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A proposal for a manifestly gauge invariant and universal calculus in Yang-Mills theory

Stefano Arnone,* Antonio Gatti,† and Tim R. Morris‡
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We uncover a method of calculation that proceeds at every step without fixing the gauge or specifying details
of the regularization scheme. Results are obtained by iterated use of integration by parts and gauge invariance
identities. The initial stages can even be computed diagrammatically. The method is formulated within the
framework of an exact renormalization group for SU(N) Yang-Mills gauge theory, incorporating an effective
cutoff through a manifest spontaneously broken SU(NuN) gauge invariance. We demonstrate the technique
with a compact calculation of the one-loop beta function, achieving a manifestly universal result, and without
gauge fixing, for the first time at finiteN.
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I. INTRODUCTION

It need hardly be stressed that there is a clear need f
better nonperturbative understanding of quantum fi
theory. Examples can be given from all domains where qu
tum field theory is applicable: from phase transitions in ea
universe cosmology, quantum gravity, QCD, through to h
temperature superconductivity, to mention just a few.

The exact renormalization group~RG! @1,2#, the con-
tinuum version of a Wilsonian RG, provides a powerf
framework for considering nonperturbative analytic appro
mations to quantum field theories@3–7#. This follows from
the fact that solutions of the corresponding flow equatio
i.e., the Wilsonian effective action, can be found directly
terms of renormalized quantities, that all physics~e.g.,
Green’s functions! can be extracted from this, and that reno
malizability is trivially preserved in almost any approxim
tion @4,5#.

Central to many nonperturbative problems, including
examples quoted above, is the presence of gauge invaria
~This local invariance can be accepted as either fundame
or, e.g., in the case of highTc , effective @8#.! However the
introduction of a real1 effective cutoffL, a crucial step in the
definition of a Wilsonian RG, typically breaks this gaug
invariance@9#.

Fortunately it is possible to formulate more general ex
RGs @6#, which are gauge invariant@10–14#. A wonderful
extra benefit in this generalized framework is that calcu
tions can proceed with manifest gauge invariance prese
at every stage@10–14#. There is thus no need for gaug
fixing and the corresponding ghosts. The challenging non
turbative problem of Gribov copies@15#, is thus entirely
avoided.2 Even at the perturbative level the full power an
beauty of gauge invariance then shines through. Un

*Email address: arnone@soton.ac.uk
†Email address: gatti@soton.ac.uk
‡Email address: T.R.Morris@soton.ac.uk
1As opposed to, e.g., analytic continuation of perturbative am

tudes in dimensional regularization.
2Gribov problems are known to result in an erroneous answer

covariant gauges@16,17#.
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Becchi-Rouet-Stora-Tyutin~BRST! transformations, gauge
transformations are at most linear in the quantum fields
thus are not deformed at the quantum level. For a n
Abelian gauge group, the connection in the covariant deri
tive thus remains dimension 1 and is unrenormalized. If
coupling is scaled out of the connection, no wave funct
renormalization is possible for the gauge field@10–14#. Only
the coupling renormalizes. The usually naıve assumption
the effective action is built only from gauge invariant com
binations of the covariant derivative is here true even at
quantum level; all vertices are subject to simple stro
constraints—the so-called ‘‘naive Ward identities’’ that fo
low from exact gauge invariance.

In order to formulate such a gauge invariant exact RG,
need to incorporate a gauge invariant real cutoffL. More-
over, this has to appear in a way that can be naturally inc
porated in the effective action framework@10,12–14#. We
use the solution given in Ref.@18#, which provides a regu-
larization for SU(N) Yang-Mills theory inD<4 spacetime
dimensions, and whenN5`, in any dimension. This is
implemented by embedding the Yang-Mills theory in
SU(NuN) gauge theory, regularized by covariant higher d
rivatives. The SU(NuN) gauge theory is then spontaneous
broken in the fermionic directions, at the same scaleL, with
the resulting heavy fields playing the role of gauge invari
Pauli-Villars fields@19#. @Actually this corresponds to regu
lating a SU(N)3SU(N) Yang-Mills theory, but the nonuni-
tary second copy decouples in the continuum limit@18#.#

The work presented in this paper extends previously p
lished results in a number of significant ways. The flo
equation in Ref.@12# was developed intuitively from the bot
tom up without the author being aware of the underlyi
SU(NuN) structure@10#. In contrast, the present flow equa
tion is very simple and beautiful in its conception, its for
being tightly constrained by the manifest invariance un
the spontaneously broken local SU(NuN). The earlier flow
equation in Ref.@12# was regularized only to one loop~and
then only for external gauge fields!. Here the gauge invarian
regularization is complete, working to all orders in perturb
tion theory. The formulation given in Ref.@12# was restricted
to N5` ~again as a consequence of regularization limi
tions!. The present formulation makes sense also at finiteN.

And last, but by no means least, a powerful computatio
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technique for working within this framework is develope
building on the insights gained from Ref.@20#. In all realiza-
tions of the Wilsonian RG there is an unavoidable freedom
the construction, equivalent to regularization scheme dep
dence, but especially deeply embedded@6#. Thus for example
any version of the exact RG receives its very definition
part by specifying a cutoff functionc. This redundancy is
magnified in the case of these gauge invariant exact R
because the regularization requires a further cutoff func
c̃, and the requirement of gauge invariance forces the in
duction of further choices, to a large extent arbitrary, nam
the covariantization~s!3 and the ‘‘seed’’ interactions. Never
theless, physical quantities must be independent of th
choices. Providing that we limit ourselves to controlled e
pansions~e.g., those in weak coupling, strong coupling, 1/N,
1/D, etc.!, the same must be true of the approximations.

There ought then to be a way of computing these res
without having to specify the above choices of regularizat
scheme. We uncover just such a method. The large re
dancy in the regularization scheme is turned to our adv
tage, furnishing a guide to streamlined computation of u
versal quantities. Thus in the method, we are forbidden fr
‘‘looking inside’’ any vertices~of the seed action or covari
antized kernels but also of the undifferentiated Wilson
effective action!. The initial stages of the calculation are the
so constrained that they can be effectively performed d
grammatically.

Central to the method are integrated exact RG kern
which play the role of regularized propagators, specifica
by being the inverse of the corresponding two-point vertic
For the gauge fields, since gauge invariance is preser
these inverses do not exist. Instead the integrated kernel
inverses only in the transverse space, leaving longitud
remainders that generate gauge transformations.

These ‘‘effective propagators’’ are introduced by integr
ing by parts with respect toL, resulting in differentials of
the Wilsonian effective action. These latter are evaluated
their flow equations, after which gauge invariance identit
are used to evaluate further, where possible. This proce
is iterated until there are no terms left that depend on
choice of covariantization or seed interactions. It is th
straightforward to cast the remaining terms as total der
tives in momentum space or otherwise show them to be
versal.

Although we apply the method here only to the compu
tion of the one-loopb function of SU(N) Yang-Mills theory,
we believe the procedure to be of general applicability.
fact our aim is to apply these ideas to the nonperturba
domain. As already mentioned, exact RG equations are
ally suited for this. It is important to note in this context th
our gauge invariant exact RG equation and the regulariza
it embodies do not require perturbation theory for their de
nition.

A necessary step is to thoroughly test and understand
framework in the perturbative domain. For calculations

3Different parts of the flow equation can even have different
variantizations.
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two loops and beyond, it is helpful to augment the pres
flow equation. A full report of this investigation, however,
left for the future@21#.

Overview

Most of the present paper, up to Sec. VIII, is concern
with setting up and justifying the formalism. Specifically, w
start in Sec. II A with a review of the regularization@18#, and
some of its novelties, adapting it to the exact RG construc
in this paper. Although we leave many elements of the ex
RG unspecified, using this freedom to guide the calculat
and display universality, there are a number of basic rest
tions needed on the set of exact RGs we allow. Section
sets out the general properties we require, and their co
quences and interpretation in the present case. Section
deals with a particular novelty that arises in the transform
tion of the SU(NuN) supergauge field functional derivative
which in turn leads to a further constraint on the form of t
exact RG. Sections II D and II E spell out the restrictio
placed on the form of the supergauge covariantization
further decoration of momentum space kernels, and in
duce the general notation used to define the resulting v
ces. In Sec. II F, we introduce the corresponding notation
action vertices, and the form the notation takes after spo
neous supersymmetry breaking.

In Sec. III we introduce the flow equation, defining va
ous elements and developing some of its properties. In
ticular we prove its supergauge invariance, and in Sec. II
prove a closely related property that leads to a powerful d
grammatic incorporation of the supergauge algebra, as is
plained in Sec. III B. From Sec. III C onward we work in th
spontaneously broken theory, Sec. III D containing the c
trally important resulting relations between vertices, the
called naıve Ward identities, for the remaining SU(N)
3SU(N) bosonic gauge invariance, but also for the brok
fermionic gauge invariances.

In Sec. IV, we use general arguments to determine
form of the classical effective action two-point vertice
These are used to determine the kernels in Sec. V, and
the integrated kernels in Sec. VI. Most importantly, we sh
how these behave as effective propagators up to gauge
mainder terms. Together with Sec. III D, these provide
essential properties behind the ‘‘calculus’’ that follow
These properties are seen clearly in the broken fermio
sector, if the fermionic parts are combined into
(D11)-dimensional vector as in Sec. VI A, a notation w
then adopt for the rest of the paper. Section VII expla
precisely when one can expect to get a universal result
the first two coefficients of the Yang-Millsb function. Al-
though this is standard, the universality is actually violat
without the further restrictions that are introduced in S
VII A, a novel consequence of Pauli-Villars regularization
an exact RG framework@10,12#.

Finally, in Sec. VIII, we set out the calculation, with Se
VIII A in particular containing the main iterative diagram
matic procedure, and Sec. VIII B the heart of the calculat
from the physics point of view. In Sec. IX we summarize a
draw our conclusions.

-
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II. PRELIMINARY COMMENTS

Throughout the paper we work in Euclidean space of
mension 4. We can formulate everything in general dim
sionD, and strictly speaking should, since the limitD→4 is
necessary to rigorously define the regularization@18#. How-
ever, as we will show, for the calculation of terms such as
one-loopb function in SU(N) Yang-Mills, we do not need to
pay attention to this subtlety. Therefore for simplicity of e
position we will setD54 in this paper, leaving the full gen
erality until Ref.@21#.

A. The regularization

Instead of working just with the SU(N) gauge field,
which we write asAm

1 (x)[Aam
1 t1

a , wheret1
a are the SU(N)

generators orthonormalized to tr(t1
at1

b)5dab/2, we embed it
in a SU(NuN) supergauge field@18#:

Am5Am
0 11S Am

1 Bm

B̄m Am
2 D . ~1!

Here we have writtenA as an element of the SU(NuN) Lie
superalgebra, using the defining representation, i.e., as a
permatrix with bosonic block diagonal termsAi and fermi-
onic block off-diagonalsB and B̄, together with the centra
term A 01. As required by SU(NuN), the supermatrix~and
thus alsoA) is supertraceless, i.e., trA12tr A250. This ex-
cludes in particular

s[s35S 1 0

0 21D ~2!

from the Lie algebra. The supermatrix is in addition al
traceless, the trace having been parametrized byA 0. Equiva-
lently, we can introduce a complete set of traceless and
pertraceless generatorsTA ~normalized as in Ref.@18#! and
thus expandA as

Am5Am
0 11A m

ATA . ~3!

The B fields are wrong statistics gauge fields. They will
given a mass of order the cutoffL. The supergroup
SU(NuN) has SU(N)3SU(N)3U(1) as its bosonic sub
group. Am

2 (x)[Aam
2 t2

a is the gauge field for the secon
SU(N), and A 0 is the U(1) connection. Interactions a
built via commutators, using the covariant derivative:

¹m5]m2 iAm ; ~4!

thus the superfield strength is given byFmn5 i @¹m ,¹n#. The
kinetic term will be regularized by higher derivatives whic
thus take the form

strFmnS ¹

L D n

•Fmn . ~5!

~Here the dot means that¹ acts by commutation. In practic
we will add the higher derivatives as a power series w
coefficients determined by a cutoff functionc.! The super-
08500
i-
-

e

su-

u-

h

trace, which is necessary to ensure SU(NuN) invariance,
forces the kinetic term forA2 to have the wrong sign action
leading to negative norms in its Fock space@18#.

As can be seen from Eq.~3!, A 0 does not appear in the
kinetic term. Providing the interactions can be written
str(A3commutators),A 0 will not appear anywhere in the
action. More generally, we will need to impose its nona
pearance as a constraint, since otherwiseA 0 has interactions
but no kinetic term and thus acts as a Lagrange multipl
This would result in a nonlinear constraint on the theo
which does not look promising for its use as a regularizat
method for the original SU(N) Yang-Mills theory.

On the other hand, if the constraint is satisfied,A 0 is then
protected from appearing by a local ‘‘no-A 0’’ shift symme-
try: dA m

0 (x)5lm(x), which implies in particular thatA 0

has no degrees of freedom. Together with supergauge inv
ance the theory is then invariant under

dAm5¹m•V1lm1 ~6!

@where the supermatrixV(x) is in the SU(NuN) Lie alge-
bra#. The effect of the no-A 0 symmetry is to dynamically
define the gauge group as the quotient SU8(NuN)
5SU(NuN)/U(1), in which Lie group elements are ident
fied modulo addition of an arbitrary multiple of1.

An alternative and equivalent formulation@18# is to pick
coset representatives, which can, for example, be taken t
traceless, so thatA 0 is set to zero, and thus discarded.@This
is the strategy used in Ref.@22# to define a SU8(NuN) sigma
model. Incidentally this paper contains arguments for fini
ness of these models which are similar to those given by
for SU(NuN) gauge theory@18#.4# In this reduced represen
tation, Eq.~6! is replaced by Bars’ bracket@23#:

dAm5@¹m ,V#* [@¹m ,V#2
1

2N
tr@¹m ,V#. ~7!

The * bracket replaces the commutator as a representatio
the Lie product so in particularFmn5 i @¹m ,¹n#* @18#.

The lowest dimension interaction that violates no-A 0

symmetry contains four superfield strengths, for example

str~Fmn!2~Fls!2. ~8!

Such terms are not invariant under the Bars *@Eq. ~7!#, ei-
ther. Since Eq.~8! is already irrelevant, no-A 0 symmetry is
automatic for the conventional supergauge invariant bare
tion of Ref. @18#. Here there is no such bare action, a
interactions are generated by a largely unspecified exact
so we need to impose no-A 0 as an extra constraint.

We introduce a superscalar field

C5S C1 D

D̄ C2D ~9!

4We thank Hugh Osborn for drawing our attention to this pape
3-3
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ARNONE, GATTI, AND MORRIS PHYSICAL REVIEW D67, 085003 ~2003!
in the fundamental̂ its complex conjugate representatio
equivalently as a matrix in the defining representation
U(NuN) @18#. Under supergauge transformations

dC52 i @C,V#. ~10!

In the Bars * representation we do not replace this by
bracket, since commutators are necessary for powersC
~appearing in its potential! to transform covariantly@18#.
However, as in Ref.@18#, since working with the full cosets
seems more elegant, we will employ Eq.~6! and the full
representation in this paper.

We will arrange forC to develop a vacuum expectatio
value along thes direction, so that classicallŷC&5Ls.5

This spontaneously breaks the SU(NuN) gauge invariance
down to its SU(N)3SU(N)3U(1) bosonic subgroup an
provides the fermionic fieldsB andD with masses of orde
L. In unitary gauge, the Goldstone modeD is eaten byB.
Since we will not fix the SU(NuN) invariance, they instead
gauge transform into each other and propagate as a com
ite unit ~see Sec. VI A!. We arrange for the remainin
‘‘Higgs’’ fields Ci also to have masses of orderL.

In Ref. @18#, we proved by conventional methods that
the kinetic term ofA is supplied with covariant higher de
rivatives ~parametrized by the cutoff functionc) enhancing
its high momentum behavior by a factorc21;p2r /L2r , and
the kinetic term ofC has its high momentum behavior sim
larly enhanced byc̃21;p2r̃ /L2r̃ , then, providing

r 2 r̃ .1 and r̃ .1, ~11!

all amplitudes are ultraviolet finite to all orders of perturb
tion theory. Since the underlying theory is renormalizab
the Appelquist-Carazzone theorem implies that at ener
much lower than the cutoffL the remaining massless field
A1 andA2 decouple. In this way, we can use this framewo
as a regularization of the original SU(N) Yang-Mills theory
carried byA1.

In brief, the reasons for the above facts are as follo
Providing Eqs.~11! hold, all divergences are superficial
regularized by the covariant higher derivatives, except
some ‘‘remainders’’ of one-loop graphs with onlyA fields as
external legs and only four or fewer of these legs. Th
remainders form a symmetric phase contribution, in
sense that the superficially divergent interactions betweeC
and A are just those that come fromC’s covariant higher
derivative kinetic term, while all terms containing as from
the breaking are already ultraviolet finite by power countin
For three or fewer externalA legs the remainders vanish b
the supertrace mechanism: the fact that in the unbro
theory, the resultant terms contain strA50 or str150. By
manifest gauge invariance, the four-pointA remainder is
then actually totally transverse, which implies that it is
ready finite by power counting.

5Later, however, we will use an unconventional normalization
C.
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The decoupling ofA1 andA2 follows from the unbroken
local SU(N)3SU(N) invariance since the lowest dimensio
effective interaction

1

L4 tr~Fmn
1 !2tr~Fmn

2 !2 ~12!

is already irrelevant@18,24#.
Actually, there are a number of differences between

treatment we give here and that of Ref.@18#. Since Ref.@18#
followed a conventional treatment, gauge fixing and gho
were introduced, with a corresponding higher derivat
regularization for them; longitudinal parts of the four-poi
A vertex were then related to ghost vertices using the Le
Zinn-Justin identities, which were separately proved to
finite. Also, a specific form of bare action and covariantiz
tion was chosen.

Here we do not fix the gauge and the regularizat
scheme is much more general. As well as not specifying
covariantization or the bare action~see below! there is any-
way much more freedom in introducing interactions via t
flow equation. We shall not here supply a rigorous proof th
up to appropriate restrictions, the flow equation is fini
Since we never have to specify the details, we only need
assumethat this is true for at least one choice. However,
take care that the scheme as described above is qualitat
correctly implemented. Where we do have to explicitly co
pare terms we can use Eq.~11! as a guide; thus, for example
we do find that our final expression forb1 is properly regu-
lated.~However, it should be borne in mind that at interm
diate stages our vertices have much more freedom in t
momentum dependence than that implied by the bare ac
in Ref. @18#. Additionally, cutoff functions with non-power-
law asymptotics, for example exponential, could also
used.6! In practice, it is easy to see at one loop that the h
energy cancellations are occurring as expected.

B. Necessary properties of the exact RG
and their interpretation

The extra fields we have added form a necessary par
the regularization structure. We gain an interpretation
these fields at the effective level by imagining integrating o
the heavy fieldsB, C, and D at some scaleL. The result
would be an effective action containing only the unbrok
gauge fieldsAi , but it is not well defined because it is no
finite. In particular, the one-loop determinant formed fro
integrating out the heavy fields is necessarily divergent:
divergences are there to cancel those left by the one-l
hole in the remaining covariant higher derivative regulariz
tion @25# of the SU(N)3SU(N) Yang-Mills theory, in a
similar way to that done explicitly in gauge invariant Pau
Villars regularization@19#.

A gauge invariant exact RG description of gauge the
thus requires not only a well defined finite effective acti

r 6The proof given in Ref.@18# could also be easily extended t
these cases.
3-4
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but a separate measure term. The measure term is not
finite, but can be represented by a well-defined finite addit
to the effective action, if we accept the introduction of the
auxiliary heavy fields.

While this interpretation is reasonable, we neverthel
need to be sure that we are still only representing the orig
quantum field theory@here SU(N) Yang-Mills theory#. This
demand is especially pertinent in~but not restricted to! the
case where there are extra regulator fields; particularly h
A2 which remains massless and in this effective descrip
only decouples at momenta much less thanL. More gener-
ally, even if there are only physical fields in the effecti
action, we need to be sure that locality, an important prop
of quantum field theory@26,27#, is properly incorporated.7

Note thatL is intended to be set at the energy scales
interest, which is why it makes sense to use the exact RG
solve for the effective action directly in renormalized term
~see, e.g., Ref.@5#!. Indeed, to extract the physics~e.g., cor-
relation functions, etc.! we will even want to takeL→0
eventually@4,5#.

These demands are satisfied implicitly through theL
→` limit, providing some very general requirements on t
exact RG are implemented, as we now explain.

First, we require that all parts of the flow equation can
expanded in external momenta to any order, so that the
lutionsScan also be required to have an all orders deriva
expansion@5,11,12#.8 This ‘‘quasilocality’’ requirement@11#
is equivalent to the fundamental requirement of the Wil
nian RG that Kadanoff blocking take place only over a
calized patch@1#, i.e., here that each RG stepL°L2dL be
free from infrared singularities.

The flow equation is written only in terms of renorma
ized quantities at the scaleL. In fact, we require that the
only explicit scale parameter that appears in the equation
the effective cutoffL. Again, this is so that the same can
required ofSwhere it implements the concept of self-simil
flow @28#. Here this amounts to a nonperturbative statem
of renormalizability, i.e., the existence of a continuum lim
equivalent to the requirement thatS lie on a renormalized
trajectory@5#. This is clearer if we first scale to dimension
less quantities using the appropriate powers ofL. Then,S is
required to have no dependence onL at all except through
its dependence on the running coupling~s! g(L) @5#.

Note that theL→` end of the renormalized trajectory
i.e., the perfect action@29# in the neighborhood of the ultra
violet fixed point atL5`, amounts to our choice of bar
action. Its precise form is not determined beforehand but
result of solution of the exact RG, but it is constrained
choices in the flow equation. Since these choices are, h
ever, here to a large extent unmade, we deal implicitly w
an infinite class of perfect bare actions.

We require that the flow of the Boltzmann measure e
(2S) is a total functional derivative, i.e., for some gene
fields f,

7Otherwise nonphysical effects, or the effects of other propaga
fields, could be hidden in the vertices.

8Sharp cutoff realizations@2# are more subtle@4,7# and will not be
discussed here.
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L]L e2S5
d

df
~C e2S! ~13!

~corresponding to the statement that each RG step is equ
lent to an infinitesimal field redefinitionf°f1C dL)
@6,10#. Importantly, this ensures that the partition functio
Z5*Df exp(2S), and hence the physics derived from it,
invariant under the RG flow. Since we will solve the exa
RG approximately, but by controlled expansion in a sm
quantity, this property is left undisturbed. Therefore we m
use different scalesL at our convenience to interpret th
computation.

For example, although locality is obscured in the Wils
nian effective action at any finiteL, it is important to rec-
ognize that invariance ofZ together with the existence of
derivative expansion and self-similar flow~viz., that the only
explicit scale beL) ensure that locality is implemented
since it is then an automatic property of the effective act
asL→`.

Similarly, it is asL→` that we confirm from the Wilso-
nian effective action that we are describing SU(N) Yang-
Mills theory: B, C, andD really are infinitely massive, and in
spacetime dimension 4 or less,A2 is guaranteed decouple
by the Appelquist-Carazzone theorem and Eq.~12!. In gen-
eral strong quantum corrections might alter either of th
properties. Thus in general we would need to add appropr
sources to theL→` action; compute the partition functio
by computing theL→0 limit of exp(2S); and finally explic-
itly test these properties by computing appropriate corre
tors ~formed from differentiating with respect to the source
this is the most general way to extract the results for phys
quantities fromS). However, sinceg is perturbative at high
energies~indeedg→0 asL→`), we can be sure that th
above deductions about the regulator fields, drawn at
perturbative level, are not destroyed by quantum correctio

As already mentioned, we require that an ultraviolet reg
larization atL, is implemented so that the right hand side
the flow equation makes sense. Note that this ensures tha
further quantum corrections toS ~computed by solving for
the flow at scales less thanL) are cut off~smoothly! at L.
Since momentum modesp.L were fully contributing to the
initial L→` partition function, and sinceZ is invariant un-
der the flow, we can be sure that their effect has been in
porated inS. In other words we can be sure that our fin
requirement on the flow, namely, that it corresponds to in
grating out momentum modes, has been incorporated.

~In Refs. @10,11#, a possible further requirement on th
flow equation called ‘‘ultralocality’’ was discussed, replacin
the usual notion of locality, although it was not clear that
was necessary. We have seen here that the usual conce
locality is recovered, providing the existence of a derivat
expansion, invariance ofZ, and self-similar flow, are imple-
mented. Furthermore, the successful calculations of Ref.@20#
and here confirm that the restriction of ‘‘ultralocality’’ is un
necessary since they do not assume it.!

C. Supergauge invariance and functional derivatives

The peculiarities of SU(NuN) affect functional derivatives
with respect toA and lead to some constraints on the form
the exact RG if the flow equation is to be invariant und
supergauge transformations.

g

3-5
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As before@12,18#, it is convenient to define the functiona
derivatives ofC andA so as to extract the dual from und
the supertrace. For an unconstrained field such asC we sim-
ply have@12,18#:

d

dCªS d/dC1
2d/dD̄

d/dD 2d/dC2D , ~14!

or in components

d

dCj
i
ª

d

dCi
k
s j

k . ~15!

Under supergauge transformations~10!, the functional de-
rivative transforms as one would hope:

dS d

dCD52 i F d

dC ,VG . ~16!

Such a derivative9 has the properties of ‘‘supersowing’’@12#:

]

]C strCY5Y⇒strX
]

]C strCY5strXY, ~17!

and ‘‘supersplitting’’@12#:

str
]

]CXCY5strX strY, ~18!

i.e., of sowing two supertraces together, and splitting o
supertrace into two, whereX and Y are arbitrary constan
supermatrices.

@Note that, as we will see later, it is a helpful trick
contract in arbitrary supermatrices at intermediate stage
the calculation: it allows manifestly SU(NuN) invariant
index-free calculations in the SU(NuN) algebra, by permut-
ing overall bosonic structures past each other. It also le
as we will show, to efficient diagrammatic techniques. T
arbitrary supermatrices can always be stripped off at the e
if necessary. If we did not use this trick, we would lo
manifest SU(NuN) invariance at intermediate stages, by ha
ing to carry intermediate minus signs from the fermion
parts of supermatrices anticommuted through each othe#

SinceA is constrained to be supertraceless, its dual un
the supertrace strJmAm has without loss of generality no1
component: only

Jm2
1

2N
tr Jm ~19!

really couples. The natural construction for theA functional
derivative from Eq.~3! @18#,

d

dAm
ª2TA

d

dAA m
1

s

2N

d

dA m
0 , ~20!

9For simplicity, written with partial derivatives, to neglect the i
relevant spatial dependence.
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pulls out precisely this combination. However, from Eq.~6!
and the completeness relations for theTA @18#, under super-
gauge transformations

dS d

dAm
D52 i F d

dAm
,VG1

i 1
2N

trF d

dAm
,VG

52 i F d

dAm
,VG* . ~21!

The correction is to be expected since it ensures thatd/dA
remains traceless, but the fact thatd/dA does not transform
homogeneously means that supergauge invariance is
stroyed unlessd/dA is contracted under the supertrace in
something that is supertraceless~causing the correction term
to vanish!. This is an extra constraint on the form of the flo
equation.

@As an alternative one might try definingd/dA as only
the 2TAd/dAA term in Eq. ~20!; however, one can show
from Eq. ~6! that this does not transform into itself but int
the full functional derivative given in Eq.~20!. It works,
however, in the Bars * representation, where the transfor
tion again takes the form~21!.#

Similarly, there are corrections to Eqs.~17! and ~18! that
arise because the derivative is constrained:10

strX
]

]A strAY5strXY2
1

2N
strX tr Y ~22!

as expected from Eq.~19!, and

str
]

]AXAY5strX strY2
1

2N
tr YX. ~23!

Since these corrections contain tr•••[strs•••, they simi-
larly violate SU(NuN) invariance. As we discuss in Se
III A, they also effectively disappear with the above co
straint thatd/dA is contracted into something supertracele
@This is obvious in Eq.~22! where thus strX50.#

In this way the supersplitting and supersowing rules ac
ally become exact for both fields, even at finiteN ~compare
@11,12#!. As we will see, this leads to a very efficient dia
grammatic technique incorporated into the Feynman d
grams, for evaluating the gauge algebra, analogous to
’t Hooft double line notation@30# and utilized earlier@10–
12#, but here applying even at finiteN.

D. Covariantization

Given some momentum space kernelWp[W(p,L), we
write in position space

Wxy[E d4p

~2p!4 W~p,L!eip•(x2y), ~24!

and introduce the shorthand

10Ignoring the spacetime index and spatial dependence.
3-6
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FIG. 1. Wine expansion. The
thick lines are expanded into thin
lines, with the blobs representin
A fields.
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f •W•gªE E d4xd4y f~x!Wxy g~y!, ~25!

where f and g are any two functions. We define a gene
covariantization of any such kernel~the ‘‘wine’’ @11,12,14#!
via the supergauge invariant

u$W%Av5 (
m,n50

` E d4xd4yd4x1•••d4xnd4y1•••d4ym

3Wm1•••mn ,n1•••nm
~x1 , . . . ,xn ;y1 , . . . ,ym ;x,y!

3str@u~x!Am1
~x1!•••Amn

~xn!v~y!

3An1
~y1!•••Anm

~ym! #, ~26!

whereu andv are any two supermatrix representations, a
where without loss of generality we may insist that$W%A
satisfiesu $W%Av[v $W%Au. We write them50 vertices
~where there is no second product of gauge fields! more com-
pactly as

Wm1•••mn
~x1 , . . . ,xn ;x,y![Wm1•••mn ,~x1 , . . . ,xn ;;x,y!,

~27!

while them5n50 term is just the original kernel~24!, i.e.,

W,~ ;;x,y![Wxy . ~28!

We leave the covariantization general, up to certain
strictions. One of these is already encoded into Eq.~26!,
namely, that there is just a single supertrace in Eq.~26!,
involving just two ordered products of supergauge fields. A
other is that we require that the covariantization satisfy
incident line identities@11# which in particular imply that, if
v(y)51g(y) for all y, i.e., is in the scalar representation
the gauge group, then the covariantization collapses to

u $W%Av5~stru!•W•g. ~29!

As shown in Ref.@12# ~see Sec. 5.2 of that paper!, the coin-
cident line identities are equivalent to the requirement t
the gauge fields in Eq.~26! all act by commutation. This
requirement is necessary to ensure that no-A 0 remains valid
and to ensure thatd/dA is indeed contracted into somethin
supertraceless. It is this that we need rather than the iden
themselves, which are used just once, to collect terms in
calculation.

Although we will not use it explicitly, let us remark tha
these constraints are solved by the following general cov
antization@11,12#:
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u$W%Av5E E d4xd4yE D
W

,xy

3stru~x!F@,xy#v~y!F21@,xy#, ~30!

where

F@,xy#5P exp2 i E
,xy

dzmAm~z! ~31!

is a path ordered exponential integral, i.e., a Wilson line, a
the appearance ofF21@,xy# means that we traverse bac
ward along another coincident Wilson line. The covarian
zation is determined by the measureD

W
over configurations

of the curves,xy and is so far left unspecified except for i
normalization,

E D
W

,xy15Wxy , ~32!

as follows from Eqs.~26! and~28!. It is easy to see that Eq
~30! indeed does satisfy Eq.~29!.

The expansion~26! can be represented as in Fig. 1. As w
explain later, these will act as Feynman rules, although t
can also be viewed directly as expansions of the Wilson li
~31! in the covariantized kernel~30!.

Finally, we will require that the covariantization satisfie

d

dAm
$W%A50 ~33!

~where the functional derivative acts on all terms insi
$W%A but not on the unspecified right hand attachment!, i.e.,
that there are no diagrams in which the wine bites its o
tail @10–12#. This leads to identities for theW vertices which
again we do not need in practice: as we will confirm, su
terms do not in any case contribute to the one-loopb func-
tion. However, such diagrams do appear in general to lea
some improperly regularized terms and so some restrictio
needed for consistency. We can use the representation~30! to
see that sensible solutions to Eq.~33! do exist. For example
we can simply insist that,xy is a straight Wilson line, and
more generally that the measureD

W
has no support on the

curves,xy that cross the pointsx or y. The end points need
defining carefully so that they only touchx andy after a limit
has been taken@10#. However, since we never specify th
covariantization, we only need to assume that solutions
Eq. ~33! exist. In the calculation we just use Eq.~33! and
thus just forbid all wine-biting-its-tail diagrams.

E. Decoration with C
It will prove convenient to allow occurrences ofC also on

the Wilson lines~with the obvious corresponding extensio
3-7
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of Fig. 1! although we can limit their appearance to attac
ments at either end of,xy . In this paper they will further-
more act only via commutation at both ends. Precisely,
extend the definition~26! so that

u$W%v5u$W%Av2
1

4
C•u$Wm%AC•v, ~34!

whereWm(p,L) is some new kernel. In the expansion w
now have vertices that come from bothA andC. Typically in
this caseu andv will actually correspond to functional dif
ferentials, with respect to, say,Z1 andZ2, and it will also be
helpful to keep track of these flavors by including them
labels in the naming convention for the kernel, viz.,
W(m)

Z1Z2 . The notation we will thus use in general is

d

dZ1
c $WZ1Z2%

d

dZ2
c

5 (
m,n50

` E d4xd4yd4x1•••d4xnd4y1•••d4ym

3Wa1••• an , b1•••bm

X1•••Xn ,Y1•••Ym ,Z1Z2~x1 , . . . ,xn ;y1 , . . . ,ym ;x,y!

3strF d

dZ1
c~x!

X1
a1~x1!•••Xn

an~xn!
d

dZ2
c~y!

3Y1
b1~y1!•••Ym

bm~ym! G , ~35!
gy

an

r
b
th
q
c

08500
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where the superfieldsXi , Yi , and Zi are A or C, and the
indicesai5m i , bi5n i , andc5g in the case that the corre
sponding field isA and null if the field isC. In fact, as a
consequence of the restricted structure~34!, the
X2 , . . . ,Xn21 andY2 , . . . ,Ym21 must beA’s if they appear
at all.

We can still insist without loss of generality thatu$W%v
[v$W%u, and use the shorthand~27!, where now we keep
track of flavor labels as in Eq.~35!, however. It is still the
case that with no fields on the ‘‘wine,’’ the originalW kernel
is recovered as in Eq.~28!. The commutator structure in Eq
~34! ensures that Eq.~29! holds for the full ‘‘wine’’ also:

v~y!51 g~y!;y ⇒ u $W%v5~stru!•W•g. ~36!

Finally, theC’s as further ‘‘decorations’’ of the covariantize
kernels are required to partake in the restriction descri
below Eq.~33!, so this equation extends to

d

dAm
$W%5

d

dC $W%50. ~37!

@In fact by X51 in Eq. ~18!, the contribution from differen-
tiating the leftmostC vanishes in any case.#

F. Superfield expansion

The Wilsonian effective actionS ~and the seed actionŜ
that we will also introduce!, being supergauge invariant, ha
an expansion in supertraces and products of supertraces
S5 (
n51

`
1

sn
E d4x1•••d4xnSa1••• an

X1•••Xn ~x1 , . . . ,xn! str X1
a1~x1!•••Xn

an~xn!

1
1

2! (
m,n51

`
1

snsm
E d4x1•••d4xnd4y1•••d4ymSa1••• an , b1•••bm

X1•••Xn ,Y1•••Ym ~x1 ,•••,xn ;y1 ,•••,ym!

3str X1
a1~x1!•••Xn

an~xn!str Y1
b1~y1!•••Ym

bm~ym!1•••, ~38!
ce

the
where again theXi
ai areAm i

or C, andYj
bj areAn j

or C. ~Note
that throughout this paper we discard the vacuum ener!
Only one cyclic ordering of each listX1•••Xn , Y1•••Ym
appears in the sum. Furthermore, if either list is invari
under some nontrivial cyclic permutations, thensn (sm) is
the order of the cyclic subgroup, otherwisesn51 (sm51).
~For example, in the terms where everyXi

ai is a C, sn5n.!
The expansion can be represented diagrammatically, whe
thick closed line stands for a single supertrace of any num
of fields, as in Fig. 2, and each blob represents a field in
supertrace, as in Fig. 3. In a somewhat similar way to E
~30! and ~34!, these closed lines can be interpreted as de
rated Wilson loops@11,12#.
.

t

e a
er
e

s.
o-

When we spontaneously break the fermionic invarian
by shifting C in the s direction, it will prove to be better to
work separately with the bosonic and fermionic parts of
superfields. Thus we write in the broken phase

Am5Am1Bm and C°C1s5C1D1s, ~39!

FIG. 2. Expansion of the action in products of supertraces.
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whereA andC are the block diagonals, andB andD are the
block off-diagonals in Eqs.~1! and~9!, respectively@12,14#.
~We will see in the Sec. III thatC’s effective vacuum expec
tation value is justs.!

Thus in the broken phase we will expand as in Eq.~38!,
but the flavorsX andY are set toA, B, C, or D. There will
also be occurrences ofs. However, sinces commutes with
A and C, and anticommutes withB and D, to define the
expansion we can take the convention that we~anti!commute
all such occurrences to the far right in the supertrace. U
usings251, we are then left with terms with either ones at
the end of a supertrace or none at all in that supertrace. S
s has no position dependence, we put the flavor label in
superscript, but we omit the corresponding position la
~and the termn-point vertex countsn fields excludings
appearances!. Clearly, since the broken fields can still b
cyclically permuted by~anti!commutation throughs, we
also omit it from the determination of the symmetry fact
i.e., sn is equal to the order of the cyclic permutation su
group of the fieldsXi , ignoring thes ~if present!. Finally,
note that each supertrace term must separately hold
totally bosonic combinations since ifX1•••Xn ~or
X1•••Xns) is fermionic, it is block off-diagonal and ha
vanishing supertrace.

Similarly, in Eq. ~35!, in the broken phase,X, Y, and Z
will be A, B, C, or D. Note thatZ1 can be the opposite
statistic partner fromZ2. Since it is a single supertrace, aga
each contribution in Eq.~35! is overall bosonic, however
Single occurrences ofs can also appear at the ends of t
Wilson lines, after taking into account that these can a
~anti!commute through theZ functional derivatives.

Finally, the momentum space vertices are written as

Sa1••• an

X1•••Xn ~p1 , . . . ,pn!~2p!4dS (
i 51

n

pi D
5E d4x1•••d4xn e2 i(

i
xi•piSa1••• an

X1•••Xn ~x1 , . . . ,xn!,

~40!

where all momenta are taken pointing into the vertex, a
similarly for all the other vertices including Eq.~35!. We use
the shorthandSab

XY(p)[Sab
XY(p,2p) and Sab

XYs(p)[Sab
XYs(p,

2p) for action two-point vertices.

III. A MANIFESTLY SU „NzN… GAUGE INVARIANT
EXACT RG

Our strategy is to write down a manifestly supergau
invariant flow equation, obeying the rules outlined in Sec.

FIG. 3. Expansion of a supertrace in powers of the fieldsA and
C.
08500
n

ce
e
l

,
-

ly

o

d

e
,

and then spontaneously break it. DefiningSg5g2S22Ŝ, we
simply set

L]LS52a0@S,Sg#1a1@Sg#, ~41!

where

a0@S,Sg#5
1

2

dS

dAm
$ḊAA%

dSg

dAm
1

1

2

dS

dC $ḊCC%
dSg

dC
~42!

and

a1@Sg#5
1

2

d

dAm
$ḊAA%

dSg

dAm
1

1

2

d

dC $ḊCC%
dSg

dC . ~43!

In the rest of this section we explain the meaning of t
various components, at the same time developing som
the properties of this exact RG.

The definition ofSg and the form of the flow equation
~41! are the same as in Refs.@11,12,14#. In contrast to Ref.
@12#, however, the exact RG is very simple in conceptio
The basic structure is inherited from the Wilson exact R
@1,31,10#: the bilinear functionala0 generates the classica
corrections, while the linear functionala1 generates quantum
corrections. As in Refs.@11,12,14#, a1 has exactly the same
structure asa0 except that the leftmost functional derivative
differentiate everything to their right. Consequently, we ha

L]Le2S5
1

2

d

dAm
S $ḊAA%

dSg

dAm
e2SD

1
1

2

d

dC S $ḊCC%
dSg

dC e2SD , ~44!

which shows that condition~13! is satisfied.
As before, g(L) is the renormalized coupling of th

SU(N) Yang-Mills theory carried byA1. It is defined
through the renormalization condition

S@A5A1,C5 C̄#5
1

2g2 trE d4x ~Fmn
1 !21•••, ~45!

where the ellipsis stands for higher dimension operators~and
the ignored vacuum energy!, and C̄ is the effective vacuum
expectation value defined so as to minimize the effect
potentialV(C) in S:

]V

]C U
C5 C̄

50. ~46!

C̄ is spacetime independent and generically contains te
proportional tos and 1 @18#. We will see later that for the
purposes of this paper we can simply setC̄5s.

The similarities mean that the general structure of the p
turbative expansion is the same as in Refs.@11,12,14#: We
see from Eq.~41! that S;1/g2 at the classical level@consis-
tent with Eq.~45!#, and by iteration, using Eq.~41!, that S
has as expected the weak coupling expansion
3-9
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S5
1

g2 S01S11g2S21•••, ~47!

where S0 is the classical effective action,S1 the one-loop
correction, and so on. Substituting this expansion in Eq.~41!,
we see that theb function must also take the standard for

bªL
]g

]L
5b1g31b2g51•••, ~48!

with coefficients to be determined. From Eqs.~47! and~48!,
we obtain the loopwise expansion of Eq.~41!:

L
]

]L
S052a0@S0 ,S022Ŝ#, ~49!

L
]

]L
S152b1S022a0@S02Ŝ,S1#1a1@S022Ŝ#, ~50!

etc. Actually, we will find it convenient to add some simp
quantum corrections to the supergauge invariant seed a
Ŝ, giving it a g dependence~as we outline below!. We also
need to take account of the flow ofg2, the coupling for the
second SU(N) carried by A2. However, neither of these
complications has an effect on the one-loopb function com-
putation, so they will be largely ignored here, and develop
fully only when we consider multiloops@21#.

Ŝ is used to determine the form of the classical effect
kinetic terms and the kernelsḊ(p,L). It therefore has to
incorporate the covariant higher derivative regularization a
allow the spontaneous symmetry breaking we require.
like previous reports@10–12#, we will see that we otherwise
leave it almost entirely unspecified. The kernelsḊ are deter-
mined by the requirement that after spontaneous symm
breaking the two-point vertices of the classical effective
tion S0 and Ŝ can be set equal. As previously@10–12,14#,
this is imposed as a useful technical device, since it allo
classical vertices to be immediately solved in terms of
ready known quantities. It also means that the integral of
kernels defined via

L]LD52Ḋ ~51!

will play a closely similar role to that of propagators,
particular being the inverse of these two-point vertices up
gauge transformations.

TheC commutator terms in Eq.~34!, yield s commutators
on spontaneous symmetry breaking. Sinces commutes with
A andC but anticommutes withB andD, Dm

AA andDm
CC allow

for the addition of spontaneous mass creation forB and D
while still allowing the solution that the two-point vertices
Ŝ andS0 are equal. The appearance of theC commutator on
both sides allows us to insist thatC↔2C is an invariance of
the symmetric phase. The form~42!,~43! preserves charge
conjugation symmetryC°C T, A°2A T ~using the defini-
tion of the supermatrix transpose in Ref.@12#. Note that here
the transformation forC is as given so that its vacuum ex
pectation value is invariant under charge conjugation. Si
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charge conjugation reverses the order of terms in a su
trace, diagrammatically it corresponds to reversing the
rows in Figs. 1–3, i.e., to mirror reflection@11,12#.!

From Eq. ~16! and Sec. II E, it is trivial to see that th
d/dC terms are supergauge invariant. Under a superga
transformation we have by Eqs.~21! and ~36!

dS dS

dA m
$ḊAA%

dSg

dAm
D5

i

2N
trF dS

dAm
,V G•ḊAA

•str
dSg

dAm

1~S↔Sg!, ~52!

whereS↔Sg stands for the same term withS andSg inter-
changed. But by Eq.~20! and no-A 0,

str
dSg

dAm
5

dSg

dA m
0 50, ~53!

and similarly forS, and thus the tree-level terms are sup
gauge invariant. Similarly, the quantum terms are SU(NuN)
gauge invariant, since

dS d

dAm
$ḊAA%

d

dAm
SgD5

i

N
trF d

dAm
,VG•ḊAA

•str
dSg

dAm
50.

~54!

This completes the proof that the exact RG is superga
invariant.

Note that there is no point in incorporating longitudin
terms into the exact RG~as was done in Ref.@12#! because
here the manifest supergauge invariance means that they
be exchanged forC commutators:

¹m•
dS

dAm
5 iC• dS

dC ~55!

~as holds for any supergauge invariant functional! and thus
absorbed into theḊm

CC term.
It is important for the working of the SU(NuN) regular-

ization that the effective scale of spontaneous symme
breaking is tied to the higher derivative regularization sca
which thus both flow withL. This is not the typical situa-
tion, but can be arranged to happen here by constraininŜ
appropriately. However, as we now show, the constrain
straightforward only if we takeC to be dimensionless in Eqs
~41!–~43!.

Contracting an arbitrary constant supermatrixX into Eq.
~46! ~for convenience; cf. Sec. II C! and differentiating with
respect toL, we have

Fstr
] C̄
]L

]

]C strX
]V

]C 1strX
]

]C
]V

]L
G
C5 C̄

50. ~56!

We can compute the flow]V/]L by settingA50 and C
5 C̄ in Eq. ~41!. Taking the classical limitV→V0, we find
that the resulting equation simplifies dramatically. Usi
Eqs.~49!,~42!,~46!,~26!,~28!, the fact that vertices in the ac
tions with only oneAm vanish at zero momentum~by Lor-
entz invariance!, and
3-10
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F C̄,
]V̂

]CGU
C5 C̄

50, ~57!

which follows from global SU(NuN) invariance~whereV̂ is
the potential inŜ), we get

str F S L
] C̄
]L

1ḊCC~0,L!
]V̂

]C D ]

]C strX
]V0

]C G
C5 C̄

50. ~58!

With C dimensionless, we can and will insist that the clas
cal vacuum expectation valueC̄5s. Equation~58! is then
satisfied if and only if11 V̂ also has a minimum atC5s. This
is delightful since it ensures that at the classical level,
least, neither action has one-pointC vertices in the broken
phase. We will thus impose

]V̂

]C UC5s

50 ~59!

as a constraint onŜ.
Had we not takenC to be dimensionless, we would hav

had to require thatC̄ depend onL, in order that the effective
breaking scale flows withL. SinceX is general, Eq.~58!

would then imply thatV̂ cannothave a minimum also atC
5 C̄. Further analysis shows thatV̂ is then forced to violate
C↔2C symmetry in the symmetric phase.

Although conventionallyC would have dimension 1, fo
these reasons we will take it to be dimensionless from n
on. @It is intriguing that the conclusion thatC ~actually C)
must be dimensionless was reached for very different rea
in Refs.@10,12#, which are no longer necessarily applicab
now that Eq.~55! is a symmetry.#

At the quantum level,C̄5s can be expected to receiv
loop corrections. Since SU(N)3SU(N) invariance is left un-
broken, these corrections can only be proportional tos or 1.
Corrections proportional to the latter do not affect the bre
ing @but presumably through Eq.~45! give important contri-
butions at higher loops#; however, corrections proportional t
s would result, through Eq.~55!, in broken gauge invarianc
identities that explicitly involveg and thus mix different loop
orders. We can avoid this by again using the freedom in
choice ofŜ to design things appropriately. We can constra
the appearance ofV̂ one-point vertices in the broken phas

L4vC strC1L4vCs strCs ~60!

by imposingC̄5s as a renormalization condition. Eachv is
then a nonvanishing function ofg, but from the analysis
above, only from one loop onward:

11We will see that the requirement thatC has a mass in the broke

phase forcesḊCC(0,L)Þ0.
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vC~g!5v1
Cg21v2

C g41•••

and vCs~g!5v1
Csg21v2

Csg41•••. ~61!

However, the fact that these corrections start only at one l
makes them already too high an order to affect the one-l
b function calculation.~This is particularly clear from the
perspective of higher loop calculations@21#.!

A. Supersowing and supersplitting in theA sector

The inherent supersymmetry has a remarkable effect
the gauge algebra: One can replace the usual manipulatio
structure constants and reduction to Casimirs, which
comes increasingly involved at higher loops, by the sim
steps~17! and ~18! which always either just sow togethe
supertraces or split them open. These have an immed
diagrammatic interpretation. The apparent violations pres
in Eqs. ~22! and ~23! must somehow disappear since th
would violate even global SU(NuN). We first prove that this
is indeed the case.

For the case where the action contains just a single su
trace, which will turn out to be all we need here, we cou
adapt the proof given in Sec. 6.2 of Ref.@18#. However, in
preparation for future work, we will give a more sophis
cated proof which is applicable when working with multip
supertrace contributions. Indeed we will see that there is t
one special case, where the corrections in Eqs.~22!,~23! do
survive, and result in a simple supergauge invariant corr
tion.

The corrections present in Eqs.~22!,~23! arise becauseA
is constrained to be supertraceless. To compare their effe
the unconstrained case~17!,~18!, we momentarily ‘‘lift’’ A to
a full superfieldA e by adding as part:

Am°A m
e
ªAm1sA m

s . ~62!

A m
s is taken arbitrary so the map is not at all unique. W

similarly extend all functionals ofA to the full space, simply
by replacingA with A e, e.g.,

Se@A e,C#ªS@A°A e,C#. ~63!

Again, this is a not unique procedure, as can be seen
example in the fact that strA vanishes, but the promote
functional strA e does not. We also introduce the projectio
back onto the supertraceless space,

pA m
e 5Am , pSe5S, etc., ~64!

which of course is unique. Functional derivatives with r
spect toA e can be written as

d

dA m
e 5

d

dAm
1

1
2N

d

dA m
s , ~65!

using Eq.~20!, or equivalently defined as in Eq.~15!. d/dA e

thus satisfies the exact supersowing and supersplitting r
3-11
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tions~17!,~18!. In the extended space, the constrained der
tive ~20! can now be written in terms of an unconstrain
derivative:

d

dAm
5

d

dA m
e 2

1
2N

tr
d

dA m
e . ~66!

Of coursep andd/dA s do not commute; however,

dS

dA m
$ḊAA%

dSg

dAm
5pH dSe

dA m
$ḊAA%e

dSg
e

dAm
J , ~67!

sinceA s is not differentiated on the right hand side. Subs
tuting Eq.~66! or Eq.~65!, and using Eqs.~36! and~20!, the
term in big curly braces becomes

dSe

dA m
e $ḊAA%e

dSg
e

dA m
e

2
1

2N

dS e

dA m
0 •ḊAA

•

dSg
e

dA m
s

2
1

2N

dSg
e

dA m
0 •ḊAA

•

dS e

dA m
s . ~68!

Now, as we explain below, no-A 0 symmetry is violated in
the extended space. However, theA 0 derivatives in Eq.~68!
do vanish after the projection. Thus Eq.~67! becomes

dS

dA m
$ḊAA%

dSg

dAm
5pH dSe

dA m
e $ḊAA%e

dSg
e

dA m
e J , ~69!

which says precisely that the corrections in Eq.~22! can be
ignored: exactly the same result is obtained if exact sup
sowing is used.

However, performing the same analysis on the cor
sponding quantum term in Eq.~43!, we get a correction to
exact supersplitting, consisting of an attachment of the~zero-
point! kernel ḊAA(p,L) to two A points inSg :

d

dA m
$ḊAA%

dSg

dAm
5pH d

dA m
e $ḊAA%e

dSg
e

dA m
e J

2
1

N
p

d

dA m
s •ḊAA

•

dSg
e

dA m
0 . ~70!

To understand when this correction is nonvanishing, we n
briefly to analyze the consequences of no-A 0 symmetry in
more detail. Considering the transformation12 dAm5lm1 in
Eq. ~38!, we see that the result must vanish either via
supergroup algebra because the corresponding vertex
tains a factor strAA, thus generating strA50 ~but strA e

Þ0 in the extended space!, or because a nontrivial constrain
exists on the corresponding vertex function.@This is simply
that the sum over all possible valid placings ofA 0’s associ-
ated position and Lorentz argument inside a vertex func
leaving other arguments alone yields zero; cf. Eq.~121! and

12There are higher order constraints from separating out hig
powers ofA 0 but from Eq.~70! we only need the first order.
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Refs.@21,32# for more detail.# This nontrivial constraint then
causes the coefficient to vanish whether or not the remain
supergauge fields are extended byA ss. Thus the correction
in Eq. ~70! vanishes in all cases except where the zero-po
ḊAA kernel attaches each end to a strAA factor. Comparing
the result to the computation assuming exact supersplitt
i.e., the first term in Eq.~70!, we see that instead of getting
supergroup factor (str1)250 we get2(1/N)strs, i.e., a su-
pergroup factor of22.

„Note that in deriving this rule we have assumed th
vertices inSg with factors strA have been set to zero from
the beginning @as would follow immediately from the
SU(NuN) group theory#. If for some reason this was no
done then the first term in Eq.~70! can get a nonzero contri
bution from the kernel attaching to this str_A52NA s point.
However, it then also appears in the correction with precis
equal and opposite coefficient.…

This supergroup factor should have been expected s
the algebra part of the attachment of a zero-point kernel
two-point vertex simply counts the number of bosonic d
grees of freedom in the algebra minus the number of fer
onic degrees of freedom. There areN2 fermionic such terms
in B, but only N222 in A, since bothA s and, by no-A 0

symmetry,A 0, are missing.
Since the correction in Eq.~70! is nonvanishing only

when using up a separate strAA factor, it is clear that the
result is still supergauge invariant in the remaining exter
superfields. Furthermore, in the present case where we
be able to work with actions with only a single supertrac
the entire effect of the correction is a just vacuum ene
contribution, which from now on we ignore.

B. Diagrammatic interpretation

A thus also effectively satisfies the exact supersowing
supersplitting relations~17! and ~18!. By using these equa
tions when the covariantized kernels~35! act on the actions
~38!, and comparing the result to the diagrammatic interp
tation of the covariantized kernels and actions, Fig. 1 a
Figs. 2,3, it is clear that the exact RG is given diagramm
cally as in Fig. 4.

Here we have specialized to the case of interest in
paper, whereS and Ŝ can be assumed to have only a sing
supertrace.~The extension to the more general contributio
Fig. 2 is obvious.! Expanding the thick lines~representing
any number of fields! into a power series in the fields, w
translate the figure into individual Feynman diagrams, wh
Feynman rules are given by the momentum space version
the vertices in Eqs.~35! and ~38! ~without the symmetry

er

FIG. 4. Graphical representation of the exact RG, whenSandŜ
contain only single supertraces.
3-12
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factors!.13 The points representing individual fields and th
associated momenta and Lorentz indices appear in all pl
on a composite loop with equal weight, while respecting
cyclic order. Of course, if one of the corresponding vertic
does not appear in the expansions~35! and ~38!, the corre-
sponding Feynman rule is zero.

It can be seen from Fig. 4 that the tree-level correctio
preserve the assumption that there is only a single super
in S, but that each quantum correction results in an ex
supertrace factor. Thus in generalShas terms with any num
ber of supertraces, and already a product of two supertr
at one loop. However, for the computation of theb function,
we need only look at contributions to theAA two-point ver-
tex @see Eq.~45! and later, or Refs.@10–12,14##. SinceA is
both traceless and supertraceless, to get a nonvanishin
swer bothA’s must lie in the same supertrace, leaving t
other one empty of fields. In this way,S effectively contains
only a single supertrace to the order in which we are wo
ing.

C. After spontaneous breaking

We substituteC°C1s, and from now on work in the
spontaneously broken phase. Working with fields appropr
for the remaining SU(N)3SU(N) symmetry, we breakA
andC down to their bosonic and fermionic partsA, B, C, and
D as in Eq.~39!.

The diagrammatic interpretation is still the same, exc
that we now have the four flavors to scatter around the c
posite loops, and appearances ofs, which can be simplified
as explained in Sec. II F.~Some terms are then related, f
example,Ḋm

A,AA5Ḋm
B,AB , although we never need to use th

explicitly.! In addition, we must recall the corrections to s
persplitting and supersowing arising from differentiati
only partial supermatrices@12#. These lead to further appea
ances ofs which are easily computed by expressing t
partial supermatrices in terms of full supermatrices via
projectorsd6 onto the block~off-!diagonal components

d6X5
1

2
~X6sXs! ~71!

~henceC5d1C, D5d2C, etc.!. Diagrammatically this sim-
ply amounts to corrections involving a pair ofs ’s inserted
either side of the attachment as in Fig. 5@12#.

13This part of the analysis is the same as in Ref.@12#, except that
here we make explicit the factor of 1/2 from Eqs.~42! and~43!, in
Fig. 4 and the Feynman diagrams, and the factor of 1/L2 is now

incorporated in the definition of the kernelsḊ.

FIG. 5. Feynman diagram representation of attachment v
partial supermatrixd6Y56Y.
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For tree-level type attachments as in Eq.~17!, the correc-
tions merely ensure that the coefficient supermatrices (X and
Y) have the appropriate statistics to make each supert
term totally bosonic~see Sec. II F!, but this has already bee
taken into account in the Feynman rules. Thus these cor
tions have no effect at the tree level@12#.

Since the classical actionS0 ~similarly Ŝ) has only a
single supertrace and respectsC↔2C invariance in the sym-
metric phase~cf. Sec. III!, upon spontaneous breaking w
have the ‘‘theory space’’ symmetry

C↔2C,

D↔2D,

s↔2s. ~72!

The single supertrace part of the one-loop effective actionS1
has a single supertrace because it also has a supertrace
of fields ~cf. Sec. III B!. In order for this not to vanish it
must ‘‘trap’’ a s ~so that we get strs52N rather than str1
50). Therefore, the nontrivial supertrace has one lesss
~mod 2! and is thus odd under the symmetry~72!.

These observations, which can be easily extended to m
tiple loops and supertraces, are useful in limiting the poss
vertices.

D. „Un…broken gauge invariance

Splitting V into its fermionic and bosonic parts,t
5d2V andv5d1V, we obtain from Eqs.~4!, ~6!, and~10!
the unbroken SU(N)3SU(N) transformations

dAm5Dm•v,

dBm52 iBm•v,

dC52 iC•v,

dD52 iD •v, ~73!

where Dm5]m2 iAm is the covariant derivative for the
SU(N)3SU(N) ~the dot again means action by commut
tion, and we have used the fact that@s,v#50), and the
broken fermionic gauge transformations

dBm5Dm•t,

dAm52 iBm•t,

dD52 iC•t12i ts,

dC52 iD •t. ~74!

From the first of Eqs.~73! we see thatA can have no wave
function renormalization because, if it did, then on replac
A by Z1/2A, this becomesdAm5Dm•v1(Z21/221)]mv,
i.e., the gauge symmetry is violated@10–12#. ~Clearly this is
true whether or not one tries to reparametrizev also.! This is
the reason for scaling the couplingg out of the connection
~4!: A then has no anomalous dimension and onlyg renor-

a

3-13
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malizes. Since the corresponding marginal term to Eq.~45!
exists forA2, there is also a couplingg2. Its renormalization
is important for calculations in the physical sector beyo
one loop@21#.

In a similar way the first two relations of Eq.~74! imply
that B can have no wave function renormalization, while,
first surprisingly, the last two relations imply thatC and D
cannot have any wave function renormalization either. Ho
ever, these last two relations are a consequence of
vacuum expectation valueC̄5s being protected by the intro
duction of the terms~60!, ~61!.

Applying these relations to the field expansions in m
mentum space, we get the ‘‘trivial’’ Ward identities whic
relate vertices via the manifest bosonic and broken fermio
gauge invariance. These identities provide a powerful ch
on solutions forS, and play a crucial role in the calculation t
follow.

Applying the unbroken gauge symmetries~73!,

qnU
•••anb•••
•••XAY•••~ . . . ,p,q,r , . . . !

5U
•••ab•••
•••XY•••~ . . . ,p,q1r , . . . !

2U
•••ab•••
•••XY•••~ . . . ,p1q,r , . . . !, ~75!

whereU stands for any element, i.e., a vertex from a co
riantized kernel or from an action.Xa andYb are the fieldsA,
B, C, or D, with a andb Lorentz indices or null as appropr
ate. Geometrically, the momentum of the gauge field
pushed forward along the direction of the Wilson line to t
next ‘‘obstruction’’ ~with a plus! or pulled back against the
direction of the Wilson line to the previous obstruction~and
given a minus sign! @10#. If A is at the end of a line in a wine
vertex, then eitherX or Y is Z1 or Z2 in the expansion~35! as
appropriate, and the momentum is pushed forward~pulled
back! onto this@11,12,14#. Sinces commutes withv, anys
insertion is ‘‘invisible’’ in this process and the momentumq
is pushed forward~pulled back! through thes position to the
next ‘‘real’’ obstruction. @This is also clear by temporarily
~anti!commuting thes out of the way and then applying Eq
~75!.#

Similarly, applying the broken supergauge symmetr
~74!, we get

qnU
•••anb•••
•••XBY•••~ . . . ,p,q,r , . . . !

22U
•••ab•••
•••XDsY•••~ . . . ,p,q,r , . . . !

5U
•••ab•••
•••XŶ•••~ . . . ,p,q1r , . . . !

2U
•••ab•••
•••X̂Y•••~ . . . ,p1q,r , . . . !. ~76!

Xa andYb have the same interpretation as before.X̂ and Ŷ

are the opposite statistics partners~thusÂm5Bm , etc.!. This
time, sincet anticommutes withs, if the momentumq is
pushed back~pulled forward! through as then the corre-
sponding term on the right hand side of Eq.~76! changes
sign.
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IV. SEED ACTION TWO-POINT VERTICES

As we have already emphasized, we do not restrict
seed actionŜ to a particular choice. We will restrict the set o
possible choices, however, for technical reasons. For
ample, in this paper we insist thatŜ has only a single super
trace. We could have taken the form of the bare action fr
Ref. @18# as one choice of seed action, but it is very help
to add more general interactions than this, in order to av
the appearance of certain flowing classical couplin
~cf. Sec. VII A!. More importantly, we now realize that it i
to our advantage to keepŜ, and the forms of covariantiza
tion, general, since this guides us to an efficient proced
for calculation. Providing we are computing a well defin
physical quantity, we are guaranteed that the result is in
pendent of the detailed choices.

Consider first theDD two-point vertex.14 By Goldstone’s
theorem@33#, D must be massless; thus by Lorentz inva
ance and dimensions its kinetic term takes the form

ŜDD~p!5L2p2/ c̃p , ~77!

wherec̃p5 c̃(p2/L2) is a dimensionless smooth strictly pos
tive function. ~Recall from Sec. II B thatL is the only ex-
plicit scale that can appear, and smoothness is a requirem
for all vertices.! Although it is not necessary@12#, we set the
kinetic term to be conventionally normalized, and so rest
our choices toc̃(0)51.

Proceeding similarly, we have that in general there
two types of AA vertex; however, by Eq.~72!, Ŝmn

AAs50.
From Eq.~75!, theAA vertex is totally transverse,

pmŜmn
AA~p!50. ~78!

~Since strA50, single pointA vertices do not exist.15! By
dimensions and Lorentz invariance, it therefore takes
form

Ŝmn
AA~p!52hmn~p!/cp , ~79!

wherehmn(p)[p2dmn2pmpn is the usual transverse kineti
term, which will appear often, andcp5c(p2/L2) is another
dimensionless smooth strictly positive function. Recall fro
Sec. III that we set the classical two-point vertex equal
this:

S0 mn
AA ~p!5Ŝmn

AA~p!. ~80!

This implies from the renormalization condition~45!, and
Eq. ~47!, that c(0)51. In order to maintain finiteness, w
must limit the large momentum behavior ofc and c̃, for
power law large momentum behavior as in Eq.~11!.

14There is noDDs vertex since, by$D,s%50 and cyclicity,
strDDs52strDsD52strDDs.

15But also for many other reasons: Poincare´ invariance, charge
conjugation invariance, etc.
3-14
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This analysis shows that so far, apart from some v
basic restrictions, the introduction of the cutoff functio
merely parametrizes the most general two-point vertices

Now consider theBB vertex.~Like DDs, a BBs vertex
cannot exist.! It has a transverse part, which by dimensio
and Lorentz invariance has the same form as Eq.~79! but
with a possibly different cutoff function. However, fo
SU(NuN) invariance to be recovered at high energies, th
cutoff functions must agree at high energies. For simplic
we just set them equal.~In the symmetric phase,B andA of
course have the same kinetic term. In the broken phase
of course differ, for example fromŜACAC°ŜAsAs. For the
two kinetic terms to disagree also at high energies, th
higher point interactions withC would have to have momen
tum dependence in the ultraviolet so violent as to destroy
higher derivative part of the regularization of Ref.@18#.! The
longitudinal part of theBB vertex is already determined b
two applications of broken fermionic gauge invariance~76!:

pmŜmn
BB~p!522Ŝn

BDs~p!,

pmŜm
BDs~p!522ŜDD~p!. ~81!

@In the first line we use cyclicity and then Lorentz inva
ance:Ŝn

BDs(2p,p)52Ŝn
BDs(p).# Thus

Ŝmn
BB~p!52 cp

21hmn~p!14L2 c̃p
21dmn , ~82!

and, using Eq.~81!,

Ŝm
BDs~p!522L2pm / c̃p . ~83!

By using the fact that the vertex must be overall bosonic,
using charge conjugation@or the ~broken super!gauge sym-
metries, or sometimes just Eq.~72!#, one may readily show
that all other mixed two-point vertices are disallowed.

Finally, we know from Eq.~72! that there is noCCs
vertex. The difference between theCC and DD vertices
amounts to the addition of a new cutoff function that serv
to give C a mass, and thus must not vanish atp50. In
addition at high momentum it must be subleading compa
to theDD part in order that the symmetric phase be regain
~as withBB versusAA!. For simplicity we simply choose i
to be constant and thus,

ŜCC~p!5L2p2/ c̃p12lL4, ~84!

wherel.0 is a constant parameter that is left undetermin
This completes the parametrization of the seed ac

two-point vertices. In point of fact they are the ones th
would be obtained by setting the seed action to have
same form as the bare action of Ref.@18#; however, we em-
phasize that the higher pointŜ vertices will not agree with
the bare ones from@18#. These higher point vertices are co
strained by the symmetries of the theory and most pow
fully by Eqs. ~75!,~76!. By iterative use of these identitie
and the flow equations~49!,~50!, we will be able to reduce
the complete calculation ofb1 to a dependence only on th
two-point vertices above. In this way, although we for si
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plicity set a number of restrictions@equality of cutoff func-
tions for B andA, c̃(0)51, and that the mass term forC is
simply a constant#, these come into play only at the end
the computation and could easily be lifted.

V. THE KERNELS

From Eqs.~42! and ~34!, the zero-point kernels in the
broken phase take the form

ḊAA5ḊAA, ḊBB5ḊAA1Ḋm
AA , ḊCC5ḊCC and

ḊDD5ḊCC1Ḋm
CC . ~85!

They will be represented graphically as in Fig. 6, and
determined by the requirement that the two-point vertices
classical effective actionS0 can be set equal to those ofŜ

~cf. Sec. III!. After settingŜCC5S0
CC , the flow equation for

S0
CC takes the simple form given in Fig. 7, giving

L]LS0
CC~p!5S0

CC~2p!Ḋp
CCS0

CC~p!; ~86!

thus, sinceŜCC is an even function ofp,

Ḋp
CC52L]L~Ŝp

CC!21 ~87!

5
1

L4

1

xS 2x2c̃

x12l c̃
D 8

, ~88!

where here and later we use the notationx5p2/L2, the cut-
off terms being functions of this ratio, and the prime deno
differentiation with respect to this.

Similarly, using Eq. ~80!, the classicalAA-point flow
equation is

FIG. 6. Graphical representation of zero-point wines.

FIG. 7. CC tree-level equation. OneC has momentump and the
other2p.
3-15



e

s

he

h-

t

s

be
ves

the

e,
g.

tor,
this

ply

-

f
ere
-
e

ARNONE, GATTI, AND MORRIS PHYSICAL REVIEW D67, 085003 ~2003!
L]LŜmn
AA~p!5Ŝma

AA~p!Ḋp
AAŜan

AA~p!. ~89!

If Eq. ~79! were invertible,ḊAA would also take the form
~87!. Instead, substituting Eq.~79! we get

ḊAA5cp8/L
2. ~90!

The BB, DD, and BDs classical flow equations ar
coupled~see, e.g., Fig. 8!:

L]LŜmn
BB5Ŝma

BBḊBBŜan
BB1Ŝm

BDsḊDDŜn
BDs ,

L]LŜm
BDs5Ŝma

BBḊBBŜa
BDs1Ŝm

BDsḊDDŜDD,

L]LŜDD5Ŝa
BDsḊBBŜa

BDs1ŜDDḊDDŜDD,
~91!

wherep is the momentum argument in all the above term
These three equations are of course not independent: the
two are readily seen to follow from the first, on using t
broken gauge transformations~81!. By substituting Eqs.~82!
and~83! in the first~and isolating the transverse part or ot
erwise!, it is straightforward to solve for the kernels:

ḊBB52L]L~2p2/c14L2/ c̃!215
1

L2 S xcc̃

xc̃12c
D 8

,

~92!

ḊDD52L]LS c̃

L2p2D 2
4

p2 ḊBB5
1

L4

1

xS 2x2c̃2

xc̃12c
D 8

.

~93!
From Eq.~85!, the original kernels for Eqs.~42!, ~43! and

~34! are thus given by Eqs.~88!,~90!, and

Ḋm
AA52

1

L2 S 2c2

xc̃12c
D 8

, ~94!

Ḋm
CC5

1

L4

1

xS 4x2c̃ ~l c̃22c!

~xc̃12c!~x12l c̃!
D 8

. ~95!

Importantly, these mass-term type corrections toḊAA and
ḊCC, which behave as expected from Eqs.~82! and ~84!,
decay much faster than Eqs.~90! and~88!, thus ensuring tha
at high momentump the exact RG~41! goes over to one
appropriate for the symmetric phase of the SU(NuN) theory.
These corrections thus behave as required by the discus
below Eq.~11!; in particular, theC (1s) decorations of Eq.

FIG. 8. BB tree-level equation.
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~34!, which destroy the supertrace mechanism, here can
taken to be regularized by the covariant higher derivati
alone.

VI. THE INTEGRATED KERNELS

By Eqs. ~51! and ~87!, we immediately see that theCC
integrated kernel is just the inverse kinetic term:

DCCS0
CC51⇒DCC5

1

L4

c̃

x12l c̃
~96!

~choosing the integration constant here and later so that
‘‘effective propagator’’ vanishes asp→`). We represent the
integrated wine as in Fig. 6, but with a line down its spin
and thus Eq.~96! is represented diagrammatically as in Fi
9.

Integrating Eq.~90!, we have

Dp
AA5

cp

2p2 . ~97!

Despite its similarity to a regularized Feynman propaga
we stress that no gauge fixing has taken place. Indeed
‘‘effective propagator’’ is the inverse of the classicalAA ki-
netic term only in the transverse space:

Dp
AAS0mn

AA ~p!5dmn2
pmpn

p2 . ~98!

Since in practiceDAA will be connected to anA point on
some other vertex, the remainder term above will sim
generate gauge transformations via Eq.~75!. This observa-
tion proves crucial in the ‘‘magic’’ of the calculation to fol
low.

The integrals via Eq.~51! of Eqs. ~92! and ~93! are also
immediate, and thus we find

DBB5
1

2L2

cc̃

xc̃12c
,

DDD5
1

L4

c̃2

xc̃12c
. ~99!

Note that, despite the classicalD kinetic term being that of a
massless~Goldstone! field, the D effective propagator, like
that of C and B ~but unlike A), has no massless pole. O
course this is nothing but the Higgs mechanism, arising h
from the B and D two-point vertices being intimately en
tangled via Eq.~91!. Similarly to the above reasoning, th
pair of effective propagators~99! would form the inverse of

FIG. 9. C integrated wine. In this case there is no remainder.
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the matrix of these fermionic two-point vertices, if this ma
trix were invertible. It is not, for the same reason that the
flows are necessarily entangled:B and Ds rotate into each
other under the broken supergauge transformations~76!.

Five dimensions in the fermionic sector

We thus need to considerB andDs together. We writeB
andDs as elements of a Euclidean five-dimensional vecto16

FM5~Bm , Ds!. ~100!

Introducing the ‘‘five-momentum’’

qM5~qm ,22!, ~101!

we see from Eqs.~76! and ~81! that the matrixŜMN
FF (p)

[ŜMN
FF (p,2p) is going to be transverse. Indeed, defining

ŜMN
FF ~p!5S Ŝmn

BB~p! Ŝm
BDs~p!

2Ŝn
BDs~p! 2ŜDD~p!

D , ~102!

where we have usedŜn
DsB(p)52Ŝn

BDs(p) and ŜDsDs5

2ŜDD, we have

pMŜMN
FF ~p!5ŜMN

FF ~p!~2p!N50. ~103!

Note that the argument of the five-momentum is that of
four-momentum inflow to the corresponding point,17 and by
cyclicity the matrix is of course symmetric in this sense:

ŜMN
FF ~p!5ŜNM

FF ~2p!. ~104!

Wine attachments toD must now attach toDs. The result is
an extra factor of (2)11 f s, wheref s50(1) if either side of
the wine is bosonic~fermionic!, as is clear from Fig. 10.

Thus the fermionic effective propagators~99! collect into

DMN
FF ~p!5S Dp

BBdmn 0

0 2Dp
DDD , ~105!

and ḊMN
FF is simply the differential of this, according to Eq

~51!. Apart from these extra factors~and the need to add
five-indicesM and N under the flavor labels! the tensorial
expansions~35! and~38! map unchanged to five-dimension
notation. In this way, all equations relating to the fermion

16Note that this respects charge conjugation symmetry s
FM°2FM

T .
17Note that (2p)MÞ2pM .

FIG. 10. Wine attachment toDs.
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sector can be written in this language, where they tak
compact form very similar in appearance to the correspo
ing expressions forA and C. For example, from Eq.~91!,
L]LŜMN

FF 5ŜMA
FF ḊAB

FFŜBN
FF @cf. Eqs. ~86! and ~89!#, and from

Eq. ~76!, broken fermionic gauge transformations now m
exclusively to lower point vertices as@compare Eq.~75!#

qNU
•••aNb•••
•••XFY•••~ . . . ,p,q,r , . . . !5U

•••ab•••
•••XYW •••~ . . . ,p,q

1r , . . . !2U
•••ab•••
•••XQ Y•••~ . . . ,p1q,r , . . . !, ~106!

where on the elementary fieldsX5A,B,C,D, XQ 5XW 5X̂ is
just the opposite statistics partner. Similarly,FW M

5(Am ,Cs), but FQ M5(Am ,2Cs), the extra sign being
picked up byt anticommuting throughs. As for Eq. ~76!,
there are compensating signs on the right hand side for
others that the momentum is pushed through.

Finally, multiplying Eqs.~102! and~105! one readily finds
the pair@related by transposition as in Eq.~104!#

ŜRS
FF~p!DST

FF~p!5dRT2pR8pT , ~107!

DRS
FF~p!ŜST

FF~p!5dRT2~2p!R~2p! T8 ,
~108!

where introducing the useful shorthands

f 5
c̃

xc̃12c
and g5

c

xc̃12c
, ~109!

we define a dual five-momentumpM8 as follows:

pM8 5~ f pm /L2, 2g!. ~110!

Note that since 2g1x f51, we havepM8 pM51, and thus
Eqs. ~107! and ~108! are projectors onto the appropria
transverse space, just as in Eq.~98!. Furthermore, we see
that, since in practiceDFF will be connected to anF point on
some other vertex, the remainder from unity in Eqs.~107!,
~108! always generates supergauge transformations via
~106!.

VII. GUARANTEEING UNIVERSALITY OF b1 „AND b2…

We now review in this context, the standard argument
why we should expect to get the same value forb1, and
indeedb2, in the b function ~48! as in other methods, de
spite the fact that our renormalization scheme forg(L) dif-
fers from that of the corresponding couplingg̃(m°L) de-
fined by these other methods.~We note that the Gribov
problem@15#, which in truth invalidates these methods sin
they proceed by gauge fixing, is not expected to alter pur
perturbative results.!

In principle we can extract from Eq.~47!, by computing
quantum corrections, the value of the other coupling a
function of ours, and thus match the two couplings pertur
tively:

1/g̃251/g21g1O~g2!, ~111!

e
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where the classical agreement is guaranteed by the stan
normalizations of the fields and kinetic term in Eq.~45!, after
scaling g back to its usual position, andg is a one-loop
matching coefficient. Differentiating with respect toL and
using Eq.~48!, the correspondingb function for g̃, and Eq.
~111!, we have

b̃11b̃2 g25b11b2 g21L]Lg1O~g4!. ~112!

Since g is dimensionless, it cannot depend uponL, there
being no other scale to form the necessary dimension
combination. ThusL]Lg50 in Eq. ~112!, and we immedi-
ately recover the standard facts thatb̃15b1 and b̃25b2.

Clearly this argument fails if some other scale has b
introduced, for example, the standard arbitrary finite phys
scalem, or if other running couplings get introduced.~After
solving for their flows, i.e., solving their correspondingb
functions, this becomes equivalent to the first failure since
dimensional transmutation a new finite physical scale
been introduced.! Importantly, L]Lg can then have an
O(g2) one-loop contribution or in extreme cases even a tr
level O(g0) contribution. From Eq.~112! one sees that a
one-loop contribution to the running ofg destroysb2 agree-
ment, while a tree-level running would even modifyb1.

As we will see shortly, a genericŜ, including the simple
form used for the bare action in Ref.@18#, can lead to such
tree-level corrections. Fortunately, there is also an infin
class of seed actions that cannot. As with the earlier c
straints discussed, since we never specifyŜ, it is not the
solution that matters, only knowing that one exists.

To get agreement with the standardb function at the two-
loop level, one needs to confirm that there are no furt
couplings hidden that run at one loop, and to take into
count contributions fromg2(L). This can be done@21#.

Even with a nonvanishingL]Lg, one could still recover
the usualb function coefficients, by defining a standard lo
energy—or infrared—couplingg̃(m) at some scalem,L,
this coupling being distinguished from the ‘‘ultraviolet’’ cou
pling g(L) in the effective actionSL @34,35#. We want to
avoid this because the introduction ofm would destroy, or at
least obscure, the power and elegance of self-similarity@28#
~cf. Sec. II B!.

Ensuring no running couplings at the tree level

The incorporation of Pauli-Villars type fields directly int
an exact RG causes some novel classical divergences i
L integrals defining the classical vertices, just as it did
Refs.@10,12#. They can be cancelled by appropriate choic
of integration constant. However, generically this results
introducing another finite scalem, even at the classical leve
again just as it did in Ref.@12#. The resulting loss of self-
similarity leads to nonuniversal contributions creeping in a
particular point in the calculation ofb1 that follows. Indeed,
we will see there that it is precisely the classical depende
on m that causes the problem.

To show how this arises, and how we can avoid it, co
sider the classicalCCA vertex. This is one of a number o
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affected vertices that form part of theb1 calculation. The
flow follows from Eq. ~49!, and is given by the first four
diagrams on the right hand side of Fig. 13 below after
placing the star by an open circle. The resulting equation
to changes of notation, is precisely equivalent to theCCA
vertex in Ref.@12#:

S0 m
ACC~p,q,r !52E

L

L0dL1

L1
$Ŝm

ACC~p,q,r !@Ḋq
CCŜq

CC

1Ḋ r
CCŜr

CC#1Ŝa
ACC~p,q,r !Ḋp

AAŜam
AA~p!

1Ŝr
CCḊm

A,CC~p;r ,q!Ŝq
CC%1L0

2~q2r !m

1 c̃08~q21r 2!~r 2q!m1gACCqaham~p!,

~113!

where all the terms inside the curly brackets are to be un
stood as being functions ofL1 ~not L), andc̃08[ c̃8(0). Here
we have recognized that we can integrate the flow equa
immediately with respect toL, but to make explicit the di-
vergences we have replaced the upper limit byL0. The in-
tegration constant ensures, however, that the complete
pression is finite, so the continuum limitL0→` can actually
be safely taken.

The first two terms in the integration constant are forc
by gauge invariance@12#. Indeed, settingL5L0 in Eq.
~113!, we see that the integration constant is nothing but
ACCvertex of the classical bare actionS0uL5L0

. Its longitu-
dinal part follows from Eqs.~75! and ~84!, which implies

pmS0m
ACC~p,q,r !5Ŝr

CC2Ŝq
CC . ~114!

This equation is readily solved atL5L0, by expanding both
sides as a power series inL0, and noting that all negative
powers can be discarded.18 Equivalently, and more simply
the longitudinal terms follow from any covariantization o
Eq. ~84!, e.g.,

1

2
strE d4xC$2lL0

42L0
2 Dm

2 1 c̃08@Dm
2 #21O~1/L0

2!%C1•••.

~115!

~Recall thatDm is ]m2 iAm and acts by commutation. Th
ellipsis refers to terms not containingCCA vertices.!

The final term in the integration constant in Eq.~113!,
qaham(p), is the unique transverse combination that is
lowed by dimensions~i.e., is not accompanied by a negativ
power ofL0, and importantly satisfies all the other symm
tries, specifically charge conjugation and no-A 0 symmetry!,
and as such has an undetermined~dimensionless! coefficient:
gACC. The fact that it is undetermined does not matter:
whole calculation is independent of such details. Howev
by the same tokenzACC, the coefficient of this momentum
term in the small momentum~or derivative! expansion of the

18The coefficients are purely local, i.e., polynomials in momen
with determined dimension~cf. Sec. II B!.
3-18
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integrand in Eq.~113!, is also dimensionless; thus it is inde
pendent ofL1, and thus yields2zACCln(L0 /L) on integra-
tion. In order to ensure the finiteness of Eq.~113!, we are
forced to introduce a new finite physical scale by includi
zACCln(L0 /m) in the integration constantgACC.

An alternative to introducingm directly is to allowgACC

to become a logarithmically running couplinggACC(L) at
the classical level, correcting the flow to take account of
b function. However, as we explained in the previous s
tion, this is in the end equivalent and still results in the lo
of universality forb1.

In general, we see that we may be forced to introducem at
the classical level wherever a purely local vertex with dime
sionless coupling can be constructed, which is transvers
the sense that it is unrelated to lower point vertices via eit
bosonic gauge invariance~75!, or the broken fermionic
gauge invariance~76!.

We note that the problem is associated with the Pa
Villars sector because these terms necessarily have a d
gent classical action asL→`, at least in so far as they hav
divergent masses. There is a problem with this only for
generatedlogarithmic divergences along the marginal dire
tions however, whose cancellation necessarily requires in
ducing a new finite physical scale. There are, however, i
nitely many of these directions because we can have
number ofC points, sinceC is dimensionless.

The solution is to tune the corresponding terms inŜ. In-
deed, by noting from Eq.~87! that ḊCCDCC5L]LlnŜCC and
thus equals 4 at zero momentum, we get from Eq.~113! that
the shift

Ŝm
ACC~p,q,r !°Ŝm

ACC2
1

8
zACCqaham~p! ~116!

precisely cancels the coefficient ofqaham(p) in the inte-
grand, thus removing the logarithmic divergence from theL1
integral.

Since the structure of the classical flow equations~49! is
such that the flow of every vertexS0a1•••an

X1•••Xn has the corre-

spondingŜ a1•••an

X1•••Xn as its highest pointŜ contribution, con-

tracted via kernels into all the appropriate two-point vertic
~viz., ḊXiXiŜXiXi) @11,12#, and since theseḊXiXiŜXiXi terms
are nonvanishing at zero momentum precisely whenXi is a
massive Pauli-Villars field, it follows that we can alway
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remove the divergence associated with these marginal d
tions by tuningŜa1•••an

X1•••Xn in the same direction.

In this way, we completely avoid introducingm ~equiva-
lently, marginal running couplings! at the classical level.

VIII. THE CALCULATION

The whole of the paper up to this point has been c
cerned with setting up and justifying the formalism we w
now use. We can now finally turn to computation itself.

The renormalization condition~45! constrains the two-
A-point vertices, and by Eqs.~79! and~80! this constraint is
already saturated at the tree level:

Smn
AA~p!1Smn

AAs~p!5
2

g2 hmn~p!1O~p3!

5
1

g2 S0 mn
AA ~p!1O~p3!. ~117!

It follows that all higher loop contributionsSn mn
AA (p)

1Sn mn
AAs (p) must vanish atO(p2). From the discussion be

low Eq. ~72!, the one-loop contribution is purely of form
S1 mn

AAs . @Thus it is already clear thatg2 has the opposite sign
b1, consistent with the wrong sign action in Eq.~45! @12#.
This will be fully developed in Ref.@21#.# Specializing the
one-loop flow equation~50! to twoA’s andO(p2), and using
Eq. ~80!, we see that it collapses to the purely algebr
relation @11,12,14#

22b1S0 mn
AA ~p!1O~p3!5a1@S0#mn

AAs~p! ~118!

(S05S022Ŝ). Diagrammatically, this takes the form of Fig
11, after including the factor 2 from the two different supe
traces thatAA can go into~cf. the end of Sec. III B!, and a
factor of 2 from adding the contributionpm↔2pn ~which is
equal by Lorentz invariance; whenever such terms arise
will typically combine them!.

Performing thes algebra as in Fig. 5, we thus find

FIG. 11. Graphical representation of the equation forb1.
24b1hmn~p!1O~p3!52NE d4k

~2p!4$Ḋk
CCS0mn

AACC~p,2p,k,2k!1Ḋm
A,CC~p;2k2p,k!S0n

ACC~2p,p1k,2k!1Ḋmn
AA,CC

3~p,2p;2k,k!S0
CC~k!1Ḋk

AAS0aamn
AAAA ~k,2k,p,2p!1Ḋm

A,AA~p;2k2p,k!S0naa
AAA ~2p,p1k,2k!

1Ḋmn
AA,AA~p,2p;2k,k!S0aa

AA ~k!2ḊSR
FF~k!S0mnRS

AAFF ~p,2p,k,2k!2Ḋm,SR
A,FF~p;2k2p,k!

3S0nRS
AFF ~2p,p1k,2k!2Ḋmn,SR

AA,FF~p,2p;2k,k! S0RS
FF ~k!%. ~119!
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FIG. 12. Flow of the tree-level
AAFF vertex.F is represented by
the star.
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Although extras ’s appear via Fig. 5, the part that contribut
from the s trapped in the empty supertrace~thus giving
strs52N) ultimately comes from the breaking o
SU(NuN), i.e., from shiftingC, since otherwise the fermi
onic and bosonic attachments would just give equal and
posite s contributions in Fig. 5, combining to give a fu
supermatrix differential. Indeed, at high momentumk, exact
SU(NuN) invariance is recovered, resulting in regularizati
of Eq. ~119!, since theF sector then cancels theA,C sector.

Recall that we exclude diagrams where the wine bites
own tail, as in Eq.~37!. In fact such terms vanish forb1 in
any case, since the attachments are via a fullA or C in Eq.
~34! with no possibility of trapping an extras, thus yielding
str150.

The b1 computation splits into one-loop contribution
from the three sectorsC,A, andF, each of which appears in
Eq. ~119! in almost identical form. Thus apart from the sig
we get theA sector terms from theF sector simply by re-
placingF by A, andR,S by a,b, recognizing that the wines
just havedab as a factor. Similarly, we get theC contribution
from the F contribution byF°C, droppingS and R alto-
gether.
08500
p-

ts

A. Diagrammatic analysis

The similarity goes deeper. TheF type classical four-point
vertex in Eq.~119! is determined by the flow equation give
diagrammatically in Fig. 12, while theF type classical three-
point vertex@appearing in Eq.~119! and Fig. 12# is expressed
through the flow equation of Fig. 13. The correspondingA
~C! sector diagrams are given simply by replacing the s
with a filled ~empty! circle.

This works because all cyclically allowed configuratio
of the external fields appear in Fig. 12 and Fig. 13, af
which the flavor of the point to which the wine attaches
uniquely determined by the requirement that each compon
vertex has an even number of stars, so as to be ove
bosonic. For theA sector the fact that there is just one win
attachment for each external configuration is enough to
sure that the mapping works. For theC sector, the symmetry
~72! ensures that each vertex also has an even numbe
open circles, which thus go uniquely where the stars h
gone before. There are a couple of provisos, however. F
all the wines that attach via anF at one end and anA at the
other map underF°C to wines that do not exist in Eq.~42!.
This does not matter: We can simply assign them a z
3-20
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value, and carry these vanishing terms through the comp
tion. @There is no fundamental reason for their nonappe
ance: recall that we exchanged such terms for simpler te
using Eq.~55!. Also note that actually theF attachment here
is exclusively aB. When we take this into account, it will b
clear that the term only has a mapping to theA sector.# Sec-
ond, Eq.~72! in fact also allows an odd number ofC’s per
classical vertex in theC sector, providing that the vertex als
has as. But in the case of the wines, these terms vanish
Eq. ~34! since thes commutes with the bosonicA or C
derivative, while the only action vertex that could contribu
is AACs @ACs being already excluded by symmetrie
~cf. Sec. IV! and all other possibilities being too high orde#.
However, by charge conjugation invariance

Smn
AACs~p,q,r !5Snm

AACs~q,p,r !, ~120!

while so long as we insist on a single supertrace, by no-A 0

symmetry,

Smn
AACs~p,q,r !1Snm

AACs~q,p,r !50; ~121!

thus the vertex actually vanishes.~Allowing multiple super-
trace terms, it can be shown that the part contributing tob1
vanishes after ensuring no running classical couplings a
Sec. VII A.!

We can map the effective propagator relations~107!,
~108! in an obvious way to the corresponding relation forA,
viz. Eq. ~98!, and C, viz. Eq. ~96!, leaving the gauge re
mainder terms in the case ofF and A till last ~where theA
sector expression follows from the mapkN°kn ,

FIG. 13. Flow equation for the tree-levelFFA vertex.

FIG. 14. The first step in the calculation ofb1.
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kM8 °km /k2, and of course in theC sector these terms map t
zero!. This all means that we have an added bonus: Exc
for these final stages, we need only present theF sector
computation and then just map the result to the other
sectors.

SubstitutingS05S022Ŝ in Fig. 11, we start with the
highest point vertex and convert theS0 part to a totalL
derivative and remainder, using Eq.~51!:

ḊSR
FF~k!S0mnRS

AAFF ~p,2p,k,2k!

52L]L@DSR
FF~k!S0mnRS

AAFF ~p,2p,k,2k!#

1DSR
FF~k!L]LS0mnRS

AAFF ~p,2p,k,2k!, ~122!

as shown diagrammatically in Fig. 14.
In the first term, we will put theL]L outside thek inte-

gral. If the integral were convergent, the part we wa
namely, theO(p2) part, would then vanish since it is a d
mensionless function of the only scaleL. After adding in the
A and C sectors, the integral will only have an infrared d
vergence, whichL]L converts to a universal contribution.

In the second term we can now exchange the four-po
vertex for lower point vertices via Fig. 12: the generat
four-point Ŝ vertices must cancel the22ŜmnRS

AAFF in Eq. ~119!
in order for the result to be universal. This must be so
causeŜAAFF can contain arbitrary transverse terms, whi
thus have no relation to lower point vertices. Such a can
lation is precisely what we find from the first two diagram
in Fig. 12, on using Eq.~108!, as we can see from Fig. 15
The remainder term from Eq.~108! generates a gauge tran
formation via Eq.~106! and thus also maps to lower poin
vertices. We will return to these gauge remainder terms la

We are still left with two terms containing a four-poin
vertex, that of Fig. 16, as generated by the next two diagra
in Fig. 12. However now note, as we will frequently, that t
two-point A vertex is alreadyO(p2), by gauge invariance
@cf. Eq. ~79!#. Therefore the only part that can contribute
Eq. ~119! is wherep is set to zero in the rest of the expre

FIG. 15. One of the pair cancelling22ŜAAFF in Fig. 11. The
ellipsis represents the gauge remainder terms.

FIG. 16. The two remaining terms containing a four-po
vertex.
3-21
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sion. After using Lorentz invariance to exchangepm and
2pn in the second diagram, this results in a contribution

2DSR
FF~k!@ŜmaRS

AAFF~0,0,k,2k!

1ŜamRS
AAFF~0,0,k,2k!#Ḋ0

AAŜan
AA~p! ~123!

to the integrand in Eq.~119!. As soon as we have anA point
with zero momentum, we can simplify via gauge invarian
Using Eq.~75! twice over, we have

ŜmnRS
AAFF~2e,e,k,2k!emen5ŜRS

FF~k1e!2ŜmRS
AFF~0,k,2k!em

2ŜRS
FF~k!. ~124!

Thus, Taylor expanding toO(e2), we determine the symmet
ric part

ŜmnRS
AAFF~0,0,k,2k!1ŜnmRS

AAFF~0,0,k,2k!5]m
k ]n

kŜRS
FF~k!.

~125!

Substituting this in Eq.~123! we reduce Fig. 16 to an expres
sion depending only on seed action two-point vertices
their associated zero-point kernels~integrated or otherwise!.
We will refer to such terms as ‘‘potentially universal,’’ sinc
the seed action two-point vertices and the kernels deri
from them are the only things that we have explicitly pr
scribed. For the result to be universal, it must be that we
reduce everything to such potentially universal terms or
total L derivatives as in Eq.~122!. In turn, potentially uni-
versal terms must, and do, collect into totalk derivatives,
whose boundary terms on integration, are universal as a
sult of restrictions on the large momentum behavior, e.g.,
~11!, and the renormalization condition~45!. @Actually, since
Ḋ0

AA}c08 , by Eq. ~90!, and 1/c08 is never produced, term
such as Eq.~123! are universal only because they combine
give boundary terms that vanish.#

Proceeding with the remaining terms in Fig. 12, we ge
erate many further reductions similar to the ones above.

There are eight terms that immediately have vanish
O(p2) component. Two examples are shown in Fig. 17.

FIG. 18. One of the pair cancelling22ŜAFF in Fig. 11.

FIG. 17. These diagrams do not contribute atO(p2).
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Lorentz invariance, the first diagram has only odd powers
p, its dependence coming fromŜmna

AAA(p,2p,0), while the

second diagram is also too high order sinceḊm
A,AA(0;0,0)

50. Finally, the last term from Fig. 12 is obviouslyO(p4).
After using Eqs.~107!,~108!, a mirror pair~i.e., related by

mirror reflection, equivalent to charge conjugation! cancel
the seed action part ofS0

AFF , as shown in Fig. 18, generatin
further gauge remainder terms. One term cancels the fi
S0

FF52ŜFF term in Eq.~119!, as shown in Fig. 19. Actually
here there is no point in carrying forward the gauge rema
der, since it is clear by Eqs.~108! and~103!, and by Eqs.~98!
and ~78!, that it vanishes for bothF andA sectors.

From the second line of Fig. 12, there are three ter
generated where the integrated kernel attaches to two di
ent three-point vertices. These are either bothS0 vertices, or
one S0 vertex and oneŜ vertex. They simplify after intro-
ducing a second integrated kernel into theS02S0 term, as in
Fig. 20 ~the third step following after usingpm↔2pn and
relabelling the loop momentum!.

The totalL derivative will be considered along with tha
of Fig. 14. The other two terms are evaluated by substitut
Fig. 13 and itspm°2pn partner.

Again, making use of the effective propagator relatio
~107!,~108!, many cancellations occur. Thus the last tw
terms on the first line of Fig. 13~and itspm°2pn partner!
result in cancelling the mixedŜ2S0 terms as illustrated in
Fig. 21. Moreover, theS0 part of S0

AFF , the last term left in
Eq. ~119!, is cancelled by the first term on the second line
Fig. 13, as can be seen from Fig. 22~after adding the
pm°2pn partner!. The last two terms in Fig. 13 result i
diagrams of the form shown in Fig. 23. These cancel t
corresponding terms generated by Fig. 12, where theS0

three-point vertex is replaced by theŜ three-point vertex.
The cancellation occurs because the top lobe in Fig. 2

FIG. 19. Cancellation of2ŜFF in Fig. 11.

FIG. 20. Evaluating the ‘‘smiling frog’’ diagrams.
3-22
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alreadyO(p2), and thus in the bottom lobe, by Eq.~75! and
equality ofS0 and Ŝ two-points, what actually counts is

S0mRS
AFF ~0,k,2k!5]m

k ŜRS
FF~k!5ŜmRS

AFF~0,k,2k!. ~126!

After combining viapm↔2pn , we are left with just the
diagram generated by the first term in Fig. 13, namely, F
24, all the other terms from Fig. 13 having been dealt with
is easy to see by gauge invariance that this is potenti
universal, i.e., depends only on two-point seed action ve
ces and the zero-point kernels.~In fact, just as in Fig. 16, this
containsc08 and must combine to give a vanishing contrib
tion.!

The only remaining terms to be processed are those
erated by the first four diagrams on the last line of Fig.
We easily see, however, that up to the gauge remaind
which as above we set aside, all these correspond to w
biting-its-tail diagrams and are thus annihilated by Eq.~37!.
If we ignore this constraint, then, on tidying up using t
coincident line identities@11,12#,

FIG. 21. Cancellation of the ‘‘winking smiling frog’’ diagrams.
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Ḋm,R,Aa
A,F,FA~p;k;2k,2p!52ḊmR,Aa

AF,FA~p,k;2k,2p!

2ḊRm,Aa
FA,FA~k,p;2k,2p!,

Ḋ ,mR,Aa
,AF,FA~ ;p,k;2k,2p!5ḊRm,Aa

FA,FA~k,p;2k,2p!,
~127!

etc., we get a contribution to the integrand in Eq.~119! of the
form

2Ŝna
AA~p!ḊmR,Ra

AF,FA~0,k;2k,0!. ~128!

Now, since there is noḊCA kernel, we have by Eq.~34!

ḊmR,Ra
AF,FA~0,k;2k,0!5Ḋma

AB,BA~0,k;2k,0! ~129!

5Ḋma
AA,AA~0,k;2k,0!. ~130!

By replacingF as described below Eq.~119!, we see by the
same argument that there is no correspondingC sector con-
tribution, but by Eq.~130! there is an equal and oppositeA
sector contribution. Thus the wine-biting-its-tail diagram
exactly cancel here in any case, as already explained be
Eq. ~119!.

Collecting the results, we have

FIG. 22. One of a pair canceling theS0
AFF term in Fig. 11.
here
e

24b1hmn~p!1O~p3!5NE d4k

~2p!4H L]L@2DSR
FF~k!S0mnRS

AAFF ~p,2p,k,2k!

2DSR
FF~k!DTU

FF~k2p!S0mTS
AFF ~p,k2p,2k!S0nRU

AFF ~2p,k,p2k!#

2
4

L2
c08hna~p!@DSR

FF~k!]m
k ]a

k ŜRS
FF~k!2DUR

FF ~k!DST
FF~k!]m

k ŜRS
FF~k!]a

k ŜTU
FF~k!#

14ḊTU
FF~k!kU8 kRŜmnRT

AAFF~p,2p,k,2k!14Ḋm,TU
A,FF ~p;2k,k2p!kT8kRŜnRU

AFF~2p,k,p2k!24S0nRU
AFF

~2p,k,p2k!ŜmTM
AFF ~p,k2p,2k!DTU

FF~p2k!ḊMN
FF ~k!kN8 kR22S0mRT

AFF ~p,k2p,2k!

3@2Ḋn,RU
A,FF~2p;p2k,k!~2k!U8 ~2k!T1Ḋn,UV

A,FF~2p;k,p2k!~2k!U8 ~2k!T~k2p!V8 ~k2p!R#

28hna~p!ḊU
F,AB~k;0,2k!ka8kR]m

k ŜRT
FF~k!DTU

FF~k!28hna~p!ka8kRḊmR
AF,BA~0,k;2k,0!J . ~131!

The first two lines contain the totalL derivative terms. The next line contains the only potentially universal terms so far. T
then follow in the order generated above all the gauge remainder terms;19 in particular, the last term is all that is left from th
diagrams above that generated wine-biting-its-tail diagrams.

19Terms related by charge conjugation,pm↔2pn , and relabeling the loop momentum have been combined.
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Note that, up until now, all the essential steps have b
performed at a totally diagrammatic level.20 Indeed, it is far
more efficient and elegant to do so, not the least because
diagrams make very clear the relations due to cyclicity a
charge conjugation~or mirror symmetry!, and are already
identical if the algebraic expressions are equal after rela
ling the loop momentum. It is possible to evaluate the ga
transformations in Eq.~131! also at this level@11,12#, so it
may be possible to push these diagrammatic techniques
ther. However, we now have to take account of the diff
ences between theA, C, andF sectors. In this paper, we wil
pursue the remainder of the analysis at the level of equati

B. The total L derivative contribution

We start by computing theO(p2) part of the first two
lines in Eq.~131!. These two terms seem to have the clear
physical interpretation. They both depend only on effect
propagators and the effective actionS~which, unlike the seed
action, can be expected to contain the real physics@20#!.
Their diagrams~see Fig. 14 and Fig. 20! are actually just the
usual tadpole and self-energy Feynman graphs, respecti
From the translations below Eq.~119! we see that theA
sector looks as though it is in the Feynman gauge~although
ghosts are missing!:

NL]LE d4k

~2p!4 @22Dk
AAS0mnaa

AAAA ~p,2p,k,2k!

1Dk
AADk2p

AA S0mab
AAA ~p,k2p,2k!

3S0nba
AAA ~2p,k,p2k!#O(p2) , ~132!

while theF andC sectors via Eqs.~96! and~99! give copies
with ;L massive effective propagators, which are the
pected Pauli-Villars regularizing terms. Indeed, if the fiv
dimensional notation is expanded using Eq.~100!, we see
that apart from the minus sign, theB sector looks identical in
form to Eq. ~132!. Similarly, since the sign in Eq.~105!
cancels on translating the vertices back toAADD and ADD
form, the D sector has identical appearance, but oppo
sign, to theC sector. Since we have ensured that at h
momentumk the B ~D! terms do actually equal theA ~C!
terms, we see that the regularization is incorporated as

20See Ref.@32# for some of the algebraic expressions.

FIG. 23. Further diagrams from Fig. 13.
08500
n

the
d

l-
e

ur-
-

s.

st
e

ly.

-
-

te
h

e-

quired. Finally, the overallL derivative is just as one would
expect to convert the lnL divergent result to a contribution
to theb function @20#.

As shown in Eq.~132!, we now exchange the order o
L]L and thek integral. Pulling out theO(p2) part, the inte-
gral is actually dimensionless. Since the only explicit scale
L, if the integral were convergent it would have to be
constant; thus Eq.~132! combined with theB,C,D sectors
would vanish. In fact the momentum integral is not we
defined only because the second term in theA sector has an
infrared divergence. We can still keepL]L outside if we use
the standard trick of introducing an infrared cutoffk.e in
this term, takinge→0 at the end. Now this term, and th
term only, depends onL, throughL/e. Therefore it suffices
to analyze its infrared behavior, replacingL]L with 2e]e .

Note that theS0 vertices have Taylor expansions in sma
momenta~cf. Sec. II B! and theB, C, andD effective propa-
gators~96!,~99!, are regular ask→0, while theA effective
propagator~97! has an infrared double pole. Thus only in th
A sector is there a problem. The result is integrable in
first term in Eq.~132! but not in the second, once expand
to orderp2. However, while]L is inside the integral there is
actually no infrared divergence, it being ameliorated via E
~90! or the flow equations for the three-point vertice
equivalently to the derivation below, because the only ter
in the three-point vertices that contribute are independen
L. One can then confirm that the above limite→0 gives the
same answer. Of course the same answer is also obtaine
using dimensional regularization or by converting this part
a total derivative ink2 as, e.g., in Ref.@20#.

If we had not taken care to exclude the logarithmic cla
sical divergences in Sec. VII A, it is at this point that w
would have picked up extra contributions since theB,C,D
parts of the integral can then be functions ofL/m. Worse, we
have confirmed that if these parts are evaluated first, us
here]/]L[2]/]m, the resultingk integrals are nonuniver
sal, as may be expected from the general arguments in
VII. However, in Ref.@12#, where very similar classicalm
dependent terms were not excluded, the right answer
obtained by keeping an upper limitL0 in the L integrals as
in Eq. ~113!, and in fact for these terms sendingL0→` only
after thek integral had been performed. It thus appears th
if the logarithmic classical divergences are not exclud
then the result actually depends on the order in which
ultraviolet limits on theL andk integrals are performed.

Returning to the main analysis, we note that we are in
ested in expanding inp and then ink. S0mnl

AAA is regular in
small momenta and the lowest order term in its moment
expansion, with one momentum, is fixed uniquely by E
~45! to be the standard Feynman gluon vertex. If we take
p part in both three-point vertices in Eq.~132!, this already
saturates the orderp2 required. Furthermore, we then mu
take only the 1/2k2 parts of the effective propagators in ord
to get an infrared divergence. If we take ak part from the

FIG. 24. A potentially universal term generated by Fig. 13.
3-24
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A PROPOSAL FOR A MANIFESTLY GAUGE INVARIANT . . . PHYSICAL REVIEW D 67, 085003 ~2003!
three-point vertices, then in order to maintain an infrar
divergence we must use one of the more divergent te
from the p expansion of 1/2(k2p)2, thus again saturating
the expression atO(p2). Thus we see that the only part th
contributes to the totalL derivative terms in Eq.~131! is
universal@as a consequence of Eq.~45!#, and of precisely the
same form as the standard gluonic self-energy term in
Feynman gauge. We have

Ne]eE
e

d4k

~2p!4 H 1

k4 ]b
phma~p!]b

phna~p!

1F4
~k•p!2

k8 2
p2

k6G]m
k hab~k!]n

khab~k!

12
k•p

k6 @]m
k hab~k!]b

phan~p!

1]b
phma~p!]n

khab~k!#J
5

N

~4p!2H 19

3
p2dmn2

22

3
pmpnJ , ~133!

where on the left hand side we used Eq.~126! to evaluate
S0mab

AA (p,2p,0), S0mab
AAA (0,k,2k), etc., and substitutedS0mn

;2hmn @cf. Eqs.~79!,~80!#, and the right hand side follow
after averaging overk directions and expressing as a radiak
integral.

As expected of a universal term, Eq.~133! does not, ap-
parently, depend on the regulatingC andF sectors. But, de-
spite this, and the apparently clear physical interpretation
is not transverse on its own as would be required by ga
invariance. This result seems all the more surprising o
one notes that actually at a formal level theA sectoris gauge
invariant on its own@11# @and, as we will confirm, the othe
A sector terms in Eq.~131! are already transverse#. Indeed,
taking care to keep theL derivative inside the Eq.~132!
integral ~so that there is no problem with infrared dive
gences!, contracting withpm and2pn , then using Eqs.~75!,
~79!, ~80!, and~97!, and shiftingk in some terms~discarding
one odd ink),21 one finds that the longitudinal part of Eq
~132! is

2NE d4k

~2p!4 L]L

pbhbn~k!pn

k2~k2p!2
, ~134!

which obviously vanishes since the remaining terms have
L dependence. Of course these manipulations do not m
sense without ultraviolet regularisation. The apparent in
pendence of Eq.~133! of theC andF sectors is illusory since
the derivation of Eq.~133! from Eq. ~132! is only legitimate
if such sectors exist with the property that they cancel
ultraviolet divergences while not adding any new infrar
ones. Taking into account the other sectors, one finds tha

21See Refs.@11,12,32# for further comments pertinent here an
above.
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C sector also gives a purely transverse contribution, but thF
sector yields a longitudinal part, which is precisely the one
Eq. ~133!.

The full understanding of the apparent Feynman gaug
the total derivative term~133! is closely related. It comes
from the absence of longitudinal terms in the RG equati
which were not included, as by supergauge invariance t
could be exchanged forC commutators@cf. Eq. ~55!#. Had
we introduced them, e.g., as the term

1

2
¹m•

dS

dAm
$ḊL%A¹n•

dSg

dAn
~135!

in Eq. ~42! @and correspondingly in Eq.~43!#, theA effective
propagator would change to include the characteristic lon
tudinal dependence in the general gauge, with22

DL~p,L!5
1

p4 F1

j
211O~x2!G ~136!

parametrizing it, generalizing the usual gauge fixing para
eter dependence. Such a change would of course be com
sated for by similar changes in theB andD effective propa-
gators, via Eq.~55! or Eq. ~81!. However, unlike in a gauge
fixed theory, the two-point classical action vertices wou
remain as Eqs.~79!, ~82!, and~83!, gauge invariant and com
pletely independent of the introduction ofDL . The calcula-
tion would simply have been rearranged, by finessing so
longitudinal parts into theF sector.

Finally, let us make a trivial, but important, observatio
Although Eq.~133! is precisely the ln(L/e) contribution from
the standard gluonic self-energy term in the Feynman gau
it is here a contribution to the Wilsonian effective action, n
a contribution to theS matrix. Feynman’s unitarity argu
ments for the existence of ghosts@36# cannot be directly
applied to vertices of the Wilsonian effective action. O
course, if we wished to talk about on-shell gluons, we wo
have to gauge fix and introduce ghosts, but that is not w
we are talking about. As already discussed, here the gho
contributions are replaced by shadows from the regular
tion sector.

C. The gauge remainders

We next turn to the gauge remainders, the fourth line
ward in Eq.~131!. As well as theF sector shown, we also
have theA sector contributions, which we consider first. R
call that they come with opposite signs and are translate
described at the beginning of this section. Making use of
~75! and the same sort of simplifications as in the previo
subsections, many terms cancel out, including some
would otherwise not be potentially universal. We are l
with purely transverse contributions: an ultraviolet diverge
contribution to the integrand23

22The x5p2/L2 term is missing by Eq.~51!, because Eq.~135!
must be analytic inp ~cf. Sec. II B!.

23Clearly, by Lorentz invariance of thek integration, this is trans-
verse onn also.
3-25
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8c08

L2k4
hma~p!kakn , ~137!

which will be combined later with the potentially univers
terms in the third line of Eq.~131! for the reason given
below Eq.~125!, and after averaging overk directions a term

2
2N

L4 hmn~p!E d4k

~2p!4 ~3ck8L
2/k22ck9!5

N

2p2 hmn~p!,

~138!

where we have used the fact that, after casting as ax
5k2/L2 integral, the integrand is a total derivative, vanis
ing at x5` and universal atx50 by c(0)51.

Evaluating theF sector using Eq.~106! and similar sim-
plifications to that above, but keeping the compact fiv
dimensional notation, many terms already cancel out, ag
in particular all terms that would otherwise not be potentia
universal. This time the remaining terms are all clearly tra
verse except one:

4ḊSN
FF~k!kN8 ~k2p!n8ŜmS

BF~k!uO(p2) . ~139!

After some algebra, and including the integral in Eq.~131!,
this takes the form

4

3

N

~4p!2 ~p2dmn12pmpn!E
0

`

dx g8~x!@x3f 8~x!#8,

~140!

where f and g were defined in Eq.~109!. Substitutingg in
terms off and integrating by parts this may be cast as a to
derivative. Usingc̃(0)5c(0)51 and, for example, Eq.~11!,
it evaluates to

1

3

N

~4p!2 ~p2dmn12pmpn!. ~141!

Although it is not transverse, added to Eq.~133! it results in
a transverse contribution, namely, 20N/3(4p)2 hmn(p). In
view of the comments below Eq.~134!, we should expect to
find such a nontransverse correction lurking in theF sector.

The transverse supergauge remainder terms yield a
tribution to the integrand of Eq.~131! of

2
8

L2 c08hma~p!ka8kn8 ~142!

to be compared with Eq.~137! and similarly saved for later
and a number of terms which after some algebra turn in
total derivative inx, yielding

2
2N

~4p!2 hmn~p!~xc824c!x2f 2u0
` ~143!
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~where f and c are evaluated atx). Considering again the
behavior ofc and c̃ at the boundaries, we see that the res
vanishes.

We are left only to evaluate the terms proportional toc08 .
Before we do so, we note that the total contributions to E
~131! from the other terms, namely, Eqs.~133!, ~138!, and
~141!, sum to 44N/3(4p)2hmn(p), i.e., already yielding the
famous result

b152
11

3

N

~4p!2 . ~144!

D. The c08 terms

As we have already anticipated, all thec08 terms must sum
to zero. Together with Eqs.~137! and~142!, we also have the
three-sector contributions from the third line of Eq.~131!.
This term can be simplified in a way that can be mapped a
to theC andA sectors. Thus, suppressing theF superscripts
and thek momentum arguments,

DSR]m]aŜRS2DRUDST]mŜRS]aŜTU

5]m~DRS]aŜRS!2]mDRS]aŜRS

2DRUDTS]mŜRS]aŜTU

[]m~DRS]aŜRS!1DTS]aŜUT ]m~kS8kU!

2kR8kT]mDUR]aŜTU

5]m~DRS]aŜRS!22ka8km8 22]mka8 . ~145!

This holds in all sectors using the maps at the beginning
this section.@To see this, rewrite the third term of the seco
line to contain]m(DRUŜRS) plus remainder, and use Eq
~107!,~108!, andk°2k. In the third line, third term, trans-
fer the ]a to kR , using Eq.~103!, or equivalently Eq.~78!,
and use]akR5dRa , which holds in bothF and A sectors.
Finally, in this term form]m(SRSDST) and simplify similarly,
noting that since it is a function only ofk it is automatically
a↔m symmetric.#

By dimensions and Lorentz invarianceDRS]aŜRS
52kaF(x)/L2 for some functionF(x5k2/L2), with corre-
sponding expressions in theA andC sectors. Indeed, by Eq
~96!, we have for theC sector F5(d/dx)ln(2l1x/c̃); by
Eqs.~97! and~79!, we haveF53(d/dx)ln(x/c) in theA sec-
tor; and finally in theF sector, using Eqs.~77!, ~82!, ~105!,
and ~99!,

F5 f cS 3x

c
1

8

c̃
D 8

1 f c̃S x

c̃
D 8

. ~146!

Including the multiplicative factors in Eq.~131!, the first
term of Eq.~145! thus gives the surface contribution:
3-26
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2
N

4p2 c08hmn~p!x2Fu0
` . ~147!

Summing this contribution across all sectors~remembering
the relative minus sign forA andC), one finds no contribu-
tion from thex50 boundary in any sector, while the othe
wise divergentx5` terms cancel exactly between the fe
mionic and bosonic sectors.

This leaves just the second and third terms of Eq.~145!.
Recalling the relative minus sign of theA sector, the second
term from theA sector exactly cancels Eq.~137!, while the
second term from the theF sector exactly cancels Eq.~142!.
The third terms from theA and F sectors combine to an
ultraviolet finite total derivative 2]m(ka /k22ka8 ). Compar-
ing with the above structure and using Eq.~110!, we see
trivially that this integrates to Eq.~147! with F51/x2 f , and
thus vanishes. We have thus shown that all thec08 terms
disappear, as expected.

IX. CONCLUSIONS

We have proposed a technique which allows manife
gauge invariant and universal computations to be perform
directly in the continuum. No gauge fixing or ghosts a
required, thus avoiding completely the problem of Grib
copies@15#. The full power and beauty of local gauge inva
ance is clear and central to the whole calculation. Moreo
renormalization group properties are built in from the beg
ning. The calculation proceeds very economically, by c
firming and exploiting the independence of physical qua
ties on the details of the regularization.

At its heart lies the successful combination of gauge
variance with the introduction of a real effective cutoff@18#.
This has long been an outstanding problem, as any stra
forward division of momenta into large and small, accordi
to some effective scaleL, is not preserved by gauge tran
formations. @Explicitly, under a gauge transformation o
some matter fieldf(x)→V(x) f(x), momentum modes
f(p) are mapped to a convolution with the modes fromV.#
Its solution allows us to use Wilson’s insight@1,6# making
renormalization properties, normally subtle and complicat
trivially clear and straightforward.

This continuum cutoff is simply spontaneously brok
SU(NuN) gauge theory with covariant higher derivative
Sketched at the start of Sec. II~for a complete analysis, se
@18#!, it includes two copies of the SU(N) gauge field,A1

and A2, and a pair of wrong statistics gauge fieldsB,B̄. A
superscalar field is added to cause spontaneous symm
breaking down to the bosonic SU(N)3SU(N), giving
masses of the order of the cutoff to all fields butA1 andA2.
Depending on the representation chosen, one also encou
a U(1) connectionA 0. This latter, however, does not appe
anywhere in the action provided all interactions are of
form str(A3commutators), or more generally provided
no-A 0 shift symmetrydAm5lm1 is respected. Such a shi
symmetry, which amounts to dynamically defining the co
space SU(NuN)/U(1), plays an important role, ensuring th
our flow equation~41! is indeed gauge invariant@cf. Eqs.
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~52!–~54!#. We can already see that it will play an even mo
central role in the future@21#.

This regularization fits very well within the effective ac
tion framework. A manifestly gauge invariant flow equatio
for the Wilsonian effective actionS has been written down
@Eq. ~41!#, which leaves the partition function—and hen
the physics derived from it—unchanged. This is achieved
demanding that the Boltzmann measure exp2S flow into a
total derivative.

Solutions forS can then be found directly in terms o
renormalized quantities, without specifying a bare acti
Note that almost any approximation can be considered w
out spoiling this property@5#.

As discussed in Sec. II B, since the partition function
left unchanged, it is possible to interpret our results at diff
ent scalesL. The fact that locality is correctly incorporated
for example, is best understood through theL5` limit, re-
calling that the effective action is Taylor expandable to
orders in momenta~this requirement of ‘‘quasilocality’’@11#,
is tantamount to demanding that each infinitesimal RG s
be free from infrared singularities! and thatL is the only
explicit scale parameter to appear in the action, thus imp
menting the concept of a self-similar flow@28#. Again it is at
L→` that we see we are indeed describing SU(N) gauge
theory: massive fields are actually infinitely massive andA2
decouples, as ensured by the Appelquist-Carazzone theo
@24#.

In addition to manifest gauge invariance, another imp
tant step is the exploitation of the freedom coming fro
scheme independence@6#: not only did the seed actionŜ
incorporate the gauge invariant regularization and allow
spontaneous symmetry breaking@see the comments below
Eq. ~50!#, but also we could choose it such that the minimu
of the potential would flow withL @cf. Eq. ~56! and below#
and such that logarithmic classical divergences would
completely absent~see Sec. VII A!. This latter property guar-
antees the universality of the one-loop Yang-Millsb function
~cf. Sec. VII!. By further fashioningŜ, these properties ex
tend to two-loop order and higher@21#. In a sense the gen
eralized exact RG framework@6,10# gives us the freedom to
create ‘‘designer field theories’’ in the regularization sect
tailored to our purpose.

The seed action~not bare action! therefore represents th
details put in by hand; the physics is naturally encoded in
effective action. Hence, physical quantities must be indep
dent of the choice ofŜ @6#, as our tests here, and earlier@20#,
have shown. Note: we do not pick a specificŜ. Apart from
the constraints above, it turns out to be very advantageou
keep it as general as possible. Since the final result mus
independent of its detailed form, any simplification has
occur before we look into any of its vertices. Similarly, w
do not specify what covariantization we use. All we need
to name the vertices~cf. Sec. II D!.

We do introduce some further restrictions purely for co
venience. Thus we determine the RG kernelsḊ in such a
way that, after spontaneous symmetry breaking, the t
point classical effective action vertices can be set equa
those of the seed action. This greatly simplifies the fl
3-27
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equations for higher point interactions~cf. Sec. III @10,11#!.
Actually, the two-point seed action vertices are not as gen
as they can be,~cf. Sec. IV!. It would not be difficult to
work with completely general versions however, leaving
restrictions except those placed by smoothness, symme
~including broken supergauge invariance!, and limits on their
ultraviolet behavior@cf., e.g., Eq.~11!#. Very little would
change in the calculation right up to the final stages in Se
VIII C and VIII D.

Last but not least, the diagrammatic interpretation int
duced in Sec. III B~generalizing that of@10–12# to finite N)
turned out to be very useful. Already at the level of diagra
the great potential of the method comes out, e.g., mak
cancellations among higher order seed action vertices
evident.

In view of the novelty of the construction, it is desirab
to test the formalism first. We have computed for the fi
time at finite N, without fixing the gauge, the one-loopb
function for SU(N) Yang-Mills theory, verifying the standard
result, and confirming its universality with respect to t
regularization scheme.

Let us briefly recapitulate the simple steps that form
calculation, as discussed in detail in Sec. VIII. From t
renormalization condition, Eq.~45!, we can write down an
algebraic equation for the one-loop beta function,b1 ~cf.
Fig. 11!, which receives contributions, equal in form, fro
all the sectors of the theory,A, C, andF. Introducing inte-
grated kernels and integrating by parts the diagram cont
ing the effective action vertex with the highest number
points leaves us with a totalL derivative plus theL deriva-
tive of this vertex~see Fig. 14!. Then using the flow equation
and the relation between integrated kernels and two-p
functions, as in Eqs.~96! and ~98!, to simplify the diagrams
obtained so far, we can eliminate the higher point vertic
Repeating the above steps several times over, we get to
point where there is no dependence left on the details of
covariantization or on the seed action.24

This last step follows either because we are left with
pressions containing only two-point vertices and the co
sponding zero-point kernels, which are then shown to
universal by casting them as total derivatives in moment
space, where they depend only on ultraviolet limits or in
infrared on the renormalization condition~45!, or, as in the
total L derivative term, because the result can be seen
plicitly to depend only on vanishing momenta where ag
the dependence becomes universal as a consequence o
~45!.

Some comments are in order. As emphasized earlier,
tral to the method is the use of manifest gauge invarianc
results in two sets of ‘‘trivial’’ Ward identities, derived in
Sec. III D, corresponding to the~bosonic! fermionic parts of
the~un!broken gauge invariance. The broken Ward identiti
in particular, causeB andDs to rotate into one another. Thi
led to the important realization that technically they sho
be tied together as elements of a five-dimensional vectorFM

24The calculation in Ref.@20# can also be organized according
this iterative method.
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@cf. Eq. ~100!#. As well as simplifying greatly the calcula
tions in this sector, it also casts them in a form which
virtually isomorphic with the computations in theA and C
sectors.

The calculation has been carried out in dimensionD
54, even though to rigorously define the regularization
all orders, one should preregularize, e.g., by working in g
eral dimensionD and taking the limitD→4 at the very end
@18#. This is necessary in general@10# because finiteness i
achieved by adding separately divergent pieces toget
namely, theF versusA andC sectors, as is typical of Pauli
Villars type regularizations. However, at one loop, it is on
necessary to preregularize the four-pointA vertex; the two-
point vertex ~which is what we compute! is well defined
without preregularization, providing only that globa
SU(NuN) invariance is kept manifest throughout the comp
tation @18#.

We did not do this, since we broke the fieldsA andC into
their fermionic and bosonic parts.@Had we worked with the
full superfields we would not have been able to~anti!com-
mutes. This leads to a substantial increase in the numbe
different vertices required for the computation.# But, by per-
forming the calculation in theF sector and then simply map
ping the results to theA and C sectors using the insigh
above, we performed the calculation in the same way for
sectors, achieving the same effect as would be obtained
keeping the global SU(NuN) invariance manifest.25

The final result Eq.~144! comes almost entirely from the
A sector, except for the nontransverse term,~141!, which,
however, is needed to make the whole thing transverse.
the one hand, we should not be surprised if thewhole con-
tribution had come from just theA sector. After all, the one-
loop b function can be cast as the derivative of the cutoff
an infrared divergent integral. If the fields are massive~viz.,
B,C,D), their masses act instead as the infrared regulator
thus they give vanishing contribution@as in the discussion
below Eq.~132!#. On the other hand, the pure gauge sec
yields Eq.~133!, plus Eq.~138!, apart from contributions tha
must vanish eventually, e.g., Eq.~137!, and is thus not trans
verse on its own. As discussed in Sec. VIII B, the culprit, E
~133! takes precisely the form of the one-loop gluon se
energy in the Feynman gauge, but through an acciden
simplicity. We could have introduced longitudinal term
~135! into the flow equation~42!, giving an apparent genera
gauge, which by gauge invariance~55! finesses longitudina
parts into theF sector. All the while, the effective action
would remain oblivious to these rearrangements, and it
all stages in the calculation remain gauge invariant. Ho
ever, in this limited sense, it would appear that the gh
contributions, required in the standard treatment, are h
taken over by theF sector.

Finally, although the only application of our method
yet is the calculation ofb1, we expect the procedure to b
quite general and, above all, best suited for exploring

25We have also checked explicitly that there are no ambigui
related to the limitD→4 @32#.
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nonperturbative domain. It should allow investigations of
stantons, renormalons, and other controlled nonperturba
effects in a manifestly gauge invariant way.

Generalizations to include spacetime supersymm
and/or fermions seem possible and would open the doo
many further investigations, from Seiberg-Witten metho
@37# through to fully nonperturbative approximations.
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