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A proposal for a manifestly gauge invariant and universal calculus in Yang-Mills theory
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We uncover a method of calculation that proceeds at every step without fixing the gauge or specifying details
of the regularization scheme. Results are obtained by iterated use of integration by parts and gauge invariance
identities. The initial stages can even be computed diagrammatically. The method is formulated within the
framework of an exact renormalization group for $)(Yang-Mills gauge theory, incorporating an effective
cutoff through a manifest spontaneously broken BI) gauge invariance. We demonstrate the technique
with a compact calculation of the one-loop beta function, achieving a manifestly universal result, and without
gauge fixing, for the first time at finithl.
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I. INTRODUCTION Becchi-Rouet-Stora-TyutifBRST) transformations, gauge
transformations are at most linear in the quantum fields and
It need hardly be stressed that there is a clear need forthus are not deformed at the quantum level. For a non-
better nonperturbative understanding of quantum fieldAbelian gauge group, the connection in the covariant deriva-
theory. Examples can be given from all domains where quartive thus remains dimension 1 and is unrenormalized. If the
tum field theory is applicable: from phase transitions in earlycoupling is scaled out of the connection, no wave function
universe cosmology, quantum gravity, QCD, through to high'eénormalization is possible for the gauge figl®—14. Only
temperature superconductivity, to mention just a few. the coupling renormalizes. The usually naive assumption that
The exact renormalization groufRG) [1,2], the con- the effective action is built only from gauge invariant com-
tinuum version of a Wilsonian RG, provides a powerful binations of the covariant derivative is here true even at the
framework for considering nonperturbative analytic approxi-duantum level; all vertices are subject to simple strong
mations to quantum field theori¢8—7]. This follows from constraints—the so-called “naive Ward identities” that fol-
the fact that solutions of the corresponding flow equationslow from exact gauge invariance.
i.e., the Wilsonian effective action, can be found directly in I order to formulate such a gauge invariant exact RG, we
terms of renormalized quantities, that all physiesg., heed to incorporate a gauge invariant real cutoff More-
Green’s functionscan be extracted from this, and that renor- OVer, this has to appear in a way that can be naturally incor-
malizability is trivially preserved in almost any approxima- Porated in the effective action framewofk0,12—14. We
tion [4,5]. use the solution given in Refl18], which provides a regu-
Central to many nonperturbative problems, including thelarization for SUN) Yang-Mills theory inD<4 spacetime
examples quoted above, is the presence of gauge invariandmensions, and wheMN=c, in any dimension. This is
(This local invariance can be accepted as either fundamenténplemented by embedding the Yang-Mills theory in a
or, e.g., in the case of high,, effective[8].) However the SU(N|N) gauge theory, regularized by covariant higher de-
introduction of a redleffective cutoffA, a crucial step in the rivatives. The SUY|N) gauge theory is then spontaneously
definition of a Wilsonian RG, typically breaks this gauge broken in the fermionic directions, at the same sc¢gjavith
invariance[9]. the resulting heavy fields playing the role of gauge invariant
Fortunately it is possible to formulate more general exacPauli-Villars fields[19]. [Actually this corresponds to regu-
RGs[6], which are gauge invariarfl0—14. A wonderful ~ lating a SUN) X SU(N) Yang-Mills theory, but the nonuni-
extra benefit in this generalized framework is that calculatary second copy decouples in the continuum lifa].]
tions can proceed with manifest gauge invariance preserved The work presented in this paper extends previously pub-
at every stagd10—-14. There is thus no need for gauge lished results in a number of significant ways. The flow
fixing and the corresponding ghosts. The challenging nonpegqguation in Ref[12] was developed intuitively from the bot-
turbative problem of Gribov copiefl5], is thus entirely tom up without the author being aware of the underlying
avoided? Even at the perturbative level the full power and SU(N|N) structure[10]. In contrast, the present flow equa-

beauty of gauge invariance then shines through. Unlikdion is very simple and beautiful in its conception, its form
being tightly constrained by the manifest invariance under

the spontaneously broken local SUN). The earlier flow

* Email address: arnone@soton.ac.uk equation in Ref[12] was regularized only to one logand
"Email address: gatti@soton.ac.uk then only for external gauge field$Here the gauge invariant
*Email address: T.R.Morris@soton.ac.uk regularization is complete, working to all orders in perturba-
IAs opposed to, e.g., analytic continuation of perturbative ampli-tion theory. The formulation given in RefL2] was restricted
tudes in dimensional regularization. to N=« (again as a consequence of regularization limita-
2Gribov problems are known to result in an erroneous answer fotions). The present formulation makes sense also at fiite
covariant gaugegl6,17. And last, but by no means least, a powerful computational
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technique for working within this framework is developed, two loops and beyond, it is helpful to augment the present
building on the insights gained from R¢R0]. In all realiza-  flow equation. A full report of this investigation, however, is
tions of the Wilsonian RG there is an unavoidable freedom irfeft for the future[21].
the construction, equivalent to regularization scheme depen-
dence, but especially deeply embed@&Hd Thus for example .
any version of the exact RG receives its very definition in Overview
part by specifying a cutoff functiow. This redundancy is Most of the present paper, up to Sec. VIII, is concerned
magnified in the case of these gauge invariant exact RGsyith setting up and justifying the formalism. Specifically, we
because the regularization requires a further cutoff functiortart in Sec. 11 A with a review of the regularizatiph8], and
¢, and the requirement of gauge invariance forces the introsome of its novelties, adapting it to the exact RG constructed
duction of further choices, to a large extent arbitrary, namelyjn this paper. Although we leave many elements of the exact
the covariantizatiofs)® and the “seed” interactions. Never- RG unspecified, using this freedom to guide the calculation
theless, physical quantities must be independent of thesend display universality, there are a number of basic restric-
choices. Providing that we limit ourselves to controlled ex-tions needed on the set of exact RGs we allow. Section Il B
pansionge.g., those in weak coupling, strong coupling\,l/ sets out the general properties we require, and their conse-
1/D, etc), the same must be true of the approximations. quences and interpretation in the present case. Section II C
There ought then to be a way of computing these resultgleals with a particular novelty that arises in the transforma-
without having to specify the above choices of regularizatiortion of the SUN|N) supergauge field functional derivative,
scheme. We uncover just such a method. The large redunvhich in turn leads to a further constraint on the form of the
dancy in the regularization scheme is turned to our advanexact RG. Sections Il D and Il E spell out the restrictions
tage, furnishing a guide to streamlined computation of uniplaced on the form of the supergauge covariantization and
versal quantities. Thus in the method, we are forbidden fronfurther decoration of momentum space kernels, and intro-
“looking inside” any vertices(of the seed action or covari- duce the general notation used to define the resulting verti-
antized kernels but also of the undifferentiated Wilsoniances. In Sec. Il F, we introduce the corresponding notation for
effective action. The initial stages of the calculation are then action vertices, and the form the notation takes after sponta-
so constrained that they can be effectively performed dianeous supersymmetry breaking.
grammatically. In Sec. Il we introduce the flow equation, defining vari-
Central to the method are integrated exact RG kernelsus elements and developing some of its properties. In par-
which play the role of regularized propagators, specificallyticular we prove its supergauge invariance, and in Sec. Ill A
by being the inverse of the corresponding two-point verticesprove a closely related property that leads to a powerful dia-
For the gauge fields, since gauge invariance is preservedrammatic incorporation of the supergauge algebra, as is ex-
these inverses do not exist. Instead the integrated kernels gp&ained in Sec. Il B. From Sec. Ill C onward we work in the
inverses only in the transverse space, leaving longitudinadpontaneously broken theory, Sec. Ill D containing the cen-
remainders that generate gauge transformations. trally important resulting relations between vertices, the so-
These “effective propagators” are introduced by integrat-called naive Ward identities, for the remaining 3U)(
ing by parts with respect td, resulting in differentials of X SU(N) bosonic gauge invariance, but also for the broken
the Wilsonian effective action. These latter are evaluated vidermionic gauge invariances.
their flow equations, after which gauge invariance identities In Sec. IV, we use general arguments to determine the
are used to evaluate further, where possible. This proceduferm of the classical effective action two-point vertices.
is iterated until there are no terms left that depend on th&@hese are used to determine the kernels in Sec. V, and thus
choice of covariantization or seed interactions. It is thenthe integrated kernels in Sec. VI. Most importantly, we show
straightforward to cast the remaining terms as total derivahow these behave as effective propagators up to gauge re-
tives in momentum space or otherwise show them to be unimainder terms. Together with Sec. Ill D, these provide the
versal. essential properties behind the “calculus” that follows.
Although we apply the method here only to the computa-These properties are seen clearly in the broken fermionic
tion of the one-loog3 function of SUN) Yang-Mills theory, sector, if the fermionic parts are combined into a
we believe the procedure to be of general applicability. In(D + 1)-dimensional vector as in Sec. VI A, a notation we
fact our aim is to apply these ideas to the nonperturbativéhen adopt for the rest of the paper. Section VIl explains
domain. As already mentioned, exact RG equations are idegrecisely when one can expect to get a universal result for
ally suited for this. It is important to note in this context that the first two coefficients of the Yang-Millg function. Al-
our gauge invariant exact RG equation and the regularizatiothough this is standard, the universality is actually violated
it embodies do not require perturbation theory for their defi-without the further restrictions that are introduced in Sec.
nition. VII A, a novel consequence of Pauli-Villars regularization in
A necessary step is to thoroughly test and understand then exact RG frameworkl0,12.
framework in the perturbative domain. For calculations at Finally, in Sec. VIII, we set out the calculation, with Sec.
VIII A in particular containing the main iterative diagram-
matic procedure, and Sec. VIII B the heart of the calculation
3pifferent parts of the flow equation can even have different co-from the physics point of view. In Sec. IX we summarize and
variantizations. draw our conclusions.

085003-2



A PROPOSAL FOR A MANIFESTLY GAUGE INVARIANT . . . PHYSICAL REVIEW D 67, 085003 (2003

Il. PRELIMINARY COMMENTS trace, which is necessary to ensure SIN) invariance,
forces the kinetic term foA? to have the wrong sign action,
leading to negative norms in its Fock spddé].

As can be seen from E@3), A° does not appear in the
kinetic term. Providing the interactions can be written as
ever, as we will show, for the calculation of terms such as thetr(A> commutators) ,A® will not appear anywhere in the
one-loopg function in SUN) Yang-Mills, we do not need to action. More generally, we will need to impose its nonap-
pay attention to this subtlety. Therefore for simplicity of ex- P&arance as a constraint, since otherwdsehas interactions

position we will setD =4 in this paper, leaving the full gen- bu'F no kinetic term_ and thu§ acts as a ngrange multiplier.
erality until Ref.[21]. This would result in a nonlinear constraint on the theory,

which does not look promising for its use as a regularization
method for the original SW{) Yang-Mills theory.
On the other hand, if the constraint is satisfigk®, is then
Instead of working just with the SW) gauge field, protected from appearing by a local “nd?” shift symme-
which we write asA}(x)=A}, 75, WhefeTl are the SUR)  try: 6A4%(x)=X\,(x), which implies in particular that4®
generators orthonormahzed to #¢0) = 5°°/2, we embed it has no degrees of freedom. Together with supergauge invari-

Throughout the paper we work in Euclidean space of di-
mension 4. We can formulate everything in general dimen
sionD, and strictly speaking should, since the lirbit-4 is
necessary to rigorously define the regularizafib8]. How-

A. The regularization

in a SUN|N) supergauge fiel@18]: ance the theory is then invariant under
A, B SA,=V, 0+, 6
A=A D (1) = Vur N, ©)
1% 1

[where the supermatrif(x) is in the SUN|N) Lie alge-
Here we have writted as an element of the SN(N) Lie bral. The effect of the nod® symmetry is to dynamically
superalgebra, using the defining representation, i.e., as a stefine the gauge group as the quotient '@UN)

permatrix with bosonic block diagonal termdé and fermi-  =SU(N|N)/U(1), in which Lie group elements are identi-
onic block off-diagonal® and B, together with the central fied modulo addition of an arbitrary multiple ¢f _

term A°1. As required by SUJ|N), the supermatrixand An alternative and equivalent formulati¢@8] is to pick

thus alsaA) is supertraceless, i.e., At —tr A2=0. This ex- COset representatives, which can, for example, be taken to be
cludes in particular traceless, so thatl° is set to zero, and thus discard€@his

is the strategy used in Re¢R2] to define a SUN|N) sigma

1 0 model. Incidentally this paper contains arguments for finite-

0=03= ( 0 —1 2 ness of these models which are similar to those given by us
for SU(N|N) gauge theorf18].%] In this reduced represen-

from the Lie algebra. The supermatrix is in addition alsotation, Eq.(6) is replaced by Bars’ brackée3]:
traceless, the trace having been parametrized ByEquiva-
lently, we can introduce a complete set of traceless and su-
pertraceless generatofs (normalized as in Ref.18]) and
thus expandA as

1
0A,=[V,,Q*=[V,.Q]- tr[V A2 (7)

The * bracket replaces the commutator as a representation of
the Lie product so in particulaf,,=i[V,,V,]* [18].

The lowest dimension interaction that violates A8-
symmetry contains four superfield strengths, for example,

A, = A1+ AT 3

The B fields are wrong statistics gauge fields. They will be
given a mass of order the cutofA. The supergroup
SU(N|N) has SU(\I)XSU(N)XU(l) as its bosonic sub- ) 5
group. A%(x)=A%,75 is the gauge field for the second St(F ) (Fro)” 8
SU(N), and AP° |s the U(1) connection. Interactions are

built via commutators, using the covariant derivative: Such terms are not invariant under the BarkEy. (7)), ei-
ther. Since Eq(8) is already irrelevant, not® symmetry is

V,=d,—1A,; (4) automatic for the conventional supergauge invariant bare ac-
tion of Ref.[18]. Here there is no such bare action, and

thus the superfield strength is given By,,=i[V,,V,]. The interactions are generated by a largely unspecified exact RG,
kinetic term will be regularized by higher derivatives which so we need to impose nd? as an extra constraint.

thus take the form We introduce a superscalar field
V)” 1
StrF, | —| - Fuu- 5 ¢ D
wl x| - Fi ® C:< ~ ) ©
D C

(Here the dot means th&t acts by commutation. In practice
we will add the higher derivatives as a power series with
coefficients determined by a cutoff functian) The super- “We thank Hugh Osborn for drawing our attention to this paper.
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in the fundamentak its complex conjugate representation;  The decoupling oA! and A2 follows from the unbroken
equivalently as a matrix in the defining representation oflocal SUN) X SU(N) invariance since the lowest dimension
U(N|N) [18]. Under supergauge transformations effective interaction

e ieal (10 St(FL ) (FE, )2 12
In the Bars * representation we do not replace this by a *
bracket, since commutators are necessary for poweis of js already irrelevanf18,24).
(appearing in its potentiplto transform covariantly 18]. Actually, there are a number of differences between the
However, as in Ref[18], since working with the full cosets treatment we give here and that of REif8]. Since Ref[18]
seems more elegant, we will employ E@) and the full  followed a conventional treatment, gauge fixing and ghosts
representation in this paper. were introduced, with a corresponding higher derivative
We will arrange forC to develop a vacuum expectation regularization for them; longitudinal parts of the four-point
value along theo direction, so that classicalfC)=Ac.° A vertex were then related to ghost vertices using the Lee—
This spontaneously breaks the $UN) gauge invariance zinn-Justin identities, which were separately proved to be
down to its SUN) X SU(N)xU(1) bosonic subgroup and finite. Also, a specific form of bare action and covariantiza-
provides the fermionic fieldB and D with masses of order tijon was chosen.
A. In unitary gauge, the Goldstone moleis eaten byB. Here we do not fix the gauge and the regularization
Since we will not fix the SU|N) invariance, they instead scheme is much more general. As well as not specifying the
gauge transform into each other and propagate as a compassvariantization or the bare actigaee below there is any-
ite unit (see Sec. VIA We arrange for the remaining way much more freedom in introducing interactions via the
“Higgs” fields C' also to have masses of ordér flow equation. We shall not here supply a rigorous proof that,
In Ref. [18], we proved by conventional methods that if up to appropriate restrictions, the flow equation is finite.
the kinetic term ofA4 is supplied with covariant higher de- Since we never have to specify the details, we only need to
rivatives (parametrized by the cutoff functiot) enhancing assumehat this is true for at least one choice. However, we
its high momentum behavior by a factor 1~p? /A%, and take care that the scheme as described above is qualitatively
the kinetic term ofC has its high momentum behavior simi- correctly implemented. Where we do have to explicitly com-
larly enhanced bg 1~ p?/A?", then, providing pare terms we can use Ed1) as a guide; thus, for example,
we do find that our final expression f@,; is properly regu-
lated. (However, it should be borne in mind that at interme-
diate stages our vertices have much more freedom in their
) ) . momentum dependence than that implied by the bare action
a_\ll amplltudes_ are ultraviolet flr_1|te to all orders of per_turba-in Ref. [18]. Additionally, cutoff functions with non-power-
tion theory. Since the underlying theory is renormalizable,,, asymptotics, for example exponential, could also be

the Appelquist-Carazzone theorem implies that at energiegsedf) in practice, it is easy to see at one loop that the high
much lower than the cutofh the remaining massless fields energy cancellations are occurring as expected.

Al andA? decouple. In this way, we can use this framework
as a regularization of the original SN} Yang-Mills theory
carried byAl.

In brief, the reasons for the above facts are as follows.
Providing Eqgs.(11) hold, all divergences are superficially ~ The extra fields we have added form a necessary part of
regularized by the covariant higher derivatives, except fothe regularization structure. We gain an interpretation of
some “remainders” of one-loop graphs with oni/fields as  these fields at the effective level by imagining integrating out
external legs and only four or fewer of these legs. Thesehe heavy fieldsB, C, and D at some scale\. The result
remainders form a symmetric phase contribution, in thewould be an effective action containing only the unbroken
sense that the superficially divergent interactions betwieen gauge fieldsA', but it is not well defined because it is not
and A are just those that come frodis covariant higher finite. In particular, the one-loop determinant formed from
derivative kinetic term, while all terms containingoafrom  integrating out the heavy fields is necessarily divergent: the
the breaking are already ultraviolet finite by power counting.divergences are there to cancel those left by the one-loop
For three or fewer externad legs the remainders vanish by hole in the remaining covariant higher derivative regulariza-
the supertrace mechanism: the fact that in the unbroketion [25] of the SUN)XSU(N) Yang-Mills theory, in a
theory, the resultant terms contain 4dt=0 or strl=0. By  similar way to that done explicitly in gauge invariant Pauli-
manifest gauge invariance, the four-poidt remainder is Villars regularization19].
then actually totally transverse, which implies that it is al- A gauge invariant exact RG description of gauge theory
ready finite by power counting. thus requires not only a well defined finite effective action

r-r>1 and r>1, (12)

B. Necessary properties of the exact RG
and their interpretation

SLater, however, we will use an unconventional normalization for 6The proof given in Ref[18] could also be easily extended to
C. these cases.
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but a separate measure term. The measure term is not itself S

finite, but can be represented by a well-defined finite addition Ady e 5= %(‘I’ e 9 (13

to the effective action, if we accept the introduction of these

auxiliary heavy fields. (corresponding to the statement that each RG step is equiva-

While this interpretation is reasonable, we neverthelesfent to an infinitesimal field redefinitionp—¢+W¥ SA)
need to be sure that we are still only representing the origingl, 10]. Importantly, this ensures that the partition function
quantum field theoryhere SUN) Yang-Mills theoryl. This  z= D¢ exp(—9), and hence the physics derived from it, is
demand is especially pertinent {but not restricted tothe  invariant under the RG flow. Since we will solve the exact
case where there are extra regulator fields; particularly hereg approximately, but by controlled expansion in a small
A? which remains massless and in this effective descriptioyuantity, this property is left undisturbed. Therefore we may
only decouples at momenta much less tlanMore gener-  use different scales\ at our convenience to interpret the
ally, even if there are only physical fields in the effective computation.
action, we need to be sure that locality, an important property For example, although locality is obscured in the Wilso-
of quantum field theory26,27, is properly incorporatell. njan effective action at any finitd,, it is important to rec-
Note thatA is intended to be set at the energy scales olgnize that invariance of together with the existence of a
interest, which is why it makes sense to use the exact RG angkrivative expansion and self-similar fldwiz., that the only
solve for the effective action directly in renormalized termsexplicit scale beA) ensure that locality is implemented,
(see, e.g., Rel5]). Indeed, to extract the physi¢s.g., cor-  since it is then an automatic property of the effective action
relation functions, et¢.we will even want to takeA —0 asA—oo.
eventually[4,5]. Similarly, it is asA— that we confirm from the Wilso-

These demands are satisfied implicitly through the nian effective action that we are describing S)(Yang-
—o limit, providing some very general requirements on theMills theory: B, C, andD really are infinitely massive, and in
exact RG are implemented, as we now explain. spacetime dimension 4 or les&? is guaranteed decoupled

First, we require that all parts of the flow equation can beby the Appelquist-Carazzone theorem and B@). In gen-
expanded in external momenta to any order, so that the s@ral strong quantum corrections might alter either of these
lutions Scan also be required to have an all orders derivativedroperties. Thus in general we would need to add appropriate
expansiorn5,11,13.2 This “quasilocality” requiremen{11]  sources to the\ —c action; compute the partition function
is equivalent to the fundamental requirement of the Wilso-Py computing theA — 0 limit of exp(—S); and finally explic-
nian RG that Kadanoff blocking take place only over a lo-itly test these properties by computing appropriate correla-
calized patci1], i.e., here that each RG stdp—>A — SA be tors _(formed from differentiating with respect to the sources;
free from infrared singularities. this |s_t'he most general way to extract the resul'ts for physmal

The flow equation is written only in terms of renormal- duantities froms). However, since is perturbative at high
ized quantities at the scalk. In fact, we require that the €nergiesindeedg—0 asA—e), we can be sure that the

only explicit scale parameter that appears in the equations gbove deductlons about the regulator fields, drawn at the
the effective cutoff\. Again, this is so that the same can be perturbative level, are not destroyed by quantum corrections.

. L A As already mentioned, we require that an ultraviolet regu-
required ofSwhere it implements the concept of self-similar lar Y g g

) . ization atA, is implemented so that the right hand side of
flow [28]. Here this amounts to a nonperturbative statement, e fioy equation makes sense. Note that this ensures that all

of rgnormalizability, i.e.., the existenpe of a continuum_ limit, ¢, rther quantum corrections 8 (computed by solving for
equivalent to the requirement thatlie on a renormalized  he flow at scales less thak) are cut off(smoothly at A.
trajectory[5]. Th|§ is clearer if we first scale to dlmenglon- Since momentum modeas> A were fully contributing to the
less quantities using the appropriate powerd.offhen,Sis  jnjtial A—co partition function, and sinc€ is invariant un-
required to have no dependence Arat all except through  der the flow, we can be sure that their effect has been incor-
its dependence on the running coupligigy(A) [5]. porated inS. In other words we can be sure that our final

Note that theA—o end of the renormalized trajectory, requirement on the flow, namely, that it corresponds to inte-
i.e., the perfect actiof29] in the neighborhood of the ultra- grating out momentum modes, has been incorporated.
violet fixed point atA =<, amounts to our choice of bare (In Refs.[10,11], a possible further requirement on the
action. Its precise form is not determined beforehand but as #ow equation called “ultralocality” was discussed, replacing
result of solution of the exact RG, but it is constrained bythe usual notion of locality, although it was not clear that it
choices in the flow equation. Since these choices are, howvas necessary. We have seen here that the usual concept of
ever, here to a large extent unmade, we deal implicitly withlocality is recovered, providing the existence of a derivative
an infinite class of perfect bare actions. expansion, invariance dt, and self-similar floyv, are imple-

We require that the flow of the Boltzmann measure expnented. Furthermore, the successful caulculanons.of”[I_RQ].
(-9 is a total functional derivative, i.e., for some generic and here conﬁrm that the restriction of ultralocality” is un-
fields ¢, necessary since they do not assum it.

C. Supergauge invariance and functional derivatives

"Otherwise nonphysical effects, or the effects of other propagating The peculiarities of SUN|N) affect functional derivatives

fields, could be hidden in the vertices. with respect ta4 and lead to some constraints on the form of
8Sharp cutoff realizationg2] are more subtlg4,7] and will not be  the exact RG if the flow equation is to be invariant under
discussed here. supergauge transformations.
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As before[12,18, it is convenient to define the functional pulls out precisely this combination. However, from E6).
derivatives ofC and A so as to extract the dual from under and the completeness relations for the[18], under super-
the supertrace. For an unconstrained field suctiwe sim-  gauge transformations
ply have[12,18:

1) |1 6 i

6 _(dCh —alsD 5(m):" 54, a5, !

== 5] (14 w (3 iz

oC \ s/6D —él8C .

or in components =—I ﬁ,ﬁ (21
y73

ﬁi. ,=ig'.< (15) The correction is to be expected since it ensures #haMd
8¢ 5C!‘ r remains traceless, but the fact th#.4 does not transform

homogeneously means that supergauge invariance is de-
Under supergauge transformatiofi), the functional de- stroyed unless/ A is contracted under the supertrace into

rivative transforms as one would hope: something that is supertracelgsausing the correction term
to vanish. This is an extra constraint on the form of the flow
5 ﬁ) __ill g (16  ©quation.
8C oC [As an alternative one might try defining/ 6.4 as only

o . _ the 2T 56/ 8A, term in Eq. (20); however, one can show
Such a derivativéhas the properties of “supersowing12]:  from Eq. (6) that this does not transform into itself but into
the full functional derivative given in Eq20). It works,

i StreY = Y= strX i StrCY =strxy, (17) however, in the Bars * representation, where the transforma-
aC aC tion again takes the forr21).]
} . Similarly, there are corrections to Eq4.7) and (18) that
and “supersplitting”[12]: arise because the derivative is constraitfed:
stri XCY=strX strY (18 J 1
aC ' strxﬂstrAYz strXY— mstrx try (22

i.e., of sowing two supertraces together, and splitting on
supertrace into two, wher® and Y are arbitrary constant
supermatrices. P 1
[Note that, as we will see later, it is a helpful trick to str—XAY=strXstrY— ——trY X (23
contract in arbitrary supermatrices at intermediate stages of dA 2N
the calculation: it allows manifestly SBI(N) invariant
index-free calculations in the SN(N) algebra, by permut-
ing overall bosonic structures past each other. It also lead
as we will show, to efficient diagrammatic techniques. The
arbitrary supermatrices can always be stripped off at the en
if necessary. If we did not use this trick, we would lose
manifest SUN|N) invariance at intermediate stages, by hav-
ing to carry intermediate minus signs from the fermionic
parts of supermatrices anticommuted through each dther.
Since A is constrained to be supertraceless, its dual und
the supertrace s, A, has without loss of generality nb
component: only

%s expected from Eq19), and

Since these corrections contain tr=stro- - -, they simi-
%arly violate SUNI|N) invariance. As we discuss in Sec.
Il A, they also effectively disappear with the above con-
traint thaté/ 6.4 is contracted into something supertraceless.
This is obvious in Eq(22) where thus stk=0.]

In this way the supersplitting and supersowing rules actu-
ally become exact for both fields, even at finMg(compare
[11,12). As we will see, this leads to a very efficient dia-
egrammatic technique incorporated into the Feynman dia-

grams, for evaluating the gauge algebra, analogous to the
't Hooft double line notatio{30] and utilized earlief10—
12], but here applying even at finitg.

1
Tu= o0 Tu (19 D. Covariantization

) ) Given some momentum space kerhgl=W(p,A), we
really couples. The natural construction for tiefunctional  yyite in position space

derivative from Eq.(3) [18],

d*p .
s P o 8 nyzf—4W(p,A)e"’"x’y), (24)
= — (2m)
oA, “2TAsA, T aN 54D 20

12
and introduce the shorthand

9For simplicity, written with partial derivatives, to neglect the ir-
relevant spatial dependence. 19gnoring the spacetime index and spatial dependence.
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2 vy n FIG. 1. Wine expansion. The
_ + “1 thick lines are expanded into thin
= + + + + + .. ) . .
™ vy lines, with the blobs representing
M1 1 A fields.

f-W~g==f fd“xd“yf(x)wXy g(y), (25) u{W}Av=f fd“xd“yf D, fxy

-1
wheref and g are any two functions. We define a general XSru(X)PLLxyJu ()P Ty, (30

covariantization of any such kernéhe “wine” [11,12,19)

) ) X where
via the supergauge invariant
w0 D[l,y]=P exp—if dz*A,(2) (32
u{W} v = > f d*xdtyd*x, - - -d*x,d%y;- - - d*y, by
mn=0 is a path ordered exponential integral, i.e., a Wilson line, and
XWo o o (X2 o XniY1s - YmiX0Y) the appearance gp*l[{zxy] means that we traverse back-
ward along another coincident Wilson line. The covarianti-
><str[u(x)AM1(x1)- . -Aﬂn(xn)v(y) zation is determined by the measdbgv over configurations
of the curves(’,, and is so far left unspecified except for its
XA, (YD) Ay Ym) 1, (26) normalization,
whereu andv are any two supermatrix representations, and j D lo1=W 32
where without loss of generality we may insist tHa} wxy Xy

satisfiesu {W_}AUEU {W}Au. We write them=0 vertices as follows from Eqs(26) and(28). It is easy to see that Eq.
(where there is no second product of gauge fiefdsre com- (30) indeed does satisfy E29).

pactly as The expansioti26) can be represented as in Fig. 1. As we
explain later, these will act as Feynman rules, although they
W, (X1 - Xn i X Y) =W, oy (X e Xn XY, can also be viewed directly as expansions of the Wilson lines

(27) (31) in the covariantized kerngB0).
Finally, we will require that the covariantization satisfies
while them=n=0 term is just the original kerngR4), i.e., 5
—{W} =0 (33
W (55%,Y) =Wy . (29 5“4#{ L
S . (where the functional derivative acts on all terms inside
We leave the covariantization general, up to certain re

strictions. One of these is already encoded into &%), {w}, but not on the. unspemﬂed ”th hand fittachme@.,
namely, that there is just a single supertrace in &), that there are no diagrams in which the wine bites its own

involving just two ordered products of supergauge fields. Antail [10—12. This leads to identities for thé/ vertices which
other is that we require that the covariantization satisfy co@9@in we do not need in practice: as we will confirm, such
incident line identitie§11] which in particular imply that, if ~{€'mS do not in any case contribute to the one-Igofunc-
v(y)=1g(y) for all y, i.e., is in the scalar representation of tion. However, such diagrams do appear in general to lead to

the gauge group, then the covariantization collapses to ~ SOMe improperly regularized terms and so some restriction is
needed for consistency. We can use the represent@dpno

(29) see that sensible solutions to E§3) do exist. For example,
we can simply insist that,, is a straight Wilson line, and
more generally that the measure, has no support on the

curves{,, that cross the points or y. The end points need
Hefining carefully so that they only toustandy after a limit

- ti 1 h . lid has been takefil0]. However, since we never specify the
requirement is necessary to ensure thatAforemains valid oo iantization, we only need to assume that solutions to

and to ensure thai/&A is indeed contracted into som.ethin.g. Eqg. (33) exist. In the calculation we just use E@3) and
supertraceless. It is this that we need rather than the |dent|t|qﬁus just forbid all wine-biting-its-tail diagrams.
themselves, which are used just once, to collect terms in the
calculation.

Although we will not use it explicitly, let us remark that
these constraints are solved by the following general covari- It will prove convenient to allow occurrences @falso on
antization[11,12: the Wilson lines(with the obvious corresponding extension

u {W} p=(stru)-W-g.

the gauge fields in Eq26) all act by commutation. This

E. Decoration with C

085003-7



ARNONE, GATTI, AND MORRIS PHYSICAL REVIEW D67, 085003 (2003

of Fig. 1) although we can limit their appearance to attach-where the superfieldX;, Y;, andZ; are A or C, and the
ments at either end of,,. In this paper they will further- indicesa;= u;, bj=v;, andc=y in the case that the corre-
more act only via commutation at both ends. Precisely, wesponding field is4 and null if the field isC. In fact, as a

extend the definitior{26) so that consequence of the restricted structur€84), the
1 Xy, ... Xp_gandYs,, ... .Y, 1 must bed’s if they appear
Wi =Uu{W} v— =C-u{W,} C- g atal .
uiWio =U{Wi o ZC U Wit 4C-, 39 We can still insist without loss of generality thafW}v

_ ) =p{W}u, and use the shorthar@7), where now we keep
where Wn(p,A) is some new kernel. In the expansion we track of flavor labels as in Eq35), however. It is still the
now have vertices that come from bothandC. Typically in  ¢ase that with no fields on the “wine,” the origingV kernel
this caseu andv will actually correspond to functional dif- s recovered as in Eq28). The commutator structure in Eq.

ferentials, with respect to, say; andZ,, and it will also be  (34) ensures that Eq29) holds for the full “wine” also:
helpful to keep track of these flavors by including them as

labels in the naming convention for the kernel, viz., as

W(Zr;)zz. The notation we will thus use in general is

v(y)=1g(y)Vy=u {W}v=(stru)-W-g. (36)

S S Finally, theC’s as further “decorations” of the covariantized
{w#22} kernels are required to partake in the restriction described
6Z5 6Z; below Eq.(33), so this equation extends to

= > | d*d%yd*;- - -d*,dly; - - dYy o o

m,n=0 A m m{W}Z 5—C{W}=O. (37)

e X Yy 77 [In fact by X=1 in Eq. (18), the contribution from differen-
XKWt o byt Xy e Xn 3V, YmiXY) tiating the leftmosC vanishes in any case.
s a 8 g F. Superfield expansion
X st . X7H(Xq) -+ - X2"(Xn) . . Superfi Xpansi
6Z;(X) 0Z5(y)

The Wilsonian effective actioi$ (and the seed actioS
that we will also introduck being supergauge invariant, has
, (35 an expansion in supertraces and products of supertraces:

XY (Y1) YoM(yp)

1
=3 = f A%y A SEE T (kg Xn) SEEXE (X)X (%g)

n=1 Sp a;--- a
1 4 4y, 44 4 X1+ Xn.Y1 Y .
Tor 2 s A dtadlyrdlyaSIETTL T T (e Xy Yin)
Xstr X3L(xy) - - - XE(Xp)Str Y2y ) - - YOy )+ - - (38)
|
where again the(iai areA, orC, andY?J’ areij orC. (Note When we spontaneously break the fermionic invariance

that throughout this paper we discard the vacuum en)ergy.by shifting C in the o direction, it will prove to be better to
Only one cyclic ordering of each list;---X,, Yi---Y work separately with the bosonic and fermionic parts of the
n» m

appears in the sum. Furthermore, if either list is invarianSUPerfields. Thus we write in the broken phase
under some nontrivial cyclic permutations, thgn(s,,) is
the order of the cyclic subgroup, otherwisg=1 (s,,=1).
(For example, in the terms where eve)(?‘ isacC, s,=n.)

A,=A,+B, and C—>C+o=C+D+0o, (39

The expansion can be represented diagrammatically, where a O

thick closed line stands for a single supertrace of any number Q + +

of fields, as in Fig. 2, and each blob represents a field in the

supertrace, as in Fig. 3. In a somewhat similar way to Eqs. Q

(30) and (34), these closed lines can be interpreted as deco-

rated Wilson loop$11,17. FIG. 2. Expansion of the action in products of supertraces.
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— + 4 and then spontaneously break it. Definlig= g%S-25, we
simply set

A&ASZ—ao[S,Eg]-Fal[Eg], (41)
0 -
where
FIG. 3. Expansion of a supertrace in powers of the fieldand 1 58S . 53 185 . 63
c. a[S3g]=5 s M+ 5 HIAGZ2
2 A, 6A, 2 oC oC
whereA andC are the block diagonals, arglandD are the (42)

block off-diagonals in Eqs1) and(9), respectivelyf12,14].

(We will see in the Sec. Il thaf’s effective vacuum expec- and
tation value is jusir.) 1 5 . S 1.8 .8

Thus in the broken phase we will expand as in B§), ay[34]= 5 W{AAA}a—AgnL > 5—C{ACC}5—CQ. (43)
but the flavorsX andY are set toA, B, C, or D. There will © ©

also be occurrences of. However, sincer commutes with

A and C, and anticommutes witlB and D, to define the
expansion we can take the convention that(amt)commute

all such occurrences to the far right in the supertrace. Upo
usingo?=1, we are then left with terms with either oneat
the end of a supertrace or none at all in that supertrace. Sin
o has no position dependence, we put the flavor label in th
superscript, but we omit the corresponding position labe
(and the termn-point vertex counts: fields excludingo
appearancgs Clearly, since the broken fields can still be

cyclically permuted by(anticommutation throughr, we structure a| except that the leftmost functional derivatives

glso 0”.“‘ it from the determination of the symmetry faCtor’differentiate everything to their right. Consequently, we have
i.e., s, is equal to the order of the cyclic permutation sub-

In the rest of this section we explain the meaning of the
various components, at the same time developing some of
the properties of this exact RG.
N The definition of24 and the form of the flow equation
(41) are the same as in Refd1,12,14. In contrast to Ref.
?2], however, the exact RG is very simple in conception.
he basic structure is inherited from the Wilson exact RG
[1,31,1q: the bilinear functionala, generates the classical
corrections, while the linear functional generates quantum
corrections. As in Refd.11,12,14, a; has exactly the same

group of the fieldsX;, ignoring theo (if presenj. Finally, 1 8 ] >

note that each supertrace term must separately hold only A&Ae’s=§ﬁ {AAA}(S—AgeS)

totally bosonic combinations since ifX;---X, (or L L

Xq---Xyo) is fermionic, it is block off-diagonal and has 16/ e 834 s

vanishing supertrace. +§5_C({A 150 ) (44)

Similarly, in Eq. (35), in the broken phase, Y, andZ

will be A, B, C, or D. Note thatZ, can be the opposite hich shows that conditiofil3) is satisfied.

statistic partner fronZ,. Since it is a single supertrace, again  As pefore, g(A) is the renormalized coupling of the
each contribution in Eq(35) is overall bosonic, however. gyN) Yang-Mills theory carried byAl. It is defined
Single occurrences af can also appear at the ends of thehrough the renormalization condition

Wilson lines, after taking into account that these can also

(anticommute through th& functional derivatives. a1 4 L
Finally, the momentum space vertices are written as JA=ALC=C]= 2_92”] d* (Fy,)"+---, (49
n
S;(l.-.‘fx‘—f (py, ,pn)(27r)45( 2 Pi) whe.re the ellipsis stands for hig@.r dimensionlopera(mnsl
1 n =1 the ignored vacuum energyand( is the effective vacuum
expectation value defined so as to minimize the effective
- J B, 0y &1 NPSE M (x,, L xy,  potentialV() in S
A%
40 2l -o (46)
aCl._z

where all momenta are taken pointing into the vertex, and
similarly for all the other vertices including E¢35). We use
the shorthands}y(p) =S4 (p.—p) and Si3”(p) =Sk " (p,
—p) for action two-point vertices.

Cis spacetime independent and generically contains terms
proportional too and 1 [18]. We will see later that for the

purposes of this paper we can simply €eto.
The similarities mean that the general structure of the per-
turbative expansion is the same as in R¢id.,12,14: We
see from Eq(41) that S~ 1/g? at the classical levdkonsis-
Our strategy is to write down a manifestly supergaugetent with Eq.(45)], and by iteration, using Eq41), thatS
invariant flow equation, obeying the rules outlined in Sec. Il,has as expected the weak coupling expansion

1. A MANIFESTLY SU (N|N) GAUGE INVARIANT
EXACT RG
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1 charge conjugation reverses the order of terms in a super-
S= S +S+9°S -, (47)  trace, diagrammatically it corresponds to reversing the ar-
9 rows in Figs. 1-3, i.e., to mirror reflectidqi1,12.)
where S, is the classical effective actior§, the one-loop From Eq.(16) and Sec. Il E, it is trivial to see that the

correction, and so on. Substituting this expansion in(Et), ~ 6/6C terms are supergauge invariant. Under a supergauge
we see that thg8 function must also take the standard form transformation we have by Eq&1) and (36)

g . 5 OS5 :i_ 5S ad 024
’B:ZAﬂ_ﬁlg +B,9%+ - -, (48 5( 5Au{A }(MM 2Ntr 5A#'Q A str—gA#
with coefficients to be determined. From E@47) and (48), +(S=2y), (52)

we obtain the loopwise expansion of Hel): whereS« 34 stands for the same term withand. inter-

P . changed. But by Eq(20) and noA°,
AJSO: _aO[SO!SO_ZS]7 (49)

5 ) ) ST54,  6A0 ®3
Amsl:23180_2aO[SO_Svsl]+a1[SO_28]r (50)

and similarly forS and thus the tree-level terms are super-
gauge invariant. Similarly, the quantum terms are S|IN)

etc. Actually, we will find it convenient to add some simple : : .
Sauge invariant, since

guantum corrections to the supergauge invariant seed acti
S, giving it a g dependencéas we outline beloyv We also 5 . ) i 1) . 82,

need to take account of the flow g§, the coupling for the & W{AAA}JEQ) =NUsa 'AAA'SUg—Ag:O-
second SUY) carried by A,. However, neither of these K’ K “ K (54)
complications has an effect on the one-lg®function com-

putation, so they will be largely ignored here, and developedhis completes the proof that the exact RG is supergauge
fully only when we consider multiloopi21]. invariant.

S'is used to determine the form of the classical effective Note that there is no point in incorporating longitudinal
kinetic terms and the kernelﬁS(p,A). It therefore has to terms into the exact REas was done in Ref12]) because

incorporate the covariant higher derivative regularization an{;ere thﬁ man(ljfefzésupergatu?e |r.1var|ance means that they can
allow the spontaneous symmetry breaking we require. Un>¢ €XChange commutators:

like previous report§10—12, we will see that we otherwise 5S 5S

leave it almost entirely unspecified. The kern&lsre deter- \% A iC- 5C (59
mined by the requirement that after spontaneous symmetry s

breaking thg two-point vertices of the classical effective aC1as holds for any supergauge invariant functioraid thus
tion Sy and S can be set equal. As previoudl§0-12,14,  5psorbed into tha < term.

this is imposed as a useful technical device, since it allows ; g important for the working of the SU{|N) regular-

classical vertices to be immediately solved in terms of aly,4ti0n that the effective scale of spontaneous symmetry

ready known quantities. It also means that the integral of th‘Breaking is tied to the higher derivative regularization scale,
kernels defined via which thus both flow withA. This is not the typical situa-

o tion, but can be arranged to happen here by constraiing
Ad\A=—A (51 . 9
appropriately. However, as we now show, the constraint is
will play a closely similar role to that of propagators, in straightforward only if we tak€ to be dimensionless in Egs.

particular being the inverse of these two-point vertices up td41)—(43). . -
gauge transformations. Contractmg an arbltrary constant supermaiXixnto Eq.

TheC commutator terms in E434), yield o commutators (46) (for convenience; cf. Sec. II)and differentiating with
on spontaneous symmetry breaking. Sinceommutes with ~ 'espect toA, we have
A andC but anticommutes witB andD, A7+ andAS¢ allow _
for the addition of spontaneous mass creationBaand D stra—c istrxﬂJrstrXi ﬂ -0 (56)
while still allowing the solution that the two-point vertices of dN aC aC daCoN|, &
SandS, are equal. The appearance of theommutator on
both sides allows us to insist thét- —C is an invariance of We can compute the flowV/dA by setting.A=0 andC
the symmetric phase. The ford2),(43) preserves charge =C in Eq. (41). Taking the classical limivv—V,, we find
conjugation symmetrg—CT, A—— AT (using the defini- that the resulting equation simplifies dramatically. Using
tion of the supermatrix transpose in REE2]. Note that here  Egs.(49),(42),(46),(26),(29), the fact that vertices in the ac-
the transformation foC is as given so that its vacuum ex- tions with only oneA,, vanish at zero momenturtiy Lor-
pectation value is invariant under charge conjugation. Sincentz invariancg and
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5(9\7 =0
1(9_6 Y

c=C

(57)

which follows from global SUK|N) invariance(whereV is
the potential inS), we get

ac . N\ a Vo
AJ+ACC(O,A)— —StrX—-

str aclacS™ ae

=0. (59
c=C

With C dimensionless, we can and will insist that the classi-

cal vacuum expectation valu@=o. Equation(58) is then
satisfied if and only i V also has a minimum &@t=o. This

is delightful since it ensures that at the classical level, ag

least, neither action has one-poihtvertices in the broken
phase. We will thus impose

oV
ac C=o

(59

as a constraint os.

Had we not taker to be dimensionless, we would have

had to require thaEdepend on\, in order that the effective
breaking scale flows with\. Since X is general, Eq(58)
would then imply thatV cannothave a minimum also at
=C. Further analysis shows thatis then forced to violate
C+— —C symmetry in the symmetric phase.

Although conventionallyC would have dimension 1, for

these reasons we will take it to be dimensionless from no

on. [It is intriguing that the conclusion that (actually C)

must be dimensionless was reached for very different reaso
in Refs.[10,12, which are no longer necessarily applicable,

now that Eq.(55) is a symmetry,

PHYSICAL REVIEW D 67, 085003 (2003
ve(g)=vig®+vs g+

and v°7(9)=v57g%+v57g*+ - - -. (61)
However, the fact that these corrections start only at one loop
makes them already too high an order to affect the one-loop
B function calculation(This is particularly clear from the
perspective of higher loop calculatiof1].)

A. Supersowing and supersplitting in the. A sector

The inherent supersymmetry has a remarkable effect on
the gauge algebra: One can replace the usual manipulation of
structure constants and reduction to Casimirs, which be-
omes increasingly involved at higher loops, by the simple
teps(17) and (18) which always either just sow together
supertraces or split them open. These have an immediate
diagrammatic interpretation. The apparent violations present
in Egs. (22) and (23) must somehow disappear since they
would violate even global SUN|N). We first prove that this

is indeed the case.

For the case where the action contains just a single super-
trace, which will turn out to be all we need here, we could
adapt the proof given in Sec. 6.2 of RE1L8]. However, in
preparation for future work, we will give a more sophisti-
cated proof which is applicable when working with multiple
supertrace contributions. Indeed we will see that there is then
one special case, where the corrections in E22),(23) do
survive, and result in a simple supergauge invariant correc-
tion.

The corrections present in Eq22),(23) arise becausel
is constrained to be supertraceless. To compare their effect to

V¥he unconstrained cast7),(18), we momentarily “lift” A to
r?sfu" superfield.A€ by adding as part:

A A=A, + 0 AS. (62

At the quantum levelC=o can be expected to receive 47 is taken arbitrary so the map is not at all unique. We

loop corrections. Since SBK) X SU(N) invariance is left un-
broken, these corrections can only be proportionat tor 1.

similarly extend all functionals afl to the full space, simply
by replacingA with A€, e.g.,

Corrections proportional to the latter do not affect the break-

ing [but presumably through E§45) give important contri-

butions at higher loogshowever, corrections proportional to
o would result, through Eq55), in broken gauge invariance

identities that explicitly involvey and thus mix different loop

orders. We can avoid this by again using the freedom in ou

SA%Cl=S A— A% C]. (63
Again, this is a not unique procedure, as can be seen for
example in the fact that st vanishes, but the promoted
functional stt4© does not. We also introduce the projection

choice ofS to design things appropriately. We can constrainpack onto the supertraceless space,

the appearance &f one-point vertices in the broken phase

A% C strc+ A% S strCo (60)

by imposing?za as a renormalization condition. Eachis
then a nonvanishing function df, but from the analysis
above, only from one loop onward:

7SP=S, etc., (64)

JIR)

WAZ:A

which of course is unique. Functional derivatives with re-
spect to.A€ can be written as

6 _ 5 1.0
SAS T 3A, 2N 6AT

(65)

Ywe will see that the requirement thathas a mass in the broken using Eq.(20), or equivalently defined as in E(L5). 6/ 5.A¢

phase forcea“‘(0,A)#0.

thus satisfies the exact supersowing and supersplitting rela-
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tions(17),(18). In the extended space, the constrained deriva-

tive (20) can now be written in terms of an unconstrained
derivative:

) ) 1 . 1) 66
= —tr .
0A, 5Ai 2N 5Ai
Of courser and 6/ 6A“ do not commute; however,
5S 834 5S¢ 83
AA _ Adve
i, A g w{ 5 1A }5,4] (67)

since A7 is not differentiated on the right hand side. Substi-
tuting Eq.(66) or Eq.(65), and using Eq9.36) and(20), the
term in big curly braces becomes

e e
5s° {AAA}eazg_i 552'.AA. P>
SAS SAS 2N 5A, SA,
e e
1685 L, 88 .
2N 5A SAY

Now, as we explain below, ngt® symmetry is violated in
the extended space. However, tH8 derivatives in Eq(68)
do vanish after the projection. Thus E§7) becomes

;

which says precisely that the corrections in E2R) can be
ignored: exactly the same result is obtained if exact superg
sowing is used.

However, performing the same analysis on the corre
sponding quantum term in E@g43), we get a correction to
exact supersplitting, consisting of an attachment of(#ego-

point) kernel A*4(p,A) to two A points in3.:

S5SE A AA}e(sEe

SA, SA°

oS . 62
AA 9
4, A5

] (69)

@ [0 AA}eaze
SA, SA SAC SAS
1 5 . 624
——mr—— A L. (70
N sAf SA

PHYSICAL REVIEW D67, 085003 (2003

1
f=AC

FIG. 4. Graphical representation of the exact RG, wBemdS
contain only single supertraces.

Refs.[21,32 for more detail] This nontrivial constraint then
causes the coefficient to vanish whether or not the remaining
supergauge fields are extended bfo. Thus the correction
in EqQ. (70) vanishes in all cases except where the zero-point

A4 kernel attaches each end to a4t factor. Comparing
the result to the computation assuming exact supersplitting,
i.e., the first term in Eq(70), we see that instead of getting a
supergroup factor (st)?=0 we get— (1/N)stro, i.e., a su-
pergroup factor of-2.

(Note that in deriving this rule we have assumed that
vertices inX, with factors st4 have been set to zero from
the beginning[as would follow immediately from the
SU(N|N) group theory. If for some reason this was not
done then the first term in E¢70) can get a nonzero contri-
bution from the kernel attaching to this str=2N.47 point.
However, it then also appears in the correction with precisely
equal and opposite coefficient.

This supergroup factor should have been expected since
the algebra part of the attachment of a zero-point kernel to a
two-point vertex simply counts the number of bosonic de-
grees of freedom in the algebra minus the number of fermi-

onic degrees of freedom. There &8 fermionic such terms
in B, but only N>—2 in A, since bothA“ and, by noA°
symmetry, A°, are missing.

Since the correction in Eq(70) is nonvanishing only
when using up a separate gt/ factor, it is clear that the
result is still supergauge invariant in the remaining external
superfields. Furthermore, in the present case where we will
be able to work with actions with only a single supertrace,
the entire effect of the correction is a just vacuum energy
contribution, which from now on we ignore.

B. Diagrammatic interpretation

To understand when this correction is nonvanishing, we need ‘A thus also effectively satisfies the exact supersowing and

briefly to analyze the consequences of #48-symmetry in
more detail. Considering the transformatibd.A =N, in

supersplitting relation§l7) and (18). By using these equa-
tions when the covariantized kerndé5) act on the actions

Eq. (38), we see that the result must vanish ‘either via the(38), and comparing the result to the diagrammatic interpre-
supergroup algebra because the corresponding vertex cotation of the covariantized kernels and actions, Fig. 1 and

tains a factor st A, thus generating sti=0 (but strA®
#0 in the extended spager because a nontrivial constraint
exists on the corresponding vertex functiphhis is simply
that the sum over all possible valid placings.4f’s associ-

Figs. 2,3, it is clear that the exact RG is given diagrammati-
cally as in Fig. 4.
Here we have specialized to the case of interest in this

paper, whereS and S can be assumed to have only a single

ated position and Lorentz argument inside a vertex functiorsupertrace(The extension to the more general contributions

leaving other arguments alone yields zero; cf. @@1) and

Fig. 2 is obvious. Expanding the thick linegrepresenting
any number of fieldsinto a power series in the fields, we
translate the figure into individual Feynman diagrams, whose

12There are higher order constraints from separating out higheFeynman rules are given by the momentum space versions of

powers of A° but from Eq.(70) we only need the first order.

the vertices in Eqs(35 and (38) (without the symmetry
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\)/ For tree-level type attachments as in Etj/), the correc-
s - 1 4 1 tions merely ensure that the coefficient supermatriéearn(d
+ + 2 2 Y) have the appropriate statistics to make each supertrace

term totally bosonidsee Sec. Il F; but this has already been
taken into account in the Feynman rules. Thus these correc-
FIG. 5. Feynman diagram representation of attachment via 40ns have no effect at the tree leyéP].
partial supermatrixd. Y==Y. Since the classical actioB, (similarly S) has only a
single supertrace and respe€ts —C invariance in the sym-
factors.'® The points representing individual fields and their metric phase(cf. Sec. Il), upon spontaneous breaking we
associated momenta and Lorentz indices appear in all placémve the “theory space” symmetry
on a composite loop with equal weight, while respecting the

cyclic order. Of course, if one of the corresponding vertices Ce-C,
does not appear in the expansid3$) and (38), the corre-
sponding Feynman rule is zero. De-D,

It can be seen from Fig. 4 that the tree-level corrections
preserve the assumption that there is only a single supertrace
in S but that each quantum correction results in an extr
supertrace factor. Thus in genefhas terms with any num-
ber of supertraces, and already a product of two supertrac

atone Igop.lH?Wivetr, fortth;z (t:_ompl:tzafl;)zz ff tﬂéu_n(;tion, must “trap” a o (so that we get stw=2N rather than stt
¥ve Fee Eon 32500 éilcton fl uR'Ops[Slg 12 1¥O'SF).O'n Xe_.r- =0). Therefore, the nontrivial supertrace has one less
ex [see Eq(45) and later, or Refs.10-12,14]. SinceA is a%njod 2 and is thus odd under the symmefiz2).

both traceless and supertraceless, to get a nonvanishing These observations, which can be easily extended to mul-

swer bothA's must I!e in the same supertr_ace, Ieavm_g thetiple loops and supertraces, are useful in limiting the possible
other one empty of fields. In this wa effectively contains | i -oc

only a single supertrace to the order in which we are work-
ing.

g —0. (72

%he single supertrace part of the one-loop effective acBipn
has a single supertrace because it also has a supertrace void
Ot fields (cf. Sec. Il B). In order for this not to vanish it

D. (Un)broken gauge invariance

C. After spontaneous breaking Splitting Q into its fermionic and bosonic partsy

. . =d_Q andw=d (), we obtain from Eqs(4), (6), and(10)
We substituteC—C+ o, and from now on work in the the unbroken SU{) x SU(N) transformations

spontaneously broken phase. Working with fields appropriate

for the remaining SU{) X SU(N) symmetry, we break4 SA =D, w,
andC down to their bosonic and fermionic paAsB, C, and e
D as in Eq.(39). oB,=—iB, o,
The diagrammatic interpretation is still the same, except
that we now have the four flavors to scatter around the com- C=—iC- w,
posite loops, and appearancessgfwhich can be simplified
as explained in Sec. Il KSome terms are then related, for oD=—-iD"w, (73

example A2*#=ABA® although we never need to use this
explicitly.) In addition, we must recall the corrections to su-
persplitting and supersowing arising from differentiating -
only partial supermatricdd 2]. These lead to further appear- ton, and we have used the fact tfat,w]=0), and the
ances ofo which are easily computed by expressing theProken fermionic gauge transformations

partial supermatrices in terms of full supermatrices via the

where D ,=d,—iA, is the covariant derivative for the
SU(N) X SU(N) (the dot again means action by commuta-

. . B,=D,-
projectorsd.. onto the block(off-)diagonal components 0Bu=Dpu-,
1 6A,U,= - IB,U. T,
diX=§(Xi0'Xcr) (71
SD=—-iC-7+2i70,

(henceC=d,C, D=d_C, etc). Diagrammatically this sim- 8C=—iD- 1. (74)
ply amounts to corrections involving a pair ofs inserted
either side of the attachment as in Fig[12]. From the first of Eqs(73) we see thaA can have no wave

function renormalization because, if it did, then on replacing
A by Z'A, this becomessA,=D, w+(Z ¥?-1)i, o,
13This part of the analysis is the same as in R&g], except that  i.e., the gauge symmetry is violateti0—12. (Clearly this is
here we make explicit the factor of 1/2 from E¢42) and(43), in  true whether or not one tries to reparametuzalso) This is
Fig. 4 and the Feynman diagrams, and the factor a%is now  the reason for scaling the couplimgout of the connection
incorporated in the definition of the kernels (4): A then has no anomalous dimension and aplsenor-
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malizes. Since the corresponding marginal term to (€6) IV. SEED ACTION TWO-POINT VERTICES
exists forA,, there is also a coupling,. Its renormalization

il ; X : As we have already emphasized, we do not restrict the
is important for calculations in the physical sector beyond A ) ; ) )
one loop[21]. seed actiors to a particular choice. We will restrict the set of

In a similar way the first two relations of E¢74) imply possible choices, however, forAtechnicaI reasons. For ex-
that B can have no wave function renormalization, while, atample, in this paper we insist th&thas only a single super-
first surprisingly, the last two relations imply th&andD  trace. We could have taken the form of the bare action from
cannot have any wave function renormalization either. How-Ref.[18] as one choice of seed action, but it is very helpful
ever, these last two relations are a consequence of the add more general interactions than this, in order to avoid
vacuum expectation valu@= o being protected by the intro- the appearance of certain flowing classical couplings
duction of the termg60), (61). (cf. Sec. VIl A). More |mportantly, we now realize that it is

Applying these relations to the field expansions in mo-to our advantage to keep, and the forms of covariantiza-
mentum space, we get the “trivial” Ward identities which tion, general, since this guides us to an efficient procedure
relate vertices via the manifest bosonic and broken fermionigor calculation. Providing we are computing a well defined
gauge invariance. These identities provide a powerful checkhysical quantity, we are guaranteed that the result is inde-
on solutions forS, and play a crucial role in the calculation to pendent of the detailed choices.
follow. Consider first thédD two-point vertext* By Goldstone’s

Applying the unbroken gauge symmetrigs), theorem[33], D must be massless; thus by Lorentz invari-

ance and dimensions its kinetic term takes the form

q'U XA (L e, L)

8P°(p)=A2p?ic,, (77)

=UIZI§J'."'(...,p,q+r,...) o

wherec,=c(p?/A?) is a dimensionless smooth strictly posi-
—UL e Cprar ), (75 tive function (Recall from Sec. Il B that\ is the only ex-
. . y ex
plicit scale that can appear, and smoothness is a requirement

whereU stands for any element, i.e., a vertex from a cova-for all vertices) Although it is not necessafjl 2], we set the
riantized kernel or from an actioix,, andY,, are the field®\,  kinetic term to be conventionally normalized, and so restrict
B, C, or D, with a andb Lorentz indices or null as appropri- our choices t(f:(O)= 1.
ate. Geometrically, the momentum of the gauge field is Proceeding similarly, we have that in general there are
pushed forward along the direction of the Wilson line to they,,q types of AA vertex: however, by Eq(72), sﬁﬁ”:o.

next “obstruction” (with a plug or pulled back against the From Eq.(75), the AA vertex is totally transverse,
direction of the Wilson line to the previous obstructi@nd

given a minus sign[10]. If Ais at the end of a line in a wine
vertex, then eitheX or Yis Z; or Z, in the expansioni35) as
appropriate, and the momentum is pushed forwgmaled
back onto this[11,12,14. Sincec commutes withw, any o
insertion is “invisible” in this process and the momentum
is pushed forwardpulled back through thes position to the
next “real” obstruction.[This is also clear by temporarily

pSi5(p)=0. (78)

(Since stiA=0, single pointA vertices do not exist) By
dimensions and Lorentz invariance, it therefore takes the
form

GAA —
(anticommuting theo out of the way and then applying Eq. S, (P)=20,,(p)cy, (79
(79).] 5 . N
. . . whered, ,(p)=p“Jd,,— PP, is the usual transverse kinetic
(74)S|r\?v|éagg,t applying the broken supergauge symmetnesterm’ Wheh wil apgear gften, and,=c(p?/A?) is another

dimensionless smooth strictly positive function. Recall from
L xBY... Sec. lll that we set the classical two-point vertex equal to
QU G- (Pl ) this:

_oy XDoYe 2
Ullze . Cooopar,..n) So4,.(P)=ShA(p). (80)

=y XY p,g+r, ...
'”ab';'( P-4 ) This implies from the renormalization conditid@5), and
UL, ). (76) Ea. (47), _thatc(0)=1. In order to mainFain finiteness, we
must limit the large momentum behavior ofand c, for

i ) - - power law large momentum behavior as in Etfl).
X, andY, have the same interpretation as befofeandY

are the opposite statistics partn(aﬁtmsAM= B,. etc). This

time, sincer anticommutes witho, if the momentumg is “There is noDDo vertex since, by{D,o}=0 and cyclicity,
pushed backpulled forward through ac then the corre- strbDDo=-strDeD=—strDDo.

sponding term on the right hand side of E@6) changes  °But also for many other reasons: Poincamgariance, charge
sign. conjugation invariance, etc.
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This analysis shows that so far, apart from some very ° 4
basic restrictions, the introduction of the cutoff functions ® =4,
merely parametrizes the most general two-point vertices. =B
Now consider theBB vertex.(Like DD o, a BBo vertex £
o 4

cannot exis). It has a transverse part, which by dimensions
and Lorentz invariance has the same form as &) but

<4

with a possibly different cutoff function. However, for © Y
SU(NJ|N) invariance to be recovered at high energies, these ©0O=20C

cutoff functions must agree at high energies. For simplicity V=D

we just set them equalln the symmetric phas& andA of >

course have the same kinetic term. In the broken phase they ©

of course differ, for example fron&*“A¢—&A747 For the FIG. 6. Graphical representation of zero-point wines.

two kinetic terms to disagree also at high energies, these
higher point interactions witlf would have to have momen- plicity set a number of restriction®quality of cutoff func-
tum dependence in the ultraviolet so violent as to destroy theions for B andA, c(0)=1, and that the mass term f@ris
higher derivative part of the regularization of REf8].) The  simply a constart these come into play only at the end of
longitudinal part of theBB vertex is already determined by the computation and could easily be lifted.
two applications of broken fermionic gauge invariaicé):
pMASEE(p) — ZéEDa(p)' V. THE KERNELS

From Eqgs.(42) and (34), the zero-point kernels in the

pu‘SlEiD(r(p): —28PP(p). (81)  broken phase take the form

[In the first line we use cyclicity and then Lorentz invari- AAA=AAA - ABB= AAAL A T ACCACC gng
ance:S2P7(—p,p)=—S2P7(p).] Thus _ o
. B =) APP= AL+ AL (85)
S.(P)=2c, 0, (p)+4A%c, o

v wv

82

2 They will be represented graphically as in Fig. 6, and are
and, using Eq(81), determined by the requirement that the two-point vertices of
classical effective actio®, can be set equal to those &f

(cf. Sec. Il). After settingS®®=S5°, the flow equation for

By using the fact that the vertex must be overall bosonic, an@s © takes the simple form given in Fig. 7, giving
using charge conjugatiojor the (broken supegauge sym- )
metries, or sometimes just EZ2)], one may readily show AdASEUP) =S5~ P)ATCSE“(p); (86)
that all other mixed two-point vertices are disallowed.
Finally, we know from Eq.(72) that there is nadCCo thus, sinceSCC is an even function op,
vertex. The difference between tHeC and DD vertices
amounts to the addition of a new cutoff function that serves ASC: —AaA(égC)‘l (87)
to give C a mass, and thus must not vanishpat0. In

S3P7(p)=—2A%p,/c,. (83

addition at high momentum it must be subleading compared 1 1/ ox%
to theDD part in order that the symmetric phase be regained == X_C~ ’ (88)
(as with BB versusAA). For simplicity we simply choose it A" x| x+2\¢

to be constant and thus,
A where here and later we use the notatienp?/A?, the cut-
SCC(p)=A2p%c,+20A%, (84)  off terms being functions of this ratio, and the prime denotes
differentiation with respect to this.
where\ >0 is a constant parameter that is left undetermined.  Similarly, using Eq.(80), the classicalAA-point flow
This completes the parametrization of the seed actiorquation is
two-point vertices. In point of fact they are the ones that

would be obtained by setting the seed action to have the O
same form as the bare action of REf8]; however, we em- . So
phasize that the higher poift vertices will not agree with Ady - ©
the bare ones froifiL8]. These higher point vertices are con- “ A

So

strained by the symmetries of the theory and most power-

fully by Egs. (75),(76). By iterative use of these identities

and the flow equation&49),(50), we will be able to reduce

the complete calculation g8, to a dependence only on the  FIG. 7. CCtree-level equation. On@ has momenturp and the
two-point vertices above. In this way, although we for sim-other —p.
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FIG. 8. BB tree-level equation.

AAS(P) =S50 (P AL SI(p). (89)
If Eq. (79) were invertible,A** would also take the form
(87). Instead, substituting Eq479) we get

AM=cl/A2, (90)

The BB, DD, and BDo classical flow equations are

coupled(see, e.g., Fig.)8
<BB__ cBB A BB&BB_ &BDo A DD&GBDo
Ad\S,, =S, A"S,, +S,TAPPS)EY,
<BDo_ cBB A BB&BDo |, oBDo A DD&DD
Aa,SEP7=S38ABBSEP7 4+ SPDIAPDEPD,

A, &P = §BD7 \BBEBDG | DDA DDEPD.
(91

wherep is the momentum argument in all the above terms.
These three equations are of course not independent: the last
two are readily seen to follow from the first, on using the

broken gauge transformatiof®l). By substituting Eqs(82)

and(83) in the first(and isolating the transverse part or oth-

erwise, it is straightforward to solve for the kernels:

XCC

. - 1
ABB= — A9, (2p%c+4A%c) 1=—| =——
A(2p ) A%\ xe+2¢
(92
. c 4 1 1) 2x%?\’
APP=— A g, —— ABB=— o )
A%p?] P A" X\ xc+2c
(93

From Eq.(85), the original kernels for Eqg42), (43) and
(34) are thus given by Eq$88),(90), and

. 1 [ 2c¢?
AM=— | ——— 94
m A%\ xe+2¢ 59
e 1 1) 4x%c (\¢*-c)
Am:F — pos pos . (95)
X\ (xc+2c)(x+2\cC)

Importantly, these mass-term type correctionsAté” and
A, which behave as expected from E¢82) and (84),
decay much faster than Eq90) and(88), thus ensuring that
at high momentunp the exact RG(41) goes over to one
appropriate for the symmetric phase of the SI{) theory.

PHYSICAL REVIEW D67, 085003 (2003

= 1

) ) A
= - Adx Y = °
o o I
(o]

FIG. 9. C integrated wine. In this case there is no remainder.

(34), which destroy the supertrace mechanism, here can be
taken to be regularized by the covariant higher derivatives
alone.

VI. THE INTEGRATED KERNELS

By Egs.(51) and (87), we immediately see that theéC
integrated kernel is just the inverse kinetic term:

1 c
ACCSCC_ 1, ACCo — _
S A% x4+ 22T

(96)

(choosing the integration constant here and later so that the
“effective propagator” vanishes gs— ). We represent the
integrated wine as in Fig. 6, but with a line down its spine,
and thus Eq(96) is represented diagrammatically as in Fig.

. Integrating Eq.(90), we have

P on2" (97)

Despite its similarity to a regularized Feynman propagator,
we stress that no gauge fixing has taken place. Indeed this
“effective propagator” is the inverse of the classic®h ki-

netic term only in the transverse space:

An PP,
My(p)_a/.LV__’ur'

D (98)

AA
Ap
Since in practiceA”* will be connected to am\ point on
some other vertex, the remainder term above will simply
generate gauge transformations via EZp). This observa-
tion proves crucial in the “magic” of the calculation to fol-
low.
The integrals via Eq(51) of Eqgs.(92) and(93) are also
immediate, and thus we find

ABBZLZ ~cc
2A° xe+2¢’
1 ¢

APD—= — . 99
A* xe+2¢ 9

Note that, despite the classidalkinetic term being that of a
masslesgGoldstone field, the D effective propagator, like
that of C and B (but unlike A), has no massless pole. Of
course this is nothing but the Higgs mechanism, arising here
from the B and D two-point vertices being intimately en-

These corrections thus behave as required by the discussitengled via Eq.(91). Similarly to the above reasoning, the

below Eq.(11); in particular, theC (+ o) decorations of Eq.

pair of effective propagator®9) would form the inverse of
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XX

FIG. 10. Wine attachment tbo.

the matrix of these fermionic two-point vertices, if this ma-

trix were invertible. It is not, for the same reason that these

flows are necessarily entangle:and D o rotate into each
other under the broken supergauge transformati@6s

Five dimensions in the fermionic sector

We thus need to consid& andD o together. We writeB
andD o as elements of a Euclidean five-dimensional ve€tor

Fuw=(B,, Do). (100
Introducing the “five-momentum”
am=(d,,—2), (10

we see from Eqs(76) and (81) that the matrixSi(p)
=3 F(p,—p) is going to be transverse. Indeed, defining

S SP(p)

ASFF — X R ,
R B s

(102
where we have use&>78(p)=—38P7(p) and SP7P7=
—3PP we have

PuSHin(P) = SN (P) (= p)n=0. (103

PHYSICAL REVIEW D 67, 085003 (2003

sector can be written in this language, where they take a
compact form very similar in appearance to the correspond-
ing expressions foA and C. For example, from Eq(91),

A \Si=SAARESES [cf. Egs.(86) and (89)], and from

Eq. (76), broken fermionic gauge transformations now map

exclusively to lower point vertices dsompare Eq(75)]

. XFY---

X Pt L) =U R

)

where on the elementary fields=A,B,C,D, X=X=X is
just the opposite statistics partner. SimilarInyM
=(A,,Co), but Fy=(A,,—Co), the extra sign being
picked up byr anticommuting througlr. As for Eq. (76),
there are compensating signs on the right hand side for any
other o that the momentum is pushed through.

Finally, multiplying Eqs.(102 and(105 one readily finds
the pair[related by transposition as in E{.04)]

qVu: p.q

o )=UR L ptgr (106)

SRE(PIAST(P) = Srr— PRPT, (107
ARS(P)SSH(P)=Sr1— (—P)r(—P) T,
(108
where introducing the useful shorthands
c
f=— and g=— , (109
Xc+2c Xc+2c
we define a dual five-momentupj, as follows:
pu=(fp./A% —g). (110

Note that since §+xf=1, we havep;,,py=1, and thus

Note that the argument of the five-momentum is that of theEqS_ (107 and (108 are projectors onto the appropriate

four-momentum inflow to the corresponding pothand by
cyclicity the matrix is of course symmetric in this sense:

SN =S(—p). (104

Wine attachments t® must now attach t . The result is

an extra factor of £ )" s, wheref ,=0(1) if either side of

the wine is bosoni¢fermionic), as is clear from Fig. 10.
Thus the fermionic effective propagatd@9) collect into

BB
ABB5,, 0

0 _A'[))D)! (105

AE/IFN(p):<

and A}/ is simply the differential of this, according to Eq.
(51). Apart from these extra factor@nd the need to add
five-indicesM and N under the flavor labe)sthe tensorial

transverse space, just as in E8). Furthermore, we see
that, since in practica™F will be connected to ai point on
some other vertex, the remainder from unity in EG€7),
(108 always generates supergauge transformations via Eg.
(106).

VIl. GUARANTEEING UNIVERSALITY OF B, (AND B,)

We now review in this context, the standard argument for
why we should expect to get the same value g and
indeedB,, in the B8 function (48) as in other methods, de-
spite the fact that our renormalization schemed6A) dif-
fers from that of the corresponding coupliggu—A) de-
fined by these other methodéWe note that the Gribov
problem[15], which in truth invalidates these methods since
they proceed by gauge fixing, is not expected to alter purely

expansion$35) and(38) map unchanged to five-dimensional perturbative results.

notation. In this way, all equations relating to the fermionic

In principle we can extract from Ed47), by computing
quantum corrections, the value of the other coupling as a
function of ours, and thus match the two couplings perturba-

Note that this respects charge conjugation symmetry sincéively:

Fu—>—Fh
YNote that - p)y# — P -

1/92=1/g%+ y+0(g?), (112
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where the classical agreement is guaranteed by the standaaffected vertices that form part of th@, calculation. The
normalizations of the fields and kinetic term in E45), after  flow follows from Eg. (49), and is given by the first four
scaling g back to its usual position, angl is a one-loop diagrams on the right hand side of Fig. 13 below after re-
matching coefficient. Differentiating with respect fo and  placing the star by an open circle. The resulting equation, up
using Eq.(48), the corresponding function forg, and Eq. 0 changes of notation, is precisely equivalent to @@A
(111), we have vertex in Ref[lZ]

~ o~ AodA4 . . N
Bit+ B, 9P=B1+ B, gP+Ad\y+O(gh). (112 ss‘cf<p,q,r>=—fA A_ll{sﬁcc(p,q,r)mgcsgc

Since vy is dimensionless, it cannot depend upbn there

A CCaCC cACC A AAGAA
being no other scale to form the necessary dimensionless +AFOSFO+ S %(p,a,r) ALAS ()

combination. Thus\d,y=0 in Eg. (112, and we immedi- +&CCAACC iy q)8ECY+ A2(g—T)
ately recover the standard facts tigat= 8, and 3,= .. . B ° .
Clearly this argument fails if some other scale has been +¢h(a2+12)(r—q) ,+ v*°q,0,.(p),

introduced, for example, the standard arbitrary finite physical
scaleu, or if other running couplings get introducedfter

solving for their flows, i.e., solving their correspondiy \yhere all the terms inside the curly brackets are to be under-
functions, this becomes equivalent to the first failure since by

dimensional transmutation a new finite physical scale ha%tgohdaez t:(;r:)g le;znecttjlciP]th\fA}e(rc]:Z[nAiL,t:ng(t:gEtr?e(gczWHeerSation
been introducedl. Importantly, Ad,y can then have an g 9 a

0O(g?) one-loop contribution or in extreme cases even a treel_mmed|ately with respect ta, but to make explicit the di-

level O(g?) contrbution. From Eq(112 one sees that a eOREee T8 Fue S PE RET TN T e
one-loop contribution to the running of destroysB, agree- 9 ' ! P

ment, while a tree-level running would even mody. pression is finite, so the continuum limity;—c can actually
be safely taken.

As we will see shortly, a generi§, including the simple The first two terms in the integration constant are forced
form used for the bare action in RéfL8], can lead to such |, gauge invariancd12]. Indeed, settingA=A, in Eq.
tree-level corrections. Fortunately, there is also an infinitetllS)' we see that the integration constant is nothing but the
class of seed actions that cannot. As with the earlier CONACCvertex of the classical bare acti&h| s » . Its longitu-
straints discussed, since we never speéfyit is not the ?
solution that matters, only knowing that one exists.

To get agreement with the standg@dunction at the two- pﬂsécc(p q,r)=38cc—-&cc, (114
loop level, one needs to confirm that there are no further poom ' d
couplings hidden that run at one loop, and to take into acThis equation is readily solved At=A,, by expanding both
count contributions frong,(A). This can be dong21]. sides as a power series iy, and noting that all negative

Even with a nonvanishing.d, y, one could still recover powers can be discardé® Equivalently, and more simply,
the usual function coefficients, by defining a standard low the longitudinal terms follow from any covariantization of
energy—or infrared—coupling(w) at some scalex<A, Eqg.(84), e.g.,
this coupling being distinguished from the “ultraviolet” cou- 1
pling g(A) in the effective actiorS, [34,35. We want to - 4 472122 R272 2
avoid this because the introduction @fwould destroy, or at 2 strf ™ C{2M A= Ag Dy, +Co[ DI+ O(L/AQCH - - -
least obscure, the power and elegance of self-simil 28} (115
(cf. Sec. Il B.

(113

dinal part follows from Eqs(75) and(84), which implies

(Recall thatD , is d,—iA, and acts by commutation. The
ellipsis refers to terms not containir@CA vertices)

The final term in the integration constant in E313),

The incorporation of Pauli-Villars type fields directly into q,[,,(p), is the unique transverse combination that is al-
an exact RG causes some novel classical divergences in thmved by dimensionsi.e., is not accompanied by a negative
A integrals defining the classical vertices, just as it did inpower of Ay, and importantly satisfies all the other symme-
Refs.[10,12. They can be cancelled by appropriate choicesries, specifically charge conjugation and AS-symmetry,
of integration constant. However, generically this results inand as such has an undetermiriéignensionlesscoefficient:
introducing another finite scaje, even at the classical level, y"C. The fact that it is undetermined does not matter: the
again just as it did in Refl12]. The resulting loss of self- whole calculation is independent of such details. However,
similarity leads to nonuniversal contributions creeping in at by the same tokeg”“C, the coefficient of this momentum
particular point in the calculation g8, that follows. Indeed, term in the small momenturfor derivative expansion of the
we will see there that it is precisely the classical dependence
on u that causes the problem.

To show how this arises, and how we can avoid it, con- ®The coefficients are purely local, i.e., polynomials in momenta,
sider the classicaCCA vertex. This is one of a number of with determined dimensiofcf. Sec. Il B.

Ensuring no running couplings at the tree level
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integrand in Eq(113), is also dimensionless; thus it is inde-

pendent ofA;, and thus yields- ZACIn(A,/A) on integra- 4810 (p) + O%) = 2
tion. In order to ensure the finiteness of E413), we are g F=AGF
forced to introduce a new finite physical scale by including

ACCIN(Ag/w) in the integration constantCC.

An alternative to introducinge directly is to allowy*¢¢
to become a logarithmically running coupling*“(A) at
the classical level, correcting the flow to take account of its'emove the dlvergence associated with these marginal direc-
B function. However, as we explained in the previous sections by tunmgsXl *n in the same direction.
tion, this is in the end equivalent and still results in the loss
of universality for3;.

In general, we see that we may be forced to introdu e
the classical level wherever a purely local vertex with dimen-
sionless coupling can be constructed, which is transverse, in
the sense that it is unrelated to lower point vertices via either The whole of the paper up to this point has been con-
bosonic gauge invariancé€r5), or the broken fermionic cerned with setting up and justifying the formalism we will
gauge invarianc¢r76). now use. We can now finally turn to computation itself.

We note that the problem is associated with the Pauli- The renormalization conditioit45) constrains the two-
Villars sector because these terms necessarily have a divek-point vertices, and by Eq$79) and (80) this constraint is
gent classical action as— o, at least in so far as they have already saturated at the tree level:
divergent masses. There is a problem with this only for the
generatedogarithmic divergences along the marginal direc-
tions however, whose cancellation necessarily requires intro-
ducing a new finite physical scale. There are, however, infi-

FIG. 11. Graphical representation of the equationger

In this way, we completely avoid introducing (equiva-
lently, marginal running couplingsat the classical level.

VIIl. THE CALCULATION

2
SHn(p)+Sha7(p)= ;Dw<p)+0<p3>

nitely many of these directions because we can have any

number ofC points, sinceC is dimensionless.

The solution is to tune the corresponding termsSinin-
deed, by noting from Eq(87) that ACACC= A 9, InS°C and
thus equals 4 at zero momentum, we get from @q3) that
the shift

1
=S Prord). 117
It follows that all higher loop contributionsS)”, ,(p)
+$,%%(p) must vanish aD(p?). From the discussion be-

low Eq (72), the one-loop contribution is purely of form
AA(r

Si'., - [Thus it is already clear thaf, has the opposite sign
1, consistent with the wrong sign action in Ed5) [12].
This will be fully developed in Ref[21].] Specializing the
one-loop flow equations0) to two A’s andO(p?), and using
Eqg. (80), we see that it collapses to the purely algebraic
relation[11,12,14

—2B:155%,.,(p)

(30=S,—25). Diagrammatically, this takes the form of Fig.
Xn 11, after including the factor 2 from the two different super-
= as its highest pomS contribution, con- traces thatAA can go into(cf. the end of Sec. Il B and a
tracted via kernels into all the appropriate two-point verticeSactor of 2 from adding the contribution, — — p,, (which is
(viz., AXiXi§%Xi) [11,17, and since thesd*XiS%*i terms  equal by Lorentz invariance; whenever such terms arise we
are nonvanishing at zero momentum precisely wKeiis a  will typically combine then).

massive Pauli-Villars field, it follows that we can always Performing theo algebra as in Fig. 5, we thus find

N A 1
§.°%p.a.n)—>8,%% - 2 "q,0au(p) (116

precisely cancels the coefficient qf,[],,(p) in the inte-
grand, thus removing the logarithmic divergence fromAhe
integral.

Since the structure of the classical row equatiofs) is
such that the flow of every verteﬁg< ; has the corre-

)+0(pY)=a,[20]50°(p) (118

spondlngsx1

—4B10,,,(p)+O(p%)=2N f Gn )4{ACC26‘;‘EC< =Pk, = k) +ALC(p —k—p. k) EE A~ pup+k, — )+ AR CC

X(p,— P — K KZFEK) +ARAS oo™ (K, —k,p,— p) + AAA(p; —k—p,K) o0 (—p.p+K,—K)
+AMAAD, = pi =k K) S o0 (K) = AGR(K) S oarad P, — p.k, — k) — AL ER(pi —k—p,k)
XS ored —p.p+k,—K) = ASER(p, —p; —kk) SERJK)}. (119
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FIG. 12. Flow of the tree-level
AAFF vertex.F is represented by

the star.
Although extrag’s appear via Fig. 5, the part that contributes A. Diagrammatic analysis
from the o trapped in the empty supertra¢ghus giving The similarity goes deeper. Tlietype classical four-point

stro=2N) ~ultimately comes from the breaking of yertex in Eq.(119 is determined by the flow equation given
SU(N|N), i.e., from shiftingC, since otherwise the fermi- giagrammatically in Fig. 12, while the type classical three-
onic and boso_mc _attac_hme_nts would just give eq_ual and OMoint vertex appearing in Eq(119) and Fig. 12 is expressed
posite o contributions in Fig. 5, combining to give a full through the flow equation of Fig. 13. The correspondig

supermatrix differential. Indeed, at high momentkexact () sector diagrams are given simply by replacing the star
SU(N|N) invariance is recovered, resulting in regularizationyith a filled (empty circle.

of Eq. (119, since theF sector then cancels t& C sector.  Thjs works because all cyclically allowed configurations
Recall that we exclude diagrams where the wine bites it$f the external fields appear in Fig. 12 and Fig. 13, after
own tail, as in Eq(37). In fact such terms vanish fg8; in which the flavor of the point to which the wine attaches is
any case, since the attachments are via aAubr C in Eq.  uniquely determined by the requirement that each component
(34) with no possibility of trapping an extra, thus yielding  vertex has an even number of stars, so as to be overall
str1=0. bosonic. For theA sector the fact that there is just one wine
The B; computation splits into one-loop contributions attachment for each external configuration is enough to en-
from the three sectorG,A, andF, each of which appears in sure that the mapping works. For tBesector, the symmetry
Eq. (119 in almost identical form. Thus apart from the sign, (72) ensures that each vertex also has an even number of
we get theA sector terms from th& sector simply by re- open circles, which thus go uniquely where the stars had
placingF by A, andR,S by «, 8, recognizing that the wines gone before. There are a couple of provisos, however. First,
just haves,z as a factor. Similarly, we get the contribution  all the wines that attach via @ at one end and aA at the
from the F contribution byF—C, droppingS andR alto-  other map undeff— C to wines that do not exist in E§42).
gether. This does not matter: We can simply assign them a zero
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. u
7
ABA = + + 4
I 7 .
H FIG. 15. One of the pair cancelling 2S*FF in Fig. 11. The
ellipsis represents the gauge remainder terms.
+ + +
» ky—k, /k?, and of course in th€ sector these terms map to
zerg. This all means that we have an added bonus: Except
Iy

for these final stages, we need only present Fheector
computation and then just map the result to the other two
sectors.

value, and carry these vanishing terms through the computfﬁ_ SubsutufungEO:SO—ZS in Fig. 11, we start with the
tion. [There is no fundamental reason for their nonappear- |ghes§ point vertex and convert % part to a totalA
ance: recall that we exchanged such terms for simpler termd€rivative and remainder, using E&1):

using Eq.(55). Also note that actually the attachment here

FIG. 13. Flow equation for the tree-levEFA vertex.

AR S (P, —p.k,—k)

is exclusively aB. When we take this into account, it will be uvR

clear that the term only has a mapping to keector] Sec- = AdJAFE(KSPAFE (b —p k. —k

ond, Eq.(72) in fact also allows an odd number 6fs per ALAsR(IOSoyrl P = Pk, k)]

classical vertex in th€ sector, providing that the vertex also +ASRKIAGLSHTES P, — Pk, —K), (122

has ao. But in the case of the wines, these terms vanish by

Eq. (34) since thec commutes with the bosonid or C  as shown diagrammatically in Fig. 14.

derivative, while the only action vertex that could contribute  In the first term, we will put the\.d, outside thek inte-

is AACo [ACo being already excluded by symmetries gral. If the integral were convergent, the part we want,
(cf. Sec. IV} and all other possibilities being too high orfler namely, theO(p?) part, would then vanish since it is a di-

However, by charge conjugation invariance mensionless function of the only scale After adding in the
AG AACy A and C sectors, the integral will only have an infrared di-
S (p.a.,n) =801 (a,p.r), (120  vergence, which\ 3, converts to a universal contribution.

In the second term we can now exchange the four-point
while so long as we insist on a single supertrace, by4fo- vertex for lower point vertices via Fig. 12: the generated

symmetry, four-point S vertices must cancel the 25,7FE in Eq. (119
in order for the result to be universal. This must be so be-

causeS*FF can contain arbitrary transverse terms, which

hus th I sheallowi itiol thus have no relation to lower point vertices. Such a cancel-
thus the vertex actually vanishe@llowing multiple super- lation is precisely what we find from the first two diagrams

trace terms, it can be shown that the part contributingfo ;. Fig. 12, on using Eq(108), as we can see from Fig. 15.
vanishes after ensuring no running classical couplings as ifthe remainder term from E4L08 generates a gauge trans-
Sec. VIIA) _ _ formation via Eq.(106) and thus also maps to lower point
We can map the effective propagator relatiofi®7),  \erices. We will return to these gauge remainder terms later.
(108) in an obvious way to the corresponding relation Aor We are still left with two terms containing a four-point
viz. Eq. (98), andC, viz. Eq. (96), leaving the gauge re- \eney that of Fig. 16, as generated by the next two diagrams
mainder terms in the case &fand A till last (where theA i, Fig 12 However now note, as we will frequently, that the
sector expression follows from the maky—K,,  yo-point A vertex is alreadyO(p?), by gauge invariance
[cf. Eq. (79)]. Therefore the only part that can contribute to
Eqg. (119 is wherep is set to zero in the rest of the expres-

Sy (p,a.r)+ S0 “(q,p,r)=0; (121)

H v

U

7 v 7] v
Ao,
=—A0Ox + “ k A ;
FIG. 16. The two remaining terms containing a four-point
FIG. 14. The first step in the calculation 8f. vertex.
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v_ W

=

VAN
[}
[ J
N . S
N o FIG. 19. Cancellation of-S™F in Fig. 11.
X

Lorentz invariance, the first diagram has only odd powers of
p, its dependence coming fro®2%(p,—p,0), while the

nra
sion. After using Lorentz invariance to exchangg and ~ second diagram is also too high order sinkg"4(0;0,0)
—p, in the second diagram, this results in a contribution =0. Finally, the last term from Fig. 12 is obvious®(p?).
After using Eqs(107),(108), a mirror pair(i.e., related by
—Agﬁ(k)[AMQEE(O,Ok,—k) mirror reflection, equivalent to charge conjugajiarancel
A o the seed action part &5"", as shown in Fig. 18, generating
+S’;ﬁ,§§(0,0k,—k)]A§AS’;\f(p) (123 further gauge remainder terms. One term cancels the final
. . . StF=—5F term in Eq.(119), as shown in Fig. 19. Actually,
wittﬁié?éer%r:rgirl1rt]ulr5nq%/v1§)<.:§: Sicr)r?nligsvvi\;e r;al:veeam\?:rlinatnce here there is no point in carrying forward the gauge remain-
Using Eq.(75) twice 6ver we havg gaug ‘der, since it is clear by Eq§108) and(103), and by Eqs(98)
: ’ and (78), that it vanishes for botk and A sectors.
S AAFF v &FF SAFF From the second line of Fig. 12, there are three terms
Surs(~ € €K k) "€”=Sag(k+€) =S rs( 0K, —k) € generated where the integrateo? kernel attaches to two differ-
_"Sglé(k)' (124) ent three-point vertice§. These are either jlvertices, or
one Sy vertex and ones vertex. They simplify after intro-
Thus, Taylor expanding t0(e?), we determine the symmet- ducing a second integrated kernel into Be-S, term, as in

FIG. 17. These diagrams do not contributeCdp?).

ric part Fig. 20 (the third step following after using,«< —p, and
relabelling the loop momentum
S)ARE(0,0k, —k) + S)AFE(0,0k, — k) = 0¥ 7 SEE(K). The totalA derivative will be considered along with that

(125 of Fig. 14. The other two terms are evaluated by substituting
Fig. 13 and itsp,,—~ —p, partner.
Substituting this in Eq(123) we reduce Fig. 16 to an expres-  Again, making use of the effective propagator relations
sion depending only on seed action two-point vertices ang107),(108, many cancellations occur. Thus the last two
their associated zero-point kerngistegrated or otherwige  terms on the first line of Fig. 18and itsp,— —p,, partney

We will refer to such terms as “potentially universal,” since req it in cancelling the mixe&—S, terms as illustrated in
the seed action two-point vertices and the kernels denvegig 21. Moreover, thé&, part of SAFF | the last term left in
. . y 0 )

fror_Tl; tge? a{ﬁ the OE'{ tlt;lngs.that vlvgthavet EXptlrl]Clily pre- Eqg. (119, is cancelled by the first term on the second line of
scribed. or the result to be universal, it must be that we ca ig. 13, as can be seen from Fig. Zafter adding the
reduce everything to such potentially universal terms or to

o . . . Pu——p, partney. The last two terms in Fig. 13 result in
total A derivatives as in Eq122. In Furn, potentllally_ uni diagrams of the form shown in Fig. 23. These cancel two
versal terms must, and do, collect into totaderivatives,

whose boundary terms on integration, are universal as a ré;_orrespondmg terms generated by Fig. 12, where She

sult of restrictions on the large momentum behavior, e.g., ENrée-point vertex is replaced by tt& three-point vertex.
(1), and the renormalization conditidd5). [Actually, since he cancellation occurs because the top lobe in Fig. 23 is
Afccy, by Eq.(90), and 1£) is never produced, terms

such as Eq(123) are universal only because they combine to ¥ @ N_ V..A.‘?u
give boundary terms that vanigh. ~' Loy

Proceeding with the remaining terms in Fig. 12, we gen-
erate many further reductions similar to the ones above.

There are eight terms that immediately have vanishing
O(p?) component. Two examples are shown in Fig. 17. By

B ey A%
v fh
-1 ——
b =)
i — P
FIG. 18. One of the pair cancelling 25*FF in Fig. 11. FIG. 20. Evaluating the “smiling frog” diagrams.
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FIG. 21. Cancellation of the “winking smiling frog” diagrams. FIG. 22. One of a pair canceling t@p[z term in Fig. 11.

alreadyO(p?), and thus in the bottom lobe, by E5) and AL Rk =k, —p)=—ASRA(p.k; —k,—p)
equality of S, and S two-points, what actually counts is p
qualiy ofSo P Y —ARN (K, =k, —p),

. . AR Aa(P.K =k, =)= ARy ha(k,pi =k, —p),
FR0k, —k) =SS (k) =SR50k,—k). (126 i “’ (127)
etc., we get a contribution to the integrand in ELL9 of the

form
After combining viap,« —p,, we are left with just the

diagram generated by the first term in Fig. 13, namely, Fig. zéﬁﬁ(p)AﬁgyFRﬁ(o,k;_k,o)_ (128
24, all the other terms from Fig. 13 having been dealt with. It ) ’

is easy to see by gauge invariance that this is potentialliNow, since there is na“* kernel, we have by Eq34)
universal, i.e., depends only on two-point seed action verti-

ces and the zero-point kernefin fact, just as in Fig. 16, this ASRRA(0K; —k,00=A%%PA0 k; —k,0) (129
containsc), and must combine to give a vanishing contribu- CAAAA
tion.) =AL "(0k;—k0. (130

The only remaining terms to be processed are those gemsy replacingF as described below E¢119), we see by the
erated by the first four diagrams on the last line of Fig. 12.53me argument that there is no correspondinggctor con-
We easily see, however, that up to the gauge remaindergipution, but by Eq.(130) there is an equal and opposite
which as above we set aside, all these correspond to wingector contribution. Thus the wine-biting-its-tail diagrams
biting-its-tail diagrams and are thus annihilated by BY).  exactly cancel here in any case, as already explained below
If we ignore this constraint, then, on tidying up using theEq. (119.
coincident line identitie$11,12, Collecting the results, we have

d*k
=480, (0)+ 0P =N [ - AGLL2ARHOSIATEL P, ~ ok, K

— ASRKAT(k—p)SHrF(p.k—p, — K) Shiu(—p.k,p—K)]

4 n “ .
~ 200 va PILASR(K) 7K a8 SRE(K) — ATR(K) AET(K) 0% SRE(K) a5 SFh (k) ]
+AAFN (KK KRS ORE (D, — p.k, —K) + 4A0 F5(p; — k k= p)KikeSORG(— p. K. p— k) —4SHTE
(—p.k,p= k) S T(p.k—p, k) AFG(p— K) AR (K k{kr— 2S5 k(. k—p, —k)
X[2A085(=P;p— KK (= K) (= K) 1+ A= Pk, p—k) (= K) [ (=K) (k= p){(k—p)g]

—80,,(p)AGA(K;0,— )k krdk SEF(K) A5 (k) — 803, (p)k keALEBAO K —k,0) (. (131)

uR

The first two lines contain the totdl derivative terms. The next line contains the only potentially universal terms so far. There
then follow in the order generated above all the gauge remainder téimgarticular, the last term is all that is left from the
diagrams above that generated wine-biting-its-tail diagrams.

°Terms related by charge conjugatiqy,« —p,, and relabeling the loop momentum have been combined.
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v
AN
L]
= @ + o FIG. 24. A potentially universal term generated by Fig. 13.
So quired. Finally, the overall\ derivative is just as one would
expect to convert the A divergent result to a contribution
B to the 8 function[20].

As shown in Eq.(132, we now exchange the order of
Ad, and thek integral. Pulling out the(p?) part, the inte-
gral is actually dimensionless. Since the only explicit scale is

Note that, up until now, all the essential steps have beer:, if the integral were convergent it would have to be a
performed at a totally diagrammatic lev8lindeed, it is far ~ constant; thus Eq(132 combined with theB,C,D sectors
more efficient and elegant to do so, not the least because thgould vanish. In fact the momentum integral is not well
diagrams make very clear the relations due to cyclicity andlefined only because the second term inAhgector has an
charge conjugatiorfor mirror symmetry, and are already infrared divergence. We can still keeyy, outside if we use
identical if the algebraic expressions are equal after relabefhe standard trick of introducing an infrared cutéff-e in
ling the loop momentum. It is possible to evaluate the gaugdis term, takinge—0 at the end. Now this term, and this
transformations in Eq(131) also at this leve[11,17, so it €M only, depends on, throughA/e. Therefore it suffices
may be possible to push these diagrammatic techniques fulQ @nalyze its infrared behavior, replacing)y with —ed..
ther. However, we now have to take account of the differ- NOte that theS, vertices have Taylor expansions in small
ences between th& C, andF sectors. In this paper, we will momenta(cf. Sec. Il B and theB, C, andD effective propa-

. . . ators(96),(99), are regular ak—0, while theA effective
pursue the remainder of the analysis at the level of equaﬂon%‘ropagato@?) has an infrared double pole. Thus only in the

A sector is there a problem. The result is integrable in the
first term in EqQ.(132) but not in the second, once expanded

) ) i to orderp?. However, whiled, is inside the integral there is

~ We start by computing th©(p) part of the first two  4c1yally no infrared divergence, it being ameliorated via Eq.
I|nes_|n Eq.(lSl).These two terms seem to have the clear.esggo) or the flow equations for the three-point vertices,
physical interpretation. They both depend only on effectivegquivalently to the derivation below, because the only terms
propagators and the effective actiBiwhich, unlike the seed i, the three-point vertices that contribute are independent of
action, can be expected to contain the real phyf2H). A One can then confirm that the above limait-0 gives the
Their diagramgsee Fig. 14 and Fig. 2@re actually just the  same answer. Of course the same answer is also obtained by

usual tadpole and self-energy Feynman graphs, respectivelysing dimensional regularization or by converting this part to
From the translations below Eq119) we see that thed  , iotal derivative irk? as e.g., in Ref[20].

FIG. 23. Further diagrams from Fig. 13.

B. The total A derivative contribution

sector looks as Fhough it is in the Feynman ga(ajthough If we had not taken care to exclude the logarithmic clas-
ghosts are missing sical divergences in Sec. VII A, it is at this point that we
d%Kk would have picked up extra contributions since Bw&,D
NA@AJ ———[ —2ARASHAAA (p,—p,k, —k) parts of the integral can then be functions\dfu. Worse, we
(2m) . have confirmed that if these parts are evaluated first, using
AAA AA QAAA n heredldA=—dldu, the resultingk integrals are nonuniver-
AL A pSouap(Pk =P, k) sal, as may be expected from the general arguments in Sec.
X Spra (= p.k,p—K) o) (132 VII. However, in Ref.[12], where very similar classicak

dependent terms were not excluded, the right answer was
obtained by keeping an upper limity in the A integrals as
while theF andC sectors via Eqg96) and(99) give copies in EqQ.(113), and in fact for these terms sending— o only
with ~A massive effective propagators, which are the ex-after thek integral had been performed. It thus appears that,
pected Pauli-Villars regularizing terms. Indeed, if the five-if the logarithmic classical divergences are not excluded,
dimensional notation is expanded using Et00), we see then the result actually depends on the order in which the
that apart from the minus sign, tiBesector looks identical in  ultraviolet limits on theA andk integrals are performed.
form to Eq. (132). Similarly, since the sign in Eq(105 Returning to the main analysis, we note that we are inter-
cancels on translating the vertices backMaDD and ADD  ested in expanding ip and then ink. ;\VAX is regular in
form, the D sector has identical appearance, but oppositemall momenta and the lowest order term in its momentum
sign, to theC sector. Since we have ensured that at highexpansion, with one momentum, is fixed uniquely by Eq.
momentumk the B (D) terms do actually equal tha (C) (45) to be the standard Feynman gluon vertex. If we take the
terms, we see that the regularization is incorporated as rgy part in both three-point vertices in E(L32), this already
saturates the ordgs? required. Furthermore, we then must
take only the 1/R? parts of the effective propagators in order
205ee Ref[32] for some of the algebraic expressions. to get an infrared divergence. If we takekgart from the
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three-point vertices, then in order to maintain an infraredC sector also gives a purely transverse contribution, buFthe
divergence we must use one of the more divergent termsector yields a longitudinal part, which is precisely the one in
from the p expansion of 1/ —p)?, thus again saturating Eq. (133.

the expression @ (p?). Thus we see that the only part that  The full understanding of the apparent Feynman gauge in
contributes to the total derivative terms in Eq(131) is  the total derivative tern{133) is closely related. It comes
universal[as a consequence of Hd5)], and of precisely the from the absence of longitudinal terms in the RG equation,
same form as the standard gluonic self-energy term in thghich were not included, as by supergauge invariance they

Feynman gauge. We have could be exchanged fa? commutatorgcf. Eq. (55)]. Had
4K 1 we introduced them, e.g., as the term
" P
NE&EJE(ZW)A { k4 &BD /La(p)&ﬁlj Va(p) 1 5S . S g
_Vp.' {AL}AVV' YR (135)
k-p)? p? 2 SA, oA,
4Bl PO (080,40 . N .
k8 K8 |“n—aBA v —ap in Eqg. (42) [and correspondingly in E@43)], the A effective

propagator would change to include the characteristic longi-

k- i i '
+2k—6p[(7,|i|ja/3(k)f9f3[]w(p) tudinal dependence in the general gauge, #ith

(136

A A—i }—1+o 2
L(pl )_p4 g (X)

+azmﬂa<p>atmaﬁ(k>]]

parametrizing it, generalizing the usual gauge fixing param-
__N 59 25 _ 2_2 (133 eter dependence. Such a change would of course be compen-
~ (4m)?| 3 P Ou 3 PuPy] sated for by similar changes in tiandD effective propa-
gators, via Eq(55) or Eg. (81). However, unlike in a gauge
where on the left hand side we used E&26) to evaluate fixed theory, the two-point classical action vertices would

(P, —p.0), Spivs(0k,—k), etc., and substitute8y,,  remain as Eqg79), (82), and(83), gauge invariant and com-
~20,, [cf. Egs.(79),(80)], and the right hand side follows pletely independent of the introduction Af . The calcula-
after averaging ovek directions and expressing as a radial tion would simply have been rearranged, by finessing some
integral. longitudinal parts into thé& sector.

As expected of a universal term, Ed.33) does not, ap- Finally, let us make a trivial, but important, observation.
parently, depend on the regulati@yandF sectors. But, de-  Although Eq.(133) is precisely the In{/€) contribution from
spite this, and the apparently clear physical interpretation, ithe standard gluonic self-energy term in the Feynman gauge,
is not transverse on its own as would be required by gaugg is here a contribution to the Wilsonian effective action, not
invariance. This result seems all the more surprising onca contribution to theS matrix. Feynman’s unitarity argu-
one notes that actually at a formal level thsectoris gauge  ments for the existence of ghodt36] cannot be directly
invariant on its owr[11] [and, as we will confirm, the other applied to vertices of the Wilsonian effective action. Of
A sector terms in Eq(131) are already transverkdndeed, course, if we wished to talk about on-shell gluons, we would
taking care to keep th@ derivative inside the Eq(132  have to gauge fix and introduce ghosts, but that is not what
integral (so that there is no problem with infrared diver- we are talking about. As already discussed, here the ghostly
gencey contracting withp,, and—p,,, then using Eqs(75), contributions are replaced by shadows from the regulariza-
(79), (80), and(97), and shiftingk in some termgdiscarding tion sector.
one odd ink),?* one finds that the longitudinal part of Eq.

(132 is C. The gauge remainders
dk 0, (K) We next turn to the gauge remainders, the fourth line on-
ZNJ 2 Ad, Pepv p”, (134  Wward in Eq.(131). As well as theF sector shown, we also
(2m) k?(k—p)? have theA sector contributions, which we consider first. Re-

call that they come with opposite signs and are translated as
which obviously vanishes since the remaining terms have ndescribed at the beginning of this section. Making use of Eq.
A dependence. Of course these manipulations do not mak&5) and the same sort of simplifications as in the previous
sense without ultraviolet regularisation. The apparent indesubsections, many terms cancel out, including some that
pendence of Eq133) of theC andF sectors is illusory since would otherwise not be potentially universal. We are left
the derivation of Eq(133) from Eq.(132) is only legitimate  with purely transverse contributions: an ultraviolet divergent
if such sectors exist with the property that they cancel itscontribution to the integrarfd
ultraviolet divergences while not adding any new infrared
ones. Taking into account the other sectors, one finds that the——

22The x=p?/A? term is missing by Eq(51), because Eq(135
must be analytic irp (cf. Sec. Il B.
2Igee Refs[11,12,32 for further comments pertinent here and 23Clearly, by Lorentz invariance of thkeintegration, this is trans-

above. verse onv also.
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8¢} (wheref and ¢ are evaluated at). Considering again the
WDW(D)kaky, (137)  behavior ofc andc at the boundaries, we see that the result
vanishes.

. ] ] ) ) . We are left only to evaluate the terms proportionatfo
which will be combined later with the potentially universal gefore we do so, we note that the total contributions to Eq.
terms in the third line of Eq(13_1) for th_e reason given (131 from the other terms, namely, E¢q4.33), (139, and
below Eq.(125), and after averaging ovérdirections a term (142), sum to 44N/3(47'r)2DW(p), i.e., already yielding the

famous result
2N d*k  iana N
FD;w(p)J W (3CkA /k Ck)_Z_ﬂ_ZD/,w(p)y
(138 B1=— E’ L (144)
! 3 (4m)?"
where we have used the fact that, after casting as<an
=k?/A? integral, the integrand is a total derivative, vanish-
ing atx=o and universal ak=0 by c(0)=1.

Evaluating theF sector using Eq(106) and similar sim- As we have already anticipated, all tbgterms must sum
plifications to that above, but keeping the compact five-to zero. Together with Eq$137) and(142), we also have the
dimensional notation, many terms already cancel out, agaithree-sector contributions from the third line of EH4.31).
in particular all terms that would otherwise not be potentially This term can be simplified in a way that can be mapped also
universal. This time the remaining terms are all clearly transto the C and A sectors. Thus, suppressing thesuperscripts
verse except one: and thek momentum arguments,

D. The c| terms

: ) a Asrdu0aSrs— ArUA 579, SRS
AAERIOK(k—p) 85 oy . (139 sRoudars™ AruAstduSredaSTy
=3, (ARg7oSr9) — 9, AR Srs
After some algebra, and including the integral in EtB1), N N
this takes the form —ARuAtTs9, SR Stu
EaM(ARSaaASRS)—i_ATSaaASUT 3, (Keky)
—kigkd,, AurdSry

=0, (AR, Sk — 2K k!, — 23 K/, (145

1 N 2 2 - ! 357 ’
(140

wheref and g were defined in Eq(109. Substitutingg in
terms off and intfgrating by parts this may be cast as a tOtall’his holds in all sectors using the maps at the beginning of
derivative. Usingc(0)=c(0)=1 and, for example, Ed11),  thjs section[To see this, rewrite the third term of the second

it evaluates to line to containaM(ARuéRs) plus remainder, and use Egs.
(107),(108), andk— —k. In the third line, third term, trans-
fer the g, to kg, using Eq.(103), or equivalently Eq(78),
and used kg= dg,, Which holds in bothF and A sectors.
Finglly, in thi_s term _formﬁ#(SRsAST) and_si_mplify simi_larly,
Although it is not transverse, added to E#33) it results in ~ Noting that since it is a function only d¢fit is automatically
a transverse contribution, namely, N/B(4)? 0,,(p). In a+< u symmetric] .
view of the comments below E¢134), we should expect to By dimensions and Lorentz invariancé\rg,Sgs
find such a nontransverse correction lurking in Fheector. =2k, F(x)/A? for some functiorF (x=k?/A?), with corre-
The transverse supergauge remainder terms yield a cosponding expressions in tieand C sectors. Indeed, by Eq.
tribution to the integrand of Eq131) of (96), we have for theC sector F=(d/dx)In(2\+x/c); by
Eqgs.(97) and(79), we haveF =3(d/dx)In(x/c) in the A sec-

1 N )

8 o tor; and finally in theF sector, using Eqq77), (82), (105),
- pCOD,u,a(p)kakV (142) and (99),
to be compared with Eq137) and similarly saved for later, 3x 8\ _[x\’
and a number of terms which after some algebra turn into a F=fc| —+=| +fc :) . (1406
total derivative inx, yielding c c

(143 Including the multiplicative factors in Eq131), the first

2N
- r__ 2¢2|%
(477)25’”“))()(C 40)x*f term of Eq.(145 thus gives the surface contribution:
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N | - (52—(54)]. We can already see that it will play an even more
~ 272 ot u(P)x Flo - (147 central role in the futur¢21].

This regularization fits very well within the effective ac-
tion framework. A manifestly gauge invariant flow equation
for the Wilsonian effective actios has been written down
[Eg. (41)], which leaves the partition function—and hence
the physics derived from it—unchanged. This is achieved by
demanding that the Boltzmann measure eflow into a
total derivative.

Solutions forS can then be found directly in terms of
renormalized quantities, without specifying a bare action.
Note that almost any approximation can be considered with-
out spoiling this property5].

As discussed in Sec. Il B, since the partition function is
left unchanged, it is possible to interpret our results at differ-
ent scales\. The fact that locality is correctly incorporated,
for example, is best understood through the oo limit, re-
calling that the effective action is Taylor expandable to all
orders in momenté&his requirement of “quasilocality{11],
is tantamount to demanding that each infinitesimal RG step

IX. CONCLUSIONS be free from infrared singularitiesand thatA is the only
) _ ) explicit scale parameter to appear in the action, thus imple-

We have proposed a technique which allows manifestlyynenting the concept of a self-similar flq®8]. Again it is at
gauge invariant and universal computations to be performedy ., » that we see we are indeed describing BY@auge
directly in the continuum. No gauge fixing or ghosts areiheory: massive fields are actually infinitely massive aad

required, thus avoiding completely the problem of Gribovgecouples, as ensured by the Appelquist-Carazzone theorem
copies[15]. The full power and beauty of local gauge invari- [24].

ance is clear and central to the whole calculation. Moreover, | addition to manifest gauge invariance, another impor-

rgnormalization group properties are built in frpm the begin-gnt step is the exploitation of the freedom coming from
ning. The calcula_upn proc_eeds very econom|ca!ly, by CONcheme independendé]: not only did the seed actios
I:gg'gﬁ f[ihned dz)ig:gtggtggerén%?gr?;aqfonnce of physical quant"incorporate the gauge invariant regularization and allow the
. : 9 R . _spontaneous symmetry breakifgee the comments below
At its heart lies the successful combination of gauge m'Eq (50)], but also we could choose it such that the minimum
variance with the introduction of a real effective cutpfs]. ?f t.he pc;tential would flow with\ [cf. Eq.(56) and belo
This has !opg been an outsta_mdlng problem, as any Stra.'ghafnd such that logarithmic classical divergences would be
forward division of momenta into large and small, accordlngCornpletely abser(see Sec. VIl A. This latter property guar-

to some eﬁectlvg §caIA, is not preserved by gauge trans- antees the universality of the one-loop Yang-Mgigunction
formations. [Explicitly, under a gauge transformation of

some matter fieldp(x)—Q(x) #(x), momentum modes (cf. Sec. VI. By further fashi.oningAS, these properties ex-
#(p) are mapped to a convolution with the modes froi tend to two-loop order and hlghém_]. In a sense the gen-
Its solution allows us to use Wilson's insigft,6] making ~ eralized exact RG framewofl6, 10] gives us the freedom to
renormalization properties, normally subtle and complicatedcreate designer field theories” in the regularization sector,

trivially clear and straightforward. ailored to our purpose. .
This continuum cutoff is simply spontaneously broken The seed actiofnot bare actiontherefore represents the

SU(N|N) gauge theory with covariant higher derivatives. 9€t&ils putin by hand; the physics is naturally encoded in the
Sketched at the start of Sec.(fbr a complete analysis, see effective action. HerAlce, physical quantities must be indepen-
[18)]), it includes two copies of the SB) gauge field A,  dent of the choice 05 [6], as our tests here, and earlj0],

andA,, and a pair of wrong statistics gauge fieBsB. A have shown. Note: we do not pick a specticApart from
superscalar field is added to cause spontaneous symmef#je constraints above, it turns out to be very advantageous to
breaking down to the bosonic SNJXxSU(N), giving keep it as general as possible. Since the final result must be
masses of the order of the cutoff to all fields BytandA,. independent of its detailed form, any simplification has to
Depending on the representation chosen, one also encount@ecur before we look into any of its vertices. Similarly, we

a U(1) connectiond®. This latter, however, does not appear do not specify what covariantization we use. All we need is
anywhere in the action provided all interactions are of thelo name the vertice&f. Sec. Il D.

form str(4x commutators), or more generally provided a We do introduce some further restrictions-purely for con-
no-A° shift symmetrysA,=X\,1 is respected. Such a shift venience. Thus we determine the RG kern&lsn such a
symmetry, which amounts to dynamically defining the coseway that, after spontaneous symmetry breaking, the two-
space SUY|N)/U(1), plays an important role, ensuring that point classical effective action vertices can be set equal to
our flow equation(4l) is indeed gauge invariafftf. Eqs. those of the seed action. This greatly simplifies the flow

Summing this contribution across all sect@gremembering
the relative minus sign foA andC), one finds no contribu-
tion from thex=0 boundary in any sector, while the other-
wise divergentx=oc terms cancel exactly between the fer-
mionic and bosonic sectors.

This leaves just the second and third terms of @45).
Recalling the relative minus sign of tesector, the second
term from theA sector exactly cancels E¢L37), while the
second term from the thié sector exactly cancels E¢L42).
The third terms from theA and F sectors combine to an
ultraviolet finite total derivative aﬂ(ka/kz—k;). Compar-
ing with the above structure and using E410, we see
trivially that this integrates to Eq147) with F=1/x—f, and
thus vanishes. We have thus shown that all tjeterms
disappear, as expected.
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equations for higher point interactiofisf. Sec. 111[10,11)).  [cf. Eq. (100]. As well as simplifying greatly the calcula-
Actually, the two-point seed action vertices are not as generdlons in this sector, it also casts them in a form which is
as they can be(cf. Sec. V. It would not be difficult to  virtually isomorphic with the computations in th® and C
work with completely general versions however, leaving nosectors.
restrictions except those placed by smoothness, symmetries The calculation has been carried out in dimensbn
(including broken supergauge invariahcand limits on their =4, even though to rigorously define the regularization to
ultraviolet behavior[cf., e.g., Eq.(11)]. Very little would  all orders, one should preregularize, e.g., by working in gen-
change in the calculation right up to the final stages in Secssral dimensiorD and taking the limitD—4 at the very end
VIII C and VIII D. [18]. This is necessary in generfd0] because finiteness is
Last but not |eaSt, the diagrammatic interpretation intrO'achieved by add|ng Separate'y divergent pieces together’
duced in Sec. Il Bigeneralizing that of10-12to finitt N)  namely, theF versusA andC sectors, as is typical of Pauli-
turned out to be very useful. Already at the level of diagramsyjjiars type regularizations. However, at one loop, it is only
the great potential of the method comes out, e.9., Makingecessary to preregularize the four-paihivertex; the two-
cancella‘uons among higher order seed action vertices Sel[ioint vertex (which is what we compuieis well defined
evident. without preregularization, providing only that global

In view of the novelty of the construction, it is desirable - . . .
to test the formalism first. We have computed for the firstSU(N|N) invariance is kept manifest throughout the compu

) e ) o tation[18].

time at finite N, without fixing the gauge, the one-logp . o . .
function for SUN) Yang-Mills theory, verifying the standard h Wef did not do tg'sb' since we brokg the f'el@:(%;dc. Lntﬁ
result, and confirming its universality with respect to the n€ir fermionic and bosonic partidad we worked with the
regularization scheme. full superfields we would not have been able(émt)com-

Let us briefly recapitulate the simple steps that form thgnuteo. This leads to a substantial increase in the number of
calculation, as discussed in detail in Sec. VIII. From thedifferent vertices required for the computatipBut, by per-
renormalization condition, Eq(45), we can write down an forming the calculation in th€& sector and then simply map-
algebraic equation for the one-loop beta functiof; (cf. ~ Ping the results to the\ and C sectors using the insight
Fig. 11), which receives contributions, equal in form, from above, we performed the calculation in the same way for all
all the sectors of the theorp, C, andF. Introducing inte-  sectors, achieving the same effect as would be obtained by
grated kernels and integrating by parts the diagram contairkeeping the global SUN|N) invariance manifest
ing the effective action vertex with the highest number of The final result Eq(144) comes almost entirely from the
points leaves us with a totél derivative plus the\ deriva- A sector, except for the nontransverse teft¥1), which,
tive of this vertex(see Fig. 14 Then using the flow equation however, is needed to make the whole thing transverse. On
and the relation between integrated kernels and two-poirthe one hand, we should not be surprised if Wiele con-
functions, as in Eq996) and(98), to simplify the diagrams tribution had come from just thA sector. After all, the one-
obtained so far, we can eliminate the higher point verticesloop 8 function can be cast as the derivative of the cutoff on
Repeating the above steps several times over, we get to tlan infrared divergent integral. If the fields are masswie.,
point where there is no dependence left on the details of thB,C,D), their masses act instead as the infrared regulator and
covariantization or on the seed actigh. thus they give vanishing contributidras in the discussion

This last step follows either because we are left with ex-below Eq.(132]. On the other hand, the pure gauge sector
pressions containing only two-point vertices and the correyields Eq.(133), plus Eq.(138), apart from contributions that
sponding zero-point kernels, which are then shown to benust vanish eventually, e.g., E4.37), and is thus not trans-
universal by casting them as total derivatives in momentunverse on its own. As discussed in Sec. VIII B, the culprit, Eq.
space, where they depend only on ultraviolet limits or in the(133) takes precisely the form of the one-loop gluon self-
infrared on the renormalization conditigd5), or, as in the energy in the Feynman gauge, but through an accident of
total A derivative term, because the result can be seen exsimplicity. We could have introduced longitudinal terms
plicitly to depend only on vanishing momenta where again(135) into the flow equatior{42), giving an apparent general
the dependence becomes universal as a consequence of l§guge, which by gauge invarian¢g5) finesses longitudinal
(45). parts into theF sector. All the while, the effective action

Some comments are in order. As emphasized earlier, cenvould remain oblivious to these rearrangements, and it and
tral to the method is the use of manifest gauge invariance. lall stages in the calculation remain gauge invariant. How-
results in two sets of “trivial” Ward identities, derived in ever, in this limited sense, it would appear that the ghost
Sec. Il D, corresponding to thd@osonig fermionic parts of  contributions, required in the standard treatment, are here
the (un)broken gauge invariance. The broken Ward identitiestaken over by thdé= sector.
in particular, caus® andD ¢ to rotate into one another. This Finally, although the only application of our method as
led to the important realization that technically they shouldyet is the calculation of3;, we expect the procedure to be
be tied together as elements of a five-dimensional veefpr quite general and, above all, best suited for exploring the

%The calculation in Ref[20] can also be organized according to  ?*We have also checked explicitly that there are no ambiguities
this iterative method. related to the limitD—4 [32].
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