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Perturbative approach to an orbital evolution around a supermassive black hole
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A charge-free, point particle of infinitesimal mass orbiting a Kerr black hole is known to move along a
geodesic. When the particle has a finite mass or charge, it emits radiation which carries away orbital energy and
angular momentum, and the orbit deviates from a geodesic. In this paper we assume that the deviation is small
and show that the half-advanced minus half-retarded field surprisingly provides the correct radiation reaction
force, in a time-averaged sense, and determines the orbit of the particle.
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I. INTRODUCTION calculate the metric perturbation at infinifg]. Therefore,
the remaining problem is how to calculate the oifr) of
Binary systems of solar-mass compact objects and supethe source.
massive black holes at galactic nuclei are expected to be In the massless limit, the particle moves along a geodesic.
important sources of gravitational waves. In order to detecwhen the particle has a mass, it becomes a source of gravi-
these gravitational waves, a project to construct a spaceational radiation, which carries away orbital energy and an-
based detector, the Laser Interferometer Space Antenngular momentum. Thus the orbit deviates from a geodesic.
(LISA), is underway[ 1]. The detection of such gravitational The deviation from a geodesic can be derived fully by solv-
waves will reveal fundamental information about gravita-ing an equation of motion with the so-called self-force. A
tional theory, and will provide insight into conditions at the general calculation scheme for the gravitational self-force
centers of distant galaxies. It may be possible to read out th@as proposed by Ref4]. A similar situation happens to a
detailed geometrical structure of a supermassive black holgarticle with small scalar-electromagnetic charge, and the
encoded in the incoming gravitational waves, with which wescalar and electromagnetic self-forces were proposed in Ref.
can test gravitational theory in the strong gravitational re{5]. In this paper, starting from a discussion of a symmetry
gion, and our understanding of black holes. Not only forproperty of the self-force, we propose a method to calculate
extracting such information from detected gravitationalthe orbital evolution under scalar-electromagnetic-
waves, but also for a more efficient detector design of theyravitational radiation reaction. We assume that the effect of
presently on-going project, it is an urgent problem to calcu+the radiation reaction is weak, and consider the leading cor-
late as precisely as possible the gravitational wave signakction to the orbital evolution.
expected from such a binary system. It is commonly assumed that the orbit evolves in an adia-
Because of the extreme mass ratio, such a binary systepatic manner, namely, the orbit evolves slowly in its phase
can be treated by a perturbation formalism. We treat the suspace. A true geodesic around a Kerr black hole is character-
permassive black hole as a background, and treat the solaged by the energyE, the angular momenturh and the
mass compact object as a source of metric perturbation. (tarter constari.? Numerous investigations have been made
was shownh that, when the spatial volume of the solar-massto calculate the radiation reaction effect on enekgyand
compact object is smaller than the background curvatur@ngular momentunh [3] by analyzing the asymptotic gravi-
scale, one can approximately use a point source tational waves at infinity and the horizon. However, the cal-
culation of the radiation reaction effect on the Carter con-
o 5 (x—z(7)) dz* dz’ stantK is so far an unsolved problem.
T _MJ dTT dr dr’ (1.3) A geodesic equation is a set of second order differential
equations of 4 function$z®}. With a proper timer as the

wherez#(7) is the orbit of the object, and is proper time. ~Parameter characterizing the orbit, we have 7 integral con-
By the uniqueness theorem of black holes, we can assunféants,z*(7=0) anddz*/d7(7=0), three of which are re-
that the background black hole is described by the Kerr gelated toE, L andK. In Sec. II, we introduce a specific sym-

ometry. In this case, given an orbit, there is a formalism tometry property of families of geodesics in the Kerr geometry.
Using this symmetry, we discuss an important property of the

self-force induced by a geodesic, and prove that the radiation

*Electronic address: mino@wugrav.wustl.edu reaction to the energfz, the.angular momenturq and the

I the framework of metric perturbations, it is not a simple prob- Cartgr constar can be derllved by use of a radiative Green
lem to define a point particle. When we take the zero-volume limit function (a_half-retarded-minus-half-advanced Green func-
the perturbations become divergent around the particle and the peiion). However, this is not the end of the story. We find that
turbation scheme becomes invalid. In Ref], by using a matched the orbit does not evolve in a strictly adiabatic manner in
asymptotic technique consistent with the perturbation formalism,
we showed that the use of a point particle is still valid to induce a
correct metric perturbation. 2We adopt the definition of the Carter constant in R6}.
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general as the enerdy, the angular momenturh and the 32=(r?+a?)p?+2a°Mr sirfé. (2.6
Carter constari vary on a short time scale. In addition, it is
not trivial that the rest of the constants do not evolve by theHere we use\ as an orbital parameter related with the proper
self-force. time 7 by 7= [}d\p2.

In order to complete the calculation of the orbit, we per-  we consider the case that the radial motion is bounded in
turbatively integrate the orbital equation with the self-forcer, <r<r,. One can integrate E2.1), and we have a radial

in Sec. lll. We figure out the part which secularly evolves byperiodic solution with respect th with the period
the self-force, and define the “adiabatic evolution” of the

orbit in the way we can approximately calculate the orbital r 1
evolution. By showing the validity of the adiabatic approxi- )\,zzf

mation, we propose our new formalism as a conventional '
tool to predict the gravitational waves detected by the future . - . . .
LISA project. We write the periodic solution of the radial equation as

In this paper, we adopt Boyer-Lindquist coordinates — —

{t, r, 6, ¢}, andM, a are the mass and the spin coefficient r(M)=R(E,L,KiN=A) =R(E,LK;A =X +)),
of the black hole respectively.

N ar V(rZ+ad)E-aL]?—A(r2+K) @9

(2.9

where we set R(E,L,K;0)=r; [or, equivalently,
Il. SELF-FORCE AND SYMMETRY R(E,L,K;\,/2)=r5,]. \, is the integral constant of the first
The purpose of this section is to show a simple method tdlifferential equation2.1), and we have a periodicity in,,
calculate the self-force. The core idea of this new proposal idamely,\,—\,+n\, does not change the orbit, whemés

to use a symmetry of the background spacetime togethein arbitrary integer. Because E@.1) is invariant undemn

with the whole family of geodesics. ——N\, R(E,L,K;\) becomes a symmetric function with re-
In Sec. Il A, we first discuss how we can define the family spect tox as
of geodesics. Since we are interested in a particle motion as

a target of gravitational wave observation, we only consider R(E,L,K;N)=R(E,L,K;—N\). (2.9
geodesics rotating around a Kerr black hole which neither
fall into the horizon nor go to infinity. When the orbit is radially bounded, th#e motion oscil-

Section 1l B discusses some symmetry properties of thdéates symmetrically around= /2 in a domain 6<6,<#6
Kerr spacetime. We apply these symmetry transformations te< =— 6, << [6]. Similarly to the radial motion, we have
the family of geodesics and to the self-force induced on @eriodic solution with respect th by the period
geodesic in Sec. Il C. Using the result of these transforma-
tion properties, we discuss a general expression of the evo-)\ . w/zde 1
lution equations of the energy, angular momentum, and A= : :
Carter “gonstant” in Sec. Il D,g)émd fi%d that a part of the % = (aEsing—L cosed))’~a’cos'd+K

evolution equation can be evaluated by using the radiative (219
Green function, which has a great computational advantag&ye define the solution of Eq2.2) as
In Sec. Il E, we give some comments about practical is-
sues seriously discussed in the self-force problem. 0()\)=®(E,L,K;7\—f9)=(E,L,K;)\—EH\@),
(2.11

A. Geodesics around a Kerr black hole
where we set O(E,L,K;0)=6; [or, equivalently,

A general geodesic satisfies the equations
g g . O(E,L,K;Ny/2)=7—061]. Ny is the integral constant in

dr)? solving Eq.(2.2), and we have a periodicity iN, as in the
—r(r21 A2 2 2 2.4, 0
(ﬁ) =[(r"+a’)E-al] = A(r*+K), (2.0 adial equation2.8). The symmetry property of Eq2.11)
becomes
de)\? _ » . :
G| = (aEsino—L cose)*~a cogo+K, O(E,L,K;N)=0O(E,L,K;=N\). (212
(2.2 We write the solutions of Eq$2.3) and(2.4) as
dt 1 _ — — _
KZZ(EZE_ZaMrL), (23) t()\) T(E,L,K,)\r,)\g,)\)+t, (213
S rdA
T(E,L,K,xr,xg;x)=f —(32E—2aMrL), (2.19
d¢ 1 . o A
h = 3L2aMrE+(p?—2Mr)L coseéd], (2.4
HN)=D(E,L, K\ Ngi\)+ b,
p?=r2+a’cosl, A=r2—2Mr+a? (2.5 (2.15
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®(E,L, K\, NgiN)

AN
=f [2aMTrE+ (p?—2Mr)L coseéd], (2.16

0o A

wheret_andgare the integral constants. We have addition

formulas of T(E,L,K,\, ,A4;\) and®(E,L,K,\, ,Ag;\) as
T(E,L,K, A N giN)=T(E,L KN — A, N g= AN —Ay)
+T(ELK N ANy, (217
®(E, LKA NgiN) =B(E,LK A =N N g= MG A =Ny
(2.18

By using Egs.(2.9 and(2.12), the symmetry properties of
Egs.(2.13 and(2.195 become

FD(E,L KN A g hy).

T(E,LK N A giN)=—T(E,L,K,— N, — Ny —\),

®(E,L, KN Ay N)=—DP(E,L,K,—X\;,—Xp;—\).
(2.19

B. t and ¢ translation and geodesic preserving symmetry

As is well known, a Kerr spacetime hasand ¢ transla-
tion symmetry. Applying the coordinate transformation as

t=t'+t5, r=r', 6=0", ¢p=¢'+¢s, (2.20

we have a Kerr metric of the same mass and spin parameter

with the new coordinateg’, r', 0’, ¢'}.

PHYSICAL REVIEW D 67, 084027 (2003

One cannot set botk/ andf‘; zero at the same time since
we have only one constant, to fix. However, because of the

periodicity of the radial functior(2.8), one can replaca,
andfa by numbers congruent tgr andfg modulo\, and
X\, respectively, i.ex, +n,\, and\ ;+n,\ , wheren, andn,
are arbitrary integers. Using this freedom, we sgt:fr
—n,\,, then we obtain\/=0 and A,=\,—\,+n\,
+nyh,. When the ratio ol\, and\ 4 is irrational, there is a

choice ofn, andn, with which |\ | become infinitesimally
small, and a geodesic is characterized onl\EbY andK. In
the following, we assume that the ratio Xf and\ 4 is irra-
tional though we do not set, and A, zero for the latter
convenience unless stated.

Using this transformation property, one can prove a useful
formula of a scalar function geometrically defined along a
geodesic. As the geodesic is characterized by 7 constants,

{E,L,K,\; \g,t,4}, we write the scalar function as

f(E,L,K,\;,Ng,t,¢;N). We assume that the function is in-
variant undert and ¢ translation, then the function is inde-

pend ont_andg. Since the function is periodic with respect
to \, and \,, one can expand the function with discrete
Fourier seriesg™2M™\/A=i2nmhs/Ng By applying the A
translation with\, =X\, we finally have

f(E,L,K\r g, t,iN)

A=A A—N,
=> f(m'")(E,L,K)exp{ibr(m “+n 0”
mn

(2.25

We consider to apply this transformation to a geodesic \yie next consider the symmetry as

with a \ translation,\’=\—\,, where\, is an arbitrary

constant. Using Eq$2.17) and(2.18), we have another geo-

desic in a new coordinate system as
r'(N)=R(E,L,K;\'—\/),

r

0'(\)=0O(E,L,K;\" —\}), (2.21)
t'(N)=T(E,L,K, A\ Nj;N)+t7,
¢'(N)=®(E,LKN NjiN )+, (2.22

where the orbital constant&\/ ,\\,,t’,¢'}, become

[ W WD W W (2.23
UV=t+T(E,L KN, Npih)—ts,
@' =+ D(E,LK X, Xpihy) — bs. 229

One sees that the orbital constaris|. andK, are invariant
under this transformation. We can $ét ¢’ and eithem; or
N, arbitrarily by an appropriate choice &f, ¢ and\,.

t=—t', r=r', 6=0", ¢=—¢'. (2.2
By this coordinate transformation, we recover the same line
element with the coordinatds$’, r’, 6’, ¢'}.

We consider the transformation of a geodesic by this sym-
metry. Since we change the time direction, we transform the
orbital parameter a&’=—\. Using Eqgs.(2.9), (2.12 and
(2.19, a geodesic is transformed to a new geodesic as

r'(N)=R(E,L,K;\"—\)),

0'(N)=0(E,L,K;\ —\}), (2.27)
t'(N)=T(E,L,K,\] Nj;N )+,
' (N)=®(E,L,K\] NN )+, (2.28
where the orbital constant&\/ ,\},,t’,$'}, become
M==Nr, Ap=—Ny, (229
t'=—t, ¢'=—¢ (2.30
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Since E, L and K are invariant, by using thé- and so-calledR part of a retarded Green function. TRepart of a
¢-translation symmetry2.20 in an appropriate manner, the retarded and advanced Green functipf ¢/R-ad(x 7) is
new geodesic becomes equal to the original one. For thischematically defined as

reason, we call this geodesic preserving symméePS

transformation. GRoret/R-adv.(y 7y =gret/adv.(y 7y GS(x,z), (2.37

C. Green function and self-force whereG(x,z) is the so-calleds part[7]. It is important to

. . ... note that theR part of the half-retarded-minus-half-advance
We denote a various scalar—electromagnetlc-grawtatlona(lareen function becomes a radiative Green function

Green function by G (x,2) as
G(x,2), scalar, .
G(x,2)=1 Gau(x,2)dx*dz", electromagnetism, E(QR*“*(X,Z)—QR*ad"-(x,z))
Gpun(X,2)dx*dxPdz#dz”, linear gravity
(2.3) 1 et ads ad
=56 (x2) =G (x,2) =G (x,2). (2.39

and considert and ¢ translation and GPS transformation

property of it. , _ L Similar to the symmetric Green function, tf®part is
Using a symmetric scalar-electromagnetic-gravitationalyefined by geometric bi-tensors and is invariant bott &yd
Green functiong*'™(x,2), a retarded and advanced scalar- , yranslation and GPS transformation. Thence Rhgart of
electromagnetic-gravitational Green functiéi”**®(x,2)  he retarded and advanced Green function are still invariant
can be written as undert and ¢ translation, and, by GPS transformation, fhe
G"et(x,2) = 26[3 (), 2169™(x,2), (23p Partbecomes

R—ret./y’ 57\ — R—adv.
G2%-(x,2)=26[2,3(x)1G™(x,2), (2.33 G5 2) =0T (x02),

where 3 (x) is an arbitrary space-like hypersurface contain- GRTa(x',2)) =g~ e (x,2). (2.39
ing x, and 03 (x),z]=1-60[z,2(x)] is equal to 1 wherz
lies in the past oE (x) and vanishes otherwise. The symmet-
ric Green function is invariant undérand ¢ translation and
GPS transformation because, in its Hadamard construction
[4,5], it is described only by geometrically defined bi-tensors

The scalar-electromagnetic-gravitational self-force is
schematically described as

FRoTet/R-adv. oy |im | [$R-TeLR-ad] ()  (2.40)

invariant undeit and ¢ translation and GPS transformation. X
Undert and ¢ translation(2.20), the factorf[ % (x),z] is

also invariant and we have ¢R—ret./R—adv.(X):f dTGR_ret'/R_ad”'(x,z( 7)S(z(7)),
gret'(X,,Z,):grEt'(X,Z), gadv'(X,,Z,):gadv'(X,Z). (241)

(2.34 where @R-ret/R-adv. s the R part of a scalar-
On the other hand, GPS transformati¢h26 changes the electromagnetic-gravitational potential using Reart of a
direction of the time and the fact@f > (x),z] transforms as retarded or advanced Green function, and we note
R-ret/R-adv. 15 the self-force to emphasize that it is derived
0[2(x"),2’]1=0[z,2(x)], 62, 2(x")]=0[2(x),z]. using theR part of the retarded or advanced Green function.
(2.35  S(z(7)) is the source term defined along the orbit. We as-
sume that the tensor differential operakgy ](x) is defined

Thence, by GPS transformatid@.26), a retarded and ad- g satisfy the normalization condition &@s,[](z(7))v*(7)
vanced Green function are transformed to be an advanced

and retarded Green function respectively as We assume that the self-force is weak and the orbit can be
fets ot o1 ady. ad.ror 1 ~ret. approximated to be a geodesic at each instant of time. Using
g (x,2")=G""(x,2), G¥*(X',2")=G""(x,2). this approximation, we consider to calculate the self-force

(2.39 induced by a geodesic. We write the self-force as a vector

We next consider the scalar-electromagnetic-gravitationaunction of the orbital constants, L, K, A, Ay, t, ¢ and
self-force acting on the particle. Because the field induced bjh€ orbital parametex as
a point particle diverges along the orbit, we need a regular- -
ization calculation to derive the self-forf4,5]. Based on the FRoret/Rmadv. _ pRoret/R=ado. (g | K N \\,,t,d0N).
Green function method in calculating the field, an elegant (2.42
method of regularization was propodéd, in which the self-
force can be directly derived from the field calculated by theln general, 4-velocity and a self-force transform as
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dx’ @ ax'e\ [ dr Since these are scalar functions defined along a geodesic, we
v = - (7’):( (—,>vﬁ(7'), (2.43  can apply the formula2.25 to Egs. (2.48, (2.49 and
dr axP |\ dr (2.50, and we obtain
D d R—ret./R—adv.
_ = , —& — SR—ret./R—adv.(m,n) E,L,K
foz’ dT,Ua'(T) |:d)\ mEm ( )
8 A=Ay A=A
= E E X E va|(7) (2.44) XeX[{iZﬂ'(m ‘+n 0”1
dr ) dr \ox'e/\dr | PN . Ar No

(2.5
Using these transformation rules, we applgnd ¢ transla- . .
tion (2.20 and GPS transformatiof2.26 to the self-force Where we denot&, L andK by £. By the reality condition,

induced by a geodes(@.42;. we have ngfret./Rfadu. (m,n))* :ngret./Rfadu. (7m,7n),
We first considett and ¢ translation(2.20 with A\,=0.  where* means we take the complex conjugation operation.
Applying the coordinate transformation, we have 4-velocity of a geodesic transforms by H@.26) as
FRITeURTad (| KON, Aot tg, bt bgiN) v (E,LK, = Nr, = Ngi = M) = (=D (E,L K\ NgiN),
(2.52

:FE—ret./R—adv.(E,L,K,E ,fa ,t_,g;)\). (2.45 .
wheres=0 for a=t,¢, ands=1 for a=r,6. Using Egs.

Since the metric is invariant under the transformation, We(2'47) and(2.52, Egs.(2.48, (2.49 and(2.50 transform as

R-ret./R—adv. _ —~R-ret./R—adv.
=F,

have F_, , thus, the self-force d ]R-adv./R-ret -
does not depend onhand ¢. In the following, we write the e (E,L,K,=Ar,=Npi—N)
self-force asFR "t R7a%(E | K\, \g;N). R-ret./R—adv
Finally we consider GPS transformation of the self-force. _ ig ' .(E LKN NyiN). (2.53
Noting Egs.(2.39, (2.26) transforms the self-force as dx P RO R A
FRa%.(E | K, — N, —Npi—\) We consider the evolution equatiori®.48, (2.49 and

o (2.50 a\@raged_ at two orbital points_cha@ct_eriz_ed as
=(—1)SFR"Y(E,L,K,\ ) Ag;N), (240 z(E,L,K\, Ap.t,:\) and z(E,L,K,—\,,—A,,t', '
—\). Using Eq.(2.53, one finds the evolution equations are
FRfret.(E,L,K’_rr ’_E;_)\) described by the radiative Green functih38 instead of
“ the R part of the retarded or advanced Green function as
=(—1)SFR 2% (E,L,K, A, AgiN), (2.47)

1 R—ret. o
=== E,L,K\\  AgiA
wheres=1 for a=t,¢, ands=0 for a=r, 6. ZHdA ( rhoih)
d R—ret. o o
D. Evolution of the energy, angular momentum + H(‘,’ (E,L,K,—X\; ,—)\0;—)\)]
and Carter “constant”
As we use\ as an orbital parameter, we consider the 1([ d ]R—adv. o
derivative of these “constants” as =— EHJE (E,L,K,N; ) Ag;N)
[ d TR—ret./R—adv. __ R—ad.
__ 2rR-ret./R—adv. . d v .
anE PR (E.LKACApiM), PG (E,L,K,—Ar,—ko;—k)}
) ' (2.48
[d|Rorer/Rad — = |9 rad'(E LK X NgiN) (2.54
aL :pZFZ_ret./R_adU.(E,L,K,)\r,)\9;)\), d)\ sy NG Ay gy, y
- - (249) d rad o o
d TR—ret./R—adv. {KE} (E'L'K’)\r 'Aﬂ;)\):_pZF{ad.(E1LaK1)\r,)\0;}\).
KK :[2(r2+a2)p2vtFtR*ret./Rfadv. (253
- 4 r=R-ret./R—adv. d rad. — _
+2p*"F; ] [KL (E.LLK N A giN)=p?F R4 (E,L KA N giN),
X(E,L,K N NgiN). (2.50 (2.56
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It is notable that the dependence of bathand\ , vanishes

d rad. o
K} (E,L,K, Ay A giN) in the end.

B
=[2(r?+a%)p% F{** +2p"% F{*] E. Practical issues in calculating the radiative potential
X (E,L,K,\; ,NgiN), (2.57 The primary problem in a Kerr case is we have no con-
ventional method to calculate a electromagnetic potential and
where F'2% is the self-force calculated by the radiative a metric perturbation induced by a point partitiéhe con-
Green function2.38). struction of an inhomogeneous solution is unknown in gen-
We write eral, however, a very simple method to derive homogeneous
solutions was propose[d0]. In Ref.[10], it was also dis-
cussed the derivation of the retarded and advanced Green
functions as infinite sums of homogeneous solutions, which
gives a correct metric perturbation only outside the source.
:Z grad. (mn)(E | K) For example, when the_ particle moves _in th(_a radial d_omain
= M min<rl <I'max, the metric perturbation given in RdfL0] is
o o correct atr >r 5, andr <r pin -
) A=\ ANy Though the prescription in Refl0] is insufficient for
XeX[{IZW( m——+n— ” (258 inhomogeneous Green functions, it gives the correct radia-
' ¢ tive Green function since it is just a sum of homogeneous
Then we have solutions. Suppose we calculate the radiative Green function
following Ref.[10], it is correct outside the source. However,
L Roret (mm). SR-ret. (—m—n) since it is made as an infinite sum of homogeneous solutions
5(€ M4 R T )(E LK) by construction, it satisfies the source-free Einstein equations
at every radial domain. Thus, it is a correct radiative Green
function in the whole spacetime.

d rad. o
ﬁg} (E,L,K,\i,Ag;N)

:_%('ngadv. (m,n)_,_"gR*adv- (*m,*n))(E,L,K)

) I1l. PERTURBATIVE EVOLUTION OF AN ORBIT
=grad (MmN K L). (2.59 o . ,
To make a definite discussion, we consider that\at
Thus, half of the expansion coefficients of the evolution<0. the particle moves along a geodesic characterized by

equations can be derived by using the radiative Green fundhe constants,E=¢&;, N;=X\;9, Ap=Ngo, t=t_0 and E

tion. = ¢, and that the self-force begins to act on the orbit when
We comment that, when the ratio df and\, is irratio- ) >0, and deviate from the initial geodesic. In this section,
nal, our formula generalizes the result in Réf, in which it we discuss the deviation of the initial geodesic in a pertur-
is proven that radiation reaction to the energy and the angulajative manner. We define as the charge or the mass of the
momentum along a whole geodesic can be derived by a selfyrbiting particle normalized by the mass of the background

force calculated by a radiative Green functibBy EqQ.  plack hole, and we considex is an infinitesimally small
(2.5, the radiation reaction averaged per unito the en- value as an index of the perturbation_

ergy, angular momentum and Carter “constant” becomes In order to see how the orbit evolves by the self-force, we
first consider Eq(2.51). We define the deviation of from
lim if}‘ d)\ingret.(E LK N \) the initial value &, by 6. Because we only consider the
N 2N ) dN TRt self-force induced by a geodesic in deriving Eg.51), we

) can consistently derive the evolution 6€ only when 6&
=gR-ret. 0O E | K). (260 =0(u%), a>0. The evolution of5 becomes

By Egs.(2.59, (2.60 agrees with the calculation using the se(E, L, Ko, X;0,Ag0:\)
radiative Green function as

1 \ d o :}\E‘Rfret.(EO’LO’KO)_’_E 5Rfret. (m,n)(EO,LO'KO)
lim —f d\ €% (E, LK\ A giN mn
- 2N N dx ( r 4 )

5 @i 27 (MI =X ;)N ] NI =N o)\ ) 3.1)
=gR-ret. OO E | K). (2.61)
where the coefficient of the linearly growing term is deter-
mined as
3We also note that our formalism specifies the case that the orbit
inducing the self-force can be approximated by a geodesic, while
the formula in Ref.[8] applies to a general orbit in scalar- “Recently, some ideas to calculate the vector potential and the
electromagnetic case. metric perturbation induced by a point source were prop@8gd
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ER-ret._ cR-ret. (0,0) (3.2) Taking the leading order deviation from the initial geode-
sic, Egs.(3.7) become

One sees that E@3.1) consists of two parts, the secular part
and the oscillating part. The oscillating part staygu?) at dér drg
any\. On the other hand, the secular part grows linearly by “dx dx
\, thus, one can consistently deri& only when \ is
O(,U,a), 0>a>—1 d56 dao )

Because of this oscillating term, one cannot say that the 2—— —=U(&,,6p) i 08"+ U(&y,rg) 66, (3.9
orbit evolves adiabatically in an exact sense. The oscillating d\ dr ' '
part shows the interaction of the orbit and the “heat bath” of . _
radiation. In the time scale of the ord®(°), the orbit just Where we denotef ;6&'=f cdE+f, SL+f (K. Using
exchanges the energy, angular momentum with the “heagd’ro/d\*=V(&,ro), and 220,/d\*=U(&,bp) 4, We
bath” and they increase and decrease in the equal rate. In thave
long time scale of the orded(u®), 0>a>—1, the energy

:V(go,ro),i55i+V(5o,ro),r5r,

and angular momentum reserved in the “heat bath” escape d /[ or 1V, i
into the horizon or away to infinity and the orbital energy dn| drg 5 V(go’r0)55 '
and angular momentum tend to flow out to the “heat bath.” an
Thus, as described by the secular part of Bdl), the orbital
energy and angular momentum decrease linearly by
Though we do not have an adiabatic evolution in an exact i ﬂ _ 1 ﬁ(g 0,) 5E (3.9
sense, we show that the secular part of the “consta#ts” da|dgy | 2 U 00 ' '
becomes dominant over the oscillating part. If the same thing an

happens to the rest of “constants,” it seems possible to de-
fine an “adiapatic” evolution Of the orbit in an approximat_e The differential equationg3.9) have singularies because
sense. For this purpose, we discuss an orbital evolution in g i =

perturbative manner. We first consider the evolutiom ahd fo/d\ and V(&,ro) vanish at A_MJF(”/Z))\“ and

¢ coordinates in Sec. Ill A, then,and ¢ coordinates in Sec. d6o/dA andU(&, ) vanish ath =\ ,+(n/2)A,, wheren

Il B. Section Il C gives a plausible definition of an “adia- IS an integer.

batic” evolution of the orbit, which approximates the exact One must integrate E¢3.9) such thatér and 56 are
orbital evolution by a self-force. Section Ill D concludes the Smooth at the singularities. We formally integrate the differ-
section with a discussion of a gauge dependence of an “adigntial equations as

batic” evolution which appears only in gravitational case.

We define an orbit evolving by a self-force as dro— . drogf» —d drg
5r:ﬁvi55'_ﬁf d\V, ﬁ&s%cg")a, (3.10
t(N)=to(N)+St(N),  r(N)=ro(N)+or(N), (3.3 °
B(N)=B6(N)+80(N),  B(N)=do(N)+5h(N), (3.4 _ 9o i_%JA g9 ci, md%
80= d)\U,éé‘ a s d)\U,d)\ 5E'+c, -
where{ty,rg, 6, do} is the initial geodesic. For the latter (3.11)

convenience, we define a family of geodesics as

where we definedV;/d\=V /2V and dU;/d\=U ;/2U.

t(N)=T(E,L,K,\, Ag:N)+t, r(N)=R(E,L,K;A—X\,), , _ i
(A)=T( rohoi) (A)=R( g Here one must add the integration constarif$ at A, +(n

3. - =
B 39 FL)N/2>A>N 400 /2, and eV at A g+ (n+1)A /2>
O(N)=0O(E,L,KiN—X,), >\ y+N\,/2, independently for each integex such that
- - or=0 andéfd=0 atA =0. andsr and 50 become smooth at
H(N)=D(E,L,K, A, Agi\)+ . (3.6)  the singularities of Eq(3.9). B
In order to determine™ andv (" together withv; and
A. r motion and @ motion U;, we consider the singular structure of E£g.9). We write
Instead of integrating the equation of moti@w */dr _
=F“, we consider integrating Eq&.1) and(2.2) to derive V(& 1) =v(&,r)(r—r1(&))(ra(&)—r), (3.12
the motion ofr and # coordinates. For a convenience, we
write Egs.(2.1) and(2.2) as U (&, 0)=U(&, 0)(0— 01(&E)) (m— 01(E) — 0),
(3.13
2 da 2
(ﬁ =VI&n, ﬁ) =U(£0), 3.7 wherev (&,,1) is positive atr ;<r <r,, andu(&,, ) is posi-
tive at 9,<0<wm—6,. ry and 6, of the initial geodesic
whereE=E&y+ 6, r=rqy+ 6r and 6= 6,5+ 56. around the singularities behave as
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’

1 _ _
ro+ Zvl(rz—rl)()\—)\r—n)\r)2+ O((N—=N\,—n\p)Y),
ro=1 (3.14

1 _ _
\ ro— sz(rz—rl)()\—)\,—(n+/2))\r)2+ O([N=X\,—(n+1/2\,]%.

)
1 _ _

61+ Zuo(w—zel)(x—xa—nxg)H O((N—=Np—nhp)*),

T 0, — Zuo(w—201)(>\—Y0—(n+/2)>\0)2+ O([A—X,y—(n+ 172\ ,]%,

\

where v,=v(&y,r1), vo=v(&,rs), Ug=Uu(&,01)=u(&,m—61), and n is an integer. Thus, the singular structure of
3(ViIV)(&y,ro) and3(U ;/U) (&, 60) becomes

( —L(x—f—m\ )24+ 0((A =\, —n\,)°)
v, o= T A,

1V,
5 (ol =) (319

2r2’i — s — 0
—————— (A=A, —(N+/2N\;) “HO([N =N, —(n+ 12N, ]),
\ va(r—ry)
( —$(x—f —nNg) 2+ O((N—Ny—nAy)°)
1U; Ug(7m—264) 0 0 4 o/
5 (€0:60)=) 20, (3.17
i N -2 Nl 0
——————(A—Npy—(n+ + —Ap—(n+ .
| " Uyt 20y (N=Nyg—(N+/2)N\y) O([A=NAg—(n+1/2N(]")
We define regularization functions as
+ g Jo— . 277 I’ll l 1
Vi(€o A= Aro) =1 M(Fa—11)| vq | @270 N — 1 g-i27(\—No)A_ 1
Mo 1 1 31
Vo | @270 NN £ ei2TO NN 41 ] | (3.189
e — 27 01; 1 1
Ui (&0, A —Ngo) =i No(ro—rq) U_o el 2m(A=Xgo)Ng_ 1 B e i2m(A=Ngo)Ng_ 1
1 1
| @270 Nhg1 1 e i2n NN gt 1 | | (3.19
|
+ T MU~ — T
One can see thatV;/d\x anddU'/d\ have the samefsmgu [Ui—UM(E N =N yo)
lar structures a¥ ;/2V and U ;/2U, thus,V ;/2V—dV;/d\
andU'i/2U—dUT/d>\ are regular and periodic with the pe- iy YL (n) i27n[(A =X go) /N 4]
riod N, and\,. One can expand these differences with dis- (A )\"O)U'Jr; Uit(&oe o
crete Fourier series 2" ~*0)/Ar ande!27* ~290)* s and one (3.21)
can integrate in a regular manner. We formally write these '
integrations as where the coefficients of linearly growing terms are
Ui 1 jxrd)\ Vi dvﬁ)
[Vi=V{1(&. A= Xr0) =5 ], Mav @ |
— . . — t
:()\_)\ro)viJrE Vi(n)(go)elzﬂn[(xfx,o)/x,], . _ifxg ﬁ_ du,
n U|(80)_ )\0 dA 2U dn |-
(3.20 (3.22
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We note that there is an ambiguity in adding integral con-

A=X\; Ay _ =
stants, which the final result does not depend on. Ri=> ( —i27n—— —=RM 4+ R | gl2ml( =1/
Using Eqgs(3.18), (3.19), (3.20 and(3.2)), the first terms n r r
of Egs.(3.10 and(3.11) can be separated as dR\. . _
— _()\_xr)_)\ %4_2 R(in)eiZ*n'n[()\*)\r)/)\r], (329)
r — ) . do, — . ) n '
—O([Vi—vj]55'+v?55'), —O([ui—uﬁ]55'+uﬁag'). r
A—Ng Ny, S
Now we can see that we successfully regularize the first @i 2 (_'277” . Ng 0+ ®,(in))e'2 N ha el
terms of Egs(3.10 and(3.1]) since the divergent behavior
of VJr and UT and the regular behavior afry/d\ and — dO N, (n) 2l (N
daold)\ cancel each other at the singularities of E3}9) as =—(A=X )d)\ Ny +; 0;’e 77 (3.30
dro r1j+O((N=Xrg—n\p)?), One can see thaR; and ® ; are dominated by oscillating
da Vi Fy+O([\— N o— (N+ 12\, 1?) (3.23 parts whose amplitude grows linearly in Comparing Egs.
| r r y

(3.20, (3.21) and(3.26), we find
déo T_lal,i+0<<x—foo—nxg)2>,

V() = — ey ()= — i
a 0,4 O =N (n+ 12N, V(€)== (), UiE)=— (%) (33D

(3.29
We next discuss the second terms of E¢%10 and
We can further rewLite the first termsg‘ Eg8.10 and  (3.11). Using Egs.(3.18), (3.19 (3.20 and(3.21), we sepa-
(3.11) usingR ;(£9, A —N0) and® ;(Ey, N —Nyo). By taking  rate the terms as
the £ derivative of the geodesic equation, we have

d /R, \ 1V, 4/ 0.\ 1U, U dA[V;— vT]—5g +f dkvfﬁ&f)
ax | dry | "2V €0 gy gg, | T2 U orto) (3.32
dn dn 480/ (> g g
(3.29 _KU dN[U;— U] ] 56 +f dxouﬁﬁ55'>
These equations have singularities as @B09), and must be (3.33

integrated such thaR; and © ; are smooth at the singular
points. Using Eqs(3.18), (3.19, (3.20 and(3.21), we have The integrands of the first terms in the brackets are regu-
lar and periodic, and one can evaluate the integration in an

_ dr, —
R,i(SOi)\_ArO): d_)\o([vi_ViT]_l—ViT_‘_Ci(v))! usual manner as

_ de, fdx[v vT]—ae'
0 (€0 =Ngo)= gy ([Ui= U1+ Ul +c{?),

3.2 A—\r0)?
(329 %v +2 (A=) V™D
wherec(” andc{") are finite integral constants. Using the
ambiguity of integral constants in evaluatipy; —V{] and +vg“'”))eiZ’T(m[(“kro)/hrl*"[(A*Aeo)/ke]),
[U;—U[], we setc{")=c{"!=0. and we have the first terms (3.34
of Egs.(3.10 and(3.11) as '
_ ) _ ) A _ d )
Ri(E0 N —N0)8ET, O i(Eg N—Ngo)SE'.  (3.27) J dx[ui—u?]aag'
0
Sincer and # motion of a geodesic is periodic, we can put
()\ )\60) (m,n)
=5 Ut 2 (AU

R(EA—N,) = > RM(&)ei2mN-AIN (]
" + Uém,n))eizw(m[(x—xro)/x,] +n[()\7)\60)/)\a])_

O(ENA—N)=> @M (&)e2mIN-1 N (3.39
" (3.28 The second terms in the brackets could lead to logarith-
mic divergence at the singular pointsz=r,r, and 6,
The &€ derivative ofR and® becomes =60,,7— 6. If we have logarithmic divergence, we have no
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way to have a smooth evolution of the orbit at the singulari- Using Eq.(3.26), one can rewrite the second terms of Egs.

ties. Thus, one must constraint on the self-force as (3.10 and(3.11) as
0=y, L 58 (A =Nt A drofd Rio 9 sei deofde) d sei.
=M1y 98 (A=XoF Ay dx dro dx dx d6, dx
d - dn dn
=r2,iaég'(x=>\,0+(n+1/2)xr), (3.3 (3.449

By the constraints on the self-ford8.36 and (3.37), the
integrands of Eq.(3.44 have no singularity, and we can

d
0=01i g% SE'(N=NgotNNy) formally write as

d — R; d
=01;i=—6E'N=Npot(N+1I2N,).  (3.37 — 5= (A=) RI™M + RIMM)
TdN dro d\ m,n
. dn
Using Eq.(2.51), we can re-expand as - B
d @i 2(mI(A = Ar0)/ A (] + NI =N o)\ )
o d)\ mzon g(m ) (gizmal(n- ”ro)’”r]—l) (3.45
i2na[(A =\ 40)/\ ] d
xe M (339 do @ 25 =2, (AN O +0()
|’2| el 55| E m n)(( _ 1)mei2mw[(>\—fm)/>\r] ~1) dn
m-0n B 5 & 27 (M=) + 0[O =N go) Nl
¢ @ 2n7[(\ =X go) A ] .
€ ’ (339 (3.46
0y — 6E = 2 E—%T,n)eime[(A—A_ro)/xr] where the coefficients of linearly growing terms become
Tdh m,n+0
_ _ . Moo o Noim _
x(e'zn"’[()\*xeo)”\a]—l)’ (3.40 Rém,n): _ )\_rgR ret. (m,n)ly ém,n): _ )\_HER ret. (m,n)l.
(3.47

d S5€i= E g(ﬁrg,n)emmw[(x—fro)/x,]

— 01 dxn e We show how to integrate Eg&.10 and(3.11) such that

. _ sr and 80 evolve smoothly, and we find™=c{" =0 along
X ((—1)Me!2n N =Ngo)Nol — 1), this integration procedure. The perturbative evolutionsof
(3.41) and 66 by the self-force is now interpreted as the evolution
N _ - _ of the orbital “constants,”sE', 8\, and 6\ , as
where dm ) _ ‘ig(m,n), drzn,n):(_ 1)mr2‘ig(m,n), 5(0T,n)

=6,;&™N and £y = — (—1)",;£ (MM, Using these ex- Sr=R;ioE'+ R O\, (3.48
pansions, we can integrate the second term without logarith- —
mic divergence as —  (N=N\0)%. - .
SN, = Trxgr% (A= Ny A™M 4 ) ()
i_ T (m.n) Y -
f daV] — dk —8ET=(N =NV +Z V! DTN SIS TRE ) 349
i27(MI(X =X o)Al + N[N =X go) I\ g]) : —
X @ ETIER oA A TR0, 56=0 56+ O 50Ny, (3.50
(3.42
— (A N2 —
ONg= ———— K gt 2 (A= o)\ ™M ) (M)
J dxufa&t' (A =X yo) g+m2n ufmn o 2 o vore o
¢ @i 27(MIO - Xy)A ]+ -X o)A ) x gl2mmlO =Rl A Enl =R o h ), (3.5
(3.43 From Eq.(3.47), we have
It is notable that we have only linearly growing terms; thus, N o= ﬂgR_,eL CI - 7\0 Moicrret. (00§
Egs.(3.34 and(3.35 dominate over Eqg3.42 and(3.43 r A b e Ny
atA~O(un%), 0>a>—1/2. (3.52
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i ﬁgR—ret. (m.n)i

\mn
M m ny\ A,
27| —+ —

i Ngi-

R—ret. (m, n)l
)\05

(3.53

)'\50,0): R(eo,O): V(eo,0)+\'/l , x(go,()): @(e0,0): l'J(eo,O)+ Ul ,

(3.59
)\Em,n)_ ml R(mn) V(m n)+VT(mn)
_J’__
2 VW
AGm = n:' —-emr=um+ulm, (355
_+_
2 N~ TN,

where EQ.(3.53 and Eq.(3.55 are evaluated forrﬁ,ﬂ)
#(0,0), and\{®?, A9 are determined such that\,
=8\,=0 atA=0.

We can see that the linear perturbation holds for
~0O(n%), 0=a>—1/2. The orbital evolution in this regime

has two parts: the one contributed By, the other by5fr
and S\ 4. Since both parts grow quadratically by, it is

necessary to consider the evolutiongfand\ , for a correct

orbital prediction.

B. t motion and ¢ motion
We write Egs.(2.3 and(2.4) as

—¢=Y(5,r,¢9).

¢ _xen, O
ax = Eno. gy

ax (3.5

The leading deviation from the initial geodesic satisfies
ﬁ=x,i(50,r0,00)55i+x,,(50,r0,00)5r
+X (&, 0,00) 50

= (X +XRi+X 40 )0+ X Ry O\,

+X 40 5,0\, (3.57

PHYSICAL REVIEW D 67, 084027 (2003

dée i
W=Y'i(€0,l’0,00)55 +Y'r(€0,r0,00)5r
+Y ¢(&E9.F0,00) 66
=(Y+Y Ri+Y 0 ) +Y Ry O\,

+Y 40 5,0\, (3.58
where we use Eqg3.48 and(3.50. Contrary to Eq(3.9),
Egs.(3.57 and(3.58 are regular, and we can integrate by
parts as

St=X, 8+ X, SN, + X 40N 4

d d d
f AN Xi o 08T+ X, o O+ Xy 50|

TN TdN
(3.59
OIx =X +X,R;+X ,0 OIx =X,Ry
d\ LAY A
d_
Hxaz X,9® )\73’ (3.6@
Sp=Y,5E'+Y, SN, +Y, N,
xo|>\ d SE+Y, — d SN Y, dax
o Yian T\ O\ o)
(3.6
d_
=YY RHY 0,
_ d_—
oV =YaRE gYe= Y0k, (3.62

We note thafT ;(£g,Aro,Ago; ) and @ (g, Nro,\ o \)
satisfy

d
T Xt X R X0 5,

d
I PI=XITXRTX 0 (3.63

d

Thus, from Eqgs(3.60 and(3.62, we have
Xi=T (€A oA go) €, Yi=® (€, N0\ go) +CV),
(3.69

wherec® andc®) are integral constants. Because the orbital

evolution does not depend af® andc® in the end, we set

them zero in this subsection. In the same manner, we have
X=Ty, X=Tx,

Y =05, Y=,

(3.65
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We definet and ¢ motion of a geodesic as
TEN, Ny N)=AT(E+ D TMN(g)
m,n

x @ 27NN HET+IO=N )N f(E)])

(3.66
DEN, NpiN)=AD(E)+ >, M)

x @l 27X )A(E] A=A

(3.67

PHYSICAL REVIEW D 67, 084027 (2003

2T o, xmm— 2T,

r 0

XM= _m

r

i2
m—amn,

r

ymn) _— _

r

N (mn,
(3.73

We consider to evaluate the integration of E@59 and
(3.61). We first note

Y%m’n) -

Lot Lot L= & e,
dn "Eﬁ d 0T dg, dh
dn dn
(3.7

where the linearly growing terms appear since we integrate
X(€,R,0) and Y(&,R,0) which can be expanded by dis- and the expansion of the RHSs is given in EGs42), (3.43

crete Fourier serieg 2™ A\ +i2m(A X9\ Using Egs.
(3.64 and(3.65, we have

x=> (NX(m) 4 Xi(m,n))eiZW(m[()\—)Tro)/)\r] +n[(>\—fgo)/xg]),
m,n

Y= (ymny Yi(m,n))eizw(m[(x—fro)/x,] +n[(x—fgo)/>\,,]),
m,n

(3.69
—r _ X(m,n)eizqr(m[(x—fro)/x,] +n[(x—fgo)/x(,])’
m,n '
Y. =S ymmgizami-ro/nd+nlO-Ag)\D)
m,n r
(3.69
Yazz X(am,n)eizw(m[(x—fro)/xr]+n[(>\—fﬁo)/xﬁ]),
m,n
Y,= 3 yimmeiza(mi-Aro)/Ad+nl( A0\ i),
m,n
(3.70
where the coefficients become
. . e A
xi(m'”>:5m_n_oT,i—i2w(m—+ ”2)T<mn>
r 0
Xi(m,n):T(im,n)+i2W m)\r)\r,i+ )\0)\0| T(mn),
) )\2 }\2
r [
(3.7)
A
YW= oD i2w<m—r2'+n—"2" P(mm
A
r 0
A PN
VM= @M 427 m——"+n “’f')qﬂm’“),
r )\0
(3.72

and(3.47). Using these results, the integrands of E§s59
and(3.61) become

2 ()\)’((em,n) + X(em,n))eiZW(m[()\—:ro)/)\r] +n[()\_fgo)/)\0]),

m,n

2 ()\Yém,n)+Yém,n))eizw(m[(x—x_ro)/xr]+n[(x—x_90)/xg])'
m,n

(3.79

where the coefficients of the linearly growing and oscillating

terms become

)'('(sm,n):TyiER—ret. (m,n)i’ 'Yém,n):d)‘i'gR—ret. (m,n)i_

(3.76
In summary, we havé and ¢ motion as
=T ;06 +T 5 ON+T 5 SN+ ot, (3.77
— N2 .
ot=—to+ % (NG My
X @27 (MO =X o)A+ =X go) N g]), (3.79
8= 6+ D 5 N+ D 5 SN+ 5, (3.79
A2 .
8p= 7ot 2 NG+ B{™")
2 m,n
5 @i 2m (MO =N o)A+ Al =X o) A l) (3.80
where the part of coefficients @it and 8$ are
fo: T i(a:R—ret. (0.0 ;2-50: —d i('gR—ret. (0.0
' ’ (3.80)
t(()m,n)_ rr: -'I—‘i'ngret. (m,n)i,
27| —+ —
Ao Ay
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i We find that, with the effect of the self-force, the phase func-

B = - @ gRoret (M (m,n)#(0,0). tions satisfy
27| —+ —
N Ag 382 d
: (Xt Oxr0) = ——— +F, (&o.Xr0:X00),
g Xr T OXro At Ay OE x,\€0:Xr01 X 60
As in the case of and § motion, the linear perturbation (3.89
a 5 N N v
holdslorh~(?(,u ), 02a>—.1/2, ano!é& ON\;, ONgy, Ot I i S R gi2n(Mio* 1o0)
and ¢ contribute to the orbital evolution equally. Xr Aomn ¢ '

C. Adiabatic evolution

d
= (Xot Oxp0) = +F,(E0:Xr0: X 60)

In Sec. Ill A and Sec. Il B, we find the evolution of the dx Ao+t Ng;OE!
orbit by the self-force in a perturbative manner. For the defi- ' (3.89
nite discussion, we assume that the self-force begins to act 1 _
on the orbit aik =0, and find that the perturbative evolution Fro= % > OMMegi2m(mxro+nxgo)
is correct ath =0(u®), 0=a> —1/2. Using this result, we rmn

first consider to rewrite the orbital equation in a numerically

convenient form. One can see that E§3.87) becomes that of a geodesic

When the orbit is a geodesic,and 6 motions are peri- when we switch off the self-force, thus, by the renormalized

odic. Then it is convenient to describe a geodesic with phasBerturbation method, we formally obtain the orbital evolu-
functionsy, and y, as tion equation with the self-force as

_ d 1 d d 1
= ( ) 2m r _— = — —C = e — = —_—
REX)=2 RUEEZ™, ox=in 383 gr&=Fdbxexe guxe=y gy Hhu(Exnxo,
i2 d 1 4 e iF (¢ 3.9
(S’XB):; @(n)(g)el 1TI’1X(7‘, axa:)\e(é‘) (384) d)\Xﬂ_)\g(g) Xe( !XI”X@)! ( . @
We consider the similar type of description when we con- _ ") i2mny, _ (n i2mnx,
sider the self-force. One can rewrite E¢3.48 and(3.50 as ' zn: O 0 En: O™ (e '
Sr=R6E+R,Sx,, R=2, RMel2mxro, a.
i xOXr i ; i d)\t—X(é‘,r,e),
RS (M) gl 2, d
Ry=2 izmnR(Vel2mmo, (85 —4=Y(&r.0), (3.91

whereF¢ is given by Eqs(2.48), (2.49 and(2.50.
The evaluation of Eq9.3.90 and(3.91) may be possible
by a future investigation of a regularization calculat/dd].
But, the calculation may be complex and costly unless we
@_)XIZ i27n®Me'2mxe0, (3.89 have a new breakthrough in the regularization calculation
n strategy. We, therefore, introduce an approximate calculation
using only Eq.(2.61), for which we already have a well-
wherex,o and x5 describe the phase functions of the initial established calculation technique and a number of ref@ilts
geodesic, andy, and Sy, are the deviation by the self-force  From the perturbative result in Sec. Il A and Sec. Il B,

50:6ié‘gi+e_)xb~)(a, :E ®’(in)ei2ﬂ-n)(60’
n

satisfying the orbital evolution is dominantly described as
NN Ari . O . — AN .
— 0t _ SE=\ R—ret.(0,0) SN = — — 1 R—ret. (0,0)i
OXr VY 23 N E=NE (&o), r 7N 3 (&),
- ~ 2
N=Ngo Ngi ;i ONgo — _ M Mg et 00)
- 200 oo Shyg=— = —ER Oigy), (3.92
5)(0 )\0 )\9 )\0 . (387) [ 2 )\0 0

A2 _
St=——T ,ngret. (0,0)i £ ,
5This time scale is called the dephasing tifd€]. 2! (&)

084027-13



YASUSHI MINO PHYSICAL REVIEW D 67, 084027 (2003

0¢=- )\;cb,iétR‘fe‘- (). @og  ONTIINDTOWN,
) . ' 5(?k+1)_?k))~o(ﬂl+a),
We call the calculation using these dominant parts by an
filgrr:rggggzr;tgsadlabatlc calculation, and the evolution equa S(UH D= G~ O(pult ). (3.99
We assume that the ignored part affects the evolution like a
d adi. _ 1 Gaussian noise and estimate the error as

d o .
adi. _ cR—ret./ cadi.
€ € (8 )1 dn Xr )\r((c;adi.)’

d\
55(N)~O(Ml+'8/2), 5X(rN)"’O(,LLl+a+'B/2),

d . 1
ﬁxgdl: N (E20] (3.99 NN~ O(pltath)
0
| g2 SN~ O B2y, 5N~ O(plt et R,
radl.:§: R(n)(gadl.)eIZﬂ'an , L o0
n

Using this estimation, we discuss the predictability of the
approximate adiabatic calculate. The error of the rotation per

. . ] adi.
0ad"=; OM(gad)e2my (3.99  time ¢/t is estimated as
d . S 5(f ~O(u P2, (3.10)
ﬁtadl.:x(é’adl.,radl.,eadl.), t
For an accurate prediction, we requidép/t)<1l and we
i¢adi.:Y(5adi.,radi.,gadi.). (3.96 hav_eB< —2a—1, which is always satisfied siné¢is just
dx an integer.

. . _ ) . The error of the rotation phasg is estimated as
For a practical use of this approximate adiabatic calcula-

tion, we make a rough estimate of how correctly the orbit Sp~O(uttathl2), (3.102

can be predicted by this method. We suppose to divide the

whole domain of\ into an infinite number of domains,  For a correct prediction of the phase, we hgie —2a—2

<A<\y+1 Whose interval isO(u%), a— —1/2. Then we — —1. This shows that we have a prediction of the rotation

may apply our perturbative analysis of the orbital evolutionphase only an=<O(u ).

at each domain. We define the orbital “constants’\at \

as{£M, W0\ 0 401 Again, for a definite discus- D. Gauge issue

sion, we assume that the self-force begins to aat=ah.. The gravitational self-force problem has an exceptional
By the result of Sec. Ill A and Sec. Ill B, a dominant gjfficulty because of the so-called gauge problgi]. The

contribution makes the evolution of these “constants” as  regularization formulation was originally formulated in the

harmonic gauge conditigm,7], and we have the diverge8t

part only in the harmonic gauge. It was pointed out that,

when we subtract th8 part from the full metric perturbation

g(k+l)_5(k)~o(ﬂl+a), ﬂk+l)_ﬂk)~0(ﬂl+2a),

@kﬂ)—@k)”()(/tl”“), in the radiation gaugEgL0], we have a divergent resid(i&3]
o o . . because of the divergent gauge transformation at the particle
tkr Dt o(pl*?9), kDM~ O(ult2e), location. For this reason, the calculation of the full metric

(3.97 perturbation in the harmonic gauge condition, or the calcu-
) . _ lation of theS part of the metric perturbation in the radiation
After passing byN~O(x*) finite domains, we have gauge become important issues in calculating the gravita-
tional self-force in a Kerr background.
On the other hand, in the approximate adiabatic calcula-
tion, all we need is to evaluate E@.61), which is proven to

g(N)NO(M1+a+B), XI(,N)NO(,(L1+ZQ+B),

@N)NO(MHZ“WL agree with the radiation reaction calculatif] in part. A
o o number of previous workis3] prove there is no divergence in
tN~O(u*2e%F),  ¢pM~O(utt227h). the approximate adiabatic calculation. The investigation in

(3.99  Sec. Il D shows that the self-force derived by the radiative
) ] Green function corresponds to the two-point averaged self-
On the other hand, the part we ignore for the approximateorce derived by theR part of the retarded Green function.

adiabatic calculation contaminates the evolution as We consider that, by tak|ng a two point average of the self-
force, the divergensS part vanishes as in Eq2.38. We
k K p ; i i i . )
S N—gW)~0(p), SAK PN ~0O(ut*e), consider that, in the approximate adiabatic calculation, the
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same cancellation mechanism happens including divergence IV. SUMMARY
by the gauge transformation. But there still is an ambiguity . .
of a finite gauge choice. Here we prove the result by the In this paper, we have discussed a method to calculate an

approximate adiabatic calculation is actually gauge-invariang;ﬁ)f'_t%rceevwgC;ZSB%:thsaiaf:ﬁg?;g?g:?sn\?\}gggr\]/g?ﬂgrﬁie
by showing the gauge invariance of HG.61). '

Using a Killing vectors, and a Killing-Yano tensor, orbit can be approximated by a geodesic at each instant of

4 o time, with which one can derive the self-force. We note that
of a Kerr spacetime, conserved quantities along a geodeS{ﬁ desi L d-order di l
are described as e geodesic equation is a set of second-order differentia

equations of four components, and we have 7 integral con-
E=7.0" Q= 7,507, (3.103  stantsE, L, K, \;, A4, t and ¢. Instead of calculating the
orbit itself, we derive the equations of these “constants” by
wherev“(7)=dz%/d is 4-velocity andr is proper time of the self-force under this assumption.
the geodesic. Equatiof2.61) can be rewritten as We first consider the evolution d&, L and K since the
evolution equations of these “constants” are directly derived
1T d 1T N by the self-force vector. We exploit the symmetry of a Kerr
T'[nw ﬁJTdTEE:TITL ﬁﬁTdT”a(Z( 7)F4(7), spacetime together with a family of geodesics, which induce
(3.104 the self-force. By applying the symmetry transformation to
the self-force vector, we find that the time-averaged evolu-
1 (T d 1 (T tion qf E, L gndK can be derived by usjng a radiative Qreen
lim _f dr—Q= lim _f d7r27,5(2(7)) function, which has a number of technical advantage in prac-
2T)-r  dr 2T) -7 tice. However, we also find that the orbit does not evolve
N P adiabatically in an exact sense.

Xv A (n)F(7), (3.109 In order to understand the orbital evolution by the self-
force, we next consider the orbital equation in a perturbative
manner. We integrate the orbital equation by a time scale,
sufficiently long, but less than the dephasing time when the
linear perturbation of the orbit becomes invalid. Since the
orbit does not evolve in an adiabatic manner, the orbital con-

stants of a geodesitE, N\, ,\,,t,¢} are oscillating by the
@l — @ self-force. However, we could find out secularly growing
ok ()= (0A(mo7(1¢ A 2(7)] parts which will dominate the orbital evolution. By taking
+R%, s z(1) JvP(1) &Mz ) ]v(7)). these growing parts only, we define an approximate orbital
(3.107 equation, which we call an approximate adiabatic calcula-
: tion. We consider that the approximate adiabatic calculation
is implementable enough by a well-established method since
@ it only uses the radiative Green function.
O¢F*(7) becomes We also discuss how approximate an orbital evolution can
1 (T be obtained by this calculation method. We find that, during
lim —f drd) the timeO(x~%?), it gives an accurate rotation phase. For
2T) -1 example, when 10 solar-mass black hole is inspiralling into
1 10’ solar-mass supermassive black hole, this corresponds to
= lim ==[— ﬂavﬁfa-gﬂﬁﬂa-ﬁga][n (3.10§  around 16-rotation period. Though the accuracy in predict-
2T ’ ’ ing a wave form is not clear in our estimate, if only the
accurate prediction of the rotation phase is important for the
future LISA observation, the approximation proposed here
may give sufficient information in this case.
Finally we prove that the approximate adiabatic calcula-
tion gives a gauge invariant prediction; thus, the result is

T T—w

whereF? is the self-force vector.
By a gauge transformatiox*— x“+ £¢, the self-force is
transformed as

Fe(r)—F(7)+8;F(7), (3.108

The increment of Eq43.104 and(3.105 by this extra term

d
E—E(T)

T—o

d
E_Q(T)

1T
lim ﬁJlercS

T—x

1 : . . L
= lim ﬁ[_zvﬁnaﬁv Y€ gyt 20 g0 Vnaﬁ;yga][T, consistent with that of another possible method within the
T approximation scheme.
(3.109
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00-96522. cannot evaluate the perturbed orbital equation. Here we con-
sider the orbital evolution in these special cases by taking the
APPENDIX: CIRCULAR OR EQUATORIAL ORBIT circular, or equatorial limit of a general orbit. Before the

When the orbit is circular, or equatorial, we have discussion, we note that, by repeating the symmetry argu-
dro/dA=V(&,r0)=V(&y,ro) =0, ordéy/dA=U (&, 6p) ment in Sec. I, the self-force acting &) L andK becomes

2 ('S-R— ret./R—adv./rad. (0,n)( E, L ' K ) ei 27n[(\ —)\_9)/)\ ol , circular orbit,
n

R—ret./R—adv./rad.
(A1)

2 ER—ret./R—adv./rad.(m,O)( E.L, K)eizwm[(x—ﬁ)/xr] . equatorial orbit,
m

ER-ret/Radv /rad.(0.0) | K), circular and equatorial orbit.

We consider-motion when we consider a self-force act- , o adi.
ing on a circular orbit. The perturbation equatit$18) be- gad-=> @M (gadi)elzmi; (AB)
comes trivial since we havé ;=V =0 along the orbit by "
using Eq.(3.12. Instead of calculating the orbital equation,
we consider taking the circular limit of E¢3.48. The first d 4 adi. -adi. sadi
term of Eq.(3.48 is given in Eq.(3.27) and behaves in a ant = X(ET, T 07,
regular manner when we take a circular limit. On the other
hand, the second term of E@.48) is given in Eq.(3.44). By
the regularization calculation starting from E@®.32), the i¢adi_:Y(5adi_ radi. gadi (A7)
integration is still finite in the circular limit, andiry/dA dA ' ' '
vanishes. Thus, we have

i Similarly, # motion can be derived such that the equato-
or=R;éE", (A2) rial motion stays equatorial. One can also prove by using the
_ ) ) ) symmetry#— — 6. Using this symmetry property, when the
which means the circular orbit stays circular under the selfypit is equatorial, the self-force satisfi€s,=0, and we

force and the orbit is solely determined ByL andK.® As a have 6= /2, d9/d\=0. The orbital equation becomes
result, the orbital equation becomes

d d 1 d d 1
ﬁSZFg(g,Xg), JXHZW_FF”(&X“X‘))' ag:Fé‘(ger)y ﬁXr:m"‘F”(&Xﬂ)y (A8)
(A3)
=3 RO(geiZm, o=
r=RO(&), 6=2, OM(&)e2™, D ’ 2’
n

d d d, X(E,r,ml2) d d=Y(E,7I2) (A9)
—_t= — — - = 1r17T ) N = 1r17T H
G t=XEr0), - d=Y(Er,0), (A4) d\ d\

and, under the approximate adiabatic calculation, we have and, under the approximate adiabatic calculation, we have

d o . . 1
_ cadi._ cR—ret./ cadi. _— adi._ d ) . . . 1
d)\g 5R (5 )s d)\)(g )\H(Eadi')' ﬁgadL:ngret.(SadL), ﬁX;eldl.: —
(A5) A (E5T)
(A10)
radi— R(O)( gadi.)
radi.zz R(n)(gadi.)eizqu?d‘-' P —y
n
5This fact was proved in Ref14]. (A11)
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d : . . T

_ iadi_ adi. padi. =R =_

d)\t X(&£a ra® w/2), r=R%™(E), 6 >

d , : _

ﬁd)ad":Y(c‘:ad",l’ad",w/Z). (A12) d d

JIZX((C,’,I',’JT/Z), a(ﬁ
When the orbit is circular and equatorial, the orbital equa-
tion becomes =Y(&r,ml2), (A14)

d E=F (& Al13
d\" &), (AL3) and the orbit evolves adiabatically in an exact sense.
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