the bottom Yukawa coupling which, ph
nomenologically, are harmless due to the smallness of
coupling. We also get, from the top sector, a~positive! qua-
dratically divergent correction to the square mass of the
percharge 3/2 Higgs boson, which is good since it will pu
its mass close to the cutoff scale of the theory and will p
vent him from getting a VEV. In conclusion, we are going
consider

QL5S uL

dL

0

0

0

xL

0

D , UR5S 0

0

0

0

0

uR

0

D , DR5S 0

0

0

0

0

0

dR

D ,

~6.10!

along with the interaction term

L Yukawa5muŪRWuQL1mdD̄RWdQL1M x̄RxL .
~6.11!

C. Explicit computation of one-loop radiative corrections to
Higgs boson mass

We want to explicitly compute the radiative corrections
the Higgs boson mass from Yukawa interactions. We nee
expand the action~6.11! up to quartic order and for simplic
ity we will retain only the top Yukawa coupling~we assume
without loss of generality thatmu is real!

LYukawa5muūRxL1M x̄RxL1l̃uūRqLh

2
ul̃uu2

2mu
ūRxL~3uHu21uhu2!, ~6.12!

where the Yukawa couplingl̃u is obtained from the expan
sion of the Wilson line interaction~6.5!, i.e., l̃u;Cmug. The
right-handed up quark mixes with the extra fermionx and
becomes massive. The mass eigenstates are

Rlight5
1

Amu
21M2

~MuR2muxR! with m50,

~6.13!
2-12



o
an

o
ro
lec
th

so
h
n

ym

d
ra

he

be
s

ap-
tial
rith-
in-
ion
from
ri-

gs
l to

e
eV
ld
ese
ec-

he
e

STANDARD MODEL HIGGS BOSON FROM HIGHER . . . PHYSICAL REVIEW D 67, 085012 ~2003!
R heavy5
1

Amu
21M2

~muuR1MxR! with m25mu
21M2.

~6.14!

Then the action becomes

L Yukawa5Alu
21M2R̄heavyxL1

l̃umu

Amu
21M2

R̄ heavyqLh

1
l̃uM

Amu
21M2

R̄lightqLh

2
ul̃uu2

2Amu
21M2

R̄ heavyxL~3uHu21uhu2!

2
ul̃uu2M

2muAmu
21M2

R̄ lightxL~3uHu21uhu2!.

~6.15!

The diagrams contributing to the Higgs boson masses at
loop are depicted on Fig. 3. Computing the diagrams
including the color factor for the fermions, we get

dmh
256i ul̃uu2E d4q

~2p!4 S M2

q2~q22mu
22M2!

D
52

3ul̃uu2M2

8p2
lnS L21mu

21M2

mu
21M2 D , ~6.16!

dmH
2 5 i

9

2
ul̃uu2E d4q

~2p!4

1

q22mu
22M2

5
3ul̃uu2

32p2
L21•••.

~6.17!

As in softly broken supersymmetric theories, the one-lo
radiative corrections to the Higgs boson mass square f
the top Yukawa coupling are negative and trigger the e
troweak symmetry breaking. Furthermore, we see that
radiative corrections to the hypercharge 3/2 Higgs bo
mass square are quadratically divergent and positive. T
ensures that this scalar doublet will not acquire a VEV a
decouples from the low-energy effective theory.

D. Estimates for the scales of the theory

The parameters of the theory relevant to electroweak s
metry breaking areR, the radius of the orbifold,lu , the
coefficient of the Yukawa coupling,M and mu , the mass
parameters for the colored fermions, and the cutoff scaleL.
In order to estimate the size of these parameters we nee
calculate the effective Higgs potential. It will have seve
contributions
08501
ne
d

p
m
-
e
n
is
d

-

to
l

Veff~h!52
3ul̃uu2M2

8p2
lnS L21mu

21M2

mu
21M2 D h†h1mbulk

2 h†h

1C
ul̃uu4L2

~16p2!2
h†h1

1

6
g2~h†h!2. ~6.18!

Here the first term is the one-loop contribution from t
Yukawa sector calculated in the previous section.mbulk

2 is the
finite contribution to the scalar masses, which have to
calculated for this particular orbifold. In 5D orbifold theorie
such contributions have been calculated in@9,11,31#, and are
of the order 9g2z(3)C2(G)/(32p2R2). The final mass term
is the two-loop quadratic divergence that is expected to
pear due to the Yukawa sector. The quartic scalar poten
appears from the bulk gauge interactions, and gets a loga
mic running from the Yukawa couplings and from brane
duced pieces from gauge interactions. The bulk contribut
reduces the size of the negative Higgs boson mass term
the Yukawa couplings, while the sign of the two-loop cont
bution would have to be explicitly calculated. Since

1;l top5
M l̃u

Amu
21M2

, ~6.19!

and we expectM;mu , thereforel̃u;1. In order to get the
correct electroweak symmetry breaking VEV for the Hig
boson, we would need the minimum of the Higgs potentia
be at^h†h&5v2/2. Thus

3

8p2
M2 lnS L21mu

21M2

mu
21M2 D 2mbulk

2 2C
ul̃uu4L2

~16p2!2
;

2

3
MW

2 ,

~6.20!

and soM;52103MW . Therefore one would expect th
relevant scales of the theory to be in the range 1 T
*M ,mu,1/R*500 GeV. The cutoff scale of the theory cou
then be a factor of 10–20 larger than the mass scale of th
particles and thus of the order 5–20 TeV. Note that the n

FIG. 3. Radiative corrections, from Yukawa interactions, to t
SM Higgs boson square mass,mh

2 , and to the 3/2 hypercharg
Higgs boson square mass,mH

2 .
2-13
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essary scale for new physics is quite low, and therefor
detailed analysis should be performed to determine wh
region of the parameter space could be consistent with
experimental constraints.

The particle spectrum of this theory would then be
follows. Below the characteristic scal
1/R;M;500 GeV–1 TeV, one would only have the S
particles. The Higgs boson mass should be estimated f
Eq. ~6.18!. Since the quartic scalar coupling is fixed by t
gauge couplings~similar to supersymmetric models!, the
Higgs field is expected to be light. By minimizing Eq.~6.18!
the value of the Higgs boson mass using the tree-level q
tic scalar coupling would bemh

tree5A4/3MW5MZ;91 GeV
~to the extent that we use the approximate predict
sin2uW51/4). The loop corrections to the quartic scalar co
plings from the Yukawa sector and also from the gauge s
tor will result in additional contributions. For example, fro
the top Yukawa coupling one gets a correction to the qua
scalar coupling of order

dV~h!;2
3l top

4

16p2
ln~mhR!2~h†h!2.0, ~6.21!

which itself would raise the Higgs boson mass
;130 GeV. One generically expects the Higgs boson to
much below the 500 GeV–1 TeV scale, in the 120–150 G
regime, and likely within the reach of Tevatron run II. No
that the zero mode of the second Higgs doublet with hyp
charge 3/2 does get quadratically divergent corrections
to the structure of the Yukawa sector, and thus its mas
expected to be of order fewL2/16p2; TeV–few TeV. Once
we get to the scale 1/R;500 GeV–1 TeV we will start ex-
ploring the KK spectrum of the bosonic modes. In particu
the KK modes of the fullG2 gauge boson sector shou
appear. From theAy ,Az sector it is likely that just like the
hypercharge 3/2 Higgs boson most states will get quad
cally divergent mass contributions from the Yukawa sec
and their KK towers thus will start at a scale higher th
those for the gauge fields, except for the physical SM Hig
boson itself, which as we saw above is much lighter th
1/R. Of course some of these states will just serve as lon
tudinal modes for the massive KK gauge bosons. A
around the 1/R;M;500 GeV–1 TeV scale the colored fe
mions x,x̄ needed to cancel the divergences from
Yukawa couplings for the Higgs boson will show up. Th
the bosonic sector of this theory is that of an extra dim
sional model, while the fermion sector would much look li
that of a little Higgs model@13–15#. This is due to the con-
struction of the model, where all bosons come from b
gauge fields, while since the fermions are introduced at
orbifold fixed point, their description is essentially equiv
lent to that of the little Higgs models.

VII. CONCLUSIONS

We have considered the possibility that the stand
model Higgs boson originates from a 4D scalar compon
of a higher dimensional gauge field. In this case higher
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mensional gauge invariance could protect the Higgs bo
from some of the quadratically divergent loop correctio
that plague the standard model. We have considered orb
compactifications of higher dimensional gauge theories,
found that the preferred model is a 6DG2 gauge theory
compactified on aZ4 ~or Zk>4) orbifold, where the orbifold
breaks the bulkG2 gauge group down toSU(2)3U(1).
This model would predict a value of sin2uW51/4, after the
zero mode of one of the scalar components of the 6D ga
field is identified with the SM Higgs boson.

One needs to check whether in such models the orbi
projection itself would reintroduce the quadratic divergenc
on the fixed points. We have found that in general forZ2
compactifications such divergences~and the tadpole opera
tors they would accompany! are forbidden by the parity in-
variance of the gauge sector, however for higherZk we
needed to explicitly compute one loop diagrams to see th
is vanishing. Thus the bosonic sector of this model can
commodate the SM without any one-loop quadratic div
gences.

It had been more difficult to incorporate fermion field
Since one wants to have the option of generating differ
Yukawa couplings for the different generations, the SM f
mions need to be introduced at the fixed points. Anot
reason for this is that quarks have fractional hypercha
quantum numbers in the unit dictated by the bulk gau
group. In order to maintain the symmetries of the bulk o
then needs to add Yukawa couplings in the form of nonlo
Wilson lines, which generically can be obtained by integr
ing out bulk fermions that mix with the brane fields. In ord
to cancel the one-loop quadratic divergence for the Hig
boson from the Yukawa sector additional massive fermio
need to be added to the orbifold fixed point.

These theories generically predict a light Higgs bos
since the quartic scalar coupling is related to the gauge c
pling, just like in the MSSM. The bosonic sector of the
models would give KK towers to all bulk gauge fields, sta
ing at 1/R;500 GeV–1 TeV, while the fermionic secto
would resemble those of the little Higgs models.

As for the full resolution to the hierarchy problem, the
are several obvious issues to be resolved. The Yukawa se
yields higher loop quadratic divergences. There could also
nonperturbative corrections in the strongly interacting hig
dimensional theory of orderL2e2LR, which could be as
large as the two-loop quadratic divergences themselves
nally, one would have to explain why the radion field, whi
will appear once gravity in 6D is made dynamical, would
stabilized at the right minimum of order;TeV21.
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APPENDIX A: MATRIX REPRESENTATION OF G2

In this appendix, we give a matrix representation of t
fundamental representation ofG2 exhibiting explicitly the
SU(3) embedding. The fundamental being of dimension
and the adjoint of dimension 14, we need fourteen 737
matrices:

Ta5
1

2A2
S la

2lat D for a51, . . . ,8, ~A1!

T95
i

2A3 S v1

l7

v1†
D , T105

2 i

2A3 S v2

l5

v2†
D ,

T115
i

2A3 S v3

l2

v3†
D , ~A2!

T125T9†, T135T10†, T145T11†, ~A3!

where thela are the usual Gell-Mann matrices:

l15S 0 1 0

1 0 0

0 0 0
D , l25S 0 2 i 0

i 0 0

0 0 0
D ,

l35S 1 0 0

0 21 0

0 0 0
D , l85

1

A3 S 1 0 0

0 1 0

0 0 22
D ,

~A4!
08501
.
-
is
-
-
-
e
I

he
-
in
-

e

7

l45S 0 0 1

1 0 0

0 0 0
D , l55S 0 0 2 i

0 0 0

i 0 0
D ,

l65S 0 0 0

0 0 1

1 0 0
D , l75S 0 0 0

0 0 2 i

0 i 0
D , ~A5!

and thev i ,i 51, . . . ,3 arejust three components vectors:

v15S 2 iA2

0

0
D , v25S 0

iA2

0
D , v35S 0

0

2 iA2
D .

~A6!

The generators ofG2 have been normalized in the usual wa

Tr~TaTb†!5
1

2
dab. ~A7!

Defining

Si5T81 i and S̄i5T111 i for i 51, . . . ,3, ~A8!

the G2 algebra then reads

@Ta,Tb#5
i

2A2
f ab

cT
c, @Ta,Si #5Sk~Ta!ki,

@Ta,S̄i #52~Ta! ikS̄k, ~A9!

@Si ,Sj #5
1

A3
e i jk S̄k, @S̄i ,S̄j #52

1

A3
e i jkSk,

@Si ,S̄j #5~Ta! i j Ta, ~A10!

where thef ab
c are just the usual structure constants asso

ated to the Gell-Mann matrices ande i jk is the totally anti-
symmetric tensor. From the normalization factors in E
~A1!, we get that the gauge coupling of theSU(3) subgroup
is relating in 6D to the gauge coupling ofG2 by g6D

SU(3)

5g6D
G2/A2. After compactification to 4D, the gauge couplin

of SU(2) is given by g4D
SU(2)5g6D

G2/(2A2pR) while the
2-15
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gauge coupling of the U(1)Y normalized to Y
5(1/2,1/2,21) in the fundamental ofSU(3) is g4D

Y

5g6D
G2/(2A6pR). As announced in the introduction, we g

sin2uW51/4.
The components of the gauge fields are defined by

AM~x,y,z!5AM
a ~x,y,z!Ta, ~A11!

and the orbifold conditions~A2! take the form~A3! with the
block diagonal matrices

R̃5diagX1,1,1,1,S 21

1 D C, ~A12!

L̃5diagX1,1,1,S 1

21 D ,S 1

21 D ,1,i ,i ,21,2 i ,2 i ,21C.
~A13!
08501
APPENDIX B: THE G2 GROUP ELEMENT
IMPLEMENTING PARITY FOR THE Z4 ORBIFOLD

In this appendix we show that it is possible to find a gro
elementP in G2 which satisfiesPU215UP. The Z4 orbi-
fold is acting on the fundamental ofG2 by the matrixU
5diag(i ,i ,21,2 i ,2 i ,21,1). One can think of the inter
change (1,1)↔(4,4),(2,2)↔(5,6) by P to convert U to
U21, but actually such an element does not exist inG2.
However, the interchange (1,1)↔(5,5) and (2,2)↔(4,4) in-
stead achievesP21UP5U21.

In order to show this, we are going to construct the mat
P from the generators ofG2 given above. Let us look at the
Hermitian combination

R5~S31S̄3!. ~B1!

It is straightforward to see that the Lie group elementg(u)
5eiuA3R is given by
g~u!5

¨

cos
u

2
2 i sin

u

2

cos
u

2
i sin

u

2

11cosu

2

12cosu

2

i

A2
sinu

i sin
u

2
cos

u

2

2 i sin
u

2
cos

u

2

12cosu

2

11cosu

2

2 i

A2
sinu

i

A2
sinu

2 i

A2
sinu cosu

©
. ~B2!

Now takingu5p,

P5g~p!5S 2 i

i

1

i

2 i

1

21

D . ~B3!

By constructionP is a group element ofG2 and one can easily check thatPUP215U21, as desired.
2-16
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