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O(N) linear sigma model at finite temperature beyond the Hartree approximation
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We study theO(N) linear sigma model with spontaneous symmetry breaking, using a HartreAr#atz
with a classical field and variational masses. We go beyond the Hartree approximation by including the
two-loop contribution, the sunset diagram, using the 2PPI expansion. We compute numerically the effective
potential at finite temperature. We find a phase transition of second order, while it is first order in the Hartree
approximation. We also discuss some implications of the fact that, in this order, the decay of the sigma into two
pions affects the thermal diagrams.
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[. INTRODUCTION in order to obtain systematic expansions i 1ér in the
number of loops(order in#%). Beyond the leading order,
TheO(N) linear sigma model has a long-standing history,these extensions require technically quite involved analytical
in particular as a basic model for a quantum field theory withand numerical calculatio42]. In general one has to solve
spontaneous symmetry breakifiy-4]. Early investigations Schwinger-Dyson equations for the Green functions which in
beyond the classical level have been based on including on¢he present case would even form a coupled system. Little is
loop quantum and thermal corrections. These studies hawamown about the merits of the next-to-leading order exten-
been centered around the discussion of the one-loop effectigtons as such calculations at finite temperature #13di-
potentialVq¢¢( ) whereg is the mean value of the quantum mensions are not yet available.
field ®, in a sense being defined more precisely by the ef- Atechnically less demanding approach is the 2PPI resum-
fective action formalism, summing up one-particle irreduc-mation introduced by Verscheldd4,15. Here, instead of
ible (1PI) graphs. A next class of approximations includetreating the Green functions as variational parameters one
bubble resummations, as motivated by the laxgémit. In  just introduces variational masses, like in the Hartree ap-
the model with spontaneous symmetry breaking one finds proximation. This implies that the resummation is only over
second-order phase transition such that the symmetry is réacal insertions, the two-particle “point reducible” graphs,
stored at high temperature. i.e., graphs that fall apart if one cuts two lines meeting at the
Another approximation, going somewhat beyond the leadsame point(the 2PPR point This approach is based on a
ing order of the largdN expansion, is the Hartree approxi- variational principle for expectation values of local compos-
mation; it includes only local one-loop corrections to theite operators, i.e., all of the system’s equations of motion can
effective mass and thereby takes into accaorhe but not  be derived from a single functional. The 2PPI effective ac-
all, next-to-leading order corrections inNL/ The Hartree ap- tion is identical to that in the Hartree approximation if only
proximation of theO(N) linear sigma model has been stud- one-loop 2PPI graphs are included; this has been studied in
ied at finite temperature by various authdis-11]; the  Refs.[10,14]. For the complete two-loop approximation one
model with spontaneous symmetry breaking is found to havenust also include the sunset diagram. For the ddsel
a phase transition of first order towards the symmetric phas8metet al. [16] have evaluated the effective potential; they
at high temperature. In contrast to the laidease the mass found that instead of a first-order phase transition one obtains
of the pion quantum fluctuations does not vanish in the broa second-order one. Here we extend this investigation to the
ken phase. This has been discussed as a “violation of thease of genera\.
Nambu-Goldstone theorem(see, e.g., Ref[6] and refer- The O(N) linear sigma model with spontaneous symme-
ences thereinthe presently accepted point of vig®,10,13  try breaking has been studied in nonequilibrium quantum
is that the “sigma and pion masses” in the Hartree scheméield theory as well, mostly in the large-limit and with
are just variational parameters, and not the real pion andifferent initial conditions for the mean field=(®) and for
sigma masses, which are to be computed from the effectivéhe density matrix of the fluctuationsl7—-25. There the
potential at its minimum. mean fieldp=(®) becomes time dependent. As far as sym-
If one wants to go beyond the lardge-and Hartree ap- metry restoration is concerned striking similarities with
proximations there are a variety of choices. The systematifinite-temperature quantum field theory are observed
expansions are based on the resummation scheme by Cofi7,18,25: If the system is supplied with a high initial en-
wall, Jackiw, and Tombouli¢CJT) [13], the 2Pl scheme. ergy density it displays symmetry restoration at late times in
Within this scheme one may select certain groups of graphthe sense that the mean field settlespat0 or oscillates
around this value, while at lower energy densities the system
ends up in a broken symmetry phase where the time average
*Electronic address: baacke@physik.uni-dortmund.de of ¢(t) remains different from zero, and where the pion
"Electronic address: stefan.michalski@udo.edu mass, the time-dependent mass of the quantum fluctuations,
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goes to zero. This phase structure persists if one uses tlaproximation—to which the 2PPI expansion reduces in the
Hartree instead of the largé-approximation[26]; in this  one-loop approximation. We compare this approach to the
case, as in thermal equilibrium, the effective mass of the pionvell-known 2P1 CJT formalism in Appendix A.

fluctuations remains finite even at low energy densities. The problem occurring in the Hartree approximation,

However, in the largéN or Hartree approximations the namely the lack of a consistent renormalization, has been
system does not approach thermal equilibrium. This problensolved in a systematic way. The inconsistencies are avoided
has been addressed in a general way in R&8,28. Nu- by recognizing that in the resummation the counterterms
merous author$29-3€ have tried recently to find useful have to be divided into 2PPI and 2PPR parts. The two-
approximations beyond the leading orders. Up to now nuparticle point reducible parts renormalize the gap equation,
merical simulations are mostly limited to+11-dimensional the 2PPI parts renormalize the 2PPI effective action. This
models. Most of the new approximations show large deviaprocedure has been discussed in technical detail in Refs.
tions from the largeN approximation, and they indicate ther- [10,15 and been applied to a first two-loop calculation for
malization. The proper case of &(N) model with sponta- the N=1 model[16], including the sunset diagram as the
neous symmetry breaking has not been investigated up tonly two-loop 2PPI term, the only other new terms being
now. Indeed higher corrections have not even been includedne-loop graphs computed with the one-loop counterterm
in equilibrium calculations for such models. If one tries to Lagrangian.
appreciate the quality of various approximations such equi- We will not go into details here. For th®(N) case we
librium computations should be able to yield useful addi-use the explicit formulas of Ref15]. The classical field is
tional insights. It is one of the purposes of this work to ini- denoted byg; =(®;), the bubble resummation is defined by
tiate such investigations. introducing local insertions  Aj;=(D;®;)— ¢ d;

The plan of the paper is as follows: in Sec. Il we present=(®;®;).,nn Which collect all 2PPR graphs. The resumma-
the general formulation of the model and of the 2PPI formal+ion is defined by including these insertions as well as the
ism. In Sec. lll we explicitty formulate a potential seagull insertions, it is obtained by introducing into the
U(mZ,m2,¢) that by variation ofm2 andm? leads to the propagators the effective magt2],
gap equations. The technical details of the relevant Feynman
graphs and a comparison of the 2PPI expansion to CJT's 2PI Hﬁ = —xuzaij +2N[(Pidj+Aij) + NP+ A ]

approach are presented in the appendixes. In Sec. IV we (2.2
discuss our numerical results, and we end with a summary
and an outlook in Sec. V. The motivation and formal derivation of the 2PPI effective

action for the cas&=1 is presented in Appendix A. The
generalization to arbitrarN is straightforward[10]. The
Il BASIC EQUATIONS 2PPI effective action can be written as
The Lagrange density of th@(N) linear sigma model is
given by — . A
T=Sc|ass+F§PP'[¢i mﬁ - Z(AiiAjj +2A545).

zzéaﬂqawi—%(@i@i—uz)z, (2.2 23
It includes all 2PPI graphs as defined above, with the mass

where®; is a vector withN components. We intend to com- terms replaced by the variational massgs, and it is com-

pute the effective potential of this model at finite tempera-puted using the 2PPI parts of the counterterms. The last term

ture. This model has been studied at lajand in the Har- is introduced in order to avoid double counting. The local

tree approximation, which both represent bubbleself-energies\;; can be shown to be related to the “quan-

resummations. One of the possibilities to go beyond thestum” part of the 2PPI action via

approximations, and in particular to include higher loop cor- o

rections is the use of the 2PI or CJT formalism; this is tech- 1 arPP(md)

nically involved, even in equilibrium, as one has to solve EAijZT (2.4

Schwinger-Dyson equations for the Green functions, in the i

present case indeed a coupled system of integral equations.h. h defi If- ist dit i
Another possibility of going beyond the leading-order ap-W Ich defines a seli-consistency condition or gap equation.

proximations has been proposed by Versché¢lg15, the For Aj; andm;; one uses th©(N) invariantAnsaze
so-called 2PPI formalism. This is a variant of the 280T)

formalism by Cornwall, Jackiw and Tomboulig3]. In the = bi w2l s - bi 2 25
2PPI approach the composite operabeb; is local while in i P i $? ™ '

2Pl it is bilocal. Here the resummation encompasses all two-

particle point reduciblegraphs, graphs that fall apart if two
lines meeting at one poirfvertey, the 2PPR point, are cut. L N P AN (2.6)
These graphs are deleted in the 1PI effective action, which A A R 3

thereby is replaced by the 2PPI effective action. They are
taken into account by a mass insertion like in the Hartreeso that the equations for the effective masses separate as
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m§=k[3¢2—v2+3Ag+(N—1)AW], to the case where higher-order contributions are included
into I'”"' (see also Appendix A)2 Here we include the
mi:)\[¢2_02+ A,+(N+1)A_]. (2.7 two-loop contribution, the sunset diagram, as has been done
previously for theN=1 model by Smeet al.[16].
The gap equations become With these preliminaries we can now give our explicit
equations: We decompose the potentigim?,m? ,¢) into
5F§PP'_ lA three parts:
smz 277
7 U:Uclass+U1—Ioop+Usunset- (3.2
5F§PP' The classical potential has the forisee Ref[8])
S =§(N—1)A,T, (2.9

m

vmi+(N—1)m?}

A
— 2 A2 A
Uclass 2mo¢ 2¢ 27\(N+2)

and the effective potential takes the form

1
Veff(mi—lmi—!¢):%(¢2_02)2+Vgppl(mi!mfr!(ﬁ) — —8)\(N+2) [(N+1)mi+3(N_1)mi

N —2(N=1)m2m2+2Na2v4], (3.3
- Z[3A§+(N2—1)A§T
one easily checks that it takes isaximumif m§=x(3¢2
+2(N=1)A A ], 2.9 —v? andm2=\(4?—v?). The one-loop part is given by
the “In det” contributions. At finite temperature these in-
whereV;" ! is the quantum part of the 2PPI effective poten-clude the free energies, so the one-loop part of the effective
tial. As has been shown in Refd0,15 these equations can action reads
be properly renormalized and the renormalized equations

have the same form. We do not discuss this here. For the 1 d*k 5. o N-1
numerical calculation we have used the renormalized ver-Ul—loopZEJ 2 In(k +mo’)+T
sions of these equations; we have not put renormalization (2m)
conditions but used a modified minimal subtractidvS) 4k d3k
prescription. The renormalization scalerefers to this pre- Xf 4In(k2+m,27)+Tf o3
scription. m) (2m)
3k
lIl. COMPUTATION OF THE EFFECTIVE POTENTIAL ><|n{1—eXF[—Ea(k)/T]}J“(N_l)Tf (2m)3

The basic relations given in the previous section can be
used to compute the effective potential. We would have to XIn{1—exp —E.(k)/T]}. 3.4
solve the coupled system of gap equations and to insert thle ting th ¢ di it ient to d
result into the 1PI effective action. This would imply that we h computing the sunset diagram 1t 1S convenient 1o decom-

would not only have to evaluate the sunset graphs, but alsos€ the f|n|te-ten_1p_erature propagators into a zero-
their derivatives with respect tm?> andm? . Here we prefer temperature and a finite-temperatutaerma) part propor-

to work with an effective potential that leads to the gap equa:[IOnaI to o(k”—myj)/exp(~E;/kgT). The contribution of the

tions by finding the extremunimaximun) with respect to sunset diagrams then consists of three p@ee, e.g., Ref.
variations ofm? andm? . Instead of solving the gap equa- [38)

tions whose algebraic and analytic form is already quite in-

volved, we then can simply use numerical algorithms for Usunse® Ultnset Ulinser™ Uihser (3.9
extremizing a function of two variabld87]. To this end we

solve Eqs.(2.7) with respect taA, andA . and insert these With the T=0 contributionU{}), .., the diagrams with one
expressions into Eq2.9). We denote this new potential by thermal IineU(Sh)nsetand the diagrams with two thermal lines
U(mZ2,m2,¢). It can easily be verified, that Eq@.7) again ~ U%).; see Fig. 1.

g

follow by extremizing this potential with respect ro? and TheT=0 part is given by

me. The 1PI effective potential as a function éfalone is

obtained as Uhser — 23l ot (N-D)l 0], (3.6
VIR($)=U(m2,m2, ), (3.1 itis represented graphically in Fig(a. The diagrams with

o o one thermal line, see Fig(H), contribute
wherem, and m_. are the values which extremiZenaxi-
mize) U for a given ¢. This procedure, as introduced by~ Ulthse —MN2@2[ 915, ,+(N=1)(215  _+1%_ )].
Nemotoet al. [8] in the Hartree approximation, generalizes B - - (39
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TN 7N
3 {ﬁ + (N-1) - {—0\7
\‘g,/ \ %

¢ \ ® \ FIG. 1. Contributions to the sunset diagram at
finite temperature. Solid lines represent the zero-
9 - e+ 2(N-1) - -+ (N-1) -
N

temperature parts of the propagators; finite tem-
perature parts are denoted by interrupted lines.
o / \ \
9--- -+ 2(N-D) $--e + (N-1) --
)
N, Y,

The symbols for the thermal lines are underlined. Similarly The behavior of the effective potential as a functiongof
the diagrams with two thermal lines, see Fi¢c)lcontribute  near the phase transition is displayed in Figa)Jor A=1
@) s and in Fig. 3b) for A=0.1; in both cases these plots clearly
U hser — N2 [9|0'|0'0'+(N (215121571 indicate a phase transition of second order.
- (39 For \=1 we also plot, in Fig. 4, the effective potential
. . . without the sunset diagrafie., for the Hartree approxima-
The precise definition of the Feynman integrajg ulk' tion, see Ref[16]). The two minima, which are characteris-
a”dhuk with zero, one, and two thermal lines, respectwely,nc of a first-order phase transition, are well visible.
as well as their analytic form are presented in the Appen- It is well known that a phase transition of first order is
dixes. It is understood that their divergent parts are removedound in the Hartree approximation. As apparent from the
scale on the axes and from the tiny temperature range, Figs.
IV. DISCUSSION OF THE NUMERICAL RESULTS 3 and 4 represent “microscopic” pictures of the two phase
transmons

As we have stated previously we do not solve the tw

coupled gap equations but instead we maximize the potenti The temperature dependence of the sigma magsas
p g b &d P %’eflned by the curvature of the effective potential at its mini-
U(m ¢) We present our numerical results for the case

mum is shown in Fig. 5. As to be expected it goes to zero at
N .4 Wlth A=1 and\=0.1[43]. The mass SC‘"?"e '.S fixed by the phase-transition temperature, the zero is approached lin-
takingv=1, and we choose th®IS renormalization scale

@ : _ - early if one plotsM?.
n=1. In Fig. 2 we display the value @ at the minimum of In Figs. §a) and (b) we display, for both parameter sets,

the effective potential, the thermal expectation value WhICh[he temperature dependence of the variational masses

welfdenotfl by;(;\l’) 1 h ¢ ition t ds th and m_ at the minimum of the effective potentiakp
we choose we see a phase transition towards the_ v(T). The variational sigma mass,, behaves similarly as
symmetric phase (T)=0 for T>T, with To=1.7. For\
i " . the sigma mas# . obtained from the effective potential.
=0.1 the critical temperature is abol§=1.475. . .
The massn,, becomes identical to the masg, above the
goom . : ' : phase transition, but does not vanish below the phase transi-

o ' tion. It was found already in the one-loop analysis that, as a
<

o ] “violation of the Nambu-Goldstone theorem,” the self-
08k v(T) o T consistent pion masses do not vanish when the symmetry is
I 1 broken. It has been argued that these self-consistent masses
0.6 o . are not the physical pion masses; indeed they are not: they
I ] are variational parameters and the effective poteltigi( ¢)
04k | has of courseN—1 flat directions at its minimum. But the
o hope—or expectation—that the discrepancy between the
o B 1 pion mass as computed from the effective potential, and the
0.2 o O T pion mass as a variational parameter would disappear, turns
o 1 out to be fallacious. Indeed there is a simple physical reason
TR i . poo—ma—y for this result, as vinI be discussgd below the next paragraph.
As the thermal integrals require both masses to be real we
FIG. 2. The expectation value(T) of ¢ for N=4, u=v  have looked for the extremum with respectrig andm,, .

=1, A=1 (squares and\ =0.1 (diamonds. So in our numerical approach neithe2 nor m2 can get
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FIG. 3. The behavior o¥/.:(¢) near the critical temperature, parameter set as in Figa)2;=1 for temperature¥=1.62, 1.66, 1.69,
1.70, and 1.72¢b) A =0.1 for temperature¥=1.2, 1.4, 1.425, 1.45, 1.475, 1.5, and 1.6.

negative and the well-known instability which occurs fér  equation in regions where such a decay is possible. While we
=1 in the region where the potential has a negative curvadid not exclude these regions from our presentation we have
ture is avoidedby fiat the maximum simply occurs at the to consider thereal part of the effective potential in these
boundary of the “physical region” of real pion and sigma regions with suspicion. In contrast to the problem of imagi-
masses. It has to be said, though, that in this case we do noary masses and the associated instabiligse regions do
solve the gap equation which in fact becomes meaninglesinclude the minimum of the effective potential for tempera-
In the largeN limit such a construction leads to an effective tures up to almost the phase-transition temperatée one
potential that is flat in the regiop<v, and therefore con- can see in Figs. (& and (b) we find m,<2m_ near the
vex. We do not want to enter into this discussion here, wephase transition, so that the behavior of the effective poten-
simply state that these regions require another approach atidl in the critical region, as plotted in Figs(é8 and (b), is
that we have to discard them. Such regions occur at lowot affected; but the results belol=1.5 forA=1 and be-
temperatures only, and of course they do not include thédow T=1.4 for \=0.1, respectively, have to be taken with
region around the minimum of the effective potential. At some caveat.
higher temperatures, but well below the phase transition, the This finding has important consequences: Of course an
effective potential has regions of negative curvature; but botlunstable particle can coexist with its decay products at finite
m, and m_, and therefore the effective potential, are still temperature, but this situation requires an approach where
real, as the variational mass is not equal to the curvature dhe transitions are taken into account; however, this is not the
the potential. The parameter,,, which is imaginary below case in this approximation, and indeed with the entire for-
the minimum in the largéd approximation, also becomes malism used here. Indeed in the regions affected by this in-
real for all values ofp at temperatures well below the phase stability our approximation becomes inconsistent, and this
transition. should be sa fortiori if one considers the masslgsisysical
However, we are faced with an even more important newpions. As the masslessness of the Goldstone particles is an
feature: the fact that the sigma can decay into two pions ifmportant aspect of spontaneously broken symmetry, this
m,>2m_. The sunset diagram with one thermal sigma lineproblem should be studied in detail. Of course in the appli-
and two pion lines acquires an imaginary part in this case. Iigations to real pions in the linear sigma model the pions
our computations we have simply omitted this imaginaryreceive a finite mass due to explicit symmetry breaking, and
part, but obviously we would not be able to solve the gapthe sigma particle is considered usually as being of a prob-

5x1074 ' ' ' '
L gob O g
[ i1}
o: 1 M, o
L o
-5x107
N o m
[ 0.5F B
-3
-1x10 [ ° o4 . 5 .
[ o T Op
1.5x10°% 0.1 02 03 04 0. L % m.
. . . 0 0.5 1 1.5 2
FIG. 4. The behavior 0¥/ () near the critical temperature in
the Hartree approximation; the curves are Tor 1.46, 1.47, 1.48, FIG. 5. The sigma masM, as obtained from the effective
and 1.49; parameter set as in Fig. 2 with 1. potential as a function of temperature; parameter sets as for Fig. 2.
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FIG. 6. The variational masses, (diamond$ andm,, (squaresas functions of temperature; parameter sets as for Fi@ 2;=1, (b)
A=0.1.

lematic status anyway, hinting at the limitations of the modelpotential as those introduced by particle decay may have
as an effective theory of strong interactions. consequences of similar importance, and conclusions drawn
from N=1 simulations may therefore miss essential aspects
for models with spontaneous symmetry breaking.

We would finally like to remark that all the complications

We have analyzed here tf@(N) linear sigma model in found in thermal equilibrium occur in nonequilibrium studies
the 2PPI| formalism beyond the leading order, in which itas well, both in the preparation of the initial state and in the
coincides with the Hartree approximation. As in the Hartreeanalysis of the final state, as well as in renormalization.
approximation and in th&l=1 version we find that the ef- Therefore it is mandatory that such equilibrium studies are
fective mass of the pion quantum fluctuations is differentt€ing pursued in parallel to the nonequilibrium ones.
from zero in the broken symmetry phase, so that a naive
particle interpreta_tion, s_uggested by t_he lalgenalysis, be- ACKNOWLEDGMENTS
comes problematic. As in thé=1 version of the modglL6]
the phase transition, which is first order in the Hartree ap- The authors take pleasure in thanking Henri Verschelde
proximation, becomes second order. In addition to khe and Andreas Heinen for useful discussions, and the Deutsche
=1 case there is a new instability associated with the possForschungsgemeinschatft for financial support under Ba703/
bility of the decayo— 2. This will not be problematic at 6-1.
low temperatures and for small couplings, but whenever the
sunset diagrams become important it requires reconsidering
the entire framework. We find that near the phase transition
the sigma fluctuations become stable, as they are trivially in
the symmetric phase. We compare the 2PI with the 2PPI effective action using a

Our analysis should have some bearing on nonequilibriunloop expansion. The Lagrangian of the classical action is
simulations as well. The nonvanishing effective mass of thejiven by Eq.(2.1) but here we seN=1 for the sake of
“Goldstone” quantum fluctuations makes it hard to maintain convenience.
a naive particle interpretation; but this is the casortiori
for any nonequilibrium simulations that include higher-order
diagrams, for approximations in which the propagator is not
an effective free particle propagator. In addition, however, it The 2Pl effective action readlsf. Eq.(2.99 of Ref.[13]]
becomes obvious that the additional instability that occurs
only for N>1 will lead to other and new aspects of such
nonequilibrium simulations, when compared to those for the
largeN case. While it is certainly important to understand P
thermalization, the instabilities both of the one-loop effective +I57 .Gl (A1)

FIG. 7. Two-loop and soméot all) three-loop contributions to the 2PI effective action: double-bubble, sunset, basketball, and another
three-loop graph. A line represents thil propagator as defined in EGA2).

V. SUMMARY AND OUTLOOK

APPENDIX A: COMPARISON OF 2PPI AND 2PI
EFFECTIVE ACTION

1. 2PI expansion

2P| _ ﬁ -1 f -1
r=1¢,G] S[¢]+|2IndetG +|2TrD G
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Z(k)=Q+ G* @+@ and

FIG. 8. Some one- and two-loop contributions to the proper

exp{ —W[J, o]} = J DD exp{— (S P]

self-energy of the 2P| expansion: tadpole, fish, sunset, and another +J1- P+ Iy (I>2)}. (A7)
two-loop graph. A line representdall propagator as defined in Eq.
(A2). The external field$sourceg J; andJ, are bothlocal and fix

the expectation value b and®?. The effective equations
where I'3”' contains all higher 2PI corrections; the first of motion turn out to be
graphs of the loop expansion are shown in Fig. 7.

The propagatofs takes the form ST[¢,A]
. 5¢ :_‘Jl_‘J2¢a (A8)
i
G(k)= , , (A2)
K2—\(3¢2—0v?)—i3(Kk)
orf¢,A] 1
where the equation for the proper self-enekgfollows from SA ZJZ' (A9)
the conditionsT'?"/ 6G=0:
i T2 ¢,G] We do not want to explain in detail the combinatorial trick

(A3)  used in Ref[14] for the derivativesT ?"P[ ¢,A]/ 8¢ in order
to sum all 2PR graphs. Eventually, the result is the complete

So the 2PI self-enerav is obtained by cutting a line of a 2P|effective action of the 2PPI formalism. It consists of the
gy IS 0D yC 9 . classical action, the “quantum” part, and a constant which
vacuum graph and considering a combinatorial factor. Again .
. . ; revents double counting:
the leading terms of the self-energy in a loop expansion arg
displayed in Fig. 8.

(k=27 5G(K)

A
2pP _ 2PP 21 Moy a2
2. 2PPI expansion I2PP[¢,A]1=S ]+ T [ p, M?] 43)\A . (A10)

The 2PPI effective action, proposed by Verschelde and 2Pl . :
Coppeng 14], is a variant of the “effective action of com- The quantum parf'g™" of the 2PPI action contains the one-

posite operators” by Cornwall, Jackiw, and Tombouis]. loop “In det” contributiqn and all 2PPI graphwithout the
We briefly repeat the formal derivation in Réf.4] without ~ “double bubble”(see Fig. 9. _
going into too much detail. A two-particle point irreducible(2PP) graph is 1PI and

In the 2PI formalism one deals withkilocal composite ~ Stays connected whenever two internal lines meeting at the

operatord® (x)®(y) which is coupled to an externéilocal) same p0|nt(v_erte>9 are cut[14]._These graphs are to be
sourceK(x,y), while in the 2PPI approach one keeps thisComputed using a propagator with an effective mags
sourcelocal by construction. Using Euclidean space-time, as

in Ref. [14], one defines the following effective action of 1

local composite operators: G(k) (A11)

k2+ M2
TPl A1=W[31,35]-J1- ¢ lJ (¢P+A)
' 1zl +1 22 ' Since this propagator always remains local—even ifeke
(A4)  act2PPI effective action is computed—it will never be equal
to the physicaltwo-point Green function.
where The effective mass consists of the classical mass
(—\v?), the seagull$\ ¢2, and the local self-energy,

oW
53, —(P)=¢, (A5)
1 MZ=\(3¢%*—v?)+3\A. (A12)
ﬂ\i: 1<¢)z>: E(¢2+A) (AB) The self-energy is—like in 2Pl—obtained as a derivative of
8d, 2 2 ' the quantum part of the effective action

= O A &+ DD

FIG. 9. Quantum part of the 2PPI effective action including some three-loop contributions. Here, a line représéiie aesummed
i.e., local, propagator as defined in E&11). Note that the last graph does not appeaFiﬁ' because it is 2PPI but 2PR.
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Qo000
FIG. 10. Contributions to the 2PPI self-energy with some three-loop contributions. A line representsballddalresummegropagator
as defined in Eq(A11). Note that the last two graphs do not appeafﬁ’?' because they are 2PPI but 2PR.

5F§PP[¢,M 21 1 1/(27)¢. Alternatively one may use the expression given in
T oMZ = EA' (A13)  Ref.[41] for different masses and set all masses equal. These
authors usel=4—2¢ and likewise omit the factor 1/(2)°.
This is equivalent to cutting a lingby deriving with respect Accommodating both expressions to our standard,
to the propagatoG(k)] and then connecting the two end 4
points to a common third point by considering the inner de- _f d* “p
rivative ) (2m)t

oo > < L L
5/\42 59(") (2m)*¢ (PP + MA)(@2+ M) (p~ )2+ M?)’

T S B1)
‘f[ rVEE TR

The first(one-loop “quantum correction” to the 2PPI effec-
tive action only consists of the In det term It¢""". This
approximation is equivalent to what is called “Hartree” in

we find

2PI, namely the resummation of tadpoles or daisy and super- . 3M? 2 n47T,U~2 .3

daisy graphs. The first two-loop contribution to the 2PPI ef- 797 (4m)* € M2 YET 2

fective action is the sunset diagram. The mass corrections

resulting from all one-, two- and three-loop vacuum dia- 4arp? 3 2 2 5 2

grams of Fig. 9 are shown in Fig. 10. In “Yets| Tt TCI(_) )
Now, we use Eq(A12) to express\ in terms of M 2 and 3

insert this expression into the effective acti@l0). We fi- (B2
nally obtain the 2PPI effective action in terms of the mean

field ¢ and the effective mas$1. Restricting to a homoge-

neous mean field and using the explicit form of the classicalvhere Cl(p) is the Clausen function

Lagrangian(2.1) the effective potential reads

1 N .
Ver( . M%) =5M?¢?— 5 ¢*+ Vi, M?) sinke

Cl(g)= kgl o (B3)

—i[/\/l2+)\vz]2 (A15)
12\ '
o ) ) ) ] 2. o diagram
This is the effective potential from which the equations of o . ) ]
motion can be(re)-obtained by varyingé and M 2. This Defining the sunset integral for one line with massM
procedure can be generalized to obtain an effective action for M, and two pion lines with massi=m, as
nonequilibrium dynamics and a conserved energy functional

g (277_)4_6
APPENDIX B: SUNSET DIAGRAM AT T=0
4—¢€
The sunset diagram a&@t=0 has been evaluated previ- xf d”q 1 ,
ously by several authofg!0,41]. Here we are interested in (2m)* € (p?+M?)(q*+m?)((p—q)>+m?)
this diagram with external momentum zero, and with at least (B4)
two internal lines of equal mass. We give here some techni-
cal details.

we again use the expressions given by Davydychev and
Tausk[41] which we have cross checked with the the reduc-

The sunset diagram for equal masses has been given tion formula of Ref.[40]. When adapted to our conventions
Ref. [40]. The authors use&l=4+¢ and omit the factor we obtain

1. oo o diagram
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2m2(1+22)[ 2 2[ 4wu? 3 flecting the fact that in the heat bath the sigma particles can
o= |5 —( n———— 7yt > decay into or be produced by pions. The sunset integral with
(4m) e € one thermal line factorizes:
2z A’ 3
Ty M4 I et 18, =F(m,,my;mol4_(my) (C5)
2z 772 5 z(1—4z) .
T S Py with
T2 Yt gt Ty 42
4\z(1-2z) d®
——5755 Clle) |, (B5) 15_(my) = f ———————n{(p). (C6)
1+az (2m)° “Ey(p)

wherez=M?/4m? and ¢ = arccos(t 2z).
The divergent part obviously takes the form
APPENDIX C: SUNSET DIAGRAM WITH ONE
THERMAL LINE

. 2
If one of the lines of the sunset diagram is replaced by a 'ﬁ]?'v_(‘l )2 6 ﬁ —(my). (C7)
thermal line it takes the form
B :f d* p né(p) The general expression agrees with R&8], Eq. (3.7); we
1ilk (27)3 E(p) k(P use a different regularization, however.
d4 eq 1
XJ —c 2 > B o (Cy APPENDIX D: SUNSET DIAGRAM WITH TWO
(2m)" (" +m)[(p— )"+ mj] THERMAL LINES

Here E (p) = \p’+ mk2 and n{f(p) is the Bose-Einstein dis- We define the sunset diagram with two thermal lines as
tribution function

k(p) : c2 If f G K )f nf(a)
n = poo=

P BT 1 W) meaE ) KT (277)3 2E, (q) q
The second integral is the fish diagram with the external 1

Euclidean momenturp which is on shell, i.e.p?= —mﬁ X E — - (D1

5=+ (p+as)?+m;
F(m;,m;;my)

Here p, and g are Euclidean momenta witlp. =
(C3)  =(iEx(p),p) and q.=*(iE;(q),q). The integration over
the angle betweep andq can be done analytically, with the

_J~ d4 eq 1
(2m)* e (@ +mA)[(p—a)?+m]| ,

result[38]
Explicitly one finds
2 mZ (1 1 (= pdp ‘
F(m;,m;;m ——vye+Indm—In—-| d 18 = n? f In
(Mo = <4>[ e J e 1™ 32,4 ) o Eyp) P E(q)'()
(D2)
m? m?
XIn a—+(l-a)=Z~a(l-a)|(.
my My where
(C4)
2_
The « integration can be done analytically, leading to vari- ={[Ex(p)+Ej(a)] p+q)}
ous expressions in terms of logarithms or inverse trigono- X{[Ex(p)—E; (q)]2—E p+q)} (D3)

metric functions, depending on the relations among the three

masses. We note in particular that fog>m;+m; the inte-

gral (C4) develops an imaginary part. In the present contextThe integrand has logarithmic singularities within the region
this happens fomk—m andm;=m;=m_<m,/2. The ther-  of integration which have to be treated with care in the nu-
mal mtegraIII”k thereby gets an |mag|nary part as well, re- merical integration ovep=|p| andq=|q|.
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