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‘‘Observables’’ in causal set cosmology
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For the theories known as classical sequential growth~CSG! models, it has been conjectured that, up to sets
of measure zero, the ‘‘stem sets’’ generate the fulls-algebra of label-invariant measurable sets of causal sets.
We prove this for a generic family of CSG models~the ‘‘generalized percolation models’’!. In consequence, we
are able not only to identify the ‘‘observables’’ of these theories, but, more importantly, to provide them with
an accessible physical interpretation. We suggest that the stem sets will play the same role of fundamental
observable in the quantum analog of these theories, i.e. for quantum gravity.
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I. INTRODUCTION

What are the observables for quantum gravity? The qu
tion is often posed but its meaning is clouded by a numbe
difficulties. One problem is that we do not even know wh
the observables are in a theory as familiar as flat space
non-Abelian gauge theory@1,2#. Another major problem is
that the word ‘‘observable’’ is inherited from an interpret
tion of quantum mechanics—the standard interpretation—
which the subject matter of the theory is not whatis but what
can beobserved. However adequate this may be for labor
tory science, it will not do for quantum gravity, and w
should rather be seeking what Bell called the ‘‘be-able
Furthermore, the question is intimately tied to the issue
general covariance, and indeed to the meaning of gen
covariance itself. It seems that the requirement of gen
covariance threatens to obscure the physical interpretatio
the theory since objects identified mathematically as ‘‘co
riant’’ may not look like anything useful for making predic
tions.

One advantage of the causal set approach to quan
gravity @3,4,5# is that it is straightforward enough concept
ally that we can address these knotty problems in a prod
tive way. Although we do not yet have a quantum dynam
for causal sets, we do have a family of classical stocha
dynamics@6# within which we can investigate issues such
general covariance and the identification of observables c
pletely concretely. The discreteness of causal sets turns o
eliminate many of the technical difficulties that tend to o
scure these issues in the continuum. The work describe
the current paper is a continuation of that reported in@7#, and
the main result is a proof of a conjecture made in that pa

In the next section we summarize the classical seque
growth dynamics for causal sets. In the context of this
namics, the question we started with—‘‘What are t
observables?’’—is replaced by ‘‘What are the physical qu
tions to which the dynamics provides answers?’’ We see
the dynamics provides a probability measurem on the
sample space of all labeled causal sets as possible histori
the universe~these are cosmological models!. Questions that
0556-2821/2003/67~8!/084031~8!/$20.00 67 0840
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we may ask are of the form: ‘‘Does the causal set that ac
ally occurs—i.e., the real one—belong to subsetA of the
sample space?’’ whereA is am-measurable set, and the me
surem provides the answer: ‘‘Yes, with probabilitym(A). ’’
To be generally covariant, the questions, i.e., the subset
the set of all labeled causal sets, must be independen
labeling. Thus we are led to the identification of thecovari-
ant questions as subsetsA of the set of all causal sets suc
that if a certain labeled causal set is an element ofA, so are
all its relabelings.

This identification is, however, very abstract, and what
are seeking, then, is a characterization of the measurable
that will be physically useful. In Sec. III we describe th
result that we will prove, namely, that any measurable se
causal sets can be formed by countable set operations o
so-called ‘‘stem sets,’’ to be defined. These stem sets hav
accessible physical meaning. Sections IV, V, and VI are
voted to proving the theorem, and the last section contain
discussion.

II. CLASSICAL SEQUENTIAL GROWTH MODELS AND
THE COVARIANT QUESTIONS

The causal set hypothesis is that the continuum space
of general relativity is an approximation to a deeper level
discrete structure which is a past finite partial order orcausal
set (causet). This is a set endowed with a binary relationa
such that (xay) and (yaz)⇒(xaz) ~transitivity!, xaX x
~acyclicity!, and all ‘‘past sets’’$xuxdz% are finite.~The con-
dition that all past sets are finite implies that the partial or
is locally finite. In other contexts, one would weaken t
condition of past finiteness to local finiteness in the definit
of a causet, but for present purposes there is no harm in u
the stronger condition.! Whenxay we say that ‘‘x is below
y’’ or ‘‘ y is abovex.’’ We will be interested in both finite and
countably infinite causets.

Although we do not yet have a quantum dynamics
causal sets, the generic family of classical sequential gro
~CSG! dynamics derived in@6# is a good place to begin th
©2003 The American Physical Society31-1
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search for physical questions, as a warm-up for the quan
theory when we have it.

Each of the dynamical laws in question describes a
chastic birth process in which elements are ‘‘born’’ one
one so that, at stagen, it has produced a causetc̃n of n
elements, within which the most recently born element
maximal ~see Fig. 1!. If one employs a genealogical lan
guage in which ‘‘xay’’ can be read as ‘‘x is an ancestor of
y,’’ then the nth element~counting from 0! must at birth
‘‘choose’’ its ancestors from the elements ofc̃n , and for
consistency it must choose a subsets with the property that
xayPs⇒xPs. ~Every ancestor of one of my ancestors
also my ancestor.! Such a subsets ~which is necessarily fi-
nite! will be called astem.1 The dynamics is then determine
fully by giving the transition probabilitiesgoverning each
such choice ofs, c̃n .

We can formalize this scheme by introducing for ea
integern50,1,2,... the setṼ(n) of labeledcausetsc̃n whose
elements are labeled by integers 0,1,...,n21 that record their
order of birth. Moreover this labelingL is natural in the
sense thatxay⇒L(x),L(y). Each birth of a new elemen
occasions one of the allowed transitions fromṼ(n) to Ṽ(n
11) and occurs with a specified conditional probabilityt.

A specific stochastic dynamics is fixed by giving thet for
all possible transitions. Under the physically motivated
sumptions of ‘‘discrete general covariance’’ and ‘‘Bell ca
sality’’ the possibilities for thet are severely narrowed dow
and have been largely classified in@6#. The main conclusion
is thatt generically takes the form

t5
l~Ã,m!

l~n,0!
, ~1!

where, for the potential transition in question,Ã is the num-
ber of ancestors of the new element,m the number of its
‘‘parents,’’ andn the number of elements present before

1In @6# this was called a ‘‘partial stem,’’ but we will not need t
draw a distinction between partial and full stems here. Notice th
stem is by definition finite. Dropping this finiteness requirement,
get the notion of ‘‘down set’’ or ‘‘past set,’’ also called an ‘‘ideal.

FIG. 1. Transition from stage 7 to stage 8 of a particular grow
process. Two vertices joined by a line are related, with the lo
being to the past of~an ancestor of! the upper one. Only covering
relations~‘‘links’’ ! are represented, the rest being implied by tra
sitivity. Points filled with black are to the past of the new eleme
~7! and points filled with gray are spacelike to it.
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birth, and where l(Ã,m) is given by the formula
(k (k2m

Ã2m)tk with the non-negative real numberstk being the
free parameters or ‘‘coupling constants’’ of the theory.

An alternative interpretation of this dynamical rule is
follows. Each new element chooses some sets of elements
from among those already present, a sets being chosen with
relative probability t usu : then the new element is place
aboves and all ancestors of members ofs. Setting tk5tk,
where t is constant, gives the model of ‘‘random graph o
ders’’ as studied in@8,9,10#, and@11#, for instance. In@6# this
special case was called ‘‘percolation.’’ One can thus und
stand the dynamical rule given by Eq.~1! as defining a type
of ‘‘generalized percolation model.’’ These models exha
the ‘‘generic’’ solution family of@6#, and they are the only
ones we consider in this paper.~We thereby ignore such ‘‘ex-
ceptional’’ CSG models as ‘‘originary percolation,’’ not t
mention those exceptional solutions that are not even lim
of the generalized percolation form.!

There are two simple cases that we can describe c
pletely: if all thetk are zero exceptt0 , then we almost surely
obtain a causet in which no pair of elements is related, wh
if only t0 andt1 are nonzero we almost surely obtain a cau
that is an infinite union of trees in which every element h
infinitely many children. For the present, we rule out the
two cases, so we assume thattk.0 for somek>2, but we do
not need to make any other assumptions regarding the
pling constants in the model.

The stochastic dynamics described above gives rise
notion of probability that is too rich for our purposes, as
assigns a probability as an answer to the question ‘‘is e
ment 3 above element 1?’’ This is not meaningful for us,
in any particular causet the answer depends on the labe
of the elements. In order to arrive at a definite theory o
needs to specify the set of questions that the theory sh
answer and, for each one of them, explain how in princi
the probability of the answer ‘‘yes’’ can be computed.

We will need to proceed in a formal manner. We wish
construct aprobability space, which is a triad consisting of a
sample spaceV, a s algebra R on V, and aprobability
measurem with domain R. In relation to the two tasks
above, each memberQ of R corresponds to one of the an
swerable questions and its measurep5m(Q) is the answer.
@That R is a s algebra onV means that it is a nonempt
family of subsets ofV closed under complementation an
countable intersection. A probability measurem with domain
R is a function that assigns to each member ofR a non-
negative real number—its probability—such thatm is count-
ably additive, withm(V)51. Finally, countable additivity
means thatm(ønAn)5(nm(An) for any countable collec-
tion of mutually disjoint sets inR.#

In the case at hand, the sample space is the seṼ

[Ṽ(`) of completed labeled causets, these being the infi-
nite causets that would result if the birth process were m
to ‘‘run to completion.’’~We use a tilde to indicate labeling.!
The dynamics is then given by a probability measurem̃,
constructed from the transition probabilitiest, whose domain
R̃ is as algebra specified as follows. With each finite cau
b̃PṼ(n) one can associate the ‘‘cylinder set’’ cyl(b̃) com-
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prising all thosec̃PṼ whose firstn elements~those labeled
0,...,n21) form an isomorphic copy ofb̃ ~with the same

labeling!; andR̃ is then the smallests algebra containing al

these cylinder sets. More constructively,R̃ is the collection

of all subsets ofṼ that can be built up from the cylinder se
by a countable process involving union, intersection, a
complementation. The transition probabilitiest provide us

with the probability of each cylinder set cyl(b̃), and standard
results in probability theory imply that this extends to a pro

ability measure onR̃.

For future use, we will need in addition toṼ the corre-
sponding spaceV of completedunlabeledcausets, whose
members can also be viewed in an obvious manner

equivalence classes withinṼ. We will also need the set of al

finite labeled causetsṼ(N)[ønPNṼ(n) and its unlabeled
counterpartV(N)5ønPNV(n).

At first hearing, calling a probability measure a dynamic
law might sound strange, but in fact, once we have the m
surem̃, we can say everything of a predictive nature that i
possible to saya priori about the behavior of the causetc̃.
For example, one might ask, ‘‘Will the universe recollapse
This can be interpreted mathematically as asking whethc̃
will develop a ‘‘post,’’ defined as an element whose anc
tors and descendants taken together exhaust the remaind

c̃. Let A,Ṽ be the set of all completed labeled caus

having posts.@One can show thatAPR̃, so thatm̃(A) is
defined.# Then our question is equivalent to asking wheth
c̃PA, and the answer is ‘‘yes with probabilitym̃(A). ’’ It is
thusm̃ that expresses the ‘‘laws of motion’’~or better ‘‘laws
of growth’’! that constitute our stochastic dynamics: its d

mainR̃ tells us which questions the laws can answer, and
valuesm̃(A) tell us what the answers are.

In this context, we can see what the expression of gen
covariance is. In a causet, only the relations between
ments have physical significance: the labels on causet
ments are considered as physically meaningless. Thus,

subset ofA,Ṽ to be covariant, it cannot contain any label
completed causetc̃ without containing at the same time a
thosec̃8 isomorphic toc̃ ~i.e., differing only in their label-
ings!. To be measurable as well as covariant,A must also
belong toR̃. Let R be the collection of all such sets:A
PR⇔APR̃ and ; c̃1. c̃2PṼ, c̃1 PA⇒ c̃2PA. It is not
hard to see thatR is a sub-s-algebra ofR̃, whence the
restriction of m̃ to R is a measurem on the spaceV of
unlabeled completed causets.~As just defined, an elemen
APR is a subset ofṼ. However, because it is relabelin
invariant, it can also be regarded as a subset ofV.! Any
element ofR corresponds to a covariant question to whi
the dynamics provides the answer in the form ofm.

However, the definition ofR provides no useful informa
tion about the physical meaning of these covariant questi
All we know is that an element ofR is formed from the
~noncovariant! cylinder sets by doing countably many s
operations after which the resulting set must contain all
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labelings of each of its elements. Our purpose now is
provide a construction ofR that is physically useful.

III. THE PHYSICAL QUESTIONS

Among the questions belonging toR there are some tha
do have a clear significance. LetbPV(N) be a finite unla-
beled causet and let stem(b),V be the ‘‘stem set,’’
stem(b)5$cPVuc contains a stem isomorphic tob%. Thus
stem(b) comprises those unlabeled completed causets w
the property that there exists a natural labeling such that
first n elements form a causet isomorphic tob. Each stem set
stem(b)—treated as a subset ofṼ—is a countable union of
cylinder sets:

stem~b!5ø$cyl~ c̃!uc̃PV~N! and b is a stem in c̃%.

Therefore the stem sets belong toR̃ and hence toR. For this
particular element ofR, the meaning of the correspondin
causet question is evident: ‘‘Does the causet containb as a
stem?’’2

Equally evident is the significance of any question bu
up as a logical combination of stem questions of this sort.
such compound stem questions belong members ofR built
up from stem sets stem(b) using union, intersection, an
complementation~corresponding to the logical operato
‘‘or,’’ ‘‘and,’’ and ‘‘not,’’ respectively !. If all the members of
R were of this type, not only would we have succeeded
characterizing the dynamically meaningful covariant qu
tions at a formal level, but we would have understood th
physical significance as well. The following theorem asse
that, to all intents and purposes, this is the case.

Theorem 1. For every CSG dynamics as described in S
II, the family S of all stem sets generates3 thes algebraR up
to sets of measure zero.

This is a little vague so let us work toward formulating
more precise statement. LetR~S! be thes algebra generated
by S. SinceS,R we know thatR(S),R. Unfortunately,
the latter inclusion is strict: there exist sets inR that are not
in R~S!. The following is an example. Let

M5$cPVuc contains a maximal element%

and

Mk
n5$c̃PṼ: e~k!a” e~m! for k,m<n%

wheree( j ) is the element ofc̃ labeledj.

2Strictly, ‘‘a is a stem inc’’ and ‘‘ c containsa as a stem’’ mean
thata is a subset ofc. We will often abuse this terminology and sa
‘‘ a is a stem inc’’ when we mean thatc contains a stem isomorphi
to a. The context should ensure that no confusion arises. For
ample, we say that causetsa and b ‘‘have the same stems’’ when
any dPV(N) is a stem ina if and only if it is a stem inb.

3A family F of subsets is said togeneratea s algebraA if A is
the smallests algebra containing all the members ofF. For ex-

ample, the cylinder sets introduced above generate thes algebraR̃.
1-3
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FIG. 2. Every stem in causet 1 is also found
causet 2, and vice versa. Since they have
same stems, they cannot be separated by setsS
nor in R~S!.
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This latter set is a finite union of cylinder sets, since t
condition requires the initial stretch ofc̃ to be in a particular
subset ofṼ(n), and

M5 ø
k50

`

ù
n5k11

`

Mk
n .

ThereforeMPR̃ and, because the defining condition ofM is
manifestly covariant,M is moreover inR.

To show thatM¹R(S), we argue as follows. If there
exist two completed causetsx,yPV such that every stem se
SPS contains either bothx andy or neither, then the sam
holds for everyAPR(S). This is because

R8[$APR~S!: either x,yPA or x,yPAc%

is a s algebra andR8 containsS and therefore contain
R~S!. Consider now the following two causets:c1 is the
union of infinitely many unrelated infinite chains~a chain is
a totally ordered set! andc2 is the union ofc1 and a single
unrelated element~see Fig. 2!. Clearly, c1¹M while c2
PM. Now c1 and c2 cannot be separated by sets inS: if a
finite causet is a stem inc1 it is also a stem inc2 and vice
versa.4 ThereforeM, which does separate the two, cannot
in R~S!.

In this example, the two causets responsible for the fail
of R and R~S! to be equal have the property that they a
nonisomorphic but have the same stems. This suggests
the difference between the twos algebras is due to suc
causets, which we call ‘‘rogue’’ causets. A causetcPV is a
rogue if there exists a nonisomorphic causetc8PV such that
if bPV(n) is a stem inc then it is a stem inc8, and vice
versa. LetQ be the set of all rogues inV.

Now we state two propositions that will easily imply ou
result.

Proposition 1. m(Q)50 in any CSG dynamics.
Proposition 2. For every setAPR, there is a setB

PR(S) such thatADB,Q. HereD denotes the symmetri
difference.

The following immediate corollary is a precise version
Theorem 1.

4This is in accord with Theorem 2 below: if stem sets are
generating in the quotient Borel space~V,R!, then they cannot be
separating either.
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Corollary 1. For every setAPR, there is a setB
PR(S) such that, in any CSG dynamics,m(ADB)50.

The rest of the paper is devoted to proving the two pro
sitions.

IV. PROOF OF PROPOSITION 1

We begin with a little terminology. An elementx of a
causet ismaximal if there is noy with xay andminimal if
there is noz with zax. Thepastof an elementx is the set of
elements belowx. A chain of length k in a causet is a se
quencex0a¯axk . The levelof an elementx in a causet is
the maximum length of a chain with top elementx—so ele-
ments at level 0 are exactly minimal elements, and thos
level 1 are the nonminimal elements that are above o
minimal elements. As causets are past finite, every elem
has some finite level. Naturally,level kin a causet consists o
the elements of levelk. If a is a causet,a(k) denotes the set o
all elements of level less than or equal tok.

We shall actually characterize exactly the set of rogu
although this is more than we need.

Let G5$cPVuc has a level containing infinitely man
nonmaximal elements%. Then we have the following Lemma

Lemma 1. G,Q.
Proof. Let aPG. Suppose that levelk is the first level in

a with infinitely many nonmaximal elements, so that all le
els belowk have finitely many nonmaximal elements. A
a(k21) , the set of elements at levels belowk, is finite ~or
rather its intersection with the past of levelk is finite!, there
exist an infinite number of nonmaximal elements in levek
of a which all share the same past—a given sub
c,a(k21) . If there is any nonzero number of maximal el
ments in levelk of a with pastc, then let causetb be formed
from a by deleting all those elements. If there are no ma
mal elements in levelk of a with pastc, then let causetb be
formed from a by adding a maximal element with pastc.
Thena.” c and they have the same stems.j

Lemma 2. Q,G.
Proof. Considera¹G. Suppose thatbPV has the same

stems asa. We want to show thata.b, which then implies
that a¹Q.

The plan is to construct partial isomorphisms betwe
a(k) and b(k) for eachk, and then show that some subs
quence of these partial isomorphisms extends to an isom
phism of the completed causet. Our task is complicated
the possible infinite sets of maximal elements at each le

t

1-4
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We deal with these by a process that we have called ‘‘He
lianization.’’

A completed causeta is Hegelianized as follows. First on
defines an equivalence relation ina by settingx;y if and
only if either x5y or they are both maximal, have the sam
past, and there are infinitely many elements with that sa
past. The Hegelianization ofa is then the quotient cause
a* 5a/;; sincea¹G, all levels of a* are finite. To each
element ina* that is an infinite equivalence class, we atta
a flag: note that every unflagged element ofa* is a single-
element equivalence class$x%, which we naturally identify
with the elementx of a.

For eachk, we claim that there is an isomorphism b
tweena(k)* andb(k)* that preserves the flags. In showing th
we may assume that the following hold:~i! a(k)* contains at
least as many flagged elements asb(k)* ; and ~ii ! if the two
sets contain the same number of flagged elements,
ua(k)* u>ub(k)* u. ~Otherwise, exchange the roles ofa andb.!

Let N5ub(k)* u11. Let c be obtained froma(k)* by ~a! re-
placing each flagged elementx by N elementsx1 ,...,xN , and
~b! for each elementy of a(k)* that is maximal ina(k)* but not
in a, including some elementzy abovey in a, and also all
elements in the past ofzy . So c is a stem ina, in which all
the newly introduced elementsxi are maximal. Hencec is
also a stem inb, i.e., there is an embeddingw:c�b whose
image is a stem inb. Note thatw preserves levels. So, for an
flagged elementx of a(k)* , all of w(x1),...,w(xN) are differ-
ent elements ofb(k) , so by choice ofN at least one of them
say w(x1), is in an infinite equivalence class. IfyPa(k)* is
not maximal ina, thenw(y),w(zy), so w(y) is not maxi-
mal in b.

We now obtain a natural mapw* :a(k)* �b(k)* , defined by
taking each unflagged elementzPa(k)* to the equivalence
class containingw(z), and each flagged elementx to the
equivalence class containingw(x1).

We claim that distinct elementsx andy of a(k)* are mapped
to distinct elements ofb(k)* by w* . If neitherx nor y is maxi-
mal in a, then this is immediate sincew(x)Þw(y), and these
elements are unflagged inb. If x is maximal ina andy is not,
then w* (x) is maximal in the image ofw* while w* (y) is
not. If x and y are both maximal ina, but not in the same
equivalence class, then either they have different pasts
which case they are certainly mapped to differe
elements—or there are only finitely many elements with
same past asx andy. In this last case, we have to rule out th
possibility that the unflagged elementsx andy are mapped to
a flagged element ofb(k)* ; this is not possible, since we hav
shown that distinct flagged elements ofa(k)* are mapped to
distinct flagged elements ofb(k)* , and by assumption ther
are no more flagged elements ofb(k)* . This shows thatw* is
an embedding ofa(k)* into b(k)* , and furthermore that the two
sets have the same number of flagged elements. Asua(k)* u
>ub(k)* u, the mapw* is actually an isomorphism. In particu
lar, ua(k)* u5ub(k)* u for eachk.

Now take a sequence (wk* ), wherewk* is an isomorphism
from a(k)* to b(k)* . We construct an isomorphism froma* to
08403
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b* by a standard ‘‘compactness’’ procedure. Note that th
are only finitely many 1-1 maps from level 0 ofa* to level 0
of b* ; eachwk* induces one of these maps, so one such m
occurs infinitely often, say for allk in the infinite setK0 .
Similarly, there is an infinite subsetK1 of K0 such that each
wk* for kPK1 induces the same map from level 1 ofa* to
level 1 of b* . We continue in this way for all levels. Th
isomorphismF is then defined by combining the 1-1 map
obtained at each level:F is clearly order preserving and
bijection.

Having found an isomorphism froma* to b* , it is trivial
to extend it to an isomorphism froma to b, as required. j

Corollary 2. Q5G.
Lemma 3. Q is measurable. Indeed,QPR(S).
Proof. We show thatG can be constructed countably from

the stem sets, which are themselves measurable.
Let Gkl

n0 ,...,nk21 be defined as the union of finitely man
stem sets as follows. Each stem set in the union is define
a stem which is a finite causet withni elements in leveli, i
50,...,k21, l elements in levelk, andm< l elements in level
k11, ordered in such a way that all the elements in levek
are nonmaximal. There are only finitely many such ste
and the union is over all corresponding stem sets.

Define Gkl to be the union of these overni , i 50,...,k
21, for fixedk and l:

Gkl5 ø
nk2151

`

¯ ø
n051

`

Gkl
n0 ,...,nk21.

This is the set of all causets with at leastl nonmaximal ele-
ments at levelk. Then, taking the intersection overl and
finally the union overk, we see that

G5 ø
k50

`

ø
l 50

`

Gkl . j

Lemma 4. In the CSG dynamics withtkÞ0 for somek
.1, a causet containing an infinite level almost surely do
not occur.

Proof. As we have already seen, a causet contains an
finite level if and only it if contains an infinite antichain~an
antichain is a totally unordered set! all of whose elements
share the same past.

Fix any labeled stemc̃, and letn0 be the largest label in
c̃; we show that there are almost surely only finitely ma
elements of the causet with pastc̃. It is enough to show tha
the expected number of elements with past equal toc̃ is finite
~this is exactly the Borel-Cantelli lemma!. The expected
number of elements with pastc̃ is the sum, overn.n0 , of
the probability thate(n), the element labeledn, has pastc̃.

Recall that this probability is

tn5

(
l 5m

Ã S Ã2m
l 2m D t l

(
j 50

n S n
j D t j

, ~2!
1-5



of

t
ge
on

ite

be
hi
o
g

bl

t

el

re

ven

s

ill

ny

on
olish

l set

-
n of
am-
s
way

ini-
te

der

a

se
he

-

BRIGHTWELL et al. PHYSICAL REVIEW D 67, 084031 ~2003!
whereÃ is the number of elements inc̃ andm the number of
maximal elements inc̃. Therefore the expected number
elements with pastc̃ is

(
n5n011

`

tn5 (
l 5m

Ã S Ã2m
l 2m D t l (

n5n011

`
1

(
j 50

n S n
j D t j

.

Because there is somej >2 with t j.0, the terms in the las
sum above are bounded above by those in the conver
series(1/( j

n)t j . Hence the sum is finite, and the expectati
is finite, as required. j

SinceQ is a subset of the set of causets with an infin
level we have the following corollary.

Corollary 3. Q has measure zero.
This is our Proposition 1.

V. SOME RESULTS IN MEASURE THEORY

In order to prove Proposition 2 it will be necessary to
a little more formal than we have been heretofore. In t
section we collect some relevant definitions and results fr
measure theory. For the most part, we follow the terminolo
of Mackey @12#.

Recall that as algebraR on a setX is a nonempty family
of subsets ofX closed under complementation and counta
union;5 that is,R must satisfy the conditions~i! if APR then
AcPR, and~ii ! if AnPR for everyAn in a countable family,
then øn AnPR. By a Borel spacewe mean a pair (X,R)
whereX is a set andR is as algebra onX. The members of
R are calledmeasurableor Borel subsets.

For any familyF of subsets ofX, thes algebra generated
by F, denotedR~F!, is the smallests algebra that includes
every member ofF. In a Borel space~X, R! a family F of
subsets ofX is a generating familyif R(F)5R. If F is a
family of subsets ofX and A an arbitrary subset ofX, we
write FùA to denote the family$FùAuFPF% of subsets of
A. If F is a s algebra, then so also isFùA. If ( X,R) is a
Borel space andA is an element ofR, then we call the pair
(A,RùA) a Borel subspace of (X,R). ~We emphasize tha
according to this definition only a measurable subsetA yields
a Borel subspace.!

Given two Borel spaces (X,R) and (X8,R8), a map
f :X→X8 is said to be aBorel mapif, for eachAPR8, the
set f 21(A) is in R. For any equivalence relation in a Bor
space (X,R), a s algebraR8 is induced in the spaceX8 of
equivalence classes by requiring the projectionp:X→X8 to
be a Borel map. Concretely,R8 is the family of subsets
A8,X8 such thatp21(A8)PR. The derived Borel space
(X8,R8) is called aquotientof (X,R). A quotient of a Borel
subspace of a Borel space (X,R) is called aBorel subquo-
tient of (X,R).

Lemma 5. Let A,X be a measurable subset in the Bo

5Equivalently, one can require closure under countable inter
tion instead of union. The two conditions imply each other in t
presence of closure under complementation.
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space (X,R). ThenR(FùA)5R(F)ùA.
This is intuitively obvious because intersecting withA

preserves complement and countable union. A proof is gi
in @13#, page 132.

A family F of measurable subsets ofX is said toseparate
a Borel space (X,R) @or to be a separating familyfor
(X,R)] if for every two pointsx,yPX there exists a setU
PF with xPU andy¹U.

Naturally associated with any topological spaceX is thes
algebra generated by the family of open~or equivalently
closed! subsets ofX. This is called thetopologicals algebra
of X.

A topological spaceX is separableif it contains a count-
able dense subsetD. ~WhenX is a metric space, this signifie
that every open ball inX contains a point ofD.! A Polish
spaceis a separable complete metric space.

We are now in a position to state a key theorem we w
use in proving Proposition 2.

Theorem 2. In a Borel subquotient of a Polish space, a
countable separating family is also a generating family.

Proof. Combine the second theorem on page 74 of@12#
with the corollary on page 73, bearing in mind the definiti
of a standard Borel space as a Borel subspace of a P
space. j

VI. PROOF OF PROPOSITION 2

We now place the spaces and measures of our causa
stochastic process within this formal framework. LetC be the
family of cylinder sets inṼ. It is countable, since its mem
bers are in one-to-one correspondence with the collectio
finite labeled causets. Each particular choice of CSG dyn
ics assigns a probability to each set inC. Standard technique
then assure us that this assignment extends in a unique
to a probability measurem̃ in the Borel space (Ṽ,R̃), where
as beforeR̃5R(C) is thes algebra generated byC.

Lemma 6. There is a metric onṼ with respect to whichṼ
is a Polish space whose topologicals algebra isR̃.

Proof. For each pair of completed labeled causetsã,b̃
PṼ, we set

d~ ã,b̃!51/2n, ~3!

wheren is the largest integer for whichã(n)5b̃(n) . It is easy
to verify that this gives a metric6 on Ṽ. The maximum dis-
tance between two causets is 1/2 and occurs when their
tial two elements already form distinct partial orders. No
also that the open balls in this metric are exactly the cylin
sets.

One can readily verify that the metric space (Ṽ,d) given
by Eq. ~3! is complete. To see that it is separable we find

c-

6Indeed, the metricd given by Eq.~3! satisfies a condition stron

ger than the triangle inequality: for any three causetsã, b̃, and c̃,

we haved(ã,c̃)5max@d(ã,b̃),d(b̃,c̃)#. This ‘‘ultrametric’’ property is
related to the tree structure of the spaceC of cylinder sets.
1-6
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countable dense set inṼ. Associate with each finite cause

ãPṼ(n) the completed causet that results from adding
infinite chain to the future of the last element inã. It is then

clear that for any causetc̃PṼ such a ‘‘chain-tailed’’ cause

can be found arbitrarily close toc̃. ThereforeṼ is a Polish
space with respect to the metricd.

The family of open balls about the points in this counta
dense set is exactly the family of cylinder sets, and there
the topologicals algebra coincides withR̃, as required. j

Recall that we have definedR as the subalgebra of a
label-invariant Borel sets inR̃ and that one can also think o
R as as algebra in the space of unlabeled causetsV.

Consider the equivalence relation of isomorphism on
setṼ of labeled causets. The set of equivalence classes
1-1 correspondence with the setV of unlabeled completed
causets. Letp:Ṽ→V be the projection, which assigns t
each labeled causetc̃ the class@ c̃# of all its possible label-
ings, corresponding to the unlabeled causetc. Sets of the
form p21(A) are label-invariant subsets ofṼ; to say that
this set is inR̃ ~or in R! is equivalent to saying that th
corresponding setA of unlabeled causets is inR. Therefore
~V, R! is a quotient of (Ṽ,R̃).

Furthermore, the measurem̃ on (Ṽ,R̃) restricts to a mea-
surem onR, which we can define within either interpretatio
of R. Viewing R as a subalgebra ofR̃ in Ṽ, we havem

5m̃ uR , while viewingR as the quotient ofR̃ in V, we have
m5m̃+p21.

Define Ṽ05Ṽ\Q̃ and letR̃05R̃ùṼ0 be the induceds
algebra inṼ0 . Then (Ṽ0 ,R̃0) is a Borel subspace of (Ṽ,R̃)
~it follows from Lemma 3 thatṼ0 is a Borel subset ofṼ).
Similarly, let V05V\Q andR05RùV0 Then (V0 ,R0) is
a Borel subspace of~V, R!.

Lemma 7. The Borel space (V0 ,R0) is a Borel subquo-
tient of (Ṽ,R̃).

Proof. We have already seen that (Ṽ0 ,R̃0) is a Borel
subspace of (Ṽ,R̃). We will show that the Borel spac
(V0 ,R0) is a quotient of (Ṽ0 ,R̃0) by the projectionp into
isomorphism classes. By definition, a setA is in R0 if and
only if APR andA,V0 . Since~V, R! is thep quotient of
(Ṽ,R̃), this is equivalent to saying thatp21(A)PR̃ and
p21(A),Ṽ0 . But this is precisely the statement th
p21(A) is in R̃0 . j

Lemma 8. The countable familyS05SùV0 of ~‘‘rogue-
free’’! stem sets, together with their complements, separ
V0 .

Proof. Consider two distinct causetsx,yPV0 . There
must be a stem inx but not iny or vice versa, for otherwise
x andy would be in the setQ of rogues. Assume then with
out loss of generality that the finite causeta is present as a
stem inx but not in y. Then the rogue-free stem setS0(a)
5S(a)ùV0 hasxPS0(a) andy¹S0(a), while its comple-
ment containsy and notx, as required. j

Applying then Theorem 2, we conclude thatS0 generates
R0 . We now show that anyAPR can be written as a dis
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joint union of a set inR~S! and a set of rogues. Consider th
decomposition ofA as a disjoint union (AùV0)ø(AùQ).
Since the first set is inR0 , it suffices to establish thatR0

5R(S)ùV0 , which is tantamount to the following result.
Lemma 9. The Borel space (V0 ,R0) is a Borel subspace

of „V,R(S)….
Proof. We know thatR05R(S0) and S05SùV0 . The

result follows from Lemma 5. j

In particular, we haveR0,R(S), so that for everyA
PR there is aBPR(S) such thatAùV05B. Hence,A
5BøAr , with BPR(S) and Ar,Q. It follows that ADB
5ArPQ.

This completes the proof of Proposition 2.

VII. DISCUSSION

We explicitly excluded two cases of CSG models fro
consideration in the body of the paper: namely, that whert0
is the only nonzero coupling constant and that wheret0 and
t1 only are nonzero. The former almost surely produces
infinite antichain~the dust universe! and the latter almos
surely produces an infinite union of trees in which each e
ment has infinitely many children~the infinite infinite tree!.
These models are not ‘‘generic’’ in the sense of the Rideo
Sorkin paper~since many transition probabilities vanish!.
But nevertheless our theorem covers both models bec
they are deterministic, and any deterministic model trivia
satisfies our main theorem.

Proof. We want to prove Corollary 1 in the case whe
there exists a causetc such that, for anyAPR, m(A)51 if
cPA andm(A)50 if c¹A. If cPA we chooseB5V and if
c¹A we chooseB to be the empty set. And in both case
m(ADB)50. j

Our theorem does not automatically cover the other n
generic CSG models, i.e., those not in the generalized pe
lation family. We conjecture that~as for the generalized per
colation family! all of these either are deterministic o
preclude infinite antichains, whence the rogues would be
measure zero for them. This would extend our results to
general case.

We have concentrated, in this paper, on the conseque
of general covariance as it affects the choice of physica
meaningful questions. In fact, another form of general co
riance has already been imposed, in the derivation of
relevant CSG models themselves. Rideout and Sorkin c
strain the models to those for which the probability of
cylinder set depends only on the unlabeled version of
stem which defines it and not on the labeling or order
birth. That constraint is somewhat analogous to the inv
ance of the action of a gauge field under gauge transfor
tions. However, because there is nothing physical abou
cylinder set itself, it might be objected that this is an attem
to impose a physical condition on an unphysical obje
Might it be possible to consider dynamical models in mo
generality by constructing a measure directly onV and then
imposing Bell causality directly on this measure?~This
would be a dynamics that was fundamentally label-free, a
therefore automatically ‘‘generally covariant.’’! Would such
1-7



w

or
, o
it
o

ur
lo

o
-
in

r,
s

bu

s

is

e
hat
’’
till

and

for
it

to

ting
u-

the

an
his
01,

BRIGHTWELL et al. PHYSICAL REVIEW D 67, 084031 ~2003!
an approach lead to measures different from the ones
have considered here? We do not know.

Another question is whether we should treat all isom
phisms~relabelings! as pure gauge, as we have done here
restrict them in some way, to those that affect only a fin
subset of elements or those that can map each element
only a finite subset of other elements~finite orbits!, for ex-
ample. One might worry that treating all relabelings as p
gauge would force us to make the energy vanish and/or
all information about its value, because it is the analogue
treating all diffeomorphisms~diffeos! as pure gauge, includ
ing asymptotic translations, etc. However, we argue aga
this concern in two ways.

First, in the context of continuum gravity, say~or even in
special relativity with the metric as background!, it is not
true that we get conserved quantities from diffeos. Rathe
a spacetimesetting, we get them from variations of the field
which are equivalent to a diffeo near the final boundary,
globally are not induced by any diffeo whatsoever~cf. ‘‘par-
tial diffeos’’! @14#.

Second, in terms of ‘‘physical observables’’ we can a
whether declaring asymptotic Poincare´ transformations to be
pure gauge would not force the total energy, etc., to van
ys
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n
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The answer is ‘‘yes,’’ if we require the state vector to b
annihilated by gauge generators, but this is too strong. W
we really should do is just limit the ‘‘physical observables
to those commuting with the gauge generators. This s
leaves exactly what it should, namely, the invariant mass
the magnitude of the ‘‘spin.’’

The equivalent procedure has not been worked out
quantum measure theory@15#, but we strongly suspect that
corresponds precisely to just restricting the measure
diffeo-invariant sets of histories~without demanding that the
measure itself be invariant—except in a cosmological set
where theentire past is included, rather than being encaps
lated in an initial condition!. This would then be exactly
analogous to what we have done in the present paper for
classical measure.
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