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Fractal theory space: Spacetime of noninteger dimensionality

Christopher T. Hill*
Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, Illinois 60510

~Received 29 October 2002; published 14 April 2003!

We construct matter field theories in a ‘‘theory space’’ that is fractal, and invariant under geometrical
renormalization group~RG! transformations. We treat in detail complex scalars, and discuss issues related to
fermions, chirality, and Yang-Mills gauge fields. In the continuum limit these models describe physics in a
noninteger spatial dimension which appears above a RG invariant ‘‘compactification scale’’M. The energy
distribution of KK modes aboveM is controlled by an exponent in a scaling relation of the vacuum energy
~Coleman-Weinberg potential!, and corresponds to the dimensionality. For truncated-s-simplex lattices with
coordination numbers the spacetime dimensionality is 11@312 ln(s)/ln(s12)#. The computations in theory
space involve subtleties, owing to the 113 kinetic terms, yet the resulting dimensionalites are equivalent to
thermal spin systems. Physical implications are discussed.
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I. INTRODUCTION

All quests for organizing principles of physics beyond t
standard model, since the classic era of grand unificatio
the late 1970s, have involved extra dimensions. The forem
example is supersymmetry@1#, in which one postulates
Grassmanian extra dimensions and graded extensions o
Lorentz group. Supersymmetry and bosonic extra dim
sions are essential to the use of string theory with ma
fields as a complete description of all forces, including qu
tum gravity. Motivated by certain viable limits of strin
theory @2#, the possibility of extra conventional spatial d
mensions at the;TeV scale, possibly accessible to futu
colliders, has lately become the focus of a lot of activi
Latticization @3#, or ‘‘deconstruction’’ @4#, of compactified
extra dimensional theories provides an effective gauge
variant Lagrangian in 113 dimensions truncated onN
Kaluza-Klein ~KK ! modes of scalars, fermions and gau
fields in D dimensions. This has provided a point of dep
ture for abstracting a new class of models based upon
notion of ‘‘theory space’’@4#.

Theory space, without some defining principles, is
empty concept. A key idea we emphasize presently is
theory space can be endowed with certain abstract geom
cal symmetries that are essentially renormalization gr
~RG! transformations. These transformations are disti
from scale transformations and truly reflect a geome
structure of the theory. Geometrical symmetries in co
tinuum extra dimensions therefore become replaced by
renormalization group in theory space. We can thus tur
around and use the RG to generate new kinds of geomet
In the present paper we study a nontrivial example of
latter possibility.

In particular, we will borrow from condensed matt
physics certain recursively defined, orfractal, lattices to con-
struct classes of new theory spaces. These lattices are de
by recursively ‘‘decorating’’ a lattice of coordination numbe
s, by replacing each site with a simplex ofs sites, preserving
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the coordination numbers. This process is iterated an arb
trary number,k, times. It results in a lattice, which for u
describes a fractal theory space matter field theory. In thk
→` limit it describes a continuum theory whose propert
are determined by certain scaling laws of the~zero tempera-
ture! quantum theory, analogous to the scaling laws of cr
cal systems at finite critical temperature.

The key observation is that the Feynman path integral
these systems is invariant under a sequence of renorma
tion group~RG! transformations that map thekth lattice into
the k21 lattice. In thek→` limit, this RG invariance im-
plies a certain scaling law for the vacuum action function
e.g., the Coleman-Weinberg potential. This scaling law, a
consistency with the RG transformations imposed as a s
metry, leads to the determination of a ‘‘critical exponent,’’e.
This exponent is associated with the number distribution
KK modes with energy:

N~E!}S E

M D e

. ~1!

Heree is the dimensionality of the extra dimensions;M is a
RG invariant mass scale, which is interpreted as the effec
‘‘compactification scale.’’ The effects of the extra dimensio
show up only for energy scalesE>M as KK modes appear
We will obtain irrational~indeed, transcendental! values for
e for the lattices considered presently.

Since theory space, endowed with such a geometr
symmetry, is effectively a theory of compact extra dime
sions in the continuum limit, we have thus arrived at a p
scription for constructing a spacetime field theory in a fl
spacetime of noninteger dimensionality. Our construction
essentially a regularization procedure for the theory, whic
ultimately defined as a continuum limit. The resulting fie
theory, including interactions, may be interpreted as afinite
quantum field theoryas all loops are finite when computed
41e dimensions on loop momentum scales*M . In the Ap-
pendix we address delicacies associated with ‘‘Casimir-lik
effects associated with the discrete KK spectrum. We fi
that the discrete sums over ‘‘KK modes’’ can be comput
exactly using dimensional regularization in 41e dimensions
©2003 The American Physical Society04-1
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for the momenta scales greater thanM in the continuum
limit. Sincee is irrational, any loop expansion of an interac
ing field theory will be finite to all orders of perturbatio
theory.

The kernel lattices we consider are ‘‘complete’’ lattices
which every site corresponds to a complex scalar field the
of massm in 113 dimensions, and every link is a hoppin
term,L2ufa2fbu2, coupling every scalar field at every si
to every other site. For example, in Fig. 1 we show a co
plete square kernel, equivalent to a tetrahedron, as a ze
order kernel lattice with coordination numbers53 ~this is
called the ‘‘truncated 3-simplex’’!. We then construct the
next order lattice by replacing1 each vertex with a simplex
This integrates ins21 new fields ands new links per origi-
nal site. In Fig. 1C we have replaced each site of the ke
with 3-simplices to produce the first order lattice. We th
iterate the replacement to produce the second order lattic
Fig. 1D. The procedure can be iteratedk times, and we ulti-
mately imaginek→` to define a continuum limit. It yields a
system of Nk5(s11)sk complex scalar fields couple
throughLk5(s11)sk11/2 links.

The renormalization group transformations that defin
symmetry of this system reduce thekth order lattice La-
grangian back to the (k21)th order lattice, preserving th
Feynman path integral. These are composed of a sequen
‘‘polygon-! ’’ transformations, analogous to those first di
cussed by Onsager for the Ising model@8#, followed by ‘‘4-
chain→ 2-chain dedecorations.’’ These transformations w
be adapted to the 113 field theories that live on sites of th

1The term ‘‘decorate’’ is sometimes used instead of ‘‘replace’’ b
we will henceforth reserve the term ‘‘decorate’’ for the RG tran
formations defined below.

FIG. 1. The truncated 3-simplex lattice.~A! Kernel ~complete!
lattice with coordination number 3;~B! the decoration which re-
places each site under recursion;~C! the first order decorated lattice
~D! the second order decorated lattice. A theory space can be
structed by defining each site to correspond to a complex sc
Zu]fau22m2ufau2, and each link to2L2ufa2fbu2. On thekth
order truncateds-simplex we have the number of sitesNk5(s
11)sk, and number of links,Lk5(s11)sk11/2.
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theory space lattice. Such RG manipulations are fami
from the condensed matter literature, but are tricky in the
space in a fundamental way: the deconstructed theory
sesses continuum kinetic terms for the field theory in the
13 Lagrangian. We must include renormalization effects
these kinetic terms, up to irrelevant operators that are qua
derivatives, e.g. (]2f)2/L2. In particular, u](fa2fb)u2
must be interpreted as a quartic derivative~we’ll see that
discarding this term only affects the high mode number p
of the spectrum!. These irrelevant operators of the derivati
expansion are dropped, and the renormalization of the
evantu]fu2 terms is determined. This renormalization pla
a crucial role in the scaling law for the Coleman-Weinbe
potential. One obtains the effective Lagrangian in thek
21)th lattice, with parameters that are renormalized un
the transformations. The consistency of the RG symme
i.e., of the invariance of the Feynman path integral, is re
ized only for a particular value of the dimensionality,e.

The solution to the problem of extractinge essentially
adapts the scaling theory of critical exponents@5#. We follow
closely the beautiful approach of Dhar@6#, who also dis-
cussed many other lattices, and determined the dimensio
ity for finite temperature spin systems. The scaling prope
of the Coleman-Weinberg potential, and the obtained val
of e, depend crucially upon the recursive construction of
lattices. Though the physical systems we consider are dif
ent than the static spin systems considered by Dhar, and
are working in the zero-temperature quantum theory,
nonetheless recover Dhar’s result for the noninteger dim
sionality of the truncated-s-simplex lattices of coordination
numbers:

e5
2 ln~s!

ln~21s!
. ~2!

Moreover, we find that there are additional RG invarian
One of these is a mass scaleM which plays the role of the
compactification scale of the theory, and arises somew
mysteriously, much likeLQCD by dimensional transmuta
tion. Below the scaleM the theory is governed only by it
zero modes, and lives in the 113 dimensions of the origina
field theories attached to each site of the lattice. AboveM the
‘‘KK modes’’ begin to appear in the RG invariant distribu
tion of Eq. ~1!, which is the main observable of the theor
Another RG invariant leads to the classical ‘‘running co
pling constant’’ relationship ine dimensions,g2}(E/M )e.

When we go over to theories involving fermions an
Yang-Mills fields there are various subtleties. We descr
these mostly qualitatively in Sec. IV. Despite these subtlet
it appears that a standard model generalization can be
structed in 11(31e) dimensions. In the Conclusions w
will address some options to the question of physical int
pretation.

II. TRANSFORMATIONS FOR DECONSTRUCTED
LATTICE FIELDS

We begin by considering transformations which augm
or thin the degrees of freedom of 113 theories of many
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FRACTAL THEORY SPACE: SPACETIME OF . . . PHYSICAL REVIEW D 67, 085004 ~2003!
complex scalar fields. These transformations stem from s
metries noticed long ago in the Ising model@7–9#. In the
language of Ising models a single spin12link2spin2 combi-
nation in the Hamiltonian can always be ‘‘decorated,’’ i.e
written as a spin12link2spin82link2spin2 interaction. That
is, we can ‘‘integrate in’’ the new spin8, or ‘‘decorate’’ the
original single link. Thus, anN-spin system can be viewed a
a 2N spin system upon decorating. The decorations can
arbitrarily complicated, involving many new spins. Co
versely, we can ‘‘integrate out’’ or ‘‘dedecorate’’ the spin
internal to a chain whose end point spins are then renorm
ized ~Fig. 2!.

Decoration is an exact scale transformation for Is
spins, and continuous spins~e.g., ‘‘spherical models’’ are
spin systems which correspond to our models in the abse
of kinetic terms!. Presently we are dealing with a transver
lattice @10# in which our ‘‘spins’’ are fields that have 113
kinetic terms. For us decoration and dedecoration trans
mations are exact scale transformations only in the limit
very large cut-offL. This occurs because we perform dec
ration transformations truncating on quartic derivatives, s
as u]2fau2/L2. This is, nonetheless, a good approxima
transformation in theL→` limit, or for the low lying states
in the spectrum. These transformations become symme
when the theory is classically scale invariant, i.e.,m250 and
L→`, and when combined with polygon-! transformations
~below! on the recursively defined fractal lattices, they b
come geometric symmetries for arbitrarym2Þ0, i.e., a fixed
renormalizedm2 can be defined. The 113 kinetic terms un-
dergo renormalizations under these transformations, and
distinguish the present construction from that of a spin mo
~e.g., the continuous complex spherical model!.

We will also require a generalization of Onsager’s ‘‘sta
triangle’’ or more generally, ‘‘polygon-! ’’ transformations
that replace a complete polygon of spins, Fig. 3, with a
diating star configuration, integrating in a new centroid sp
This transformation can again be done in field theory to le
ing order in the derivative expansion, provided the plaque
is not oriented~which creates a complication when we a
tempt to include fermions and gauge fields!. The polygon-!
transformations are, thus, only exact for us in theL→`
limit. There will generally be hidden symmetries associa
with the new centroid field which may play a role in app
cation to gauge or chiral-fermion theories.

The key result is that combining sequences of polygon!
and dedecoration transformations allows us to map a re
sively defined truncateds-simplex lattice atkth order into the
same lattice atk21 order with different physical parameter
This leads to the renormalization group as a geometric s

FIG. 2. The 3-chain→ 2-chain dedecoration transformation in
tegrates out the internal field and renormalizes the end point fie
kinetic terms and mass terms.
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metry in the largek limit. The invariance of the Coleman
Weinberg potential in the largek limit allows us to determine
the dimensionality of the theory. This limit corresponds
L→`, and corrections to the result after truncating the d
rivative expansion are vanishing. The surviving RG invaria
parameters allow us to interpret this as a geometric, as
posed to a scale, transformation.

A. Dedecoration transformations

1. Example: 3-chains\ 2-chains

We warm up with the simplest example of a ‘‘dedecor
tion transformation’’ applied to chains of complex scal
fields. This corresponds to a scale transformation on
theory; it is a symmetry of the theory only ifm→0. When
m→0 we will see that the spectra before and after the
decoration transformation coincide in the low energy~low
mode number! limit.

Consider anN complex scalar field Lagrangian in 113,
which can be viewed as a deconstructedS1 compactified
extra dimension with periodic boundary conditions:

L5Z0(
a51

N

u]fau22L0
2(

a51

N

ufa2fa11u22m0
2(

a51

N

ufau2

~3!

where we takeN to be even and assume periodicity, hen
fN1a5fa . It is convenient to allow for noncanonical no
malization of the kinetic terms, and we thus display the
bitrary wave-function renormalization constantZ0.

It is useful to considerL as a sum over 3-chains:

L5 (
nodd

N21

Ln,n12 . ~4!

Each 3-chain involves three fields. The first 3-chain is

L1,35
1

2
Z0~ u]f1u212u]f2u21u]f3u2!2L0

2uf12f2u2

2L0
2uf22f3u22

1

2
m0

2~ uf1u212uf2u21uf3u2!.

~5!

s’

FIG. 3. The polygon-! transformation for a complete octago
deletes the intraoctagonal links, and integrates in a new central
with radial links out the end point fields.
4-3
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The fieldsf1 and f3 share half their kinetic terms andm2

terms with the adjacent chains, thus carry the normaliza
factors of 1/2 within the chain~more generally, the end poin
fields may haves21 links with other fields and thus carr
1/s factors in the kinetic and mass terms of each chain!. f2
can be viewed as a ‘‘decoration’’ of the chain. We can in
grate out the internal fieldf2 and obtain an equivalent reno
malized chain. Integrating outf2,

L1,35
1

2
Z0~ u]f1u21u]f1u2!2S L0

21
1

2
m0

2D ~ uf1u21uf3u2!

1L0
4~f11f3!†

1

Z0]212L0
21m0

2 ~f11f3!. ~6!

Expanding in the derivatives and regrouping terms gives

L1,35
1

2
Z1~ u]f1u21u]f3u2!2L1

2uf12f3u22
1

2
m1

2~ uf1u2

1uf3u2!2d1u]~f12f3!u21O~]4/L2! ~7!

where we obtain

Z15Z0

8L0
414L0

2m0
21m0

4

4L0
414L0

2m21m0
4
'2Z0

L1
25

L0
4

2L0
21m0

2
'

1

2
L0

2

m1
25

2m0
2L0

21m0
4

2L0
21m0

2
'm0

2

d15
Z0L0

4

~2L0
21m0

2!2
'

1

4
Z0 . ~8!

We have written the approximate forms of the renormali
tions of the parameters in the largeL limit. Note that them2

term is multiplicatively renormalized. This owes to the fa
that it is the true scale-breaking term in the theory when
lattice is taken very fine, andL terms become derivatives
i.e., asm→0 the theory has a zero mode. Since it alo
breaks the symmetry of scale invariance, elevating the z
mode, it is therefore multiplicatively renormalized in fre
field theory.

The d term has been written in the indicated form b
cause, though it superficially appears to be a relevantd54
operator, it too is a quartic derivative on the lattice, i.e., (]2

in 113!~a nearest neighbor hopping term on the lattice!. It
effects only the high mass limit of the KK mode spectrum
is therefore dropped for consistency with the expansion
order]4/L2.

The fields develop a new wave-function renormalizat
constantZ1. Note that in theL@m limit, Z1→2Z0, twice
the original normalization. This renormalization is comm
to all thefa fields in the other chains. Thus, we can write t
08500
n
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original theory withN fields as a sum over the renormalize
2-chains, containing a total ofN/2 fields:

L85Z1(
a51

N/2

u]fau22L1
2(

a51

N/2

ufa2fa11u22m1
2(

a51

N/2

ufau2.

~9!

The dropping of theu](fa2fb)u2 terms, which appear to be
superficially relevant, affects only the high energy spectr
of Eq. ~9! whenm50 in the limit L→` andN→`, holding
M5L/N fixed. To see this, we diagonalize Eq.~3! to obtain
the mass spectrum:

m0
2~n!5Z0

21L0
2sin2~pn/N!1Z0

21m0
2 ,

n5~0,1, . . . ,N21!. ~10!

Diagonalizing Eq.~9! yields the mass spectrum:

m1
2~n!5Z1L1

2sin2~2pn/N!1Z1
21m1

2 ,

n5~0,1, . . . ,N21! ~11!

and comparing Eq.~10! and Eq.~11!, we see thatm1
2(n)

'm0
2(n) for n!N, if we neglect them2 terms. The renor-

malized mass termZ1
21m1

25(1/2)Z0
21m0

2, is halved by the
dedecoration transformation, and thus we have performe
scale transformation on the original theory. The two spec
coincide in the smalln limit of the scale-invariant theory
with m250.

Viewed as a renormalization group, we see that the la
N system flows under repeated application of dedecora
transformations to a block-spin thinned theoryN8!N with
m→0, which is the scale invariant fixed point.

2. Renormalized 4-chains\ 2-chains

We will require in our applications presently the reducti
of slightly more general 4-chains, which are two end po
fields and 2 internal decorating fields. We must allow fo
more general parametrization of the chain fields, since
structure will arise on the lattices of interestafter a polygon-
! transformation ~below!. Generally, after performing
polygon-! transformations on our lattice, the full Lagrangia
will be a sum over 4-chains of the form:

L f ull5(
n

L n
4-chain . ~12!

These 4-chains will live on lattices with a coordination num
bers and generally have different normalizations for the tw
endpoint fields than the two internal fields:

L 4-chain5
1

s
ZFu]F1u21Zfu]f1u21Zfu]f2u21

1

s
ZFu]F2u2

2
1

s
m0

2~ uF1u21suf1u21suf2u21uF4u2!

2L08
2uF12f1u22L0

2uf12f2u2

2L08
2uF22f2u2. ~13!
4-4
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The end pointF i fields are shared withs21 other neighbor-
ing chains, hence theZF /s kinetic term normalization, and
the m0

2/s factors. Furthermore, note the central link for t
internal fields, uf12f2u2, has a different strengthL0

2

ÞL08
2 than the extremity links.

We integrate out the internal scalarsf1 and f2. This
requires diagonalizing thef12f2 internal (mass)2 matrix,
which has eigenvaluesL08

2 and L08
212L0

2. We then re-
group the derivative terms as before, discarding quartic
higher derivatives. We thus obtain a renormalized 2-chai

L 2-chain5
Z̃

s
~ u]F1u21u]F2u2!2L̃2uF12F2u2

2
m̃2

s
~ uF1u21uF2u2!1O~]4/M2! ~14!

where

Z̃5ZF1sZL08
4F 1

~L08
21m0

2!2G
L̃25

1

2
L08

4F 1

~L08
21m0

2!

2
1

~L08
212L0

21m0
2!

G
m̃25m0

2
~11s!L08

21m0
2

L08
21m0

2
. ~15!

It is useful to define the ratiok5L08
2/L0

2 and consider the
largeL limit of these expressions:

Z̃→ZF1Zs

L̃25L08
2 k

~k12!

m̃25m0
2~11s!. ~16!

We will find that 4-chains arising after polygon-! transfor-
mations on the truncateds-simplex lattices will havek5s.

The full Lagrangian after replacing the 4-chains by t
2-chains and summing over all 2-chains, will take the for

L f ull5Z̃(
a

u]Fau22m̃ 2(
a

uFau22L̃ 2(
a,b

uFa2Fbu2.

~17!

Note that when the 2-chains are summed, the 1/s factors
disappear in overall kinetic and mass term normalization
08500
d

B. Polygon-! transformations

Let us consider a ‘‘complete’’ deconstructed Lagrangi
for a polygon ofs sites. This is a highly nonlocal structure o
Fig. 3 in which all sites are linked to all other sites with
common bond strength:

L polygon5Z0(
a51

s

u]fau22
1

2
L0

2(
a51

s

(
b51

s

ufa2fbu2

2m0
2(

a51

s

ufau2. ~18!

Note that we must be careful not to double count the l
ufa2fbu2 in double sums, hence the factors of 1/2. It
interesting to compute the mass spectrum of the perfect p
gon by itself, going into the Fourier basis:

fa5
1

As
(
k50

s21

ep ika/sxn , fa1s5fa ~19!

whence

L5Z0(
k50

s21

u]xku22sL0
2(

k51

s21

uxku22m0
2(

k50

s21

uxku2. ~20!

Note the sum in the second term begins atk51, so the mode
k50 is a zero mode whenm50. Hence, renormalizingL2

5L0
2/Z0 andm25m0

2/Z0, the spectrum, consists ofs21 de-
generate modes of massAsL21m2, and the single mode o
massm with k50.

The polygon ofs complex scalar fields admits a transfo
mation which introduces a central complex scalar fieldF
and becomes thes-star with (s11) complex scalar fields
Let us consider the! action in the form

L !5ZFu]Fu21Z(
a51

s

u]fau22L82(
a51

s

uF2fau22mF
2 uFu2

2m82(
a51

s

ufau2. ~21!

Note that all ufa2fbu2 bonds have been deleted and w
introduce newuF2fau2 bonds radiating from the centra
scalarF.

Starting withL !, we integrate outF:

L !5Z(
a

s

u]fau22~L821m82!(
a

s

ufau2

1FL84(
a,b

s

fa
† 1

ZF]21sL821mF
2

fb1H.c.G .

~22!

Performing the derivative expansion and reorganizing ter
we thus recover the polygon form of the Lagrangian:
4-5
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L !→L polygon5Z0(
a

s

u]fau22
1

2
L0

2(
a,b

s

ufa2fbu2

2m0
2(

a

s

ufau21OS ]2

L2D ~23!

and we have the relations

Z05Z1ZF

sL84

~sL8 21mF
2 !2

'Z1
ZF

s

L0
25

L84

~sL821mF
2 !

'
L82

s

m0
25

~mF
2 1sm82!L821mF

2 m82

~sL821mF
2 !

'm82
~s11!

s

~24!

where the approximate expressions hold in the largeL limit,
and are all that we ultimately require to implement the ren
malization group.

Note that we have freedom within theL ! Lagrangian to
vary the ratiosZF /Z and mF /m8. We can for example
chooseZF50, in which caseF is a nonpropagating auxil
iary field. TheF field will recover a kinetic term when sub
sequent chain transformations are performed. TheZF50
case is interesting for Yang-Mills theories, and correspo
to ‘‘integrating in’’ an infinite coupling constant gauge field
and the infinite coupling will run to a finite value after su
sequent chain transformations. Presently we will make
convenient choicem825mF

2 , but we do not specify explic-
itly ZF /Z. This will act as a check on our result.

We can readily invert the transformation in the largeL
limit. In summary, the polygon Lagrangian:

L polygon5Z0(
a51

s

u]fau22
1

2
L0

2(
a51

s

(
b51

s

ufa2fbu2

2m0
2(

a51

s

ufau2 ~25!

can be replaced by the! Lagrangian:

L !5ZFu]Fu21Z(
a51

s

u]fau22L82(
a51

s

uF2fau22m8 2uFu2

2m82(
a51

s

ufau2 ~26!

with the choice of parameters (L→`):

ZF

s
1Z5Z0

L825sL0
2

08500
r-

s

e

m825m0
2 s

s11
. ~27!

C. Combining polygon-! and 4-chain transformations
to reduce the truncateds-simplex lattice

We are now ready to construct the RG transformation
the truncated-s-simplex lattice by combining the above tran
formations. Consider anykth orders-simplex lattice built up
recursively as described in Sec. I. For concreteness cons
Fig. 4A, the second order 3-simplex.

The Lagrangian of thekth order lattice takes the form

Lk5Z0(
a51

Nk

u]fau22L0
2 (

l inks

Lk

ufa2fbu22m0
2(

a51

Nk

ufau2.

~28!

We begin by performing the polygon-! transformations on
each of the elementary polygons. All of the elementary po
gons are annihilated by this procedure, replaced by stars,
the lattice of Fig. 4A is carried into that of Fig. 4B. Th
centers of the stars are connected to neighbors thro
4-chains, and the full Lagrangian is now a sum ov
4-chains. We have the 4-chain parameters determined
Eq. ~27!:

ZF

s
1Z5Z0

L825sL0
2

m825m0
2 s

s11
. ~29!

Now we reduce the 4-chains to 2-chains. The lattice
mapped from Fig. 4B into Fig. 4C. We see that we have n
reduced the originalkth order lattice to thek21 order with
the new Lagrangian:

FIG. 4. Illustration ofk→k21 RG transformation.~A! Second
(kth) order truncated 3-simplex; ~B! reduced after
polygon~triangle!-! transformations;~C! reduced to first (k21) or-
der after 4-chain→ 2-chain transformations.
4-6
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Lk215Z̃ (
a51

Nk21

u]fau22L̃2 (
l inks

Lk21

ufa2fbu22m̃2 (
a51

Nk21

ufau2.

~30!

The parameters renormalize as in Eq.~16! where k
5L82/L 25s. The resulting overall renormalization is

Z̃5sZ0

L̃25L0
2 s

~s12!

m̃25m0
2s

Ñ[Nk215
Nk

s
. ~31!

We have also noted the change in the number of fields,Nk .
We see that the arbitrariness of choosingZF /Z ~also
mF /m8, which we fixed to unity! in the intermediate step i
a hidden symmetry in the result.

III. COMPUTATION OF THE DIMENSIONALITY

A. Vacuum energy scaling law

We have described a theory of free complex scalars
fined on the kth iteration of the kernel lattice. For th
truncated-s-simplex lattices the coordination number iss, the
number of fields in thekth iteration isNk5(s11)(s)k and
the number of links isLk5(s11)sk11/2. The Lagrangian is

L5Z(
a51

Nk

u]fau22L2(
a,b

Lk

ufa2fbu22m2(
a51

Nk

ufau2

~32!

where the linking mass term sums over the links.
If we could Fourier transform Eq.~32! we would obtain a

mass spectrum of the formMn
25vn

21m2. The path integral
for our theory then takes the form in a Euclidean moment
space, up to an overall multiplicative normalization facto

e2G5E Df e2*d4xL5)
pm

)
n51

Nk

~Zp21vn
21m2!21.

~33!

The vacuum energy, or Coleman-Weinberg potential, is u
an overall additive constant:

G5Z22E d4p

~2p!4 (
n

ln~p21vn
21m2! ~34!

where we have rescaled the 4 momentum integral byZ.
We want to replace the sum onn by a continuous momen

tum integral. In any integer dimensionality,n is a vector,nW
5(nx ,ny , . . . ). Wewant to perform the angular integral i
the sum over discretenW . This leaves a sum over the radi

magnitude ofn5AnW •nW with a dimension-dependent me
08500
e-

to

sure. Ine dimensions if we interpretn as the radial magni-
tude, then in the continuous approximation to the sum
can replace

(
n50

Nk

→ 1

eE0

Nk
dn~n/Nk!

e21. ~35!

In replacing the discrete sum by a continuous integral
will induce ‘‘Casimir effect’’ corrections to the vacuum en
ergy. These are discussed in the Appendix.

With n a radial coordinate, the leading behavior at lown
of vn

2 is vn
2;c(n/Nk)

2L2, where c is a constant~e.g., c
5p2 in a one dimensional periodically compactified situ
tion!. Let us rescalen to write the integral over an 41e
dimensional momentum vector,

p25pmpm1c~n/Nk!
2L2. ~36!

The Coleman-Weinberg potential becomes

G5c~e!
Z22Nk

Le E d41ep

~2p!41e
ln~p21m2!. ~37!

Herec(e) is an overall normalizing factor coming from thec
dependence, the ratio of thed54 to d541e solid angles
and (2p)d normalizing factors. This factor is irrelevant fo
the scaling argument, but given by

c~e!5
1

e S 4p

c D e/2

G~21e/2!. ~38!

The integral, apart from the explicit scaling prefactor, is
nite for nonzeroe. It is thus insensitive tok ask→` to its
UV cut-off limit and to L→`. We discuss this integral an
the limiting procedure in greater detail in the Appendix. P
forming the integral

G5
Z22Nk

Le
~m!41eV~e! ~39!

whereV(e) is insensitive tok ask→`.
Thus, suppose we know the value of the parametersZ, m,

L and Nk for some large value ofk. Then, we obtain the
Coleman-Weinberg potential fork21 by the sequence of RG
transformations and we find new parameters:

Z̃5h~s!Z, m̃5 f ~s!m, L̃5g~s!L Nk215Nk /s.
~40!

SinceV is insensitive tok for k→` ~and largeL) we have

Z22
Nk

Le
~m!41e5

~ Z̃!22Nk21

~L̃ !e
~m̃ !41e ~41!

or

15
„f ~s!…41e

s„h~s!…2„g~s!…e
~42!
4-7
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and thus the dimensionality is determined as

e5
@24 ln„f ~s!…1 ln~s!12 ln„h~s!…#

ln„f ~s!/g~s!…
. ~43!

B. Dimensionality and RG invariants
of the truncated-s-simplex lattices

Let us compute the dimensionality of the truncat
s-simplex lattices. From Eqs.~31! we have

h~s!5s, f ~s!5As, g~s!5A s

s12
. ~44!

The dimensionality is thus

e5
2 ln~s!

ln~s12!
. ~45!

We have recovered the result of Dhar for the dimensiona
of spin-systems on the truncateds-simplex lattices. In Dhar’s
analysis of spins systems, the spins are static, i.e., hav
kinetic terms in an auxiliary 113 dimensions. The wave
function renormalizations are essential in our present re
malization group and to the scaling law for the Colema
Weinberg potential. Nonetheless, the lattice dimensionalit
the same as in the static spin system.

Note that the coordination number must satisfys.2 for a
nontrivial noninteger dimensionality. Fors52 the dimension
is always 1. For the truncateds-simplex lattices we have 1
<e<2.

The scaling laws amongst the four quantities of Eq.~31!
imply that there are 3 invariants. We have just encounte
one invariant from the vacuum energy scaling law, and th
are thus two others. We list them as follows:

Vr5
~ Z̃!22Nk21

~L̃ !e
~m̃ !41e

m r
25 m̃2Z̃

Nr5Z̃Ñ. ~46!

It is useful to define a noninvariant renormalized cutoff:

L r
25

L̃2

Z̃
. ~47!

L r can be used as the ‘‘running’’ mass scale, or identifi
with the energy scale of interest,E;L r .

In contrast to the case of the 3-chain→ 2-chain dedeco-
ration acting on a chain ofN scalars, the present RG tran
formation is not a scale transformation. We see that t
renormalized massm r is invariant under the RG transforma
tion. The present RG transformation is a statement abou
geometric recursive structure of the theory. This RG inva
ance ofm r emboldens us to consider this as a symmetry o
novel continuum theory.
08500
y

no

r-
-
is

d
re

d

he
i-
a

Combiningm r with the RG invariant vacuum energy sca
ing factor Vr allows us to define yet another RG invaria
mass scale:

M5
L̃ r

~Ñ!1/e
. ~48!

The scaleM is fixed in the largeL r and Ñ limit, and has
nothing to do with the physical massm r . It defines the
threshold scale of the KK modes, i.e., the effective comp
tification scale of the theory. Comparing with the spherica
symmetric measure in the integral of Eq.~35! we see that the
number of KK modes with energyE is given by

n~E!5S E

M D e

. ~49!

M is therefore the ‘‘compactification’’ scale of the noninteg
extra dimension. The scaleM persists in them→0 limit. It is
somewhat mysterious, in that we are taking a classical the
to a continuum limit, yet a nontrivial RG invariant mas
scale survives. It is a consequence of the fact that the dim
sionality is not trivial, i.e.,eÞ0 and a fundamental scal
must survive since the trace of the stress tensor is pres
ably nonzero in this classical theory. In this sense,M is
analogous toLQCD .2 For use is classical, while in QCDe
;b/g is an anomalous dimension.

The physical significance of the invariance ofZ̃Ñ pertains
to interacting theories, such as Yang-Mills gauge theor
We can identify

Z̃}
1

g2
~50!

a common dimensionless coupling constant of the dec
structed theory defined at the scale of the cutoff. Then
invariant M tells us how the coupling constant scales w
choice of cutoff. To see the running coupling constant sc
ing law combine Eq.~48!, Eq. ~49!, and Eq.~50! to obtain

g2~E!}S E

M D e

. ~51!

Thus, we recover normal power-law running ofg2(L r) when
e takes on integer values. The formula exhibits the gener
zation for noninteger dimension.

We have made a continuous approximation to the in
grals, but we can always ‘‘rediscretize’’ the sum in an R
invariant way. The original choice of the definition of th
energy,vn5AcnL/Nk is not RG invariant. We see that th
overall coefficient of the Coleman-Weinberg potential in E
~36! can be written as

2LQCD arises because the quantumb/g function ~the Gell-Mann–
Low c function! is nonzero and acts ase, an ‘‘anomalous dimen-
sion’’ for the coupling constant, and hence the trace of the str
tensor is nonzero.
4-8
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Z22Nk

Le
~m!41e5~m r !

41eM 2e. ~52!

Hence, rediscretizing, we replace

M 2eE d41epI~p!;E d4p(
n

~n!e21I ~pm ,vn! ~53!

and the energy of thenth mode isvn5AcnM.
The difference between the rediscretized sum, taken

infinity, and the continuous integral, is a Casimir effect.
the Appendix we show that the Casimir effect can be
pressed as a finite integral. The finite integral is vanish
when we assume that the theory can be expressed in
1e)-dimensional Lorentz invariant way. It is not necessa
to make this strong assumption; the effects of the noninte
extra dimension may show up in an RG invariant way only
the threshold scaleM, but have bad non-RG invariance
higher energies. This depends upon the physical interpr
tion of the theory. The finiteness of the Casimir integr
suggest to us that a true RG invariant theory exists, and
construction for any finite order ofk is just a regulator with
RG-symmetry breaking terms.

IV. CONSIDERATIONS OF GAUGE FIELDS
AND FERMIONS

Naturally, we are interested in realistic models built alo
the lines suggested here. Thus we will require Yang-M
theory, and fermions, including chirality. The present disc
sion will be qualitative, as we note some new issues t
arise in attempting this extension.

When we go over to theories involving fermions a
Yang-Mills fields there are additional subtleties. The
subtleties revolve around the polygon-! transformation. For
example, Wilson fermions in a polygon cannot be mapped
the ! configuration. Similarly, the pseudo Nambu-Goldsto
bosons~PNGB’s! of Yang-Mills theories that are periodicall
compactified must be lifted by plaquettes in order to perfo
the polygon-! transformation. The point is that the polygo
is orientable, while the! is not, so orientational elements o
the action will not be carried through by the transformatio
In the Yang-Mills case, an arbitrary magnetic flux threadin
plaquette,*B•dA;rA•dx cannot be represented by the!
form of the action, and this requires that a certain PNGB
infinitely heavy. The! configuration, however, will be see
to be the key to creating chiral fermions. Chiral fermions
deconstruction are lattice defects. In the present case
must be incorporated as the centers of! configurations that
are invariant under the RG transformations used to red
the lattice. In a sense then, chiral fermions are rarified
fects, or invariant centers in the fractal lattice, similar
doping atoms in a material, or to the centers of snowflak

Yang-Mills gauge fields are introduced in a deconstruc
theory by having gauge groups,Ga , living on sites and
linking-Higgs-fields defined on links. We also includ
plaquette terms which show up as mass terms of PNGB’
the 113 dimensions. Hence, let us chooseGa5SU(N) with
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a common coupling constantg, and the link fieldFab is then
an (N̄,N) chiral field with a vacuum expectation valu
~VEV!, ^F&5vI N . The Lagrangian is then

LY M52 (
n51

Nk 1

4g2
Gmn

a Ga mn1(
(ab)

Lk

Tr@Dm ,Fab#
†@Dm,Fab#

1 (
plaqn

Pk

lnTrF )
plaqn

FabG . ~54!

The irreducible plaquettes are those which do not encircle
subplaquette ~i.e., can be contracted!. The irreducible
plaquettes arePk5(s11)k11.

LY M has been supplemented with a plaquette acti
where each plaquette has a coupling constantlk . Let us first
considerlk50. Then the theory will contain a spectrum of
vector zero mode,Nk21 massive gauge fields~KK modes!,
and in tree approximationLk2Nk11 massless PNGB’s. The
PNGB’s will generally be lifted in perturbation theory t
masses of orderaM2, but they can also be elevated by tur
ing on thelk . Indeed, we see thatPk@Lk , so including all
irreducible plaquettes with largeln we can lift all PNGB’s,
except for a single zero mode.

Lifting the PNGB’s is necessary for the implementation
the !-chain RG. In Fig. 5 we see a mapping of the irredu
ible triangle with link fieldsF i into a star configuration with
new link fieldsf j . The net gauge phase rotations in goi
from one site to another must be faithfully represented un
this redefinition; thus,

F15f3
†f2 , F25f1

†f3 , F35f2
†f1 ~55!

and we thus see that theF i are constrained:

15F3F2F1 . ~56!

This is the orientability problem mentioned above. It requir
the quantization of the Wilson loop around the triang
plaquettegrAAdxA52pn ~more properly,F3F2F1 must
lie in the center of the group!. In the deconstruction lan
guage, it imposes a constraint on the PNGB’s. We can t
this constraint by introducing terms;l123Tr(F3F2F1) for
all elementary plaquettes, and we treatln as a Lagrange
multiplier, then perform the polygon-! transformation. This
will lift the PNGB’s from the spectrum. This is the expecte
decoupling that of high mass PNGB’s must occur when
short-distance degrees of freedom are thinned. Thus, we
pect that polygon-! transformations should make sense
the theory with plaquettes.

FIG. 5. The triangle-! transformation for an irreducible
plaquette mapsF i→f j , but imposes a constraint,F3F2F151.
4-9
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An intriguing point is that the! Lagrangian involves ‘‘in-
tegrating in’’ additional Yang-Mills gauge groups at the ce
ters of stars with coupling constantsg!. As we saw in the
star transformation, there is a freedom to choose the wa
function renormalization constant,ZF , arbitarily relative to
its neighbors. This translates into the freedom of choos
the coupling constantg* for the new central gauge grou
arbitrarily. In particular, we can chooseg* 5`, which com-
pletely suppresses the continuum kinetic term of the n
gauge field at this scale. The subsequent chain transfo
tions will induce a finite coupling and gauge invariant kine
term for this gauge field as we perform the 4-chain→2-chain
transformations. The renormalized couplings after the co
bined transformations for all gauge fields will have a co
mon value and will run according to the scaling laws d
scribed in the previous section.

Barring topological obstructions, we thus expect that
reduction for Yang-Mills gauge fields goes through in t
Gaussian approximation. We obtain the same dimension
as for complex scalars. Obviously the question of the effe
of interactions is of great importance. We expect that th
are 113 continuum renormalization group effects that a
company the lattice reduction, which corresponds to
change of scale~e.g., of L r). The main issue, howeve
comes from the power-law running in Eq.~51!. The Yang-
Mills coupling constant as described classically, will rea
evolving upward with scale, a unitarity bound,g2;(4p)2 at
an effective scaleL r

! fairly quickly ~it would be interesting
to construct models in whiche!1 where the power law
running is suppressed, and appears approximately loga
mic!. This is the scale of unitarity breakdown for longitud
nal KK-mode scattering@3#. This would imply a phase tran
sition in the theory, possibly the string transition. Anoth
logical possibility is thatg2 runs large, but then is ‘‘reset’’ to
a small value by a dynamical transition in the theory, th
runs large again, etc., leading to alimit cycle. With a limit
cycle it may be possible to takeL r→` in the interacting
theory as well, without a transition to the string phase. P
haps the most interesting possibility is that the theory ha
UV fixed point @12#, which may arise between a competitio
of the classical running and the one-loop correction.

Fermions pose additional challenges. Fermions live
sites and will have kinetic ‘‘hopping terms’’ on the links. W
can always view the lattice as a fermion mass matrix, take
fermions to be vectorlike, and choose the hopping term
be mass terms. This would readily admit polygon-! transfor-
mations and RG reduction of the lattice as we have deriv
This would seem to us to be a relatively uninteresting ca

The hopping terms should be built out ofg matrices. We
expect that we require the use of allg matrices through
g41[s/2]) in construction of the action. Hence, fors52, g5
suffices, such as inS1, while s53 requiresg6, etc. Consider
the polygon of Fig. 5 fors53 the fermionic hopping terms
around the perimeter of the polygon. Usingg5, the hopping
terms are of the form(nvc̄ng5Fncn11. Generally this form
leads to the fermion doubling problem@11#, but admits
polygon-! transformations. It is most sensible to consid
Wilson fermions@11# ~the Wilson fermion structure will al-
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ways occur with SUSY!. With Wilson fermions the hopping
terms are written as(n(vc̄nLFnc (n11)R2vc̄nRcnR). The
Wilson fermion hopping terms have a definite orientation
sense,L(n)→R(n11), around the polygon. These cann
be reduced by polygon-! transformations, and it is not clea
to us that sensible reducible fermionic actions exist wh
are compatible with the polygon-! transformation. It should
be borne in mind, however, that the polygon-! transforma-
tion is ultimately a convenience in computing the dimensio
ality of the lattice. More exotic fermionic reductions that d
not require the polygon-! transformation may exist.

If we use an action with vectorlike fermions and ferm
onic Dirac mass matrix hopping terms,C̄aCb1H.c., we can
still introduce chirality. We must construct ‘‘invariant stars
i.e., dislocations in the lattice that are not reduced by the
transformations as in Fig. 6. At the center of the invaria
star configuration we introduce a single chiral fermion,CL .
The fermion has radial hopping terms to the perimeter f
mions of the form(nvC̄LfncnR . By ‘‘doping’’ a mass-
matrix lattice with the appropriate number of chiral disloc
tions one can construct a fractal imbedding of the stand
model.

V. PHYSICAL INTERPRETATIONS AND CONCLUSIONS

How do we interpret these new theories physically? Fr
tional extra dimensions are not obviously compactified ex
dimensions, since no global boundary condition is int
duced which corresponds to a global compactificati
Rather, we introduced initially a regulator,L, which is our
~inverse! lattice scale. We ultimately imagine the limitL
→`, but how this limit is taken is dependent upon the phy
cal interpretation of the theory. The analogue of a compa
fied theory emerges with the determination of a compac
cation scale, the RG invariantM, and is a physical scale hel
fixed in theL→` limit. M would still be present, however
with a different definition of the theory in which we mainta

FIG. 6. The truncated 3-simplex lattice constructed with an
variant star dislocation for chirality.~A! Kernel ~complete! lattice
with coordination number 3 and a single chiral fermion attached
the upper left-hand site;~B! the first order decoration replaces ea
site under recursion except the invariant star;~C! the second order
decorated lattice. A theory space can be constructed by defi
each site to correspond to a vectorlike standard model, excep
invariant star which is the usual chiral standard model. Hopp

terms involve gauge links and Dirac fermion mass terms,c̄acb

1H.c. The chiral fermions in the invariant star have chiral ho

c̄LcbR1H.c. to the vectorlike neighbors. The zero-mode struct
of the theory is the chiral standard model.
4-10
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a finite L, and we may have a hierarchyM!L, in analogy
to the usual compactified extra dimensional theories.

There are thus two physical interpretations for these c
structions. The first is an ‘‘outer’’ modification of spacetim
Here we have in mind finiteL but a dimensional transition a
the scaleM!L in which we view the continuous 113 di-
mensions asa brane in a higher dimension with a surfac
structure with characteristic scale length 1/M . This brane
surface is viewed as dynamical, analogous to surfaces in
densed matter physics, and may arise from an interface
an exterior region involving new physics. The fractal theo
space is an effective description of such a system on sc
not far aboveM. The fractality, in analogy with surface lay
ers on material media, may arise because the interface
the extra outside dimensions involves a region of ra
change in physical parameters. In this picture Lorentz inv
ance at short distances strictly only applies to the 113 di-
mensions, but withL large the relevant low energy physic
of the dimensional transition scaleM is approximately Lor-
entz invariant in 11(31e) dimensions. In this case, th
scaleL may represent a further higher energy transition
string theory. Terms of orderL4 and L2m2 reflecting the
finite cut-off will be present in the vacuum energy, and a
non-RG invariant. The low energy physics, however, is
fixed point under these renormalizations that drastica
change the UV part of the theory.

The alternative, and perhaps more intriguing view, is
‘‘inner’’ modification of physics, in that the scaleM repre-
sents a true dimensional transition to 11(31e) dimensions,
with enhanced Lorentz invariance on scales aboveM. In this
case we takeL→`. Then at all shorter distances the noni
teger dimensionality is preserved. This is a remarkable p
sibility in that a quantum field theory defined in 11(31e)
dimensions with irrationale is finite to all orders in pertur-
bation theory. The cutoff scaleL can be taken to infinity
with impunity, holdingM fixed as the defining dimensiona
transition scale.

If we were naive, we would speculate that we have giv
a prescription for the construction offinite quantum field
theories of matter. Thus, all infinites in 113 dimensions of
the standard model would be associated with the cutoff s
M, which is the threshold for new physics associated with
noninteger correction to the dimension of space-time. Ab
the scaleM we would begin to include KK modes in accor
with the energy distribution (E/M )e, and we would treat the
field theory with ’t Hooft–Veltman dimensional regulariza
tion as the exact calculational tool for 41e dimensions.
Thus, one way to treat the standard model as a qu
noninteger dimensional theory would be to replace all lo
integrals in 4-dimensions by 41e dimensions above a fixe
matching scaleM:

Loops→E
0

M d4k

~2p!4
1M 2eE

M

` d41ek

~2p!4
. ~57!

Modulo ambiguities in treatingg5, This theory is apparently
finite aboveM to all orders in perturbation theory. We wou
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infer some immediate physical consequences, e.g., tha
Higgs boson will receive radiative corrections to its ma
from top quark loops:

mH
2 ;2

3gt
2

8p2
M2 ~58!

~or heavier fermions in an extension of the model!. Hence,
we infer thatM2 is of order;TeV ~a ‘‘little Higgs’’ model
can raise the scale to;10 TeV through custodial chiral sym
metries!.

However, the power-law running of the coupling consta
g2;(E/M )e with e.0, implies that either~1! the theory has
a UV fixed point or~2! has a limit cycle or~3! undergoes a
phase transition at a strong coupling scaleg2;(4p)2. In any
case we must account for gravity, and imbedding into str
theory would seem to be the most sensible option. This p
scription is nonetheless worthy of study, and is a ‘‘contin
ous KK-mode distribution approximation’’ to any theory th
envelops the standard model into a noninteger extra dim
sion e.

We have in mind other applications of these ideas. If
theories at lattice sites live in 11d continuous dimensions
then the full theory has 11d1e dimensionality. For ex-
ample, with continuum 111 fields and very larges we can
construct a flat 42e8 dimensional effective theory. Suc
theories are classically asymptotically free, but the log
pendence ons implies that it would be difficult to construct a
natural lattice of the kind we have considered, sinces must
be taken unnaturally large. It is therefore of interest to e
large the space of recursively defined lattices to see if nat
42e dimensions make sense with very smalle.

Yet another interesting possibility is to deconstruct t
string world sheet. Weyl invariance may be realized a
discrete RG invariance on a latticized world sheet with
continuum limit. Then we may be able to find unusual ge
eralizations of the string theory to fractal world sheets. T
consequences for the Weyl constraints on the target sp
may be interesting.

The key result of this paper is that the renormalizati
group is dual to geometry. The latter acts in space, and
former acts in theory space. The RG can then be use
reverse engineer unusual new geometries. These fracta
ometries exploit quantum mechanics in their construction
a fundamental way. In fact, these realize some of the rec
speculations about deconstruction as a means of reconst
ing spacetime@4#. Though we are far from a complete theor
e.g., one including gravity, we believe this is fertile territo
with potentially nontrivial implications beyond those consi
ered presently.
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APPENDIX: PROPERTIES OF THE VACUUM ENERGY

The vacuum energy integral is most readily computed
differentiating with respect tom2. Define G5c(e)(Z22N/
Le)V(m2) whereV(m2) is the Euclidean integral:

V~m2!5E d41ep

~2p!41e
ln~p21m2!. ~A1!

Then

]

]m2
V~m2!5E d41ep

~2p!41e

1

p21m2
5

1

~4p!21e/2
~m!21e

3G~212e/2!. ~A2!

Therefore, integrating wrtm2, noting the integral vanishe
for m50 for the 41e range of interest:

V~m2!5
1

~4p!21e/2
~m!41e

G~22e/2!

~21e/2!~11e/2!~e/2!~12e/2!
.

~A3!

The integral can be performed directly, without differentia
ing, but is more tedious. In performing the integral this w
we have made two assumptions:~1! The RG invariance holds
for the system under the integral sign;~2! the integral is
Lorentz invariant in 41e dimensions. When these symm
tries are imposed ‘‘under the integral’’ we have the RG
variant theory. Such strong assumptions, while the prefe
interpretation of the theory, are not necessary, however.

It is useful to consider the integral before we take t
continuum limit. Suppose we do not take thek→` limit first
and perform the integral with a cutoff. Consider, from E
~33! and Eq.~34! the integral with cutoffK5AcL:

VK8 ~m2!5E
0

K d41ep

~2p!41e

1

~p21m2!
. ~A4!

Here we have assumed that the finite cutoff is Lorentz inv
ant in 41e dimensions. We exponentiate the denominato

VK8 ~m2!5E
0

`

daE
0

K d41ep

~2p!41e
e2a(p21m2). ~A5!

The p2 integral is then carried out, using the solid angle ind
dimensions,

Vd5
2pd/2

G~d/2!
~A6!

and we have

VK8 ~m2!5
1

~2p!21e/2E0

`

daS E
0

`

2E
K2

` D
3dp2~p2!11e/2e2a(p21m2). ~A7!

The second term can be approximated:
08500
y

-

-
d

.

i-

VK8 ~m2!5V8~m2!2
1

~2p!21e/2E0

`

da~K2!21e/2e2a(K21m2)

'V8~m2!2
1

~2p!21e/2

~K2!21e/2

K21m2
. ~A8!

Hence

VK~m2!'V~m2!2
1

~2p!21e/2
m2~K2!11e/21O~K2!21e/2.

~A9!

The procedure of consideringVK8 (m2) omitted the last quar-
tically divergent piece~whene50), but keeps the quadrati
cally divergent piece.

These additional terms are associated with the UV cu
on the theory,L5K/Ac. Hence they are not RG invarian
These terms do not obstruct our measurement of the dim
sionality of the system. If the system has finitek, then the
dimensionality we compute from the finite terms is ‘‘effe
tive,’’ applying only near the threshold of KK modes,;M .
The far UV spectrum can thus be considerably modified
the finiteL effects which do not respect the RG invarianc

Clearly we would like to argue that th
(41e)-dimensional theory exists, and thek→` limit can be
taken. In this case, such terms can be viewed as the finik
regulator effect spoiling the symmetry of RG invariance
the true theory, much the way a momentum-space cu
spoils gauge invariance. These terms vary under the
transformation, so they would be subtracted to define
symmetric theory, much as gauge invariance forces the s
traction of the momentum-space cutoff mass term in
vacuum polarization loop. It is simpler to take the limit und
the integral sign, since the resulting integral is finite.

Casimir effects arise in principle in the difference betwe
the continuous approximation to the theory and the d
cretized sum. The form of these effects depends upon h
we define the theory, as described above, and will gener
have divergences associated with finite UV cutoff’s that
not RG invariant. However, when we define the theory to
41e Lorentz invariant and take the UV cutoff to infinit
then the Casimir effects are vanishing.

Consider the original discrete vacuum energy express

G5Z22E d4p

~2p!4 (
n

ln~p21vn
21m2!. ~A10!

The Casimir effect is the difference between the continu
integral approximation and the ‘‘staircase’’ in the discre
sum. This difference is minimized by the best fit continuo
approximation to the staircase, but a leading residual con
bution remains involving the second derivative of the su
mand. In our case the leading Casimir correction to the c
tinuous approximation is
4-12
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dG5
1

4

Z22cL2

Nk
2 E d4p

~2p!4

3(
n

F 2

~p21vn
21m2!

2
4vn

2

~p21vn
21m2!2G .

~A11!

Note the factor ofcL2/Nk
2 arising from (]vn /]n)2.

We rescale, and take the continuum Lorentz invari
limit the integral-sum goes over to a (41e)-dimensional in-
tegral. We have, by the Euclidean invariance,vn

25@e/(4
1e)#p2. Hence

dG5
1

2
c~e!

Z22Nk

Le S cL2

Nk
2 D E d41ep

~2p!41e

3F S 42e

41e D p2

~p21m2!2
1

2m2

~p21m2!2G . ~A12!
ev

08500
t

The integral is readily performed:

dG5
1

2
~e!S Z22Nk~m!41e

~4p!21e/2Le D S cL2

Nk
2m2D G~212e/2!

3F S 42e

41e D1~11e/2!S 413e

41e D G . ~A13!

In this result we have the usual RG invariant prefac
Z22Nk(m)41e/Le. We also have an additional factor o
L2/Nk

2m2. which can be written in terms of invariantsM and
m r as:M2/Nk

222/em r
2 . As we take the UV limit the numbe

of sites grows asNk→(s11)sk, hence the prefactor term
vanishes in this limit. Higher order Casimir corrections w
involve higher powers ofNk in the denominator of the pref
actor. The Casimir corrections to the vacuum energy are t
vanishing to all orders when the theory is defined as a
1e Lorentz invariant continuum theory.
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