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Study of relativistic bound states for scalar theories in the Bethe-Salpeter
and Dyson-Schwinger formalism
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The Bethe-Salpeter equation for Wick-Cutkosky-like models is solved in the dressed ladder approximation.
The bare vertex truncation of the Dyson-Schwinger equations for propagators is combined with the dressed
ladder Bethe-Salpeter equation for the scalarS-wave bound state amplitudes. With the help of the spectral
representation the results are obtained directly in Minkowski space. We give a new analytic formula for the
resulting equation simplifying the numerical treatment. The bare ladder approximation of the Bethe-Salpeter
equation is compared with the one with dressed ladder. The elastic electromagnetic form factors are calculated
within the relativistic impulse approximation.
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I. INTRODUCTION

In quantum field theory the two body bound state is d
scribed by the three-point bound state vertex function
equivalently, by Bethe-Salpeter~BS! amplitudes, both of
them are solutions of the corresponding~see Fig. 1! covari-
ant four-dimensional Bethe-Salpeter equations~BSE! @1#. Up
to now most of the studies were restricted to the case w
irreducible interaction kernel is approximated by~the sum
of! single particle exchanges. In this so-called ladder
proximation the scattering matrix is given by the sum of t
generated ladders. It is known that such an approximatio
not sufficient when more realistic models are conside
@2–4#. To move beyond this approximation one is in pract
confined to the use of some phenomenologicalAnsätze. ~In
hadronic physic, theseAnsätze are very often made alread
at the level of two point correlators. For modeling of th
gluon propagator in the context of BSE and Dyso
Schwinger equations~DSE!, see for instance@5#.!

Here we are considering some simple scalar models.
extensive review of BS studies in scalar theories~with at
most cubic and nonderivative interaction! can be found in
Refs. @6,7#. The various improvements of the simple ladd
kernel have been considered, in particular, including the s
energy effects@8,9# or contributions from crossed box dia
grams@10#. The study of the influence on the bound sta
spectrum following from the infinite resummation of certa
ladder and crossed-box diagrams can be found in Ref.@11#.
Furthermore, there is a number of interesting papers on
solution of Wick-Cutkosky models~with zero mass of the
exchanged particle!. These solutions employ various effe
tive techniques like the point form of relativistic quantu
mechanics@12#, variational calculations@13#, or the light
front dynamics@14#.

The standard approach to determine the spectrum and
BS vertex makes use of partial wave decomposition wh
reduces the four-dimensional integral equation into the tw
dimensional one. The alternative more recently exploi
treatment is based on theO(4) hyperspherical expansio
@15#. In this approach the BSE is transformed into an infin
set of one-dimensional integral equations. The notable
vantage of this approach is a good numerical converge
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and easy identification of excited bound states spectra.
Very often, the ladder BSEs are solved with the help

the so-called Wick rotation@16#. However, the backward
analytical continuation is quite difficult even for the ladd
approximation, while for more complicated cases its pro
implementation is unclear or at least highly nontrivial.

In this work we follow the method of solving the BS
directly in Minkowski space@8,17,18#, in which the prob-
lems associated with Wick rotation do not arise. The meth
is based on utilization of generalized spectral representa
for n-point Green functions in quantum field theory@19#. In
this treatment the BSE written in momentum space is c
verted into a real integral equation for a real weight functi
with a number of independent variables dependent on de
of the model. We extend the earlier work@8# first to the case
with unequal masses of constituents. This then allows u
treat the ladder BSE in which all propagators~of constituents
and of the exchanged particle! are fully dressed. This is
achieved by the implementation of the Lehmann represe
tion of the propagator:

G~p2!5E dvs̃~v!D~p;v!,

~1.1!

D~p;v!5
1

p22v1 i e
; s̃~v!5Rd~v2mpole

2 !1s~v!,

wheres(v), which is a smooth function, nonzero above
threshold, is determined by the Dyson-Schwinger equati
~DSE!. In the pole term we can takeR51, a choice corre-
sponding to the conventional on-shell renormalizati

FIG. 1. Diagrammatical representation of the BSE for the bou
state vertex function.
©2003 The American Physical Society07-1
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scheme (G has a unit residuum when momentum approac
a simple pole at physical mass!.

To account for the effect of self-energy we transform t
momentum BSE to the form suitable for a complement
solution together with the appropriate DSE for propagato
Note here that the perturbative one loop contribution
been already considered in@8# and a certain Euclidian ver
sion of this problem has also been investigated@9#. In quali-
tative agreement with@9# we have found that the critica
value of coupling gives the domain of applicability of BS
~at least in its ladder approximation!. The couplings below
the critical one allow only solutions for relatively weak
bound states. It is even more interesting that the effect of
propagator dressing on bound state spectra is rather sma
comparison with the bare ladder approximation the sa
binding energy is then achieved with the coupling smaller
about several percent, even for values of the coupling c
to the critical one.

Clearly, when we take some or even all particle propa
tors dressed, the number of spectral integrations increa
Note here, that up to the rather exotic case of massless W
Cutkosky model the appropriate solution is not known a
lytically but must be found numerically. Mainly due to th
reason we reformulate the equation obtained by Kusakaet al.
@8# and we offer the solution where the appropriate integ
kernel is free of any additional numerical integration~see
Appendix of Ref.@8# for the original solution!. The elimina-
tion of this numerical integration then not only improv
numerical accuracy but also reasonably decreases the
time.

To see explicitly the effect of radiative corrections w
compare the derssed BSE results with its bare ladder
proximation. We set the parameters of our model to that u
in Refs.@15# and@17# to compare the bare ladder solutions
those obtained before in@8,15,17#.

Having solved equations for spectral functions, one c
determine the BS amplitudes in an arbitrary reference fra
This makes this technique suitable for calculations of
sponse to a external fields. In Sec. IV we briefly introdu
the formulas defining the elastic charge form factorG(Q2)
in relativistic impulse approximation~RIA!. Although the
elastic form factor represents a simple dynamical observa
its Minkowskian calculation represents a nontrivial task. F
this purpose we consider the~massive! Wick-Cutkosky
model given by a Lagrangian gauged as follows:

L5~Dmf1!1Dmf11
1

2
]mf2]mf21

1

2
]mf3]mf3

2
1

4
FmnFmn2V~f i !,

~1.2!

V~f i !5~m1
21gf3!f1

1f11S m2
2

2
1

g

2
f3Df2

21
1

2
m3

2f3
2 ,

where the covariant derivative isDm5]m2 ieAm . In our
form factor calculations the effects of scalar dressing w
not taken into account since it would significantly increa
the computational complexity of the problem. Furthermo
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it is assumed thate!g which implies that the interaction o
the charged particle fieldf1 with the electromagnetic field
can be treated perturbatively. As in Ref.@9#, we have chosen
the same coupling constant for interaction of the fieldf3
with the fieldsf1 andf2. The form factors were calculate
for several sets of masses of constituent and exchanged
ticles.

II. DRESSED LADDER BETHE-SALPETER EQUATION

The BS amplitude for bound state (f1 ,f2) in momentum
space is defined through the Fourier transform of

^0uTf1~x1!f2~x2!uP&

5e2 iP•X^0uTf1~h2x!f2~2h1x!uP&

5e2 iP•XE d4p

~2p!4 e2 ip•xF~p,P!, ~2.1!

where X[h1x11h2x2 and x[x12x2, so that x15X
1h2x, x25X2h1x. Here p1,2 are the four-momenta o
particles corresponding to the fieldsf1,2 that constitute the
bound state (f1 ,f2). The total and relative momenta ar
then given asP5p11p2 and p5(h2p12h1p2), respec-
tively, andP25M2, whereM is the mass of the bound stat
Finally, P•X1p•x5p1•x11p2•x2. From now on we will
put h15h251/2, which corresponds to the usual separat
of center of mass motion for equal mass case, but can be
employed for unequal masses~althoughX is then not the
coordinate of the center of mass!.

Introducing the BS vertex functionG5 iG1
21G2

21F, the
homogeneous BSE for aS-wave bound state reads

G~p,P!5 i E d4k

~2p!4 V~p,k;P!G1~k1P/2!

3G2~2k1P/2!G~k,P!. ~2.2!

The bound states appear as poles of the scattering ma
The normalization condition for the BS vertex function fo
lows from the requirement that the pole appropriate to
given bound state is a simple one:

2iPm5E d4p

~2p!4E d4k

~2p!4
Ḡ~k,P!F ~2p!4d4~p2k!

3S ]

]Pm
G1~p1!G2~p2! D1 iG1~p18!G2~p28!

3S ]

]Pm
V~p,k;P! DG1~p1!G2~p2!GG~p,P!, ~2.3!

where Ḡ(p,P) is the conjugate ofG(p,P) and p1,256p
1P/2,p1,28 56k1P/2 ~for the details see, e.g., Ref.@6#!.

In this work we do not solve the BSE with the most ge
eral irreducible scattering kernelV ~the most general struc
ture of the kernelV written in terms of its perturbation theor
integral representation~PTIR! can be found in Ref.@8# or
@19#!. Here we restrict ourselves to the case of dressed lad
7-2
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STUDY OF RELATIVISTIC BOUND STATES FOR . . . PHYSICAL REVIEW D 67, 085007 ~2003!
approximation with f3-exchange, in which V(p,k;P)
5g2G3(t), wheret denotes the usual Mandelstam variab
t5(p2k)2. Note that for the bound state of particle
(f1 ,f2) only the t-channel interaction above is effectiv
whereas for the bound state of (f i ,f i),i 51,2 one has to
consider also possibleu and s channel diagrams. In the
present work we study the case (f1 ,f2) due to its simplicity
and leave the other cases for discussion elsewhere. Le
also recall that in the~dressed! ladder approximation, define
by the exchange of chargeless scalarf3, the photon coupling
to f1 alone~one particle current, or in other words RIA! is
by itself gauge invariant, when taken between the co
sponding solutions of BSE. The normalization conditi
~2.3! in this approximation reduces to the conditionG(Q2)
51. We will solve the BSE for massive constituents (m1,2
.0) andm3>0, the invariant mass of the bound state s
isfies 0<P2,(m11m2)2.

Taking the dressed kernel and the full propagators of c
stituent particles into account, the right-hand side~rhs! of
BSE ~2.2! can be written as

ig2)
i 51

3 E da i s̃~a i !E d4k

~2p!4

3D~k1P/2;a1!D~2k1P/2;a2!D~k2p;a3!G~k,P!.

~2.4!

The interesting unequal-mass ladder case of Ref.@20# is also
described by Eq.~2.4!, althoughh15h251/2 andp and k
are not relative momenta. Since the dependence on mom
in Eq. ~2.4! is explicit, one might always rescaleG(p,P) to
proper relative momentum.

The integral representation for the BS vertex functi
may be written as@19#

G~p,P!5E
21

1

dzE
amin(z)

`

da
r [n]~a,z!

@a2~p21zp•P1P2/4!2 i e#n
.

~2.5!

The positive integern represents a free parameter witho
clear physical meaning. One can take advantage of this f
dom of choice to pick upn so that the numerical solutions o
integral equations for spectral functions are made m
stable. The spectral functionsr [n] (a,z) for differentn can be
related by integration overa by parts. Kusakaet al. @8#
choosen52 for their numerical solution of the BSE, w
adopt the same value in this paper.

The bare~symmetric! Wick-Cutkosky model correspond
to the choice:a15a25m2, the exchanged boson is massle
(a350), and no radiative corrections are considered. T
model is particularly interesting because it is the only e
ample of the nontrivial BSE which is solvable exactly@16#.
For this model, there is no freedom in choice ofn and ~for
the S-wave bound state! the expression~2.5! reduces to the
one-dimensional PTIR:

G~p,P!5E
21

1

dz
r~z!

m22~p21zp•P1P2/4!2 i e
. ~2.6!
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Using a technique similar to the one used in Ref.@8#, the
BSE can be converted to the following real integral equat
for the real spectral function:

r [n]~a8,z8!5lE
21

1

dzE
amin(z)

`

daV[n]~a8,z8;a,z!r [n]~a,z!,

~2.7!

where we denotedl5g2/(4p)2. The derivation is presente
in Appendix A, where the explicit expressions for particul
choicesn51,2 are given. The central results of this work a
expressions obtained forV[n] , which are simpler that the
ones presented in Ref.@8#. No additional integration is re-
quired which decreases the computer time necessary for
merical calculation. Besides, our formulas also hold for u
equal masses of the constituents. The extension~together
with above-mentioned simplification! to the case of a more
complicated scattering kernel is not so straightforward,
we believe that it is possible. Note also, that due to the pr
erty of solid harmonic with respect to the integration over t
momentum the presented procedure can easily be gen
ized for the bound state with nonzero spin~here, the total
orbital momentum! @8#.

A bound state with equal composite masses is descr
by the vertex functionG which is symmetric under the trans
formationP•p→2P•p. In terms of the weight function this
symmetry readsr(a,z)5r(a,2z). However, there are so
lutions that do not respect this symmetry even in the cas
equal masses. These are usually called ghost solutions
the appropriate amplitudes have a negative norm. Such s
tions are often considered to be nonphysical and it is s
posed that they point at inner inconsistency in the descrip
of relativistic bound states within the BS formalism, at lea
in the ladder approximation. Here, it is important to menti
that the Lagrangian~1.2! describes the models that are
subset of theories with potentials unbounded from below
in a very strict sense they are discarded due to the vac
instability. On the other hand one can assume, at least
sufficiently small couplings, the existence of local minima
the potentials is sufficient to support of the existence
ground state of the theory. While in the large coupling
gime, say forg/m@1 no reasonable physics can be learn
from the perturbation theory and/or from an equationlike la
der BS by itself. To conclude, we note that such ideas
supported by at least two facts. The ghost BS solutions
appear only for a large value ofl. Furthermore, from the
Dyson-Schwinger study we know that the scalar theory st
ied here makes sense only up to a certain critical coupl
see e.g.,@9,21#.

The important question arises, what is the validity of t
full theory when renormalization is properly taken into a
count. Although the quantitative answer lies beyond the
proximations used in this paper and requires more car
investigation, we make a simple attempt to find the dom
in which self-consistent solutions of the BSE and Dyso
Schwinger equations~within the framework of reasonabl
approximations! exist. Furthermore, we inquire an influenc
of scalar propagator dressing on the solution of the BSE
the bound states.
7-3
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III. DRESSING PROPAGATORS
BY THE DYSON-SCHWINGER EQUATIONS

The solution of the DSE for the scalar models with t
help of spectral decomposition will be discussed in detai
our forthcoming paper@21#. Here we give only a brief pre
sentation of the DSE in bare vertex approximation, th
renormalization, rearrangement in terms of the spectral fu
tion, and some properties of solutions, important for our f
ther discussion of the BSE. In this section we assumem3
,m11m2, so that the propagator of the exchanged part
F3 has an isolated physical pole.

By dressing of the scalar propagators in our study of B
we mean only the dressing due to the ‘‘strong’’ interacti
between scalars, the coupling to the electromagnetic fiel
neglected. Let us now write the strong interaction part of
Lagrangian~1.2! in terms of bare, unrenormalized quantiti
~fields and coupling constants!, labeled by subscript ‘‘0:’’

Lstrong52g01f01
1 f01f032

g02

2
f02

2 f03. ~3.1!

In the previous section we have chosen the strength of b
couplings to be the same. Here, we distinguish the bare
plings, anticipating that they are renormalized by differe
amounts~see below!.

The kinetic terms are parametrized by the unrenormali
massesm0i . These masses undergo theinfinite mass renor-
malization

m0i
2 5mi

22dmi
2 , i 51,2,3. ~3.2!

To rescale the residuum of the full propagators to unity,
will complement the infinite mass renormalization by t
finite ~since the model is superrenormalizable! renormaliza-
tion of the fields and coupling constants

f0i5AZif i , i 51,2,3, g0i5
1

ZiAZ3

gi , i 51,2.

~3.3!

That is, we will employ below the on shell renormalizatio
scheme in which the propagators have unit residua w
momentum approaches its mass shell valuep2→m2.

In this paper we consider the Dyson-Schwinger equati
in the simplest approximation in which the proper vertic
are replaced by the bare onesGoi5goi . Then, the DSE in
their unrenormalized form read

G0i
21~p!5p22m0i

2 2P0i~p2!, i 51,2,3,

P0i~p2!5 ig0i
2 E d4q

~2p!4
G03~p2q!G0i~q!, i 51,2, ~3.4!

P03~p2!5 i E d4q

~2p!4 (
i 51,2

g0i
2 G0i~p2q!G0i~q!,
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whereG0(p) is the Fourier transform of the full unrenorma
ized propagatorG0i(x2y)5^0uTf0i(x)f0i(y)u0& and P0i
is the corresponding self-energy.

Under the field strength renormalization the propagat
scale likeG0i5ZiGi . Multiplying the equations forG0i

21 in
Eq. ~3.4!, definingP i5ZiP0i , and making use of Eq.~3.3!,
one gets the rescaled DSE:

Gi
21~p2!5Zi~p22m0i

2 !2P i~p2!,

P i~p2!5 igi
2E d4q

~2p!4
G3~p2q!Gi~q!, i 51,2, ~3.5!

P3~p2!5 ig2E d4q

~2p!4 (
i 51,2

Gi~p2q!Gi~q!.

The renormalization of proper self-energies proceeds
double subtraction:

P iR~p2!5P i~p2!2P i~m2!2~p22mi
2!

dP i~p2!

dp2 U
p25m

i
2

.

~3.6!

Identifying the appropriate renormalization constants@Eqs.
~3.2!,~3.3!#

dmi
25P i~mi

2!/Zi , Zi511
dP i~p2!

dp2 U
p25m

i
2

, ~3.7!

we can immediately write the full propagator in terms
finite physical quantities

Gi
21~p!5p22mi

22P iR~p2!, i 51,2,3. ~3.8!

The DSE for the renormalized self-energies are given by
~3.5! and subtraction@Eq. ~3.6!#.

For the purpose of our BS calculation, we now fix th
renormalized couplings and masses as follows:

g15g2[g; m15m2[m; m35
m

2
~3.9!

whereg is the coupling constant from Eq.~1.2!. That is, we
will compare the solutions of the BSE for the bare a
dressed ladder kernel taken for the same numerical valu
unrenormalized and renormalized coupling constant, resp
tively. The masses are fixed to allow comparison with so
of the results of Refs.@8,15,17#.

Now, it is a straightforward task to evaluate the spect
representation of the renormalized self-energy. Lehmann
resentation~with unit residuum! for Gi reads:

Gi~p2!5E
0

`

ds
s̃~s!

p22s1 i e
, s̃~s!5d~mi

22s!1s~s!,

~3.10!
7-4
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Notice that functionss i ,i 51,2, have the thresholds a
mi ,th5(mi1m3)252.25m2, whereas the functions3 has the
threshold atm3,th5(m11m2)254m2. Analogously, for the
self-energies:

P iR~p2!5E
mi ,th

`

da
rp i~a!

p22a1 i e

~p22m2!2

~a2m2!2
. ~3.11!

The spectral representation forPR explicitly satisfies
PR(m2)5PR8 (m2)50 following from Eq. ~3.6!. Rewriting
now the relation betweenG and P in the form G5D
1DPG(D being the free propagator with the physical ma!
and taking its imaginary part, we arrive at the first relati
between the spectral functionss andr:

s i~v!5
rp i

~v!

~v2mi
2!2

1~v2mi
2!PE da

v2aFs i~v!rp i
~a!

~a2mi
2!2

1
s i~a!rp i

~v!

~v2mi
2!2 G , i 51,2,3, ~3.12!

whereP* stands for principal value integration. All the func
tions in Eq.~3.12! are positive and regular above the pertu
bative thresholds and identically equal to zero elsewhere

Substituting the spectral representations~3.10! into the
DSEs~3.5!, making the subtraction as in Eq.~3.6!, and com-
paring to the left-hand side~lhs! in the form of Eq.~3.11!,
one gets after lengthy algebra:

rp i
~v!5lE dadbB~a,b;v!s̃3~a!s̃ i~b!, i 51,2,

~3.13!

rp3
~v!5l (

i 51,2
E dadbB~a,b;v!s̃ i~a!s̃ i~b!,

wherel5g2/(4p)2 and the functionB(a,b;v) is related to
the Källen functionl as follows:

B~a,b,v!5
Al~a,b,v!

v
Q~v2~Aa1Ab!2!,

~3.14!

l~a,b,v!5a21b21v222ab22av22bv.

Before the numerical treatment the explicit integratio
separating thed-function parts of Lehmann weightss̃-has to
be performed.

Equations~3.12!,~3.13! constitute the closed system of in
tegral equations for spectral functions which can be sol
numerically by iterations without any additional approxim
tion. So obtained dressed propagators have been used
solving the Bethe-Salpeter equation. The results are
cussed in the Sec. V. Before leaving this section we rev
some important features of our solutions of DSE.

The behavior of the imaginary parts of propagators—
Lehmann functionss i(a)—for fieldsF1,2,3 is shown in Fig.
2.
08500
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The renormalization constantZi is calculated from the
relation

Zi512E da
r i~a!

~a2mi
2!2

. ~3.15!

From Fig. 3 we can see that the field renormalization c
stant Z1,2 changes sign from positive to negative at som
critical point l̃crit5gcrit

2 /(4pm)2.1.560.1, where the error
reflects the difficulty of making the numerical estimate of t
value for which the solution cannot be found and the dim
sionless coupling is defined asl̃5l/m2 . We did not find
any numerical solutions of DSE for couplings larger th

FIG. 2. The imaginary part of the renormalized propagators

different values of couplingl̃, calculated from the DSE in bare
vertex approximation. Upper curves are for particlesF1,2 ~which
have identical self-energies!, lower ones for particleF3.

FIG. 3. The dependence of field strength renormalization c

stants on the couplingl̃.
7-5
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l̃crit . It is reasonable to suppose that the quanta assoc
with the fieldsf1,2 do not describe physical particles whe
l̃.l̃crit .

IV. ELASTIC ELECTROMAGNETIC FORM FACTOR

The electromagnetic form factors parametrize the
sponse of bound systems to external electromagnetic fi
The calculation of these observables within the BS fram
work proceeds along the Mandelstam’s formalism@22#. For
the elastic scattering on theS-wave bound state, (Pi

25Pf
2

5M2) the current conservation implies the parametrizat
of the current matrix elementGm in terms of the single rea
form factorG(Q2),

Gm~Pf ,Pi !5G~Q2!~Pi1Pf !
m. ~4.1!

The elastic electromagnetic form factorG(Q2) depends only
on the square of photon incoming momentumq and we use
the usual SLAC conventionQ252q2, so thatQ2 is positive
for elastic kinematics.

The matrix element of the current in relativistic impul
approximation~RIA! is diagrammatically depicted in Fig. 4
In this paper we are not taking into account the dressing
the scalar propagators when calculating the charge form
tor. Then, the matrix element is given in terms of the B
vertex functions as

Gm~P1q,P!5 i E d4k

~2p!4
ḠS k1

q

2
,P1qD

3@D~pf ;m1
2! j 1

m~pf ,pi !D~pi ;m1
2!

3D~2k1P/2;m2
2!#G~k,P!, ~4.2!

where we denoteP5Pi and j 1
m represents one-body curre

for particlef1, which for the bare particle readsj 1
m(pf ,pi)

5pf
m1pi

m , wherepi ,pf is initial and final momentum of the
charged particle inside the loop in Fig. 4, i.e.,pi5k
1P/2,pf5q1k1P/2.

We have already mentioned in the previous section tha
the vertex functionsG are a solution of the BSE with a
kernel corresponding to the exchange of single charge
particle, the RIA defined above is by itself gauge invaria
and the normalization condition for the BS amplitudes
equivalent to the normalizationG(0)51.

FIG. 4. Diagrammatic representation of the electromagnetic
rent bound state matrix element.
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The main result of this paper, as far as charge form fac
is concerned, is the rewriting of the rhs of Eq.~4.2! directly
in terms of the spectral weights of the bound state ver
function. It allows the evaluation of the form factor by ca
culating the integral of nonsingular expression, without ha
ing to reconstruct the vertex functionsG(p,P) from their
spectral representation. The derivation of this integral
volves some lengthy algebra and is relegated to Appendix

V. NUMERICAL RESULTS

A. Bare ladder BSE

We have solved the bare ladder BSE for symmetric (m1
5m25m) scalar theory with bare ladder kernel

V~p,k,P!5V~p2k!5
g2

~p2k!22m2
3

, ~5.1!

and bare constituent propagatorsGi(pi)5Di(pi ,mi) by it-
erations of the integral equation for spectral functions. T
standard procedure was followed: after fixing the bound s
mass (P2) we looked for the solution by iterating spectr
function for fixed dimensionless ‘‘coupling strength’’l̃
[g2/@(4p)2m2#. If the iterations failed—measure bein
both the difference of the rhs and lhs of the integral equat
and deviation of the auxiliary normalization integral from
predefined value—we were changingl̃ ~halving intervals of
successive guesses! until the solution was found.

In the case of the Wick-Cutkosky model the on
dimensional integral equation~wcmsolve! was solved. Al-
though the solution of this one-dimensional integral equat
could be found by the inversion of its discretized form, w
have tested the iteration procedure~used later also for mas
sive exchange!. The equation was discretized by numeric
Gauss integration, it appears that it is sufficient to take
Gauss points~though the numbers cited in Table I are o
tained with 98 points!. It is known @6# that P250 corre-
sponds tol̃52 from which our result slightly deviates in th
fifth digit. We have also reproduced~up to four published
digits! all results for the Wick-Cutkosky model from@15#. In
Fig. 5 the weight functions are plotted against spectral v
ablez for several fractions of bindingh5AP2/2m.

For the massive scalar exchange the two-dimensiona
tegral equations~A31!,~A35! were solved. We have found~in
agreement with@8#! that numerical errors are about one ord

r-

TABLE I. Dimensionless couplingl̃5g2/(4pm)2 as a function
of fraction of bindingh5AP2/2m for two cases of exchanged mas
m3. The casem3 /m50 is the Wick-Cutkosky model. The secon
casem3 /m50.5 is compared with the result obtained by Kusa
et al. @8#.

m3 /m h50 h50.2 h50.5 h50.8 h50.999

0 1.9998 1.954 1.592 0.9067 0.03322
0.5 2.5663 2.498 2.142 1.421 0.3873
Ref. @8# 2.5662 2.4988 1.4056 0.3853
7-6
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of magnitude bigger forn51, hencen52 is preferable and
only the results with this choice are discussed below.

For numerical solution we discretize integration variab
a and z using Gauss-Legendre quadratures~with tangent
mapping from̂ 21,11&→^amin ,`& for a). Equation~A35!
is solved on the net ofN5Nz* Na points which are spread o
the rectangle (21,11)*(amin ,`). The valueamin is given
by the support of the spectral function~see Appendix A!. We
have not optimized the grid during the iteration procedure
it was done in the study@8#. Instead, we have solved th
equation for several different numbers of grid points wh
keeping fixed the ratio ofNa /Nz and then extrapolated th
results to the ‘‘ideal’’ case withNa5Nz5`. Examples of
numerical convergence for some cases of bound states
presented in Table II. In Table I we compare our results
m35m/2 with those of Ref.@8#.

Below we show the dependence of charge form factor
the parameters of the model: on the range of interaction c
acterized by the inverse mass of exchanged mesonm3 and on
the strength of forces which bind the particles together.
calculate the form factors we first have to solve the BSE
chosen sets of parameters. We vary the parameters as
lows:

~1! First we solve the BSE for several bound state mas
P2 keeping the ratiom3 /m fixed; ~2! then we vary the mas
of the exchanged meson, keeping the masses of all stu

FIG. 5. The spectral functionr(z) of the bound-state vertex in
the Wick-Cutkosky model for several values ofh5AP2/2m .

TABLE II. The couplingl̃5g2/(4pm)2 for bare ladder BSE as
a function of the number of mesh-points.

Nz3Na : 16316 32332 64364 96396 `

h50.999;m350.50 0.3782 0.3754 0.3794 0.3816 0.387
h50.950;m351.00 1.310 1.341 1.355 1.360 1.371
h50.950;m350.50 0.752 0.761 0.777 0.783 0.804
h50.950;m350.10 0.306 0.350 0.375 0.385 0.409
h50.000;m351.00 3.143 3.273 3.342 3.366 3.416
h50.000;m350.50 2.207 2.343 2.445 2.483 2.566
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bound states fixed@our choice ish5AP2/(2m)50.5] and
determining the corresponding coupling strengthsl̃.

Where the independent numbers were available@15#, they
agree with our results~see Table III!. If the mass of the
exchanged particle becomes small~but nonzero! the conver-
gence of our numerical procedure becomes somewhat po
and more sensitive to the initial guess. For illustration t
weight functionr̃ [2] is plotted in Figs. 6 and 7 for two dif-
ferent values of exchanged mass.

B. Dressed ladder BSE

In this section we finally discuss numerical solutions
the BSE including the dressing of the propagators. We in
duce the dressing by two steps, switching it on first only
the exchanged particle and in the second step also for
stituents. We should point out that since the solution of
DSEs in the bare vertex approximation~by which we dress
the propagators! breaks down for coupling constants larg
that l̃crit51.5 we can consider to only rather weakly bou
states: for the bare BSEl̃51.5 corresponds toh
5AP2/(2m).0.78.

The propagator dressing of the exchanged particle in
one loop approximation was already considered in Ref.@8#.
We go beyond the one loop approximation and determine
continuum part of Lehmann weights3 from the DSE~3.12!
with the same value of the coupling constant. That is,

TABLE III. Dimensionless couplingl̃5g2/(4pm)2 for several
selections ofm3 /m5 and fraction of bindingh5AP2/2m, com-
pared to the results of Ref.@15#.

h 0.0 0.4 0.5 0.5 0.5 0.95 0.95

m3 /m 1.0 0.25 1.0 2.0 4.0 0.1 1.0
l 3.416 1.77 2.928 4.911 9.997 0.409 1.37
Ref. @15# 3.419 na 2.940 na na 0.416 1.37

FIG. 6. The rescaled weight functionr̃(a,z) of the bound-state
vertex for h50.95 calculated in bare ladder approximation. T
mass of the exchanged bosonm350.5m.
7-7
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VLADIMI´R ŠAULI AND J. ADAM, JR. PHYSICAL REVIEW D 67, 085007 ~2003!
insert into Eq.~2.7! the dressed kernel

G3~p2q!5E
0

`

dv
s̃3~v!

~p2q!22v1 i e
~5.2!

with the pole situated atm35m/2. As noted above, the con
stituent propagators are at this stage left undressed in
BSE, although all self-energies have been taken fully i
account in DSEs. The integration overv ~5.2! in the BSE
kernel was performed using Gaussian quadrature with
points. Including the kernel self energy slightly decreases~by
at most a few percent! the mass of the bound state, even f
l̃.l̃crit .

Let us point out that the kernel of Eq.~2.7! in the dressed
ladder kernel approximation is free of any singularitie
The accuracy of the numerical solution is comparable to
bare ladder case. For example,l̃50.734 forh50.95 for the
grid of 32332 points andl50.749(0.752) for the grid
of 64364(96396), the convergence is similar to the ca
of bare ladder~see Table I!. The extrapolated~to very
large grid! values of l ’s for fractional binding h
50.999,0.99,0.97,0.95 are showen in Fig. 8.

In the next step we have included the self-energies of
constituents. As we shall see the effect is relatively small
l̃!l̃crit , but increases rapidly asl̃→1. As in the previous
case the Lehmann weights have been calculated from
DSEs solved for the same value of the coupling. As the fi
guess we have used the solution of the BSE linearized
s̃(a), i.e., with only one propagator dressed. This gues
rather close to the exact solution forh<0.9.

The constituent particles in a weakly bound systemh
.1) live near their mass shell. Therefore, one can naiv
assume that the values of coupling for such a weakly bo
state should not be strongly affected by dressing of cons
ent propagators. For deeper bound states we have found
the effect of the dressing of constituents is much larger t
that due to the dressing of the kernel~exchanged particle!,
Fig. 8. The couplings for fully dressed BSE are not det

FIG. 7. The same as in Fig. 6, but form350.1m and h
50.95.
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mined with the same high accuracy as those for the b
ladder BSE, since the grids are not optimalized for very d
ferent ratios ofa ’s which appear in the kernel of the BSE

C. Charge form factor

Various form factors are extensively studied in sca
theories like the Wick-Cutkosky model~see, for example,
@23#!. In these studies the dependence of the form factor
the binding and on the range of the ‘‘strong’’ interaction h
been considered, therefore we perform a similar calcula
in our formalism.

In the approach adopted in this paper~employing the
spectral representations in the Minkowski space!, the bound
states masses and corresponding vertex functions can b
tained with good accuracy and in reasonable CPU time.
fortunately, the calculation of the scalar form factor as o
lined in Appendix B leads to more complicated resu
~B11!,~B12!. Even if one would be able to perform analyt
cally all additional Feynman integrations, the formula~B12!
still involves the four-dimensional integration over the spe
tral variables. We are taking also the integrals over fo
Feynman variables numerically with the help of Gau
Legendre quadrature, taking the number of points for eac
them equal to the one for spectral variablez. Since a rela-
tively small number of integration points~from 16 to 40! was
taken for each integration, the presented results have to
viewed rather as an estimate of form factor behavior. O
can always refine the grids at the expense of longer C
time.

We have also compared our results to those obtaine
the Gross~spectator! formalism, choosing the ‘‘scalar deu
teron’’ parameters~see@24#!. In analogy with the real deu
teron, the parameters are chosen as:m3 /m5138/938.9,h
5(23938.922.3)/23938.9.0.9988. The bound state ve
tex functions were found by solution of the Gross and
equations. All phenomenological form factors introduced

FIG. 8. The eigenvaluesl̃ calculated for the bare BSE, with
dressed kernelV and for dressed ladder BSE. Beyond the critic

value of couplingl̃crit51.5 only the bare solution is available.
7-8
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STUDY OF RELATIVISTIC BOUND STATES FOR . . . PHYSICAL REVIEW D 67, 085007 ~2003!
@24# have been ‘‘switched off’’~the limit L ’s→` are taken
in the ‘‘strong’’ form factors! when calculating the Gros
wave function and the bound state current. The electrom
netic form factors were calculated in the spectator RIA a
are described in Appendix B~using the grid 328), respec-
tively.

The form factors for several bound states listed in
Tables I and III are presented in Figs. 9 and 10, respectiv
In Fig. 9 the ratio of the exchanged and constituent mas
kept constantm3 /m50.5 and the mass of the bound sta
M5AP2 is varied. In agreement with physical expectatio
one sees that as the bound state becomes more tight the
tic form factor increases.~For the infinitely bound point sys
tem it should be equal to unity, even our deepest bound st

FIG. 9. The behavior of the elastic electromagnetic form fact
for various bound states characterized byh. The mass of exchange
particle is fixed to bem350.5m, except for the scalar deuteron ca
~D.!, which is calculated for comparison using two different grid

FIG. 10. Variation of the elastic electromagnetic form facto
with the mass of the exchanged particle whileh50.5 is fixed. The
casesh50.4, m350.25m, and the scalar deuteron are included f
comparison.
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are of course still only approaching this value.! We put into
the same plot for comparison also the scalar deuteron re
How the form factor changes with the mass of the exchan
particle is shown in Fig. 10. We included several states
which M5m, bound by the one-boson-exchange potentia
the ranger 51/m3, which is varied. Two other systems, firs
with h50.4;m350.25 and the scalar deuteron, are added
comparison. From both figures we can conclude that the
havior of the form factor is determined by the strength of t
interaction and its range rather differently for variousM. The
range of the interaction is more significant for the weak
ones. This agrees with the conclusions of Ref.@10#, which
have also compared our results for small exchanged m
h50.8,m350.15m with the Wick-Cutkosky model predic
tion for h50.784,m350 ~Tables 2 and 1 of@10#, respec-
tively!, and found only a slight difference in the rangeQ2

5(0,100m2).

VI. CONCLUDING REMARKS

The spectral representation was employed for solving
Bethe-Salpeter equation in~311! Minkowski space. The
new analytical formula for the integral equation kernel h
been derived.

The method is efficient solving both the bare and dres
ladder BSE. Solving Dyson-Schwinger equations for pro
gators leads to the appearance of a critical value of the c
pling constant, beyond which the solution collapses. T
restricts substantially the region in which the effects of dre
ing can be studied. Since the coupling is rather weak,
dressing leads only to a moderate decrease of the bound
masses: even close to the critical value of the coupling
fractional binding of the bound state of the dressed BSE
smaller than the corresponding one for the bare BSE b
most 15 percent. As an example of application of the o
tained vertex functions, we calculated the elastic electrom
netic form factor.

To further develop the method, it would be interesting
extend it to a more complicated BS kernel: trying to inclu
the cross boxed contributions,s and u channel interactions
etc. It is already known that the ‘‘spectral’’ approach us
here is suitable even for more complicated systems, for s
lar QED see Ref.@18#. One of our future goals is to manag
the complication due to fermionic degrees of freedom.
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APPENDIX A: KERNEL FUNCTIONS

In this appendix the real integral equation for the BS v
tex weight is derived in detail. The PTIR form for a scal
bound-state vertex reads

s
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G~p,P!5E
21

1

dzE
amin(z)

`

da
r [n]~a,z!

@F~a,z;p,P!#n
, ~A1!

where r [n] (a,z) is the real PTIR weight function for the
bound state vertex function, andn is a dummy parameter
The functionF is given by@19#

F~a,z;p,P!5a2~p21zp•P1P2/4!2 i e

5a2 f ~p,P,z!2 i e. ~A2!

The support ofr [n] (a,z) can be determined in general~see
@19#! for arbitrary interaction. In our case of one-boso
exchange interaction kernel one gets a bit higheramin @8#.
We discuss our treatment of the lower bounds below.

The following procedure is straightforward but a bit e
haustive. The rhs of the BSE~2.2! with the kernel given by
the exchange of the single~dressed! particle F3 has to be
rewritten in the form allowing one to extract the integr
equation for the spectral functionr [n] (a,z). The integrand
contains the two ‘‘constituent’’ propagators, the denomina
F(a,z,k,P) from the spectral representation ofG(k,P) and
the propagator of the exchanged particle~all other factors
will be skipped for a while for the sake of briefness!.
08500
-

r

Using the Feynman parametrization technique we fi
write

D~k1P/2;a1!D~2k1P/2;a2!

5
1

2E21

1 dh

@M22 f ~k,P,h!2 i e#2
,

~A3!

M2~h!5
a11a2

2
1

a12a2

2
h.

Next the denominator of Eq.~A1! is added:

D~k1P/2;a1!D~2k1P/2;a2!

@F~a,z;k,P!#n

5
G~n12!

2G~n!
E

21

1

dhE
0

1

dt
~12t !tn21

@R2 f ~k,P,z8!2 i e#n12
,

~A4!
R5at1~12t !M2,

wherez85tz1(12t)h. Now, we include the propagator o
the exchanged particle, the integral overd4k and factorsig2,
defining:
I DDDF5 ig2E d4k

~2p!4

D~k1P/2;a1!D~2k1P/2;a2!D~p2k;a3!

@F~a,z,p,P!#n

52 ig2
G~n13!

2G~n!
E

21

1

dhE
0

1

dt~12t !tn21E
0

1

dxxn11I k , ~A5!

I k5E d4k

~2p!4 F2k212k•Q2~12x!p22
x

4
P21~12x!a31xR2 i eG2(n13)

5
i

~4p!2

G~n11!

G~n13!

1

xn11~12x!n11

1

@A2 f ~k,P,z8!2 i e#n11
,

~A6!

A5
R

12x
1

a3

x
2

x

~12x!
S,
whereQ5(12x)p2xz8P/2 andS5(12z82)/4P2. Sincez8
lies in the interval^21,11&, 0<S,(m11m2)2/4. Inter-
changing the integrals overh and t with the help of:

E
21

1

dhE
0

1

dt5E
21

1

dz8F E
0

T1 dt

12t
Q~z2z8!

1E
0

T2 dt

12t
Q~z82z!G , ~A7!

T65
16z8

16z
and z85tz1~12t !h,
and introducingl5g2/(4p)2 we get

I DDDF5l
n

2E21

1

dz8E
0

1 dx

~12x!n11 (
s56

Q@s~z2z8!#

3E
0

Ts dttn21

@F~A,z8,p,P!#n11
. ~A8!

Let us separate thet dependence ofF(A,z8;p,P). First we
substitute forh into the definition ofM2, which yields
7-10
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~12t !M252tS a11a2

2
1

a12a2

2
zD1

a11a2

2

1
a12a2

2
z8. ~A9!

Next, we introduce the notation~indicating explicitly the
t-dependence ofA andR):

A~ t ![
R~ t !

12x
1

a3

x
2

x

12x
S5

R~ t !2S

12x
1

a3

x
1S, ~A10!

R~ t ![at1~12t !M25J~a,z!t1
a11a2

2
1

a12a2

2
z8,

~A11!

J~a,z![a2
a11a2

2
2

a12a2

2
z, ~A12!

in which thet-dependence ofF@A(t),z8,p,P# reads

F@A~ t !,z8;p,P#5
J~a,z!

12x
t1F@A~0!,z8;p,P#. ~A13!

Sincet-dependence ofF@A(t),z8;p,P# is linear, the integral
over t can be taken:

E dttn21

F@A~ t !,z8;p,P#n11

5
tn

nF@A~0!,z8;p,P#$F@A~ t !,z8;p,P#%n
~A14!

and hence

I DDDF5
l

2E21

1

dz8E
0

1 dx

~12x!n11

3 (
s56

Q@s~z2z8!#Ts
n

F@A~0!,z8;p,P#$F@A~Ts!,z8;p,P#%n
.

~A15!

Using this result, the BSE can be written as follows:

E
21

1

dz8E
amin(z8)

`

da8
r [n]~a8,z8!

@F~a8,z8,p,P!#n

5F E s G3E daE dzr [n]~a,z!I DDDF . ~A16!

F Es G3

[E
a1,min

`

da1s̃1~a1!E
a2,min

`

da2s̃2~a2!

3E
a3,min

`

da3s̃3~a3!, ~A17!
08500
where s̃(a i) are the Lehmann functions of the dress
propagators, reducing to thed function if the dressing is
neglected. Obviously, the rhs is still not quite in the desir
form, both F@A(0),z8,p,P# and F@A(Ts),z8,p,P#n are
functions of momentap andP.

Below we rewrite the kernel as a sum of several fractio
which after substitutiona85A(T),T50,T6 would allow to
use the uniqueness theorem@19# and extract the BSE in the
spectral form. This is possible only if the integrals overa8
on both right- and left-hand sides of Eq.~A17! are taken over
the same intervals. To show this it is first necessary to pr
that R(T)2S.0, for T50,T6 , since the functionsA(T)
→1` for x→0 and x→1 they have on for 0,x,1 the
minimum equal to

Amin~T!5~AR~T!2S1m3!21S

5R~T!1m3
212m3A@R~T!2S#. ~A18!

Next, one has to show that these lower bounds are no
conflict with the lower bound fora8 ~and the same lowe
bound fora). It is simple for the undressed equal mass ca
when the condition above taken forT50 actually defines the
lower bound fora in the following form:

a>„Am22S~z8!1m3…
21S~z8!, ~A19!

and the same fora,z→a8,z8. SinceR(T6) depend also on
a andz and since for the equal mass caseR(T6)>R(0), the
next two constrains clearly conform with the lower bound f
a8 and one can extract from them the upper bound for
integration overa:

a<m21
1

T6
@„Aa82S~z8!2m3…

21S~z8!2m2#

~A20!

@compare to Eq.~A6! of @8#, where one bracket seems to b
misplaced#. For the unequal mass case or for the dres
propagators this analysis is much more complicated, mo
due to the fact that now for some combination of parame
it can occurR(T6),R(0). The necessary conditionR(T)
2S.0 can again be proven in this case~though after much
longer algebra!, ensuring that the common lower bound f
a ’s exists. But we could not resolve the conditions~A18!
analytically, they are treated numerically.

Now, let us go back to Eq.~A17! and proceed by consid
ering first the simple case of the symmetric Wick-Cutkos
model.

1. The Wick-Cutkosky model

In this model the constituents have the same massesm1
5m25m and the mass of the exchanged particle is zero~all
propagator dressings are neglected!. Then for the S-wave
ground state vertex function, the spectral function depe
only on variablez and the denominator enters with pow
n51 @Eq. ~2.6!#:

r [n]~a,z!→d~a2m2!r~z!, ~A21!
7-11
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and in I DDDF we replace

n→1, M2→m2, R~ t !→m2, J~a,z!→0,

A~ t !→A5
m2

12x
2

x

12x
S,

I DDDF→ l

2E21

1

dz8 (
s56

Q@s~z2z8!# Ts

3E
0

1 dx

@m22xS2~12x! f ~p,P,z8!2 i e#2
.

Taking the integral overx we find ~recall that for equal
masses 0<S,m2):

I DDDF→ l

2E21

1

dz8 (
s56

Q@s~z2z8!#Ts

m22S

3
1

m21 f ~p,P,z8!2 i e
. ~A22!

Comparing both sides of the BSE and using the uniquen
theorem@19#, we get the well-known~see, e.g.,@6#! integral
equation forr [1] (z):

r~z8!5lE
21

1

dzV[1]~z8,z!r~z!, ~A23!

V[1]~z8,z!5 (
s56

Q@s~z2z8!#Ts

2~m22S!
.

Although its solution is known analytically even for exite
states, the energy spectrum still has to be found numeric
~up to theP250 corresponding tol52). For the purpose o
numerical treatment, this equation is usually rewritten in
form:

r~z8!

l
5V0~z8!2E

21

1

dzr~z!V6~z8,z!,

V0~z8!5
1

2~m22S!
;

V6~z8,z!5

z82z

12z
Q~z82z!1

z2z8

11z
Q~z2z8!

2~m22S!
,

where the temporary auxiliary normalization conditio
*dzr(z)51 was imposed@i.e., if used in a further applica
tion, the vertex function would have to be renormalized
accordance to Eq.~2.3!#.

2. The BSE for nÄ1

We will now bring Eqs.~A15!,~A17! to the desired form
for the particular choicen51. For the numerical solution
08500
ss

lly

e

this value is not the most suitable one. But since the form
manipulations are in this case the simplest, we treat it fi
for methodical reasons.

For n51 the integrand of Eq.~A15! can be decompose
into the sum of simpler fractions with the help of

(
s56

Q@s~z2z8!#Ts

F@A~0!,z8;p,P#F@A~Ts!,z8;p,P#

5
12x

J~a,z! (
T

1

F@A~T!,z8;p,P#
, ~A24!

where we have introduced a shorthand notation

(
T

f ~T!5 f ~0!2u~z2z8! f ~T1!2u~z82z! f ~T2!.

~A25!

Notice that the lhs of Eq.~A24! is nonsingular forJ(a,z)
50, so when this happens the rhs behaves like 0/0, wh
calls for some caution in the numerics. So, the integ
I DDDF now reads

I DDDF~n51!5
l

2J~a,z! (
T
E

0

1 dx

~12x!F@A~T!,z8;p,P#
.

~A26!

In the last step we introduce the spectral variablea8
5A(T) and use the dependence ofA(T) on x to convert the
integration overx into the integral overa8. Picking up ex-
plicitly the x-dependence ofA(T) we can write:

g~x![A~T!5
R~T!2S

12x
1

a3

x
1S,

g8~x!5
R~T!2S

~12x!2
2

a3

x2
5

1

12x S A2
a3

x2
2SD ,

d@a82g~x!#5 (
i 56

1

ug8~xi !u
d~x2xi !, g~x6!5a8,

x6~T!5
a82a32R~T!6AD

2~aS8!
, ~A27!

D5@R~T!2a81a3#224a3@R~T!2S#.

g8~x6!5S g~x6!2
a3

x6
2

2SD 1

12x6
5

E~x6 ,S,a8!

12x6
,

E~x6 ,S,a8!5a82
a3

x6
2

2S.

With the help of these relations we get
7-12
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(
T
E

0

1 dx

~12x!F@A~T!,z8;p,P#

5E
amin

`

da8

F~a8,z8;p,P!

3(
T

(
i 56

u@xi~T!#u@12xi~T!#u~D !

uE@xi~T!,S,a8#u
.

Using this result in Eq.~A17!, one gets from the uniquenes
theorem the integral equation for the BSE structure functi

r [1]~a8,z8!

5lF E s G3E dzE daV(1)~a,z,a8,z8!r [1]~a,z!,

~A28!

V(1)~a,z,a8,z8!

5
1

2J~a,z! (
T

(
i 56

u@xi~T!#u@12xi~T!#u~D !

uE@x6~T!,S,a8#u
.

~A29!

Notice thatx6(T) depend ona8,z8 ~which are fixed from
the lhs!, a1 ,a2 ,a3 ~which are fixed when the dressing
neglected!, P2 in S ~which is given by the binding energy o
the system! and for T5” 0 also ona,z @through J(a,z) in
R(T6)]. This allows one to recast the integral equation in
the form more convenient for numerical treatment.

BSE without propagator dressing (for n51). If the propa-
gator dressing is omitted,a i→mi

2 and the corresponding
BSE for the spectral function reads

r [1]~a8,z8!5lE dzE daV[1]~a8,z8,a,z!r [1]~a,z!,

V[1]~a8,z8,a,z!

5
1

2J~a,z! (
T

(
i 56

u@xi~T!#u@12xi~T!#u~D !

uE@xi~T!,S,a8#u
.

As mentioned above, forT50 the kernel depends ona and
z only throughJ(a,z), hence it is convenient to pick up thi
case from the sum overT and rescaling

r [1]~a,z!5J~a,z!r̃ [1]~a,z!,
08500
:

V[1]~a8,z8,a,z!5
J~a8,z8!

J~a,z!
Ṽ[1]~a8,z8,a,z!,

and imposing the auxiliary normalization

E dzE ar̃ [1]~a,z!51, ~A30!

rewrite the BSE in the nonhomogenous form:

r̃ [1]~a8,z8!5lṼ0
[1]~a8,z8!

2lE dzE a (
s56

Ṽs
[1]~a8,z8,a,z!r̃ [1]~a,z!,

~A31!

Ṽ0
[1]~a8,z8!5

1

2J~a8,z8!

3 (
i 56

Fu@xi~T!#u@12xi~T!#u~D !

uE@x6~T!,S,a8#u
G

T50

,

Ṽs
[1]~a8,z8,a,z!

5
u@s~z2z8!#

2J~a8,z8!

3 (
i 56

Fu@xi~T!#u@12xi~T!#u~D !

uE@x6~T!,S,a8#u
G

T5Ts

.

Theu functions in the kernel impose the proper bounds ona
and ensure that the rhs contributes only fora8 from the
support ofr̃ [1] (a8,z8).

3. BSE for nÄ2

Now, we would first describe the necessary modificatio
for the choicen52 which was used in actual numerical ca
culations in this paper. Going back to Eq.~A15! we can for
this case write

(
s56

Q@s~z2z8!#Ts
2

F@A~0!,z8,p,P#F@A~Ts!,z8,p,P#2

5
12x

J~a,z! (
T

F T

$F@A~T!,z8;p,P#%2

1
12x

J~a,z!

1

F@A~T!,z8;p,P#
G .

Then, the integralI DDDF can be cast into the form
7-13
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I DFFF5
l

2J~a,z!
E

21

1

dz8E
0

1 dx

~12x!2(T
F T

$F@A~T!,z8;p,P#%2
1

12x

J~a,z!

1

F@A~T!,z8;p,P#
G

5
l

2J~a,z!
E

21

1

dz8(
T

dx

$F@A~T!,z8;p,P#%2 F T

~12x!2
2

ln~12x!

J~a,z!

dA~T!

dx G
5

l

2J~a,z!
E

21

1

dz8E
amin

` da8

@F~a8,z8;p,P!#2 (
T

(
i 56

u~xi !u~12xi !u~D !

3F T

~12xi !uE~xi ,S,a8!u
2

sgn@E~xi ,S,a8!# ln~12xi !

J~a,z! G ,
u

o

p
d

s
the
where we have first integrated the second term of the s
over T by parts~to increase the power ofF@A(T),z8;p,P#,
the boundary term vanishes whenx→0,1) and then intro-
duced the integration overa8 as in the previous section.

Now, we can use the uniqueness theorem of PTIR@19#
and identify the BS weight function on the right-hand side
BSE:

r [2]~a8,z8!5lE
21

1

dzE
2`

`

daV[2]~a8,z8;a,z!r [2]~a,z!,

~A32!

V[2]~a8,z8;a,z!

5F E s G3

(
T

(
i 56

u~xi !u~12xi !u~D !

2J~a,z!2

3H TJ~a,z!

~12xi !uE~xi ,S,a8!u

2sgn@E~xi ,S,a8!# ln~12xi !J . ~A33!

Before treating the general case with a fully dressed pro
gator we consider in the next subsection the pure lad
BSE.

a. BSE without propagator dressing (for n52). In this
case we can proceed in a way very similar to the undres
BSE for n51, only with a different rescaling factor,

r [2]~a,z!5J~a,z!2r̃ [2]~a,z!,

V[2]~a8,z8,a,z!5
J~a8,z8!2

J~a,z!2
Ṽ[2]~a8,z8,a,z!.

Imposing the auxiliary normalization

E dzE ar̃ [2]~a,z!51, ~A34!

we can write
08500
m

f

a-
er

ed

r̃ [2]~a8,z8!5lṼ0
[2]~a8,z8!

2lE dzE a (
s56

Ṽs
[2]~a8,z8,a,z!r̃ [2]~a,z!,

~A35!

Ṽ0
[2]~a8,z8!52 (

i 56

u~xi !u~12xi !u~D !

2J~a8,z8!2

3sgn@E~xi ,S,a8!# ln~12xi !uxi5xi (T50) ,

Ṽs
[2]~a8,z8,a,z!

5
u@s~z2z8!#

2J~a8,z8!2 (
i 56

u~xi !u~12xi !u~D !

3H TsJ~a,z!

~12xi !uE~xi ,S,a8!u

2sgn@E~xi ,S,a8!# ln~12xi !J
xi5xi (Ts)

.

b. Dressed ladder BSE for n52. When all the self-
energies are taken into account the functionJ(a,z) does not
factorize and the numerically convenient redefinition~redef!
cannot be used. Nevertheless, we can still separate from
integral over spectral variablesa i and the sum overT the
term which depends ona andz only throughJ(a,z), namely
the part for whichs̃ i→d(a i2mi

2) andT50. Explicitly, us-
ing the notation

V~a8,z8,a,z,T,a1 ,a2 ,a3!

5 (
i 56

u~xi !u~12xi !u~D !

2J~a,z!2 H TJ~a,z!

~12xi !uE~xi ,S,a8!u

2sgn@E~xi ,S,a8!# ln~12xi !J
xi5xi (T)

,

and imposing the normalization condition
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15E
21

1

dzE
2`

`

da
r [2]~a,z!

J~a,z!2
, ~A36!

the BSE can be rewritten as

r [2]~a8,z8!5lV0
[2]~a8,z8!

1lE dzE da(
T

VT
[2]~a8,z8,a,z!r [2]~a,z!,

V0
[2]~a8,z8!52

1

2E da3s̃~a3!

3 (
s56

(
i 56

u~xi !u~12xi !u~D !

3sgn@E~xi ,S,a8!# ln~12xi !,

VT
[2]~a8,z8,a,z!

5E da3s̃~a3!E da1da2

3@d1d2~12dT,0!1d1s21s1d21s1s2#

3V~a8,z8,a,z,T,a1 ,a2 ,a3!,

where in V0
[2] (a8,z8) we take xi5xi(T50), a15m1

2, a2

5m2
2 and in the last termd i5d(a i2mi

2) and s i5s(a i

2mi
2),i 51,2.

APPENDIX B: ELASTIC ELECTROMAGNETIC
FORM FACTOR

In this appendix we derive the expression for the ela
electromagnetic form factorG(Q2). The relevant matrix el-
ement is diagrammatically depicted in Fig. 4 and the start
equation for the electromagnetic matrix element is given
Eq. ~4.2!. The labeling of momenta corresponds to Fig. 4q
is a virtual photon incoming momentum and we putQ25
2q2.0, andPi5P andPf5P1q are the total momenta o
bound state in in- and out-state, respectively. For simplic
we will consider the equal mass case:m1

25m2
25m2.

The form factorG(Q2) can easily be extracted from it
definition ~4.1!. After multiplying by Pi1Pf we get

G~Q2!5
Gm~P1q,P!~2P1q!m

e~2P1q!2
. ~B1!

The matrix element is evaluated between on-shell state
appropriate composite scalar, i.e.,P25(P1q)25M2 which
implies

2P•q1q250. ~B2!

The one body currentj m reads

j m~pf ,pi !5~P12k1q!m. ~B3!

Using Eq.~B2! one can simplify
08500
c

g
y

,

of

~2P1q!254M21Q2,

~2P1q!•~2k1q1P!52k•~2P1q!12M21
Q2

2
,

~2P1q!•~2k1q1P!

~2P1q!2
5

1

2 S 11
4k•~2P1q!

4M21Q2 D .

Taking this into account we can write

G~Q2!5
i

2E d4k

~2p!42
S )

i 51

3

Di D ~ ḠG!F11
4k•~2P1q!

4M21Q2 G ,

~B4!

)
i 51

3

Di5DS k1
P

2
;m2DDS 2k1

P

2
;m2D

3DS k1q1
P

2
;m2D , ~B5!

ḠG5ḠS k1
q

2
,P1qDG~k,P!. ~B6!

Now, we will expressG(Q2) in terms of spectral func-
tions of the bound state vertex functionsG, rewriting first the
product of the propagators with the help of the Feynm
parametrization.

For the product of the propagators one gets:

)
i 51

3

Di5DS k1q1
P

2 D1

2E21

1

dh

3
1

Fk21hk•P1
P2

4
2m21 i eG2

5E
0

1

dsE
2s21

1

dy

3
1

Fk21
M2

4
2m22

s

2
Q212sk•q1yk•P1 i eG3 ,

~B7!

where the substitutiony5s1(12s)h was applied and rela
tions P•q5Q2/2 andP25M2 were used.
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In the next step we combine PTIR~for n52) of the prod-
uct of the bound state vertex functions.

E
0

`

da1da2E
21

1

dz1dz2r [2]~a1 ,z1!r [2]~a2 ,z2!

3H E
0

1

dx
G~4!

G~2!G~2!

x~12x!

G4 J ,

G5k21
M2

4
1@z11x~z22z1!#k•P1x~11z2!k•q

2x~11z2!
Q2

4
2~12x!a12xa21 i e. ~B8!

Making use of the Feynman variablet for matching Eq.~B7!
with the term in large brackets of Eq.~B8!, the relation for
the form factor~B4! can be rewritten as

I ~Q2!52
i

2

G~7!

G~3!
E

0

1

dsE
2s21

1

dyE
0

1

dxx~12x!E
0

1

dtt3

3~12t !2E d4k

~2p!4

F114
~2P1q!•k

~2P1q!2 G
@c2k22k•~aP1bq!2 i e#7

,

a5t@z11x~z22z1!#1~12t !y,
~B9!

b5tx~11z2!t12s~12t !,

c5b
Q2

4
2

M2

4
1~12t !m21t~12x!a11txa2 ,

where we have omitted the vertex weight functions and
a,z’s integrals@exactly the pre-factor in front of the larg
bracket in Eq.~B8!#. Integration over the momentumk @with
the shiftk1(aP1bq)/2→k] then yields
ys

08500
e

2
i

2

G~7!

G~3!
E d4k

~2p!4

11
2k•~2P1q!

4M21Q2

@c2k22k•~aP1bq!2 i e#7

5
G~5!

4~4p!2

12
4~Pa1qb!•~2P1q!

4M21Q2

Fc1
1

4
~Pa1qb!2G5 . ~B10!

This relation can be further simplified using Eq.~B2! in both
the numerator and the denominator,

I ~Q2!5
G~4!

~4p!2E0

1

dtE
0

1

dxE
0

1

dyE
0

(11y)/2

ds

3
x~12x!t3~12t !2~12a!

FQ2

4
b~b2a21!2r G5 , ~B11!

r 52~12a2!
M2

4
1~12t !m21t~12x!a11txa2 ,

a5t@z11x~z22z1!#1~12t !y,

b5tx~11z2!t12s~12t !.

It can be shown that forQ2>0 the denominator is nonzero
The functionI (Q2) can be easily calculated numerically. In
cluding the missing prefactors the elastic electromagn
form factor is given by

G~Q2!

5E
0

`

da1da2E
21

1

dz1dz2r [2]~a1 ,z1!r [2]~a2 ,z2!I ~Q2!.

~B12!
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