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O„N… linear sigma model at finite temperature beyond the Hartree approximation
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We study theO(N) linear sigma model with spontaneous symmetry breaking, using a Hartree-likeAnsatz
with a classical field and variational masses. We go beyond the Hartree approximation by including the
two-loop contribution, the sunset diagram, using the 2PPI expansion. We compute numerically the effective
potential at finite temperature. We find a phase transition of second order, while it is first order in the Hartree
approximation. We also discuss some implications of the fact that, in this order, the decay of the sigma into two
pions affects the thermal diagrams.
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I. INTRODUCTION

TheO(N) linear sigma model has a long-standing histo
in particular as a basic model for a quantum field theory w
spontaneous symmetry breaking@1–4#. Early investigations
beyond the classical level have been based on including
loop quantum and thermal corrections. These studies h
been centered around the discussion of the one-loop effe
potentialVe f f(f) wheref is the mean value of the quantu
field F, in a sense being defined more precisely by the
fective action formalism, summing up one-particle irredu
ible ~1PI! graphs. A next class of approximations inclu
bubble resummations, as motivated by the large-N limit. In
the model with spontaneous symmetry breaking one find
second-order phase transition such that the symmetry is
stored at high temperature.

Another approximation, going somewhat beyond the le
ing order of the large-N expansion, is the Hartree approx
mation; it includes only local one-loop corrections to t
effective mass and thereby takes into accountsome, but not
all, next-to-leading order corrections in 1/N. The Hartree ap-
proximation of theO(N) linear sigma model has been stu
ied at finite temperature by various authors@5–11#; the
model with spontaneous symmetry breaking is found to h
a phase transition of first order towards the symmetric ph
at high temperature. In contrast to the large-N case the mass
of the pion quantum fluctuations does not vanish in the b
ken phase. This has been discussed as a ‘‘violation of
Nambu-Goldstone theorem’’~see, e.g., Ref.@6# and refer-
ences therein!; the presently accepted point of view@8,10,12#
is that the ‘‘sigma and pion masses’’ in the Hartree sche
are just variational parameters, and not the real pion
sigma masses, which are to be computed from the effec
potential at its minimum.

If one wants to go beyond the large-N and Hartree ap-
proximations there are a variety of choices. The system
expansions are based on the resummation scheme by C
wall, Jackiw, and Tomboulis~CJT! @13#, the 2PI scheme
Within this scheme one may select certain groups of gra
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in order to obtain systematic expansions in 1/N or in the
number of loops~order in \). Beyond the leading order
these extensions require technically quite involved analyt
and numerical calculations@12#. In general one has to solv
Schwinger-Dyson equations for the Green functions which
the present case would even form a coupled system. Littl
known about the merits of the next-to-leading order ext
sions as such calculations at finite temperature in 311 di-
mensions are not yet available.

A technically less demanding approach is the 2PPI res
mation introduced by Verschelde@14,15#. Here, instead of
treating the Green functions as variational parameters
just introduces variational masses, like in the Hartree
proximation. This implies that the resummation is only ov
local insertions, the two-particle ‘‘point reducible’’ graph
i.e., graphs that fall apart if one cuts two lines meeting at
same point~the 2PPR point!. This approach is based on
variational principle for expectation values of local compo
ite operators, i.e., all of the system’s equations of motion
be derived from a single functional. The 2PPI effective a
tion is identical to that in the Hartree approximation if on
one-loop 2PPI graphs are included; this has been studie
Refs.@10,14#. For the complete two-loop approximation on
must also include the sunset diagram. For the caseN51
Smetet al. @16# have evaluated the effective potential; th
found that instead of a first-order phase transition one obt
a second-order one. Here we extend this investigation to
case of generalN.

The O(N) linear sigma model with spontaneous symm
try breaking has been studied in nonequilibrium quant
field theory as well, mostly in the large-N limit and with
different initial conditions for the mean fieldf5^F& and for
the density matrix of the fluctuations@17–25#. There the
mean fieldf5^F& becomes time dependent. As far as sy
metry restoration is concerned striking similarities wi
finite-temperature quantum field theory are observ
@17,18,25#: If the system is supplied with a high initial en
ergy density it displays symmetry restoration at late times
the sense that the mean field settles atf50 or oscillates
around this value, while at lower energy densities the sys
ends up in a broken symmetry phase where the time ave
of f(t) remains different from zero, and where the pio
mass, the time-dependent mass of the quantum fluctuat
©2003 The American Physical Society06-1
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J. BAACKE AND S. MICHALSKI PHYSICAL REVIEW D 67, 085006 ~2003!
goes to zero. This phase structure persists if one uses
Hartree instead of the large-N approximation@26#; in this
case, as in thermal equilibrium, the effective mass of the p
fluctuations remains finite even at low energy densities.

However, in the large-N or Hartree approximations th
system does not approach thermal equilibrium. This prob
has been addressed in a general way in Refs.@27,28#. Nu-
merous authors@29–36# have tried recently to find usefu
approximations beyond the leading orders. Up to now
merical simulations are mostly limited to 111-dimensional
models. Most of the new approximations show large dev
tions from the large-N approximation, and they indicate the
malization. The proper case of anO(N) model with sponta-
neous symmetry breaking has not been investigated u
now. Indeed higher corrections have not even been inclu
in equilibrium calculations for such models. If one tries
appreciate the quality of various approximations such eq
librium computations should be able to yield useful ad
tional insights. It is one of the purposes of this work to in
tiate such investigations.

The plan of the paper is as follows: in Sec. II we pres
the general formulation of the model and of the 2PPI form
ism. In Sec. III we explicitly formulate a potentia
U(ms

2 ,mp
2 ,f) that by variation ofms

2 and mp
2 leads to the

gap equations. The technical details of the relevant Feyn
graphs and a comparison of the 2PPI expansion to CJT’s
approach are presented in the appendixes. In Sec. IV
discuss our numerical results, and we end with a summ
and an outlook in Sec. V.

II. BASIC EQUATIONS

The Lagrange density of theO(N) linear sigma model is
given by

L5
1

2
]mF i]

mF i2
l

4
~F iF i2v2!2, ~2.1!

whereF i is a vector withN components. We intend to com
pute the effective potential of this model at finite tempe
ture. This model has been studied at largeN and in the Har-
tree approximation, which both represent bubb
resummations. One of the possibilities to go beyond th
approximations, and in particular to include higher loop c
rections is the use of the 2PI or CJT formalism; this is te
nically involved, even in equilibrium, as one has to sol
Schwinger-Dyson equations for the Green functions, in
present case indeed a coupled system of integral equati

Another possibility of going beyond the leading-order a
proximations has been proposed by Verschelde@14,15#, the
so-called 2PPI formalism. This is a variant of the 2PI~CJT!
formalism by Cornwall, Jackiw and Tomboulis@13#. In the
2PPI approach the composite operatorF iF j is local while in
2PI it is bilocal. Here the resummation encompasses all tw
particle point reduciblegraphs, graphs that fall apart if tw
lines meeting at one point~vertex!, the 2PPR point, are cut
These graphs are deleted in the 1PI effective action, wh
thereby is replaced by the 2PPI effective action. They
taken into account by a mass insertion like in the Hart
08500
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approximation—to which the 2PPI expansion reduces in
one-loop approximation. We compare this approach to
well-known 2PI CJT formalism in Appendix A.

The problem occurring in the Hartree approximatio
namely the lack of a consistent renormalization, has b
solved in a systematic way. The inconsistencies are avo
by recognizing that in the resummation the counterter
have to be divided into 2PPI and 2PPR parts. The tw
particle point reducible parts renormalize the gap equat
the 2PPI parts renormalize the 2PPI effective action. T
procedure has been discussed in technical detail in R
@10,15# and been applied to a first two-loop calculation f
the N51 model @16#, including the sunset diagram as th
only two-loop 2PPI term, the only other new terms bei
one-loop graphs computed with the one-loop counterte
Lagrangian.

We will not go into details here. For theO(N) case we
use the explicit formulas of Ref.@15#. The classical field is
denoted byf i5^F i&, the bubble resummation is defined b
introducing local insertions D i j 5^F iF j&2f if j
5^F iF j&conn. which collect all 2PPR graphs. The resumm
tion is defined by including these insertions as well as
seagull insertions, it is obtained by introducing into t
propagators the effective mass@42#,

m̄i j
2 52lv2d i j 12l@~f if j1D i j !1l~fkfk1Dkk!#.

~2.2!

The motivation and formal derivation of the 2PPI effecti
action for the caseN51 is presented in Appendix A. The
generalization to arbitraryN is straightforward@10#. The
2PPI effective action can be written as

G5Sclass1Gq
2PPI@f i ,m̄i j

2 #2
l

4
~D i i D j j 12D i j D i j !.

~2.3!

It includes all 2PPI graphs as defined above, with the m
terms replaced by the variational massesm̄i j , and it is com-
puted using the 2PPI parts of the counterterms. The last t
is introduced in order to avoid double counting. The loc
self-energiesD i j can be shown to be related to the ‘‘qua
tum’’ part of the 2PPI action via

1

2
D i j 5

]Gq
2PPI~m̄i j

2 !

]m̄i j
2

~2.4!

which defines a self-consistency condition or gap equatio
For D i j andm̄i j one uses theO(N) invariantAnsätze,

m̄i j
2 5

f if j

f2
ms

21S d i j 2
f if j

f2 D mp
2 , ~2.5!

D i j 5
f if j

f2
Ds1S d i j 2

f if j

f2 D Dp , ~2.6!

so that the equations for the effective masses separate a
6-2
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O(N) LINEAR SIGMA MODEL AT FINIT E . . . PHYSICAL REVIEW D 67, 085006 ~2003!
ms
25l@3f22v213Ds1~N21!Dp#,

mp
2 5l@f22v21Ds1~N11!Dp#. ~2.7!

The gap equations become

dGq
2PPI

dms
2

5
1

2
Ds ,

dGq
2PPI

dmp
2

5
1

2
~N21!Dp , ~2.8!

and the effective potential takes the form

Ve f f~ms
2 ,mp

2 ,f!5
l

4
~f22v2!21Vq

2PPI~ms
2 ,mp

2 ,f!

2
l

4
@3Ds

21~N221!Dp
2

12~N21!DsDp#, ~2.9!

whereVq
2PPI is the quantum part of the 2PPI effective pote

tial. As has been shown in Refs.@10,15# these equations ca
be properly renormalized and the renormalized equati
have the same form. We do not discuss this here. For
numerical calculation we have used the renormalized v
sions of these equations; we have not put renormaliza
conditions but used a modified minimal subtraction (MS)
prescription. The renormalization scalem̄ refers to this pre-
scription.

III. COMPUTATION OF THE EFFECTIVE POTENTIAL

The basic relations given in the previous section can
used to compute the effective potential. We would have
solve the coupled system of gap equations and to insert
result into the 1PI effective action. This would imply that w
would not only have to evaluate the sunset graphs, but
their derivatives with respect toms

2 andmp
2 . Here we prefer

to work with an effective potential that leads to the gap eq
tions by finding the extremum~maximum! with respect to
variations ofms

2 and mp
2 . Instead of solving the gap equa

tions whose algebraic and analytic form is already quite
volved, we then can simply use numerical algorithms
extremizing a function of two variables@37#. To this end we
solve Eqs.~2.7! with respect toDs andDp and insert these
expressions into Eq.~2.9!. We denote this new potential b
U(ms

2 ,mp
2 ,f). It can easily be verified, that Eqs.~2.7! again

follow by extremizing this potential with respect toms
2 and

mp
2 . The 1PI effective potential as a function off alone is

obtained as

Ve f f
1PI~f!5U~m̄s

2 ,m̄p
2 ,f!, ~3.1!

where m̄s and m̄p are the values which extremize~maxi-
mize! U for a given f. This procedure, as introduced b
Nemotoet al. @8# in the Hartree approximation, generaliz
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to the case where higher-order contributions are inclu
into Gq

2PPI ~see also Appendix A 2!. Here we include the
two-loop contribution, the sunset diagram, as has been d
previously for theN51 model by Smetet al. @16#.

With these preliminaries we can now give our explic
equations: We decompose the potentialU(ms

2 ,mp
2 ,f) into

three parts:

U5Uclass1U12 loop1Usunset. ~3.2!

The classical potential has the form~see Ref.@8#!

Uclass5
1

2
ms

2f22
l

2
f42

1

2l~N12!
v2$ms

21~N21!mp
2 %

2
1

8l~N12!
@~N11!ms

413~N21!mp
4

22~N21!ms
2mp

2 12Nl2v4#, ~3.3!

one easily checks that it takes itsmaximumif ms
25l(3f2

2v2) and mp
2 5l(f22v2). The one-loop part is given by

the ‘‘ln det’’ contributions. At finite temperature these in
clude the free energies, so the one-loop part of the effec
action reads

U12 loop5
1

2E d4k

~2p!4
ln~k21ms

2 !1
N21

2

3E d4k

~2p!4
ln~k21mp

2 !1TE d3k

~2p!3

3 ln$12exp@2Es~k!/T#%1~N21!TE d3k

~2p!3

3 ln$12exp@2Ep~k!/T#%. ~3.4!

In computing the sunset diagram it is convenient to deco
pose the finite-temperature propagators into a ze
temperature and a finite-temperature~thermal! part propor-
tional to d(k22mj

2)/exp(2Ej /kBT). The contribution of the
sunset diagrams then consists of three parts~see, e.g., Ref.
@38#!

Usunset5Usunset
(0) 1Usunset

(1) 1Usunset
(2) , ~3.5!

with the T50 contributionUsunset
(0) , the diagrams with one

thermal lineUsunset
(1) and the diagrams with two thermal line

Usunset
(2) ; see Fig. 1.
The T50 part is given by

Usunset
(0) 52l2f2@3I sss1~N21!I spp#, ~3.6!

it is represented graphically in Fig. 1~a!. The diagrams with
one thermal line, see Fig. 1~b!, contribute

Usunset
(1) 52l2f2@9I ssus

b 1~N21!~2I spup
b 1I ppus

b !#.
~3.7!
6-3



at
ro-
m-
.

J. BAACKE AND S. MICHALSKI PHYSICAL REVIEW D 67, 085006 ~2003!
FIG. 1. Contributions to the sunset diagram
finite temperature. Solid lines represent the ze
temperature parts of the propagators; finite te
perature parts are denoted by interrupted lines
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The symbols for the thermal lines are underlined. Simila
the diagrams with two thermal lines, see Fig. 1~c!, contribute

Usunset
(2) 52l2f2@9I suss

b 1~N21!~2I pusp
b 1I supp

b !#.
~3.8!

The precise definition of the Feynman integralsI i jk , I i j uk
b ,

and I i u jk
b with zero, one, and two thermal lines, respective

as well as their analytic form are presented in the App
dixes. It is understood that their divergent parts are remov

IV. DISCUSSION OF THE NUMERICAL RESULTS

As we have stated previously we do not solve the t
coupled gap equations but instead we maximize the pote
U(ms

2 ,mp
2 ,f). We present our numerical results for the ca

N54 with l51 andl50.1 @43#. The mass scale is fixed b
taking v51, and we choose theMS renormalization scale
m̄51. In Fig. 2 we display the value off at the minimum of
the effective potential, the thermal expectation value wh
we denote byv(T).

If we choosel51 we see a phase transition towards t
symmetric phasev(T)50 for T.T0 with T0.1.7. For l
50.1 the critical temperature is aboutT0.1.475.

FIG. 2. The expectation valuev(T) of f for N54, m̄5v
51, l51 ~squares!, andl50.1 ~diamonds!.
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The behavior of the effective potential as a function off
near the phase transition is displayed in Fig. 3~a! for l51
and in Fig. 3~b! for l50.1; in both cases these plots clear
indicate a phase transition of second order.

For l51 we also plot, in Fig. 4, the effective potentia
without the sunset diagram~i.e., for the Hartree approxima
tion, see Ref.@16#!. The two minima, which are characteris
tic of a first-order phase transition, are well visible.

It is well known that a phase transition of first order
found in the Hartree approximation. As apparent from t
scale on they axes and from the tiny temperature range, Fi
3 and 4 represent ‘‘microscopic’’ pictures of the two pha
transitions.

The temperature dependence of the sigma massMs as
defined by the curvature of the effective potential at its mi
mum is shown in Fig. 5. As to be expected it goes to zero
the phase-transition temperature, the zero is approached
early if one plotsMs

2 .
In Figs. 6~a! and ~b! we display, for both parameter set

the temperature dependence of the variational massesms

and mp at the minimum of the effective potential,f
5v(T). The variational sigma massms behaves similarly as
the sigma massMs obtained from the effective potentia
The massmp becomes identical to the massms above the
phase transition, but does not vanish below the phase tra
tion. It was found already in the one-loop analysis that, a
‘‘violation of the Nambu-Goldstone theorem,’’ the sel
consistent pion masses do not vanish when the symmet
broken. It has been argued that these self-consistent ma
are not the physical pion masses; indeed they are not:
are variational parameters and the effective potentialVe f f(f)
has of courseN21 flat directions at its minimum. But the
hope—or expectation—that the discrepancy between
pion mass as computed from the effective potential, and
pion mass as a variational parameter would disappear, t
out to be fallacious. Indeed there is a simple physical rea
for this result, as will be discussed below the next paragra

As the thermal integrals require both masses to be rea
have looked for the extremum with respect toms andmp .
So in our numerical approach neitherms

2 nor mp
2 can get
6-4
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FIG. 3. The behavior ofVe f f(f) near the critical temperature, parameter set as in Fig. 2;~a! l51 for temperaturesT51.62, 1.66, 1.69,
1.70, and 1.72;~b! l50.1 for temperaturesT51.2, 1.4, 1.425, 1.45, 1.475, 1.5, and 1.6.
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negative and the well-known instability which occurs forN
51 in the region where the potential has a negative cur
ture is avoidedby fiat, the maximum simply occurs at th
boundary of the ‘‘physical region’’ of real pion and sigm
masses. It has to be said, though, that in this case we do
solve the gap equation which in fact becomes meaningl
In the large-N limit such a construction leads to an effectiv
potential that is flat in the regionf,v, and therefore con-
vex. We do not want to enter into this discussion here,
simply state that these regions require another approach
that we have to discard them. Such regions occur at
temperatures only, and of course they do not include
region around the minimum of the effective potential.
higher temperatures, but well below the phase transition,
effective potential has regions of negative curvature; but b
ms and mp , and therefore the effective potential, are s
real, as the variational mass is not equal to the curvatur
the potential. The parametermp , which is imaginary below
the minimum in the large-N approximation, also become
real for all values off at temperatures well below the pha
transition.

However, we are faced with an even more important n
feature: the fact that the sigma can decay into two pion
ms.2mp . The sunset diagram with one thermal sigma li
and two pion lines acquires an imaginary part in this case
our computations we have simply omitted this imagina
part, but obviously we would not be able to solve the g

FIG. 4. The behavior ofVe f f(f) near the critical temperature i
the Hartree approximation; the curves are forT51.46, 1.47, 1.48,
and 1.49; parameter set as in Fig. 2 withl51.
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equation in regions where such a decay is possible. While
did not exclude these regions from our presentation we h
to consider thereal part of the effective potential in these
regions with suspicion. In contrast to the problem of ima
nary masses and the associated instabilitythese regions do
include the minimum of the effective potential for tempe
tures up to almost the phase-transition temperature. As one
can see in Figs. 6~a! and ~b! we find ms,2mp near the
phase transition, so that the behavior of the effective pot
tial in the critical region, as plotted in Figs. 3~a! and ~b!, is
not affected; but the results belowT.1.5 for l51 and be-
low T.1.4 for l50.1, respectively, have to be taken wi
some caveat.

This finding has important consequences: Of course
unstable particle can coexist with its decay products at fin
temperature, but this situation requires an approach wh
the transitions are taken into account; however, this is not
case in this approximation, and indeed with the entire f
malism used here. Indeed in the regions affected by this
stability our approximation becomes inconsistent, and t
should be soa fortiori if one considers the masslessphysical
pions. As the masslessness of the Goldstone particles i
important aspect of spontaneously broken symmetry,
problem should be studied in detail. Of course in the ap
cations to real pions in the linear sigma model the pio
receive a finite mass due to explicit symmetry breaking, a
the sigma particle is considered usually as being of a pr

FIG. 5. The sigma massMs as obtained from the effective
potential as a function of temperature; parameter sets as for Fi
6-5



J. BAACKE AND S. MICHALSKI PHYSICAL REVIEW D 67, 085006 ~2003!
FIG. 6. The variational massesms ~diamonds! andmp ~squares! as functions of temperature; parameter sets as for Fig. 2;~a! l51, ~b!
l50.1.
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lematic status anyway, hinting at the limitations of the mo
as an effective theory of strong interactions.

V. SUMMARY AND OUTLOOK

We have analyzed here theO(N) linear sigma model in
the 2PPI formalism beyond the leading order, in which
coincides with the Hartree approximation. As in the Hartr
approximation and in theN51 version we find that the ef
fective mass of the pion quantum fluctuations is differe
from zero in the broken symmetry phase, so that a na
particle interpretation, suggested by the large-N analysis, be-
comes problematic. As in theN51 version of the model@16#
the phase transition, which is first order in the Hartree
proximation, becomes second order. In addition to theN
51 case there is a new instability associated with the po
bility of the decays→2p. This will not be problematic at
low temperatures and for small couplings, but whenever
sunset diagrams become important it requires reconside
the entire framework. We find that near the phase transi
the sigma fluctuations become stable, as they are triviall
the symmetric phase.

Our analysis should have some bearing on nonequilibr
simulations as well. The nonvanishing effective mass of
‘‘Goldstone’’ quantum fluctuations makes it hard to mainta
a naive particle interpretation; but this is the casea fortiori
for any nonequilibrium simulations that include higher-ord
diagrams, for approximations in which the propagator is
an effective free particle propagator. In addition, however
becomes obvious that the additional instability that occ
only for N.1 will lead to other and new aspects of su
nonequilibrium simulations, when compared to those for
large-N case. While it is certainly important to understa
thermalization, the instabilities both of the one-loop effect
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potential as those introduced by particle decay may h
consequences of similar importance, and conclusions dr
from N51 simulations may therefore miss essential aspe
for models with spontaneous symmetry breaking.

We would finally like to remark that all the complication
found in thermal equilibrium occur in nonequilibrium studie
as well, both in the preparation of the initial state and in t
analysis of the final state, as well as in renormalizati
Therefore it is mandatory that such equilibrium studies
being pursued in parallel to the nonequilibrium ones.
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APPENDIX A: COMPARISON OF 2PPI AND 2PI
EFFECTIVE ACTION

We compare the 2PI with the 2PPI effective action usin
loop expansion. The Lagrangian of the classical action
given by Eq. ~2.1! but here we setN51 for the sake of
convenience.

1. 2PI expansion

The 2PI effective action reads@cf. Eq. ~2.9a! of Ref. @13##

G2PI@f,G#5S@f#1 i
\

2
ln detG211 i

\

2
Tr D 21G

1G2
2PI@f,G#, ~A1!
nother
FIG. 7. Two-loop and some~not all! three-loop contributions to the 2PI effective action: double-bubble, sunset, basketball, and a
three-loop graph. A line represents thefull propagator as defined in Eq.~A2!.
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where G2
2PI contains all higher 2PI corrections; the fir

graphs of the loop expansion are shown in Fig. 7.
The propagatorG takes the form

G~k!5
i

k22l~3f22v2!2 iS~k!
, ~A2!

where the equation for the proper self-energyS follows from
the conditiondG2PI/dG50:

S~k!52
i

\

dG2
2PI@f,G#

dG~k!
. ~A3!

So the 2PI self-energy is obtained by cutting a line of a 2
vacuum graph and considering a combinatorial factor. Ag
the leading terms of the self-energy in a loop expansion
displayed in Fig. 8.

2. 2PPI expansion

The 2PPI effective action, proposed by Verschelde a
Coppens@14#, is a variant of the ‘‘effective action of com
posite operators’’ by Cornwall, Jackiw, and Tomboulis@13#.
We briefly repeat the formal derivation in Ref.@14# without
going into too much detail.

In the 2PI formalism one deals with abilocal composite
operatorF(x)F(y) which is coupled to an external~bilocal!
sourceK(x,y), while in the 2PPI approach one keeps th
sourcelocal by construction. Using Euclidean space-time,
in Ref. @14#, one defines the following effective action o
local composite operators:

G2PPI@f,D#5W @J1 ,J2#2J1•f2
1

2
J2•~f21D!,

~A4!

where

dW
dJ1

5^F&5f, ~A5!

dW
dJ2

5
1

2
^F2&5

1

2
~f21D!, ~A6!

FIG. 8. Some one- and two-loop contributions to the pro
self-energy of the 2PI expansion: tadpole, fish, sunset, and ano
two-loop graph. A line represents afull propagator as defined in Eq
~A2!.
08500
I
,

re

d

s

and

exp$2W @J1,J2#%5E DF exp$2~S@F#

1J1•F1J2•F2!%. ~A7!

The external fields~sources! J1 andJ2 are bothlocal and fix
the expectation value ofF andF2. The effective equations
of motion turn out to be

dG@f,D#

df
52J12J2f, ~A8!

dG@f,D#

dD
52

1

2
J2 . ~A9!

We do not want to explain in detail the combinatorial tric
used in Ref.@14# for the derivativedG2PPI@f,D#/df in order
to sum all 2PR graphs. Eventually, the result is the comp
effective action of the 2PPI formalism. It consists of th
classical action, the ‘‘quantum’’ part, and a constant wh
prevents double counting:

G2PPI@f,D#5S@f#1Gq
2PPI@f,M 2#2

l

4
3lD2. ~A10!

The quantum partGq
2PPI of the 2PPI action contains the one

loop ‘‘ln det’’ contribution and all 2PPI graphswithout the
‘‘double bubble’’ ~see Fig. 9!.

A two-particle point irreducible~2PPI! graph is 1PI and
stays connected whenever two internal lines meeting at
same point~vertex! are cut @14#. These graphs are to b
computed using a propagator with an effective massM,

G~k!5
1

k21M 2
. ~A11!

Since this propagator always remains local—even if theex-
act 2PPI effective action is computed—it will never be equ
to thephysicaltwo-point Green function.

The effective mass consists of the classical mas
(2lv2), the seagullslf2, and the local self-energyD,

M 25l~3f22v2!13lD. ~A12!

The self-energy is—like in 2PI—obtained as a derivative
the quantum part of the effective action

r
er
FIG. 9. Quantum part of the 2PPI effective action including some three-loop contributions. Here, a line represents abubble resummed,
i.e., local, propagator as defined in Eq.~A11!. Note that the last graph does not appear inG2

2PI because it is 2PPI but 2PR.
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FIG. 10. Contributions to the 2PPI self-energy with some three-loop contributions. A line represents a localbubble resummedpropagator
as defined in Eq.~A11!. Note that the last two graphs do not appear inG2

2PI because they are 2PPI but 2PR.
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dGq
2PPI@f,M 2#

dM 2
5

1

2
D. ~A13!

This is equivalent to cutting a line@by deriving with respect
to the propagatorG(k)] and then connecting the two en
points to a common third point by considering the inner d
rivative

d

dM 2
5E @dk#

dG~k!

dM 2

d

dG~k!

5E @dk#
21

~k21M 2!2

d

dG~k!
. ~A14!

The first~one-loop! ‘‘quantum correction’’ to the 2PPI effec
tive action only consists of the ln det term inGq

2PPI. This
approximation is equivalent to what is called ‘‘Hartree’’
2PI, namely the resummation of tadpoles or daisy and su
daisy graphs. The first two-loop contribution to the 2PPI
fective action is the sunset diagram. The mass correct
resulting from all one-, two- and three-loop vacuum d
grams of Fig. 9 are shown in Fig. 10.

Now, we use Eq.~A12! to expressD in terms ofM 2 and
insert this expression into the effective action~A10!. We fi-
nally obtain the 2PPI effective action in terms of the me
field f and the effective massM. Restricting to a homoge
neous mean field and using the explicit form of the class
Lagrangian~2.1! the effective potential reads

Veff~f,M 2!5
1

2
M 2f22

l

2
f41Vq

2PPI~f,M 2!

2
1

12l
@M 21lv2#2. ~A15!

This is the effective potential from which the equations
motion can be~re!-obtained by varyingf and M 2. This
procedure can be generalized to obtain an effective action
nonequilibrium dynamics and a conserved energy functio
@39#.

APPENDIX B: SUNSET DIAGRAM AT TÄ0

The sunset diagram atT50 has been evaluated prev
ously by several authors@40,41#. Here we are interested i
this diagram with external momentum zero, and with at le
two internal lines of equal mass. We give here some tec
cal details.

1. sss diagram

The sunset diagram for equal masses has been give
Ref. @40#. The authors used541e and omit the factor
08500
-

r-
-
ns
-

n

l

f

or
al

st
i-

in

1/(2p)d. Alternatively one may use the expression given
Ref. @41# for different masses and set all masses equal. Th
authors used5422e and likewise omit the factor 1/(2p)d.
Accommodating both expressions to our standard,

I sss5E d42ep

~2p!42e

3E d42eq

~2p!42e

1

~p21M2!~q21M2!~~p2q!21M2!
,

~B1!

we find

I sss52
3M2

~4p!4 F 2

e2
1

2

e S ln
4pm2

M2
2gE1

3

2D
1S ln

4pm2

M2
2gE1

3

2D 2

1
p2

12
1

5

4
2

2

A3
ClS p

3 D G ,

~B2!

where Cl(f) is the Clausen function

Cl~w!5 (
k51

`
sinkw

k2
. ~B3!

2. spp diagram

Defining the sunset integral for ones line with massM
5ms and two pion lines with massm5mp as

I spp5E d42ep

~2p!42e

3E d42eq

~2p!42e

1

~p21M2!~q21m2!~~p2q!21m2!
,

~B4!

we again use the expressions given by Davydychev
Tausk@41# which we have cross checked with the the redu
tion formula of Ref.@40#. When adapted to our convention
we obtain
6-8
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I spp52
2m2~112z!

~4p!4 F 2

e2
1

2

e S ln
4pm2

M2
2gE1

3

2

2
2z

112z
ln 4zD 1S ln

4pm2

M2
2gE1

3

2

2
2z

112z
ln 4zD 2

1
p2

12
1

5

4
1

z~124z!

112z
ln24z

2
4Az~12z!

112z
Cl~w!G , ~B5!

wherez5M2/4m2 andw5arccos(122z).

APPENDIX C: SUNSET DIAGRAM WITH ONE
THERMAL LINE

If one of the lines of the sunset diagram is replaced b
thermal line it takes the form

I i j uk
b 5E d32ep

~2p!32eEk~p!
nk

b~p!

3E d42eq

~2p!42e

1

~q21mi
2!@~p2q!21mj

2#
. ~C1!

Here Ek(p)5Ap21mk
2 and nk

b(p) is the Bose-Einstein dis
tribution function

nk
b~p!5

1

exp~Ek /T!21
. ~C2!

The second integral is the fish diagram with the exter
Euclidean momentump which is on shell, i.e.,p252mk

2

F~mi ,mj ;mk!

5E d42eq

~2p!42e

1

~q21mi
2!@~p2q!21mj

2#
U

p252m
k
2

. ~C3!

Explicitly one finds

F~mi ,mj ;mk!5
1

~4p!2 H 2

e
2gE1 ln 4p2 ln

mk
2

m2
2E

0

1

da

3 lnFa
mi

2

mk
2

1~12a!
mj

2

mk
2

2a~12a!G J .

~C4!

The a integration can be done analytically, leading to va
ous expressions in terms of logarithms or inverse trigo
metric functions, depending on the relations among the th
masses. We note in particular that formk.mi1mj the inte-
gral ~C4! develops an imaginary part. In the present cont
this happens formk5ms andmi5mj5mp,ms/2. The ther-
mal integralI i j uk

b thereby gets an imaginary part as well, r
08500
a

l

-
-
e

t

flecting the fact that in the heat bath the sigma particles
decay into or be produced by pions. The sunset integral w
one thermal line factorizes:

I i j uk
b 5F~mi ,mj ;mk!I 32e

b ~mk! ~C5!

with

I 32e
b ~mk!5E d32ep

~2p!32eEk~p!
nk

b~p!. ~C6!

The divergent part obviously takes the form

I i j uk
b,div5

1

~4p!2

2

e
I 32e

b ~mk!. ~C7!

The general expression agrees with Ref.@38#, Eq. ~3.7!; we
use a different regularization, however.

APPENDIX D: SUNSET DIAGRAM WITH TWO
THERMAL LINES

We define the sunset diagram with two thermal lines a

I i u jk
b 5E d32ep

~2p!32e2Ek~p!
nk

b~p!E d32eq

~2p!32e2Ej~q!
nj

b~q!

3 (
r ,s56

1

~pr1qs!
21mi

2
. ~D1!

Here pr and qs are Euclidean momenta withp65
6„iEk(p),p… and q656„iE j (q),q…. The integration over
the angle betweenp andq can be done analytically, with the
result @38#

I i u jk
b 5

1

32p4E0

` pdp

Ek~p!
nk

b~p!E
0

` qdq

Ej~q!
nj

b~q!lnUY1

Y2
U,

~D2!

where

Y65$@Ek~p!1Ej~q!#22Ei
2~p6q!%

3$@Ek~p!2Ej~q!#22Ei
2~p6q!%. ~D3!

The integrand has logarithmic singularities within the regi
of integration which have to be treated with care in the n
merical integration overp5upu andq5uqu.
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