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Quantum gravitational corrections to the nonrelativistic scattering potential of two masses
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We treat general relativity as an effective field theory, obtaining the full nonanalytic component of the
scattering matrix potential to one-loop order. The lowest order vertex rules for the resulting effective field
theory are presented and the one-loop diagrams which yield the leading nonrelativistic post-Newtonian and
guantum corrections to the gravitational scattering amplitude to second or@earim calculated in detail. The
Fourier transformed amplitudes yield a nonrelativistic potential and our result is discussed in relation to
previous calculations. The definition of a potential is discussed as well, and we show that the ambiguity of the
potential under coordinate changes is resolved.
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[. INTRODUCTION classical corrections have also been considered from the
viewpoint of a scattering potential in a pag@6] by one of

The idea that a field theory need not be strictly renormal-us. Recently we have also calculated the full classical and
izable in the traditional sense yet can still yield useful quan-quantum corrections to the Schwarzshild and Kerr metrics of
tum predictions when treated as an effective field th¢aty scalars and fermion®6] and have shown in detail how the
has been clearly demonstrated in chiral perturbation theorisigher order gravitational contributions to these metrics
and in other application®]. Quantum loop calculations lead emerge from loop calculations. In the present paper then we
to well defined results in the low energy limit. Interestingly, consider the corresponding calculation of the full scattering
such methods can also be applied to general relativity. As aamplitude.
effective field theory, the quantization of general relativity = Of course, treating general relativity as an effective field
can be carried out in a consistent way, since the troublesontbeory is carried out at the cost of introducing a never ending
singularities which occur for various types of matter sourceset of additional higher derivative couplings into the theory.
in traditional renormalization schemg&-7] can be absorbed In this sense Einstein’s general relativity is still a perfectly
into phenomenological constants which characterize the efvalid theory for gravitational interactions—although now it
fective action of the theory. This effective field theory ap- represents only theminimal theory. At some stage additional
proach offers then a possible way around the familiar renorderivative couplings must be appended to the Einstein action,
malization difficulties of general relativity in the low energy signifying manifestations of the higher energy component of
regime and, using this approach with background field quanthe effective field theory. However, the low energy scattering
tization[8] of general relativity, one of uf9,10] some years potential is free from these new couplings and represents a
ago derived the leading quantum and classical corrections tmodel-independent result for quantum gravity.
the Newtonian potential of two large nonrelativistic masses. This calculation is possible because the post-Newtonian
This calculation has since been the focus of a number odnd quantum corrections which we consider are determined
publicationg 11-14), and this work continues, most recently fully by the nonanalyticpieces of the one loop amplitude
in the papef15]. Unfortunately, because of the difficulty of generated by the lowest order Einstein action. Of course, in
the calculation and its myriad of tensor indices there ha®rder to deal with the ultraviolet divergencies which arise at
been little agreement among these various authors. The clasne loop, one must renormalize the parameters of higher
sical component of the correction has previously been disderivative terms in the action. However, such pieces will
cussed in Refd.16-2(, and here there is general agreementonly affect the analytic parts of the one-loop amplitude, and
although, as we shall discuss, there exists an unavoidablgill not contribute to our potential.
ambiguity in defining the potential. The basic disagreements We will employ the same conventions as in our previous
lie rather in the quantum corrections, and in the present papgrapers, namely,/{=c=1) as well as the Minkowski metric
we shall present what we believe to be thefinitiveresult  convention (-1,—1,—1,—1). We will begin in Sec. Il with
for the leading classical and quantum corrections of ordea very short introduction to the effective field theory quanti-
G2, using the full scattering amplitude as the definition ofzation of general relativity and focus here especially on the
the nonrelativistic potential. distinction between nonanalytic and analytic contributions to

We note that, as a prelude to this effort, in a recent papethe scattering amplitude. We also include a discussion of the
[24] two of us have dealt with the quantum and classicaldefinition of the nonrelativistic potential.
corrections to the Reissner-Nordstroand Kerr-Newman Next in Sec. lll we evaluate the diagrams which contrib-
metrics of charged scalars and fermions. Such quantum angde to the scattering and examine in detail the results for the
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various components. The resulting nonanalytic piece of thanalytic contribution is a power seriesdnThe feature from
scattering amplitude is then used in order to construct thehich the analytic contributions originate is the propagation
leading corrections to the nonrelativistic gravitational poten-of massive particles while the nonanalytic effect comes from
tial. We also discuss our result in relation to previous calcumassless propagation and can be seen directly by Taylor ex-
lations and attempt to sort out the various inconsistencies ipanding the two types of propagators. Indeed the massless
the published numbers. Finally in a concluding section wepropagator Ij?> cannot be expanded in a series, while we

summarize our findings. have the obvious representation for the massive propagator
as 1/@>—m?)=—1m?(1—qg?m?+ ...). Thus the mas-

Il. REVIEW OF GENERAL RELATIVITY AS AN sive parts of the diagrams will always be expandable and

EEFECTIVE EIELD THEORY hence analytic—while the massless contributions have the

o . _ o possibility of generating nonanalytic components. It should
We begin with a brief review of general relativity, the pe noted that such nonanalytic pieces of the scattering am-
Lagrangian of which(not including a cosmological temis  plitude are essential to the unitarity of tBematrix.

A. Definition of the potential

£=\-g

) + Ematter ) (1)

2R
K

Before proceeding to the actual calculations, it is impor-
tant to note that the precise definition of a potential in a
where «?=327G is the gravitational coupling,R¥, ; relativisti_c quantum field t_he_ory such as general relativi_ty is
=g,0 45— gl ¥ +T# T~ T is the curvature ten- not ob_wous. In _ the original papers, the one-part!cle-
sor, andg denotes the determinant of the metric figig, . 'Tfeduc'.b'e potential was caIpuIate{Q,lO]. Howe\{er, add!-

. . . tional diagrams are required in order to relate this quantity to
Here /= gL paer is a covariant Lagrangian for the matter physical observables. Subsequent work has considered alter-
_flelds, and, n p“UC'p'e* any type of matter field could be aiive definitions. Clearly a gravitational potential should be
mcIuldgd. This action defines the classical theory of genera!!Jauge invariant in order to make physical sense, but one can
relativity. S choose between various definitions of the potential depend-

In Qrder to treat Eq(l) as aneﬁeqtlv¢f|eld the_ory one ing on the physical situation, how the total energy is defined,
must include all possible higher derivative couplings of theetc. In QCD one can always turn to the venerable Wilson
fields in the gravitational Lagrangian. In this way any field loop description but there exists no standard Wilson loop

singularities generated by loop diagrams can be assoc'at%scription for the gravitational potential, although some

with some component Of. th? action and h‘?“ce can be aky . has been done in this directig2l] using the Arnowitt-
sorbed via a simple redefinition of the coupling constants o

. . - “Deser-Misner formula for the total energy of the gravita-
the theory. Treatmg all such'couplmg coef_ﬂuents as EXperliong| system. Such an approach to the gravitational potential
mentally determined quantities, the effective field theory is as been taken in RefL1]. For yet another approach to the
then finite and contains no singularities at any finite order ol a\tonian potential, see RéR2]. An alternative path is to
the loop expansion. . . . use the scattering amplitude itself to define the potential.
We can consequently write an effective action for pureryig gescription of the potential seems to us to be the sim-
general relativity as plest and most intuitive picture and has been employed by a
number of author§l7,18,16,12,23,15Herein then we shall

2R also use the full scattering amplitude in order to represent the
L=+—g ?+C1R2+ CRYR,,+ ..., (2)  potential, defining
P\ — 4o n_n'
where the ellipsis denotes that the effective action is in fact (f[Tli)=(2m)*6"(p—p")[M(q)]
an infinite series—at each new loop order additional higher
derivative terms must be taken into account. This Lagrangian =—(2m) 8(E—E"){fIV(q)|i), )

includes all possible higher derivative couplings, and every

coupling constant in the Lagrangian is considered to be deyherep,p’ is the incoming, outgoing four-momentum. The
termined empirically. Similarly one must include higher de- corresponding coordinate space representation can be found

rivative contributions to the matter Lagrangian in order topy taking the nonrelativistic limit and Fourier transforming,
treat this piece of the Lagrangian as an effective field theoryyielding the result

Details of such considerations can be found in REFsl0].
In our calculations we will consider only the nonanalytic
ibuti i i 1 1 d?
contributions, which are generated by the propagation of two _ A igxaqo
- 9ETIE i V(x)= e M(q), 4
or more massless particles in the Feynman diagrams. Such 2my 2my ) (243
nonanalytic effects are long ranged and, in the low energy
limit of the effective field theory, they dominate over the which will serve as our definition of the nonrelativistic po-
analytic contributions which arise from the propagation oftential.
massive modes. The typical nonanalytic terms we will con- It should be noted, however, that this is not the only way
sider are of the type {~q? and Ing>—while the typical in which to define the potential(q) in terms of the scatter-

084033-2



QUANTUM GRAVITATIONAL CORRECTIONS TO THE . .. PHYSICAL REVIEW D 67, 084033 (2003

\kz k4/ Ill. RESULTS FOR THE FEYNMAN DIAGRAMS
In this section we will present our results. All diagrams
my) BRAA (m
(ma) (ms) have been performed both by hand and by computer. In order
ki ks to evaluate the diagrams by computer, an algorithm for
! ' MAPLE VII (TM)! was developed. This program contracts the
FIG. 1. The tree diagram giving Newton’s law. various indices and performs the loop integrations. All re-

sults obtained this way were confirmed results obtained by
ing amplitude. One could, for example, subtract off the sechand. The resulting amplitudes were then Fourier trans-
ond order Born contributions, which would lead to the non-formed to produce the scattering potential, and only the
relativistic potential used in bound state quantum mechanic@onanalytic pieces of the amplitude were retained. For this

and would be equivalent to using the prescription part of the calculation, the following Fourier integrals are
useful:

i(f|T]iy=—27 S(E—E")| (f|Vpe(q)]i}
q-r______

(2m)?  |q2 4w’

fd?’q.l 1

f| Ve V()i
+; (fl b(g)lnéifji: (Q)|'>+ G

q-r___

f dq . 1 1
e =—
(2m)3 lal 2722

The definition of the bound state potential is discussed in
detail in Ref.[17]. In particular, in a Hamiltonian treatment
there are also terms in the Hamiltonian involviGg?/r that
contribute at the same order. The relation of the bound state f d3

potential V,((q), in Einstein-Infeld-Hoffmann coordinates,
to the lowest order scattering potential is

e9"n(g?) =
(2m)° (o) 2t

- ®

After this brief introduction, we proceed to give the results

N _ 71Gmm,(my+m,) for each diagram in turn. Note that the basic vertices needed
Vps(r)=V(r) + 2.2 . (6) . : . .
2cr for our calculation are given in Appendix A.
B. The diagrams contributing to the nonanalytic A. The tree diagram
component The result for Fig. 1 in the nonrelativistic limit is the
of the scattering matrix well-known lowest order tree-level result which yields the

We will consider here only the nonanalytic contributions Newtonian potential. We define the diagram using the Feyn-
from the one-loop diagrams. Since many diagrams yieldnan rules as
purely analytic contributions to th® matrix, such diagrams

need not be considered and will be omitted from the begin- R iPap

ning. The diagrams whicHo yield nonanalytic contributions iMya)(q)=71"(Ky,kp,my) “2 Tfﬁ(kg,k4,m2),

to the S matrix amplitude are those containing two or more q

massless propagating particles. Such a typical amplitude will ©)

be of the form
whereq=k; —k,=k,—ks. We will find it most convenient

5 .1 4 ) to quote our results in the nonrelativistic limit. Relativistic
M~ A+BQ™+ ... +ax"—+ Bk In(—q) amplitudes are denoted byt and nonrelativistic amplitudes
q by M, with the latter being defined in a normalization given
R o

2K PP

7

M ()= o My (@) (10
- L ()= 55 —Mid).
Here the coefficient&,B, ... correspond to analytic pieces ' 2m; 2my"

which are of no interest to us, since these terms will only

dominate in the high energy regime of the effective theoryBy contracting all indices for the tree level amplitude and
Rather, thex,8,,8,, . . . coefficients correspond to the non- taking the nonrelativistic limit, we find

local, nonanalytic contributions to the amplitude and are the

ones which we seek. In particular, tBe, 8, terms will yield

the leading post-Newtonian and quantum corrections to the wapLe andmapLE V are registered trademarks of Waterloo Maple
potential. Inc.
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» < » 4 propagators remain. An example of this simplification can be
ky weane ks ko = k4 seen by the replacement of the integral
(211) P ("122) (m1) ! ' (m2)
1 3 k k
7 > R f ol ks
/ N\ / \
@ ® (2m)2 12(1+0)?[ (1 +ky) >~ mI][ (1 — ka)*—m3]

FIG. 2. The box(a) and crossed boxb) diagrams which con-

4 27_12_m2
tribute to the nonanalytic component of the potential. :}f d’l [(+k)7]—1"—my
2] @2m?2 120+ q)?[(1+kg) 2= mi][(I —ks)?—m3]
> 47TG mlmz
Mia(@)=— —=—, (11) (19
q
by
whose Fourier transform produces the scattering potential
c 1 f d4 1 18
m;m; 5
Vig(n=——1—, (12 2) 2m)? 1%+ )% (1—kg)?~mp]
which is indeed the familiar Newtonian form. because theé? part will not contribute to the nonanalytic

component. The integrals with three or two propagator terms
are explicitly given in Appendix B. Another simplification

arises when the momentugt contracts with a loop momen-
We can write the contributions of Figs(e2 and 2Zb) as tum I# in the numerator. An example is

B. The box and crossed box diagrams

d*l , v d4l I-q
M23=J’ 47"f (Ky, K +1,my) 777(ky +1,kp,myg) f
(2) (2m)2 12(1+ )% (1 +kg)? = mi][ (I —kg)?—ms]
XTgﬁ(k3,k3_|,mz)Tza(k3—|,k4,m2) lf d4| (|+Q)2—|2—q5
y i i 1P yvag 2] @2m)2 120+ q)2 (1 +ky) 2= mE][ (1 —kg)?—m3]”
(ky+D2=mZ || (ks=1)?=m3][ 17 (17)
iPoeys 13 which simplifies to
(I+a)?
4 2
for the box and — Ef d d . (18
2)(2m)? 12(1+ q)*[ (1 — kg)?— m3]
4
I TP
ZbZJ' 47’1”(k1,k1+l,m1)r‘1"’(k1+I,k2,m1) Via these simplifications one can reduce the box and cross

box amplitudes to a reduced piece consisting only of inte-
grals with two or three propagators and a component with

X 772Kz, | +Kg,mp) 7P (1 + Ky Ky, M) the basic form of the box and crossed box integrals, i.e., with

) , , no loop momentum terms in the numerator. Then, using the
: ' 1P uvap integrals presented in Appendix B, performing the above-
(kl+|)2_m§ (I +k4)2—m§ |2 described contractions in the two diagrams, and taking the
nonrelativistic limit we end up with the result
i1Poys
poy
(I+9)? o

.. 46 -
Mrze(g)+2(b)(Q) = ?szlmZIn q° (19
for the cross box. These diagrams are among the most chal-
lenging that we will encounter, because of the rather complifoy the momentum-reduced component of the box plus cross
cated integrals—containinfpur propagators—which must oy and
be evaluated. However, those pieces of the amplitude which
are loop momentum-dependent simplify, because the exter- _ R R
nal particles are on shell and we are only seeking the nonana- Mgr(‘;‘)j+2(b)(q) =16G2m;m,In g° (20
lytic pieces of the scattering amplitude. This allows reduc-
tion of parts of the amplitude initially having four for the irreducible piece. Fourier transforming, we find then
propagators to pieces where effectively only three or twahe scattering potential contributions
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kz k4
N kg N ks M A,
(m1) 2}(7@) (mq) @ (ms) (Zly@{;ﬁ)

kg\\ /kl \ ! \

V'l kl / k3 N\
(@) (b) FIG. 4. The double-seagull diagram contribution to the scatter-
ing potential.
FIG. 3. The set of triangle diagrams contributing to the scatter- .
ing potential. PysopPapuvT P (K1, Ko, M) = 7, 505(Kq ,Kz,my) (26)
5 and, taking the nonrelativistic limit, we find for these two
red _23mmyG pieces
Vo@ +20)(F)=— 3 —’7TI'3 (21
X - 2 7 > T ml
for the reducible component and Ms@)(q) = —8G"mmy| 5Ing”+ EB)
q
. m1m2G2 2
\/irred r=— 22 R 7 ., 7°m
2(a) +20)() 3 (2 M3 p)(a) = —8G*mymy| 5In g2+ |q )
q
for the irreducible piece so that the total result for the box (27)
and cross box contribution to the potential is Our results for these diagrams agree with those of R&i,
and the Fourier transformed result is
VL p(1) = — 7 MG @3 Gomumy(my M) mam,G?
2@+20)\N)=~"%3 — 3 - 1Ma(My My 1My
3 7Tr3 V3(a)+3(b)(r):_4 > +28 3 .
r wr
These results are in agreement with those of Rig]. (28)

C. The triangle diagrams D. The double-seagull diagram

The next piece we will consider is that of Fig. 3, for e have for the double-seagull terisee Fig. 4
which we find

1 d4| afByd TpuY
" May@(a)= Ef (277)47'2 7(ky,ka,mp) 7577 (K3, kg, ma)
Ma@)(q)= f WTTV(klaHkl:ml)T(fB(' +ky,kz,myg) Pasen [P 1000
X|——=|| —— (29
(1+q)? |2

X 79P7°(kg,kq,my)

ipaﬁy&]{iPMV(rp]
(I+q)? 12 The double-seagull loop diagram is quite straightforward,
and is simplified by use of the identity in E¢R6). Note,

i (24) however, that there exists a symmetry factor of 1/2!. The

>< —

(I +k1)2—m§ ’ resulting amplitude is found to be

" M 4(2y(0) = 44G°mymyIn g2, (30)
Msp)(a)= f Wﬁp(k&ka_hmz)ﬂ&(ka_'vk4am2) whose Fourier transform yields the double-seagull contribu-
tion to the potential
iP iPapys

X 2Bk, K, my)| —222e || —2Br0

T ( 1,02 l) |2 (|+q)2 m1m2G2

Va@(r)=—22———, (31)
i Tl

which agrees with the result presented in R&b].

The calculation Figs. @ and 3b) yields no real E. The vertex correction diagrams

complications—the integrals needed are quite straightfor- There exist two classes of vertex correction diagrams: For
ward and are presented in Appendix B. However, a signifithe massive loop diagrams, shown in Fige) &nd 3b), we
cant simplification results from the use of the identity have
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\ 4 ‘ The vertex correction diagrams are certainly the most chal-
ko v k4 ; k4 lenging to perform, disregarding the box and crossed box
(ma1) 1 (m2) (ml) \ ) diagrams, and the results go back to the original calculation
kll \k;} kll \k of Refs.[9,10—however, due to an algebraic error, the
' \ p \ original result quoted for such diagrams was in error. Since
(@) (b) that time, the results for the gravitational vertex corrections
have been checked at length in various publicatidrgs15];
s \ ‘ s ‘ 5 however, until Ref[26] the correct forms have not been
2 4 4 given. Using the results of Ref26] and taking the nonrela-
(m1) (ma2) ms) tivistic limit, we find the amplitudes
kl ‘ k3 kl k3
1 \ (
C
; M (q)=2G%m;m m+—ln 12
FIG. 5. The class of the graviton vertex corrections which yield s@+s®)\ 9= 1 |l 3
nonanalytic corrections to the potential.
4
Ms(a)(Q):—4Tfﬁ(klykzyml)ﬁy(ka.ks_l,mz) - 52 -
(2) Msc)+5a)(Q)=— ?szlmzln 9, (36)
iP\
X 787 (kg— 1, kg, my) 75 ¢<0rO)(], — ﬂ
(ks =1, ke, m2) 75 (I,—a) whose Fourier transform yields the corrected results for the
_ _ . vertex modifications to the scattering potential:
1Pyepo || 1P apys i (32
(+a?l o J[(1-kg)*-mi]
G’m;my(m;+m,) 5 m;m,G?
d4 ; Vs@)+5m)(r)= 2 3 R
Ms(b)(Q)ZIWﬁ (kg I +kq,my) (37)
X4 (1 + Ky Ko, myp) 71 (K3, kg, My)
i 26 mm,G?
[ i 1My
% Tg§p0(¢e)( — ,q) Paﬁyﬁ P/'LVP‘T V5(C)+5(d)(r) 3 -3 (38)
12 (1+q)? ar
iP penn [ (33 where again we note the presence of a symmetry factor 1/2!
> (1+ky)2—m?|’ in the case of the pure graviton loop diagra®ur results

for these diagrams areotin agreement with previous calcu-
while for the pure graviton loop diagrams shown in Figs.lations. For the vertex correction diagrams in Fig&) &nd
5(c) and %d) we have 5(b), there is total disagreement with our result. However, we
) 4 have performed a very detailed analysis of the vertex dia-
grams in our companion papg26], showing how the clas-
Ms ()= ﬁf WTZ (kg kg,mp) 1 P(ky ko, my) sical ingredients match in detail those required by the clas-
sical Schwartzschild metric. The quantum vertex result of
Ref.[15] is the same as that of R¢fL3] and the latter yields
an incorrectclassicalmetric (the authors of Ref.15] do not
display their classical vertex correctjoron the other hand,
our detailed evaluation of the metric correction in R&i6]
, (34) gives us confidence in the correctness of our result.

iP

poed

(I+a)?

IP/.LV)\K
|2

% Tng(yﬁ)“'_q){

% ipafyﬁ
q

F. The vacuum polarization diagram

Ms@)(Q)= ZJ 2 )47'20“ (k1,kz,mq) 1% (kg, Ky, mMp) The result for the vacuum polarization contributisee
Fig. 6) can be found from the amplitude

X7g675(6¢)(—| q) Ipl-’-Vyﬁ iP U'O‘B
! 2
! (1 +q) 2t is correctly pointed out in Ref.15] that the coefficient of the
. two-graviton vertex quoted in Reff9,10] is too small by a factor
"Pxes f2. H h ical It for the | i Is gi
) (35) of 2. However, the numerical result for the loop integrals given
q2 therein is correct because of the presence of this symmetry factor.
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\ \

I I
k2 * *k4 ko * *k4 V(r):—Gmlmz 1+3—G(m1+m2)+£6_h .
N r r 107 (2

(ma) f*@*‘\ (ma2)  (ma) ,hs' ‘QJ\ (m2) (44)
k k

' l" k\\ ? & ll‘ k\\kg The classical term in this potential agrees with E§j5) of

@) (b) Iwasaki[17].
However, we note that the quantum component of the
FIG. 6. The vacuum polarization diagrams which contribute topotential is not equivalent tany previous published result

the potential. Note that there exists a ghost diagram along with th9—13,15. As described above, we believe this result to be

graviton loop. the definitive form of the nonrelativistic scattering matrix
potential. Our results agree with R¢fL5] for all diagrams
jpPoNE except the vertex correctionddowever, we performed mul-
Mg (ay +6(0)(A) = Tpe(Ke, Ko ,ml)Tngﬂv(Q) tiple checks on the vertex correction, since we have seen that

our version leads exactly to the required form of the classical

i purys Schwarzschild metric, for both fermions and bosons.

X—ZTytg(kg,k4,m2), (39)
a A. A potential ambiguity

where the vacuum polarization tensor is found from the ef- There is an important issue concerning the potential that

fective Lagrangian obtained by 't Hooft and Veltmgs+5] has not been thus far much discussed in the literature—that
both the classical and quantum corrections to the potential

are in some sense ambiguous. For the classical correction,
this realization goes back to Refd.8-20, and these argu-
ments generalize readily to the quantum component. In this
section we discuss this ambiguity and argue that at one loop
and is given by order our calculation of the quantum correction does have a
well defined meaning.
As explored in Ref[18] the classical post-Newtonian po-

1

ST

In g iR2+ lR RHY (40)
120" 20 "~

ii - 2GI . 21, 23 , tential is not invariant under a coordinate transformation of
aB,yd— 7 n( —q ) ﬁ)q Iaﬁ,yé‘_'—mq NapMys the form
G(m;+m
_ 2B 2 N - | 14 2T M) | (45
120 naﬁquﬁ nyﬁqaqﬁ 240

qu(qaqwﬁfr A% ayT Ualy st gty Nas) We are always free to make such a coordinate change, and
that given in Eq(45) modifies the classical correction to the

otential via
+ 350,05 4y P
Gmym, G(my+m,)
Contracting the various indices, we find the result 1+c
Gmm G(my+m
BRI Pl S

. 43 ) -
M6(a)+6(b)(Q):EG m;m,ing*, (42

Following Refs[18,2( the ambiguity can be seen to arise in
which is equivalent to that originally derived in Ref8,10]. a field theory calculation through a modification of the gravi-
After Fourier transforming we find a contribution to the scat-ton propagator
tering potential,

1 1
¢ “
43 m;m,G? 0
Ve@+em)(N=—"53—3 (43 _ _ o
30 g3 accomplished by using the energy conservation in the fol-

lowing identical way which holds true for geneval
which is in agreement with that given by R¢L5].

IV. THE RESULT FOR THE GRAVITATIONAL POTENTIAL 3To be precise we are comparing to the third version of R,
available in the electronic archive. We had several disagreements

Adding up all the corrections to the nonrelativistic poten-with the original version; all except the vertex correction have been
tial we have our final result, corrected in the third version.
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1
1 . (48
5(1—X)[(p20_ P10)2+ (Pao— P30)°1—X(P20— P10) (P40~ P30) — 4°
|
Using this propagator in order to derive the gravitational p* Gm? Gm Gm\/[p?
potential, the result will in general depend @nwith the Hz“mg, PR (T)(m . (53

relation to the coordinate change beiag- — ;(1—x). Not

. 2 2 .
only will the terms of ordeiG*/r” depend orx, but so will - There exists an ambiguity between the last two of these
the corrections of order@/r)(v/c). This indicates that the (oms arising from a coordinate change, but this effect can-
post-Newtonian part of the static gravitational potential iSqq|s for physical observables, as shown explicitly in Ref.

not well defined in and of itself. , [18]. Writing the Hamiltonian in the center of mass frame to
The coordinate ambiguity also generalizes to the quamU’Bost-Newtonian order. we have

part of the potential. There exists a coordinate redefinition

2 2 4 4
- Hz(p p)_ 2l ps)
r—r| 1+ 58—, (49) 2m;  2m, 8m; 8mj;
Gmlmz[ P> (p1)? G(m1+mz)}

which changes the coefficient of the quantum term in the - l+a +Db +cC .

. r m;m,  mpm, r
potential

(54)

Gmym, Gh LM, Gh In the standard Einstein-Infeld-Hoffmann coordinates, the

E— dr_2 i 1+(d—,8)r—2 . (50 coefficientsa,b,c have the values
Therefore, we need to address the uniqueness of the quantum A 1[1+3(m1+ mz)z}
correction to the potential. 2 mym, |’

Since general relativity is invariant under coordinate

shifts, if the potentials are changed there must exist other
modifications that compensate for these changes, leaving the 1
resulting physics invariant. Within a Hamiltonian formula- b= 2
tion, these modifications take the form of momentum-
dependent pieces—in order to make the potential well de-
fined, one must also specify the momentum terms in the 1
Hamiltonian. c=-5. (55)

First we examine the classical ambiguity. Classically there
are two dimensionless variables available for the expansio

But under the coordinate transformation of one
away from the Newtonian limit, HaS).

finds the modifications

2
p> Gm 1 m; +m,)?
PR (51) a— = l+(3+2a)M,
2 m;m,

3

In bound state problems these quantities appear at the same

order, as can be seen by use of the virial theorem. In the 1 (my+m,)?
Hamiltonian the leading terms are order b_>§_a m.m
1M>
2 2
pe  Gm 1
Hi~ o —— (52) co-5-a (56)

and are unambiguous. At next order we have pieces of th&herefore, in order to specify the correction to the static
form potential, one needs also to identify the momentum coordi-
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nates. In particular, the classical potential calculated by V. DISCUSSION
Iwasaki is appropriate for Einstein-Infeld-Hoffmann coordi-
nates. The scattering amplitude has been used to provide a solid

This classical ambiguity has not been worked out explic-definition of the quantum corrections to the Newtonian po-
itly at the following order in the expansion, but the generaltential. Our basic calculation is of certain nonanalytic terms
pattern is apparent. Specifically, at the next order one hai& momentum space, thé— g? andg?ln—f terms. A trans-
four types of terms, formation of these terms to coordinate space allows us to

interpret these as long distance corrections to the potential.
Our result is displayed in Eq44).
6 4 5 ) 5 We have done the full calculation in harmonic gauge. It
b p_(G_m) p_(G_m) %(G_m) may be possible to verify the gauge invariance of the result
5" m3\r ) mir )7 r r |- by working in a more general covariant gauge, but this is
(57) considerably more involved computationally and we have
not attempted it. However, because the scattering amplitude
. . . is anSmatrix element, we expect on general principles that
Th(g Ia;t tgrm here is noteworthy bgcause it goes lik&he result should be gauge invariant.
1/r®,—i.e., like the quantum correction in the potential—but  The quantum corrections that we find for the scattering
it is distinguishable by its mass dependence plus the fact thjotential hold equally for the bound state potential. This is
it is order G®. Such terms will also be ambiguous under abecause the transformation between the two has no quantum
coordinate transformation, but the effects will cancel amongomponent. The difference between the two is a classical
the effects terms of this order. So the “classical” coordinatecorrection that comes from iterating the lowest order poten-
change above does change the’ térm in the potential, but tial. Dimensional analysis reveals that in the nonrelativistic
has a specific form and the effects cancel among other clagimit this iteration has the ability to generate only a classical

Hs

sical terms in the Hamiltonian. effect and not a quantum correction.
Now let us examine the quantum effects, keeping only We have found a result for the nonrelativistic potential
one power of the quantum expansion paramétéfr?. which we believe is the final and complete result for this

The quantum potential will enter the Hamiltonian at orderduantity. The potential matches the expectations from dimen-
sional analysis as discussed previoy8lyi0] and the known

ambiguity of the form of the classical correction has been
5 seen to originate from the possibility of rewriting a potential
:G_mG_ﬁ (58) energy term in the Hamiltonian in terms of kinetic energy
@ r r? and vice versa, as also discussed18,20,19. Such rewrit-
ings are not possible for the quantum term at the order to
which we work. Therefore the quantum correction to the
potential is a definite exact quantity.
The quantum corrections are too small to be observed
experimentally. However, the fact that these are reliably pre-
p? G dicted is important for our understanding of quantum gravity.
" m 2 (59 These effects are due to the low energy propagation of mass-
less degrees of freedom and hence are uniquely predicted for
any quantum theory of gravity that reduces to general rela-

If one makes the “quantum” coordinate change of E4),  tjvity in the low energy limit* In this sense, these are low
this will generate such a term in the Hamiltonian, which forenergy theorems of quantum gravity.

physical observables cancels the effect of the change in the

potential. Therefore in order to make the quantum correction ACKNOWLEDGMENTS

to the potential well defined, one must specify the value of . .

the terms contained iH ,. However, the important pointis _ N-E.J. Bjerrum-Bohr would like to thank the Department
that inany coordinates in which one calculates quantum cor-°f Physics and Astronomy at UCLA for its kind hospitality
rections, one willnot generate a term such &k,,. This is and PH Damgaard_ for discussions. 1_'he worl_< of B.R.H. an
because all quantum effects that involve the interparticle)-F-D- iS supported in part by the National Science Founda-
separatiorr arise from loop diagrams of ord@? while Hy, ~ t1O" under award PHY-98-01875.

has only a single power db. Quantum effects on a single
particle line are of orde@ but do not involver, while those
involving two lines are of ordeG2. Since all calculations We begin by listing the Feynman rules which are em-
yield no term of the formH,,, they must give the same ployed in our calculation. For a derivation of these forms,
quantum potential. The fully specified quantum potential issee Ref[26].

that one in the coordinates in whidth,, vanishes. This, of

course, is then the one that we have calculated. We conclude——

that, despite the expected general coordinate invariance, théindeed, related effects have been found within the context of M
calculated quantum potential is a well defined quantity to thisheory[27] although the precise coefficients have not been calcu-
order. lated.

and the other term of this order is

APPENDIX A: VERTICES AND PROPAGATORS
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1. Scalar propagator

uv 2
The massive scalar propagator is TH = O m)
~ r
i oo WL
e =y N

q q? — m? + ice

2. Graviton propagator where

The graviton propagator in harmonic gauge can be written
in the form

1
T;;}\pa'(p1pr)= i KZ[ | n}\aél pﬁgﬁ_ Z( 7777)\| po’aB+ 77p0'| n}\aﬁ)}
ipesre
RARARARAR 10 = -
b q 7 g + i€

X ( '+p'ps) 1 ( | 7P 1 7N P )
PaPst PPp) — 5 T=5n" 0’
where g 2 2

n’)—m2
P X[(p-p") m]] (A1)

3. 2-scalar-1-graviton vertex with

The 2-scalar-1-graviton vertex is discussed in the litera-
ture. We write it as

1
I aﬁyb‘zi( 77(177],35+ naﬁnﬁy)-

o
nv /( uv ’
A =7 (p,p,m)
g p\\ 5. 3-graviton vertex
A The 3-graviton vertex can be derived via the background
where field method and has the forf®,10]
" ’ i« "y AV v ’ 2 4
(PP m)=— - {p*p % p"p “ 7 (p-p") M7} =7 v
af 7;,, 7,

4. 2-scalar-2-graviton vertex

The 2-scalar-2-graviton vertex is also discussed in the lit-
erature. We write it here with the full symmetry of the two
gravitons: where

+2q)\qo_[lo)\|/.w+IU)\I;LV_I,ua'I V}\_I,U,UI V)\]

Papys aplys T 1yslap=lapl ys—1yslap

3
kik+ (k= a)*(k—a)"+0q"q"~ 5 "0’

, i K
T3 pys(KQ) = — - X

+ [QACIM( 77(1[3' ;)(\9—}_ 77)/5' Z)b) + Cb\qy( naﬁl ;;1)‘5\4_ 7])/5' Zg) - q2( naﬁl I;;_ 7775' ZLE) - n”vqoq}\( naﬁl (;/-g

0l )T+ 200 [0 (K Q) g 5, (K )= 1331 2 K = P51 KT+ G125 1 251 )

[k2+(k—a)?]

| wo| v

\ \
+ WMVQU%U a% %p'*‘ I 7’;' ng)} + af 750’+ I l}‘;gl ZzBO'_ E nﬂvpaﬁyﬁ

— 155 7agk®+ 1 ,5(k—)?] ) (A2)
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APPENDIX B: USEFUL INTEGRALS

d4l I
y23
In the evaluation of the various diagrams we employ the L f (2m)* 12(1+q)2[ (1 + k) 2— m?]
following integrals

J_f 4l 1 : e o | . .
- (277)4I2(I+q) 3277 =m[k (_1___2)L_Z?S
+ L+1S]+ (B5)
d4| I - qu, E ey
Ju= - B2
g J(Zw)4|2(|+q)2 sz Ot B2
d4| Iﬂ-l I 2 d4| I/.LIV
= 4 — _ | —
J’” f(Zw)“IZ(Hq)Z 322 q"q”( 3L) n f(277)4I2(I+q)2[(|+k)2—m2]

) 1
—q Nuv _EL +

y (83) |
v L—3
3272m [q"q( 8 )
as well as
192 1¢°
+k#kv(—§EL—§ES
| f d* 1
= 2 2
(2m)* 1201+ )2 (1 +k)2—m?] tlay, 39
(a.k,+a,k,) + g L+16m28
—L—-S]+. B4 1
| :f d L
e m* 120+ )7 (1 +k)2—m?]
| 5S k Kk, Kk L o* k, k K,k k, k Lo 1q28
32 on 2.2 2 Q,uqvq 16 + YA AN ém_ (qM «T0, at o " V) gmz +1_6ﬁ
1 1¢? 5 g? 1,
+(quVka+qMQakV+QVQCkk,u) _§_§E L_3_2_S +(7],uvka+ 77,uakv+ nvak,u) 1_2q L
1 2 1 2
+(77,u,vqa+ 77,uaqv+ nvaqp,) _gq L_1_6q S|(+..., (B7)

where we have defined=In(—¢?) and S=(#?m)/\—q?.  grals are used withk replaced by —k’, where k’-q
Only the lowest order nonanalytic terms are included in the= —g?/2.

above forms. Higher order nonanalytic contributions as well In order to do evaluate the box diagrams the following
as the neglected analytic terms are denoted by the ellipsitowest order integrals are needed. The higher order contribu-
The following identity can be verified on shek; q=qg%2,  tions of nonanalytic terms as well as neglected analytic terms
wherek—k’=q and k2=m?=k'2 In some cases the inte- are again denoted by the ellip$28]:
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|

d*l 1
(2m)* 12(1+q)2[ (1 +ky) 2= mZ][ (I —ks)*—m3]

i w
= 1— Li+..., B8
167r2m1m2q2( 3m1m2) (B8)
K'_f d*l 1
) @m 120+ )2 (1 + k) 2= m2I[(1 +Kg) 2— m3]
i
=— ||-1+ L|+
167m2°m;m,q° ( 3m1m2) } (B9)

Here k;-q=0%/2, ky-q=—0q%2, ks-q=—q?/2, andk,-q
=q?%/2, wherek, —k,=k,—ks=q andk?=m?2=k3 together
with k3=m3=k2. Also, we have definedw=(k;-ks)
—mym, and W= (k;-k;) —m;m,.

PHYSICAL REVIEW B7, 084033 (2003

The following constraints for the nonanalytic terms of the
above integrals hold true on shell:

|Mua77aB:|Mv77MV:J,w77#V:O- (Blo)
2 2 2
I,uvaqa:_fl,uln I,uqu:_?l,u,v I,U,q'u___li
L@ q°
qu :—EJ#, Jﬂqf‘:—?J, (B11)
N 1 , 1 u 1
;wak :EJ'U“V' IMVk :EJ#, |/_Lk :ZJ (B12)
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