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Quantum gravitational corrections to the nonrelativistic scattering potential of two masses
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We treat general relativity as an effective field theory, obtaining the full nonanalytic component of the
scattering matrix potential to one-loop order. The lowest order vertex rules for the resulting effective field
theory are presented and the one-loop diagrams which yield the leading nonrelativistic post-Newtonian and
quantum corrections to the gravitational scattering amplitude to second order inG are calculated in detail. The
Fourier transformed amplitudes yield a nonrelativistic potential and our result is discussed in relation to
previous calculations. The definition of a potential is discussed as well, and we show that the ambiguity of the
potential under coordinate changes is resolved.
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I. INTRODUCTION

The idea that a field theory need not be strictly renorm
izable in the traditional sense yet can still yield useful qu
tum predictions when treated as an effective field theory@1#
has been clearly demonstrated in chiral perturbation the
and in other applications@2#. Quantum loop calculations lea
to well defined results in the low energy limit. Interesting
such methods can also be applied to general relativity. As
effective field theory, the quantization of general relativ
can be carried out in a consistent way, since the troubles
singularities which occur for various types of matter sour
in traditional renormalization schemes@3–7# can be absorbed
into phenomenological constants which characterize the
fective action of the theory. This effective field theory a
proach offers then a possible way around the familiar ren
malization difficulties of general relativity in the low energ
regime and, using this approach with background field qu
tization @8# of general relativity, one of us@9,10# some years
ago derived the leading quantum and classical correction
the Newtonian potential of two large nonrelativistic mass
This calculation has since been the focus of a numbe
publications@11–14#, and this work continues, most recent
in the paper@15#. Unfortunately, because of the difficulty o
the calculation and its myriad of tensor indices there
been little agreement among these various authors. The
sical component of the correction has previously been
cussed in Refs.@16–20#, and here there is general agreeme
although, as we shall discuss, there exists an unavoid
ambiguity in defining the potential. The basic disagreeme
lie rather in the quantum corrections, and in the present pa
we shall present what we believe to be thedefinitive result
for the leading classical and quantum corrections of or
G2, using the full scattering amplitude as the definition
the nonrelativistic potential.

We note that, as a prelude to this effort, in a recent pa
@24# two of us have dealt with the quantum and classi
corrections to the Reissner-Nordstro¨m and Kerr-Newman
metrics of charged scalars and fermions. Such quantum
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classical corrections have also been considered from
viewpoint of a scattering potential in a paper@25# by one of
us. Recently we have also calculated the full classical
quantum corrections to the Schwarzshild and Kerr metrics
scalars and fermions@26# and have shown in detail how th
higher order gravitational contributions to these metr
emerge from loop calculations. In the present paper then
consider the corresponding calculation of the full scatter
amplitude.

Of course, treating general relativity as an effective fie
theory is carried out at the cost of introducing a never end
set of additional higher derivative couplings into the theo
In this sense Einstein’s general relativity is still a perfec
valid theory for gravitational interactions—although now
represents only theminimal theory. At some stage additiona
derivative couplings must be appended to the Einstein act
signifying manifestations of the higher energy component
the effective field theory. However, the low energy scatter
potential is free from these new couplings and represen
model-independent result for quantum gravity.

This calculation is possible because the post-Newton
and quantum corrections which we consider are determi
fully by the nonanalyticpieces of the one loop amplitud
generated by the lowest order Einstein action. Of course
order to deal with the ultraviolet divergencies which arise
one loop, one must renormalize the parameters of hig
derivative terms in the action. However, such pieces w
only affect the analytic parts of the one-loop amplitude, a
will not contribute to our potential.

We will employ the same conventions as in our previo
papers, namely, (\5c51) as well as the Minkowski metric
convention (11,21,21,21). We will begin in Sec. II with
a very short introduction to the effective field theory quan
zation of general relativity and focus here especially on
distinction between nonanalytic and analytic contributions
the scattering amplitude. We also include a discussion of
definition of the nonrelativistic potential.

Next in Sec. III we evaluate the diagrams which contr
ute to the scattering and examine in detail the results for
©2003 The American Physical Society33-1
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various components. The resulting nonanalytic piece of
scattering amplitude is then used in order to construct
leading corrections to the nonrelativistic gravitational pote
tial. We also discuss our result in relation to previous cal
lations and attempt to sort out the various inconsistencie
the published numbers. Finally in a concluding section
summarize our findings.

II. REVIEW OF GENERAL RELATIVITY AS AN
EFFECTIVE FIELD THEORY

We begin with a brief review of general relativity, th
Lagrangian of which~not including a cosmological term! is

L5A2gF2R

k2
1LmatterG , ~1!

where k2532pG is the gravitational coupling,Rnab
m

[]aGnb
m 2]bGna

m 1Gsa
m Gnb

s 2Gsb
m Gna

s is the curvature ten-
sor, andg denotes the determinant of the metric fieldgmn .

Here A2gLmatter is a covariant Lagrangian for the matt
fields, and, in principle, any type of matter field could
included. This action defines the classical theory of gen
relativity.

In order to treat Eq.~1! as aneffectivefield theory one
must include all possible higher derivative couplings of t
fields in the gravitational Lagrangian. In this way any fie
singularities generated by loop diagrams can be assoc
with some component of the action and hence can be
sorbed via a simple redefinition of the coupling constants
the theory. Treating all such coupling coefficients as exp
mentally determined quantities, the effective field theory
then finite and contains no singularities at any finite order
the loop expansion.

We can consequently write an effective action for pu
general relativity as

L5A2gH 2R

k2
1c1R21c2RmnRmn1 . . . J , ~2!

where the ellipsis denotes that the effective action is in f
an infinite series—at each new loop order additional hig
derivative terms must be taken into account. This Lagrang
includes all possible higher derivative couplings, and ev
coupling constant in the Lagrangian is considered to be
termined empirically. Similarly one must include higher d
rivative contributions to the matter Lagrangian in order
treat this piece of the Lagrangian as an effective field the
Details of such considerations can be found in Refs.@9,10#.

In our calculations we will consider only the nonanaly
contributions, which are generated by the propagation of
or more massless particles in the Feynman diagrams. S
nonanalytic effects are long ranged and, in the low ene
limit of the effective field theory, they dominate over th
analytic contributions which arise from the propagation
massive modes. The typical nonanalytic terms we will co
sider are of the type 1/A2q2 and lnq2—while the typical
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analytic contribution is a power series inq. The feature from
which the analytic contributions originate is the propagat
of massive particles while the nonanalytic effect comes fr
massless propagation and can be seen directly by Taylor
panding the two types of propagators. Indeed the mass
propagator 1/q2 cannot be expanded in a series, while w
have the obvious representation for the massive propag
as 1/(q22m2)521/m2(12q2/m21 . . . ). Thus the mas-
sive parts of the diagrams will always be expandable a
hence analytic—while the massless contributions have
possibility of generating nonanalytic components. It sho
be noted that such nonanalytic pieces of the scattering
plitude are essential to the unitarity of theS matrix.

A. Definition of the potential

Before proceeding to the actual calculations, it is imp
tant to note that the precise definition of a potential in
relativistic quantum field theory such as general relativity
not obvious. In the original papers, the one-partic
irreducible potential was calculated@9,10#. However, addi-
tional diagrams are required in order to relate this quantity
physical observables. Subsequent work has considered a
native definitions. Clearly a gravitational potential should
gauge invariant in order to make physical sense, but one
choose between various definitions of the potential depe
ing on the physical situation, how the total energy is defin
etc. In QCD one can always turn to the venerable Wils
loop description but there exists no standard Wilson lo
description for the gravitational potential, although som
work has been done in this direction@21# using the Arnowitt-
Deser-Misner formula for the total energy of the gravit
tional system. Such an approach to the gravitational poten
has been taken in Ref.@11#. For yet another approach to th
Newtonian potential, see Ref.@22#. An alternative path is to
use the scattering amplitude itself to define the potent
This description of the potential seems to us to be the s
plest and most intuitive picture and has been employed b
number of authors@17,18,16,12,23,15#. Herein then we shall
also use the full scattering amplitude in order to represent
potential, defining

^ f uTu i &[~2p!4d (4)~p2p8!@M~q!#

52~2p!d~E2E8!^ f uṼ~q!u i &, ~3!

wherep,p8 is the incoming, outgoing four-momentum. Th
corresponding coordinate space representation can be f
by taking the nonrelativistic limit and Fourier transformin
yielding the result

V~x!5
1

2m1

1

2m2
E d3q

~2p!3
eiq•xM~qW !, ~4!

which will serve as our definition of the nonrelativistic po
tential.

It should be noted, however, that this is not the only w
in which to define the potentialV(q) in terms of the scatter-
3-2
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ing amplitude. One could, for example, subtract off the s
ond order Born contributions, which would lead to the no
relativistic potential used in bound state quantum mecha
and would be equivalent to using the prescription

i ^ f uTu i &522p id~E2E8!F ^ f uṼbs~q!u i &

1(
n

^ f uṼbs~q!un&^nuṼbs~q!u i &
E2En1 i e

1 . . . G . ~5!

The definition of the bound state potential is discussed
detail in Ref.@17#. In particular, in a Hamiltonian treatmen
there are also terms in the Hamiltonian involvingGp2/r that
contribute at the same order. The relation of the bound s
potential Ṽbs(q), in Einstein-Infeld-Hoffmann coordinates
to the lowest order scattering potential is

Ṽbs~r !5V~r !1
7Gm1m2~m11m2!

2c2r 2 . ~6!

B. The diagrams contributing to the nonanalytic
component

of the scattering matrix

We will consider here only the nonanalytic contributio
from the one-loop diagrams. Since many diagrams yi
purely analytic contributions to theS matrix, such diagrams
need not be considered and will be omitted from the beg
ning. The diagrams whichdo yield nonanalytic contributions
to theS matrix amplitude are those containing two or mo
massless propagating particles. Such a typical amplitude
be of the form

M;FA1Bq21 . . . 1ak4
1

q2
1b1k4ln~2q2!

1b2k4
m

A2q2
1 . . . G . ~7!

Here the coefficientsA,B, . . . correspond to analytic piece
which are of no interest to us, since these terms will o
dominate in the high energy regime of the effective theo
Rather, thea,b1 ,b2 , . . . coefficients correspond to the no
local, nonanalytic contributions to the amplitude and are
ones which we seek. In particular, theb1 ,b2 terms will yield
the leading post-Newtonian and quantum corrections to
potential.

FIG. 1. The tree diagram giving Newton’s law.
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III. RESULTS FOR THE FEYNMAN DIAGRAMS

In this section we will present our results. All diagram
have been performed both by hand and by computer. In o
to evaluate the diagrams by computer, an algorithm
MAPLE VII ~TM!1 was developed. This program contracts t
various indices and performs the loop integrations. All
sults obtained this way were confirmed results obtained
hand. The resulting amplitudes were then Fourier tra
formed to produce the scattering potential, and only
nonanalytic pieces of the amplitude were retained. For
part of the calculation, the following Fourier integrals a
useful:

E d3q

~2p!3
eiq•r

1

uqu2
5

1

4pr
,

E d3q

~2p!3
eiq•r

1

uqu
5

1

2p2r 2
,

E d3q

~2p!3
eiq•r ln~q2!5

21

2pr 3
. ~8!

After this brief introduction, we proceed to give the resu
for each diagram in turn. Note that the basic vertices nee
for our calculation are given in Appendix A.

A. The tree diagram

The result for Fig. 1 in the nonrelativistic limit is th
well-known lowest order tree-level result which yields th
Newtonian potential. We define the diagram using the Fe
man rules as

iM1(a)~qW !5t1
mn~k1 ,k2 ,m1!F iP mnab

q2 Gt1
ab~k3 ,k4 ,m2!,

~9!

whereq5k12k25k42k3. We will find it most convenient
to quote our results in the nonrelativistic limit. Relativist
amplitudes are denoted byM and nonrelativistic amplitudes
by M, with the latter being defined in a normalization give
by

Mi~qW !5
1

2m1

1

2m2
Mi~qW !. ~10!

By contracting all indices for the tree level amplitude a
taking the nonrelativistic limit, we find

1MAPLE andMAPLE V are registered trademarks of Waterloo Map
Inc.
3-3
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M1(a)~qW !52
4pGm1m2

qW 2
, ~11!

whose Fourier transform produces the scattering potenti

V1(a)~r !52
Gm1m2

r
, ~12!

which is indeed the familiar Newtonian form.

B. The box and crossed box diagrams

We can write the contributions of Figs. 2~a! and 2~b! as

M2a5E d4l

~2p!4
t1

mn~k1 ,k11 l ,m1!t1
rs~k11 l ,k2 ,m1!

3t1
ab~k3 ,k32 l ,m2!t1

gd~k32 l ,k4 ,m2!

3F i

~k11 l !22m1
2GF i

~k32 l !22m2
2GF iP mnab

l 2 G
3F iPrsgd

~ l 1q!2G ~13!

for the box and

M2b5E d4l

~2p!4
t1

mn~k1 ,k11 l ,m1!t1
rs~k11 l ,k2 ,m1!

3t1
gd~k3 ,l 1k4 ,m2!t1

ab~ l 1k4 ,k4 ,m2!

3F i

~k11 l !22m1
2GF i

~ l 1k4!22m2
2GF iP mnab

l 2 G
3F iPrsgd

~ l 1q!2G ~14!

for the cross box. These diagrams are among the most c
lenging that we will encounter, because of the rather com
cated integrals—containingfour propagators—which mus
be evaluated. However, those pieces of the amplitude w
are loop momentum-dependent simplify, because the ex
nal particles are on shell and we are only seeking the non
lytic pieces of the scattering amplitude. This allows redu
tion of parts of the amplitude initially having fou
propagators to pieces where effectively only three or t

FIG. 2. The box~a! and crossed box~b! diagrams which con-
tribute to the nonanalytic component of the potential.
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propagators remain. An example of this simplification can
seen by the replacement of the integral

E d4l

~2p!2

l •k1

l 2~ l 1q!2@~ l 1k1!22m1
2#@~ l 2k3!22m2

2#

5
1

2E d4l

~2p!2

@~ l 1k1!2#2 l 22m1
2

l 2~ l 1q!2@~ l 1k1!22m1
2#@~ l 2k3!22m2

2#

~15!

by

1

2E d4l

~2p!2

1

l 2~ l 1q!2@~ l 2k3!22m2
2#

~16!

because thel 2 part will not contribute to the nonanalyti
component. The integrals with three or two propagator ter
are explicitly given in Appendix B. Another simplification
arises when the momentumqm contracts with a loop momen
tum l m in the numerator. An example is

E d4l

~2p!2

l •q

l 2~ l 1q!2@~ l 1k1!22m1
2#@~ l 2k3!22m2

2#

5
1

2E d4l

~2p!2

~ l 1q!22 l 22q1
2

l 2~ l 1q!2@~ l 1k1!22m1
2#@~ l 2k3!22m2

2#
,

~17!

which simplifies to

2
1

2E d4l

~2p!2

q2

l 2~ l 1q!2@~ l 2k3!22m2
2#

. ~18!

Via these simplifications one can reduce the box and cr
box amplitudes to a reduced piece consisting only of in
grals with two or three propagators and a component w
the basic form of the box and crossed box integrals, i.e., w
no loop momentum terms in the numerator. Then, using
integrals presented in Appendix B, performing the abo
described contractions in the two diagrams, and taking
nonrelativistic limit we end up with the result

M2(a)12(b)
red ~qW !5

46

3
G2m1m2ln qW 2 ~19!

for the momentum-reduced component of the box plus cr
box and

M2(a)12(b)
irred ~qW !516G2m1m2ln qW 2 ~20!

for the irreducible piece. Fourier transforming, we find th
the scattering potential contributions
3-4
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V2(a)12(b)
red ~r !52

23

3

m1m2G2

pr 3
~21!

for the reducible component and

V2(a)12(b)
irred ~r !528

m1m2G2

pr 3
~22!

for the irreducible piece so that the total result for the b
and cross box contribution to the potential is

V2(a)12(b)
tot ~r !52

47

3

m1m2G2

pr 3
. ~23!

These results are in agreement with those of Ref.@15#.

C. The triangle diagrams

The next piece we will consider is that of Fig. 3, fo
which we find

M3(a)~q!5E d4l

~2p!4t1
mn~k1 ,l 1k1 ,m1!t1

ab~ l 1k1 ,k2 ,m1!

3t2
srgd~k3 ,k4 ,m2!F iPabgd

~ l 1q!2GF iP mnsr

l 2 G
3F i

~ l 1k1!22m1
2G , ~24!

M3(b)~q!5E d4l

~2p!4t1
sr~k3 ,k32 l ,m2!t1

gd~k32 l ,k4 ,m2!

3t2
mnab~k1 ,k2 ,m1!F iP mnsr

l 2 GF iPabgd

~ l 1q!2G
3F i

~ l 2k3!22m2
2G . ~25!

The calculation Figs. 3~a! and 3~b! yields no real
complications—the integrals needed are quite straight
ward and are presented in Appendix B. However, a sign
cant simplification results from the use of the identity

FIG. 3. The set of triangle diagrams contributing to the scat
ing potential.
08403
x

r-
-

PgdsrPabmntsrmn~k1 ,k2 ,m1!5tgdab~k1 ,k2 ,m1! ~26!

and, taking the nonrelativistic limit, we find for these tw
pieces

M3(a)~qW !528G2m1m2S 7

2
ln qW 21

p2m1

uqW u
D ,

M3(b)~qW !528G2m1m2S 7

2
ln qW 21

p2m2

uqW u
D .

~27!

Our results for these diagrams agree with those of Ref.@15#,
and the Fourier transformed result is

V3(a)13(b)~r !524
G2m1m2~m11m2!

r 2
128

m1m2G2

pr 3
.

~28!

D. The double-seagull diagram

We have for the double-seagull term~see Fig. 4!

M4(a)~q!5
1

2!E d4l

~2p!4t2
abgd~k1 ,k2 ,m1!t2

srmn~k3 ,k4 ,m2!

3F iPabmn

~ l 1q!2GF iP gdsr

l 2 G . ~29!

The double-seagull loop diagram is quite straightforwa
and is simplified by use of the identity in Eq.~26!. Note,
however, that there exists a symmetry factor of 1/2!. T
resulting amplitude is found to be

M4(a)~qW !544G2m1m2ln qW 2, ~30!

whose Fourier transform yields the double-seagull contri
tion to the potential

V4(a)~r !5222
m1m2G2

pr 3
, ~31!

which agrees with the result presented in Ref.@15#.

E. The vertex correction diagrams

There exist two classes of vertex correction diagrams:
the massive loop diagrams, shown in Figs. 5~a! and 5~b!, we
have

r-

FIG. 4. The double-seagull diagram contribution to the scat
ing potential.
3-5
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M5(a)~q!5
d4l

~2p!4 t1
ab~k1 ,k2 ,m1!t1

mn~k3 ,k32 l ,m2!

3t1
rs~k32 l ,k4 ,m2!t3

lkfe(gd)~ l ,2q!F iP lkmn

l 2 G
3F iPfers

~ l 1q!2GF iP abgd

q2 GF i

~ l 2k3!22m2
2G , ~32!

M5(b)~q!5E d4l

~2p!4t1
ab~k1 ,l 1k1 ,m1!

3t1
mn~ l 1k1 ,k2 ,m1!t1

lk~k3 ,k4 ,m2!

3t3
gdrs(fe)~2 l ,q!F iP abgd

l 2 GF iPmnrs

~ l 1q!2G
3F iP felk

q2 GF i

~ l 1k1!22m1
2G , ~33!

while for the pure graviton loop diagrams shown in Fig
5~c! and 5~d! we have

M5(c)~q!5
1

2!E d4l

~2p!4t2
lkef~k3 ,k4 ,m2!t1

ab~k1 ,k2 ,m1!

3t3
mnrs(gd)~ l ,2q!F iP mnlk

l 2 GF iPrsef

~ l 1q!2G
3F iP abgd

q2 G , ~34!

M5(d)~q!5
1

2!E d4l

~2p!4t2
rsmn~k1 ,k2 ,m1!t1

lk~k3 ,k4 ,m2!

3t3
abgd(ef)~2 l ,q!F iP mngd

l 2 GF iPrsab

~ l 1q!2G
3F iP lkef

q2 G . ~35!

FIG. 5. The class of the graviton vertex corrections which yi
nonanalytic corrections to the potential.
08403
.

The vertex correction diagrams are certainly the most ch
lenging to perform, disregarding the box and crossed b
diagrams, and the results go back to the original calcula
of Refs. @9,10#—however, due to an algebraic error, th
original result quoted for such diagrams was in error. Sin
that time, the results for the gravitational vertex correctio
have been checked at length in various publications@13,15#;
however, until Ref.@26# the correct forms have not bee
given. Using the results of Ref.@26# and taking the nonrela
tivistic limit, we find the amplitudes

M5(a)15(b)~qW !52G2m1m2Fp2~m11m2!

uqW u
1

5

3
ln qW 2G ,

M5(c)15(d)~qW !52
52

3
G2m1m2ln qW 2, ~36!

whose Fourier transform yields the corrected results for
vertex modifications to the scattering potential:

V5(a)15(b)~r !5
G2m1m2~m11m2!

r 2
2

5

3

m1m2G2

pr 3
,

~37!

V5(c)15(d)~r !5
26

3

m1m2G2

pr 3
, ~38!

where again we note the presence of a symmetry factor
in the case of the pure graviton loop diagram.2 Our results
for these diagrams arenot in agreement with previous calcu
lations. For the vertex correction diagrams in Figs. 5~a! and
5~b!, there is total disagreement with our result. However,
have performed a very detailed analysis of the vertex d
grams in our companion paper@26#, showing how the clas-
sical ingredients match in detail those required by the c
sical Schwartzschild metric. The quantum vertex result
Ref. @15# is the same as that of Ref.@13# and the latter yields
an incorrectclassicalmetric ~the authors of Ref.@15# do not
display their classical vertex correction!. On the other hand
our detailed evaluation of the metric correction in Ref.@26#
gives us confidence in the correctness of our result.

F. The vacuum polarization diagram

The result for the vacuum polarization contribution~see
Fig. 6! can be found from the amplitude

2It is correctly pointed out in Ref.@15# that the coefficient of the
two-graviton vertex quoted in Refs.@9,10# is too small by a factor
of 2. However, the numerical result for the loop integrals giv
therein is correct because of the presence of this symmetry fac
3-6
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M6(a)16(b)~q!5trs~k1 ,k2 ,m1!
iP rslj

q2
Pljmn~q!

3
iP mngd

q2
tgd~k3 ,k4 ,m2!, ~39!

where the vacuum polarization tensor is found from the
fective Lagrangian obtained by ’t Hooft and Veltman@3–5#

L52
1

16p2 ln q2W S 1

120
R21

7

20
RmnRmnD ~40!

and is given by

P̂ab,gd52
2G

p
ln~2q2!F 21

120
q4I ab,gd1

23

120
q4habhgd

2
23

120
q2~habqgqd1hgdqaqb!2

21

240

3q2~qaqdhbg1qbqdhag1qaqghbd1qbqghad!

1
11

30
qaqbqgqdG . ~41!

Contracting the various indices, we find the result

M6(a)16(b)~qW !5
43

15
G2m1m2ln qW 2, ~42!

which is equivalent to that originally derived in Refs.@9,10#.
After Fourier transforming we find a contribution to the sc
tering potential,

V6(a)16(b)~r !52
43

30

m1m2G2

pr 3
, ~43!

which is in agreement with that given by Ref.@15#.

IV. THE RESULT FOR THE GRAVITATIONAL POTENTIAL

Adding up all the corrections to the nonrelativistic pote
tial we have our final result,

FIG. 6. The vacuum polarization diagrams which contribute
the potential. Note that there exists a ghost diagram along with
graviton loop.
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f-

-
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V~r !52
Gm1m2

r F113
G~m11m2!

r
1

41

10p

G\

r 2 G .

~44!

The classical term in this potential agrees with Eq.~2.5! of
Iwasaki @17#.

However, we note that the quantum component of
potential is not equivalent toany previous published resul
@9–13,15#. As described above, we believe this result to
the definitive form of the nonrelativistic scattering matr
potential. Our results agree with Ref.@15# for all diagrams
except the vertex corrections.3 However, we performed mul-
tiple checks on the vertex correction, since we have seen
our version leads exactly to the required form of the class
Schwarzschild metric, for both fermions and bosons.

A. A potential ambiguity

There is an important issue concerning the potential t
has not been thus far much discussed in the literature—
both the classical and quantum corrections to the poten
are in some sense ambiguous. For the classical correc
this realization goes back to Refs.@18–20#, and these argu-
ments generalize readily to the quantum component. In
section we discuss this ambiguity and argue that at one l
order our calculation of the quantum correction does hav
well defined meaning.

As explored in Ref.@18# the classical post-Newtonian po
tential is not invariant under a coordinate transformation
the form

r→r F11a
G~m11m2!

r G . ~45!

We are always free to make such a coordinate change,
that given in Eq.~45! modifies the classical correction to th
potential via

Gm1m2

r F11c
G~m11m2!

r G
→ Gm1m2

r F11~c2a!
G~m11m2!

r G . ~46!

Following Refs.@18,20# the ambiguity can be seen to arise
a field theory calculation through a modification of the gra
ton propagator

1

q2
5

1

q0
22qW 2

, ~47!

accomplished by using the energy conservation in the
lowing identical way which holds true for generalx:

3To be precise we are comparing to the third version of Ref.@15#,
available in the electronic archive. We had several disagreem
with the original version; all except the vertex correction have be
corrected in the third version.

e
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1

2
~12x!@~p202p10!

21~p402p30!
2#2x~p202p10!~p402p30!2qW 2
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Using this propagator in order to derive the gravitation
potential, the result will in general depend onx, with the
relation to the coordinate change beinga52 1

4 (12x). Not
only will the terms of orderG2/r 2 depend onx, but so will
the corrections of order (G/r )(v/c). This indicates that the
post-Newtonian part of the static gravitational potential
not well defined in and of itself.

The coordinate ambiguity also generalizes to the quan
part of the potential. There exists a coordinate redefinitio

r→r F11b
G\

r 2 G , ~49!

which changes the coefficient of the quantum term in
potential

Gm1m2

r F11d
G\

r 2 G→ Gm1m2

r F11~d2b!
G\

r 2 G . ~50!

Therefore, we need to address the uniqueness of the qua
correction to the potential.

Since general relativity is invariant under coordina
shifts, if the potentials are changed there must exist o
modifications that compensate for these changes, leaving
resulting physics invariant. Within a Hamiltonian formul
tion, these modifications take the form of momentu
dependent pieces—in order to make the potential well
fined, one must also specify the momentum terms in
Hamiltonian.

First we examine the classical ambiguity. Classically th
are two dimensionless variables available for the expan
away from the Newtonian limit,

p2

m2 ,
Gm

r
. ~51!

In bound state problems these quantities appear at the s
order, as can be seen by use of the virial theorem. In
Hamiltonian the leading terms are order

H1;
p2

m
,

Gm2

r
~52!

and are unambiguous. At next order we have pieces of
form
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H2;
p4

m3 ,
Gm2

r

Gm

r
, S Gm

r D S p2

m D . ~53!

There exists an ambiguity between the last two of th
terms arising from a coordinate change, but this effect c
cels for physical observables, as shown explicitly in R
@18#. Writing the Hamiltonian in the center of mass frame
post-Newtonian order, we have

H5S p2

2m1
1

p2

2m2
D2S p4

8m1
3

1
p4

8m2
3D

2
Gm1m2

r
F11a

p2

m1m2
1b

~p"r̂ !2

m1m2
1c

G~m11m2!

r
G .

~54!

In the standard Einstein-Infeld-Hoffmann coordinates,
coefficientsa,b,c have the values

a5
1

2 F113
~m11m2!2

m1m2
G ,

b5
1

2
,

c52
1

2
, ~55!

but under the coordinate transformation of Eq.~45!, one
finds the modifications

a→ 1

2 F11~312a!
~m11m2!2

m1m2
G ,

b→ 1

2
2a

~m11m2!2

m1m2
,

c→2
1

2
2a. ~56!

Therefore, in order to specify the correction to the sta
potential, one needs also to identify the momentum coo
3-8
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nates. In particular, the classical potential calculated
Iwasaki is appropriate for Einstein-Infeld-Hoffmann coord
nates.

This classical ambiguity has not been worked out exp
itly at the following order in the expansion, but the gene
pattern is apparent. Specifically, at the next order one
four types of terms,

H3;
p6

m5
,

p4

m3 S Gm

r D ,
p2

m S Gm

r D 2

,
Gm2

r S Gm

r D 2

.

~57!

The last term here is noteworthy because it goes
1/r 3,—i.e., like the quantum correction in the potential—b
it is distinguishable by its mass dependence plus the fact
it is order G3. Such terms will also be ambiguous under
coordinate transformation, but the effects will cancel amo
the effects terms of this order. So the ‘‘classical’’ coordina
change above does change the 1/r 3 term in the potential, but
has a specific form and the effects cancel among other c
sical terms in the Hamiltonian.

Now let us examine the quantum effects, keeping o
one power of the quantum expansion parameterG\/r 2.

The quantum potential will enter the Hamiltonian at ord

Hq5
Gm2

r

G\

r 2 ~58!

and the other term of this order is

Hqp;
p2

m

G\

r 2 . ~59!

If one makes the ‘‘quantum’’ coordinate change of Eq.~49!,
this will generate such a term in the Hamiltonian, which f
physical observables cancels the effect of the change in
potential. Therefore in order to make the quantum correc
to the potential well defined, one must specify the value
the terms contained inHqp . However, the important point is
that inanycoordinates in which one calculates quantum c
rections, one willnot generate a term such asHqp . This is
because all quantum effects that involve the interpart
separationr arise from loop diagrams of orderG2 while Hqp
has only a single power ofG. Quantum effects on a singl
particle line are of orderG but do not involver, while those
involving two lines are of orderG2. Since all calculations
yield no term of the formHqp , they must give the sam
quantum potential. The fully specified quantum potentia
that one in the coordinates in whichHqp vanishes. This, of
course, is then the one that we have calculated. We conc
that, despite the expected general coordinate invariance
calculated quantum potential is a well defined quantity to t
order.
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V. DISCUSSION

The scattering amplitude has been used to provide a s
definition of the quantum corrections to the Newtonian p
tential. Our basic calculation is of certain nonanalytic ter
in momentum space, theA2q2 andq2ln2q2 terms. A trans-
formation of these terms to coordinate space allows us
interpret these as long distance corrections to the poten
Our result is displayed in Eq.~44!.

We have done the full calculation in harmonic gauge.
may be possible to verify the gauge invariance of the re
by working in a more general covariant gauge, but this
considerably more involved computationally and we ha
not attempted it. However, because the scattering amplit
is anS-matrix element, we expect on general principles th
the result should be gauge invariant.

The quantum corrections that we find for the scatter
potential hold equally for the bound state potential. This
because the transformation between the two has no quan
component. The difference between the two is a class
correction that comes from iterating the lowest order pot
tial. Dimensional analysis reveals that in the nonrelativis
limit this iteration has the ability to generate only a classi
effect and not a quantum correction.

We have found a result for the nonrelativistic potent
which we believe is the final and complete result for th
quantity. The potential matches the expectations from dim
sional analysis as discussed previously@9,10# and the known
ambiguity of the form of the classical correction has be
seen to originate from the possibility of rewriting a potent
energy term in the Hamiltonian in terms of kinetic ener
and vice versa, as also discussed in@18,20,19#. Such rewrit-
ings are not possible for the quantum term at the orde
which we work. Therefore the quantum correction to t
potential is a definite exact quantity.

The quantum corrections are too small to be obser
experimentally. However, the fact that these are reliably p
dicted is important for our understanding of quantum grav
These effects are due to the low energy propagation of m
less degrees of freedom and hence are uniquely predicte
any quantum theory of gravity that reduces to general re
tivity in the low energy limit.4 In this sense, these are low
energy theorems of quantum gravity.
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APPENDIX A: VERTICES AND PROPAGATORS

We begin by listing the Feynman rules which are e
ployed in our calculation. For a derivation of these form
see Ref.@26#.

4Indeed, related effects have been found within the context o
theory @27# although the precise coefficients have not been ca
lated.
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1. Scalar propagator

The massive scalar propagator is

.

2. Graviton propagator

The graviton propagator in harmonic gauge can be writ
in the form

where

P abgd5
1

2
@haghbd1hbghad2habhgd#.

3. 2-scalar-1-graviton vertex

The 2-scalar-1-graviton vertex is discussed in the lite
ture. We write it as

where

t1
mn~p,p8,m!52

ik

2
$pmp8n1pnp8m2hmn@~p•p8!2m2#%.

4. 2-scalar-2-graviton vertex

The 2-scalar-2-graviton vertex is also discussed in the
erature. We write it here with the full symmetry of the tw
gravitons:
08403
n

-

t-

where

t2
hlrs~p,p8!5 ik2H F I hladI d

rsb2
1

4
~hhlI rsab1hrsI hlab!G

3~papb81pa8pb!2
1

2 S I hlrs2
1

2
hhlhrsD

3@~p•p8!2m2#J ~A1!

with

I abgd5
1

2
~haghbd1hadhbg!.

5. 3-graviton vertex

The 3-graviton vertex can be derived via the backgrou
field method and has the form@9,10#

where
t3abgd
mn ~k,q!52

ik

2
3S PabgdFkmkn1~k2q!m~k2q!n1qmqn2

3

2
hmnq2G12qlqs@ I ab

sl I gd
mn1I gd

slI ab
mn2I ab

msI gd
nl2I gd

msI ab
nl #

1@qlqm~habI gd
nl1hgdI ab

nl !1qlqn~habI gd
ml1hgdI ab

ml!2q2~habI gd
mn2hgdI ab

mn !2hmnqsql~habI gd
sl

1hgdI ab
sl !#1$2ql@ I ab

ls I gds
n ~k2q!m1I ab

ls I gds
m ~k2q!n2I gd

lsI abs
n km2I gd

lsI abs
m kn#1q2~ I abs

m I gd
ns1I ab

ns I gds
m !

1hmnqsql~ I ab
lr I gdr

s 1I gd
lrI abr

s !%1H @k21~k2q!2#F I ab
msI gds

n 1I gd
msI abs

n 2
1

2
hmnPabgdG

2@ I gd
mnhabk21I ab

mnhgd~k2q!2#J D . ~A2!
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APPENDIX B: USEFUL INTEGRALS

In the evaluation of the various diagrams we employ
following integrals

J5E d4l

~2p!4

1

l 2~ l 1q!2
5

i

32p2
@22L#1 . . . , ~B1!

Jm5E d4l

~2p!4

l m

l 2~ l 1q!2
5

i

32p2
@qmL#1 . . . , ~B2!

Jmn5E d4l

~2p!4

l ml n

l 2~ l 1q!2
5

i

32p2 FqmqnS 2
2

3
L D

2q2hmnS 2
1

6
L D G1 . . . , ~B3!

as well as

I 5E d4l

~2p!4

1

l 2~ l 1q!2@~ l 1k!22m2#

5
i

32p2m2
@2L2S#1 . . . , ~B4!
th
e
s

-

08403
e I m5E d4l

~2p!4

l m

l 2~ l 1q!2@~ l 1k!22m2#

5
i

32p2m2 H kmF S 212
1

2

q2

m2D L2
1

4

q2

m2
SG

1qmS L1
1

2
SD J 1 . . . , ~B5!

I mn5E d4l

~2p!4

l ml n

l 2~ l 1q!2@~ l 1k!22m2#

5
i

32p2m2 H qmqnS 2L2
3

8
SD

1kmknS 2
1

2

q2

m2
L2

1

8

q2

m2
SD

1~qmkn1qnkm!F S 1

2
1

1

2

q2

m2D L1
3

16

q2

m2
SG

1q2hmnS 1
L1

1
SD J 1 . . . , ~B6!
4 8
I mna5E d4l

~2p!4

l ml nl a

l 2~ l 1q!2@~ l 1k!22m2#

5
i

32p2m2 H qmqnqaS L1
5

16
SD1kmknkaS 2

1

6

q2

m2D 1~qmknka1qnkmka1qakmkn!S 1

3

q2

m2
L1

1

16

q2

m2
SD

1~qmqnka1qmqakn1qnqakm!F S 2
1

3
2

1

2

q2

m2D L2
5

32

q2

m2
SG1~hmnka1hmakn1hnakm!S 1

12
q2L D

1~hmnqa1hmaqn1hnaqm!S 2
1

6
q2L2

1

16
q2SD J 1 . . . , ~B7!
ng
ibu-
rms
where we have definedL5 ln(2q2) and S5(p2m)/A2q2.
Only the lowest order nonanalytic terms are included in
above forms. Higher order nonanalytic contributions as w
as the neglected analytic terms are denoted by the ellip
The following identity can be verified on shell,k•q5q2/2,
where k2k85q and k25m25k82. In some cases the inte
e
ll
is.

grals are used withk replaced by 2k8, where k8•q
52q2/2.

In order to do evaluate the box diagrams the followi
lowest order integrals are needed. The higher order contr
tions of nonanalytic terms as well as neglected analytic te
are again denoted by the ellipsis@28#:
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K5E d4l

~2p!4

1

l 2~ l 1q!2@~ l 1k1!22m1
2#@~ l 2k3!22m2

2#

5
i

16p2m1m2q2 F S 12
w

3m1m2
DLG1 . . . , ~B8!

K85E d4l

~2p!4

1

l 2~ l 1q!2@~ l 1k1!22m1
2#@~ l 1k4!22m2

2#

5
i

16p2m1m2q2 F S 211
W

3m1m2
DLG1 . . . . ~B9!

Here k1•q5q2/2, k2•q52q2/2, k3•q52q2/2, and k4•q
5q2/2, wherek12k25k42k35q andk1

25m1
25k2

2 together
with k3

25m2
25k4

2. Also, we have definedw5(k1•k3)
2m1m2 andW5(k1•k4)2m1m2.
,

of

08403
The following constraints for the nonanalytic terms of t
above integrals hold true on shell:

I mnahab5I mnhmn5Jmnhmn50, ~B10!

I mnaqa52
q2

2
I mn , I mnqn52

q2

2
I m , I mqm52

q2

2
I ,

Jmnqn52
q2

2
Jm , Jmqm52

q2

2
J, ~B11!

I mnaka5
1

2
Jmn , I mnkn5

1

2
Jm , I mkm5

1

2
J. ~B12!
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