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Study of relativistic bound states for scalar theories in the Bethe-Salpeter
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The Bethe-Salpeter equation for Wick-Cutkosky-like models is solved in the dressed ladder approximation.
The bare vertex truncation of the Dyson-Schwinger equations for propagators is combined with the dressed
ladder Bethe-Salpeter equation for the sc&8avave bound state amplitudes. With the help of the spectral
representation the results are obtained directly in Minkowski space. We give a new analytic formula for the
resulting equation simplifying the numerical treatment. The bare ladder approximation of the Bethe-Salpeter
equation is compared with the one with dressed ladder. The elastic electromagnetic form factors are calculated
within the relativistic impulse approximation.
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I. INTRODUCTION and easy identification of excited bound states spectra.
Very often, the ladder BSEs are solved with the help of

In gquantum field theory the two body bound state is dethe so-called Wick rotatioj16]. However, the backward
scribed by the three-point bound state vertex function oranalytical continuation is quite difficult even for the ladder
equivalently, by Bethe-SalpetgiBS) amplitudes, both of approximation, while for more complicated cases its proper
them are solutions of the correspondifsge Fig. 1 covari- implementation is unclear or at least highly nontrivial.
ant four-dimensional Bethe-Salpeter equati®SE) [1]. Up In this work we follow the method of solving the BSE
to now most of the studies were restricted to the case whedirectly in Minkowski spacg8,17,18, in which the prob-
irreducible interaction kernel is approximated e sum lems associated with Wick rotation do not arise. The method
of) single particle exchanges. In this so-called ladder apis based on utilization of generalized spectral representation
proximation the scattering matrix is given by the sum of thefor n-point Green functions in quantum field theddQ]. In
generated ladders. It is known that such an approximation ithis treatment the BSE written in momentum space is con-
not sufficient when more realistic models are considerederted into a real integral equation for a real weight function
[2—4]. To move beyond this approximation one is in practicewith a number of independent variables dependent on details
confined to the use of some phenomenologisasdze (In of the model. We extend the earlier wdi] first to the case
hadronic physic, thesAnsdze are very often made already with unequal masses of constituents. This then allows us to
at the level of two point correlators. For modeling of the treat the ladder BSE in which all propagatéo$ constituents
gluon propagator in the context of BSE and Dyson-and of the exchanged partiglare fully dressed. This is
Schwinger equation€DSE), see for instancg5].) achieved by the implementation of the Lehmann representa-

Here we are considering some simple scalar models. Ation of the propagator:
extensive review of BS studies in scalar theorjedth at
most cubic and nonderivative interactjocan be found in
Refs.[6,7]. The various improvements of the simple ladder G(pz)zf doo(w)D(p;w),
kernel have been considered, in particular, including the self-
energy effectd8,9] or contributions from crossed box dia-
grams[10]. The study of the influence on the bound state
spectrum following from the infinite resummation of certain D(p;w)=
ladder and crossed-box diagrams can be found in [R&f. p
Furthermore, there is a number of interesting papers on the
solution of Wick-Cutkosky modelswith zero mass of the \yhere ¢ (w), which is a smooth function, nonzero above a
exchanged particje These solutions employ various effec- yreshold, is determined by the Dyson-Schwinger equations
tive techniques like the point form of relativistic quantum (DSB). In the pole term we can take=1, a choice corre-

mechanics[12], variational calculationg13], or the light  ghonding to the conventional on-shell renormalization
front dynamicq 14].

The standard approach to determine the spectrum and the o+ P2
BS vertex makes use of partial wave decomposition which
reduces the four-dimensional integral equation into the two- —
dimensional one. The alternative more recently exploited P - v P
treatment is based on th®(4) hyperspherical expansion
[15]. In this approach the BSE is transformed into an infinite

set of one-dimensional integral equations. The notable ad- FIG. 1. Diagrammatical representation of the BSE for the bound
vantage of this approach is a good numerical convergencstate vertex function.

(1.9

R (@) =R(w—miy)+o(w),

-p+P/2
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scheme G has a unit residuum when momentum approacheg is assumed tha¢<<g which implies that the interaction of
a simple pole at physical mass the charged particle field, with the electromagnetic field

To account for the effect of self-energy we transform thecan be treated perturbatively. As in REJ), we have chosen
momentum BSE to the form suitable for a complementarythe same coupling constant for interaction of the figlg
solution together with the appropriate DSE for propagatorswith the fields¢, and ¢,. The form factors were calculated
Note here that the perturbative one loop contribution hagor several sets of masses of constituent and exchanged par-
been already considered B8] and a certain Euclidian ver- ticles.
sion of this problem has also been investigdied In quali-
tative agreement with9] we have found that the critical ||, DRESSED LADDER BETHE-SALPETER EQUATION
value of coupling gives the domain of applicability of BSE
(at least in its ladder approximatipriThe couplings below The BS amplitude for bound staté{, ¢,) in momentum
the critical one allow only solutions for relatively weakly space is defined through the Fourier transform of
bound states. It is even more interesting that the effect of the
propagator dressing on bound state spectra is rather small. In (OIT ¢1(x1) p2(%2) | P)
comparison with the bare ladder approximation the same __ip.x
bindi%g energy is then achieved with Ft)rl?e coupling smaller by - (0T pa(m2%) b2 = m1x)|P)
about several percent, even for values of the coupling close —iP-XJ d4

P e P Xd(p,P), (2.2

to the critical one. 2

Clearly, when we take some or even all particle propaga-
tors dressed, the number of spectral integrations increaseghere X=7,x;+ 7,X, and X=x;—X,, so that x;=X
Note here, that up to the rather exotic case of massless Wickg 7oX, X,=X—7X. Here p;, are the four-momenta of

Cutkosky model the appropriate solution is not known anaparticles corresponding to the fields , that constitute the
lytically but must be found numerically. Mainly due to this hound state ¢,,¢,). The total and relative momenta are
reason we reformulate the equation obtained by Kustlk&  then given asP=p;+p, and p=(7.p;— 7:p,), respec-

[8] and we offer the solution where the appropriate integratively, andP?=M?2, whereM is the mass of the bound state.
kernel is free of any additional numerical integrati®®e  Finally, P.X+p-x=p;-X;+ Po-Xo. From now on we will
Appendix of Ref[8] for the original solutiop The elimina- ¢ 5, = 5,=1/2, which corresponds to the usual separation

tion of this numerical integration then not only iMproves of center of mass motion for equal mass case, but can be also

numerical accuracy but also reasonably decreases the CRYhpioyed for unequal masséalthoughX is then not the

time. o o _ coordinate of the center of mass
To see explicitly the effect of radiative corrections we Introducing the BS vertex functioﬁ:iGl—lez—lq, the

compare the derssed BSE results with its bare ladder a

A jomogeneous BSE for &wave bound state reads
proximation. We set the parameters of our model to that use

in Refs.[15] and[17] to compare the bare ladder solutions to d*k
those obtained before i8,15,17. I'(p,P)=i f @7 V(p,k;P)Gy(k+P/2)
Having solved equations for spectral functions, one can
determine the BS amplitudes in an arbitrary reference frame. X Gy(—k+P/2)T'(k,P). (2.2

This makes this technique suitable for calculations of re-
sponse to a external fields. In Sec. IV we briefly introduceThe bound states appear as poles of the scattering matrix.
the formulas defining the elastic charge form fadB(Q?) The normalization condition for the BS vertex function fol-

in relativistic impulse approximatiotiRIA). Although the lows from the requirement that the pole appropriate to a
elastic form factor represents a simple dynamical observabldiven bound state is a simple one:

its Minkowskian calculation represents a nontrivial task. For A .

this purpose we consider thémassivé Wick-Cutkosky 2iP"=f d*p d’k T(k.P)

model given by a Lagrangian gauged as follows: (2m*) (2m*

(2m)*8*(p—k)

1 1 J
L=(D*¢71) "D, p1+ E%ﬁbszd’z"‘ §f7,u¢30"”¢3 X ﬁGl(pl)Gz(pz) +iG1(p1)Ga(p3)
"
1 , J
—ZF;WF“ —V(é), X ﬁV(p,k:P) G1(p1)Ga(p2) | (p,P), (2.3
"
) (1.2 _
m i i =+
5 n 2 9 2 2,2 whereI'(p,P) is the conjugate of’(p,P) and p;,==*p
V(i) =(mi+g¢s)dy d1t 7+§¢3 b2t §m3¢3, +P/2,p1 ,= *k+ P/2 (for the details see, e.g., R¢E)).

In this work we do not solve the BSE with the most gen-
where the covariant derivative i®,=d,—ieA,. In our eral irreducible scattering kerndl (the most general struc-
form factor calculations the effects of scalar dressing wereure of the kerneV written in terms of its perturbation theory
not taken into account since it would significantly increaseintegral representatiofPTIR) can be found in Ref[8] or
the computational complexity of the problem. Furthermore[19]). Here we restrict ourselves to the case of dressed ladder
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approximation with ¢5-exchange, in whichV(p,k;P) Using a technique similar to the one used in R6f, the

=g2G;(t), wheret denotes the usual Mandelstam variableBSE can be converted to the following real integral equation

t=(p—k)2. Note that for the bound state of particles for the real spectral function:

(¢1,¢,) only the t-channel interaction above is effective,

whereas for the bound state of(,¢;),i=1,2 one has to ., 1 * .

consider also possibler and s channel diagrams. In the plM(a’ 2 )=)\f_1dzJa .(Z)daV[”](a/ a2 (@),

present work we study the casé(, ¢») due to its simplicity m 2.7

and leave the other cases for discussion elsewhere. Let us

also recall that in thédressedlladder approximation, defined where we denoted=g?/(4)2. The derivation is presented

by the exchange of chargeless scatgr the photon coupling  in Appendix A, where the explicit expressions for particular

to ¢, alone(one particle current, or in other words RI®&  choicesn= 1,2 are given. The central results of this work are

by itself gauge invariant, when taken between the correexpressions obtained fov!™, which are simpler that the

sponding solutions of BSE. The normalization conditionones presented in Reff8]. No additional integration is re-

(2.3 in this approximation reduces to the conditi®{Q®  quired which decreases the computer time necessary for nu-

=1. We will solve the BSE for massive constituents;(,  merical calculation. Besides, our formulas also hold for un-

>0) andm;=0, the invariant mass of the bound state sat-equal masses of the constituents. The extensgiogether

isfies 0<P2<(my+m;)2. with above-mentioned simplificatiorio the case of a more
Taking the dressed kernel and the full propagators of concomplicated scattering kernel is not so straightforward, but

stituent particles into account, the right-hand sides) of  we believe that it is possible. Note also, that due to the prop-

BSE (2.2) can be written as erty of solid harmonic with respect to the integration over the
3 momentum the presented procedure can easily be general-
., ~ d*k ized for the bound state with nonzero sirere, the total
ig H dajo(@) | == ;
5 i V)2t orbital momentum[8].
A bound state with equal composite masses is described
XD(k+P/2;a1)D(—k+P/2;a5)D(k—p;a3) ' (k,P). by the vertex functiod” which is symmetric under the trans-

(2.4) formationP- p— — P- p. In terms of the weight function this
symmetry reads(«,z) =p(«,—2z). However, there are so-
The interesting unequal-mass ladder case of Rél.is also  lutions that do not respect this symmetry even in the case of
described by Eq(2.4), althoughz,=7,=1/2 andp andk  equal masses. These are usually called ghost solutions and
are not relative momenta. Since the dependence on momerif2€ appropriate amplitudes have a negative norm. Such solu-
in Eq. (2.4) is explicit, one might always rescalg(p,P) to  tions are often considered to be nonphysical and it is sup-

proper relative momentum. posed that they point at inner inconsistency in the description
The integra| representation for the BS vertex functionOf relativistic bound states within the BS formalism, at least
may be written a$19] in the ladder approximation. Here, it is important to mention
that the Lagrangian1l.2) describes the models that are a

1 ke pl"(a,z) subset of theories with potentials unbounded from below and

F(p,P)=f dzf da > 5 —. in a very strict sense they are discarded due to the vacuum

-1 Jamn@  [a—(p“+zp-P+PY4)—ie] instability. On the other hand one can assume, at least for

(2.9 sufficiently small couplings, the existence of local minima of

The positive integen represents a free parameter withoutthe potentials is sufficient to support of the existence of
round state of the theory. While in the large coupling re-

clear physical meaning. One can take advantage of this fred fora/m> 1 ble phvsi be | d
dom of choice to pick um so that the numerical solutions of 9/Me. Say forg/m>1 no reasonable physics can be learne

integral equations for spectral functions are made mor(I:rom the pe_rturbation theory and/or from an equationlike o
stable. The spectral functiop&”(,2) for differentn can be der BS by itself. To conclude, we note that such |d(_aas are
related by integration over by parts. Kusakeet al. [8] supported by at least two facts. The ghost BS solutions do

choosen=2 for their numerical solution of the BSE, we 2PP€ar only .for a large value af. Furthermore, from the
adopt the same value in this paper ' Dyson-Schwinger study we know that the scalar theory stud-

The bare(symmetri Wick-Cutkosky model corresponds ied here[;nglf]es sense only up to a certain critical coupling,
to the choice; = a,=m?, the exchanged boson is masslessse?”?'gi'm’ rt. nt tion ari what is the validity of th
(a3=0), and no radiative corrections are considered. Thi§ € Important question arises, what 1S the valldity of the

ull theory when renormalization is properly taken into ac-

model is particularly interesting because it is the only ex- o .
ample of the nontrivial BSE which is solvable exadih6]. count. AIFhough the_quanntauve answer I|e§ beyond the ap-
proximations used in this paper and requires more careful

For this model, there is no freedom in choiceroand (for ! L ) i .
the Swave bound stajethe expressiorn2.5) reduces to the !nvest'|gat|on, we ”.‘ake a S|mple attempt to find the domain
one-dimensional PTIR: in which self-consistent solutions of the BSE and Dyson-
' Schwinger equationgwithin the framework of reasonable
1 (2) approximationy exist. Furthermore, we inquire an influence
[‘(p,p):J dz P . (2.6  of scalar propagator dressing on the solution of the BSE for
-1 m?—(p®+zp-P+P?4)—ie the bound states.
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ll. DRESSING PROPAGATORS whereGy(p) is the Fourier transform of the full unrenormal-
BY THE DYSON-SCHWINGER EQUATIONS ized propagatoGg;(x—Yy) =(0|T ¢qi(X) o (y)|0) and Ty,

The solution of the DSE for the scalar models with the'® thedcorrtra]sp?nld(;ng self-cre]nergy. lizati h
help of spectral decomposition will be discussed in detail in un er the Tie strengt. renorma |zat|or1 the prq;)lggators
our forthcoming papef21]. Here we give only a brief pre- scale likeGoi = Z;G; . Multiplying the equations o5, * in
sentation of the DSE in bare vertex approximation, their=0: (3-4, definingIl;=ZiIly; , and making use of Ed3.3),
renormalization, rearrangement in terms of the spectral func2N€ 9ets the rescaled DSE:
tion, and some properties of solutions, important for our fur-
ther discussion of the BSE. In this section we assume
<m;+m,, so that the propagator of the exchanged particle
&, has an isolated physical pole. P dq .

By dressing of the scalar propagators in our study of BSE IL(p%) =ig; f (Zw)4G3(p—q)Gi(q), i=12, (39
we mean only the dressing due to the “strong” interaction
between scalars, the coupling to the electromagnetic field is
neglected. Let us now write the strong interaction part of our H3(p2)=ing
Lagrangian(1.2) in terms of bare, unrenormalized quantities
(fields and coupling constanidabeled by subscript “0:”

G {(p?)=Zi(p?—m§) —1L;(p?),

> Gi(p—9)Gi(q).

=12

d*q
(2m)*i

The renormalization of proper self-energies proceeds by
N do2 ,» double subtraction:
Lstrong™ — 901%01%01%03— > bo2P0s- (3.1
dIT;(p?)
ITig(p?) =1II;(p?) — IT;(m?) — (p?— m?)———
In the previous section we have chosen the strength of both r(PY) () (m5)=(p ) dp?
couplings to be the same. Here, we distinguish the bare cou-
plings, anticipating that they are renormalized by different
amounts(see below. | s h . lizati
The kinetic terms are parametrized by the unrenormalize 3e2r)1téf§/|3r’1ﬁ] the appropriate renormalization constafiss.
massesn,; . These masses undergo tinéinite mass renor- T

malization

pzzmiZ

(3.6

dIT;(p?
sm?=II,(m?)/Z;, Zi=1+ (P7)

, 3.7
mg=m?—om7, i=1,23. (3.2 dp?

p2=m?

To rescale the residuum of the full propagators to unity, waye can immediately write the full propagator in terms of
will complement the infinite mass renormalization by thefinite physical quantities

finite (since the model is superrenormalizgbienormaliza-

tion of the fields and coupling constants G, Yp)=p*-m*—TIIig(p?), i=123. (3.9

_ 1 _ The DSE for the renormalized self-energies are given by Eq.
bo=\Zi¢;, =123, gOi:—\/—gi , 1=1.2. (3.5 and subtractiofiEq. (3.6)].
ZiNZg 33 For the purpose of our BS calculation, we now fix the
(3.3 renormalized couplings and masses as follows:

That is, we will employ below the on shell renormalization m
scheme in which the propagators have unit residua when 01=0>=0Q; M=my=m;, mg=—
momentum approaches its mass shell valties m?. 2

In this paper we consider the Dyson-Schwinger equations

in the simplest approximation in which the proper verticesWhereg Is the coupling constant from Eq1.2. That is, we

. “"will compare the solutions of the BSE for the bare and
are replaced by the bare onEg;=g,;. Then, the DSE in .
their unrenormalized form read dressed ladder kernel taken for the same numerical value of

unrenormalized and renormalized coupling constant, respec-
tively. The masses are fixed to allow comparison with some

(3.9

-1 — 2 2 2 P —

Goi (p)=p"—mg —Ilei(p%), =123, of the results of Refd:8,15,117.
Now, it is a straightforward task to evaluate the spectral
d*q representation of the renormalized self-energy. Lehmann rep-
HOi(D2)=i9§iJ (2—)4G03(p_q)G0i(q)v i=1,2, (3.4 resentatior(with unit residuun for G; reads:
aa
o [Fge 7O - :
5 f d4q E 5 Gi(p ): o dSm, (r(s):b‘(mi —S)+0'(S),

I =i .Goi(p—9)Ggi(q), -

03(p ) (277)4 ) Yoi Ol(p Q) 0|(Q) (3.10)
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Notice that functionso;,i=1,2, have the thresholds at 010
m; ;= (M; +m3)?=2.25m?, whereas the function; has the

threshold atmg = (my+ m2)2—4m Analogously, for the
self-energies: 0.08 1

0 . 2_m2\2
Hm(pz)=f da p”'(a), (P m)z. (3.12) 006 |
Mj th

p’—a+ie (a—m?)

ImII(s)

The spectral representation foflg explicitly satisfies 004
Mg(m?) =T1;(m?) =0 following from Eq.(3.6). Rewriting
now the relation betweerts and I in the form G=D
+DIIG(D being the free propagator with the physical mass 02 |
and taking its imaginary part, we arrive at the first relation
between the spectral functiomsand p:

oy b . 2>pf da | oi(@)pr(a)
gi\w :— w—m
' (o—m; ) 0= 01[ (a— miz)2 FIG. 2. The imaginary part of the renormalized propagators for
different values of coupling., calculated from the DSE in bare
Ui(a)Pni(w) . vertex approximation. Upper curves are for particles, (which
(0— m2)2 , 1=1,2.3, (3.12 have identical self-energigdower ones for particleb.
i

whereP | stands for principal value integration. All the func- ~ The renormalization constar&; is calculated from the
tions in Eq.(3.12 are positive and regular above the pertur-relation
bative thresholds and identically equal to zero elsewhere.

Substituting the spectral representatidid3sl0 into the
DSEs(3.5), making the subtraction as in E@.6), and com- Z=1- f da pi(a) (3.15
paring to the left-hand sidéhs) in the form of Eq.(3.11), (a— m2)2 '
one gets after lengthy algebra:

~ ~ . From Fig. 3 we can see that the field renormalization con-

pﬂ'i(w):}\f dadfB(a,fiw)oy(@)oi(f), 1=1.2, stantZ, , changes sign from positive to negative at some
(3.13  critical point X ¢;= g%/ (47m)2=1.5+0.1, where the error

~ ~ reflects the difficulty of making the numerical estimate of the

p’TB(w):)\izEl,z J dadpB(a,Bw)oi()oi(B), value for which theysolution c%nnot be found and the dimen-
sionless coupling is defined as=\/m? . We did not find

wher(?)\zgzl(47-r)2 and the functiorB(«,8; w) is related to  any numerical solutions of DSE for couplings larger than

the Kadlen function\ as follows:

1.0 T T T

VA (a,B,w
Blabo)= P o (Tt VB
&a—AZ3
(3.19 08 71,22
Na,B,0)= a’+ ,82+ w?— 2aB—2aw—2Bw.
0.6 |
Before the numerical treatment the explicit integration-
separating theé-function parts of Lehmann weights-has to N
be performed. 04l
Equationg3.12),(3.13 constitute the closed system of in-
tegral equations for spectral functions which can be solved
numerically by iterations without any additional approxima- o>}
tion. So obtained dressed propagators have been used whe
solving the Bethe-Salpeter equation. The results are dis
cussed in the Sec. V. Before leaving this section we review 4, s s Y
some important features of our solutions of DSE. 0.0 05 A 10 15
The behavior of the imaginary parts of propagators—the
Lehmann functionsr;(a)—for fields ®, , 3is shown in Fig. FIG. 3. The dependence of field strength renormalization con-
2. stants on the coupling.
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| q TABLE I. Dimensionless coupling =g?/(47m)? as a function

| of fraction of bindings= \/P?/2m for two cases of exchanged mass
| m;. The caseng/m=0 is the Wick-Cutkosky model. The second

casemz/m=0.5 is compared with the result obtained by Kusaka

p+q+P/i2  pt+P/2

et al.[8].
P+q P ma/m 7=0 =02 75=05 75=08 7=0.999
-p+P/2 0 1.9998 1.954 1.592 0.9067 0.03322
0.5 2.5663 2.498 2.142 1.421 0.3873
FIG. 4. Diagrammatic representation of the electromagnetic curRef. [8] 2.5662  2.4988 1.4056 0.3853

rent bound state matrix element.

Nt~ It is reasonable to suppose that the quanta associated '€ main result of this paper, as far as charge form factor

with the fields ¢, , do not describe physical particles when IS concemed, is the rewriting of the rhs of B¢.2) directly
T in terms of the spectral weights of the bound state vertex
crit

function. It allows the evaluation of the form factor by cal-
culating the integral of nonsingular expression, without hav-
IV. ELASTIC ELECTROMAGNETIC FORM FACTOR ing to reconstruct the vertex functiod¥p,P) from their

The electromagnetic form factors parametrize the re_spectral representation. The derivation of this integral in-

sponse of bound systems to external electromagnetic fielf°!VeS some lengthy algebra and is relegated to Appendix B.
The calculation of these observables within the BS frame-

work proceeds along the Mandelstam’s formalig2@]. For V. NUMERICAL RESULTS

the elastic scattering on th®wave bound state,R?= P?

=M?) the current conservation implies the parametrization A. Bare ladder BSE

of the current matrix elemer@* in terms of the single real We have solved the bare ladder BSE for symmetni (
form factor G(Q?), =m,=m) scalar theory with bare ladder kernel
GH(Py,Pi)=G(Q?)(Pi+Py)~. (4.0 g°

V(p,k,P)=V(p—k)= (5.1

, . , (p—k)2—m3’
The elastic electromagnetic form factef Q<) depends only

on the square of photon incoming momentgrand we use ) )

the usual SLAC conventio?= — g2, so thatQ? is positive ~ and bare constituent propagatdes(p;) =Di(p;,m;) by it-

for elastic kinematics. erations of the integral equation for spectral functions. The
The matrix element of the current in relativistic impulse standard procedure was followed: after fixing the bound state

2 . . .
approximation(RIA) is diagrammatically depicted in Fig. 4. Mass f°) we _Iooked. for the solution by !teratlng spectral
In this paper we are not taking into account the dressing ofunction for fixed dimensionless “coupling strengtht

the scalar propagators when calculating the charge form fac=g%/[(4m)?m?]. If the iterations failed—measure being
tor. Then, the matrix element is given in terms of the BSboth the difference of the rhs and Ihs of the integral equation

vertex functions as and deviation of the auxiliary normalization integral from a
predefined value—we were changinghalving intervals of
. d*k q successive guessasntil the solution was found.
G“(P+q,P)=|J’ 2m) Il k+5.P+q In the case of the Wick-Cutkosky model the one-

dimensional integral equatiofwcmsolve was solved. Al-
X[D(ps ;mf)JT(pf ,p1)D(p; ;mi) though the solution of this one-dimensional integral equation
could be found by the inversion of its discretized form, we
X D(—k+P/2;m3)]T'(k,P), (4.2 have tested the iteration procedyrssed later also for mas-
sive exchange The equation was discretized by numerical
where we denot®=P; andj4 represents one-body current Gauss integration, it appears that it is sufficient to take 40
for particle ¢, which for the bare particle read§(p;,p;)  Gauss pointgthough the numbers cited in Table | are ob-
=p#+p}*, wherep; ,p; is initial and final momentum of the tained with 98 pointg It is known [6] that P2=0 corre-
charged particle inside the loop in Fig. 4, i.g;=k  sponds to\=2 from which our result slightly deviates in the
+P/2ps=qg+k+P/2. fifth digit. We have also reproduce@p to four published
We have already mentioned in the previous section that ifligits) all results for the Wick-Cutkosky model frofd5]. In
the vertex functiond” are a solution of the BSE with a Fig. 5 the weight functions are plotted against spectral vari-
kernel corresponding to the exchange of single chargelesablez for several fractions of bindingy= \P?/2m.
particle, the RIA defined above is by itself gauge invariant For the massive scalar exchange the two-dimensional in-
and the normalization condition for the BS amplitudes istegral equation§A31),(A35) were solved. We have four(th
equivalent to the normalizatio@(0)=1. agreement withi8]) that numerical errors are about one order
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10 F ' ' ' ] TABLE IIl. Dimensionless coupling. = g2/(4m)? for several
selections ofm;/m= and fraction of bindingy=\P%/2m, com-
pared to the results of Rdf15].

n 0.0 0.4 0.5 0.5 0.5 0.95 0.95
mz/m 1.0 025 1.0 2.0 4.0 0.1 1.0
A 3.416 1.77 2928 4.911 9.997 0.409 1.371

Ref.[15] 3.419 na 2940 na na 0416 1371

bound states fixedour choice isy=+/P?%/(2m)=0.5] and

determining the corresponding coupling strengths

Where the independent numbers were availgblg, they
agree with our resultgsee Table Il). If the mass of the
1o Y f Y . exchanged particle becomes sniallit nonzerp the conver-
gence of our numerical procedure becomes somewhat poorer
FIG. 5. The spectral functiop(z) of the bound-state vertex in and more sensitive to the initial guess. For illustration the

the Wick-Cutkosky model for several values 9t P?/2m . weight functionp!?! is plotted in Figs. 6 and 7 for two dif-
ferent values of exchanged mass.

of magnitude bigger fon=1, hencen=2 is preferable and
only the results with this choice are discussed below. B. Dressed ladder BSE
For numerical solution we discretize integration variables

a and z using Gauss-Legendre quadratu@sth tangent  yhe BSE including the dressing of the propagators. We intro-
mapping from(—1,+ 1>_)<ﬁmin ) for @). Equation(A35)  qyce the dressing by two steps, switching it on first only for
is solved on the net dil=N; N, points which are spread on he exchanged particle and in the second step also for con-
the rectangle € 1,+1)*(amin,*). The valuean;, is given  gtityents. We should point out that since the solution of the
by the support of the spectral functi¢see Appendix A We  DSEs in the bare vertex approximatiéioy which we dress
have not optimized the grid during the iteration procedure aghe propagatojsbreaks down for coupling constants larger

it was done in the stquS]. Instead, we have solved the that\ ;= 1.5 we can consider to only rather weakly bound
equation for several different numbers of grid points while

keeping fixed the ratio oN,/N, and then extrapolated the States: for the bare BSEA=1.5 corresponds toz
results to the “ideal” case witiN,=N,=«. Examples of ~ VP?/(2m)=0.78. . o
numerical convergence for some cases of bound states are 1N€ Propagator dressing of the exchanged particle in the
presented in Table II. In Table | we compare our results fofoN€ 100p approximation was already considered in F&f.
ms=m/2 with those of Ref[8]. We go beyond the one loop approxmatlon and determine the
Below we show the dependence of charge form factor orffontinuum part of Lehmann weight; from the DSE(3.19
the parameters of the model: on the range of interaction chatVith the same value of the coupling constant. That is, we
acterized by the inverse mass of exchanged mesoand on
the strength of forces which bind the particles together. To
calculate the form factors we first have to solve the BSE for e
chosen sets of parameters. We vary the parameters as fo g_. .+ .-
lows: osd .
(1) First we solve the BSE for several bound state masses o7 | ..
P2 keeping the rationg/m fixed; (2) then we vary the mass ~ os4--— ,

of the exchanged meson, keeping the masses of all studie_ sy~ : -
044

In this section we finally discuss numerical solutions of

034. -

TABLE II. The couplingk =g?/(4m)? for bare ladder BSE as
a function of the number of mesh-points.

N,XN,,: 16X16 3232 64X64 9696

!’0'

i

’\
k h“”“”‘
n=0.950m;=0.50 0.752 0.761 0.777 0.783 0.804 aas C

n=0.950m;=0.10 0.306 0.350 0.375 0.385 0.409

7=0.000m;=1.00 3.143 3.273 3.342 3.366 3.416 FIG. 6. The rescaled weight functigr{a,z) of the bound-state
7=0.000m;=0.50 2.207 2.343 2.445 2483 2566 Vvertex for »=0.95 calculated in bare ladder approximation. The

) ‘m;'

7=0.999m;=0.50 0.3782 0.3754 0.3794 0.3816 0.3874
7n=0.950m;=1.00 1.310 1.341 1355 1.360 1.371

(Xx
i

o

mass of the exchanged bosoi=0.5m.
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1.0 ]

09 o O x

x pure ladder
O dressed V
08 < dressed <& o X

02 o7 ) 12
A [m7

FIG. 7. The same as in Fig. 6, but fan;=0.Im and » _
=0.95. FIG. 8. The eigenvalues calculated for the bare BSE, with

dressed kerneV and for dressed ladder BSE. Beyond the critical
insert into Eq.(2.7) the dressed kernel value of couplingk ;= 1.5 only the bare solution is available.

Ga(p—q)= f‘”dw o3(0) (5.2 mined with the same high accuracy as those for the bare
8 (p—q)2—w+ie ' ladder BSE, since the grids are not optimalized for very dif-
ferent ratios ofe’s which appear in the kernel of the BSE.

with the pole situated ah;=m/2. As noted above, the con-
stituent propagators are at this stage left undressed in the
BSE, although all self-energies have been taken fully into
account in DSEs. The integration over (5.2) in the BSE Various form factors are extensively studied in scalar
kernel was performed using Gaussian quadrature with 18eories like the Wick-Cutkosky modetee, for example,
points. Including the kernel self energy slightly decredbgs [23]). In these studies the dependence of the form factor on
at most a few percenthe mass of the bound state, even forthe binding and on the range of the “strong” interaction has
X =Neri- been considered, therefore we perform a similar calculation

Let us point out that the kernel of E(@.7) in the dressed 1N our formalism. o _
ladder kernel approximation is free of any singularities. !N the approach adopted in this pap@mploying the
The accuracy of the numerical solution is comparable to thétpetctral representdatlons in thz_M'nko"t"Sk'f spatt_tlee bount;l) o
< - states masses and corresponding vertex functions can be ob-
Sﬁ(rje g’;dg;%zszoli:&rse;ﬁ;n)\pfggzgfof%g)_ ?(‘)?5,[;2 t;r? q tained with good accuracy and in reasonable CPU time. Un-

e fortunately, th Iculati f th lar f f -
of 64X 64(96x96), the convergence is similar to the cas ortunately, the calculation of the scalar form factor as out

e, . . .

lined in Appendix B leads to more complicated results
of bare !adder(see Table, )L The extrapolategl(tq very (B11),(B12). Even if one would be able to perform analyti-
large grid values of N's for fractional binding #

—0.999.0.99,0.97.0.95 are showen in Fig. 8. cally all additional Feynman integrations, the form(iil2)

nth fet h cluded th i . fthstiII involves the four-dimensional integration over the spec-
n the next step we have Included the Seli-energies ot g, \araples. We are taking also the integrals over four

Eonftituents..As we shall sge thg effect is relatively small forFeynman variables numerically with the help of Gauss-
A<M, but increases rapidly as—1. As in the previous | egendre quadrature, taking the number of points for each of
case the Lehmann weights have been calculated from th@em equal to the one for spectral variazleSince a rela-
DSEs solved for the same value of the coupling. As the firs{ive|y small number of integration pointfrom 16 to 40 was
guess we have used the solution of the BSE linearized ifaken for each integration, the presented results have to be
o(a), i.e., with only one propagator dressed. This guess iviewed rather as an estimate of form factor behavior. One
rather close to the exact solution fge<0.9. can always refine the grids at the expense of longer CPU
The constituent particles in a weakly bound system ( time.
=1) live near their mass shell. Therefore, one can naively We have also compared our results to those obtained in
assume that the values of coupling for such a weakly bounthe Gross(spectator formalism, choosing the “scalar deu-
state should not be strongly affected by dressing of constituteron” parametergsee[24]). In analogy with the real deu-
ent propagators. For deeper bound states we have found thaton, the parameters are chosen mg/m=138/938.9¢
the effect of the dressing of constituents is much larger thars (2 938.9-2.3)/2< 938.9=0.9988. The bound state ver-
that due to the dressing of the kerrekchanged particje  tex functions were found by solution of the Gross and BS
Fig. 8. The couplings for fully dressed BSE are not deter-equations. All phenomenological form factors introduced in

C. Charge form factor
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are of course still only approaching this valué/e put into

the same plot for comparison also the scalar deuteron result.
How the form factor changes with the mass of the exchanged
particle is shown in Fig. 10. We included several states for
which M =m, bound by the one-boson-exchange potential of
the ranger = 1/m3, which is varied. Two other systems, first
with »=0.4;m3=0.25 and the scalar deuteron, are added for
comparison. From both figures we can conclude that the be-
havior of the form factor is determined by the strength of the
interaction and its range rather differently for variddsThe
range of the interaction is more significant for the weaker
ones. This agrees with the conclusions of R&DJ, which
have also compared our results for small exchanged mass
7=0.8m3;=0.15m with the Wick-Cutkosky model predic-
tion for »=0.784m;=0 (Tables 2 and 1 of10], respec-
tively), and found only a slight difference in the ran@g
=(0,100m?).

FIG. 9. The behavior of the elastic electromagnetic form factors
for various bound states characterized/pyThe mass of exchanged

particle is fixed to beny=0.5m, except for the scalar deuteron case The spectral representation was employed for solving the
(D.), which is calculated for comparison using two different grids. Bethe-Salpeter equation if8+1) Minkowski space. The
. o new analytical formula for the integral equation kernel has
[24] have been “switched off'(the limit A’s—o are taken peen derived.
in the “strong” form factors when calculating the Gross  The method is efficient solving both the bare and dressed
wave function and the bound state current. The electromagaqder BSE. Solving Dyson-Schwinger equations for propa-
netic form factors were calculated in the spectator RIA antyators leads to the appearance of a critical value of the cou-
are described in Appendix Busing the grid 39, respec- pling constant, beyond which the solution collapses. This
tively. ) ) restricts substantially the region in which the effects of dress-
The form factors for sever_al b_ound states listed in theng can be studied. Since the coupling is rather weak, the
Tables | and Il are presented in Figs. 9 and 10, respectivelyyressing leads only to a moderate decrease of the bound state
In Fig. 9 the ratio of the exchanged and constituent mass igasses: even close to the critical value of the coupling the
kept constanimg/m=0.5 and the mass of the bound statefractional binding of the bound state of the dressed BSE is
M= P? is varied. In agreement with physical expectationssmaller than the corresponding one for the bare BSE by at
one sees that as the bound state becomes more tight the elgsost 15 percent. As an example of application of the ob-
tic form factor increasegFor the infinitely bound point sys-  tained vertex functions, we calculated the elastic electromag-
tem it should be equal to unity, even our deepest bound stategtic form factor.
To further develop the method, it would be interesting to

VI. CONCLUDING REMARKS

1.0 extend it to a more complicated BS kernel: trying to include
. the cross boxed contributions,and u channel interactions,
\\\\ etc. It is already known that the “spectral” approach used
08 NN ] here is suitable even for more complicated systems, for sca-
SN lar QED see Ref[18]. One of our future goals is to manage
SN the complication due to fermionic degrees of freedom.
0.6 \\t\\\.\"n\: S E
) N e e e
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APPENDIX A: KERNEL FUNCTIONS
FIG. 10. Variation of the elastic electromagnetic form factors
with the mass of the exchanged particle while:0.5 is fixed. The In this appendix the real integral equation for the BS ver-
casesy=0.4, my=0.25m, and the scalar deuteron are included for tex weight is derived in detail. The PTIR form for a scalar

comparison. bound-state vertex reads
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(M @,2) Using the Feynman parametrization technique we first
I'(p,P)= f f (Z) (A1)  write

[F(a z,p,P)]"
D(k+ P/2:a;)D(—k+ PI2:ary)
where pl"l(a@,z) is the real PTIR weight function for the

bound state vertex function, andis a dummy parameter. 1t dn
The functionF is given by[19] ) M f (kP —ie]?’
F(a,z;p,P)=a—(p?+zp-P+P%4)—ie arta;, a;—ap "
2 —
—a—f(p.P.2)—ie. (A2) MA )= > 7

The support of["(a,z) can be determined in gener@ee  Next the denominator of EAL) is added:
[19]) for arbitrary interaction. In our case of one-boson-

exchange interaction kernel one gets a bit highgt, [8]. D(k+P/2;a1)D(—k+P/2ja;)
We discuss our treatment of the lower bounds below. [F(a,z;k,P)]"
The following procedure is straightforward but a bit ex-
haustive. The rhs of the BSR2.2) with the kernel given by F(n+2) (1-t)t" 1t
the exchange of the singl@ressed particle ®; has to be T f f ni2’
rewritten in the form allowing one to extract the integral (" [R f(k,P.z")—ie]

equation for the spectral functiosf™ («,z). The integrand R=at+(1—t)M? (A4)
contains the two “constituent” propagators, the denominator '

F(a,zk,P) from the spectral representation tk,P) and  wherez' =tz+(1—t) . Now, we include the propagator of
the propagator of the exchanged partithdl other factors the exchanged particle, the integral o@ék and factorsg?,
will be skipped for a while for the sake of briefngss defining:

d*k D(k+P/2;a;)D(—k+ P/2;a,)D(p—k;ag)
loppE= 'QJ

(2m)4 [F(a,z,p,P)]"
RS N R LU
=—ig? 2T(M) J,ld”JOdt(l t)t Jodxx” I (A5)
4 —(n+3)
'k:f (swk)4 —k2+2k~Q—(1—x)p2—§P2+(1—x)a3—l—xR—ie
i T(n+1) 1 1
(4m)2 T(n+3) X1 (1—x)" 1 [A—f(k,P,2')—i €]’
(AB)
R a3 X
A=——+————5,

1-x x  (1-x)

|
whereQ=(1—x)p—xz'P/2 andS=(1—2'%)/4P?. Sincez’  and introducing\ =g?/(4)? we get

lies in the interval{—1,+1), 0<S<(m;+m,)%4. Inter-
changing the integrals ovey andt with the help of:

f dﬂf dt—f dz fo —@(z z')

fT_dt®,
+0m (z'-2)|,

nr ot dx ,
IDDDF:)\EJlle fo Wszi O[s(z—2")]

Xf s dtt"! (A8)
(A7) o [F(A,Z,p,P)]"" T

Let us separate thedependence of(A,z";p,P). First we
substitute fory into the definition ofM2, which yields

—+ !
T.= z and z'=tz+(1-t)7%,
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a1t a a1~ a1t a
(1-t)M2=—t 12 2, 12 2, 12 2
a—«a
+ 12 24, (A9)

Next, we introduce the notatiofindicating explicitly the
t-dependence oA andR):

- R(t) ag X R(t)—S ag
=T % 1% 1% Tx S (A0
2 Cl’l+012 a1~y
Rt)y=at+(1-t)M*=J(a,2)t+ 5 5 z',
(A11)
ata a—
Jaz)=a— —2- L 25 (A12)

2 2
in which thet-dependence df[ A(t),z’,p,P] reads

J(a,z)
1-x

F[A(1),Z';p,P]= t+F[A(0),Zz’;p,P]. (A13)

Sincet-dependence df[A(t),z’;p,P] is linear, the integral
overt can be taken:

f dit"?
FLA(1),z";p,P]""!
nF[A(0),z";p,P{F[A(1),2";p,P]}"

(A14)

and hence

RYEE dx
IDDDF_EJ—le Jo (1—x)"*t

y 0[s(z—2')]T"
<t F[A(0),2;p,PH{F[A(Ts).2";p,P]}"
(A15)

Using this result, the BSE can be written as follows:

1 . [n] a’,,Z,
f 4z f o P @2)
-1 amin(Z,) [F(a/,z’,p,P)]n

:U‘Trf d“f dzp"(a,2)lpppr.  (A16)

3 o o
[fff} EJ dalal(al)
X1 min @2 min

>< f
@3 min

da’zaz(az)

da’3‘5'3( C(3), (Al?)

PHYSICAL REVIEW D 67, 085007 (2003

where o(«;) are the Lehmann functions of the dressed
propagators, reducing to thé function if the dressing is
neglected. Obviously, the rhs is still not quite in the desired
form, both F[A(0),z’,p,P] and F[A(T),z',p,P]" are
functions of momentg andP.

Below we rewrite the kernel as a sum of several fractions,
which after substitutiore’ =A(T),T=0,T. would allow to
use the uniqueness theor¢®] and extract the BSE in the
spectral form. This is possible only if the integrals over
on both right- and left-hand sides of E&\17) are taken over
the same intervals. To show this it is first necessary to prove
that R(T)—S>0, for T=0,T., since the functionA(T)
—+o for x—0 andx—1 they have on for 8x<1 the
minimum equal to

Anin(T)=(VR(T) =S+ mg)?+S
=R(T)+m3+2mg\[R(T)—S].

Next, one has to show that these lower bounds are not in
conflict with the lower bound fow’ (and the same lower
bound fora). It is simple for the undressed equal mass case,
when the condition above taken for= 0 actually defines the
lower bound fore in the following form:

a=(Jm?=S(z') + my)?+S(z'),

and the same fow,z—«a',z'. SinceR(T.) depend also on

a andz and since for the equal mass c&d .. )=R(0), the
next two constrains clearly conform with the lower bound for
a' and one can extract from them the upper bound for the
integration overa:

(A18)

(A19)

as=m?+ Ti[(m— mg)?+S(z')—m?]
- (A20)

[compare to Eq(A6) of [8], where one bracket seems to be
misplaced. For the unequal mass case or for the dressed
propagators this analysis is much more complicated, mostly
due to the fact that now for some combination of parameters
it can occurR(T-)<R(0). Thenecessary conditioR(T)
—S>0 can again be proven in this cadkough after much
longer algebrp ensuring that the common lower bound for
a’s exists. But we could not resolve the conditiof#s18)
analytically, they are treated numerically.

Now, let us go back to EQA17) and proceed by consid-
ering first the simple case of the symmetric Wick-Cutkosky
model.

1. The Wick-Cutkosky model

In this model the constituents have the same masges
=m,=m and the mass of the exchanged particle is Zalo
propagator dressings are neglegtethen for the S-wave
ground state vertex function, the spectral function depends
only on variablez and the denominator enters with power
n=1[Eqg.(2.9]:

p"(a,2)— 8(a—m?)p(2), (A21)
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and inlpppr We replace this value is not the most suitable one. But since the formal
5 5 5 manipulations are in this case the simplest, we treat it first
n—1, M<—=m" R(t)—m? J(a,2)—0, for methodical reasons.
Forn=1 the integrand of EqA15) can be decomposed
m? X into the sum of simpler fractions with the help of
At) A= ———5, P P
1-x 1-x
O[s(z—2')]Ts
loppE— = f dz ®[s(z )] Ts s=+ F[A(0),z';p,P]F[A(Ts),2";p,P]
1o ! (A24)
1 d — ,
xf X _ J@,2) ¥ FIA(T).Z';p.P]
0 [Mm?—xS—(1-x)f(p,P,z")—i€]?

. . . where we have introduced a shorthand notation
Taking the integral ovex we find (recall that for equal

masses & S<m?):

Z f(T)=f(0)—6(z—2")f(T,)—0(z' —2)f(T_).

O[s(z—2")]Tq
lpppE— = J [|(”n S] (A25)

1 Notice that the lhs of Eq(A24) is nonsingular forl(«,z)

m?+f(p,P,z')—ie

| bppe NOW reads
Comparing both sides of the BSE and using the uniqueness

theorem[lg], vl/e get the well-knowr{see, e.g.[6]) integral A 1 dx
equation forp!l(z): lpppr(N=1)= 23(a2) ET: fo TOFIAT 2 PPl

1
p(z’)=>\f dz\ViY(2',2)p(2), (A23) (A26)
-t In the last step we introduce the spectral varialblé
=A(T) and use the dependenceA(T) on x to convert the

O[s(z—2")]Ts

vitl(z' )= > . integration overx into the integral over’. Picking up ex-
s== 2(m?>-S) plicitly the x-dependence oA(T) we can write:
Although its solution is known analytically even for exited R(T)-S ajz
states, the energy spectrum still has to be found numerically g(x)=A(T)= T " x S,

(up to theP?=0 corresponding ta =2). For the purpose of
numerical treatment, this equation is usually rewritten in the
form: y _RM-S a3 1

, (1—X)2 ;_1_)(
Lz)zvo(zf)_fl dzo(2)V.(Z',2),
A -1

1
fa'—gx)]=2> ———8x=x), g(x.)=a’,
Ve(Z') i== |9’ (x|
o(z' = o
Am=3) a'—a3—R(T)+=\D
' , X+(T)= : (A27)
2 -2+ L 0z-7) 2(ag)
, -z 1+z
V:(Z',2)= 2(m—S) : D=[R(T)—a’ + as]?— 4ag[R(T)—S].

where the temporary auxiliary normalization condition a3
fdzp(z)=1 was imposedi.e., if used in a further applica- 9'(X+)= ( g(X+)— —2—8)
tion, the vertex function would have to be renormalized in X+
accordance to Eq2.3)].

1 E(x.,Sa')
1-x.  1-x.

ag
ry /___
2. The BSE forn=1 E(x.,Sa')=a N S.

We will now bring Egs.(A15),(A17) to the desired form R
for the particular choicen=1. For the numerical solution With the help of these relations we get
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J(a',Z')~
jl dx Vit(a' 2 a,z)= #V[l](a’,Z',a,Z),
T Jo (1-xF[A(T),Z;p,P] (@,2)
and imposing the auxiliary normalization
da’
- fa;in F(a’,z’;p,P)
f dzf ap(a,2)=1, (A30)
6[xi(T)]O[1—x(T)]6(D)
XE 2 . rewrite the BSE in the nonhomogenous form:

== |E[xi(T),S,a]]

~[1] oy — '\7[1] ’ oo
Using this result in Eq(A17), one gets from the uniqueness p(a’,Z)= Vg (a',2)

theorem the integral equation for the BSE structure function: —n -
—)\f dzf a V[s ](af’,Z',a,Z)p[l](a,Z),
s==

pl(a’2") (A31)
j -

VO(a,z,a',z') i

=\

3
f dzf daVW(a,z,a’,z")pM(a,2), T/{)”(a',z’):
(A28) 2)(a',Z")
O[xi(T)]16[1—x(T)]6(D)
|E[Xi(T)1S7a,]|

I
+

T

0

_ 1 O[xi(T)]6[1—x;(T)]6(D) i
_ZJ(a,Z) T st |E[Xi(T),S,a']| . V[S](CK,,Z’,a,Z)
(A29)
_bls(z—2')]
C 23(a’,2)

Notice thatx. (T) depend ona’,z’ (which are fixed from
the Ih9, aq,a,,a3 (which are fixed when the dressing is
neglected, P? in S (which is given by the binding energy of
the system and for T#0 also ona,z [throughJ(«,z) in i==
R(T.)]. This allows one to recast the integral equation into
the form more convenient for numerical treatment. ) ) )
BSE without propagator dressing (fornl). If the propa- The 6 functions in the kernel impose the prope,r boundsxon
gator dressing is omittedy;—m? and the corresponding and ensure that the rhs contributes only ter from the

O[x(T)]6[1—x(T)]6(D)
|E[Xi(T),S,a']|

T

Ts

BSE for the spectral function reads support ofp!*(a’,2').
3. BSE forn=2
plll(a/,zf):)\f dzf deVi(a’,z',a,2) p"(a,2), Now, we would firs; describe the'necessary mod.ifications
for the choicen=2 which was used in actual numerical cal-

culations in this paper. Going back to E&15) we can for
this case write
Vill(a' z' a,z)

O[s(z—2')]T?

1 D O[xi(T)]6[1—x(T)]6(D) .
B ZJ(Q'Z) T i==* |E[X|(T),S,O{’]| ' s==* F[A(O)izl!plP]F[A(TS)iZ,!pIP]
_1-x T
As mentioned above, féF=0 the kernel depends an and Ja,2) T | {F[A(T),Z";p,P]}?
z only throughJ(«,z), hence it is convenient to pick up this
case from the sum ovér and rescaling N 1-x 1
J(@,2) F[A(T),Z;p,P]]
pM(a,2)=(a,2)p N (,2), Then, the integral pppr can be cast into the form
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T N 1—x 1
{FIA(T),z";p,P]}* I(@2) F[A(T),z";p,P]

| A fld ,jl dx >
DFFF 232 ) 1" o (1-x)27

T In(1—x) dA(T)
(1-x?2 Jaz) dx

A dx
" 2)(a,2) ﬁldz Z {F[A(T),z’;p,P]}?

A 1 w da’
- ZJ(Q,Z)f_le J“"min [F(a',z’;p,P)]2 Z i:Ej 0(XI)0(1_X|)0(D)
{ T sgHE(x;,S,a’)]In(1—x,)
X —
(1-x)|E(x;,S,a")| J(e,2)

where we have first integrated the second term of the SUNTI21( o' 71y =\V2(a’,2")
over T by parts(to increase the power &f[A(T),z";p,P], ’ 0 '
the boundary term vanishes when-0,1) and then intro- <2 o ~(2]
duced the integration over’ as in the previous section. —\ | dz @ Vii(a',z'a,2)p (a,2),
Now, we can use the uniqueness theorem of P&
and identify the BS weight function on the right-hand side of (A35)
BSE:
~ 0(x;) 0(1—x;)0(D
o W zy= S PO9IA=X)0D)
ooy [ i==* 23(&’,2’)2
pPl(a’ 2 )—)\f dzf daVP?l(a’,2";a,2)p®(a,2), !
-1 —
(A32) XsgE(X;,S,a")]IN(1=X;)|x,=x,(T=0)»
V(o' 7" a,2) V(o' ,a,2)
3 0(x;) 6(1—x;) (D) o[ s(z—2')]
= o = 0(x;)0(1—x;)0(D
U ; == 2)(a,2)? 2J(a',7')? =% () 6(1=x)6(D)
TIa,z TJ(a,z
y { (a,2) y J(,2)
(1=x)|E(x;,S,a")| (1-x)|E(x;,S,a")|
—sgnE(x;,S,a’)]In(1-x) . (A33) —sgiE(X;,S,a")]In(1—-x)

X =x;(Tg)

Before treating the general case with a fully dressed propa-  pressed ladder BSE for =a2. When all the self-
gator we consider in the next subsection the pure 'addeénergies are taken into account the functiér,z) does not
BSE. . ) , factorize and the numerically convenient redefinitioede}

a. BSE without propagator dressing (for=r2). In this  cannot be used. Nevertheless, we can still separate from the
case we can proceed in a way very similar to the undressegieqral over spectral variables, and the sum ovef the
BSE forn=1, only with a different rescaling factor, term which depends om andz only throughd(«,z), namely
the part for whichs;— 5(ai—mi2) andT=0. Explicitly, us-

p(a,2)=3(a,2)%p)(a,2), ing the notation

Ja' 2" )2 Wa' 2 a,2,T,a;,a;,a3)
V[z](a',z’,a,z)= 5 Vil(a' z' a,z).
I(a,2) ~ 0(xi)0(1—xi)0(D)[ T a,2)
Imposing the auxiliary normalization == 2)(e,2) (1=x)[E(xi,S,a")|
f dzJ apl(a,2)=1, (A34) —SgE(X;.S,a )]'”(1_"‘)] !
X =%;(T)
we can write and imposing the normalization condition
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v PP (2P+0)?=4M?+Q?,
1:f dzf da———, (A36)
-1 —» J(a,z)2
2
the BSE can be rewritten as (2P+q) - (2k+q+P)=2k- (2P+q)+2M2+ %
p[zl(a’,z')=)\V([)2](a’,Z')
+Afdzj da>, V(o' 7', a,2)p?)(a,2), (2P+q)-(2k+q+P) 1 1+ 4k-(2P+q)
T =3 - 5 5
(2P+q)? 2 aM2+Q?
[2] (- 1 -
Vi'i(a',z )=—§ dazo(az)
Taking this into account we can write
X 2, 2 60x)6(1-%)6(D) ,
I i [ d% — 4k-(2P+q)
2\ —
' == ; 4+ —
XsgnE(x;,S,a")]In(1—x;), G(Q%) 2] (277)42(1_[1 D')(FF) 1 4M2+ Q2
VIFZ]((I,,Z,,(I,Z) (84)
= f dago(as) f da;da, 3 =
I1 D,=D(k+§;m2>D(—k+—;m2)
X[ﬁlﬁz(l_5T’0)+510'2+O'152+0'10'2] =1
><V(a"z/,a,z,T,al,az,ag,), XD k+q+;,m2)’ (BS)
where inVi(a’,z') we takex;=x,(T=0), a;=m?, a,
=m2 and in the last terms;=8(a;—m?) and o= (a;
—md) i= _
m),i=12. rrzﬁmg,mq T'(k,P). (B6)

APPENDIX B: ELASTIC ELECTROMAGNETIC

FORM FACTOR
) , . ) _ Now, we will expressG(Q?) in terms of spectral func-
In this appendix we derive the expression for the elastiGigns of the bound state vertex functiofis rewriting first the

electromagnetic form facta®(Q?). The relevant matrix el- product of the propagators with the help of the Feynman
ement is diagrammatically depicted in Fig. 4 and the Startingbarametrization.

equation for the electromagnetic matrix element is given by £ the product of the propagators one gets:
Eq. (4.2). The labeling of momenta corresponds to Figg4:

is a virtual photon incoming momentum and we @t=
—g%>0, andP;=P andP;=P-+q are the total momenta of 3

1
bound state in in- and out-state, respectively. For simplicity, H D;=D| k+q+ E lf dy
we will consider the equal mass caset=m5=m?. =1 2)2)-1
The form factorG(Q?) can easily be extracted from its 1
definition (4.1). After multiplying by P;+ P; we get % 5 5
P
2 P 2
. G,(P+q,P)(2P+q)* ke+ k- P+ 7 m-+ie
G(Q9)= : (B1)
e(2P+q)? 1 1
=J dsf dy
The matrix element is evaluated between on-shell states of 0 2s-1
appropriate composite scalar, i.22=(P+q)?=M? which
- 1
implies X
M2 s 3
2P.q+q2:O_ (BZ) k2+T—mZ—EQZ‘f‘ZSk-Q‘Fyk-P-HG
The one body current, reads (B7)
J#(ps,pi) = (P+2k+q)*. (B3) o ,
where the substitutiog=s+ (1—s) » was applied and rela-
Using Eq.(B2) one can simplify tions P-q= Q%2 andP?=M? were used.
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In the next step we combine PTIfor n=2) of the prod-
uct of the bound state vertex functions.

f da’ldazf dz,dzp?N(ay,21) p! (2,2,)

Lo

2

M
G=k2+ 7 Hmtx(z-z) ke PHx(1+25)k g

I'd4) x(1—x)
rere) 4

2

—X(1+22)%—(1—X)a1—Xa2+ie. (B8)

Making use of the Feynman variakliléor matching Eq(B7)
with the term in large brackets of E(B8), the relation for
the form factor(B4) can be rewritten as

LD ][l

{1+ (2P+q)-k

1(Q?)

4 (2P+q)?
_ )2
1-1 f (2m)* [c—k?—k-(aP+bq)—ie]”’

a=t[z;+x(z,—zy) ]+ (1-t)y,

b=tx(1+2z,)t+2s(1-t),

(B9)

QZ M2
c= b__T+(1 tym?+t(1—X) o+ txas,

where we have omitted the vertex weight functions and the
«,Z's integrals[exactly the pre-factor in front of the large

bracket in Eq(B8)]. Integration over the momentukwith
the shiftk+ (aP+bq)/2—K] then yields

PHYSICAL REVIEW D 67, 085007 (2003

. 2k-(2P+Qq)
I'(7) d*k 4M?+Q?
I'(3)) (2m)*[c—k?*—k-(aP+bq)—ie]’

4(Pa+qgb)-(2P+0)
4M?+Q?

_I(5)
4(4m)?

(B10)

1 5
c+ Z(Pa+qb)2}

This relation can be further simplified using E§2) in both
the numerator and the denominator,

(1+y)/2
dtf dxj dyf

x(1—=x)t3(1-1)%(1—-a)
QZ 5
{—b(b a— 1)—r}

I'(4)
" (4m)?

(B11)

M2
r= —(1—a2)T+(1—t)m2+t(1—x)a1+tXa2,

a=t[z;+x(z,—2z) ]+ (1-1)y,
b=tx(1+2z,)t+2s(1-1).

It can be shown that fo§2=0 the denominator is nonzero.
The functionl (Q?) can be easily calculated numerically. In-
cluding the missing prefactors the elastic electromagnetic
form factor is given by

G(QY
% 1

:f daldazf dzdz,p(@y,21) p?(a2,22)1(Q?).
0 “1

(B12)
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