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Perturbative approach to an orbital evolution around a supermassive black hole
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A charge-free, point particle of infinitesimal mass orbiting a Kerr black hole is known to move along a
geodesic. When the particle has a finite mass or charge, it emits radiation which carries away orbital energy and
angular momentum, and the orbit deviates from a geodesic. In this paper we assume that the deviation is small
and show that the half-advanced minus half-retarded field surprisingly provides the correct radiation reaction
force, in a time-averaged sense, and determines the orbit of the particle.
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I. INTRODUCTION

Binary systems of solar-mass compact objects and su
massive black holes at galactic nuclei are expected to
important sources of gravitational waves. In order to det
these gravitational waves, a project to construct a spa
based detector, the Laser Interferometer Space Ante
~LISA!, is underway@1#. The detection of such gravitationa
waves will reveal fundamental information about gravi
tional theory, and will provide insight into conditions at th
centers of distant galaxies. It may be possible to read out
detailed geometrical structure of a supermassive black
encoded in the incoming gravitational waves, with which
can test gravitational theory in the strong gravitational
gion, and our understanding of black holes. Not only
extracting such information from detected gravitation
waves, but also for a more efficient detector design of
presently on-going project, it is an urgent problem to cal
late as precisely as possible the gravitational wave sig
expected from such a binary system.

Because of the extreme mass ratio, such a binary sys
can be treated by a perturbation formalism. We treat the
permassive black hole as a background, and treat the s
mass compact object as a source of metric perturbatio
was shown1 that, when the spatial volume of the solar-ma
compact object is smaller than the background curva
scale, one can approximately use a point source

Tmn5mE dt
d (4)~x2z~t!!

A2g

dzm

dt

dzn

dt
, ~1.1!

wherezm(t) is the orbit of the object, andt is proper time.
By the uniqueness theorem of black holes, we can ass

that the background black hole is described by the Kerr
ometry. In this case, given an orbit, there is a formalism

*Electronic address: mino@wugrav.wustl.edu
1In the framework of metric perturbations, it is not a simple pro

lem to define a point particle. When we take the zero-volume lim
the perturbations become divergent around the particle and the
turbation scheme becomes invalid. In Ref.@2#, by using a matched
asymptotic technique consistent with the perturbation formali
we showed that the use of a point particle is still valid to induc
correct metric perturbation.
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calculate the metric perturbation at infinity@3#. Therefore,
the remaining problem is how to calculate the orbitzm(t) of
the source.

In the massless limit, the particle moves along a geode
When the particle has a mass, it becomes a source of g
tational radiation, which carries away orbital energy and
gular momentum. Thus the orbit deviates from a geode
The deviation from a geodesic can be derived fully by so
ing an equation of motion with the so-called self-force.
general calculation scheme for the gravitational self-fo
was proposed by Ref.@4#. A similar situation happens to a
particle with small scalar-electromagnetic charge, and
scalar and electromagnetic self-forces were proposed in
@5#. In this paper, starting from a discussion of a symme
property of the self-force, we propose a method to calcu
the orbital evolution under scalar-electromagnet
gravitational radiation reaction. We assume that the effec
the radiation reaction is weak, and consider the leading
rection to the orbital evolution.

It is commonly assumed that the orbit evolves in an ad
batic manner, namely, the orbit evolves slowly in its pha
space. A true geodesic around a Kerr black hole is charac
ized by the energyE, the angular momentumL and the
Carter constantK.2 Numerous investigations have been ma
to calculate the radiation reaction effect on energyE and
angular momentumL @3# by analyzing the asymptotic gravi
tational waves at infinity and the horizon. However, the c
culation of the radiation reaction effect on the Carter co
stantK is so far an unsolved problem.

A geodesic equation is a set of second order differen
equations of 4 functions$za%. With a proper timet as the
parameter characterizing the orbit, we have 7 integral c
stants,za(t50) anddza/dt(t50), three of which are re-
lated toE, L andK. In Sec. II, we introduce a specific sym
metry property of families of geodesics in the Kerr geomet
Using this symmetry, we discuss an important property of
self-force induced by a geodesic, and prove that the radia
reaction to the energyE, the angular momentumL and the
Carter constantK can be derived by use of a radiative Gre
function ~a half-retarded-minus-half-advanced Green fun
tion!. However, this is not the end of the story. We find th
the orbit does not evolve in a strictly adiabatic manner

-
t,
er-

,
a

2We adopt the definition of the Carter constant in Ref.@6#.
©2003 The American Physical Society27-1
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general as the energyE, the angular momentumL and the
Carter constantK vary on a short time scale. In addition, it
not trivial that the rest of the constants do not evolve by
self-force.

In order to complete the calculation of the orbit, we p
turbatively integrate the orbital equation with the self-for
in Sec. III. We figure out the part which secularly evolves
the self-force, and define the ‘‘adiabatic evolution’’ of th
orbit in the way we can approximately calculate the orb
evolution. By showing the validity of the adiabatic approx
mation, we propose our new formalism as a conventio
tool to predict the gravitational waves detected by the fut
LISA project.

In this paper, we adopt Boyer-Lindquist coordinat
$t, r , u, f%, andM, a are the mass and the spin coefficie
of the black hole respectively.

II. SELF-FORCE AND SYMMETRY

The purpose of this section is to show a simple method
calculate the self-force. The core idea of this new proposa
to use a symmetry of the background spacetime toge
with the whole family of geodesics.

In Sec. II A, we first discuss how we can define the fam
of geodesics. Since we are interested in a particle motio
a target of gravitational wave observation, we only consi
geodesics rotating around a Kerr black hole which neit
fall into the horizon nor go to infinity.

Section II B discusses some symmetry properties of
Kerr spacetime. We apply these symmetry transformation
the family of geodesics and to the self-force induced o
geodesic in Sec. II C. Using the result of these transform
tion properties, we discuss a general expression of the
lution equations of the energy, angular momentum, a
Carter ‘‘constant’’ in Sec. II D, and find that a part of th
evolution equation can be evaluated by using the radia
Green function, which has a great computational advant

In Sec. II E, we give some comments about practical
sues seriously discussed in the self-force problem.

A. Geodesics around a Kerr black hole

A general geodesic satisfies the equations

S dr

dl D 2

5@~r 21a2!E2aL#22D~r 21K !, ~2.1!

S du

dl D 2

52~aE sinu2L cosecu!22a2cos2u1K,

~2.2!

dt

dl
5

1

D
~S2E22aMrL !, ~2.3!

df

dl
5

1

D
@2aMrE1~r222Mr !L cosec2u#, ~2.4!

r25r 21a2cos2u, D5r 222Mr 1a2, ~2.5!
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S25~r 21a2!r212a2Mr sin2u. ~2.6!

Here we usel as an orbital parameter related with the prop
time t by t5*0

ldlr2.
We consider the case that the radial motion is bounde

r 1,r ,r 2. One can integrate Eq.~2.1!, and we have a radia
periodic solution with respect tol with the period

l r52E
r 1

r 2
dr

1

A@~r 21a2!E2aL#22D~r 21K !
. ~2.7!

We write the periodic solution of the radial equation as

r ~l!5R~E,L,K;l2l̄ r !5R~E,L,K;l2l̄ r1l r !,
~2.8!

where we set R(E,L,K;0)5r 1 @or, equivalently,
R(E,L,K;l r /2)5r 2]. l̄ r is the integral constant of the firs
differential equation~2.1!, and we have a periodicity inl̄ r ,
namely,l̄ r→l̄ r1nl r does not change the orbit, wheren is
an arbitrary integer. Because Eq.~2.1! is invariant underl
→2l, R(E,L,K;l) becomes a symmetric function with re
spect tol as

R~E,L,K;l!5R~E,L,K;2l!. ~2.9!

When the orbit is radially bounded, theu motion oscil-
lates symmetrically aroundu5p/2 in a domain 0,u1,u
,p2u1,p @6#. Similarly to the radial motion, we have au
periodic solution with respect tol by the period

lu54E
u1

p/2

du
1

A2~aE sinu2L cosecu!22a2cos2u1K
.

~2.10!

We define the solution of Eq.~2.2! as

u~l!5Q~E,L,K;l2l̄u!5Q~E,L,K;l2l̄u1lu!,
~2.11!

where we set Q(E,L,K;0)5u1 @or, equivalently,
Q(E,L,K;lu/2)5p2u1]. l̄u is the integral constant in
solving Eq.~2.2!, and we have a periodicity inl̄u as in the
radial equation~2.8!. The symmetry property of Eq.~2.11!
becomes

Q~E,L,K;l!5Q~E,L,K;2l!. ~2.12!

We write the solutions of Eqs.~2.3! and ~2.4! as

t~l!5T~E,L,K,l̄ r ,l̄u ;l!1 t̄ , ~2.13!

T~E,L,K,l̄ r ,l̄u ;l!5E
0

ldl

D
~S2E22aMrL !, ~2.14!

f~l!5F~E,L,K,l̄ r ,l̄u ;l!1f̄,
~2.15!
7-2
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F~E,L,K,l̄ r ,l̄u ;l!

5E
0

ldl

D
@2aMrE1~r222Mr !L cosec2u#, ~2.16!

where t̄ and f̄ are the integral constants. We have additi
formulas ofT(E,L,K,l̄ r ,l̄u ;l) andF(E,L,K,l̄ r ,l̄u ;l) as

T~E,L,K,l̄ r ,l̄u ;l!5T~E,L,K,l̄ r2lx ,l̄u2lx ;l2lx!

1T~E,L,K,l̄ r ,l̄u ;lx!, ~2.17!

F~E,L,K,l̄ r ,l̄u ;l!5F~E,L,K,l̄ r2lx ,l̄u2lx ;l2lx!

1F~E,L,K,l̄ r ,l̄u ;lx!. ~2.18!

By using Eqs.~2.9! and ~2.12!, the symmetry properties o
Eqs.~2.13! and ~2.15! become

T~E,L,K,l̄ r ,l̄u ;l!52T~E,L,K,2l̄ r ,2l̄u ;2l!,

F~E,L,K,l̄ r ,l̄u ;l!52F~E,L,K,2l̄ r ,2l̄u ;2l!.
~2.19!

B. t and f translation and geodesic preserving symmetry

As is well known, a Kerr spacetime hast andf transla-
tion symmetry. Applying the coordinate transformation as

t5t81ts , r 5r 8, u5u8, f5f81fs , ~2.20!

we have a Kerr metric of the same mass and spin param
with the new coordinates$t8, r 8, u8, f8%.

We consider to apply this transformation to a geode
with a l translation,l85l2lx , wherelx is an arbitrary
constant. Using Eqs.~2.17! and~2.18!, we have another geo
desic in a new coordinate system as

r 8~l8!5R~E,L,K;l82l̄ r8!,

u8~l8!5Q~E,L,K;l82l̄u8!, ~2.21!

t8~l8!5T~E,L,K,l̄ r8 ,l̄u8 ;l8!1 t̄ 8,

f8~l8!5F~E,L,K,l̄ r8 ,l̄u8 ;l8!1f̄8, ~2.22!

where the orbital constants,$l̄ r8 ,l̄u8 , t̄ 8,f̄8%, become

l̄ r85l̄ r2lx , l̄u85l̄u2lx , ~2.23!

t̄ 85 t̄ 1T~E,L,K,l̄ r ,l̄u ;lx!2ts ,

f̄85f̄1F~E,L,K,l̄ r ,l̄u ;lx!2fs . ~2.24!

One sees that the orbital constants,E, L andK, are invariant
under this transformation. We can sett̄ 8, f̄8 and eitherl̄ r8 or

l̄u8 arbitrarily by an appropriate choice ofts , fs andlx .
08402
ter

c

One cannot set bothl̄ r8 andl̄u8 zero at the same time sinc
we have only one constantlx to fix. However, because of th
periodicity of the radial function~2.8!, one can replacel̄ r

and l̄u by numbers congruent tol̄ r and l̄u modulol r and
lu respectively, i.e.l̄ r1nrl r andl̄u1nulu wherenr andnu

are arbitrary integers. Using this freedom, we setlx5l̄ r

2nrl r , then we obtain l̄ r850 and l̄u85l̄u2l̄ r1nrl r

1nulu . When the ratio ofl r andlu is irrational, there is a
choice ofnr andnu with which ul̄u8u become infinitesimally
small, and a geodesic is characterized only byE, L andK. In
the following, we assume that the ratio ofl r andlu is irra-
tional though we do not setl̄ r and l̄u zero for the latter
convenience unless stated.

Using this transformation property, one can prove a use
formula of a scalar function geometrically defined along
geodesic. As the geodesic is characterized by 7 consta

$E,L,K,l̄ r ,l̄u , t̄ ,f̄%, we write the scalar function a
f (E,L,K,l̄ r ,l̄u , t̄ ,f̄ ;l). We assume that the function is in
variant undert andf translation, then the function is inde
pend ont̄ andf̄. Since the function is periodic with respe
to l̄ r and l̄u , one can expand the function with discre
Fourier series,e2 i2mpl̄r /lr2 i2npl̄u /lu. By applying thel
translation withlx5l, we finally have

f ~E,L,K,l̄ r ,l̄u , t̄ ,f̄;l!

5(
m,n

f (m,n)~E,L,K !expF i2pS m
l2l̄ r

l r
1n

l2l̄u

lu
D G .

~2.25!

We next consider the symmetry as

t52t8, r 5r 8, u5u8, f52f8. ~2.26!

By this coordinate transformation, we recover the same
element with the coordinates$t8, r 8, u8, f8%.

We consider the transformation of a geodesic by this sy
metry. Since we change the time direction, we transform
orbital parameter asl852l. Using Eqs.~2.9!, ~2.12! and
~2.19!, a geodesic is transformed to a new geodesic as

r 8~l8!5R~E,L,K;l82l̄ r8!,

u8~l8!5Q~E,L,K;l82l̄u8!, ~2.27!

t8~l8!5T~E,L,K,l̄ r8 ,l̄u8 ;l8!1 t̄ 8,

f8~l8!5F~E,L,K,l̄ r8 ,l̄u8 ;l8!1f̄8, ~2.28!

where the orbital constants,$l̄ r8 ,l̄u8 , t̄ 8,f̄8%, become

l̄ r852l̄ r , l̄u852l̄u , ~2.29!

t̄ 852 t̄ , f̄852f̄. ~2.30!
7-3
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Since E, L and K are invariant, by using thet- and
f-translation symmetry~2.20! in an appropriate manner, th
new geodesic becomes equal to the original one. For
reason, we call this geodesic preserving symmetry~GPS!
transformation.

C. Green function and self-force

We denote a various scalar-electromagnetic-gravitatio
Green function by

G~x,z!5H G~x,z!, scalar,

Gam~x,z!dxadzm, electromagnetism,

Gabmn~x,z!dxadxbdzmdzn, linear gravity
~2.31!

and considert and f translation and GPS transformatio
property of it.

Using a symmetric scalar-electromagnetic-gravitatio
Green functionG sym.(x,z), a retarded and advanced scal
electromagnetic-gravitational Green function,G ret./adv.(x,z)
can be written as

G ret.~x,z!52u@S~x!,z#G sym.~x,z!, ~2.32!

G adv.~x,z!52u@z,S~x!#G sym.~x,z!, ~2.33!

whereS(x) is an arbitrary space-like hypersurface conta
ing x, andu@S(x),z#512u@z,S(x)# is equal to 1 whenz
lies in the past ofS(x) and vanishes otherwise. The symme
ric Green function is invariant undert andf translation and
GPS transformation because, in its Hadamard construc
@4,5#, it is described only by geometrically defined bi-tenso
invariant undert andf translation and GPS transformatio

Under t andf translation~2.20!, the factoru@S(x),z# is
also invariant and we have

G ret.~x8,z8!5G ret.~x,z!, G adv.~x8,z8!5G adv.~x,z!.

~2.34!

On the other hand, GPS transformation~2.26! changes the
direction of the time and the factoru@S(x),z# transforms as

u@S~x8!,z8#5u@z,S~x!#, u@z8,S~x8!#5u@S~x!,z#.

~2.35!

Thence, by GPS transformation~2.26!, a retarded and ad
vanced Green function are transformed to be an advan
and retarded Green function respectively as

G ret.~x8,z8!5G adv.~x,z!, G adv.~x8,z8!5G ret.~x,z!.

~2.36!

We next consider the scalar-electromagnetic-gravitatio
self-force acting on the particle. Because the field induced
a point particle diverges along the orbit, we need a regu
ization calculation to derive the self-force@4,5#. Based on the
Green function method in calculating the field, an eleg
method of regularization was proposed@7#, in which the self-
force can be directly derived from the field calculated by
08402
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so-calledR part of a retarded Green function. TheR part of a
retarded and advanced Green functionG R2ret./R2adv.(x,z) is
schematically defined as

G R2ret./R2adv.~x,z!5G ret./adv.~x,z!2G S~x,z!, ~2.37!

whereG S(x,z) is the so-calledS part @7#. It is important to
note that theR part of the half-retarded-minus-half-advan
Green function becomes a radiative Green funct
G rad.(x,z) as

1

2
~G R2ret.~x,z!2G R2adv.~x,z!!

5
1

2
~G ret.~x,z!2G adv.~x,z!!5G rad.~x,z!. ~2.38!

Similar to the symmetric Green function, theS part is
defined by geometric bi-tensors and is invariant both byt and
f translation and GPS transformation. Thence theR part of
the retarded and advanced Green function are still invar
undert andf translation, and, by GPS transformation, theR
part becomes

G R2ret.~x8,z8!5G R2adv.~x,z!,

G R2adv.~x8,z8!5G R2ret.~x,z!. ~2.39!

The scalar-electromagnetic-gravitational self-force
schematically described as

Fa
R2ret./R2adv.~t!5 lim

x→z(t)
Fa@fR2ret./R2adv.#~x!, ~2.40!

fR2ret./R2adv.~x!5E dtGR2ret./R2adv.
„x,z~t!…S„z~t!…,

~2.41!

where fR2ret./R2adv. is the R part of a scalar-
electromagnetic-gravitational potential using theR part of a
retarded or advanced Green function, and we n
R2ret./R2adv. to the self-force to emphasize that it is derive
using theR part of the retarded or advanced Green functio
S„z(t)… is the source term defined along the orbit. We a
sume that the tensor differential operatorFa@#(x) is defined
to satisfy the normalization condition asFa@#„z(t)…va(t)
50.

We assume that the self-force is weak and the orbit can
approximated to be a geodesic at each instant of time. U
this approximation, we consider to calculate the self-fo
induced by a geodesic. We write the self-force as a vec
function of the orbital constantsE, L, K, l̄ r , l̄u , t̄ , f̄ and
the orbital parameterl as

Fa
R2ret./R2adv.5Fa

R2ret./R2adv.~E,L,K,l̄ r ,l̄u , t̄ ,f̄;l!.
~2.42!

In general, 4-velocity and a self-force transform as
7-4
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va85
dx8a

dt8
~t8!5S ]x8a

]xb D S dt

dt8
D vb~t!, ~2.43!

f a85
D

dt8
va8~t8!

5S dt

dt8
D D

dtF S ]xb

]x8aD S dt

dt8
D vbG ~t!. ~2.44!

Using these transformation rules, we applyt andf transla-
tion ~2.20! and GPS transformation~2.26! to the self-force
induced by a geodesic~2.42!.

We first considert and f translation~2.20! with lx50.
Applying the coordinate transformation, we have

Fa8
R2ret./R2adv.

~E,L,K,l̄ r ,l̄u , t̄ 1ts ,f̄1fs ;l!

5Fa
R2ret./R2adv.~E,L,K,l̄ r ,l̄u , t̄ ,f̄;l!. ~2.45!

Since the metric is invariant under the transformation,
have Fa8

R2ret./R2adv.
5Fa

R2ret./R2adv. , thus, the self-force

does not depend ont̄ and f̄. In the following, we write the
self-force asFa

R2ret./R2adv.(E,L,K,l̄ r ,l̄u ;l).
Finally we consider GPS transformation of the self-forc

Noting Eqs.~2.39!, ~2.26! transforms the self-force as

Fa
R2adv.~E,L,K,2l̄ r ,2l̄u ;2l!

5~21!sFa
R2ret.~E,L,K,l̄ r ,l̄u ;l!, ~2.46!

Fa
R2ret.~E,L,K,2l̄ r ,2l̄u ;2l!

5~21!sFa
R2adv.~E,L,K,l̄ r ,l̄u ;l!, ~2.47!

wheres51 for a5t,f, ands50 for a5r ,u.

D. Evolution of the energy, angular momentum
and Carter ‘‘constant’’

As we usel as an orbital parameter, we consider thel
derivative of these ‘‘constants’’ as

F d

dl
EGR2ret./R2adv.

52r2Ft
R2ret./R2adv.~E,L,K,l̄ r ,l̄u ;l!,

~2.48!

F d

dl
LGR2ret./R2adv.

5r2Ff
R2ret./R2adv.~E,L,K,l̄ r ,l̄u ;l!,

~2.49!

F d

dl
KGR2ret./R2adv.

5@2~r 21a2!r2v tFt
R2ret./R2adv.

12r4v rFr
R2ret./R2adv.#

3~E,L,K,l̄ r ,l̄u ;l!. ~2.50!
08402
e

.

Since these are scalar functions defined along a geodesic
can apply the formula~2.25! to Eqs. ~2.48!, ~2.49! and
~2.50!, and we obtain

F d

dl
EGR2ret./R2adv.

5(
m,n

ĖR2ret./R2adv.(m,n)~E,L,K !

3expF i2pS m
l2l̄ r

l r
1n

l2l̄u

lu
D G ,

~2.51!

where we denoteE, L andK by E. By the reality condition,
we have (ĖR2ret./R2adv. (m,n))* 5 ĖR2ret./R2adv. (2m,2n),
where * means we take the complex conjugation operati

4-velocity of a geodesic transforms by Eq.~2.26! as

va8~E,L,K,2l̄ r ,2l̄u ;2l!5~21!sva~E,L,K,l̄ r ,l̄u ;l!,

~2.52!

wheres50 for a5t,f, and s51 for a5r ,u. Using Eqs.
~2.47! and~2.52!, Eqs.~2.48!, ~2.49! and~2.50! transform as

F d

dl
EGR2adv./R2ret.

~E,L,K,2l̄ r ,2l̄u ;2l!

52F d

dl
EGR2ret./R2adv.

~E,L,K,l̄ r ,l̄u ;l!. ~2.53!

We consider the evolution equations~2.48!, ~2.49! and
~2.50! averaged at two orbital points characterized
z(E,L,K,l̄ r ,l̄u , t̄ ,f̄;l) and z(E,L,K,2l̄ r ,2l̄u , t̄ 8,f̄8;
2l). Using Eq.~2.53!, one finds the evolution equations a
described by the radiative Green function~2.38! instead of
the R part of the retarded or advanced Green function as

1

2 H F d

dl
EGR2ret.

~E,L,K,l̄ r ,l̄u ;l!

1F d

dl
EGR2ret.

~E,L,K,2l̄ r ,2l̄u ;2l!J
52

1

2 H F d

dl
EGR2adv.

~E,L,K,l̄ r ,l̄u ;l!

1F d

dl
EGR2adv.

~E,L,K,2l̄ r ,2l̄u ;2l!J
5F d

dl
EG rad.

~E,L,K,l̄ r ,l̄u ;l!, ~2.54!

F d

dl
EG rad.

~E,L,K,l̄ r ,l̄u ;l!52r2Ft
rad.~E,L,K,l̄ r ,l̄u ;l!,

~2.55!

F d

dl
LG rad.

~E,L,K,l̄ r ,l̄u ;l!5r2Ff
rad.~E,L,K,l̄ r ,l̄u ;l!,

~2.56!
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F d

dl
KG rad.

~E,L,K,l̄ r ,l̄u ;l!

5@2~r 21a2!r2v tFt
rad.12r4v rFr

rad.#

3~E,L,K,l̄ r ,l̄u ;l!, ~2.57!

where Fa
rad. is the self-force calculated by the radiativ

Green function~2.38!.
We write

F d

dl
EG rad.

~E,L,K,l̄ r ,l̄u ;l!

5(
m,n

Ėrad. (m,n)~E,L,K !

3expF i2pS m
l2l̄ r

l r
1n

l2l̄u

lu
D G . ~2.58!

Then we have

1

2
~ ĖR2ret. (m,n)1 ĖR2ret. (2m,2n)!~E,L,K !

52
1

2
~ ĖR2adv. (m,n)1 ĖR2adv. (2m,2n)!~E,L,K !

5 Ėrad. (m,n)~E,K,L !. ~2.59!

Thus, half of the expansion coefficients of the evoluti
equations can be derived by using the radiative Green fu
tion.

We comment that, when the ratio ofl r andlu is irratio-
nal, our formula generalizes the result in Ref.@8#, in which it
is proven that radiation reaction to the energy and the ang
momentum along a whole geodesic can be derived by a
force calculated by a radiative Green function.3 By Eq.
~2.51!, the radiation reaction averaged per unitl to the en-
ergy, angular momentum and Carter ‘‘constant’’ becomes

lim
l→`

1

2lE2l

l

dl
d

dl
E R2ret.~E,L,K,l̄ r ,l̄u ;l!

5 ĖR2ret. (0,0)~E,L,K !. ~2.60!

By Eqs. ~2.59!, ~2.60! agrees with the calculation using th
radiative Green function as

lim
l→`

1

2lE2l

l

dl
d

dl
E rad.~E,L,K,l̄ r ,l̄u ;l!

5 ĖR2ret. (0,0)~E,L,K !. ~2.61!

3We also note that our formalism specifies the case that the o
inducing the self-force can be approximated by a geodesic, w
the formula in Ref. @8# applies to a general orbit in scala
electromagnetic case.
08402
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It is notable that the dependence of bothl̄ r and l̄u vanishes
in the end.

E. Practical issues in calculating the radiative potential

The primary problem in a Kerr case is we have no co
ventional method to calculate a electromagnetic potential
a metric perturbation induced by a point particle.4 The con-
struction of an inhomogeneous solution is unknown in g
eral, however, a very simple method to derive homogene
solutions was proposed@10#. In Ref. @10#, it was also dis-
cussed the derivation of the retarded and advanced G
functions as infinite sums of homogeneous solutions, wh
gives a correct metric perturbation only outside the sour
For example, when the particle moves in the radial dom
r min,r ,r max, the metric perturbation given in Ref.@10# is
correct atr .r max and r ,r min .

Though the prescription in Ref.@10# is insufficient for
inhomogeneous Green functions, it gives the correct ra
tive Green function since it is just a sum of homogeneo
solutions. Suppose we calculate the radiative Green func
following Ref. @10#, it is correct outside the source. Howeve
since it is made as an infinite sum of homogeneous solut
by construction, it satisfies the source-free Einstein equat
at every radial domain. Thus, it is a correct radiative Gre
function in the whole spacetime.

III. PERTURBATIVE EVOLUTION OF AN ORBIT

To make a definite discussion, we consider that, al
,0, the particle moves along a geodesic characterized
the constants,E5E0 , l̄ r5l̄ r0 , l̄u5l̄u0 , t̄ 5 t̄ 0 and f̄

5f̄0, and that the self-force begins to act on the orbit wh
l.0, and deviate from the initial geodesic. In this sectio
we discuss the deviation of the initial geodesic in a pert
bative manner. We definem as the charge or the mass of th
orbiting particle normalized by the mass of the backgrou
black hole, and we considerm is an infinitesimally small
value as an index of the perturbation.

In order to see how the orbit evolves by the self-force,
first consider Eq.~2.51!. We define the deviation ofE from
the initial valueE0 by dE. Because we only consider th
self-force induced by a geodesic in deriving Eq.~2.51!, we
can consistently derive the evolution ofdE only when dE
5O(ma), a.0. The evolution ofdE becomes

dE~E0 ,L0 ,K0 ,l̄ r0 ,l̄u0 ;l!

5l ĖR2ret.~E0 ,L0 ,K0!1(
m,n

E R2ret. (m,n)~E0 ,L0 ,K0!

3ei2p(m[(l2l̄r0)/lr ] 1n[(l2l̄u0)/lu]) , ~3.1!

where the coefficient of the linearly growing term is dete
mined as
it

le
4Recently, some ideas to calculate the vector potential and

metric perturbation induced by a point source were proposed@9#.
7-6
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ĖR2ret.5 ĖR2ret. (0,0). ~3.2!

One sees that Eq.~3.1! consists of two parts, the secular pa
and the oscillating part. The oscillating part staysO(m1) at
any l. On the other hand, the secular part grows linearly
l, thus, one can consistently derivedE only when l is
O(ma), 0>a.21.

Because of this oscillating term, one cannot say that
orbit evolves adiabatically in an exact sense. The oscilla
part shows the interaction of the orbit and the ‘‘heat bath’’
radiation. In the time scale of the orderO(m0), the orbit just
exchanges the energy, angular momentum with the ‘‘h
bath’’ and they increase and decrease in the equal rate. In
long time scale of the orderO(ma), 0.a.21, the energy
and angular momentum reserved in the ‘‘heat bath’’ esc
into the horizon or away to infinity and the orbital ener
and angular momentum tend to flow out to the ‘‘heat bat
Thus, as described by the secular part of Eq.~3.1!, the orbital
energy and angular momentum decrease linearly byl.

Though we do not have an adiabatic evolution in an ex
sense, we show that the secular part of the ‘‘constantsE
becomes dominant over the oscillating part. If the same th
happens to the rest of ‘‘constants,’’ it seems possible to
fine an ‘‘adiabatic’’ evolution of the orbit in an approxima
sense. For this purpose, we discuss an orbital evolution
perturbative manner. We first consider the evolution ofr and
u coordinates in Sec. III A, then,t andf coordinates in Sec
III B. Section III C gives a plausible definition of an ‘‘adia
batic’’ evolution of the orbit, which approximates the exa
orbital evolution by a self-force. Section III D concludes t
section with a discussion of a gauge dependence of an ‘‘a
batic’’ evolution which appears only in gravitational case.

We define an orbit evolving by a self-force as

t~l!5t0~l!1dt~l!, r ~l!5r 0~l!1dr ~l!, ~3.3!

u~l!5u0~l!1du~l!, f~l!5f0~l!1df~l!, ~3.4!

where $t0 ,r 0 ,u0 ,f0% is the initial geodesic. For the latte
convenience, we define a family of geodesics as

t~l!5T~E,L,K,l̄ r ,l̄u ;l!1 t̄ , r ~l!5R~E,L,K;l2l̄ r !,

~3.5!

u~l!5Q~E,L,K;l2l̄ r !,

f~l!5F~E,L,K,l̄ r ,l̄u ;l!1f̄. ~3.6!

A. r motion and u motion

Instead of integrating the equation of motionDva/dt
5Fa, we consider integrating Eqs.~2.1! and ~2.2! to derive
the motion ofr and u coordinates. For a convenience, w
write Eqs.~2.1! and ~2.2! as

S dr

dl D 2

5V~E,r !, S du

dl D 2

5U~E,u!, ~3.7!

whereE5E01dE, r 5r 01dr andu5u01du.
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Taking the leading order deviation from the initial geod
sic, Eqs.~3.7! become

2
ddr

dl

dr0

dl
5V~E0 ,r 0! ,idE i1V~E0 ,r 0! ,rdr ,

2
ddu

dl

du0

dl
5U~E0 ,u0! ,idE i1U~E0 ,r 0! ,udu, ~3.8!

where we denotef ,idE i5 f ,EdE1 f ,LdL1 f ,KdK. Using
2d2r 0 /dl25V(E0 ,r 0),r and 2d2u0 /dl25U(E0 ,u0),u , we
have

d

dl S dr

dr0

dl
D 5

1

2

V,i

V
~E0 ,r 0!dE i ,

d

dl S du

du0

dl
D 5

1

2

U ,i

U
~E0 ,u0!dE i . ~3.9!

The differential equations~3.9! have singularies becaus
dr0 /dl and V(E0 ,r 0) vanish at l5l̄ r1(n/2)l r , and
du0 /dl andU(E0 ,u0) vanish atl5l̄u1(n/2)lu , wheren
is an integer.

One must integrate Eq.~3.9! such thatdr and du are
smooth at the singularities. We formally integrate the diff
ential equations as

dr 5
dr0

dl
V̄idE i2

dr0

dl E0

l

dlV̄i

d

dl
dE i1cu

(n) dr0

dl
, ~3.10!

du5
du0

dl
Ū idE i2

du0

dl E
0

l

dlŪ i

d

dl
dE i1cv

(n) du0

dl
,

~3.11!

where we definedV̄i /dl5V,i /2V and dŪi /dl5U ,i /2U.
Here one must add the integration constantscu

(n) at l̄ r1(n

11)l r /2.l.l̄ r1nl r /2, and cv
(n) at l̄u1(n11)lu/2.l

.l̄u1nlu/2, independently for each integern, such that
dr 50 anddu50 atl50. anddr anddu become smooth a
the singularities of Eq.~3.9!.

In order to determinecv
(n) and vu

(n) together withV̄i and

Ū i , we consider the singular structure of Eq.~3.9!. We write

V~E0 ,r !5v~E0 ,r !~r 2r 1~E0!!~r 2~E0!2r !, ~3.12!

U~E0 ,u!5u~E0 ,u!~u2u1~E0!!~p2u1~E0!2u!,
~3.13!

wherev(E0 ,r ) is positive atr 1,r ,r 2, andu(E0 ,u) is posi-
tive at u1,u,p2u1 . r 0 and u0 of the initial geodesic
around the singularities behave as
7-7
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r 11
1

4
v1~r 22r 1!~l2l̄ r2nl r !

21O~~l2l̄ r2nl r !
4!,

~3.14!

of
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H
r 22

1

4
v2~r 22r 1!„l2l̄ r2~n1/2!l r…

21O~@l2l̄ r2~n11/2!l r #
4!.

u05H u11
1

4
u0~p22u1!~l2l̄u2nlu!21O~~l2l̄u2nlu!4!,

p2u12
1

4
u0~p22u1!„l2l̄u2~n1/2!lu…

21O~@l2l̄u2~n11/2!lu#4!,

~3.15!

where v15v(E0 ,r 1), v25v(E0 ,r 2), u05u(E0 ,u1)5u(E0 ,p2u1), and n is an integer. Thus, the singular structure
1
2 (V,i /V)(E0 ,r 0) and 1

2 (U ,i /U)(E0 ,u0) becomes

1

2

V,i

V
~E0 ,r 0!5H 2

2r 1,i

v1~r 22r 1!
~l2l̄ r2nl r !

221O~~l2l̄ r2nl r !
0!,

2r 2,i

v2~r 22r 1!
~l2l̄ r2~n1/2!l r !

221O~@l2l̄ r2~n11/2!l r #
0!,

~3.16!

1

2

U ,i

U
~E0 ,u0!5H 2

2u1,i

u0~p22u1!
~l2l̄u2nlu!221O~~l2l̄u2nlu!0!,

2
2u1,i

u0~p22u1!
~l2l̄u2~n1/2!lu!221O~@l2l̄u2~n11/2!lu#0!.

~3.17!

We define regularization functions as

Vi
†~E0 ,l2l̄ r0!5 i

2p

l r~r 22r 1! F r 1,i

v1
S 1

ei2p(l2l̄r0)/lr21
2

1

e2 i2p(l2l̄r0)/lr21
D

1
r 2,i

v2
S 1

ei2p(l2l̄r0)/lr11
2

1

e2 i2p(l2l̄r0)/lr11
D G , ~3.18!

Ui
†~E0 ,l2l̄u0!5 i

2p

lu~r 22r 1!

u1,i

u0
F S 1

ei2p(l2l̄u0)/lu21
2

1

e2 i2p(l2l̄u0)/lu21
D

2S 1

ei2p(l2l̄u0)/lu11
2

1

e2 i2p(l2l̄u0)/lu11
D G . ~3.19!
-

-
is

s

One can see thatdVi
†/dl anddU†/dl have the same singu

lar structures asV,i /2V and U ,i /2U, thus,V,i /2V2dVi
†/dl

and U ,i /2U2dU†/dl are regular and periodic with the pe
riod l r andlu . One can expand these differences with d
crete Fourier seriesei2p(l2l̄r0)/lr andei2p(l2l̄u0)/lu, and one
can integrate in a regular manner. We formally write the
integrations as

@V̄i2Vi
†#~E0 ,l2l̄ r0!

5~l2l̄ r0!V̇i1(
n

Vi
(n)~E0!ei2pn[(l2l̄r0)/lr ] ,

~3.20!
08402
-

e

@Ū i2Ui
†#~E0 ,l2l̄u0!

5~l2l̄u0!U̇ i1(
n

Ui
(n)~E0!ei2pn[(l2l̄u0)/lu] ,

~3.21!

where the coefficients of linearly growing terms are

V̇i~E0!5
1

l r
E

0

lr
dlS V,i

2V
2

dVi
†

dl D ,

U̇ i~E0!5
1

lu
E

0

lu
dlS U ,i

2U
2

dUi
†

dl D .

~3.22!
7-8
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We note that there is an ambiguity in adding integral co
stants, which the final result does not depend on.

Using Eqs.~3.18!, ~3.19!, ~3.20! and~3.21!, the first terms
of Eqs.~3.10! and ~3.11! can be separated as

dr0

dl
~@V̄i2Vi

†#dE i1Vi
†dE i !,

du0

dl
~@Ū i2Ui

†#dE i1Ui
†dE i !.

Now we can see that we successfully regularize the
terms of Eqs.~3.10! and ~3.11! since the divergent behavio
of Vi

† and Ui
† and the regular behavior ofdr0 /dl and

du0 /dl cancel each other at the singularities of Eq.~3.9! as

dr0

dl
Vi

†5H r 1,i1O~~l2l̄ r02nl r !
2!,

r 2,i1O~@l2l̄ r02~n11/2!l r #
2!,

~3.23!

du0

dl
Ui

†5H u1,i1O~~l2l̄u02nlu!2!,

2u1,i1O~@l2l̄u02~n11/2!lu#2!.
~3.24!

We can further rewrite the first terms of Eqs.~3.10! and
~3.11! usingR,i(E0 ,l2l̄ r0) andQ ,i(E0 ,l2l̄u0). By taking
the E derivative of the geodesic equation, we have

d

dl S R,i

dr0

dl
D 5

1

2

V,i

V
~E0 ,r 0!,

d

dlS Q ,i

du0

dl
D 5

1

2

U ,i

U
~E0 ,u0!.

~3.25!

These equations have singularities as Eq.~3.9!, and must be
integrated such thatR,i and Q ,i are smooth at the singula
points. Using Eqs.~3.18!, ~3.19!, ~3.20! and~3.21!, we have

R,i~E0 ,l2l̄ r0!5
dr0

dl
~@V̄i2Vi

†#1Vi
†1ci

(v)!,

Q ,i~E0 ,l2l̄u0!5
du0

dl
~@Ū i2Ui

†#1Ui
†1ci

(u)!,

~3.26!

whereci
(v) and ci

(u) are finite integral constants. Using th

ambiguity of integral constants in evaluating@V̄i2Vi
†# and

@Ū i2Ui
†#, we setci

(v)5ci
(u)50. and we have the first term

of Eqs.~3.10! and ~3.11! as

R,i~E0 ,l2l̄ r0!dE i , Q ,i~E0 ,l2l̄u0!dE i . ~3.27!

Sincer andu motion of a geodesic is periodic, we can p

R~E,l2l̄ r !5(
n

R(n)~E!ei2pn[(l2l̄r )/lr (E)] ,

Q~E,l2l̄ r !5(
n

Q (n)~E!ei2pn[(l2l̄u)/lu(E)] .

~3.28!

The E derivative ofR andQ becomes
08402
-

st

R,i5(
n

S 2 i2pn
l2l̄ r

l r

l r ,i

l r
R(n)1R,i

(n)D ei2pn[(l2l̄r )/lr ]

52~l2l̄ r !
dR

dl

l r ,i

l r
1(

n
R,i

(n)ei2pn[(l2l̄r )/lr ] , ~3.29!

Q ,i5(
n

S 2 i2pn
l2l̄u

lu

lu,i

lu
Q (n)1Q ,i

(n)D ei2pn[(l2l̄u)/lu]

52~l2l̄u!
dQ

dl

lu,i

lu
1(

n
Q ,i

(n)ei2pn[(l2l̄u)/lu] . ~3.30!

One can see thatR,i and Q ,i are dominated by oscillating
parts whose amplitude grows linearly inl. Comparing Eqs.
~3.20!, ~3.21! and ~3.26!, we find

V̇i~E0!52
l r ,i

l r
~E0!, U̇ i~E0!52

lu,i

lu
~E0!. ~3.31!

We next discuss the second terms of Eqs.~3.10! and
~3.11!. Using Eqs.~3.18!, ~3.19! ~3.20! and ~3.21!, we sepa-
rate the terms as

2
dr0

dl S E
0

l

dl@V̄i2Vi
†#

d

dl
dE i1E

0

l

dlVi
† d

dl
dE i D ,

~3.32!

2
du0

dl S E
0

l

dl@Ū i2Ui
†#

d

dl
dE i1E

0

l

dl0Ui
† d

dl
dE i D .

~3.33!

The integrands of the first terms in the brackets are re
lar and periodic, and one can evaluate the integration in
usual manner as

E
0

l

dl@V̄i2Vi
†#

d

dl
dE i

5
~l2l̄ r0!2

2
V̈e1(

m,n
~~l2l̄ r0!V̇e

(m,n)

1Ve
(m,n)!ei2p(m[(l2l̄r0)/lr ] 1n[(l2l̄u0)/lu]) ,

~3.34!

E
0

l

dl@Ū i2Ui
†#

d

dl
dE i

5
~l2l̄u0!2

2
Üe1(

m,n
~~l2l̄u0!U̇e

(m,n)

1Ue
(m,n)!ei2p(m[(l2l̄r0)/lr ] 1n[(l2l̄u0)/lu]) .

~3.35!

The second terms in the brackets could lead to logar
mic divergence at the singular points,r 05r 1 ,r 2 and u0
5u1 ,p2u1. If we have logarithmic divergence, we have n
7-9
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way to have a smooth evolution of the orbit at the singula
ties. Thus, one must constraint on the self-force as

05r 1,i

d

dl
dE i~l5l̄ r01nl r !

5r 2,i

d

dl
dE i

„l5l̄ r01~n11/2!l r…, ~3.36!

05u1,i

d

dl
dE i~l5l̄u01nlu!

5u1,i

d

dl
dE i

„l5l̄u01~n11/2!lu…. ~3.37!

Using Eq.~2.51!, we can re-expand as

r 1,i

d

dl
dE i5 (

m5” 0,n
Ėr1

(m,n)~ei2mp[(l2l̄r0)/lr ]21!

3ei2np[(l2l̄u0)/lu] , ~3.38!

r 2,i

d

dl
dE i5 (

m5” 0,n
Ėr2

(m,n)
„~21!mei2mp[(l2l̄r0)/lr ]21…

3ei2np[(l2l̄u0)/lu] , ~3.39!

u1,i

d

dl
dE i5 (

m,n5” 0
Ėu1

(m,n)ei2mp[(l2l̄r0)/lr ]

3~ei2np[(l2l̄u0)/lu]21!, ~3.40!

2u1,i

d

dl
dE i5 (

m5” 0,n
Ėu2

(m,n)ei2mp[(l2l̄r0)/lr ]

3„~21!mei2np[(l2l̄u0)/lu]21…,

~3.41!

where Ėr1
(m,n)5r 1,i Ėi (m,n), Ėr2

(m,n)5(21)mr 2,i Ėi (m,n), Ėu1
(m,n)

5u1,i Ėi (m,n) andĖu2
(m,n)52(21)nu1,i Ėi (m,n). Using these ex-

pansions, we can integrate the second term without loga
mic divergence as

E
0

l

dlVi
† d

dl
dE i5~l2l̄ r0!V̇e

†1(
m,n

Ve
†(m,n)

3ei2p(m[(l2l̄r0)/lr ] 1n[(l2l̄u0)/lu]) ,

~3.42!

E
0

l

dlUi
† d

dl
dE i5~l2l̄u0!U̇e

†1(
m,n

Ue
†(m,n)

3ei2p(m[(l2l̄r0)/lr ] 1n[(l2l̄u0)/lu]) .

~3.43!

It is notable that we have only linearly growing terms; thu
Eqs.~3.34! and ~3.35! dominate over Eqs.~3.42! and ~3.43!
at l;O(ma), 0.a.21/2.
08402
-

h-

,

Using Eq.~3.26!, one can rewrite the second terms of Eq
~3.10! and ~3.11! as

2
dr0

dl E0

l

dl
R,i

dr0

dl

d

dl
dE i , 2

du0

dl E
0

l

dl
Q ,i

du0

dl

d

dl
dE i .

~3.44!

By the constraints on the self-force~3.36! and ~3.37!, the
integrands of Eq.~3.44! have no singularity, and we ca
formally write as

R,i

dr0

dl

d

dl
dE i5(

m,n
~~l2l̄ r0!Ṙe

(m,n)1Re
(m,n)!

3ei2p(m[(l2l̄r0)/lr ] 1n[(l2l̄u0)/lu]) ,

~3.45!

Q ,i

du0

dl

d

dl
dE i5(

m,n
~~l2l̄u0!Q̇e

(m,n)1Qe
(m,n)!

3ei2p(m[(l2l̄r0)/lr ] 1n[(l2l̄u0)/lu]) ,

~3.46!

where the coefficients of linearly growing terms become

Ṙe
(m,n)52

l r ,i

l r
ĖR2ret. (m,n) i , Q̇e

(m,n)52
lu,i

lu
ĖR2ret. (m,n) i .

~3.47!

We show how to integrate Eqs.~3.10! and~3.11! such that
dr anddu evolve smoothly, and we findcv

(n)5cu
(n)50 along

this integration procedure. The perturbative evolution ofdr
anddu by the self-force is now interpreted as the evoluti
of the orbital ‘‘constants,’’dE i , dl̄ r anddl̄u as

dr 5R,idE i1R,l̄r
dl̄ r , ~3.48!

dl̄ r5
~l2l̄ r0!2

2
l̈ r1(

m,n
~~l2l̄ r0!l̇ r

(m,n)1l r
(m,n)!

3ei2p(m[(l2l̄r0)/lr ] 1n[(l2l̄u0)/lu]) , ~3.49!

du5Q ,idE i1Q ,l̄u
dl̄u , ~3.50!

dl̄u5
~l2l̄u0!2

2
l̈u1(

m,n
~~l2l̄u0!l̇u

(m,n)1lu
(m,n)!

3ei2p(m[(l2l̄r0)/lr ] 1n[(l2l̄u0)/lu]) . ~3.51!

From Eq.~3.47!, we have

l̈ r52
l r ,i

l r
ĖR2ret. (0,0)i , l̈u52

lu,i

lu
ĖR2ret. (0,0)i ,

~3.52!
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l̇ r
(m,n)5

i

2pS m

l r
1

n

lu
D

l r ,i

l r
ĖR2ret. (m,n) i ,

l̇u
(m,n)5

i

2pS m

l r
1

n

lu
D

lu,i

lu
ĖR2ret. (m,n) i , ~3.53!

l̇ r
(0,0)5Re

(0,0)5V̇e
(0,0)1V̇e

† , l̇u
(0,0)5Qe

(0,0)5U̇e
(0,0)1U̇e

† ,

~3.54!

l r
(m,n)5

2 i

2pS m

l r
1

n

lu
D Re

(m,n)5Ve
(m,n)1Ve

†(m,n) ,

lu
(m,n)5

2 i

2pS m

l r
1

n

lu
D Qe

(m,n)5Ue
(m,n)1Ue

†(m,n) , ~3.55!

where Eq.~3.53! and Eq. ~3.55! are evaluated for (m,n)
Þ(0,0), and l r

(0,0) , lu
(0,0) are determined such thatdl̄0

5dl̄u50 at l50.
We can see that the linear perturbation holds forl

;O(ma), 0>a.21/2. The orbital evolution in this regime
has two parts: the one contributed bydE, the other bydl̄ r

and dl̄u . Since both parts grow quadratically byl, it is
necessary to consider the evolution ofl̄ r andl̄u for a correct
orbital prediction.

B. t motion and f motion

We write Eqs.~2.3! and ~2.4! as

dt

dl
5X~E,r ,u!,

df

dl
5Y~E,r ,u!. ~3.56!

The leading deviation from the initial geodesic satisfies

ddt

dl
5X,i~E0 ,r 0 ,u0!dE i1X,r~E0 ,r 0 ,u0!dr

1X,u~E0 ,r 0 ,u0!du

5~X,i1X,rR,i1X,uQ ,i !dE i1X,rR,l̄r
dl̄ r

1X,uQ ,l̄u
dl̄u , ~3.57!
08402
ddf

dl
5Y,i~E0 ,r 0 ,u0!dE i1Y,r~E0 ,r 0 ,u0!dr

1Y,u~E0 ,r 0 ,u0!du

5~Y,i1Y,rR,i1Y,uQ ,i !dE i1Y,rR,l̄r
dl̄ r

1Y,uQ ,l̄u
dl̄u , ~3.58!

where we use Eqs.~3.48! and ~3.50!. Contrary to Eq.~3.9!,
Eqs. ~3.57! and ~3.58! are regular, and we can integrate b
parts as

dt5X̄idE i1X̄rdl̄ r1X̄udl̄u

2E
0

l

dlS X̄i

d

dl
dE i1X̄r

d

dl
dl̄ r1X̄u

d

dl
dl̄uD ,

~3.59!

d

dl
X̄i5X,i1X,rR,i1X,uQ ,i ,

d

dl
X̄r5X,rR,l̄r

,

d

dl
X̄u5X,uQ ,l̄u

, ~3.60!

df5ȲidE i1Ȳrdl̄ r1Ȳudl̄u

2E
0

l

dlS Ȳi

d

dl
dE i1Ȳr

d

dl
dl̄ r1Ȳu

d

dl
dl̄uD ,

~3.61!

d

dl
Ȳi5Y,i1Y,rR,i1Y,uQ ,i ,

d

dl
Ȳr5Y,rR,l̄r

,
d

dl
Ȳu5Y,uQ ,l̄u

. ~3.62!

We note thatT,i(E0 ,l̄ r0 ,l̄u0 ;l) and F ,i(E0 ,l̄ r0 ,l̄u0 ;l)
satisfy

d

dl
T,i5X,i1X,rR,i1X,uQ ,i ,

d

dl
F ,i5X,i1X,rR,i1X,uQ ,i . ~3.63!

Thus, from Eqs.~3.60! and ~3.62!, we have

X̄i5T,i~E0 ,l̄ r0 ,l̄u0!1c(x), Ȳi5F ,i~E0 ,l̄ r0 ,l̄u0!1c(y),

~3.64!

wherec(x) andc(y) are integral constants. Because the orb
evolution does not depend onc(x) andc(y) in the end, we set
them zero in this subsection. In the same manner, we ha

X̄r5T,l̄r
, X̄u5T,l̄u

, Ȳr5F ,l̄r
, Ȳu5F ,l̄u

.
~3.65!
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We definet andf motion of a geodesic as

T~E,l̄ r ,l̄u ;l!5lṪ~E!1(
m,n

T(m,n)~E!

3ei2p(m[(l2l̄r )/lr (E)] 1n[(l2l̄u)/lu(E)]) ,

~3.66!

F~E,l̄ r ,l̄u ;l!5lḞ~E!1(
m,n

F (m,n)~E!

3ei2p(m[(l2l̄r )/lr (E)] 1n[(l2l̄u)/lu(E)]) ,

~3.67!

where the linearly growing terms appear since we integ
X(E,R,Q) and Y(E,R,Q) which can be expanded by dis
crete Fourier seriesei2pm(l2l̄r )/lr1 i2pn(l2l̄u)/lu. Using Eqs.
~3.64! and ~3.65!, we have

X̄i5(
m,n

~lẊi
(m,n)1Xi

(m,n)!ei2p(m[(l2l̄r0)/lr ] 1n[(l2l̄u0)/lu]) ,

Ȳi5(
m,n

~lẎi
(m,n)1Yi

(m,n)!ei2p(m[(l2l̄r0)/lr ] 1n[(l2l̄u0)/lu]) ,

~3.68!

X̄r5(
m,n

Xr
(m,n)ei2p(m[(l2l̄r0)/lr ] 1n[(l2l̄u0)/lu]) ,

Ȳr5(
m,n

Yr
(m,n)ei2p(m[(l2l̄r0)/lr ] 1n[(l2l̄u0)/lu]) ,

~3.69!

X̄u5(
m,n

Xu
(m,n)ei2p(m[(l2l̄r0)/lr ] 1n[(l2l̄u0)/lu]) ,

Ȳu5(
m,n

Yu
(m,n)ei2p(m[(l2l̄r0)/lr ] 1n[(l2l̄u0)/lu]) ,

~3.70!

where the coefficients become

Ẋi
(m,n)5dm5n50Ṫ,i2 i2pS m

l r ,i

l r
2

1n
lu,i

lu
2 D T(m,n),

Xi
(m,n)5T,i

(m,n)1 i2pS m
l̄ rl r ,i

l r
2

1n
l̄ulu,i

lu
2 D T(m,n),

~3.71!

Ẏi
(m,n)5dm5n50Ḟ ,i2 i2pS m

l r ,i

l r
2

1n
lu,i

lu
2 D F (m,n),

Yi
(m,n)5F ,i

(m,n)1 i2pS m
l̄ rl r ,i

l r
2

1n
l̄ulu,i

lu
2 D F (m,n),

~3.72!
08402
te

Xr
(m,n)52m

i2p

l r
T(m,n), Xu

(m,n)52n
i2p

lu
T(m,n),

Yr
(m,n)52m

i2p

l r
F (m,n), Yu

(m,n)52n
i2p

lu
F (m,n).

~3.73!

We consider to evaluate the integration of Eqs.~3.59! and
~3.61!. We first note

d

dl
dl̄ r5

R,i

dr0

dl

d

dl
dE i ,

d

dl
dl̄u5

Q ,i

du0

dl

d

dl
dE i ,

~3.74!

and the expansion of the RHSs is given in Eqs.~3.42!, ~3.43!
and~3.47!. Using these results, the integrands of Eqs.~3.59!
and ~3.61! become

(
m,n

~lẊe
(m,n)1Xe

(m,n)!ei2p(m[(l2l̄r0)/lr ] 1n[(l2l̄u0)/lu]) ,

(
m,n

~lẎe
(m,n)1Ye

(m,n)!ei2p(m[(l2l̄r0)/lr ] 1n[(l2l̄u0)/lu]) ,

~3.75!

where the coefficients of the linearly growing and oscillati
terms become

Ẋe
(m,n)5Ṫ,i ĖR2ret. (m,n) i , Ẏe

(m,n)5Ḟ ,i ĖR2ret. (m,n) i .
~3.76!

In summary, we havet andf motion as

dt5T,idE i1T,l̄r
dl̄ r1T,l̄u

dl̄u1d t̄ , ~3.77!

d t̄ 5
l2

2
ẗ01(

m,n
~l ṫ0

(m,n)1t0
(m,n)!

3ei2p(m[(l2l̄r0)/lr ] 1n[(l2l̄u0)/lu]) , ~3.78!

df5F ,idE i1F ,l̄r
dl̄ r1F ,l̄u

dl̄u1df̄, ~3.79!

df̄5
l2

2
f̈01(

m,n
~lḟ0

(m,n)1f0
(m,n)!

3ei2p(m[(l2l̄r0)/lr ] 1n[(l2l̄u0)/lu]) , ~3.80!

where the part of coefficients ofd t̄ anddf̄ are

ẗ052Ṫ,i ĖR2ret. (0,0)i , f̈052Ḟ ,i ĖR2ret. (0,0)i ,
~3.81!

ṫ0
(m,n)5

i

2pS m

l r
1

n

lu
D Ṫ,i ĖR2ret. (m,n) i ,
7-12
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ḟ0
(m,n)5

i

2pS m

l r
1

n

lu
D Ḟ ,i ĖR2ret. (m,n) i , ~m,n!5” ~0,0!.

~3.82!

As in the case ofr andu motion, the linear perturbation
holds forl;O(ma), 0>a.21/2,5 anddE, dl̄ r , dl̄u , d t̄

anddf̄ contribute to the orbital evolution equally.

C. Adiabatic evolution

In Sec. III A and Sec. III B, we find the evolution of th
orbit by the self-force in a perturbative manner. For the d
nite discussion, we assume that the self-force begins to
on the orbit atl50, and find that the perturbative evolutio
is correct atl5O(ma), 0>a.21/2. Using this result, we
first consider to rewrite the orbital equation in a numerica
convenient form.

When the orbit is a geodesic,r and u motions are peri-
odic. Then it is convenient to describe a geodesic with ph
functionsx r andxu as

R~E,x r !5(
n

R(n)~E!ei2pnxr,
d

dl
x r5

1

l r~E!
, ~3.83!

Q~E,xu!5(
n

Q (n)~E!ei2pnxu,
d

dl
xu5

1

lu~E!
. ~3.84!

We consider the similar type of description when we co
sider the self-force. One can rewrite Eqs.~3.48! and~3.50! as

dr 5R̄idE i1R̄xdx r , R̄i5(
n

R,i
(n)ei2pnxr0,

R̄x5(
n

i2pnR(n)ei2pnxr0, ~3.85!

du5Q̄ idE i1Q̄xdxu , Q̄ i5(
n

Q ,i
(n)ei2pnxu0,

Q̄x5(
n

i2pnQ (n)ei2pnxu0, ~3.86!

wherex r0 andxu0 describe the phase functions of the initi
geodesic, anddx r anddxu are the deviation by the self-forc
satisfying

dx r52
l2l̄ r0

l r

l r ,i

l r
dE i2

dl̄ r0

l r
,

dxu52
l2l̄u0

lu

lu,i

lu
dE i2

dl̄u0

lu
. ~3.87!

5This time scale is called the dephasing time@12#.
08402
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We find that, with the effect of the self-force, the phase fun
tions satisfy

d

dl
~x r1dx r0!5

1

l r1l r ,idE i
1Fxr

~E0 ,x r0 ,xu0!,

~3.88!

Fxr
52

1

l r
(
m,n

Re
(m,n)ei2p(mxr01nxu0),

d

dl
~xu1dxu0!5

1

lu1lu,idE i
1Fxu

~E0 ,x r0 ,xu0!,

~3.89!

Fxu
52

1

l r
(
m,n

Qe
(m,n)ei2p(mxr01nxu0).

One can see that Eq.~3.87! becomes that of a geodes
when we switch off the self-force, thus, by the renormaliz
perturbation method, we formally obtain the orbital evol
tion equation with the self-force as

d

dl
E5FE~E,x r ,xu!,

d

dl
x r5

1

l r~E!
1Fxr

~E,x r ,xu!,

d

dl
xu5

1

lu~E!
1Fxu

~E,x r ,xu!, ~3.90!

r 5(
n

R(n)~E!ei2pnxr, u5(
n

Q (n)~E!ei2pnxu,

d

dl
t5X~E,r ,u!,

d

dl
f5Y~E,r ,u!, ~3.91!

whereFE is given by Eqs.~2.48!, ~2.49! and ~2.50!.
The evaluation of Eqs.~3.90! and~3.91! may be possible

by a future investigation of a regularization calculation@11#.
But, the calculation may be complex and costly unless
have a new breakthrough in the regularization calculat
strategy. We, therefore, introduce an approximate calcula
using only Eq.~2.61!, for which we already have a well
established calculation technique and a number of results@3#.

From the perturbative result in Sec. III A and Sec. III B
the orbital evolution is dominantly described as

dE5l ĖR2ret.(0,0) ~E0!, dl̄ r52
l2

2

l r ,i

l r
ĖR2ret. (0,0)i~E0!,

dl̄u52
l2

2

lu,i

lu
ĖR2ret. (0,0)i~E0!, ~3.92!

d t̄ 52
l2

2
Ṫ,i ĖR2ret. (0,0)i~E0!,
7-13
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df̄52
l2

2
Ḟ ,i ĖR2ret. (0,0)i~E0!. ~3.93!

We call the calculation using these dominant parts by
approximate adiabatic calculation, and the evolution eq
tion becomes

d

dl
E adi.5 ĖR2ret.~E adi.!,

d

dl
x r

adi.5
1

l r~E adi.!
,

d

dl
xu

adi.5
1

lu~E adi.!
, ~3.94!

r adi.5(
n

R(n)~E adi.!ei2pnxr
adi.

,

uadi.5(
n

Q (n)~E adi.!ei2pnxu
adi.

, ~3.95!

d

dl
tadi.5X~E adi.,r adi.,uadi.!,

d

dl
fadi.5Y~E adi.,r adi.,uadi.!. ~3.96!

For a practical use of this approximate adiabatic calcu
tion, we make a rough estimate of how correctly the or
can be predicted by this method. We suppose to divide
whole domain ofl into an infinite number of domainslk
,l,lk11 whose interval isO(ma), a→21/2. Then we
may apply our perturbative analysis of the orbital evoluti
at each domain. We define the orbital ‘‘constants’’ atl5lk

as$E (k), l̄ r
(k) , l̄u

(k) , t̄ (k), f̄ (k)%. Again, for a definite discus
sion, we assume that the self-force begins to act atl5l0.

By the result of Sec. III A and Sec. III B, a dominan
contribution makes the evolution of these ‘‘constants’’ as

E (k11)2E (k);O~m11a!, l̄ r
(k11)2l̄ r

(k);O~m112a!,

l̄u
(k11)2l̄u

(k);O~m112a!,

t̄ (k11)2 t̄ (k);O~m112a!, f̄ (k11)2f̄ (k);O~m112a!.

~3.97!

After passing byN;O(mb) finite domains, we have

E (N);O~m11a1b!, l̄ r
(N);O~m112a1b!,

l̄u
(N);O~m112a1b!,

t̄ (N);O~m112a1b!, f̄ (N);O~m112a1b!.
~3.98!

On the other hand, the part we ignore for the approxim
adiabatic calculation contaminates the evolution as

d~E (k11)2E (k)!;O~m!, d~l̄ r
(k11)2l̄ r

(k)!;O~m11a!,
08402
n
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-
it
e

te

d~l̄u
(k11)2l̄u

(k)!;O~m11a!,

d~ t̄ (k11)2 t̄ (k)!;O~m11a!,

d~f̄ (k11)2f̄ (k)!;O~m11a!. ~3.99!

We assume that the ignored part affects the evolution lik
Gaussian noise and estimate the error as

dE (N);O~m11b/2!, dl̄ r
(N);O~m11a1b/2!,

dl̄u
(N);O~m11a1b/2!,

d t̄ (N);O~m11a1b/2!, df̄ (N);O~m11a1b/2!.

~3.100!

Using this estimation, we discuss the predictability of t
approximate adiabatic calculate. The error of the rotation
time f/t is estimated as

dS f

t D;O~m2a2b/2!. ~3.101!

For an accurate prediction, we required(f/t),1 and we
haveb,22a→1, which is always satisfied sinceN is just
an integer.

The error of the rotation phasef is estimated as

df;O~m11a1b/2!. ~3.102!

For a correct prediction of the phase, we haveb.22a22
→21. This shows that we have a prediction of the rotati
phase only atl<O(m23/2).

D. Gauge issue

The gravitational self-force problem has an exceptio
difficulty because of the so-called gauge problem@13#. The
regularization formulation was originally formulated in th
harmonic gauge condition@4,7#, and we have the divergentS
part only in the harmonic gauge. It was pointed out th
when we subtract theSpart from the full metric perturbation
in the radiation gauge@10#, we have a divergent residue@13#
because of the divergent gauge transformation at the par
location. For this reason, the calculation of the full met
perturbation in the harmonic gauge condition, or the cal
lation of theSpart of the metric perturbation in the radiatio
gauge become important issues in calculating the grav
tional self-force in a Kerr background.

On the other hand, in the approximate adiabatic calcu
tion, all we need is to evaluate Eq.~2.61!, which is proven to
agree with the radiation reaction calculation@8# in part. A
number of previous works@3# prove there is no divergence i
the approximate adiabatic calculation. The investigation
Sec. II D shows that the self-force derived by the radiat
Green function corresponds to the two-point averaged s
force derived by theR part of the retarded Green function
We consider that, by taking a two point average of the s
force, the divergentS part vanishes as in Eq.~2.38!. We
consider that, in the approximate adiabatic calculation,
7-14
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same cancellation mechanism happens including diverge
by the gauge transformation. But there still is an ambigu
of a finite gauge choice. Here we prove the result by
approximate adiabatic calculation is actually gauge-invar
by showing the gauge invariance of Eq.~2.61!.

Using a Killing vectorha and a Killing-Yano tensorhab
of a Kerr spacetime, conserved quantities along a geod
are described as

E5hava, Q5habvavb, ~3.103!

whereva(t)5dza/dt is 4-velocity andt is proper time of
the geodesic. Equation~2.61! can be rewritten as

lim
T→`

1

2TE2T

T

dt
d

dt
E5 lim

T→`

1

2TE2T

T

dtha~z~t!!Fa~t!,

~3.104!

lim
T→`

1

2TE2T

T

dt
d

dt
Q5 lim

T→`

1

2TE2T

T

dt2hab~z~t!!

3va~t!Fb~t!, ~3.105!

whereFb is the self-force vector.
By a gauge transformationxa→xa1ja, the self-force is

transformed as

Fa~t!→Fa~t!1djF
a~t!, ~3.106!

djF
a~t!52~vb~t!vg~t!ja

;bg@z~t!#

1Ra
bgd@z~t!#vb~t!jg@z~t!#vd~t!!.

~3.107!

The increment of Eqs.~3.104! and~3.105! by this extra term
djF

a(t) becomes

lim
T→`

1

2TE2T

T

dtdF d

dt
E~t!G

5 lim
T→`

1

2T
@2havbja;b1vbha

;bja#2T
T , ~3.108!

lim
T→`

1

2TE2T

T

dtdF d

dt
Q~t!G

5 lim
T→`

1

2T
@22vbhabvgja;g12vbvghab

;gja#2T
T ,

~3.109!

where we use Killing equationsha;bg5hdRd
gba and

hab;gd5hebRe
dga1haeR

e
dgb . Since the gauge dependen

is totally integrated out, the gauge dependence of the
proximate adiabatic calculation vanishes by takingT→`.

We comment that the gauge dependence of Eqs.~3.90!
and ~3.91! is highly non-trivial and we leave it as a futur
problem.
08402
ce
y
e
t

sic
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IV. SUMMARY

In this paper, we have discussed a method to calculat
orbital evolution by a scalar-electromagnetic-gravitation
self-force. We assume that the self-force is weak and that
orbit can be approximated by a geodesic at each instan
time, with which one can derive the self-force. We note th
the geodesic equation is a set of second-order differen
equations of four components, and we have 7 integral c
stants,E, L, K, l̄ r , l̄f , t̄ and f̄. Instead of calculating the
orbit itself, we derive the equations of these ‘‘constants’’
the self-force under this assumption.

We first consider the evolution ofE, L and K since the
evolution equations of these ‘‘constants’’ are directly deriv
by the self-force vector. We exploit the symmetry of a Ke
spacetime together with a family of geodesics, which indu
the self-force. By applying the symmetry transformation
the self-force vector, we find that the time-averaged evo
tion of E, L andK can be derived by using a radiative Gre
function, which has a number of technical advantage in pr
tice. However, we also find that the orbit does not evo
adiabatically in an exact sense.

In order to understand the orbital evolution by the se
force, we next consider the orbital equation in a perturbat
manner. We integrate the orbital equation by a time sc
sufficiently long, but less than the dephasing time when
linear perturbation of the orbit becomes invalid. Since t
orbit does not evolve in an adiabatic manner, the orbital c
stants of a geodesic$E,l̄ r ,l̄u , t̄ ,f̄% are oscillating by the
self-force. However, we could find out secularly growin
parts which will dominate the orbital evolution. By takin
these growing parts only, we define an approximate orb
equation, which we call an approximate adiabatic calcu
tion. We consider that the approximate adiabatic calculat
is implementable enough by a well-established method s
it only uses the radiative Green function.

We also discuss how approximate an orbital evolution c
be obtained by this calculation method. We find that, dur
the timeO(m23/2), it gives an accurate rotation phase. F
example, when 10 solar-mass black hole is inspiralling i
107 solar-mass supermassive black hole, this correspond
around 109-rotation period. Though the accuracy in predic
ing a wave form is not clear in our estimate, if only th
accurate prediction of the rotation phase is important for
future LISA observation, the approximation proposed h
may give sufficient information in this case.

Finally we prove that the approximate adiabatic calcu
tion gives a gauge invariant prediction; thus, the result
consistent with that of another possible method within
approximation scheme.
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APPENDIX: CIRCULAR OR EQUATORIAL ORBIT

When the orbit is circular, or equatorial, we ha
dr0 /dl5V(E0 ,r 0)5V(E0 ,r 0),r50, or du0 /dl5U(E0 ,u0)
t-

n,

e

el

ve

08402
Y5U(E0 ,u0),u50. Then Eq.~3.8! becomes trivial and we
cannot evaluate the perturbed orbital equation. Here we c
sider the orbital evolution in these special cases by taking
circular, or equatorial limit of a general orbit. Before th
discussion, we note that, by repeating the symmetry ar
ment in Sec. II, the self-force acting onE, L andK becomes
F d

dl
EGR2ret./R2adv./rad.

55
(

n
ĖR2ret./R2adv./rad.(0,n)~E,L,K !ei2pn[(l2l̄u)/lu] , circular orbit,

(
m

ĖR2ret./R2adv./rad.(m,0)~E,L,K !ei2pm[(l2l̄r )/lr ] , equatorial orbit,

ĖR2ret./R2adv./rad.(0,0)~E,L,K !, circular and equatorial orbit.

~A1!
to-
the
e

e

We considerr-motion when we consider a self-force ac
ing on a circular orbit. The perturbation equation~3.8! be-
comes trivial since we haveV,i5V,r50 along the orbit by
using Eq.~3.12!. Instead of calculating the orbital equatio
we consider taking the circular limit of Eq.~3.48!. The first
term of Eq.~3.48! is given in Eq.~3.27! and behaves in a
regular manner when we take a circular limit. On the oth
hand, the second term of Eq.~3.48! is given in Eq.~3.44!. By
the regularization calculation starting from Eq.~3.32!, the
integration is still finite in the circular limit, anddr0 /dl
vanishes. Thus, we have

dr 5R,idE i , ~A2!

which means the circular orbit stays circular under the s
force and the orbit is solely determined byE, L andK.6 As a
result, the orbital equation becomes

d

dl
E5FE~E,xu!,

d

dl
xu5

1

lu~E!
1Fxu

~E,x r ,xu!,

~A3!

r 5R(0)~E!, u5(
n

Q (n)~E!ei2pnxu,

d

dl
t5X~E,r ,u!,

d

dl
f5Y~E,r ,u!, ~A4!

and, under the approximate adiabatic calculation, we ha

d

dl
E adi.5 ĖR2ret.~E adi.!,

d

dl
xu

adi.5
1

lu~E adi.!
,

~A5!

r adi.5R(0)~E adi.!,

6This fact was proved in Ref.@14#.
r

f-

uadi.5(
n

Q (n)~E adi.!ei2pnxu
adi.

, ~A6!

d

dl
tadi.5X~E adi.,r adi.,uadi.!,

d

dl
fadi.5Y~E adi.,r adi.,uadi.!. ~A7!

Similarly, u motion can be derived such that the equa
rial motion stays equatorial. One can also prove by using
symmetryu→2u. Using this symmetry property, when th
orbit is equatorial, the self-force satisfiesFu50, and we
haveu5p/2, du/dl50. The orbital equation becomes

d

dl
E5FE~E,x r !,

d

dl
x r5

1

lu~E!
1Fxu

~E,xu!, ~A8!

r 5(
n

R(n)~E!ei2pnxr, u5
p

2
,

d

dl
t5X~E,r ,p/2!,

d

dl
f5Y~E,r ,p/2!, ~A9!

and, under the approximate adiabatic calculation, we hav

d

dl
E adi.5 ĖR2ret.~E adi.!,

d

dl
x r

adi.5
1

l r~E adi.!
,

~A10!

r adi.5(
n

R(n)~E adi.!ei2pnxr
adi.

, uadi.5p/2,

~A11!
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d

dl
tadi.5X~E adi.,r adi.,p/2!,

d

dl
fadi.5Y~E adi.,r adi.,p/2!. ~A12!

When the orbit is circular and equatorial, the orbital equ
tion becomes

d

dl
E5FE~E!, ~A13!
SA
:/

h

ys
.

s

08402
-

r 5R(0)~E!, u5
p

2
,

d

dl
t5X~E,r ,p/2!,

d

dl
f

5Y~E,r ,p/2!, ~A14!

and the orbit evolves adiabatically in an exact sense.
r-
A/

sed
.

en-
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