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Standard model Higgs boson from higher dimensional gauge fields
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We consider the possibility that the standard model Higgs fields may originate from extra components of
higher dimensional gauge fields. Theories of this type considered before have had problems accommodating
the standard model fermion content and Yukawa couplings different from the gauge coupling. Considering
orbifolds based on Abelian discrete groups we are ted 6 dimensionals, gauge theory compactified on
T2/Z,. This theory can naturally produce the SM Higgs fields with the right quantum numbers while predicting
the value of the weak mixing angle $&),=0.25 at the tree level, close to the experimentally observed one.
The quartic scalar coupling for the Higgs boson is generated by the higher dimensional gauge interaction and
predicts the existence of a light Higgs boson. We point out that one can write a quadratically divergent
counterterm for Higgs boson mass localized to the orbifold fixed point. However, we calculate these operators
and show that higher dimensional gauge interactions do not generate them at least at one loop. Fermions are
introduced at orbifold fixed points, making it easy to accommodate the standard model fermion content.
Yukawa interactions are generated by Wilson lines. They may be generated by the exchange of massive bulk
fermions, and the fermion mass hierarchy can be obtained. Around a TeV, the first KK modes would appear as
well as additional fermion modes localized at the fixed point needed to cancel the quadratic divergences from
the Yukawa interactions. The cutoff scale of the theory could be a few times 10 TeV.
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[. INTRODUCTION an extra dimensional theory is compactified in the presence
of a monopole in the extra dimensions. The monopole back-
Theories with light elementary scalars seem unnaturalground would then break higher dimensional gauge invari-
since their masses receive quadratically divergent loop comance down to the SM group and result in a negative mass
rections, thus one would expect their masses to be pushed gpguare for some of the 4D scalars contained in the higher
to the cutoff scale of the theory. This results in the well-dimensional gauge fields, thus resulting in successful elec-
known hierarchy problem of the standard mo¢®M). The  troweak symmetry breaking. However it seems very difficult
different approaches to solving the hierarchy problem in<o incorporate fermion matter fields into these theories. For a
clude eliminating the Higgs scalar entirely from the theoryreview of such models s€&]; for recent new ideas in this
(technicoloj, lowering the cutoff scalélarge extra dimen- direction sed4]. The idea of gauge symmetry breaking via
sions and the Randall-Sundrum modedr embedding the vacuum expectation valug¢¥EV'’s) of scalars contained in
Higgs field in a multiplet of a symmetry group larger than the higher dimensional gauge fields was further developed in
the 4D Poincargroup (supersymmetry the 80’s by Hosotar{i5], and was studied in detail in a string
It was observed quite a long time ago that, in addition totheory contex{6] (for an early string realization of TeV size
supersymmetry, there may be other extensions of the 4Bxtra dimensions sd&]). For more recent work on the field
Poincaregroup where scalars could be embedded into, antheory side se8—12. The four dimensional “little Higgs”
thus perhaps protect their masses from quadratic divelsoson models motivated by this higher dimensional mecha-
gences. The most natural such choice would be to use theism for electroweak symmetry breaking were constructed
Poincare group of a higher dimensional gauge theory,and investigated ifi13—15.
thereby embedding elementary scalars into higher dimen- Since our world is not supersymmetric, the key question
sional gauge multiplets. In 1979 Mantdd] (and subse- in supersymmetric extensions of the SM is to decide which
quently several othef®]) considered this possibility, where operators are softly breaking supersymmetry that do not re-
introduce quadratic divergences and thus the hierarchy prob-
lem. Analogously, since we know that our world does not

*Email address: csaki@mail.Ins.cornell.edu have exact higher dimensional Poincareariance, this sym-
"Email address: grojean@spht.saclay.cea.fr metry needs to be broken, usually via compactification of the
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stand in the context of these models what kind of compactitially divergent brane induced operators for the 6D theories,
fications would maintain the absence of quadratic diverand show that foiZ, orbifolds parity invariance of gauge
gences, and thus correspond to soft breaking of thénteractions forbids the generation of this tadpole term. How-
symmetry. Clearly compactification on tori would not rein- ever, for more complicated orbifolds parity invariance is bro-
troduce quadratic divergences; however such compactificaen by the orbifolding, and thus we do not have a symmetry
tions are phenomenologically not so interesting since they dargument for the absence of the tadpole terms. Instead, we
not reduce the gauge group of the higher dimensional theoryexplicitly calculate the one loop contribution for the tadpole
therefore one could only obtain scalar fields in adjoint rep-term for theT?/Z, theory both based on éU(3) and aG,
resentations, which cannot reproduce the SM. The next simgauge group, and find that the gauge contributions to the
plest possibility is compactification on orbifolfi$6], which  tadpole vanish. It is argued that even if generated at higher
we will be considering in this paper. This enables one tdoop order this term will not destabilize the weak scale, due
reduce the size of the unbroken gauge group by geometrig the low value of the 6D cutoff scale.

cally identifying regions in the extra dimensional space, and  Finally we consider adding fermions to the model at the
thus allows one to obtain representations other than adjoin_@rbifmd fixed points. Electroweak symmetry breaking is then
under the unbroken gauge group to appear as 4D scalars ffjggered by the large top Yukawa coupling. Fermions are
the effective theory. Orbifold theories, with or without jntroduced at orbifold fixed points. Direct coupling of the
Scherk-Schwarz compactificatidii 7], have recently been fermions to the Higgs scalars would reintroduce the qua-
used to find a variety of interesting models of grand unifiedgratic divergences. However, one can generate fermion bilin-
theory (GUT) [18,19 and supersymmetry breaking0,21].  ear interactions involving nonlocal Wilson-line operators
5D theories compactified 08'/Z, do not naturally contain \yhich contain the necessary Yukawa couplings for the lep-
quartic couplings for the scalars in the gauge fields. Therepns, by integrating out vectorlike bulk fermions which
fore one is compelled to look at 6D theories where the quargouple to the fermions localized at the orbifold fixed points.
tic scalar couplings are generated by the higher dimensionglor the quarks however one has to assume the existence of
gauge interactions. In the first part of the paper we considejhese nonlocal operators in an effective theory approach
all possible models based on Abelian 6D manifolds usingyithout being able to rely on an explicit mechanism to gen-
inner automorphisms which could lead to the SM as the lovwerate them. We calculate the contribution of the Yukawa in-

energy effective theory. We identify the necessary compactiteractions to the Higgs effective potential, and sketch the
fications for the different choices of the gauge groups, findspectrum of the theory.

the resulting 4D scalars that could serve as SM Higgs fields
and calculate the prediction for the weak mixing angle in the
absence of brane induced gauge kinetic terms. During this
process we will identify a 6D gauge theory based on@se
gauge group compactified oFf/Z, (or generally onT?/Z, As discussed in the Introduction, we would like to find
for k=4) as the phenomenologically preferred choice inAbelian orbifolds of 6D gauge theories based on the gauge
theories of this sort. For this model we calculate the KKgroupG which could reproduce the bosonic sector of the SM
spectrum of the orbifold theory and the quartic scalar couwithout explicitly introducing elementary scalars into the
pling induced by the gauge interactions. theory. We will restrict ourselves to orbifolds using inner
However, an important part of the program is to checkautomorphisms, that is we use elemebitof the groupG
whether orbifold compactifications reintroduce quadratic di-when doing the orbifold identifications. Since we are using
vergences or not. In 5D theories compactified3Z, there  Abelian subgroups of the original gauge group, the rank of
are no operators allowed by gauge and Lorentz invariancthe gauge group will not be reducg®,16. Since we want
[11] that could reintroduce the quadratic divergentBsitin  to obtain theSU(2)xU(1) electroweak gauge group after
order to get the quartic scalar coupling and also to be able torbifolding, the rank ofG has to be two. Thus there are only
use aZ, orbifold projection we are considering 6D theories. six possibilities:G=U(1)XU(1), SU(2)xU(1), SO4)
In these models, we point out, there exist operators which are SU(2) X SU(2), SU(3), SQ(5) or G,. The first two pos-
a priori not forbidden by the Lorentz and gauge symmetriessibilities are clearly unacceptable sindg€1)xU(1) is not
of the orbifold theory, and thus could reintroduce the quadarge enough to accommodate the SM group, wBild(2)
dratic divergence. These operators at the same time generatdJ(1) cannot produce scalar fields that are not in the ad-
tadpole terms in the effective action, thus the presence gbint of SU(2)XU(1). Thus they can clearly not produce a
such operators would clearly be disastrous for a realistiSM Higgs doublet. The other four gauge groups remain po-
model. Thus one needs to investigate under what circumtential candidates, and we will consider them one by one
stances these tadpoles would be generated. This will be thselow?
focus of the second part of this paper. We identify the poten-

Il. THE CHOICE OF THE GAUGE GROUP

2There is another possibility that the rank of the unbroken gauge
The result concerns pure gauge theories in the bulk. Once mattgroup is higher than two, while the unwanted part of the group
is introduced, in a supersymmetric context for instance, some gaudereaks itself because of the anomgdy. In this case, one needs to
invariant quadratic divergences can be generated at orbifold fixetely on the Green-Schwarz mechanism for anomaly cancellation in
points[22]. the full theory.
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A. G=S0O(4)

Since we are interested in Abelian orbifolds using
SO(4)=(SU(2)x SU(2))/Z, group elements, the orbifold Wherew=e

boundary condition can only be in its maximal tofus,

cosf, —sind, 0 0
sinfd; cosé, 0
= . (2.7
0 0 cosf, —sind,
0 0 sing, coséh,

For generic#, ,, the group is broken aS0O(4)—SQ(2)
X SO(2). Whend,= 6,, the unbroken group is enhanced to
(SU(2)xU(1))/Z,. However, the adjoint representation of
SO(4) decomposes as3(1)+(1,3)—3+1p+1,,+1 4
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U= diag oy, i, oy %), (2.3

2m/k “except fork=3 [in that casdJ, > 1 and the
gauge group would remai®U(3)]. Since U)*=1, we can
have aT?/Z, orbifold for any value ofk that would break
SU(3)—SU(2)XU(1). Let us nowconsider the decompo-
sition of the adjoint ofSU(3) under this breaking8— 3,

+ 15+ 23 where 2% is a complex doublet, and thé(1) gen-
erator is diag(1,%; 2)=\/1—2T8 in the SU(3) fundamental.

If we want to redefine the normalization of th1) genera-

tor so that the Higgs field has the standardW{2 ) charge,

we get that the low-energy gauge couplings would be related
to the SU(3) coupling g3 by g=g;, g’=+3gs Which
would result in siRé,=3/4. This would mean that the domi-
nant contribution to the gauge couplings would again have to

come from the brane induced gauge kinetic terms, therefore

and hence there is no candidate for the Higgs doublet. Fige will not consider this possibility either.

nally whené,= 6,= 7, the entireSQ(4) is unbroken. None

of these possibilities is acceptable, thus we exclude the case

G=S0(4).

B. G=SQO(5)
The maximal torus foSQ(5) is

cosf; —sinf, 0 0 0

sind; cos6, 0 0 0

U= 0 0 cosf, —sind, O
0 0 sing, cosf, O

0 0 0 0 1

2.2

For generic#, ,, the group is broken aSO(5)—SQ(2)
XS0O(2). When6,=0, the unbroken group is enhanced to
SO(3)XSO(2)=(SU(2)/Z,)xU(1). However, the adjoint
representation o5Q(5) decomposes a$0— 3y+ 15+ 3.1

and hence there is no candidate for the Higgs doublet. If

When 6,=6,, the unbroken group is enhanced to
(SU(2)xU(1))/Zz,CcSO(4)CSO(5), a diferent embed-
ding of the electroweak group int8eQ(5). Theadjoint rep-
resentation decomposes 48— 3p+1.,+15+2-4, and

hence we can obtain Higgs doublets. We however fin@

sirféy,=1/2. This would mean that the dominant contribu
tion to the gauge couplings would have to come from th
brane induced gauge kinetic terms, which is quite an unnat
ral assumption. Thus we exclude the c&e SQ(5).

C. G=SU(3)

BreakingSU(3) to SU(2)XU(1) can be achieved using
any of theSU(3) group elements

w
were to use the triplet anyway for electroweak symmetrf
breaking, thep parameter would not be one at the tree level.

D. G=Gz

This is the most interesting possibilit§, has two maxi-
mal subgroupssSU(3) andSU(2)x SU(2). Thedecompo-
sition of the G, adjoint under theSU(3) subgroup isl4
—8+3+3, where3+3 form a complex3. We can try to
break the gauge group to tigdJ(2) X U (1) contained within
theSU(3) subgroup. For this we can use group elements that
are contained within th&U(3) subgroup, and use the same
Uy elements as in Eq2.3). In order to find out what the
unbroken gauge group for the various choicek @fre, we
need to find out which generators remain invariant under the
Z transformation given byU,. For k=2 the SU(2)
XU(1) subgroup of theSU(3) subgroup ofG, remains
unbroken. However, in the caselof 2 the orbifold action is
U,=diag(—1,—1,1), which means that there are two addi-

tional generators from thg+ 3 which remain invariant, and
the low-energy gauge group will in fact be enlarged to
SU(2)XSU(2) instead of the desireBU(2)xU(1). Thus

=2 is excluded. The cade=3 is also excluded, since simi-
arly to the G=SU(3) case discussed above the low-energy
gauge group will be enlarged ®U(3). However, for any
other value ofk=4 the low-energy gauge group is indeed
SU(2)xU(1). Thevalue of the low-energy gauge couplings
will depend on which scalar will get an expectation value,
since now there could be two possibilities: the doublet that
riginates from the adjoint &8 U(3) or the doublet from the

of SU(3). Wehave seen above that if it is the doublet from
the SU(3) adjoint which is playing the role of the SM Higgs
hoson, we would get a prediction for $é&,=3/4, which is
too far from the observed value. The situation is however
different, if the Higgs boson is contained in tBef SU(3).

In this case the Higgs quantum numbers are giver2fyy
again with theU(1) normalization diag(1,%2) in the
SU(3) fundamental. Once we redefine the normalization of
U(1)y so that this Higgs has the standard 1/2 charge we find
that (see the Appendixes for more detailg= gGZI\/E,g’

zgezl\/g, and thus we find the prediction for $ty,=1/4,

3A maximal torus of the group is the maximal Abelian subgroupWwhich is close to the observed value. The difference can be

generated by Cartan subalgebra, and is topologically a torus.

made up either by small corrections from brane induced ki-
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z The consistency of the orbifold projection with the gauge

S rR symmetry dictates the transformation of the gauge fields:
4

Fundamental domain

of the torus ;

A,(x,—z,y)=UA,(x,y,2)U",

Fundamental domain

of the orbifold

— == T

Y Fixed points Ay(X, ZY) UA,(X,y,2)U",

of the orbifold

AL x,—z,y)=UA/(x,y,2)U". (3.2

0 2mR

FIG. 1. Symmetries of the orbifold. corresponds to torus iden-
tification while O is the action of the orbifold symmetry. The fun-
damental domain of the orbifold space-time is the squafe
X 7R (however, for convenience, we will still normalize the KK a _Xabp Npb

S ’ ) Ay (X, —z,y)= ARy AN(X,Y,2), 3.3
modes by integration over the fundamental domain of the }orus M y) M ANY,2) @3
Two points are left invariant by the orbifold action: the origin,

(0,0), and the point4R, 7R). At these points, th&; gauge group  \yhere} andR are 14x 14 and 6<6 nondiagonal matrices

?;ltlhe d:.:]"kelri) bsrogegr;irl;(igxlg%) ?:g %2“5: Ig\éirrlstrg dpoten- given for completeness in Appendix A. To perform the

'ally dangerous op uid i princip g ' Kaluza-Klein decomposition, it is easier to first diagonalize
the orbifold action, which is achieved by defining light-cone-

] . _ like space-time coordinates for the extra dimensions:
netic terms or from running between the compactification

scale and th& mass scale. This is similar to the proposal of
[24], and one needs to check the phenomenological con- 1 i . I S,

straints on such models, as dond25]. Note that the model u :E(yi'z): ie., At:E(AyHAz)- (39

also contains the second scalar field coming fromSk#3)

adjoint. It is anSU(2) doublet but it has hypercharge 3/2.

We will be able to generate a positive quadratically divergenNote that the metric is no longer diagonal and as a conse-
correction to its mass square and thus this scalar will natuguence, the gauge propagator will for instance connect an
rally decouple from the low energy effective theory. index + to a— one:

Thus we have found that the phenomenologically pre-
ferred models are based on a &) gauge theory, with &,
orbifold for k=4. From now on we will concentrate on the
simplest possibility with &, orbifold. Note that the st
values obtained for the three possible gauge groups consiqj_—e_'
ered here are the same values that Manton fdamdor the
theories with monopole backgrounds. This is not surprising,

In our gauge basis, the action is written

d&?=dt?—dx3—2du*du-,

since these predictions are purely based on group theory. ) -1
Thus our conclusion is similar to Manton’s that the preferred g=diag 1-1-1-1| _, - (3.9
models are based on tl@&, gauge group.

ll. THE KK SPECTRUM OF THE 6D G, ON T%Z, We also need to redefine generators with well-defined hyper-

N charge:
A. KK decomposition and spectrum

The decomposition of thés, fundamental under the 1 1
SU(3) subgroup is’— 3+ 3+ 1. A useful basis for the gen- Tle= —(T*=iT%), e, Ay=-=(A%FiAY),
erators in the fundamental &, is given in Appendix A. The V2 V2
Z, orbifold symmetry acts on space-time ag/2 rotation on
the extra dimensional coordinates, as visualized on Fig. 1.
The orbifold projection on gauge fields is defined by its ac- PYUEE. PP ) 0 1 e 3
tion on the fundamental representation: T = E(T T, e, Ay= E(AM“AM)'

d(x,—z,y)=U¢(x,y,2) (3.6

with Since the generators are non-Hermitian, the metric in the
gauge indices is hondiagonal and as a consequence the gauge
propagator will for instance connect an indextbo a 1. one
U=diagi,i,—1,—i,—i,—1,1). (3.1 or an index 9 to an index 12:
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1 ab

1 1
Jab__ aTb) — i
g*"=2Tr(T*T")=diag 1,1,1(l )(1 >,1, 1 . (3.7

1

As announced, in these systems of coordinates, the action of the orbifold is diagonal and is[f&mgiort, we denotel
=(u*,u”) andau=(au*,a*u)]:

& (x,iu)=A2PRy,NAR(x,u) (3.9
with
R=diag1,1,1,1-i,i) and A=diag1,1,1-i,i,—i,i,1j,i,—1,—i,—i,—1). (3.9
An eigenstateb associated to an eigenvaltid.e., satisfying
d(x,iu)=td(x,u), (3.10

can be written from an unconstrained field on the torus,
1 . .
D(x,u) = 7 (e(x,U) + Ee(x,iu) + (X, —u) +to(x, —iu)), (3.11

which leads to the KK decompositigave chose to normalize the wave functions of the KK modes on the fundamental domain
of the torus, i.e., the 4D effective action is obtained by integration of the 6D action over the fundamental domain of xhe torus

>y g (u)+tfog o (u)+tA o, (u)+t3f, o (u)
Py P, P,.Py Py —P, Py —P,
d(x,u)= O Py -PI(x
(ou) py%zl 4mR 0

o0

n E fpvo(u) +tf0’p(u) +t2f _pyo(u) +t3fp’o(u)
p=1 47TR

1
(p) — (%)
PP (x)+ 5= dO(x), (3.12

wherefpy'pz(u) are the KK wave functions on the square At the massless level, the spectrum conte®id(2) <X U (1)
torus: gauge bosonsA,>*% as well as two complex scalar dou-
blets: one doublet coming from tI&U(3) adjoint represen-
. . tation, H=(A'*,A>)=(A’" ,A*>")*, which has hyper-
f u)= expi —iput+ +ioou- | charge 3/2 in the normalization=diag(1/2,1/2-1) and the
py (1) =€XP \/ER(py P) \/ER(py P2) other one coming from th&U(3) fundamental and anti-
(3.13  fundamentalh=(A° A% = (A A®)*  with hypercharge
1/2. In order to get the preferred value of &g in the low-
. o . energy theory, the SM Higgs boson should be identified with
Note that the last term in the KK decompositi¢.12) is the hypercharge 1/2 field, while the other scalar should not

e o s S s o sy §EL. & VEV. e il see thal noducing ermions o he
9 P picture could naturally achieve this breaking pattern.

with a flat wave function, at least in the absence of a discon*
tinuity (discontinuities cannot be encountered for bosonic
fields whose equations of motion are of second Qrder B. Higgs quartic coupling from 6D gauge interaction

Pz 0 . . . .
The KK modesfl)(py P (%), q)(p)(x)_, and ®(9(x) are The 6D action contains a four gauge bosons interaction

canonically normalized in 4D and their masses are given byarm due to the non-Abelian nature @, and, after compac-

tification, the term TrE,FY%) gives rise to a quartic poten-
2, 2 tial for the Higgs scalars. From the analysis above, it is easy

py+p p’ : g 7
2 =y "z 2 2 to write the A, and A, gauge matrices in terms of the 4D
My )™ "2 Mo~ m2r Mo~0. (.14 ! y a8 9RO 1
yhz R canonically normalized Higgs fields:
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1 1 2
Aj=———o — \ﬁh —H7 —/=h* |, 3.1
Y4 2aR 32 ! 31 (319

>0
iy

o0

gy

|
oﬁ Wl N
o0

N

1 1
SR g i

A \/Ih H¥ (3.16
N 372 ! '

|
=
0
=
T
N ¥
|
cm%\ wl N
=
N ¥

>
[k

Here, h(H) denotes the doublet scalar of hyperchargeson mass isn2=1g2,v?=M2=(91 GeVY. This is similar
1/2 (3/2). After compactification to 4D, we obtain the fol- to the situation in the MSSM, where tmeaximaltree-level
lowing quartic coupling: value of the Higgs boson massh4,. Loop corrections to
1 the quartic scalar coupling will modify this prediction and
V= ggiD(|h|4+3|H|4+3(HT¢rah)(hTaaH)—6|h|2|H|2), push the Higgs boson mass to somewhat higher values.

(3.17 IV. POTENTIALLY DIVERGENT BRANE INDUCED MASS
AND TADPOLE OPERATORS

where ¢%a=1,...,3, are thePauli matrices andg,p

G . .
=0s5/(2V2R) is the gauge coupling of the low energy  after identifying the interesting class of 6D models for
SU(2) gauge group in 4D. electroweak symmetry breaking, one needs to ask whether

As we will see later, the doublet of hypercharge 3/2 quadratically divergent mass terms are indeed absent from
acquires a quadratically divergent positive mass squared anflis theory or not. The full higher dimensional gauge group
decouples, while the mass squared of the doubtdthyper-  is operational in the bulk, and therefore one does not expect
charge 1/2 can be protected by a cancellation. Therdfore quadratically divergent mass terms to be generated in the
plays the role of the standard model Higgs boson. The quaibulk. However, the gauge invariance is reduced at the orbi-
tic couplingg;p/6 then predicts that the tree-level Higgs bo- fold fixed points, and one needs to find out if any brane
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localized operators that would give quadratically divergentcomponent$.This can be seen by examining the group ma-
corrections to the Higgs boson mass could be generated. trix structure of Tr{J Fyz)zTr(UTa)Ff}z. The orbifold pro-
jection is telling us thatUT2UT=t3T?, wheret is the Z,
A. General discussion parity of the particular generator. From this (1

. . . . . —tH)Tr(UT?) =0, thus Eq.(4.1) can only contain elements
Gauge invariant operators are built using the field strengtl?rom the unbroken group. However, all elements of the un-

fcensquAB. One cou_ld th"?" that fjue to the reduced 9aud&yroken Lie algebra can be written as commutators of other
invariance at the orbifold fixed points one could use dlrectlyl_ie algebra elements in the unbroken group, unless it is cor-
the 4D scalar components of the gauge fields correspond|r‘}%sponding to dJ(1) factor® SinceU commutes with the

to the *?“’ke” generators. This is however not the case, broken generators the contributions to Eq1) vanish for
shown in[11]. The reason is that the gauge transformation

a : . all elements in the non-Abelian component of the unbroken
parametek® has the same KK expansion as the gauge field art of the gauge group, and only the unbroké1) factors
themselves. This means that while for the broken generato San contribute. '
§a|fp:0, its derivatives with respect to the extra dimen- Next we show that in the case Of& orbifold pa“ty
sional coordinates do not vanish£®|;,#0. Thus there is a invariance forbids the generation of E@.1), however for
residual shift symmetry left from the higher dimensional Z, or other higheiZ, there is no discrete symmetry to forbid
gauge invariance even for the broken generators, propothis operator.
tional to the derivative of the gauge parameter, and one needs
to consider invariants built from the field strength tensor B. Z, orbifold
FAg(0) (in this section, the position “0” refers to the fixed
point). SinceF 5g(0) transforms properly under gauge trans-
formations, its transformation law does not contain any de .
rivative pieces, and therefore it only transforms ulnder the?(x"y,2) is
unbroken gauge group &S,g(0)—g(0)F,g(0)g(0)* for v o —

a finite gauge transformatiog(0) of the unbroken gauge ¢y, ~9=Ue(xy.2). “3
group, since the gauge transformation parameters for the brs js an element of the gauge group that satisfids 1. We
ken generators vanish at the fixed point. The elements b&yant to show that there is parity invariance in the Yang-
longing to the broken part of the group do not affég(0)  Mmills-scalar theory. Obviously the Yang-Mills-scalar theory
at the fixed point. The potentially dangerous operators argp two-dimensional torus is parity invariant. Therefore the
linear inF, since their coefficient could be quadratically di- only condition to check is if the orbifold boundary condition
vergent. Clearly, in 5D there is no such operator allowed bys consistent with parity. In even-dimensional space, parity is
Lorentz invariance, however in 6D the operator defined by flipping only ondor an odd number dfspatial
coordinate. Let us considgr— —y,z—z. Under this parity,
Tr(UF,-(0) (4.1 the left-hand sidglLHS) of Eq. (4.3) becomes¢(y,—2z),
while the RHSU ¢(—vy,z). Because Eq4.3) must hold for
any y and z, ¢(y,—z2)=U¢(—-vy,z), and the parity-
transformed Eq(4.3) holds. In other words, the condition
Eq. (4.3 is parity invariant.
The orbifold boundary condition for the gauge field is
obtained from the requirement that the covariant derivative
of the bulk scalar transforms covariantly under the orbifold

sinceU commutes with the elements of the unbroken gaugebOundary condition:

First we consider 2/Z, orbifold. The orbifold boundary
condition underZ, (y——y,z——2) for a bulk scalar

is allowed, whereJ is the group element used for the orbi-
fold projection. This operator is clearly gauge invariant,
since under gauge transformations

Tr(UF,,(0))—Tr(Ug(0)F,,(0)g(0)~Y)= Tr(UF,,0)),

group. Similarly, any operator of the form (U"F,(0)) for A —v.—7)=UA ut
n=0,... k—1 would also be allowed, but as we will see wX Y, = 2) wXy. U
below these all lead to the same set of allowed operators on AJ(X,—y,~2)= —UAy(x,y,z)UT,

the fixed point.
For the case of SU(3)—SU(2)XU(1l) and G,
—SU(2)XU(1) wusing the orbifold based onU

T . . . . 8
=diag(i,i, — 1) this operator will be proportional 6, ,(0), Now we try to identify the parity transformation of the

where the 8 index refers to the unbrok&}{1) generator gauge field that preserves E@.4). The gauge field trans-

scalar components oA®, and through the‘bchSAg term
contained within the field strength also mass terms for the Ayy,2)——A/(—Y,2), (4.5
scalars that are supposed to play the role of the SM Higgs
boson. Therefore it is essential to find out under what cir-
cumstances these operators are generated. “Ne thank M. Quif‘s for this remark.

Generically, the operator in Eq4.1) will pick out the *Mathematically, we are saying that the derived algebra of a
field strength tensor corresponding to the unbrokéfl) semisimple algebra is the algebra itself.

A,(x,—y,—2z)=—UA,(x,y,z)U". (4.9

085012-7



CSAKI, GROJEAN, AND MURAYAMA PHYSICAL REVIEW D 67, 085012 (2003

AZ(y!Z)HAZ(_y!Z)' Az(y,Z)—>—AtZ(_y,Z).

Again, it is easy to see that the parity preserves the orbifold Under theCP, the operator of our concern TE,,)
boundary condition. Under the parity, the operator of ourtransforms to+ Tr(U Ftyz). Because the trace is transpose-
concern TrUF,,) transforms to—Tr(UF,). Therefore, invariant, itis Tr(UTFyZ)=Tr(UFyZ). Therefore the operator
parity invariant interactions would no induce this term. is CP invariant and henc€ P does not forbid its generation
If there are bulk fermions present, one needs to check ifrom loops.

parity invariance is broken or not. Clearly for vectorlike fer-  However, there is another modification of parity that may
mions one can extend the definition of parity in the usualbe preserved by the orbifold boundary condition. Instead of
way, and we expect that Eg4.1) would not be generated. the naive parityp(y,z) — ¢(—Yy,z), we allow a gauge trans-
For more complicated representations one would have to pefermation on top of it,¢(y,z) = P¢(—y,z) for Pe G. Un-
form an explicit calculation to check for the presence of thisder this parity, the LHS of Eq(4.6) becomesP¢(z,y),

term. while the RHS become§/P¢(—y,z). Because Eq(4.6)
must hold for anyy andz, ¢(z,y)=U1¢(—y,z), and the
C. Z, orbifold parity-transformed equation reads
Next we consider 3%/Z, orbifold. The orbifold boundary PU lp(—y,2)=UP¢(—V,2). (4.11)
condition under Z, (y——2z,z—y) for a bulk scalar
Pd(x*y,z) is This equation is consistent FU~1=UP. The question is if
you can find such within the gauge group. We will show in
$(—zy)=Ud(y,z). (4.6)  Appendix B that one can indeed find a group element that

. i1 satisfies this constraint for the case wh@n is broken to
U is an element of the gauge group that satisfies-1. We  gy2)x uU(1) by theZ, orbifold. However, this modified

will now show that one cannot define a parity invariance inpa ity still does not forbid the tadpole in E@.1). Under this
this theory. Obviously the Yang-Mills-scalar theory on two- parity

dimensional torus is parity invariant. Therefore the only con-
dition to check is if the orbifold boundary condition is con- Tr(UF,,)—Tr(UP(— Fy)P H)=—Tr(U*F,,). (4.12
sistent with parity. Let us considgr— —y,z—z. Under this o

parity, the LHS of Eq(4.6) becomes(z,y), while the RHS  Therefore, the allowed combination is

becomed) ¢(—y,z). Because Eq4.6) must hold for any

H _ *
andz, #(z,y)=U '¢(—v,z), and the parity-transformed H(Tr(UF,,) —Tr(U*Fy,)) (4.13
equation reads while the sum is forbidden. This is still not enough to forbid
_ the mass term for the Higgs component.
U lp(—y.2)=Ud(-.2). (4.7 995 comp
This equation is inconsistent unlesE=1. Therefore, the V. TADPOLE CANCELLATION FOR  Z, ORBIFOLDS
naive definition of parity is not a symmetry of the theory. We have seen above, that f@s orbifolds parity forbids

One modification allows for a similar symmetry, which the generation of the tadpold.1), however for higheZ, (as
actually is aCP rather tharP. At the same time of flipping s needed for theS, mode) we could not identify such a

the sign ofy, we take complex conjugate ab, namely  symmetry. Therefore we need to explicitly calculate the co-

#(y,2)— ¢*(—y,2). Then Eq.(4.6) becomes efficient of the tadpole term to see whether or not it is indeed
. o generated. For this, we need to find the propagators By a
$*(zy)=Ug*(—y.2). (4.8 orbifold spacetime, which can be done by generalizing the

. . . _ k of G i, Grant and Hail(26].
Using the same line of reasoning as before, the LHS is re\fvOr of Georgi, Grant and Hail{6]

written as A. Propagators for Z,
U % ¢*(—y,2)=Ud*(—Y,2). (4.9 The orbifold constraints on the gauge field§, , can be

_ o _ _ ~ implemented in terms of a set of unconstrained gauge fields
This equation is consistent U*U=1. Indeed in the “uni- g the torus,A 2 :

tary gauge” where we tredtl as a fixed gauge element, we

can always diagonalize to be a pure phase matrix. Then a 1 . Mk —1imal sl
this condition is indeed satisfied. Therefore, @B symme-  Anm(XW) = 7 (AW +(R™)p™ (A7 Ay, (x,iu)
try is still intact.

Under thisCP, the bulk fields are complex conjugated, +(R‘Z)MM’(A‘Z)aa'Aﬁ‘A/,(x,—u)
and correspondingly, the gauge fields must be brought into
the conjugate representatidi— — T2 Then the transfor- +H(R3HM (A~3)28 A2 (x,~iu)). (5.1)

mation properties of the gauge fields are
. In order to avoid further mixing of the fields we will choose
Ayy,2)—=Ay(—Y,2), (410  to work in the Feynman gauge=1. The propagator for the
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unconstrained fields4 takes its usual expression in this

gauge(we denote bys\?), the products, 4 8, —q ):

Hab,
ga IVIN 5(22

p?—2p,p. "
(5.2

(AR(P)AR(@) =Giin(P) 87 = i

PHYSICAL REVIEW D 67, 085012 (2003

a,x a,+ . !
p

NG

(a) (b)

FIG. 2. The gauge and ghost contributions to the tadpole in

wheregyn andﬁab are the space-time metric and the gaugeoperator(4.1).

metric defined in Sec. Ill. Using the unitarity of the matrices

Rand A and the fact that the unconstrained propagator sat€ oPtain the ghost propagator on the orbifold torus:

isfies  [p-=(p,¥p)/v2, p=(p:,p-), and ap
=(ap;.,a*p-)]
(R™HWM (A~H)2@ G (p,,—ip)
=G (P PRV ALY (53

we obtain the gauge propagator on #eorbifolded torus:

Gi(P) —
(0N 8 6t R AR )

(AL (P)AR(Q)) = 2

4 R[Z\]N’Abe'ﬁ(Z)

(2 + RN A 52, ).

Ziq
(5.9

In the same way, from the unconstrained ghost propagator,

“ab

a b a . g
(C3(p)C°(®))=G b(p)&ﬁf_)q—umaf_)q,
(5.9
|
b, N
c, R

= G*(p) . ,
(CHPICH)= =7 (8 a2+ A 32

NN 6D, (69

Note that these relations can be easily generalized now to a
generalZ, orbifold of T2. The only difference will be that
the propagators will in general contdirterms, with thenth
term containingA", and the matrixR will be replaced by
R= diag(1,1,1,%e~ 2"’k e2™/%) . The momentum conserving
delta functions on thath term in the propagator is obtained
ins(2) - _
by expandmgép_(an), wheren=0,1, ... k—1.
B. Explicit calculation of the tadpoles for G,
and SU(3) on T%Z,

Using the above propagators we can now easily calculate
the contribution to the tadpolét.1). As discussed before,
there can only be a contribution to th€1) factorF® _. The
Feynman rule for the gauge three-point function and the
ghost-ghost-gauge coupling are the conventional ones

s b
/
/
«,q
4
a, M ,
ANNNNS
N
\\
A}
P W
\\
A Y
A Y
vc

9T gun(d—P)r+Onr(r —Du+grm(P—n]  9f2 %y,

where the structure constarf®’° are given by

fabe= —2i tr(TAT*, 7)), i.e., [T TC=ifPcdgy,T2,

(5.7

1
Note that the vertices are conserving the 6D momenta. The TadG§; = EJ
violations of translational invariance in the extra dimensions
appears only through the propagators. By momentum conser-

sions circulating in the loop is related to the in-going one by
the delta functions of the propagator. Explicitly the gauge
tadpole diagram in Fig.(2) is given by

qu abc NR R oN
(277)4gf ((r+a)mg™"— (p+a)"dy
+(p—1)NSR(AR(AL(T)). (5.9

vation, the in-going 4D momentum in the tadpole diagrams
in Fig. 2 is vanishing. The momentum along the extra dimenNote that the factor 1/2 in the expression of the tadpole is
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just a symmetry factor. Explicitly evaluating these terms webulk. Using the Wilson line operator, we can now write ar-
find that the only nonvanishing components of the gaugditrary Yukawa couplings we need.
tadpole ardin the £&=1 gauge for th&s, model onT?/Z,)

A. Yukawa couplings from Wilson line interactions

o We have seen that one can build a successful model of the
TadG4 = —g 2 )4
o

“_ bosonic sector of the SM based on extra dimensional gauge
9,97~ P+P- theories. This sector has no one loop quadratic divergences,
(5.9 and the zero modes reproduce the bosonic matter content of

TadGd —g \[f B - the SM plus a single scalar doublet with hypercharge 3/2. In
T

“_ principle there are two possibilities for introducing fermions:
9.9 p+p, they can be in the bulk or at the orbifold fixed points. Since
The ghost tadpole diagram in Figt is given by the Higgs boson is part of the extra dimensional gauge field,
then if fermions are introduced in the bulk their Yukawa
couplings will be determined by the bulk, gauge coupling,

— =291 aqu)(C()C(r)). and the Yukawa couplings for the different families will be
(5.10 equal. Thus it seems very difficult to obtain a realistic fer-
mion mass pattern this way. Therefore the fermions should

Note that the minus sign is due to the anticommuting natur®€ introduced at the fixed points. This is a generic conclusion

of the ghosts. The only nonvanishing components forGhe for models where the Higgs boson is part of the extra dimen-
case are sional gauge field. In the particular case at hand, there is

another reason why the SM fermions should be at the fixed
point: since the embedding of the SM in@®, is via the
TadGK =g \[ f

TadGH, = f 2

P+ SU(3) subgroup ofG, we hit the usual problem of embed-
(2m)* 4,9 p+p- ding quarks intoSU(3): their hypercharges are fractional
with respect to the hypercharge unit®t(3), sothere is no

B representation that would give the corrég¢fl), quantum
TadGH =—g f
(2m)*q

. (5.1 numbers.
q.9" = P+P- Once the SM fermions are introduced at the orbifold fixed
oints, one could try to directly linearly couple the SM fer-

The gauge and ghost loops exactly cancel each other and 'ﬁ?lons to the Higgs field at the fixed point. However this
tadpole is generated at one loop.

g ... clearly reintroduces the quadratic divergences already at the
Note that in theSU(3) model, the same result holds with y d 9 y

_ ) ’ o one loop level, and is clearly not a desirable solution. Also
slightly different numerical coefficients, the factol/3 be-  jnyoducing Yukawa couplings this way explicitly breaks the
ing replaced by/3/2. Due to the power law running of the hift symmetr Aa—>Aa+& £ in its infinitesimal form &
gauge couplings, the cutoff scale of the 6D theory cannot b& Y Y

pushed much higher than a few times 40TeV. Therefore, corresponds a broken generator index ang,z), which is
;he remnant of higher dimensional gauge invariance at the

even if generated at higher loop, the tadpole operators wil
not destgabnme the wee?k scale. IOFrom a tlaeoret?cal point o ixed points. Thus one would like to look for operators that
do not break this shift symmetry. This can be achieved by

view, however, it will be extremely interesting to know if using operators that involve Wilson lines between the fixed
such operators are generated at any perturbative level. ng op . i :
points (the two fixed points may also coincideW

_ paifAdX ; ;
V1. INTRODUCING FERMIONS AND YUKAWA =pPe/Ad  Since the gauge transformf_:\tlon parameter for
COUPLINGS the brpken generators yamshes at the f|x<_ad p(jﬁ’t@zo,
the Wilson line will be invariant under this symmetry. In-
The fermion sector has been the common difficulty withspired by this observation we will construct interaction terms
the Higgs boson originating in higher-dimensional gaugecontaining Wilson lines. We will require the cancellation of
bosons. In the original incarnation by Mantphl, the chiral  one-loop quadratic divergences from the newly induced cou-
fermions could not be obtained because the gi@yjis real.  plings.
In general, obtaining the correct standard model fermion One may wonder where such Yukawa couplings involving
content is a challenge. Another problem is that the Higgswilson lines could originate from. It is worth recalling that
doublet is a higher-dimensional gauge boson, and hence ifermions at the fixed points can arise in the twisted sector in
coupling is dictated by the gauge symmetry. It appears arbistring theory. They are “localized” because the string winds
trary Yukawa couplings are not allowed. around the fixed point, and are therefore not strictly at the
The main new ingredient in our model is the orbifold. At fixed point They are spread out around the fixed point for a
the orbifold fixed point, we can introduce fermions that finite distance. If this spreading is large enough, the “wave
transform only under the unbrokeB8U(2)xU(1) rather functions” for states at different fixed points can overlap and
than the fullG,. Therefore we can introduce the correct can have couplings. For instance, R&7] tried to generate
fermion content of the standard model without difficulty. Yukawa hierarchy using states at different fixed points. In the
Once the fermions are at the fixed point, their Yukawa coudow-energy effective field theory description of couplings of
plings are not directly tied to the gauge interactions in thetwisted-sector states at different fixed points, the gauge in-
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variance requires that the couplings come together with thé&lote that this is nothing but the Froggatt-Nielsen mechanism
Wilson lines. Therefore we expect that nonlocal interactiong28] except that the summation over the entire KK tower of
with Wilson lines are natural in this context. the “Froggatt-Nielsen fermion” gives an exponential rather

It is an interesting question if we can generate Yukawahan a power suppression. Because the generated Yukawa
couplings with Wilson lines in a purely field-theoretical con- couplings depend exponentially on the mass of the bulk fer-
struction. We will argue that it is natural to eXpeCt the ap'mion, itis easy to generate a |arge hierarchy among Yukawa
pearance of these operators once some massive bulk fermioyplings. We find this an attractive mechanism to explain
ons which could mix with fields at the fixed points are {he fermion mass hierarchy. Moreover, the mass of the bulk
integrated out. To illustrate this, consider a simple examplgemion is protected by chiral symmetry, and hence the ra-
with a single extra dimension compactified on a circle. AS-gjiative correction to the fermion mass is proportional to the
sume that there is a maSS|ve.5D fermr,omvmg in the bUka bare mass. Therefore this mechanism is technically natural.
and thatta c_ontitamy gauge f'fe'tﬂ IS turnted ton. The ff_e:(rjn!or) J However, for the quarks there is an added difficulty due to
propagator in the presence of the constant gauge TIeld IS Jugie fractionalU (1)y charges of the quarks. Such fields can

- i not mix with bulk fermions, and therefore some other
(Y(p)y(p))= —. (6.1) mechanism is needed to generate the Wilson line interac-
Py —pyY+OA Y —m—ie tions.

A comment on the gauge anomaly is in order. When left-
Qanded and right-handed fermions are split on different fixed
points, the four-dimensional gauge anomaly is not canceled
at each fixed point. It requires the anomaly flow from one
_ , fixed point to the other. This can be easily done by integrat-

(PP YD (P Y2))= ., E/H elPyly17v2) ing the five-dimensional Chern-Simon term from one fixed
Py=2mniL Tl point to the other. It is well known that the gauge variation of
i the Chern-Simon term is a total derivative, whose surface
X ey y_ term precisely gives the four-dimensional Wess-Zumino con-
PLY =Py T QA Y —m—ie sistent anomalysee, e.g., Ref29)). This is not an accident;
(6.2 it is a direct consequence of family’s index theor¢&o].

. _ , Note that bulk massive fermions are vectorlike by definition

Shifting the summation tpy = p,—gA, we get that and do not contribute to six-dimensional nor four-

U dimensional gauge anomalies.
<‘//(pu:y1)'//(pM,Y2)>Ay gaug

The quantization condition fop, will be p,=2mn/L
+gAy. The propagator in coordinate space along the extr
dimension will then be

— alOA (V2= Y1) (7
=e'9hy02 y1)<¢(pﬂ Y1) (P, =y2)>Ay=O- 6.3 B. One-loop radiative corrections to Higgs boson mass from

) . . . Yukawa couplings
Thus the Wilson line appears in the propagator. Thus if there

are couplings of the form The Wilson line transforms as a fundamental under the
gauge grouyis, at the starting point of the integration, and as

f d®x ((D ay —m) i+ 5(y1) (Y1) x (Y1) an anti-fundamental under the gauge group at the end point

of integration. If the starting and ending points coincide then

v the Wilson line will be in the adjoint representation. Of
32 €2 ¥(¥2)), 64 course since in our case the endpoints of integration are the
a nonlocal interaction term of the form orbifold fixed points, and only th&U(2)<U(1) subgroup
of G, is active at the fixed points, the Wilson line also only
— Yo transforms undeBU(2) X U(1) at the fixed points. The Wil-
W:f d*xCé(y2) e Yx(y1) 65  son line can be represented as a7 matrix W

_ =pelAadX e arrange one generation of quarks into seven
will be gene_rated. Thus one would expect that SUCh_Operato_r&)mponent vectors of the form
could generically appear in a theory after the massive fermi-
ons are integrated out. However, since it involves the mas-
sive fermion propagator, the coefficie@tof this will include
the suppression facter ™Y1=Y2l, Therefore in order to get a d.
sizable coupling the bulk fermion should not be much
heavier than the inverse radius of the extra dimension. On
the other hand, the exponential factor could be used to gen- Q.=

0

0= F’laL, Ug=
erate fermion mass hierarchies by varying the bulk mass of 0

0

0

=Pyug,

O O O o o

the fermion that is being integrated out. This procedure of
integrating out heavy fermions thus can give the operators
needed to generate the Yukawa couplings for the leptons.

o
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then be the chiral symmetry between the newly introduced
color triplet fermions and the doublet quarki3].
However, from a phenomenological point of view, one
can get away from dangerous divergences by introducing
—p.d (6.6) fewer fields. In fact, introducing a single color triplet field in
TR ' the third family y, such thatP,=diag(1,1,0,0,0,1,0) suf-
fices. Indeed, by examination of E(6.9), we get that the
guadratic divergences in the SM Higgs boson mass from the
d top Yukawa coupling do cancel; we are left with quadratic
R divergences from the bottom Yukawa coupling which, phe-
nomenologically, are harmless due to the smallness of the
coupling. We also get, from the top sectornpmsitive) qua-
dratically divergent correction to the square mass of the hy-
P,=diag1,1,0,0,0,0,0, P,=diag0,0,0,0,0,1,0, percharge 3/2 Higgs boson, which is good since it will push
its mass close to the cutoff scale of the theory and will pre-
vent him from getting a VEV. In conclusion, we are going to

O O O o o o

where theP; projection operators are

P,=diag(0,0,0,0,0,0,1. (6.7  consider

At this point it should be noted that the quarks transform in u 0 0
the usual way under the unbrok&U(2) symmetry at the
fixed point. As far as the hypercharges are concerned how- d 0 0
ever, the naive action of6T® would not give the SM num- 0 0 0
bers (we are saying nothing but the fact that the quarks, o-=| o U 0 D 0
because of their fractional charges, cannot be embedded into L= ' R™ ' R™ '
full representations d6,). Fortunately, we are free to define 0 0 0
the quarks hypercharges as we want and therefore we will YL Ug 0
assign them their SM values, which will allow us to con-
structSU(2) X U(1) invariant interactions. 0 0 dr

Let us consider the interaction term of the form (6.10

along with the interaction term
Lyukawa= muURWuQL+ mdBRWdQL . (6.9 - - -
L =mUgW,Q, + mMyDgWQ +M .
The one loop quadratic divergence from the Coleman- ko= MU+ MaDRW Q1+ Mxex. 6.11)
Weinberg formula is then given by

C. Explicit computation of one-loop radiative corrections to

A2 Higgs boson mass
o2 (M Tr(P,W,P1P1WIP,) +m3 Tr(PaWyP1 P, WiP3)) We want to explicitly compute the radiative corrections to
the Higgs boson mass from Yukawa interactions. We need to
A2 expand the actio6.11) up to quartic order and for simplic-
= 5 (mﬁ Tr(PzWuF’lWI)JF mg Tr(pawdplwg))_ ity we will retain only the top Yukawa couplingve assume
6

without loss of generality than, is rea)
(6.9

. . L = MyUgxL + M YrXL+ NyUs
Thus the quadratic divergences will cancel if either the pro- Lviawa™ Mulrx L+ MxRYLF MulraLh
jectorP, or P, 3 commutes with the Wilson lin&/. Since we |Xu|2_
only want to avoid quadratic divergences for the hypercharge — urx. (3|H|?+1h[?), (6.12
1/2 Higgs boson, the requirement really is that the projector
should commute with the matrix i13.195-(3.16) with H L~ .
—,0. This is not true for the projectors in E6.7), but can where the Yukawa coupling,, is obta|ned~from the expan-
be fixed analogously to the mechanism employed in littleSion of the Wilson line interactio(6.5), i.e.,A,~Cm,g. The
Higgs theories[13] by introducing more fermions at the rght-handed up quark mixes with the extra fermigrand
fixed point, that is by filling more of the diagonal compo- Pecomes massive. The mass eigenstates are
nents ofP, or of P, andP5. The simplest possibility is to fill
P, to be the identity matrix. In this case it clearly will com-
mute withW and there will beno quadratic divergences for Righi=————=(Mug—myxg) With m=0
any fieldsbut only a contribution to the vacuum energy. The ot \/mﬁ+ M2 R TAR
origin of the cancellation of the quadratic divergences will (6.13

2m,
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QL
Rhea\,yzm(muuR—i— Mxr) With m2=m5+M2.
u

(6.19

Then the action becomes Rheavy, Rlight

My —
L yykawa= VA g+ M ZRheavy)(L'l' \/ﬁ R heaV)qLh
u

M —

—R; h
\/W Ilghth

—+

FIG. 3. Radiative corrections, from Yukawa interactions, to the

|’X |2 o SM Higgs boson square masmﬁ, and to the 3/2 hypercharge
5 m2u+ — R heawt (3[H[?+[h[?) Higgs boson square massj .

u

N Nyl?M2 [ A2+ mi+M?2

kY — _3\*M u o s
_2m L:n2+M2R”ghtX'-(3|H|2+|h|2)' Veif(h)= 8.2 In mﬁ+M2 h'h+mg,h'h

uy u

(6.19 Ny *A2 1
t Za2(hTh)2
+C(16w2)2h h+ 6g (h'h)<. (6.18

The diagrams contributing to the Higgs boson masses at one
loop are depicted on Fig. 3. Computing the diagrams angiere the first term is the one-loop contribution from the
including the color factor for the fermions, we get Yukawa sector calculated in the previous sectiof, is the

finite contribution to the scalar masses, which have to be
calculated for this particular orbifold. In 5D orbifold theories

o~ d*q M2 such contributions have been calculated9yi11,31, and are
Smp=6i[\y|? of the order 92£(3)C,(G)/(327°R?). The final mass term
(2 )4 2( 2_ m2_ M 2) h N S X
™) \q°(q u is the two-loop quadratic divergence that is expected to ap-
3|X 12m2 A2+ M2+ M2 pear due to the Yukawa sector. The quartic scalar potential
- u u ’ (6.16 appears from the bulk gauge interactions, and gets a logarith-
872 mﬁ+ M?2 mic running from the Yukawa couplings and from brane in-

duced pieces from gauge interactions. The bulk contribution
reduces the size of the negative Higgs boson mass term from
4 ~ 12 the Yukawa couplings, while the sign of the two-loop contri-
Sm2 :i2|7\ |2f d'q 1 _ 3\l A2+ ... bution would have to be explicitly calculated. Since
2 ) 2mt g-m2-M2 3242 '

(6.17 5
1~ MA, (6.19
. . . _ -~ tOp:—' .
As in softly broken supersymmetric theories, the one-loop /mﬁ+ M2

radiative corrections to the Higgs boson mass square from
the top Yukawa coupling are negative and trigger the elec:

K breaki Furth h hand we expecM ~m,, thereforex,~1. In order to get the
troweak symmetry breaking. Furthermore, we see that the, oqt glectroweak symmetry breaking VEV for the Higgs

radiative corrections to the hypercharge 3/2 Higgs boso'P)oson we would need the minimum of the Higgs potential to
mass square are quadratically divergent and positive. Thi o at<|’,11-h>:v2/2 Thus

ensures that this scalar doublet will not acquire a VEV an
decouples from the low-energy effective theory.

. 3 V2| A%+ mi+M? INg*AZ 2
D. Estimates for the scales of the theory 82 n M2+ M2 (16722 3 W
The parameters of the theory relevant to electroweak sym- (6.20

metry breaking areR, the radius of the orbifold)\,, the
coefficient of the Yukawa couplingyl and m,, the mass and soM~5—10XM,y,. Therefore one would expect the
parameters for the colored fermions, and the cutoff sdale relevant scales of the theory to be in the range 1 TeV
In order to estimate the size of these parameters we need toM,m,,1/R=500 GeV. The cutoff scale of the theory could
calculate the effective Higgs potential. It will have severalthen be a factor of 10—20 larger than the mass scale of these

contributions particles and thus of the order 5-20 TeV. Note that the nec-

2
~Mpyik—
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essary scale for new physics is quite low, and therefore anensional gauge invariance could protect the Higgs boson
detailed analysis should be performed to determine whiclirom some of the quadratically divergent loop corrections
region of the parameter space could be consistent with athat plague the standard model. We have considered orbifold

experimental constraints. compactifications of higher dimensional gauge theories, and
The particle spectrum of this theory would then be asfound that the preferred model is a 66, gauge theory
follows. Below the characteristic scale compactified on &, (or Z,-,) orbifold, where the orbifold

1/R~M~500 GeV-1 TeV, one would only have the SM breaks the bulkG, gauge group down t&U(2)xU(1).
particles. The Higgs boson mass should be estimated fromhis model would predict a value of Sif},=1/4, after the

Eqg. (6.18. Since the quartic scalar coupling is fixed by the zero mode of one of the scalar components of the 6D gauge
gauge couplinggsimilar to supersymmetric modg¢lsthe field is identified with the SM Higgs boson.

Higgs field is expected to be light. By minimizing E®&.18 One needs to check whether in such models the orbifold
the value of the Higgs boson mass using the tree-level quaprojection itself would reintroduce the quadratic divergences
tic scalar coupling would b= J4/3My=M,~91 GeV  on the fixed points. We have found that in general Zgr

(to the extent that we use the approximate predictiorcompactifications such divergencémnd the tadpole opera-
sirfé,=1/4). The loop corrections to the quartic scalar cou-tors they would accompaiare forbidden by the parity in-
plings from the Yukawa sector and also from the gauge secvariance of the gauge sector, however for higigr we

tor will result in additional contributions. For example, from needed to explicitly compute one loop diagrams to see that it
the top Yukawa coupling one gets a correction to the quartiés vanishing. Thus the bosonic sector of this model can ac-

scalar coupling of order commodate the SM without any one-loop quadratic diver-
gences.
3)\;10 It had been more difficult to incorporate fermion fields.
8V(h)~— —2In(myR)2(hh)?>0, (6.21)  Since one wants to have the option of generating different
1677 Yukawa couplings for the different generations, the SM fer-

mions need to be introduced at the fixed points. Another
which itself would raise the Higgs boson mass toreason for this is that quarks have fractional hypercharge
~130 GeV. One generically expects the Higgs boson to bguantum numbers in the unit dictated by the bulk gauge
much below the 500 GeV-1 TeV scale, in the 120—-150 Ge\yroup. In order to maintain the symmetries of the bulk one
regime, and likely within the reach of Tevatron run Il. Note then needs to add Yukawa couplings in the form of nonlocal
that the zero mode of the second Higgs doublet with hyperwilson lines, which generically can be obtained by integrat-
charge 3/2 does get quadratically divergent corrections duiyg out bulk fermions that mix with the brane fields. In order
to the structure of the Yukawa sector, and thus its mass ifo cancel the one-loop quadratic divergence for the Higgs
expected to be of order few?/16m2~ TeV—few TeV. Once  boson from the Yukawa sector additional massive fermions
we get to the scale R~500 GeV-1 TeV we will start ex- need to be added to the orbifold fixed point.
ploring the KK spectrum of the bosonic modes. In particular, These theories generically predict a light Higgs boson,
the KK modes of the fullG, gauge boson sector should since the quartic scalar coupling is related to the gauge cou-
appear. From thé, ,A, sector it is likely that just like the pling, just like in the MSSM. The bosonic sector of these
hypercharge 3/2 Higgs boson most states will get quadratimodels would give KK towers to all bulk gauge fields, start-
cally divergent mass contributions from the Yukawa sectoling at 1R~500 GeV-1 TeV, while the fermionic sector
and their KK towers thus will start at a scale higher thanwould resemble those of the little Higgs models.
those for the gauge fields, except for the physical SM Higgs As for the full resolution to the hierarchy problem, there
boson itself, which as we saw above is much lighter tharare several obvious issues to be resolved. The Yukawa sector
1/R. Of course some of these states will just serve as longiyields higher loop quadratic divergences. There could also be
tudinal modes for the massive KK gauge bosons. Alsmonperturbative corrections in the strongly interacting higher
around the R~M~500 GeV-1 TeV scale the colored fer- dimensional theory of ordeA?e *R, which could be as

mions y,x needed to cancel the divergences from thelarge as the two-loop quadratic divergences themselves. Fi-
Yukawa couplings for the Higgs boson will show up. Thus nally, one would have to explain why the radion field, which
the bosonic sector of this theory is that of an extra dimenWwill appear once gravity in 6D is made dynamical, would be
sional model, while the fermion sector would much look like stabilized at the right minimum of order TeV~*.

that of a little Higgs mode[13—15. This is due to the con-
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APPENDIX A: MATRIX REPRESENTATION OF G .
2 Ulz 0 , U2: | \/E , U3: 0 .
In this appendix, we give a matrix representation of the 0 0 —iy2

fundamental representation &, exhibiting explicitly the
SU(3) embedding. The fundamental being of dimension 7
and the adjoint of dimension 14, we need fourteer 77

(A6)

The generators db, have been normalized in the usual way:

matrices:
A2 aTht 1 b
1 Tr(T3T )=§5a . (A7)
Ted=—— at for a=1,...,8, (Al)
22 A
Defining
. vl - v2 . . —_— .
To_ [y ST S=T8" and S=T*" for i=1,...,3, (A8)
2\3 oIt 2\3 »2t
the G, algebra then reads
03 H
11 i \2 (A2) [T3,TP]= : fab Tc  [Ta S]=SK(TA)K
243 L3t , 212
aqQl_ _ (Tajikak
T12:T9T T13: TlOT T14: TllT (A3) [T ,S]_ (T ) S ! (Ag)
where thex? are the usual Gell-Mann matrices: [3i1si]:ieijk§<, [S,9]=— ieijksk,
3
0 1 0 0 -i O
AM=[1 0 0|, a2=|i 0 o], [S,9]1=(T9T?, (A10)

0 0O 0 0 O ) )
where thef2®; are just the usual structure constants associ-
ated to the Gell-Mann matrices ard® is the totally anti-
symmetric tensor. From the normalization factors in Eq.

1 0 0 1 10 0 (A1), we get that the gauge coupling of tB&J(3) subgroup
N3= -1 0], a=—|o0 1 , is relating in 6D to the gauge coupling @&, by g55®
0 0 O V3 00 -2 =gGG|§/\/§. After compactification to 4D, the gauge coupling

(A4)  of SU(2) is given by g5o@=gc2/(2\27R) while the
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gauge coupling of the U(1)y normalized to Y APPENDIX B: THE G, GROUP ELEMENT
=(1/2,1/2~1) in the fundamental ofSU(3) is QID IMPLEMENTING PARITY FOR THE Z, ORBIFOLD
G . . .
=042/(2\/67R). As announced in the introduction, we get | this appendix we show that it is possible to find a group
sirfe,=1/4. elementP in G, which satisfiesPU~1=UP. The Z, orbi-
The components of the gauge fields are defined by fold is acting on the fundamental @, by the matrixU
=diag(,i,—1,—i,—i,—1,1). One can think of the inter-
Au(X.y,2) =A% (X.y.2) T2, All change (1,1%-(4,4),(2,2)~(5,6) by P to conver'gU to
m(xy.2)=Ay(xy.2) (A1D) U~%, but actually such an element does not existGp.
and the orbifold conditiongA2) take the form(A3) with the ~ However, the interchange (1.4)(5,5) and (2,2)-(4,4) in-
block diagonal matrices stead achieveB “UP=U"". _ _
In order to show this, we are going to construct the matrix
_ -1 P from the generators db, given above. Let us look at the
R=diag 1,1,1,1 1 , (A12)  Hermitian combination
1 1 R=(S*+S%. (B1)
A=d|a41,1,1( -1 )( -1 )’1""’_1’_"_|’_1)' It is straightforward to see that the Lie group elemg(#)
(A13)  =¢€'?3R s given by
|
0 .0
cos; i sin;
0 .0
cos; i sin;
1+coséh l1-cosf® i )
5 5 \/Esm
.0 0
g(6)= i sin; cos; ] (B2)
.0 0
i sin; cos;
1—coséd 1+cosfd —i . p
— — Esm
i =i
—siné —sing  cosf
V2 V2

Now taking 6=,

By constructionP is a group element of, and one can easily check thaUP t=U"1, as desired.
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