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For the theories known as classical sequential gra@®G models, it has been conjectured that, up to sets
of measure zero, the “stem sets” generate the duligebra of label-invariant measurable sets of causal sets.
We prove this for a generic family of CSG modélse “generalized percolation modelsIn consequence, we
are able not only to identify the “observables” of these theories, but, more importantly, to provide them with
an accessible physical interpretation. We suggest that the stem sets will play the same role of fundamental
observable in the quantum analog of these theories, i.e. for quantum gravity.
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[. INTRODUCTION we may ask are of the form: “Does the causal set that actu-
ally occurs—i.e., the real one—belong to subgebf the
What are the observables for quantum gravity? The quessample space?” wher& is a u-measurable set, and the mea-
tion is often posed but its meaning is clouded by a number ofure . provides the answer: “Yes, with probabilig(A).”
difficulties. One problem is that we do not even know whatTo be generally covariant, the questions, i.e., the subsets of
the observables are in a theory as familiar as flat spacetimthe set of all labeled causal sets, must be independent of
non-Abelian gauge theorjl,2]. Another major problem is labeling. Thus we are led to the identification of thavari-
that the word “observable” is inherited from an interpreta- ant questions as subsefsof the set of all causal sets such
tion of quantum mechanics—the standard interpretation—inhat if a certain labeled causal set is an elemem,afo are
which the subject matter of the theory is not wisdbut what  all its relabelings.
can beobserved However adequate this may be for labora-  This identification is, however, very abstract, and what we
tory science, it will not do for quantum gravity, and we are seeking, then, is a characterization of the measurable sets
should rather be seeking what Bell called the “be-ables."that will be physically useful. In Sec. Ill we describe the
Furthermore, the question is intimately tied to the issue ofesult that we will prove, namely, that any measurable set of
general covariance, and indeed to the meaning of generghusal sets can be formed by countable set operations on the
covariance itself. It seems that the requirement of generado-called “stem sets,” to be defined. These stem sets have an
covariance threatens to obscure the physical interpretation @fccessible physical meaning. Sections IV, V, and VI are de-
the theory since objects identified mathematically as “covavoted to proving the theorem, and the last section contains a
riant” may not look like anything useful for making predic- discussion.
tions.
One advantage of the causal set approach to quantum
gravity [3,4,9 is that it is straightforward enough conceptu- |, ~| assicAL SEQUENTIAL GROWTH MODELS AND
e_llly that we can address these knotty problems in a prodyc- THE COVARIANT QUESTIONS
tive way. Although we do not yet have a quantum dynamics
for causal sets, we do have a family of classical stochastic The causal set hypothesis is that the continuum spacetime
dynamicg[6] within which we can investigate issues such asof general relativity is an approximation to a deeper level of
general covariance and the identification of observables condliscrete structure which is a past finite partial ordecausal
pletely concretely. The discreteness of causal sets turns out g&t (causet)This is a set endowed with a binary relatien
eliminate many of the technical difficulties that tend to ob-such that x<y) and y<z)=(x<z) (transitivity), x<x
scure these issues in the continuum. The work described ifacyclicity), and all “past sets{x|x=<z} are finite.(The con-
the current paper is a continuation of that reportefZinand  dition that all past sets are finite implies that the partial order
the main result is a proof of a conjecture made in that papeis locally finite. In other contexts, one would weaken the
In the next section we summarize the classical sequentia@ondition of past finiteness to local finiteness in the definition
growth dynamics for causal sets. In the context of this dy-of a causet, but for present purposes there is no harm in using
namics, the question we started with—“What are thethe stronger conditiohWhenx<y we say that % is below
observables?”"—is replaced by “What are the physical quesy” or “ y is abovex.” We will be interested in both finite and
tions to which the dynamics provides answers?” We see thatountably infinite causets.
the dynamics provides a probability measyse on the Although we do not yet have a quantum dynamics for
sample space of all labeled causal sets as possible histories@fusal sets, the generic family of classical sequential growth
the universdthese are cosmological modelQuestions that (CSG dynamics derived if6] is a good place to begin the
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5 6 0 birth, and where A\(w,m) is given by the formula
Py 2k (2t with the non-negative real numbegsbeing the
/ free parameters or “coupling constants” of the theory.
An alternative interpretation of this dynamical rule is as
3 2 ! follows. Each new element chooses somesset elements

/ from among those already present, asbkeing chosen with

! relative probabilityt,q : then the new element is placed
4 aboves and all ancestors of members sf Settingt, =t

0 1 wheret is constant, gives the model of “random graph or-

FIG. 1. Transition from stage 7 to stage 8 of a particular grO\/vthderS”_ as studied "ﬁ8’9'1q'“and[11]'_ for:nstance. Ir{6] this
process. Two vertices joined by a line are related, with the loweSPECial case was called “percolation.” One can thus under-
being to the past ofan ancestor dfthe upper one. Only covering Stand the dynamical rule given by EQ.) as defining a type
relations(“links” ) are represented, the rest being implied by tran-Of “generalized percolation model.” These models exhaust
sitivity. Points filled with black are to the past of the new elementthe “generic” solution family of[6], and they are the only
(7) and points filled with gray are spacelike to it. ones we consider in this papéWe thereby ignore such “ex-

ceptional” CSG models as “originary percolation,” not to
search for physical questions, as a warm-up for the quanturention those exceptional solutions that are not even limits
theory when we have it. of the generalized percolation form.

Each of the dynamical laws in question describes a sto- There are two simple cases that we can describe com-
chastic birth process in which elements are “born” one bypletely: if all thet, are zero excefy, then we almost surely
one so that, at stage, it has produced a caus@t of n  obtain a causet in which no pair of elements is related, while
elements, within which the most recently born element isf only to andt; are nonzero we almost surely obtain a causet
maximal (see Fig. 1 If one employs a genealogical lan- that is an infinite union of trees in which every element has
guage in which %<y” can be read as % is an ancestor of infinitely many children. For the present, we rule out these
y,” then the nth element(counting from 0 must at birth  two cases, so we assume that 0 for somek=2, but we do
“choose” its ancestors from the elements ©f, and for not need to make any other assumptions regarding the cou-
consistency it must choose a subsetith the property that Pling constants in the model.
x<yes=xes. (Every ancestor of one of my ancestors is The stochastic dynamics described above gives rise to a
also my ancestorSuch a subsesd (which is necessarily fi- notion of probability that is too rich for our purposes, as it
nite) will be called astem® The dynamics is then determined assigns a probability as an answer to the question “is ele-
fully by giving the transition probabilitiesgoverning each ment 3 above element 1?” This is not meaningful for us, as
such choice 06C%,,. in any particular causet the answer depends on the labeling

We can formalize this scheme by introducing for eachof the elements. In order to arrive at a definite theory one
integern=0,1,2,.... the sef)(n) of labeledcauset&, whose needs to specify the set of questions that the theory should

elements are labeled by integers 0,h-.1 that record their answer anc_iz for each one of them, explain how in principle
order of birth. Moreover this labeling is natural in the the probability of the answer “yes” can be computed.

sense thak<y=L(x)<L(y). Each birth of a new element We will need to _proceed n _afo_rmal manner. .W.e wish to
. . ~ ~ construct gprobability spacewhich is a triad consisting of a
occasions one of the allowed transitions fréhin) to Q(n

) " - o sample spacd), a o algebraR on (), and aprobability
+1) and oceurs W'th.a specm_ed (_:or!dltlonal p_rc_>babllrty measurex with domain R. In relation to the two tasks
A specific stochastic dynamics is fixed by giving théor above, each memb@ of R corresponds to one of the an-

all pogsible trim.sitions. Under the ph_ysica,lyly motivated asyerable questions and its measpre 1(Q) is the answer.
sumptions of “discrete general covariance

i . and *Bell cau- rtpat s a o algebra on() means that it is a nonempty
sality” the possibilities for ther are severely narrowed down family of subsets of) closed under complementation and

and have been largely classified[8l. The main conclusion o ntaple intersection. A probability measyrevith domain

is that generically takes the form R is a function that assigns to each memberffa non-
negative real number—its probability—such thais count-

r= A(w,m) (1) ably additive, with «(€Q)=1. Finally, countable additivity
A(n,0) ’ means thaiu(U,A,)==,u(A,) for any countable collec-
tion of mutually disjoint sets iR.]
where, for the potential transition in questian,is the num- In the case at hand, the sample space is the (set

ber of ancestors of the new element,the number of its

“parents,” andn the number of elements present before theEﬁ(w) of completed labeled causethese being the infi-
P ' P nite causets that would result if the birth process were made

to “run to completion.” (We use a tilde to indicate labeling.
The dynamics is then given by a probability measiire

In [6] this was called a "partial stem,” but we will not need t0 ¢4 cted from the transition probabilitiesvhose domain
draw a distinction between partial and full stems here. Notice that a.

stem is by definition finite. Dropping this finiteness requirement, we/< 1 @0 algebra specified as follows. With each finite causet

get the notion of “down set” or “past set,” also called an “ideal.” be {}(n) one can associate the “cylinder set” c) com-
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prising all thos&& e O whose firstn elementsthose labeled labelings of each of its elements. Our purpose now is to
0,..n—1) form an isomorphic copy ob (with the same Provide a construction ok that is physically useful.

labeling; andR is then the smallest algebra containing all
these cylinder sets. More constructiveR, is the collection

of all subsets of) that can be built up from the cylinder sets ~Among the questions belonging  there are some that
by a countable process involving union, intersection, ando have a clear significance. LeE () be a finite unla-
complementation. The transition probabilitiesprovide us ~beled causet and let steb)CQ be the “stem set,
with the probability of each cylinder set cflf, and standard stemp) ={ce (c contains a stem isomorphic fij. Thus

. . . . _stem@) comprises those unlabeled completed causets with
results in probability theory imply that this extends to a prob the property that there exists a natural labeling such that the

ability measure orR. B first n elements form a causet isomorphidtoEach stem set
sponding spacé) of completedunlabeledcausets, whose cylinder sets:
members can also be viewed in an obvious manner as

equivalence classes withid. We will also need the setof all ~ stemib)=U{cyl(T)[€e Q(N) and b is a stem int}.

finite labeled causetf (N)=U,_,Q(n) and its unlabeled _ _
counterpartQ(N) = U, . ~Q(n). Therefore the stem sets belongRoand hence t&R. For this
Atfirst hearing, calling a probability measure a dynamicalParticular element of, the. meaning of the corresponding
law might sound strange, but in fact, once we have the meé;ausigzquestlon is evident: “Does the causet coritairs a
surex, we can say everything of a predictive nature that it jgStem . . N . .
possible to say priori about the behavior of the causet Equally _ewdent 'S the; significance of any question built
For example, one might ask, “Will the universe recollapse?"Up as a logical combination of stem questions of this sort. To

. ! . . such compound stem questions belong memberR diuilt
This can be interpreted mathematically as asking whéther up from stem sets stef) using union, intersection, and

will develop a “post,” defined as an element whose ances+, plementation(corresponding to the logical operators

iors and de~scendants taken together exhaust the remainder“8 " “and,” and “not,” respectively ). If all the members of
C. Let AC() be the set of all completed labeled causetsRr were of this type, not only would we have succeeded in
having posts[One can show thabe R, so thatn(A) is  characterizing the dynamically meaningful covariant ques-
defined] Then our question is equivalent to asking whethertions at a formal level, but we would have understood their
TeA, and the answer is “yes with probabilifg(A).” It is physical significance as well. The following theorem asserts
thus7: that expresses the “laws of motioridr better “laws ~ that, to all intents and purposes, this is the case.

of growth”) that constitute our stochastic dynamics: its do- 1heorem 1For every CSG dynamics as described in Sec.
11, the family S of all stem sets generafithe o algebraR up

main R~tells us which questions the laws can answer, and |t§0 sets of measure zero.

valueszi(A) tell us what the answers are. , This is a little vague so let us work toward formulating a
In this context, we can see what the expression of generaj,qre precise statement. LBIS) be theo algebra generated

covariance is. In a caL_Jse_t,_ only the relations between eledy S. SinceSCR we know thatR(S)CR. Unfortunately,

ments have physical significance: the labels on causet elgne |atter inclusion is strict: there exist setsinthat are not

ments are considered as physically meaningless. Thus, forig R(S). The following is an example. Let

subset ofAC () to be covariant, it cannot contain any labeled

completed causét without containing at the same time all M={ceQ|c contains a maximal elemgnt

thoseT’ isomorphic toc (i.e., differing only in their label-

ings). To be measurable as well as covariaitmust also and

belong toR. Let R be the collection of all such setsA

eReAeR andV €=%,e 0, T e A=T,eA. It is not

hard to see thaRR is a sube-algebra of R, whence the

restriction of = to R is a measurew on the space) of

unlabeled completed causet#\s just defined, an element

AeR is a subset of). However, because it is relabeling 2gyictly, “a is a stem inc” and “ ¢ containsa as a stem” mean

invariant, it can also be regarded as a subsef)0fAny  thatais a subset of. We will often abuse this terminology and say

element of R corresponds to a covariant question to which« a is a stem inc” when we mean that contains a stem isomorphic

the dynamics provides the answer in the formuof to a. The context should ensure that no confusion arises. For ex-
However, the definition oR provides no useful informa- ample, we say that causeisandb “have the same stems” when

tion about the physical meaning of these covariant questionany de Q(N) is a stem ina if and only if it is a stem inb.

All we know is that an element oR is formed from the 3A family F of subsets is said tgeneratea o algebraA if A is

(noncovariant cylinder sets by doing countably many set the smallesto algebra containing all the members #t For ex-

operations after which the resulting set must contain all reample, the cylinder sets introduced above generate thigebrak.

Ill. THE PHYSICAL QUESTIONS

Mi={€eQ: e(k)£e(m) for k<m=n}

wheree(j) is the element ot labeled;.
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FIG. 2. Every stem in causet 1 is also found in
causet 2, and vice versa. Since they have the
same stems, they cannot be separated by s&s in
nor in R(S).

O —0—0—@ oo
.

.o [ coe
causet 1 causet 2

This latter set is a finite union of cylinder sets, since the Corollary 1. For every setAeR, there is a setB
condition requires the initial stretch Gfto be in a particular e R(S) such that, in any CSG dynamicg(AAB)=0.
subset oft}(n), and The rest of the paper is devoted to proving the two propo-
sitions.

o) o

M=U N Mg.

k=on=ket IV. PROOF OF PROPOSITION 1
ThereforeM e R and, because the defining condition\dfis We begin with a little terminology. An element of a
manifestly covariantM is moreover inR. causet isnaximalif there is noy with x<y and minimal if

To show thatM ¢ R(S), we argue as follows. If there there is nazwith z<x. Thepastof an elemenk is the set of
exist two completed causetsy € Q) such that every stem set elements below. A chain of lengthk in a causet is a se-
Se S contains either botlk andy or neither, then the same quencexy<---<Xx,. Thelevelof an elemenk in a causet is

holds for everyAe R(S). This is because the maximum length of a chain with top elemewtso ele-
ments at level 0 are exactly minimal elements, and those at
R'={AeR(S): either x,yeA or x,yeA level 1 are the nonminimal elements that are above only

minimal elements. As causets are past finite, every element
is a o algebra andR’ containsS and therefore contains has some finite level. Naturalligvel kin a causet consists of
R(S). Consider now the following two causets; is the the elements of levéd. If ais a causeta, denotes the set of
union of infinitely many unrelated infinite chairta chain is  all elements of level less than or equalko

a totally ordered se¢tandc, is the union ofc; and a single We shall_ aptually characterize exactly the set of rogues,
unrelated elementsee Fig. 2 Clearly, c,e¢ M while c,  although this is more than we need.
eM. Now c; andc, cannot be separated by setsdnif a Let '={ceQ|c has a level containing infinitely many

finite causet is a stem io, it is also a stem irc, and vice ~nhonmaximal elementsThen we have the following Lemma.
versa® ThereforeM, which does separate the two, cannot be Lemma 1I'CO.
in R(S). Proof. LetaeI'. Suppose that leved is the first level in

In this example, the two causets responsible for the failuré with infinitely many nonmaximal elements, so that all lev-
of R and R(S) to be equal have the property that they areels belowk have finitely many nonmaximal elements. As
nonisomorphic but have the same stems. This suggests thag 1), the set of elements at levels beldwis finite (or
the difference between the twe algebras is due to such rather its intersection with the past of leveis finite), there
causets, which we call “rogue” causets. A causet() is a  exist an infinite number of nonmaximal elements in lekel
rogue if there exists a nonisomorphic causet () such that of a which all share the same past—a given subset
if beQ(n) is a stem inc then it is a stem irc’, and vice CCay_q). If there is any nonzero number of maximal ele-

versa. Let® be the set of all rogues if2. ments in levek of a with pastc, then let causeb be formed
Now we state two propositions that will easily imply our from a by deleting all those elements. If there are no maxi-

result. mal elements in levek of a with pastc, then let causeb be
Proposition 1 u(®)=0 in any CSG dynamics. formed froma by adding a maximal element with past

Proposition 2 For every setAe R, there is a se8  Thenasc and they have the same stemdl
e R(S) such thatAABC ®. Here A denotes the symmetric Lemma 20 CT.

difference. Proof. Considerae I'. Suppose thab € () has the same
The following immediate corollary is a precise version of stems ag. We want to show thaa=b, which then implies
Theorem 1. thata¢ ®.

The plan is to construct partial isomorphisms between

aq and b, for eachk, and then show that some subse-
“This is in accord with Theorem 2 below: if stem sets are notquence of these partial isomorphisms extends to an isomor-
generating in the quotient Borel spa@,R), then they cannot be phism of the completed causet. Our task is complicated by
separating either. the possible infinite sets of maximal elements at each level.
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We deal with these by a process that we have called “Hegeb* by a standard “compactness” procedure. Note that there

lianization.”

A completed causet is Hegelianized as follows. First one
defines an equivalence relation énby settingx~y if and
only if eitherx=y or they are both maximal, have the same
past, and there are infinitely many elements with that sam
past. The Hegelianization dd is then the quotient causet
a*=al~; sinceaeI, all levels ofa* are finite. To each
element ina* that is an infinite equivalence class, we attach
aflag: note that every unflagged elementaf is a single-
element equivalence clagg}, which we naturally identify
with the elemenk of a.

For eachk, we claim that there is an isomorphism be-
tweenag,, andby, that preserves the flags. In showing this,
we may assume that the following hold) aZ‘k) contains at
least as many flagged eIementsb%‘g; and (i) if the two

sets contain the same number of flagged elements, thesg

(| =[b{jy|. (Otherwise, exchange the rolesafndb.)

Let N=|b{},|+ 1. Letc be obtained froma, by (&) re-
placing each flagged elemenby N elements,... Xy, and
(b) for each elemeny of a}*k) that is maximal inaZ‘k) but not
in @, including some elemery, abovey in a, and also all
elements in the past &, . Soc is a stem ina, in which all
the newly introduced elements are maximal. Hence is
also a stem i, i.e., there is an embedding.c—b whose
image is a stem ib. Note thaty preserves levels. So, for any
flagged element of agy,, all of ¢(xy),...,¢(xy) are differ-
ent elements ob, , so by choice oN at least one of them,
say ¢(x4), is in an infinite equivalence class. yfe aZ‘k) is
not maximal ina, then (y) <¢(z,), so ¢(y) is not maxi-
mal in b.

We now obtain a natural map*:ay,— by, , defined by
taking each unflagged element afk) to the equivalence
class containingp(z), and each flagged elementto the
equivalence class containing(x;).

We claim that distinct elementsandy of a?k) are mapped
to distinct elements dﬁZ‘k) by ¢*. If neitherx nory is maxi-
mal ina, then this is immediate sineg(x) # ¢(y), and these
elements are unflagged in If x is maximal ina andy is not,
then ¢* (x) is maximal in the image ob* while ¢* (y) is
not. If x andy are both maximal ira, but not in the same

equivalence class, then either they have different pasts—iﬁ

which case they are certainly mapped to different

elements—or there are only finitely many elements with the,

same past asandy. In this last case, we have to rule out the
possibility that the unflagged elemenxtandy are mapped to
a flagged element ctfzk y; this is not possible, since we have
shown that distinct flagged elements aﬁ() are mapped to
distinct flagged elements df(*k), and by assumption there
are no more flagged elementshﬂ). This shows that* is
an embedding ofify, into b(, , and furthermore that the two
sets have the same number of flagged elements.ajs
=|b{,|, the mape* is actually an isomorphism. In particu-
lar, [ag,|=bf,| for eachk.

Now take a sequencepf ), wheregy is an isomorphism
from afj, to b{y, . We construct an isomorphism froaf to

are only finitely many 1-1 maps from level O af to level 0
of b*; eache; induces one of these maps, so one such map
occurs infinitely often, say for ak in the infinite setkK,.
Similarly, there is an infinite subsé&t; of K, such that each
ey for ke K; induces the same map from level 1 af to
level 1 of b*. We continue in this way for all levels. The
isomorphism® is then defined by combining the 1-1 maps
obtained at each levefb is clearly order preserving and a
bijection.

Having found an isomorphism from* to b*, it is trivial
to extend it to an isomorphism fromto b, as required. B

Corollary 2 ©=T".

Lemma 3 0O is measurable. Indee@® e R(S).

Proof. We show thal” can be constructed countably from
the stem sets, which are themselves measurable.

Let I'° ™1 pe defined as the union of finitely many
em sets as follows. Each stem set in the union is defined by
a stem which is a finite causet with elements in level, i
=0,...k—1,| elements in levek, andm=| elements in level
k+1, ordered in such a way that all the elements in ldvel
are nonmaximal. There are only finitely many such stems
and the union is over all corresponding stem sets.

DefineI'y, to be the union of these over,, i=0,...k
—1, for fixedk andl:

©

U
nk,1:1

%

Ng,... Ny _—
- U Fklo k l.
n0:1

Fy=

This is the set of all causets with at lehastonmaximal ele-
ments at levelk. Then, taking the intersection ovérand
finally the union ovelk, we see that

w© @ ®

I'= U u Fk| .
k=0l=0

Lemma 4 In the CSG dynamics witty#0 for somek
>1, a causet containing an infinite level almost surely does
not occur.

Proof. As we have already seen, a causet contains an in-

finite level if and only it if contains an infinite antichaian
ntichain is a totally unordered $all of whose elements
share the same past.
Fix any labeled sterig, and letn, be the largest label in
¢; we show that there are almost surely only finitely many
elements of the causet with p&stlt is enough to show that
the expected number of elements with past equaligfinite
(this is exactly the Borel-Cantelli lemmaThe expected
number of elements with pastis the sum, oven>ng, of
the probability thaie(n), the element labeled, has past.

Recall that this probability is

2
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wherew is the number of elements thandmthe number of  space K,R). ThenR(FNA)=R(F)NA.
maximal elements if€. Therefore the expected number of  This is intuitively obvious because intersecting with

elements with past is preserves complement and countable union. A proof is given
in [13], page 132.
- o [w—m - 1 A family F of measurable subsets Xfis said toseparate
G rn=|2m( I—m) |~ ﬁ a Borel space X,R) [or to be aseparating familyfor
° 0 E ( . )t- (X,R)] if for every two pointsx,y e X there exists a sdl
=\ e F with xe U andy ¢ U.

Naturally associated with any topological space theo
Because there is sonje=2 with tj>0, the terms in the last algebra generated by the family of opéor equivalently
sum above are bounded above by those in the convergeslosed subsets oK. This is called the¢opological o algebra
seriesEl/(}‘)tj . Hence the sum is finite, and the expectationof X.

is finite, as required. l A topological spaceX is separableif it contains a count-
Since® is a subset of the set of causets with an infiniteable dense subsBt (WhenX is a metric space, this signifies
level we have the following corollary. that every open ball irX contains a point oD.) A Polish
Corollary 3. has measure zero. spaceis a separable complete metric space.
This is our Proposition 1. We are now in a position to state a key theorem we will
use in proving Proposition 2.
V. SOME RESULTS IN MEASURE THEORY Theorem 21In a Borel subquotient of a Polish space, any

countable separating family is also a generating family.
In order to prove Proposition 2 it will be necessary to be  Proof. Combine the second theorem on page 741
a littte more formal than we have been heretofore. In thiswith the corollary on page 73, bearing in mind the definition
section we collect some relevant definitions and results fronof a standard Borel space as a Borel subspace of a Polish
measure theory. For the most part, we follow the terminologyspace. W
of Mackey[12].

Recall that ar algebraR on a seX is a nonempty family VI. PROOF OF PROPOSITION 2
of subsets oK closed under complementation and countable
union? that is,R must satisfy the conditior$) if Ae R then We now place the spaces and measures of our causal set

A®e R, and(ii) if A,e R for everyA, in a countable family, ~stochastic process within this formal framework. Cdie the

thenU, A,e R. By a Borel spacewe mean a pairX,R) family of cylinder sets inQ). It is countable, since its mem-

whereX is a set andR is ao algebra onX. The members of bers are in one-to-one correspondence with the collection of

‘R are calledmeasurableor Borel subsets. finite labeled causets. Each particular choice of CSG dynam-
For any familyF of subsets oK, the o algebra generated ics assigns a probability to each setinStandard techniques

by F, denotedR(F), is the smallestr algebra that includes then assure us that this assignment extends in a unique way

every member off. In a Borel spaceX, R) a family 7 of 5 5 probability measurg in the Borel space(,R), where

subsets oiX is a generating familyif R(F)=R. If Fis a = ;
family of subsets ofX and A an arbitrary subset oX, we as beforeR=R(C) is the o algebra generated 1.

write ZN A to denote the familfF N A|F € F} of subsets of Lemma 6There is a metric ofi with reSpetho whict{

A. If Fis ao algebra, then so also iBNA. If (X,R) isa is a Polish space whose topologieahlgebra isk.

Borel space and is an element ofR, then we call the pair Proof For each pair of completed labeled caus&fb

(A;RNA) a Borel subspace ofX,R). (We emphasize that <) we set

according to this definition only a measurable subdsgields

a Bo.rel subspackg. d(é,B)zl/Z“, 3)
Given two Borel spacesX,R) and X', R'), a map

f:X—X’ is said to be @Borel mapif, for eachAeR’, the

setf1(A) is in R. For any equivalence relation in a Borel

space K,R), a o algebraR’ is induced in the spack’ of

equivalence classes by requiring the projectioX— X' to

be a Borel map. ConcretelyR’ is the family of subsets

A’CX’ such thatp~1(A’) e R. The derived Borel space

wheren is the largest integer for Whic%l(n)=5(n) . Itis easy

to verify that this gives a metffoon {). The maximum dis-
tance between two causets is 1/2 and occurs when their ini-
tial two elements already form distinct partial orders. Note
also that the open balls in this metric are exactly the cylinder

(X', R") is called aquotientof (X,R). A quotient of a Borel sets. ) . ) - .
subspace of a Borel spac¥,(R) is called aBorel subquo- One can readily verify that the metric spade, () given
tient of (X, R). by Eq. (3) is complete. To see that it is separable we find a

Lemma 5Let ACX be a measurable subset in the Borel

®Indeed, the metrid given by Eq.(3) satisfies a condition stron-

SEquivalently, one can require closure under countable intersecger than the triangle inequality: for any three caugietd, andt,
tion instead of union. The two conditions imply each other in thewe haved(@a,€) =maxd(ab),d(b,C)]. This “ultrametric” property is
presence of closure under complementation. related to the tree structure of the spacef cylinder sets.
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countable dense set . Associate with each finite causet joint union of a set ifR(S) and a set of rogues. Consider the

e Q(n) the completed causet that results from adding arg_ecomposit_ion of\ asa disjoint ‘%”‘0”*‘“90)9(/*”@)-
infinite chain to the future of the last elemenfanlt is then Since the first set is iR, it suffices to establish thak,

= Lo =R(S)NQq, which is tantamount to the following result.
clear that for any caus@&te () such a “chain-tailed” causet () 0 9

s - ] Lemma 9 The Borel space(ly,RR,) is a Borel subspace
can be found arbitrarily close f. Therefore() is a Polish  of (0, R(S)).

space with respect to the metdc L Proof. We know thatR,=R(S,) and S=SNQ,. The
The family of open balls about the points in this countableresun follows from Lemma 5. B

dense set is exactly the family of cylinder sets, and therefore In particular, we haveR,C R(S), so that for everyA

the topologicalr algebra coincides witfk, as required. B eR there is aBeR(S) such thatANQ,=B. Hence,A
Recall that we have defineR as the subalgebra of all —gyA,, with Be R(S) andA,CO. It follows that AAB
label-invariant Borel sets iR and that one can also think of =A, e 0.
‘R as ao algebra in the space of unlabeled caugets This completes the proof of Proposition 2.
Consider the equivalence relation of isomorphism on the

set() of labeled causets. The set of equivalence classes is in
1-1 correspondence with the s@tof unlabeled completed VII. DISCUSSION

causets. Letp:Q)—Q be the projection, which assigns to

faach labeled cau_sétthe clasqc] of all its possible label- consideration in the body of the paper: namely, that whgre
Ings, corresponding to the unlabeled causeBets of the gy only nonzero coupling constant and that witgrand

form p~*(A) are label-invariant subsets 61; to say that ¢, only are nonzero. The former almost surely produces an
this set is inR (or in R) is equivalent to saying that the infinite antichain(the dust universeand the latter almost
corresponding seA of unlabeled causets is iR. Therefore  surely produces an infinite union of trees in which each ele-
(Q, R) is a quotient of 3, R). ment has infinitely many childrethe infinite infinite treg
These models are not “generic” in the sense of the Rideout-
surep onR, which we can define within either interpretation Sorkin paper(since many transition probabiliies vanjsh

But nevertheless our theorem covers both models because

of R. Viewing R as a subalgebra dR in ), we havew  hay are deterministic, and any deterministic model trivially

=M r, While viewing’R as the quotient oR in (), we have  gatisfies our main theorem.

M=pep oo L Proof. We want to prove Corollary 1 in the case when
Define Qo=0\0 and letRy=RN be the inducedr there exists a causetsuch that, for anAe R, u(A)=1 if

algebra in}y. Then @y, R,) is a Borel subspace of{,R) ceAandu(A)=0if c&A. If ce A we chooseB=() and if

(it follows from Lemma 3 thaf), is a Borel subset oft). ~ C¥A We chooseB to be the empty set. And in both cases

Similarly, let Q=00 andRo=RNQ, Then Qg,Ry) is  A(AAB)=0. ® ,
N Borelysubspaoce o, R). 0 0 0, Ro) Our theorem does not automatically cover the other non-

- ~generic CSG models, i.e., those not in the generalized perco-

_Lemma 7 The Borel space(Ro, Ro) is a Borel subquo- 2 family. We conjecture thags for the generalized per-
tient of (€1, R). o colation family all of these either are deterministic or

Proof. We have already seen thaf)§,R,) is a Borel  preclude infinite antichains, whence the rogues would be of
subspace of {,R). We will show that the Borel space measure zero for them. This would extend our results to the
(Q0,Ry) is a quotient of {3y,R,) by the projectiorp into ~ general case. o
isomorphism classes. By definition, a geis in R, if and We have concentrated, in this paper, on the consequences
only if Ae R andAC(Q,. Since(Q, R) is thep quotient of ~ Of general covariance as it affects the choice of physically

=~ L . . 1 ~ meaningful questions. In fact, another form of general cova-
(2,R), this is equivalent to saying that (A)eR and riance has already been imposed, in the derivation of the

p l(A)CQO-~ But this is precisely the statement that rejeyant CSG models themselves. Rideout and Sorkin con-
pH(A)isinR,. W strain the models to those for which the probability of a

Lemma 8 The countable familys,=SN{, of (“rogue-  cylinder set depends only on the unlabeled version of the
free”) stem sets, together with their complements, separatestem which defines it and not on the labeling or order of
Q. birth. That constraint is somewhat analogous to the invari-

Proof. Consider two distinct causets,ye{),. There ance of the action of a gauge field under gauge transforma-
must be a stem ix but not iny or vice versa, for otherwise tions. However, because there is nothing physical about a
x andy would be in the se® of rogues. Assume then with- cylinder set itself, it might be objected that this is an attempt
out loss of generality that the finite causets present as a to impose a physical condition on an unphysical object.
stem inx but not iny. Then the rogue-free stem s8f(a) Might it be possible to consider dynamical models in more
=8(a)N Qg hasxe Sy(a) andy ¢ Sp(a), while its comple-  generality by constructing a measure directly@rand then
ment containg and notx, as required. Wl imposing Bell causality directly on this measur€Phis

Applying then Theorem 2, we conclude th&g generates would be a dynamics that was fundamentally label-free, and
Ro. We now show that anAe R can be written as a dis- therefore automatically “generally covariant.Would such

We explicitly excluded two cases of CSG models from

Furthermore, the measufeon (), R) restricts to a mea-
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an approach lead to measures different from the ones w&he answer is “yes,” if we require the state vector to be
have considered here? We do not know. annihilated by gauge generators, but this is too strong. What
Another question is whether we should treat all isomor-we really should do is just limit the “physical observables”
phisms(relabeling$ as pure gauge, as we have done here, ofo those commuting with the gauge generators. This still
restrict them in some way, to those that affect only a finiteleaves exactly what it should, namely, the invariant mass and
subset of elements or those that can map each element orfge magnitude of the “spin.”
only a finite subset of other elemertfinite orbits, for ex- The equivalent procedure has not been worked out for
ample. One might worry that treating all relabelings as pureyuantum measure theof¥5], but we strongly suspect that it
gauge would force us to make the energy vanish and/or losgorresponds precisely to just restricting the measure to
all information about its value, because it is the analogue Ofjjffeo-invariant sets of historiesvithout demanding that the
treating all diffeomorphismgdiffeos) as pure gauge, includ- measure itself be invariant—except in a cosmological setting
ing asymptotic translations, etc. However, we argue againsihere theentire past is included, rather than being encapsu-
this concern in two ways. lated in an initial condition This would then be exactly
First, in the context of continuum gravity, séyr even in  analogous to what we have done in the present paper for the
special relativity with the metric as backgroyndt is not  |assical measure.
true that we get conserved quantities from diffeos. Rather, in
a spacdimesetting, we get them from variations of the fields

which are equivalent to a diffeo near the final boundary, but ACKNOWLEDGMENTS
globally are not induced by any diffeo whatsoevef. “par-
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