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Fractal theory space: Spacetime of noninteger dimensionality
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We construct matter field theories in a “theory space” that is fractal, and invariant under geometrical
renormalization grougRG) transformations. We treat in detail complex scalars, and discuss issues related to
fermions, chirality, and Yang-Mills gauge fields. In the continuum limit these models describe physics in a
noninteger spatial dimension which appears above a RG invariant “compactification $¢alEie energy
distribution of KK modes abové/ is controlled by an exponent in a scaling relation of the vacuum energy
(Coleman-Weinberg potentjaland corresponds to the dimensionality. For truncatsinplex lattices with
coordination numbes the spacetime dimensionality ist] 3+ 2 In(s)/In(s+2)]. The computations in theory
space involve subtleties, owing to the-B kinetic terms, yet the resulting dimensionalites are equivalent to
thermal spin systems. Physical implications are discussed.
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[. INTRODUCTION the coordination numbes. This process is iterated an arbi-
trary number,k, times. It results in a lattice, which for us

All quests for organizing principles of physics beyond thedescribes a fractal theory space matter field theory. Irkthe
standard model, since the classic era of grand unification ir-2 limit it describes a continuum theory whose properties
the late 1970s, have involved extra dimensions. The foremogtre determined by certain scaling laws of taero tempera-
example is supersymmetrfl], in which one postulates ture) quantum theory, analogous to the scaling laws of criti-
Grassmanian extra dimensions and graded extensions of tieal systems at finite critical temperature.

Lorentz group. Supersymmetry and bosonic extra dimen- The key observation is that the Feynman path integral for

sions are essential to the use of string theory with mattethese systems is invariant under a sequence of renormaliza-

fields as a complete description of all forces, including quantion group(RG) transformations that map tlieh lattice into

tum gravity. Motivated by certain viable limits of string the k—1 lattice. In thek—ce limit, this RG invariance im-

theory [2], the possibility of extra conventional spatial di- plies a certain scaling law for the vacuum action functional,

mensions at the-TeV scale, possibly accessible to future €.9., the Coleman-Weinberg potential. This scaling law, and
colliders, has lately become the focus of a lot of activity.consistency with the RG transformations imposed as a sym-

Latticization [3], or “deconstruction”[4], of compactified metry, leads to the determination of a “critical exponerd,”

extra dimensional theories provides an effective gauge inThis exponent is associated with the number distribution of

variant Lagrangian in +3 dimensions truncated ol KK modes with energy:

Kaluza-Klein (KK) modes of scalars, fermions and gauge

fields in D dimensions. This has provided a point of depar- N(E)oc(E)E

ture for abstracting a new class of models based upon the M/

notion of “theory space4].

Theory space, without some defining principles, is anHeree is the dimensionality of the extra dimensiohs;is a
empty concept. A key idea we emphasize presently is thaRG invariant mass scale, which is interpreted as the effective
theory space can be endowed with certain abstract geometficompactification scale.” The effects of the extra dimension
cal symmetries that are essentially renormalization groughow up only for energy scalé&&=M as KK modes appear.
(RG) transformations. These transformations are distinciVe will obtain irrational(indeed, transcendentalalues for
from scale transformations and truly reflect a geometrice for the lattices considered presently.
structure of the theory. Geometrical symmetries in con- Since theory space, endowed with such a geometrical
tinuum extra dimensions therefore become replaced by theymmetry, is effectively a theory of compact extra dimen-
renormalization group in theory space. We can thus turn isions in the continuum limit, we have thus arrived at a pre-
around and use the RG to generate new kinds of geometriescription for constructing a spacetime field theory in a flat
In the present paper we study a nontrivial example of thespacetime of noninteger dimensionality. Our construction is
latter possibility. essentially a regularization procedure for the theory, which is

In particular, we will borrow from condensed matter ultimately defined as a continuum limit. The resulting field
physics certain recursively defined,foactal, lattices to con-  theory, including interactions, may be interpreted dme
struct classes of new theory spaces. These lattices are defingdantum field theorgs all loops are finite when computed in
by recursively “decorating” a lattice of coordination number, 4+ e dimensions on loop momentum scale$1. In the Ap-

s, by replacing each site with a simplex ®8§ites, preserving pendix we address delicacies associated with “Casimir-like”
effects associated with the discrete KK spectrum. We find
that the discrete sums over “KK modes” can be computed

*Email address: hill@fnal.gov exactly using dimensional regularization ir-4 dimensions
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theory space lattice. Such RG manipulations are familiar
from the condensed matter literature, but are tricky in theory
. space in a fundamental way: the deconstructed theory pos-
sesses continuum kinetic terms for the field theory in the 1
(B) ©

+3 Lagrangian. We must include renormalization effects on
these kinetic terms, up to irrelevant operators that are quartic
derivatives, e.g. &¢)%/ A%, In particular, |d(da— ¢p)|?
must be interpreted as a quartic derivativee’ll see that
discarding this term only affects the high mode number part
of the spectrum These irrelevant operators of the derivative
expansion are dropped, and the renormalization of the rel-
evant|d¢|? terms is determined. This renormalization plays
a crucial role in the scaling law for the Coleman-Weinberg
potential. One obtains the effective Lagrangian in tle (
—1)th lattice, with parameters that are renormalized under
the transformations. The consistency of the RG symmetry,

FIG. 1. The truncated 3-simplex latticéd) Kernel (completé  i.e., of the invariance of the Feynman path integral, is real-
lattice with coordination number 3B) the decoration which re- ized only for a particular value of the dimensionaligy,
places each site under recursi¢@) the first order decorated lattice; The solution to the problem of extracting essentially
(D) the second order decorated lattice. A theory space can be comdapts the scaling theory of critical expondrik We follow
structed by defining each site to correspond to a complex scalatlosely the beautiful approach of Dhi], who also dis-
Z|0a|*— u? ¢al?, and each link to—A?|¢,— pp|?. On thekth  cussed many other lattices, and determined the dimensional-
order truncateds-simplex we have the number of sité§=(s ity for finite temperature spin systems. The scaling property
+1)s, and number of links| = (s+1)s" /2. of the Coleman-Weinberg potential, and the obtained values

of €, depend crucially upon the recursive construction of the
for the momenta scales greater thighin the continuum lattices. Though the physical systems we consider are differ-
limit. Sincee is irrational, any loop expansion of an interact- ent than the static spin systems considered by Dhar, and we
ing field theory will be finite to all orders of perturbation are working in the zero-temperature quantum theory, we
theory. nonetheless recover Dhar’s result for the noninteger dimen-

The kernel lattices we consider are “complete” lattices in sionality of the truncated-simplex lattices of coordination
which every site corresponds to a complex scalar field theorpumbers:
of massu in 1+ 3 dimensions, and every link is a hopping
term, A?| ¢, — ¢,|%, coupling every scalar field at every site _2In(s)
to every other site. For example, in Fig. 1 we show a com- €= In(2+s)’
plete square kernel, equivalent to a tetrahedron, as a zeroth
order kernel lattice with coordination numbs#3 (this is  Moreover, we find that there are additional RG invariants.
called the “truncated 3-simpley” We then construct the One of these is a mass scalewhich plays the role of the
next order lattice by replaciigach vertex with a simplex. compactification scale of the theory, and arises somewhat
This integrates irs— 1 new fields ands new links per origi-  mysteriously, much likeAgcp by dimensional transmuta-
nal site. In Fig. 1C we have replaced each site of the kerneion. Below the scalevl the theory is governed only by its
with 3-simplices to produce the first order lattice. We thenzero modes, and lives in thet13 dimensions of the original
iterate the replacement to produce the second order lattice fikld theories attached to each site of the lattice. Abdvile
Fig. 1D. The procedure can be iteratetimes, and we ulti- “KK modes” begin to appear in the RG invariant distribu-
mately imaginek— o to define a continuum limit. It yields a tion of Eq. (1), which is the main observable of the theory.
system of N,=(s+1)s® complex scalar fields coupled Another RG invariant leads to the classical “running cou-
throughL = (s+1)s**%/2 links. pling constant” relationship ire dimensionsg?« (E/M).

The renormalization group transformations that define a When we go over to theories involving fermions and
symmetry of this system reduce tteh order lattice La- Yang-Mills fields there are various subtleties. We describe
grangian back to thek(1)th order lattice, preserving the these mostly qualitatively in Sec. IV. Despite these subtleties,
Feynman path integral. These are composed of a sequenceipbppears that a standard model generalization can be con-
“polygon-x" transformations, analogous to those first dis- structed in H(3+¢€) dimensions. In the Conclusions we
cussed by Onsager for the Ising mo@@), followed by “4-  will address some options to the question of physical inter-
chain— 2-chain dedecorations.” These transformations will pretation.
be adapted to the#3 field theories that live on sites of the

(A)

(D)

2

II. TRANSFORMATIONS FOR DECONSTRUCTED

LATTICE FIELDS
The term “decorate” is sometimes used instead of “replace” but

we will henceforth reserve the term “decorate” for the RG trans- We begin by considering transformations which augment
formations defined below. or thin the degrees of freedom of+13 theories of many
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FIG. 2. The 3-chain— 2-chain dedecoration transformation in-
tegrates out the internal field and renormalizes the end point fields
kinetic terms and mass terms.

complex scalar fields. These transformations stem from sym-
metries noticed long ago in the Ising mod&-9]. In the
language of Ising models a single spiflink —spin, combi-
nation in the Hamiltonian can always be “decorated,” i.e.,
written as a spip—link —spin’ —link —spin, interaction. That

FIG. 3. The polygon transformation for a complete octagon
deletes the intraoctagonal links, and integrates in a new central field
with radial links out the end point fields.

metry in the largek limit. The invariance of the Coleman-

is, we can “integrate in” the new spin or “decorate” the  \yeinherg potential in the lardelimit allows us to determine
original single link. Thus, afl-spin system can be viewed as ¢ gimensionality of the theory. This limit corresponds to

a 2N spin system upon decorating. The decorations can bﬁﬂoo, and corrections to the result after truncating the de-

arbitrarily complicated, involving many new spins. COn- yative expansion are vanishing. The surviving RG invariant

yerselyl, we c?]n_ mtEgrate O(;‘t or dgdecorati the spins oo ameters allow us to interpret this as a geometric, as op-
internal to a chain whose end point spins are then renormaliiso 1o a scale, transformation.

ized (Fig. 2.

Decoration is an exact scale transformation for Ising
spins, and continuous sping.g., “spherical models” are
spin systems which correspond to our models in the absence 1. Example: 3-chains— 2-chains
of kinetic terms. Presently we are dealing with a transverse
lattice [10] in which our “spins” are fields that have 43
kinetic terms. For us decoration and dedecoration transfo
mations are exact scale transformations only in the limit o L .
very large cut-offA. This occurs because we perform deco—theory' itis a symmetry of the theory only ji—0. When
ration transformations truncating on quartic derivatives, sucl‘f‘_>0 we will see that _the spectra l:_)efore and after the de-
as |2¢,|2/A2. This is, nonetheless, a good approximatedecoratlon trar_lsf_ormatlon coincide in the low eneltpw

o . . mode numbeérlimit.
transformation in the\ — oo limit, or for the low lying states

in the spectrum. These transformations become symmetrieﬁhiﬁnifﬁrbaeﬁiigevrgglz(s sacaéaezgﬁgrt?grazgﬁn;xi’ d
when the theory is classically scale invariant, ig?=0 and ed P

A—o, and when combined with polygon-ransformations extra dimension with periodic boundary conditions:
(below) on the recursively defined fractal lattices, they be- N

N N
come geometric symmetries for arbitrguy+ 0, i.e., a fixed [=7 9b.12— A2 _ 2_ 2 2
renormalizedu? can be defined. The-13 kinetic terms un- oazl |96l Oazl |$a= Pasil 'uoazl |l

A. Dedecoration transformations

We warm up with the simplest example of a “dedecora-
rt_ion transformation” applied to chains of complex scalar
ffields. This corresponds to a scale transformation on the

dergo renormalizations under these transformations, and thus (©)]
distinguish the present construction from that of a spin model
(e.g., the continuous complex spherical model where we takeN to be even and assume periodicity, hence

We will also require a generalization of Onsager’s “star- ¢n+a= ¢a- It is convenient to allow for noncanonical nor-
triang|e" or more genera”y’ “p0|ygon,.” transformations  malization of the kinetic terms, and we thus display the ar-
that replace a complete polygon of spins, Fig. 3, with a rabitrary wave-function renormalization constaty.
diating star configuration, integrating in a new centroid spin. It is useful to considerC as a sum over 3-chains:

This transformation can again be done in field theory to lead-
ing order in the derivative expansion, provided the plaquette
is not oriented(which creates a complication when we at- £=n%d Lon+2- (4)
tempt to include fermions and gauge fieldEhe polygonx

transformations are, thus, only exact for us in the->  £4:h 3.chain involves three fields. The first 3-chain is
limit. There will generally be hidden symmetries associated

with the new centroid field which may play a role in appli- 1

cation to gauge or chiral-fermion theories. £1,3=§ZO(|8¢1|2+ 2|0¢o|2+|0pa|?) — Al pr— o|?

The key result is that combining sequences of polygon-
and dedecoration transformations allows us to map a recur- 1
sively defined truncatestsimplex lattice akth order into the — A3 dp— 3|?— §M3(| d1|2+ 2| o) >+ | d3?).
same lattice at— 1 order with different physical parameters.

This leads to the renormalization group as a geometric sym- (5)

N—-1
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The fields¢, and ¢5 share half their kinetic terms ang®  original theory withN fields as a sum over the renormalized
terms with the adjacent chains, thus carry the normalizatiol-chains, containing a total &/2 fields:

factors of 1/2 within the chaitmore generally, the end point
fields may haves—1 links with other fields and thus carry , 2 A2 _ 2 2 2
1/s factors in the kinetic and mass terms of each chain £ —Zla; |96l Ala; | $a= a1l '“1;1 | bal”

N/2 N/2 N/2

can be viewed as a “decoration” of the chain. We can inte- (9)
grate out the internal fieleh, and obtain an equivalent renor- . 5 _
malized chain. Integrating ous., The dropping of thed(¢,— #)|* terms, which appear to be

superficially relevant, affects only the high energy spectrum
, 1, 5 5 of Eq. (9) whenw=0 in the limit A—o andN—oo, holding
Aot 5 ko ([ 1]+ 3l*) M= A/N fixed. To see this, we diagonalize H§) to obtain
the mass spectrum:

Ly 3:£Zo(|(9¢ |2+ ]| —
s 2 1 1

A bt b (bt b, 6 m2(n)=Zy *A2sir’(7n/IN) +Z5 1 u2,
ol @1t ¢3) 20(92+2Ag+ﬂ(2)(¢1 ¢3) (6) 0 0 Ao 0 Mo
n=(0,1,... N—1). (10)
Expanding in the derivatives and regrouping terms gives
Diagonalizing Eq.(9) yields the mass spectrum:

1 1 . _
51,32521(|3¢1|2+|3¢3|2)_A§|¢1_ $3l?— §M§(|¢1|2 mi(n)=Z;Asin?(2an/N) +Z; *ul,

+[p3l?) — 61]9( 1~ P3)|*+ O(9* A?) (7) n=(0,1,...N-1) (11

and comparing Eq(10) and Eq.(11), we see thamf(n)

where we obtain .
mmé(n) for n<N, if we neglect theu? terms. The renor-

BAL4 AN 24 malized mass ternZ; *uf=(1/2)Z,*u3, is halved by the
0 oMo Ko . .
Z,=Zp— > 51~ 220 dedecoration transformation, and thus we have performed a
AN+ AN+ g scale transformation on the original theory. The two spectra
coincide in the smalh limit of the scale-invariant theory
Ag 1 with u?=0.
2 0 2 K R
A= m“ EAO Viewed as a renormalization group, we see that the large
0" Mo N system flows under repeated application of dedecoration
s o 4 transformations to a block-spin thinned thedty<<N with
o 2mpAotmo u—0, which is the scale invariant fixed point.
1= WNMO
0T Mo 2. Renormalized 4-chains» 2-chains
7 A4 1 We will require in our applications presently the reduction
o) 070 (g  Oof slightly more general 4-chains, which are two end point

(2A2+u2)2 47 fields and 2 internal decorating fields. We must allow for a
more general parametrization of the chain fields, since this
We have written the approximate forms of the renormaliza-structure will arise on the lattices of interedter a polygon-
tions of the parameters in the largelimit. Note that theu?  * transformation (below). Generally, after performing
term is multiplicatively renormalized. This owes to the fact polygon=+ transformations on our lattice, the full Lagrangian
that it is the true scale-breaking term in the theory when thewill be a sum over 4-chains of the form:
lattice is taken very fine, and terms become derivatives,

i.e., asu—0 the theory has a zero mode. Since it alone L= p4-chain (12)
breaks the symmetry of scale invariance, elevating the zero no "

mode, it is therefore multiplicatively renormalized in free . - , . L

field theory. These 4-chains will live on lattices with a coordination num-

bers and generally have different normalizations for the two

The 6 term has been written in the indicated form be- Lo 4 .
endpoint fields than the two internal fields:

cause, though it superficially appears to be a reledant
operator, it too is a quartic derivative on the lattice, i.82 ( 1 1
in 1+3)(a nearest neighbor hopping term on the lajtide £ *"N=—Z4|0®,|2+Z 4| ¢,|?+ Z 4| I o] >+ = Zg| 9D 5|2
effects only the high mass limit of the KK mode spectrum. It s S

is therefore dropped for consistency with the expansion to 1
order g*/A2. - 5M02(|‘1’1|2+S| b1]?+ 8| o] >+ | 4|%)
The fields develop a new wave-function renormalization
constantZ;. Note that in theA> u limit, Z,—2Z,, twice — AL D= pa|>— A3 p1— o?
the original normalization. This renormalization is common )
to all the ¢, fields in the other chains. Thus, we can write the — Ao’ | Do— . (13
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The end pointD; fields are shared wite— 1 other neighbor- B. Polygon+ transformations

ing chains, hence th&g, /s kinetic term normalization, and Let us consider a “complete” deconstructed Lagrangian
the u§/s factors. Furthermore, note the central link for the for 4 polygon ofs sites. This is a highly nonlocal structure of
internal fields, |#;— ,|?, has a different strengt\§  Fig. 3 in which all sites are linked to all other sites with a
# A2 than the extremity links. common bond strength:

We integrate out the internal scalags andsgz. This
requires diagonalizing the,— ¢, internal (mass) matrix,
which has eigenvalued ;2 and A;2+2A 2. We then re- ﬁpowgonzz‘)a;l |9~ zAég«l gfl | $a ol?
group the derivative terms as before, discarding quartic and

higher derivatives. We thus obtain a renormalized 2-chain: ) ° )
—u5 2 |l (18)
- a=1
e Chaln:§(|a®l|2+|0®2|2)_A2|q)1_¢2|2 Note that we must be careful not to double count the link
|pa— bp|? in double sums, hence the factors of 1/2. It is
w? interesting to compute the mass spectrum of the perfect poly-

~ (@2 +[@o[)+O(3*M?) (14 gon by itself, going into the Fourier basis:

h S o
where _T 2 |kals ¢a+s d’a (19)
Z=Zp+SZAY? ! h
= S — whence
R (EVCRCE
s—1 s—1
1 1 L=202 |oxd?=sA5 > Ixd?=ud > Ixd® (20
K2_ " A4 k=0 k=1 k=0
2 (Ag%+ o) _ ,
Note the sum in the second term begingatl, so the mode
1 k=0 is a zero mode whep=0. Hence, renormalizing 2
- (AP + 202+ 10?) =A2/Zy andu?= u3/Z,, the spectrum, consists ef- 1 de-
generate modes of magsAZ+ 2, and the single mode of
massu with k=0.
~, (1+s)A62+ o’ The polygon ofs complex scalar fields admits a transfor-
1= po? A2t pg? (19 mation which introduces a central complex scalar figld
0

and becomes the-star with (s+1) complex scalar fields.

: ' ; 12/ 22 . Let us consider the action in the form
It is useful to define the ratia@=A,“/Aj and consider the

large A limit of these expressions: s s
L£7=Zg|002+Z 2, [9al? = A2 2, |© = al*~ | @I

Z—Zp+Zs
S
. 22 [l (21)
A2=A(2 a-t
0 (k+2)

Note that all|¢,— ¢p|?> bonds have been deleted and we
~ introduce new|® — ¢,|?> bonds radiating from the central
n?=po*(1+s). (16) =l 9

scalar®.

I . - Starting with£*, we integrate outb:
We will find that 4-chains arising after polygon-transfor-

mations on the truncatesisimplex lattices will havec=s. s s
The full Lagrangian after replacing the 4-chains by the £*=ZE |(7¢a|2—(/\'2+ﬂ'2)2 | ol
2-chains and summing over all 2-chains, will take the form a a

S
1
> ~ % +AYDY bl +H.
LIM=Z2, |00 =2 [0aP=A 22 04— Dp|2. 2 & 290+ SN2+ ud, z Porile
17) (22

Note that when the 2-chains are summed, the factors  Performing the derivative expansion and reorganizing terms,
disappear in overall kinetic and mass term normalizations. we thus recover the polygon form of the Lagrangian:
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S S
1
c*—>£P°'y9°“=ZO§ |0pa|2— EA?% | pa— ol?

S (92
—132 |ba*+0 p) (29
and we have the relations s (B) ©
SA'4 Z
Z2o=2+Zp——5—55~Z+ i FIG. 4. lllustration ofk—k—1 RG transformation(A) Second
(sA' %+ u§)? S (kth)  order truncated 3-simplex; (B) reduced after
polygor(triangle- transformations{C) reduced to firstK—1) or-
, A4 A2 der after 4-chain— 2-chain transformations.
AN —
0 (SA 72+ /'L(ZI)) S .
12,2
A T (27)
o (HhHsw NP4 pdp? | (s+1) st1
o (A% + ) b
(24 C. Combining polygon-+ and 4-chain transformations

) . ) o to reduce the truncateds-simplex lattice
where the approximate expressions hold in the laxdanit, Wi dv t truct the RG t ¢ tion f
and are all that we ultimately require to implement the renor- € aré now ready to construct thé R% transformation for
malization group. the truncateds-simplex lattice by combining the above trans-

Note that we have freedom within th&* Lagrangian to format]onls. Cogyde_rbar(:ym grderlsrslgmplex Iattice built up id
vary the ratiosZy,/Z and ue/u’. We can for example, recursively as described in Sec. I. For concreteness consider

chooseZ4, =0, in which cased is a nonpropagating auxil- Fig. 4A, the sec_ond order 3-simplex._

iary field.ITheCID field will recover a kinetli)c ter% Whgen sub- The Lagrangian of théth order lattice takes the form
sequent chain tranfsformations” arﬁ performeg. The-0 . N, N,
case is interesting for Yang-Mills theories, and corresponds

to “integrating in” an infinite coupling constant gauge field, "Jk:Zanzl |'9¢a|2_/\c2)|%;45 | pa— ¢b|2—ﬂ(2>a§=:l | al?.
and the infinite coupling will run to a finite value after sub- (29)
sequent chain transformations. Presently we will make the

convenient choiceu’zz,u?p, but we do not specify explic-

Lk

itly Z/Z. This will act as a check on our result. We begin by performing the polygon-transformations on
We can readily invert the transformation in the lar§e each of the elementary polygons. All of the elementary poly-
limit. In summary, the polygon Lagrangian: gons are annihilated by this procedure, replaced by stars, and

the lattice of Fig. 4A is carried into that of Fig. 4B. The

s 1 s s centers of the stars are connected to neighbors through
LPOYIN=Z N 92— =AZD, D |ba— bpl? 4-chains, and the full Lagrangian is now a sum over

a=1 2 d=16m1 4-chains. We have the 4-chain parameters determined by

s Eq. (27):
—u5 2 ¢l (25
a=1
. Zy
can be replaced by the Lagrangian: ?+Z=ZO

S S
L =Zg|0D[P+Z D, |9ha|>— A2 |®— |2~ p' 2|D|?
a=1 a=1

A'?=sA§
S
—w? 2 |l (26)
a=1
PCE (29
with the choice of parameters\(—®): Os+1
Z—¢+Z=ZO Now we reduce the 4-chains to 2-chains. The lattice is
S

mapped from Fig. 4B into Fig. 4C. We see that we have now
reduced the originakth order lattice to the&k—1 order with
A"2=sAj ian:
0 the new Lagrangian:
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N1 , ~2ka1 , ~2Nk*1 , sure. Ine dimensions if we interpren as the radial magni-
Ek—lzzgl |0pal®— A I%S |pa— bpl*— 1 azl | pal®. tude, then in the continuous approximation to the sum we
(30) can replace
. . Ny
The parameters renormalize as in E(L6) where « 1N 1
= A’?/A?=s. The resulting overall renormalization is HZO “elo dn(n/Ni)* . (35
Z=sZ, In replacing the discrete sum by a continuous integral we
will induce “Casimir effect” corrections to the vacuum en-
_ , S ergy. These are discussed in the Appendix.
A2=AO(S+ 2) With n a radial coordinate, the leading behavior at low
of w? is w~c(n/Ny)?A?, wherec is a constante.g., ¢
~2_ 26 =2 in a one dimensional periodically compactified situa-
B Ko tion). Let us rescalen to write the integral over an 4e
Ny dimensional momentum vector,
N=N,_;=—. (32)
s p?=p,p*+c(n/Ny) A2 (36)

We have also noted the change in the number of fidgs, The Coleman-Weinberg potential becomes
We see that the arbitrariness of choosidg /Z (also

ne /', which we fixed to unity in the intermediate step is Z 2N, d*"¢p ,
a hidden symmetry in the result. I'=c(e) G f (277)4“'”([3 T u). (37)
lll. COMPUTATION OF THE DIMENSIONALITY Herec(e€) is an overall normalizing factor coming from tiee
A. Vacuum energy scaling law dependence, the ratio of tlte=4 to d=4+ € solid angles

i and (27)9 normalizing factors. This factor is irrelevant for
We have described a theory of free complex scalars depe scaling argument, but given by

fined on thekth iteration of the kernel lattice. For the
truncateds-simplex lattices the coordination numbersjghe 1[4\ <?
number of fields in theth iteration isN,= (s+1)(s)¥ and cle)= E(T) I'(2+€l2). (38)
the number of links i¢ = (s+1)s**/2. The Lagrangian is
Ny Le Ny T.he fintegral, apartI fromhthe. explic.it_ sca(lti(ng irefactor,_ is fi-
_ 2 a2 2 2 2 nite for nonzerce. It is thus insensitive ti& ask—oo to its
E_Zazl |9al*—A ;) | b= ol "~ e 321 | bl UV cut-off limit and to A —oc. We discuss this integral and
(32 the limiting procedure in greater detail in the Appendix. Per-

L ) forming the integral
where the linking mass term sums over the links.

If we could Fourier transform Ed32) we would obtain a Z 2N,
mass spectrum of the for 2= w2+ u2. The path integral I'= e (w)* V(e (39)
for our theory then takes the form in a Euclidean momentum
space, up to an overall multiplicative normalization factor:

whereV(e) is insensitive tdk ask— .

Ny Thus, suppose we know the value of the paramelggs,
e—F:f D¢ e—fd“xL:H IT (zp?+ w2+ p?)~1. A and Ny for some large value ok. Then, we obtain the
P, n=1 Coleman-Weinberg potential fé&r— 1 by the sequence of RG

(33  transformations and we find new parameters:

The vacuum energy, or Coleman-Weinberg potential, isup to = _ ~_ T _
an overall additive constant: Z=h(e)Z, u=ts)u, A=g(SA  Nis Nk/s('4o)

SinceV is insensitive tk for k—o (and largeA) we have

5 d*p 2, 2. 2
r=z > In(p+ w2+ u?d) (34)

(@m?* N (Z)"2N
72_k 44+€__ k=1 ~ 4+e

where we have rescaled the 4 momentum integra.by z Ae('““) T A (w) (42)

We want to replace the sum arby a continuous momen-
tum integral. In any integer dimensionality,is a vectorn  or
=(ny,Nny, ...). Wewant to perform the angular integral in
the sum over discreta. This leaves a sum over the radial _ (f(s))**« 42
magnitude ofn=+/n-n with a dimension-dependent mea- s(h(s))2(g(s))¢
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and thus the dimensionality is determined as Combiningu, with the RG invariant vacuum energy scal-
ing factorV, allows us to define yet another RG invariant
_[=41n(f(s))+In(s) +2 In(h(s))] (43 Mass scale:
In(f(s)/9(s)) ~
A,
. - . M= ——7r. (48
B. Dimensionality and RG invariants (N)Ve

of the truncated-s-simplex lattices

Let us compute the dimensionality of the truncated!he scaleM is fixed in the largeA, and N limit, and has

s-simplex lattices. From Eq$31) we have nothing to do with the physical mass; . It def_ines the
threshold scale of the KK modes, i.e., the effective compac-

s tification scale of the theory. Comparing with the spherically
h(s)=s, f(s)=\s, g(s)= T2 (44 symmetric measure in the integral of E§5) we see that the
number of KK modes with energl is given by
The dimensionality is thus £

€
21n(s) n(E)=(m) . (49)
o= (45)
In(s+2) , « TR -

M is therefore the “compactification” scale of the noninteger
We have recovered the result of Dhar for the dimensionalityeXtra dimension. The scal persists in thg.— 0 limit. It is
of spin-systems on the truncatedimplex lattices. In Dhar’s Somewhat mysterious, in that we are taking a classical theory
analysis of spins systems, the spins are static, i.e., have i@ & continuum limit, yet a nontrivial RG invariant mass
kinetic terms in an auxiliary 3 dimensions. The wave- Scale survives. Itis a consequence of the fact that the dimen-
function renormalizations are essential in our present renoionality is not trivial, i.e.,e#0 and a fundamental scale

Weinberg potential. Nonetheless, the lattice dimensionality i&Ply nonzero in this classical theory. In this senbg,is

the same as in the static spin system. analogous to/\QCD.Z For use is classical, while in QCDx
Note that the coordination number must satisfy2 fora ~ ~/A/g is an anomalous dimension. -

nontrivial noninteger dimensionality. Fer= 2 the dimension The physical significance of the invarianceZfl pertains

is always 1. For the truncateslsimplex lattices we have 1 to interacting theories, such as Yang-Mills gauge theories.

<e<2. We can identify

The scaling laws amongst the four quantities of B{,)
imply that there are 3 invariants. We have just encountered ~
one invariant from the vacuum energy scaling law, and there L
are thus two others. We list them as follows:

1
; (50)

a common dimensionless coupling constant of the decon-

V.= w(ﬁ)4+e structed theory defined at the scale of the cutoff. Then the
' (A)e invariantM tells us how the coupling constant scales with
choice of cutoff. To see the running coupling constant scal-
’urzz ﬁzz ing law combine Eq(48), Eq. (49), and Eq.(50) to obtain
_— 5 E\€
N,=ZN. (46) 9" (B)=| ] - (53)

It is useful to define a noninvariant renormalized cutoff: .
Thus, we recover normal power-law runningg3{A,) when

€ takes on integer values. The formula exhibits the generali-
(47)  zation for noninteger dimension.
We have made a continuous approximation to the inte-
grals, but we can always “rediscretize” the sum in an RG
A, can be used as the “running” mass scale, or identifiednvariant way. The original choice of the definition of the
with the energy scale of interest~ A, . energy,w,=\JcnA/N, is not RG invariant. We see that the
In contrast to the case of the 3-chain 2-chain dedeco- overall coefficient of the Coleman-Weinberg potential in Eq.
ration acting on a chain dfl scalars, the present RG trans- (36) can be written as
formation is not a scale transformation. We see that the
renormalized masg, is invariant under the RG transforma-
tion. The present RG transformation is a statement about theZAQCD arises because the quantyiity function (the Gell-Mann—
geometric recursive structure of the theory. This RG invari-Low ¢ function) is nonzero and acts as an “anomalous dimen-
ance ofu, emboldens us to consider this as a symmetry of &ion” for the coupling constant, and hence the trace of the stress
novel continuum theory. tensor is nonzero.
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Z 2N,

AE

(W) e=(p)* M e (52

Hence, rediscretizing, we replace

v @ pip)~ | @ (b0 (89
n FIG. 5. The trianglex transformation for an irreducible

plaquette map®;— ¢;, but imposes a constraink;®,o,=1.

and the energy of theth mode isw,= \cnM.

The difference between the rediscretized sum, taken ta common coupling constagt and the link field®,, is then
infinity, and the continuous integral, is a Casimir effect. Ingp (W,N) chiral field with a vacuum expectation value
the Appendix we show that the Casimir effect can be EX(VEV), (d)=vly. The Lagrangian is then
pressed as a finite integral. The finite integral is vanishing
when we assume that the theory can be expressed in a (4 Nk q Lk
+ €)-dimensional Lorentz invariant way. It is not necessary Lyy= — Z —ZGf‘wGaf‘”Jr Z D, ,CI)ab]T[D’*ﬁI)ab]
to make this strong assumption; the effects of the noninteger n=1 49 (ab)

extra dimension may show up in an RG invariant way only at Pk
the threshold scal, but have bad non-RG invariance at + 2 AT I @l (54)
higher energies. This depends upon the physical interpreta- plagn plagn

tion of the theory. The finiteness of the Casimir integrals ) ) . .
suggest to us that a true RG invariant theory exists, and oufh€ irreducible plaquettes are those which do not encircle a
construction for any finite order dfis just a regulator with Subplaquette(i.e., can be contractgd The irreducible

_ k+1
RG-symmetry breaking terms. plaquettes ar®,=(s+1)“"*. _ .
Lyw has been supplemented with a plaquette action,

where each plaquette has a coupling constgntLet us first
IV. CONSIDERATIONS OF GAUGE FIELDS considem\ ,=0. Then the theory will contain a spectrum of 1
AND FERMIONS vector zero modelN,— 1 massive gauge fieldKK modes,

Naturally, we are interested in realistic models built alongand in tree approximatiob,— N, +1 massless PNGB'’s. The
the lines suggested here. Thus we will require Yang-MillsPNGB’s will generally be lifted in perturbation theory to
theory, and fermions, including chirality. The present discusmasses of ordexM?, but they can also be elevated by turn-
sion will be qualitative, as we note some new issues thatg on thex,. Indeed, we see th@,>L,, so including all
arise in attempting this extension. irreducible plaquettes with large, we can lift all PNGB’s,

When we go over to theories involving fermions and except for a single zero mode.

Yang-Mills fields there are additional subtleties. These Lifting the PNGB's is necessary for the implementation of
subtleties revolve around the polygentransformation. For the x-chain RG. In Fig. 5 we see a mapping of the irreduc-
example, Wilson fermions in a polygon cannot be mapped tdble triangle with link fields®; into a star configuration with
the» configuration. Similarly, the pseudo Nambu-Goldstonenew link fields ¢;. The net gauge phase rotations in going
bosongPNGB's) of Yang-Mills theories that are periodically from one site to another must be faithfully represented under
compactified must be lifted by plaquettes in order to perfornthis redefinition; thus,

the polygonx transformation. The point is that the polygon

is orientable, while ther is not, so orientational elements of 1= dlpa, Po=dbids, Ps= b
the action WiII'not be carried Fhrough by th'e transforma'tion.and we thus see that tii, are constrained:

In the Yang-Mills case, an arbitrary magnetic flux threading a
plaquette,/B-dA~¢A-dx cannot be represented by the 1= ,d, . (56)

form of the action, and this requires that a certain PNGB be

infinitely heavy. Thex configuration, however, will be seen This is the orientability problem mentioned above. It requires
to be the key to creating chiral fermions. Chiral fermions inthe quantization of the Wilson loop around the triangle
deconstruction are lattice defects. In the present case thglaquettegfA dx*=2zn (more properly,®;®,P; must
must be incorporated as the centersxofonfigurations that lie in the center of the groypIn the deconstruction lan-
are invariant under the RG transformations used to reducguage, it imposes a constraint on the PNGB’s. We can treat
the lattice. In a sense then, chiral fermions are rarified dethis constraint by introducing terms\ 53Tr(P ;P ,dP,) for
fects, or invariant centers in the fractal lattice, similar toall elementary plaquettes, and we tregt as a Lagrange
doping atoms in a material, or to the centers of snowflakesmultiplier, then perform the polygos-transformation. This

Yang-Mills gauge fields are introduced in a deconstructeawill lift the PNGB'’s from the spectrum. This is the expected
theory by having gauge group§,, living on sites and decoupling that of high mass PNGB’s must occur when the
linking-Higgs-fields defined on links. We also include short-distance degrees of freedom are thinned. Thus, we ex-
plaquette terms which show up as mass terms of PNGB's ipect that polygone transformations should make sense in
the 1+ 3 dimensions. Hence, let us chod3g=SU(N) with  the theory with plaguettes.

(59
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An intriguing point is that the- Lagrangian involves “in-
tegrating in” additional Yang-Mills gauge groups at the cen- A
ters of stars with coupling constangs. As we saw in the
star transformation, there is a freedom to choose the wave
function renormalization constard,, , arbitarily relative to
its neighbors. This translates into the freedom of choosing
the coupling constang* for the new central gauge group
arbitrarily. In particular, we can choogg =«, which com- (A) (B) (©

pletely §uppressgs the continuum kinetic term of the new FIG. 6. The truncated 3-simplex lattice constructed with an in-
gaUQe flgld at thlsislcale. Th? subsequent ?ham, tran_sfor_mgériam star dislocation for chiralitfA) Kernel (complete lattice
tions will induce a finite coupling and gauge invariant kinetic ith coordination number 3 and a single chiral fermion attached to
term for this gauge field as we perform the 4-chai@-chain  the upper left-hand sitéB) the first order decoration replaces each
transformations. The renormalized couplings after the comsite under recursion except the invariant st&) the second order
bined transformations for all gauge fields will have a com-decorated lattice. A theory space can be constructed by defining
mon value and will run according to the scaling laws de-each site to correspond to a vectorlike standard model, except the
scribed in the previous section. invariant star which is the usual chiral standard model. Hopping
Barring topological obstructions, we thus expect that theterms involve gauge links and Dirac fermion mass terggjn,
reduction for Yang-Mills gauge fields goes through in the *H.c. The chiral fermions in the invariant star have chiral hops
Gaussian approximation. We obtain the same dimensionality, #,r+ H.c. to the vectorlike neighbors. The zero-mode structure
as for complex scalars. Obviously the question of the effectsf the theory is the chiral standard model.
of interactions is of great importance. We expect that there
are 1+3 continuum renormalization group effects that ac-ways occur with SUSY. With Wilson fermions the hopping
company the lattice reduction, which corresponds to aerms are written as (v n P n¥(n+1)r— U ¥nr¥nr). The
change of scalde.g., of A;). The main issue, however, Wilson fermion hopping terms have a definite orientational
comes from the power-law running in Ep1). The Yang- sense,l(n)—R(n+1), around the polygon. These cannot
Mills coupling constant as described classically, will reachbe reduced by polygos-transformations, and it is not clear
evolving upward with scale, a unitarity bourgf~ (47)2 at  to us that sensible reducible fermionic actions exist which
an effective scale\; fairly quickly (it would be interesting are compatible with the polygos-transformation. It should
to construct models in whicle<1l where the power law be borne in mind, however, that the polygertransforma-
running is suppressed, and appears approximately logarithion is ultimately a convenience in computing the dimension-
mic). This is the scale of unitarity breakdown for longitudi- ality of the lattice. More exotic fermionic reductions that do
nal KK-mode scatterin¢3]. This would imply a phase tran- not require the polygor- transformation may exist.
sition in the theory, possibly the string transition. Another If we use an action with vectorlike fermions and fermi-
logical possibility is thagy? runs large, but then is “reset”to  gnic Dirac mass matrix hopping termEaprjL H.c., we can
a small value by a dynamical transition in the theory, thenstjl| introduce chirality. We must construct “invariant stars,”
runs large again, etc., leading tdlimit cycle With a limit  je_| dislocations in the lattice that are not reduced by the RG
cycle it may be possible to také,—c in the interacting transformations as in Fig. 6. At the center of the invariant
theory as well, without a transition to the string phase. Perstar configuration we introduce a single chiral fermid, .
haps the most interesting possibility is that the theory has @he fermion has radial hopping terms to the perimeter fer-
UV fixed point[12], which may arise between a competition ions of the form=, 0¥, ¢, dng. By “doping” a mass-

of the classical running and the one-loop correction. matrix lattice with the appropriate number of chiral disloca-

_Fermions pose additional challenges. Fermions live ofjong one can construct a fractal imbedding of the standard
sites and will have kinetic “hopping terms” on the links. We

. . ) . Imodel.
can always view the lattice as a fermion mass matrix, take all
fermions to be vectorlike, and choose the hopping terms to
be mass terms. This would readily admit polygetransfor- V. PHYSICAL INTERPRETATIONS AND CONCLUSIONS

mations and RG reduction of the lattice as we have derived. How do we interpret these new theories physically? Frac-
This would seem to us to be a relatively uninteresting casetjonal extra dimensions are not obviously compactified extra
The hopping terms should be built out fmatrices. We  dimensions, since no global boundary condition is intro-
expect that we require the use of all matrices through  quced which corresponds to a global compactification.
Ya+[siz7) in construction of the action. Hence, foF2, ys  Rather, we introduced initially a regulatok, which is our
suffices, such as i§;, while s=3 requiresyg, etc. Consider (inversg lattice scale. We ultimately imagine the limit
the polygon of Fig. 5 fos=3 the fermionic hopping terms .« put how this limit is taken is dependent upon the physi-
around the perimeter of the polygon. Using, the hopping  cal interpretation of the theory. The analogue of a compacti-
terms are of the fornx v ¥, ys® ¢+ 1. Generally this form  fied theory emerges with the determination of a compactifi-
leads to the fermion doubling problefdl], but admits cation scale, the RG invariaM, and is a physical scale held
polygon= transformations. It is most sensible to considerfixed in the A —oo limit. M would still be present, however,
Wilson fermions[11] (the Wilson fermion structure will al- with a different definition of the theory in which we maintain
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a finite A, and we may have a hierarclhy<A, in analogy infer some immediate physical consequences, e.g., that the
to the usual compactified extra dimensional theories. Higgs boson will receive radiative corrections to its mass
There are thus two physical interpretations for these confrom top quark loops:

structions. The first is an “outer” modification of spacetime.

Here we have in mind finitd but a dimensional transition at

the scaleM <A in which we view the continuous#3 di- ) 39¢
mensions as brane in a higher dimension with a surface my~— F
structure with characteristic scale lengthM/ This brane .

surface is viewed as dynamical, analogous to surfaces in con-

densed matter_phy_sics, z_and may arise_ from an interface Witn)r heavier fermions in an extension of the mgdélence,
an exterior region involving new physics. The fractal theoryWe infer thatM? is of order~TeV (a “little Higgs” model

space is an effective description of such a system on scales,, \aise the scale te 10 TeV through custodial chiral sym-
not far aboveM. The fractality, in analogy with surface lay- metries

'?hrz Oer:(trrgatgﬂf‘sli dn;e?jli?r,]emnzi{)r?snsier}]vtz)elz\(/::gsg trhee ilgl:]er;?creavxi/gh However, the power-law running of the coupling constant,
change in physical parameters. In this picture I?orentz invgri-gzw(E/M)E with e>0, implies that eithe(1) the theory has
ance at short distances strictly only applies to the3ldi- a UV fixed point or(2) has a limit cycle or(3) undergoes a

) i . phase transition at a strong coupling sagde- (47)2. In any
mensions, bUt. withh Iarg.e. the relev_ant low energy physics case we must account for gravity, and imbedding into string
of the dimensional transition scal is approximately Lor-

: ; . : : . heory woul m he m nsibl ion. This pre-
entz invariant in X (3+¢€) dimensions. In this case, the theory wouild seem to be the most sensible optio S Pre

X 2 scription is nonetheless worthy of study, and is a “continu-
scaleA may represent a further higher energy transition to

. . ous KK-mode distribution approximation” to any theory that

4 2.2
string theory. _Terms of orde_A and A%u” reflecting the envelops the standard model into a noninteger extra dimen-
finite cut-off will be present in the vacuum energy, and aregion ¢

POH(;RG _mtvarla:jnt. -me low energyll pf;ysms,trf]\otwgver,f |s”a We have in mind other applications of these ideas. If the
Ixed point_ under these renormalizations that drasticallyyqqries at lattice sites live in4d continuous dimensions,

ch?_r;]ge tlf:errLlJ\:i\[/)art ?]Lthertgeoryh re intriquing view. i nthen the full theory has td+ e dimensionality. For ex-
e” alternative, and perhaps more guing view, 1s a ample, with continuum %1 fields and very largs we can
inner” modification of physics, in that the scal®l repre-

sents a true dimensional transition te- {3+ ¢) dimensions construct a flat 4 €' dimensional effective theory. Such
; . . € .7 theories are classically asymptotically free, but the log de-
with enhanced Lorentz invariance on scales akdvén this

case we take\ . Then at all shorter distances the nonin- pendence osimplies that it would be difficult to construct a
teger dimensio_n)ali.t is preserved. This is a remarkable po natural lattice of the kind we have considered, sincaust
9 yIsp ' PO%e taken unnaturally large. It is therefore of interest to en-

3'.b'“ty n that -f;lhquar:.tum kfl-eldf.thteotry dﬁfmzd |nf2(3+ ? large the space of recursively defined lattices to see if natural
imensions with irrationak is finite to all orders in pertur- ;=" oG0S ke sense with very small

bz_attrllon theo_;y. k-]r h|§ Cultﬂ' SCSIA iﬁn (ljaef_tqkend_to |nf|_n|ty| Yet another interesting possibility is to deconstruct the
with impunity, holding Tixed as the detining dimensiona string world sheet. Weyl invariance may be realized as a

transition scale. discrete RG invariance on a latticized world sheet with a

M? (58)

a prescription for the construction dinite quantum field eralizations of the string theory to fractal world sheets. The

':Eeortles dOf (rjnatt%r. IThusl, dag |nf|n|te§ 'tn”;B glhmtﬁnsm?sﬁof Iconsequences for the Weyl constraints on the target space
e standard model would be associated wi e cuto scapnay be interesting.

M, which is the threshold for new physics associated with the The key result of this paper is that the renormalization

noninteger correction to t_he dimension of space-ti_me. Abov%roup is dual to geometry. The latter acts in space, and the
the scalevl we would begin to include KK modes in accord former acts in theory space. The RG can then be used to

¥V't|z ttrr]]e energi/hd}ft':bugor:}i/ltM) ’ %nd we lwoulld treallt the reverse engineer unusual new geometries. These fractal ge-
1€ eory wi ooft=veltman dimensional regulanza- ,metrieg exploit quantum mechanics in their construction in

tion as the exact calculational tool for+ dimensions. a fundamental way. In fact, these realize some of the recent

Thus, one way to treat the standard model as a quasiyqcations about deconstruction as a means of reconstruct-

noninteger d|m_enS|or_1aI theory Wc_)uld b_e to replace a_II IOOI:1ng spacetimé4]. Though we are far from a complete theory,

integrals in 4-dimensions by-4e dimensions above afixed g 4 “one including gravity, we believe this is fertile territory

matching scalév: with potentially nontrivial implications beyond those consid-
ered presently.

(57)
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APPENDIX: PROPERTIES OF THE VACUUM ENERGY

roo2y 2\2+¢€l2 —a(szz)
The vacuum energy integral is most readily computed by V(w9 =V (p%) = (27 )2+6/2f da(K?)

differentiating with respect tqu?. Define I'=c(e)(Z 2N/
A9)V(u?) whereV(u?) is the Euclidean integral:

1 (K2)2+6/2
~V'(u?) = , : (A8)
V(2 =f — " In(p2+ ). Al (2m)* 9 K24 p?
(1) 2m)e (Pt u%) (A1)
Then Hence
(9V ? f . - - 2t 2 2 1 212y 1+ €2 212+ €l2
e = = € —~ _ + € + €
o (1% (2m)* < pPr 2 (477)2+e/2('“) Vie(w?)=~V(u?) ok (K )L 2L O(K2)2T e,
A9
XT(—1—€l2). (A2) "
Therefore, integrating wriz2, noting the integral vanishes The procedure of consideringy (%) omitted the last quar-
for u=0 for the 4+ € range of interest: tically divergent piecéwhene=0), but keeps the quadrati-
cally divergent piece.
I'(2—€/2) These additional terms are associated with the UV cutoff

V(p?)= (4w)2+e/2(“)4+6(2+6/2)(1+E/2)(6/2)(1_6/2) * on the theoryA =K/\/c. Hence they are not RG invariant.
(A3) T_hese_ terms do not obstruct our measurement of the dimen-
sionality of the system. If the system has finkethen the
The integral can be performed directly, without differentiat- dimensionality we compute from the finite terms is “effec-
ing, but is more tedious. In performing the integral this waytive,” applying only near the threshold of KK modes,M.
we have made two assumptioi$) The RG invariance holds The far UV spectrum can thus be considerably modified by
for the system under the integral sigf2) the integral is the finite A effects which do not respect the RG invariance.
Lorentz invariant in 4- € dimensions. When these symme- Clearly we would like to argue that the
tries are imposed “under the integral” we have the RG in-(4+ €)-dimensional theory exists, and the- limit can be
variant theory. Such strong assumptions, while the preferrethken. In this case, such terms can be viewed as the fnite-
interpretation of the theory, are not necessary, however.  regulator effect spoiling the symmetry of RG invariance in
It is useful to consider the integral before we take thethe true theory, much the way a momentum-space cutoff
continuum limit. Suppose we do not take the>« limit first spoils gauge invariance. These terms vary under the RG
and perform the integral with a cutoff. Consider, from Eg.transformation, so they would be subtracted to define the

(33) and Eq.(34) the integral with cutoffk = \/CA: symmetric theory, much as gauge invariance forces the sub-
traction of the momentum-space cutoff mass term in the
' (u?) fK d**<p 1 (Ad) vacuum polarization loop. It is simpler to take the limit under
Q¥ 0 (2m)4F (p2+ ud) : the integral sign, since the resulting integral is finite.

Casimir effects arise in principle in the difference between

Here we have assumed that the finite cutoff is Lorentz invarith€ continuous approximation to the theory and the dis-

ant in 4+ e dimensions. We exponentiate the denominator; crétized sum. The form of these effects depends upon how
we define the theory, as described above, and will generally

d* <p y have divergences associated with finite UV cutoff’s that are
VK(MZ)_I f —..© g a(PTHuY), (A5)  not RG invariant. However, when we define the theory to be
0 (2m) 4+ ¢ Lorentz invariant and take the UV cutoff to infinity
then the Casimir effects are vanishing.

2 - . . . . -
Thep* integral is then carried out, using the solid anglelin Consider the original discrete vacuum energy expression:

dimensions,

277912 dp
Q=T am) (A6) F=Z’2f > In(p?+wi+u?).  (A10)

(2m)* "

and we have

The Casimir effect is the difference between the continuum
y2 integral approximation and the “staircase” in the discrete
k(%)= (27 )2+e/2J (J’ JK2> sum. This difference is minimized by the best fit continuous

approximation to the staircase, but a leading residual contri-

Xde(pZ)He/Zew(pzwz)_ (A7) bution remains involving the second derivative of the sum-
mand. In our case the leading Casimir correction to the con-
The second term can be approximated: tinuous approximation is
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_1Z‘2CA2J’ d*p
4 Ng ) o@ent
2 4wﬁ
X > - .
TP optp?) (PP wht u?)

(A11)

Note the factor oA ?/NZ arising from @w,/dn)?.

We rescale, and take the continuum Lorentz invariant

limit the integral-sum goes over to a {4e)-dimensional in-
tegral. We have, by the Euclidean invarianeﬁ=[e/(4
+¢€)]p2. Hence

. 1 ( )Z‘ZNk cA? f d**<p
:—Ce —_— —_—
2 A€ | NZ (2m)4te
4—¢€ p? 2u°

+ . (A12

“J“f)(lozﬂtz)2 (p?+ u?)? AL

PHYSICAL REVIEW D 67, 085004 (2003

The integral is readily performed:

1 272N 4+€ CAZ
:E(e) I2((+IL:/)2 P 2 2|l (—1-€l2)
(4m)“7 A [\ N
[ [ 276 14 ey 23€ A13
are) TR ) (A13)

In this result we have the usual RG invariant prefactor
Z ?N(um)*"€/A€. We also have an additional factor of
A?/NZu?. which can be written in terms of invariarits and

wy as:M2?IN 222 As we take the UV limit the number

of sites grows adN,— (s+1)s*, hence the prefactor term
vanishes in this limit. Higher order Casimir corrections will
involve higher powers oN, in the denominator of the pref-
actor. The Casimir corrections to the vacuum energy are thus
vanishing to all orders when the theory is defined as a 4
+ € Lorentz invariant continuum theory.
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