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Temperature and entropy of Schwarzschild–de Sitter space-time

S. Shankaranarayanan*
DCTD, University of Azores, 9500 Ponta Delgada, Portugal

~Received 23 January 2003; published 24 April 2003!

In the light of recent interest inquantum gravity in de Sitter space, we investigate semiclassical aspects of
four-dimensional Schwarzschild–de Sitter space-time using the method of complex paths. The standard semi-
classical techniques~such as Bogoliubov coefficients and Euclidean field theory! have been useful to study
quantum effects in space-times with single horizons; however, none of these approaches seem to work for
Schwarzschild–de Sitter space-time or, in general, for space-times with multiple horizons. We extend the
method of complex paths to space-times with multiple horizons and obtain the spectrum of particles produced
in these space-times. We show that the temperature of radiation in these space-times is proportional to the
effective surface gravity—the inverse harmonic sum of surface gravity of each horizon. For the
Schwarzschild–de Sitter space-time, we apply the method of complex paths to three different coordinate
systems—spherically symmetric, Painleve´, and Lemaiˆtre. We show that the equilibrium temperature in
Schwarzschild–de Sitter space-time is the harmonic mean of cosmological and event horizon temperatures. We
obtain Bogoliubov coefficients for space-times with multiple horizons by analyzing the mode functions of the
quantum fields near the horizons. We propose a new definition of entropy for space-times with multiple
horizons, analogous to the entropic definition for space-times with a single horizon. We define entropy for these
space-times to be inversely proportional to the square of the effective surface gravity. We show that this
definition of entropy for Schwarzschild–de Sitter space-time satisfies theD-bound conjecture.
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I. INTRODUCTION

Over the last three decades, quantum field theory in
Sitter ~dS! space has been a subject of growing interest
the 1970s, the attention was due to the large symmetry gr
of dS space, which made the field theory in dS space
ambiguous than, for example, in Schwarzschild space-ti
In the 1980s, the focus was due to the role it played dur
inflation—accelerated expansion in the universe’s dist
past. Recent attention to dS space and asymptotic dS sp
times is motivated by two aspects.~i! Observations@1# sug-
gest that the universe might be currently asymptotic dS
approach a pure dS space;~ii ! the success of the AdS
conformal field theory~CFT! correspondence@2# has led to
the intense study of the quantum gravity of de Sitter sp
@3#. The focus has been to obtain an analogue of the A
CFT correspondence in dS space@3–5#. For recent attempts
on the semiclassical aspects of dS and asymptotic dS sp
time in the light of the dS/CFT correspondence, please
Refs. @6–10#. @The authors in Refs.@6,7# extended the
method introduced in Ref.@11# to the Painleve´ coordinates of
~Schwarzschild! dS space-time.#

Even though there has been an extensive study of
semiclassical aspects of dS space-time~for a recent review,
see Ref.@12#! very little has been understood in the case
Schwarzschild-de Sitter~SdS! space-time.~An incomplete
list of references, with regard to the semiclassical aspec
given in Refs. @13–16#.! The fundamental difference be
tween SdS and dS~also Schwarzschild! space-times is the
existence of multiple horizons. SdS space-time has tw
cosmological and event—horizons, while dS~and Schwarzs-
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child! space-time has only one horizon.
Various semiclassical approaches or techniques~such as

Bogoliubov coefficients, particle detectors, effective actio
Euclidean field theory! have been used in the literature
study quantum effects in space-times with a single horiz
~like dS and Schwarzschild space-times!. All the approaches
conclude that the notion of temperature~and entropy! of the
space-time is associated with the horizon. In the case of
goliubov coefficients, one uses the mode functions to ob
the spectrum of particles, while using Euclidean field theo
one obtains temperature using periodicity arguments. E
though these approaches work well for space-times wit
single horizon, none of them work for SdS or, in gener
space-times with multiple horizons. A naive extension
these approaches to SdS space-time leads us to the co
sion that the SdS space-time has two different temperat
associated with the two horizons. Using this extension, it
been argued@6,17# that the SdS space will inevitably evolv
toward an empty de Sitter space, indicating that SdS sp
time may never be in thermodynamic equilibrium with
single temperature associated with the space-time.

The above argument seems to be in contradiction with
well known case of a Schwarzschild black hole in therm
equilibrium with radiation in a bounded box. In this case, t
black hole has a negative specific heat while the radia
has a positive specific heat. The two will be in thermal eq
librium if the box is bounded, in other words compact. O
the contrary, if the box is unbounded the black hole eva
rates completely. The situation is identical to the case of
interest—black holes in de Sitter space. The de Sitter sp
is compact with no notion of spatial infinity. In addition,
has a positive specific heat similar to the above mentio
case. The specific heat of de Sitter space is given by@12,14#
©2003 The American Physical Society26-1
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CV5
]E

]T
5

1

4pTdS
2

5p l 25SdS, ~1!

where SdS (TdS) is the entropy~temperature! of de Sitter
space. However, the difference between de Sitter space
the bounding box is that the de Sitter has a~cosmological!
horizon while the bounding box, by construction, does
possess a horizon. The similarity of the two systems stron
suggests that we should be able to obtain a temperature
SdS space corresponding to a system in thermal equilibri

Given this, one would like to ask the following questio
Can one obtain a temperature for SdS space which co
sponds to a system in thermal equilibrium using semicla
cal techniques? The purpose of this paper is an attemp
this direction. As mentioned in earlier paragraphs, stand
quantum field theoretic techniques have not proven us
for space-times with multiple horizons. In this paper, we e
tend the method of complex paths to space-times with m
tiple horizons and obtain the spectrum of particles produ
in these space-times.~The method of complex paths ha
proved to be useful in obtaining the temperature associ
with a quantum field propagating in a spherically symme
coordinate space-times with single horizon@18–21#.! We
show that the temperature of radiation in these space-tim
proportional to the effective surface gravity—the inverse h
monic sum of the surface gravity of each horizon. In the c
of Schwarzschild–de Sitter space time we apply the met
of complex paths to three different coordinate system
spherically symmetric, Painleve´, and Lemaiˆtre. We show that
the equilibrium temperature in Schwarzschild–de Sit
space time is the harmonic mean of the cosmological
event horizon temperatures. We obtain Bogoliubov coe
cients for space-times with multiple horizons by analyzi
the mode functions of the quantum fields near the horizo

We propose a new definition of entropy for space-tim
with multiple horizons analogous to the entropic definiti
for space-times with a single horizon. We define the entro
for these space-times to be inversely proportional to
square of the effective surface gravity. We show that t
definition of entropy for SdS space-time satisfies
D-bound conjecture@22#.

The paper is organized as follows. In Sec. II A, we discu
the general properties of spherically symmetric space-tim
A brief description of SdS geometry is given in Sec. II B.
Sec. III A, we apply the method of complex paths to gene
spherically symmetric space-times and show that the equ
rium temperature is proportional to the inverse harmo
sum of the surface gravity of each horizon. In Secs. III B a
III C, we apply the method of complex paths to three co
dinate systems—spherically symmetric, Painleve´, and
Lemaître—of SdS space-time. In Sec. V, we propose a n
definition of entropy for space-times with multiple horizo
and discuss its implications for SdS space-time. Finally
Sec. VI, we discuss the results.

Throughout this paper, the metric signature we shall ad
is (2,1,1,1). We use greek letters for~311!D and lower
case latin letters for~111!D. The quantum field is a mass
less, minimally coupled scalar field (F).
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II. SPHERICALLY SYMMETRIC SPACE-TIMES

A. General analysis

The line element for an interval in a spherically symm
ric space-time can be written in the following form:

ds2[gmn
(4) dxm dxn5gab

(2) dxa dxb1exp@22f~xa!#dV2

~2!

52exp@n~x0,x1!#~dx0!21exp@l~x0,x1!#~dx1!2

1exp@22f~x0,x1!#dV2, ~3!

wheredV2 is the two-dimensional angular line element. A
discussed in Ref.@23# ~see also Refs.@19#!, the space-time
structure of spherically symmetric space-times can be un
stood via theR and T regions. If at the given event in th
coordinate system~3! the inequality

exp@n2l#.S ]f

]x0Y ]f

]x1D 2

~4!

is satisfied, then the event is defined as in theR region. „If
the above inequality is satisfied at a certain world point th
by virtue of the continuity@exp(n2l), ]f/]x0, ]f/]x1 can-
not be discontinuous# it is satisfied in some neighborhood o
this point. Thus, the points in the neighborhood of this s
tem of coordinates satisfy the above inequality and areR
points and a set of them is anR region.… If the opposite
inequality is satisfied, the event is in aT region. The defini-
tions of R and T regions can be shown to be coordina
invariant.

Spherically symmetric coordinate. Choosing the
Schwarzschild gauge, the line element~3! can be written as

ds252g~r !dt21
dr2

g~r !
1r 2 dV2, ~5!

whereg(r ) is an arbitrary~continuous, differentiable! func-
tion of r. For space-times with a single horizon~like
Schwarzschild, dS!, g(r ) vanishes at one point, say,r 5r 0.
Near r 0 , g(r ) can be expanded as

g~r !5R~r 0!~r 2r 0!, ~6!

whereR(r 0) is twice the surface gravity (k) of the horizon.
For space-times with multiple horizons~like SdS!, g(r )

vanishes at more than one point, say,r 5r i , where i
51,2, . . . ,n. In general,g(r ) can be written in the follow-
ing form

g~r !5a
~r 2r 1!~r 2r 2!~r 2r 3!•••~r 2r n!

r m
, ~7!

where a is a constant,m,n, r n.r n21.•••.r 1, and all
r i ’s are assumed to be positive. Around each of these po
one can expandg(r )5R(r i) (r 2r i) where R(r i)/2 is the
surface gravity (k i) of each of these horizons.

The R(T) region in the spherically symmetric coordina
system satisfies the inequality conditiong(r ).0 @g(r )
6-2
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,0#. For space-times with multiple horizons, sinceg(r ) has
multiple zeros, there are multipleR andT regions.

Painlevé coordinate. In order to obtain a line elemen
which is regular at the horizon, we define a new time co
dinate (tP) which is related to the static time coordinate~t!
by the relation

t5tP6 f ~r !, ~8!

wheref is required to be a function ofr alone to ensure tha
the metric remains stationary@6,7#. The form of f (r ) can be
obtained by imposing the condition that the resulting me
be regular at the horizon. This can be realized by demand
that the constant-time slices be flat, i.e.,

1

g~r !
2g~r !Fd f

dr G
2

51 ⇒ d f

dr
5

A12g~r !

g~r !
. ~9!

Substituting the expressions forf (r ) andt in Eq. ~5!, we get

ds252g~r !dtP
2 62A12g~r ! dr dtP1dr21r 2 dV2.

~10!

We will refer to the above line element as thePainlevéco-
ordinate. The above line element is a stationary—but no
static—system. The1 sign in the cross term corresponds
the ingoing null geodesic while the2 sign corresponds to a
outgoing null geodesic.

For both ingoing and outgoing null geodesics, the
equality condition for theR region is given byg(r ).0,
implying that the whole of space-time is doubly mapped w
respect to spherically symmetric coordinate system@19#.

Lemaiˆtre coordinate. We can get rid of the cross term i
line element~10! by performing a transformation of the ra
dial coordinate (r ). This can be achieved by demanding th
a set of curves@ tP ,r (tP)# have tangent vectors (1,dr/dt)
orthogonal to the surface of constant Painleve´ time. This
gives

R7tP5E dr

A12g~r !
. ~11!

Substituting forr in Eq. ~10!, we get

ds252dtP
2 1@12g~r !#dR21r 2 dV2. ~12!

We will refer to the above line element as theLemaiˆtre co-
ordinate. The line element is explicitly dependent on tim
and test particles at rest relative to the reference system
particles moving freely in the given field. The coordina
system can be modeled as that natural to a freely infall
outfalling observer whose velocity at radial infinity is zer
@The2 sign in Eq.~11! corresponds to the infalling observe
while the 1 sign in Equ.~11! corresponds to an outfalling
observer.#

In terms of the spherically symmetric coordinate time (t),
we have

R7t5E dr

g~r !

1

A12g~r !
. ~13!
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From Eq.~11! it can be seen that

r 5function of ~R7tP!. ~14!

For the upper sign in Eq.~11!, defining 12g(r )5F(U) and
r 25G(U), the Lemaiˆtre line element~12! in terms of the
light cone coordinates (U,V) (U[R2tP , V[R2tP) is

ds25S F~U !21

4 D ~dV21dU2!

12S F~U !11

4 DdU dV1G~U !dV2. ~15!

For the line element corresponding to an infalling observ
the R region is given byF(U).0. For theT region, the
inequality is opposite. For an outfalling observer, theR re-
gion is given by the inequalityF(V).0.

In the T region there is an asymmetry in the direction
flow and hence theT regions corresponding to the infallin
and outfalling observer will be different while theR regions
will be the same.~For an elaborate discussion on this aspe
please refer to Refs.@19#.! Hence, theT region in the
Lemaître coordinates is a doubly mappedT region of spheri-
cally symmetric coordinates@19#.

B. Schwarzschild–de Sitter space-time

The spherically symmetric coordinate of SdS space-ti
is given by the line element~5!, where

g~r !5S 12
2M

r
2

r 2

l 2 D , ~16!

M is the mass of the black hole, andl 2 is related to the
positive cosmological constant. The space-time has m
than one horizon if 0,y,1/27 wherey5M2/ l 2. The black
hole horizon (r h) and the cosmological horizon (r c) are lo-
cated, respectively, at

r h5
2M

A3y
cos

p1c

3
, ~17!

r c5
2M

A3y
cos

p2c

3
, ~18!

where

c5cos21~3A3y!. ~19!

In the limit of y→0, we getr h→2M and r c→ l . ~Note that
r h,r c , i.e., the event horizon is the smallest positive roo!
The space-time is dynamic forr ,r h andr .r c . In the limit
y→1/27, the two horizons—event and cosmological
coincide and is the well known Nariai space-time. Ify
.1/27, the space-time is dynamic for allr .0.

The surface gravity of these horizons is given by@24#

kh5aUM2
2

r h

2U , ~20!

r h l

6-3
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FIG. 1. ~A! is the Penrose diagram of the de Sitter space where the left and right sides are identified. The spherically sy
coordinate system of de Sitter space covers region I while the Painleve´ and Lemaiˆtre coordinate systems cover regions I and II.~B! is the
Penrose diagram illustrating the causal structure of the Schwarzschild–de Sitter space-time. Here again, the left and right sides are
The spherically symmetric coordinate system covers regions I and II. The Painleve´ coordinate system covers regions II and III.
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r c

2
2

r c

l 2U , ~21!

where

a5
1

A12~27y!1/3
. ~22!

In the limit of y→0, we getkh→1/(4M ) andkc→1/l . The
ranges ofkh andkc are

3A3

4l
,kh,

A3

l
⇒ l

A3
,

1

kh
,

4l

3A3
, ~23!

1

l
,kc,

A3

l
⇒ l

A3
,

1

kc
, l . ~24!

@The above ranges are obtained by settingy→0 and y
→(1/27) in Eqs.~20!,~21!.#

Figure 1~B! illustrates one version of the Penrose diagr
of SdS space-time.~For an easy comparison, we have al
provided the Penrose diagram of de Sitter space.! The static
coordinate system covers regions I and II of the Penr
diagram. The boundaries of the static region consist of~i!
past and future cosmological horizons, and~ii ! past and fu-
ture event horizons.

The Painleve´ line element of SdS space-time is given b

ds252g~r !dtP
2 62A2M

r
1

r 2

l 2
dr dtP1dr21r 2 dV2.

~25!

wheretP is related tot by the relation

t5tP6E dr
A2M /r 1r 2/ l 2

~122M /r 2r 2/ l 2
. ~26!

The above line element is a stationary—but not a stati
system and it covers regions II and III of the Penrose d
gram. The1 sign in the above chart is suitable for studyin
the physical experience of observers falling freely and ra
ally into the hole.~The1 sign in the cross term correspond
08402
e
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to the ingoing null geodesic while the2 sign corresponds to
an outgoing null geodesic.! For both ingoing and outgoing
null geodesics, the inequality condition for theR region@23#
is given byg(r ).0, implying that the whole of space-tim
is doubly mapped with respect to the spherically symme
coordinate system~5!.

The Lemaiˆtre line element is given by

ds252dtp
21S 2M

r
1

r 2

l 2 D dR21r 2 dV2, ~27!

where

2r 3/25~2Ml 2!expF2
3~R6tp!

2l G2expF3~R6tp!

2l G .
~28!

The line element is explicitly dependent on time and t
particles at rest relative to the reference system are part
moving freely in the given field.R2tP in the right-hand side
~RHS! of the above equation corresponds to the infalli
observer while theR1tP in the RHS of the above expressio
corresponds to an outfalling observer. Like the Painleve´, the
Lemaître line element also covers regions II and III of th
Penrose diagram.

For the line element corresponding to an infalling o
server, theR region @23# is given by F(U).0 (U5R
2tP). For theT region, the inequality is opposite. For a
outfalling observer, theR region is given by the inequality
F(V).0.

III. PARTICLE PRODUCTION IN SPACE-TIMES
WITH MULTIPLE HORIZONS

In Refs. @18–20# the method of complex paths was a
plied to space-times with a single horizon. The temperat
associated with the quantum field~in the three coordinate
systems—spherically symmetric, Painleve´, and Lemaiˆtre! in
these space-times were shown to be consistent with the
peratures obtained by using other quantum field theor
techniques like Bogoliubov coefficients, Euclidean fie
theory, and the effective action. As discussed in the Introd
tion, the standard quantum field theoretic techniques do
work well for space-times with multiple horizons. In th
6-4
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section, we extend the method of complex paths to spa
times with multiple horizons and in particular t
Schwarzschild–de Sitter space-time. We show that the ef
tive temperature for the quantum fields in these space-ti
is proportional to the inverse harmonic sum of the surfa
gravity at each horizon.

A. General spherically symmetric space-time

In this subsection, we obtain the effective temperature
general spherically symmetric space-time with multiple h
rizons.~The result in this subsection is from Ref.@26# and is
summarized here for completeness.!

Consider a quantum field propagating in a general sph
cally symmetric space-time~5! with multiple horizons. The
wave equation is given by

]m~A2ggmn]n!F50,

r 2

g~r !

]2C

]t2
2

]

]r S r 2g~r !
]C

]r D1L2C50. ~29!

where F(xm)5C(t,r )Ylm(u,f). The semiclassical wave
functions satisfying the above are obtained by making
ansatz

C~r ,t !5expF i

\
S~r ,t !G , ~30!

whereS is a functional which will be expanded in powers
\. ExpandingS in a power series of\,

S~r ,t !5S0~r ,t !1\S1~r ,t !1\2S2~r ,t !1•••, ~31!

and substituting the resulting expression in Eq.~29! ~neglect-
ing terms of order\ or higher!, we have

2
1

g~r ! S ]S0

]t D 2

1g~r !S ]S0

]r D 2

1
L2

r 2
50. ~32!

This is simply the Hamilton-Jacobi equation satisfied by
massless particle moving in a general spherically symme
coordinate. Making the ansatzS052Et1B(r ), we get

B~r !56E r dr

g~r !
AE22~L2/r 2!g~r !

56
E

aE
r

dr
r m

~r 2r 1!~r 2r 2!•••~r 2r n!
. ~33!

~The last expression is obtained by settingL50 and noticing
that near the horizon the presence of theL2 term can be
neglected. It can also be noted that the above expressio
valid for an arbitrary dimension and hence the followi
result is true for a spherically symmetric space-time in
arbitrary dimension.! Rewriting the RHS in the above ex
pression with partial fractions, i.e.,

1

a

r m

~r 2r 1!~r 2r 2!•••~r 2r n!
5(

i 51

n
Ai

~r 2r i !
, ~34!
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where

Ai5
r i

m

a )
j 51

n
1

~r i2r j !

5
1

~m21!k i
, j 5” i , ~35!

andk i is the surface gravity of each of the horizons. Subs
tuting the above expressions in Eq.~33!, we get

B~r s ,r f !56
E

m21 (
i 51

n
1

k i
E

r s

r f dr

r 2r i
. ~36!

The sign ambiguity is related to theoutgoing (]S0 /]r .0)
or ingoing (]S0 /]r ,0) nature of the particle. Unlike space
times with a single horizon@18,19#, space-times with mul-
tiple horizons have many possible ways of choosing the
tial (r 1) and final (r 2) points. However, we will consider a
particular situation of the particle crossing all the horizon
i.e., r s,r 1 and r f.r n . ~This result can be used to obta
other possible cases.!

For an outgoing particle (]S0 /]r .0) with respect to the
horizon (r 1), the contribution toS0 is

S0~emission!52
E

~m21!k1
E

r 12e

r 11e dr

r 2r 1

2
E

~m21!k2
E

r 21e

r 22e dr

r 2r 2
2•••

2
E

~m21!kn
E

r n1e

r n2e dr

r 2r n
1real part

5 i
pE

~m21!keff
1real part, ~37!

where

1

keff
5(

i 51

n
1

k i
, ~38!

and the2 sign in front of the integrals corresponds to th
condition that]S0 /]r .0 at r 5r s,r 1 and ]S0 /]r ,0 at r
5r f.r n and the integrals are evaluated by taking the c
tours to lie in the upper complex plane. It should be no
that the above expression can also be considered as th
tion for the ingoing particles with respect to the horizonr n .
@Note that we have assumed allr i ’s to be positive, and hence
S0 will have animaginarycontribution from all of them. For
SdS space-time, which we consider in detail, one of the ro
of g(r ) is negative and will not contribute toS0.#

Using the above procedure, the action for an ingoing p
ticle (]S0 /]r ,0) with respect to the horizonr 1 is given by
6-5
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S0~absorption!52
E

~m21!k1
E

r 11e

r 12e dr

r 2r 1

2
E

~m21!k2
E

r 22e

r 21e dr

r 2r 2
2•••

2
E

~m21!kn
E

r n2e

r n1e dr

r 2r n
1real part

52 i
pE

~m21!keff
1real part. ~39!

The last expression is obtained by evaluating the integ
with the contours taken in the lower half plane. Taking t
modulus square of Eqs.~37!,~39!, we get

P@emission#5expF2
4pE

~m21!keff
GP@absorption#. ~40!

The exponential dependence on the energy allows on
give a thermal interpretation for the above result. The tem
perature of the emission spectrum is given by

b215
~m21!

4p
keff . ~41!

The above result shows that the spectrum of particles cre
in a spherically symmetric space-time with multiple horizo
is thermal, and the temperature is proportional to the inve
harmonic sum of the surface gravity of each horizon. T
above result can be interpreted as a particle propagating
inside the horizon (r 1) to outside the horizon (r n) and pick-
ing up exp(2biE) at each horizon, resulting in exp@2bE).
~Note that we have neglected the backscattering of the
ticles from the horizon.! The above analysis can be pe
formed in Painleve´ and Lemaiˆtre coordinates for thes
multiple-horizon space-times as discussed in Appendix A
the next section, we explicitly demonstrate the above re
for three different coordinate systems of SdS space-time

B. Spherically symmetric SdS coordinate

For a quantum field propagating in the spherically sy
metric coordinate system of SdS space-time, the field eq
tion is given by Eq.~29! whereg(r ) is given by Eq.~16!. In
the previous section we assumed that all the roots ofg(r ) are
positive and henceS0 has contributions from allr i ’s. How-
ever, for SdS space-time, one of the roots ofg(r ) is negative
and the results in the previous section do not follow au
matically.

Making the usual semiclassical ansatz forC, and expand-
ing S in powers of\, we get

B~r !56E r dr

g~r !
AE22L2/r 2g~r !

56EE r dr

122M /r 2r 2/ l 2
, ~42!
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where the last expression is obtained by settingL50. After
a bit of lengthy algebra, it can be shown that

S 12
2M

r
2

r 2

l 2 D 21

5
a

2kh~r 2r h!
2

a

2kc~r 2r c!

2
a

2 S 1

kh
2

1

kc
D 1

r 1r c1r h
, ~43!

wherekh ,kc are given by expressions~20!,~21! and r h ,r c
are given by Eqs.~17!,~18!. Substituting the above expres
sion in Eq.~42!, we get

B~r !56
Ea

2kh
E r dr

r 2r h
7

Ea

2kc
E r dr

r 2r c

7
Ea

2 S 1

kh
2

1

kc
D E r dr

r 1r c1r h
. ~44!

The sign ambiguity is related to theoutgoing (]S0 /]r .0)
or ingoing (]S0 /]r ,0) nature of the particle. Unlike space
times with a single horizon@18,19#, SdS has many possibl
ways of choosing the initial (r 1) and the final (r 2) points.
The following scenarios will be investigated.

~1! r 1,r h andr 2.r c : The first two integrals in the RHS
of Eq. ~44! do not exist.

~2! r 1,r h andr 2,r c : The first integral in the RHS of the
above expression does not exist since the denominator
ishes atr 5r h .

~3! r 1.r h andr 2.r c : The second integral in the RHS o
the above expression does not exist since the denomin
vanishes atr 5r h .

In what follows, we shall obtain the spectrum of particl
produced in the first scenario.~The other two cases follows
automatically from this discussion.!

In the first case, both the points are outside the reg
(r h ,r c). Hence, the contribution to the probability amplitud
for emission and absorption will be due to both t
horizons—event and cosmological. For an outgoing part
(]S0 /]r .0) with respect to the event horizon (r h), the con-
tribution to S0 is

S0~emission!52
Ea

2kh
E

r h2e

r h1e dr

r 2r h
2

Ea

2kc
E

r c1e

r c2e dr

r 2r c

1real part ~45!

5 i
pEa

2keff
1real part, ~46!

where

keff5F 1

kh
1

1

kc
G21

, ~47!

and the2 sign in front of the integrals corresponds to th
condition that]S0 /]r .0 at r 5r 1,r h and ]S0 /]r ,0 at r
5r 2.r c and the integrals are evaluated by taking the c
tours to lie in the upper complex plane. It should be no
6-6
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that the above expression can also be considered as th
tion for the ingoing particles with respect to the cosmologi
horizon (r h).

Using the above procedure, the action for an ingoing p
ticle (]S0 /]r ,0) with respect to the event horizon (r c) is

S0~absorption!52
Ea

2kh
E

r h1e

r h2e dr

r 2r h
2

Ea

2kc
E

r c2e

r c1e dr

r 2r c

1real part ~48!

52 i
pEa

2keff
1real part, ~49!

where the integrals are evaluated by taking the contour in
lower half plane. Taking the modulus squared, we get

P@emission#5expF2
2pEa

keff
GP@absorption#. ~50!

The exponential dependence on the energy allows on
give a thermal interpretation for the above result. The tem
perature of the emission spectrum is given by

b215
1

2pa

khkc

kh1kc
. ~51!

The following features are noteworthy regarding this resu
~i! The equilibrium temperature in SdS space-time is

versely proportional to the harmonic mean of the two ho
zons.@The range ofkeff is (1/l ),keff,(A3l ).#

~ii ! In this case, radiation is propagating inward from t
cosmological horizon and outward from the black-hole ho
zon. ~We have neglected the scattering of the radiation fr
these horizons.! Thus, there is a constant flux of radiatio
flowing between these horizons and a static observer is
thermal bath of radiation with the above temperature.~This
result was obtained in Ref.@15# from the Euclidean quantum
gravity point of view.!

~iii ! In the limit of 1/l→0, it reproduces the Hawking
temperature for a Schwarzschild black hole in asymptotic
flat space-time.

~iv! In the limit of M→0, this reproduces the Gibbons
Hawking temperature for a vacuum de Sitter space-time

~v! In the Nariai limit (y→1/27), the event and cosmo
logical horizons coincide. Thus, the results obtained
space-times with multiple horizons cannot be applied. In
Nariai limit, using the analysis performed in Ref.@18# and
Appendix A, we get@24#

bNariai
-1 5

A3

2p l
. ~52!

C. Painlevéand Lemaître SdS coordinate

Let us now consider a scalar field propagating in the Pa
levé coordinate system of SdS space-time. Retracing
steps as discussed in Appendix A, we get~for L50)
08402
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B~r !5EE r

dr
A2M /r 1r 2/ l 261

122M /r 2r 2/ l 2
. ~53!

As discussed in Sec. II B, Painleve´ coordinates cover region
II and III. In the Painleve´ coordinate system, as opposed
spherically symmetric coordinates, there are only two p
sible ways of choosing the initial (r 1) and final (r 2) points:
~i! both the points are on one side ofr h and ~ii ! the two
points lie on the opposite sides of the event horizon.

For an outgoing particle (]S0 /]r .0) with respect to the
event horizon (r c), the contribution toS0 is

S0@emission#52
Ea

kh
E

r h2e

r h1e dr

r 2r h
1real terms

5 i
pEa

kh
1real terms. ~54!

In order to obtain the action for absorption of particles c
responding to the ingoing particles@(]S0 /]x),0#, we have
to repeat the above calculation for the lower sign of the m
ric given in Eq.~25!. In this case, it is easy to see that th
only singular solution corresponds to ingoing particles a
we get

S0@absorption#52
pEa

kh
1real terms. ~55!

Constructing the semiclassical propagator in the usual m
ner and taking the modulus squared we obtain the proba
ity. From the earlier discussion, we know that in calculati
the probability of absorption/emission there is an extra c
tribution to the probability from four sets of complex path
satisfying the semiclassical ansatz. Taking this into acco
we get

b215
kh

2pa
. ~56!

In the case of Lemaiˆtre coordinates, repeating the above pr
cedure it is easy to show that the temperature of the radia
is the same as that obtained in the case of Painleve´ coordi-
nates and case II of spherically symmetric coordinates.
Painlevéand Lemaiˆtre observers will be in thermal equilib
rium with the above temperature.

IV. BOGOLIUBOV COEFFICIENTS FOR SPACE-TIMES
WITH MULTIPLE HORIZONS

In this section, we extend the analysis of Appendix B a
obtain Bogoliubov coefficients for space-times with multip
horizons. The equation of motion for the scalar field in t
spherically symmetric coordinate is given by Eq.~29!. Near
each of the horizons, the solution to the wave equation
given by

C5C1
i exp~2 iEt !~xi !

iE/R(r i ), ~57!
6-7
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whereC1
i is an arbitrary constant.C* is also a solution to

the scalar field equation~29!. For each horizon, we can writ
the two sets of modes as

C~xi,0!5C1
i c~2xi !1C2

i c* ~2xi !,

C~xi.0!5Ca
i c~xi !1Cb

i c* ~xi !, ~58!

whereC1
i , C2

i , Ca
i , andCb

i are constants to be determine
We obtain a relation between the different constants sim
to that in the single horizon case. They are given by

Ca
i 5C1

i exp@pE/R~r i !#, ~59!

Cb
i 5C2

i exp@2pE/R~r i !#. ~60!

This leaves us with identifying the relation between the t
constants (C1

i ,C2
i ) to the left of the horizonr i . For space-

times with a single horizon, we assumed that the net cur
to the left of the horizon is zero. However, for space-tim
with multiple horizons, the above assumption is not valid

In order to see this explicitly, let us consider a quantu
field propagating in spherically symmetric coordinates o
SdS space-time which has two horizons—event and cos
logical. Letr i be the cosmological horizon. To the left of th
cosmological horizon, the net current is nonzero due to
presence of an event horizon which produces thermal ra
tion. ~Here we are assuming that the backscattering of
particles from the event horizons can be neglected.! In this
case,C1

i andC2
i are related by

uC1
i u25exp~22paE/kh!uC2

i u2. ~61!

This gives

UCb
i

Ca
i U2

5exp@22paE/keff#. ~62!

Interpreting uCa
i u2[uaE

i u2 and uCb
i u2[ubE

i u2 as Bogoliubov
coefficients and using the unitary condition, we have

uaE
i u25

1

12exp@22paE/keff#
,

ubE
i u25

1

exp@2paE/keff#21
. ~63!

The following features are noteworthy regarding th
result.

~1! ubE
i u2 is a Planck spectrum with a temperature giv

by Eq. ~51!.
~2! The Bogoliubov coefficients at each of the horizo

are the same implying that the space-time is in thermal e
librium with temperature proportional tokeff .

~3! The condition in Eq.~61! has been crucial in obtainin
the result. The condition implies that a particle propagat
from inside the horizon (r h) to outside the horizon (r c) picks
up exp@2bhE# and exp@2bcE#, resulting in exp@2bE).
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~4! In the Nariai limit, the condition~61! is not valid and
we need to impose the condition~B6! ~which implies that the
net current to the left of the horizon is zero!. In this case, the
Bogoliubov coefficients are given by Eqs.~B8! where k
5 l /A3.

V. ENTROPY OF SdS

In this section, we propose a new definition of entropy
space-times with multiple horizons analogous to the entro
definition for space-times with a single horizon and discu
the implications in the context of SdS space-time.

For space-times with a~compact! single horizon, the en-
tropy is given by

S~single horizon!5
A

4
5c

p

k2
, ~64!

wherec51 and 1/4 for dS and Schwarzschild space-tim
respectively. Assuming that the relation betweenS and k
holds true for space-times with multiple horizons, the e
tropy for space-times with multiple horizons can be writt
as

S~multiple horizons!5
p

keff
2

, ~65!

wherekeff is given by Eq.~38!. The following features are
noteworthy regarding this expression.

~i! The above expression can be treated as an ent
associated with a single~effective! horizon for space-times
with multiple horizon. For SdS space-times, this correspo
to the entropy of the system in thermal equilibrium with t
temperature~51!.

~ii ! In the literature, the entropy of space-times with mu
tiple horizons is defined as the sum of the entropies of in
vidual horizons. Using our definition, the entropy will hav
extra nonzero contributions. In the case of SdS space-tim
we have

SSdS5
p

kh
2

1
p

kc
2

1
2p

kckh
. ~66!

If we set

p

kh
2

5Sh ,
p

kc
2

5Sc , ~67!

then the expression for the entropy of SdS space-times
be written as

SSdS5Sh1Sc12AScSh, ~68!

where Sh ,Sc are the entropies of event and cosmologic
horizons, respectively.

~iii ! The entropy of the SdS space-time obtained in E
~66! satisfies theD-bound conjecture@22#.
6-8
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Following the discussion in Sec. II B, we know that th
range ofkeff is (1/l ,A3/l ). @The range of 1/keff is (l /A3,l ).#
Substituting the range ofkeff in the expression for entropy
we get

SSdS,p l 2[SdS. ~69!

~iv! The form of the entropy in Eq.~68! is similar to Eq.
~5.1! of Ref. @17#. In Ref. @17#, the authors showed that th
final values of the entropies of the event (SB) and cosmo-
logical (SC) horizons satisfy the inequality

SB1SC1ASBSC<p l 2. ~70!

In our case, the inequality~69! is satisfied for all values o
entropies of the event and cosmological horizons. TheD
bound we have obtained in Eq.~69! is a stronger inequality
than that of~70!.

VI. CONCLUSIONS

In this paper, we have studied the spectrum of crea
particles in SdS space-time for a linear, massless scalar
using the method of complex paths. We have shown that
possible to obtain a temperature for SdS space-time w
corresponds to a system in thermal equilibrium. The equi
rium temperature is the harmonic mean of the event
cosmological horizon temperatures. We have also obta
the same result by calculating the Bogoliubov coefficie
using the wave modes near the horizons.

It has been assumed in the literature that the entrop
space-times with multiple horizons is the sum of the ent
pies of individual horizons. In this paper, we have propos
a new definition of entropy for space-times with multip
horizons, analogous to the entropic definition of entropy
space-times with a single horizon. We have defined the
tropy for these space-times to be inversely proportiona
the square of the effective surface gravity. Using this defi
tion, we have shown that the entropy of SdS space-time
isfies theD-bound conjecture@22#. In Ref. @25#, the authors
have proposed a definition for entropy outside the cosm
logical horizon in SdS space-time which satisfies theD
bound. It is interesting to look for the connection betwe
the two proposed entropies.

The above result brings attention to the following inte
esting questions.

~1! For space-times with a single horizon, there is
unique way of obtaining a global coordinate system. F
space-times with multiple horizons, it has not been poss
to obtain a global coordinate system. Is it possible to obt
a global coordinate system whose Euclidean metric has
riodicity proportional tokeff?

~2! Can we obtain stress tensors for SdS space-time w
correspond to the thermal state with the temperature pro
tional to keff?

~3! What kind of quantum vacuum state will this corr
spond to?

We hope to return to study some of these problems in
near future.
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APPENDIX A

In this appendix, we generalize the results of Ref.@19# to
two nonsingular coordinate systems—Painleve´ and
Lemaître—of a general spherically symmetric space-tim
~with a single horizon!. We show that the temperature ass
ciated with the radiation in these two coordinate systems,for
space-times with a single horizon, is the same as in the
spherically symmetric coordinate system. These results
be extended to space-times with multiple horizons wh
g(r ) is given by Eq.~7!.

In the context of the method of complex paths, these t
coordinate systems possess the interesting feature of do
mapping of the paths. In the following, we briefly descri
the multiple mapping of space-time and the measure of th
paths. In Refs.@19#, it was argued that the family of comple
paths used to calculate the emission/absorption probab
takes into account all paths irrespective of the multiple m
ping of that part/whole of the space-time.

Let us consider a coordinate system like the Painleve´ sys-
tem where the whole of the space-time is doubly mapp
with respect to the spherically symmetric coordinate. T
space-time has two distinctR andT regions. Hence, the com
plex paths will haveequalcontributions from both of these
which do not have any point in common. Hence, the con
bution to the amplitude of emission/absorption by these t
paths will be mutually exclusive.

In the case of coordinate systems where part of the sp
time is doubly mapped with respect to the spherically sy
metric coordinate~as in the case of Lemaiˆtre coordinates!, it
is always possible to find one point that is common to
paths contributing to absorption/emission. Hence, these p
are not mutually exclusive. These paths, on the other ha
will be mutually exclusive when one considers the probab
ity amplitude—which is the important quantity in our ap
proach. Hence, the action we obtain by regularizing the s
gularity and the resulting probability amplitude, fo
absorption/emission, will have equal contributions from bo
these paths.

1. Painlevécoordinate system

Let us consider a quantum field propagating in the Pa
levé line element~10! with the1 signature in the cross term
The equation for a scalar field propagating in general Pa
levé coordinates is given by

r 2
]2C

]tP
2

12r 2A12g~r !
]2C

]r ]tP
1

d

dr
@r 2g~r !#

]C

]r

2r 2g~r !
]2C

]r 2
1

d

dr
@r 2A12g~r !#

]C

]tP
52L2C,

~A1!
6-9
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where F(xm)5C(tP ,r )Ylm(u,f). Making the standard
semi-classical ansatz forC and expandingS in powers of\
as discussed in Sec. III A, we get, to the lowest order,

2S ]S0

]tP
D 2

12A12g~r !S ]S0

]r D S ]S0

]tP
D

1g~r !S ]S0

]r D 2

1
L2

r 2
50. ~A2!

The above equation is the Hamilton-Jacobi equation o
massless particle propagating in a general Painleve´ line ele-
ment ~10!. Substituting the ansatzS052EtP1B(r ) in the
above expression, we get

dB

dr
5

EA12g~r !

g~r !

6
A4E2@12g~r !#24g~r !@E22L2/r 2#

g~r !
. ~A3!

It is easy to see that, near the horizon, the presence of thL2

term can be neglected since it is multiplied byg(r ). Thus for
L50 we have

B~r !5EE r

dr
A12g~r !61

g~r !

5EE r

dr
A12g~r !

g~r !
6EE r dr

g~r !
. ~A4!

For space-times with a single horizon, one can expandg(r )
around the horizon asg(r )5R(r 0)(r 2r 0). The numerator
in the first integral~in the RHS! of the above expression ca
be approximated to unity near the horizon. Noticing that
denominator is singular atr 5r 0 only for the positive sign,
we get the action for the outgoing particle as

S0@emission#522EE
r 02e

r 01e dr

g~r !
1real part

51
2ipE

R~r 0!
1real part. ~A5!

In order to obtain the action for absorption of particles c
responding to the ingoing particles@(]S0 /]r ),0#, we have
to repeat the above calculation for the metric~10! with a 2
sign in the cross term. In this case, it is easy to see that
only singular solution corresponds to ingoing particles a
so

S0@absorption#52
2ipE

R~r 0!
1real part. ~A6!

Constructing the semiclassical propagator in the usual m
ner and taking the modulus squared we obtain the proba
ity. Extending the double mapping of the paths to the gen
alized Painleve´ coordinates and squaring the modulus to
08402
a

e

-

he
d

n-
il-
r-
t

the probability, we get the temperature associated with
quantum fields propagating in generalized Painleve´ coordi-
nates as

b215
R~r 0!

4p
5

k~r 0!

2p
. ~A7!

For dS space-time,g(r )5(12r 2/ l 2), k5(1/l ), and hence
the temperature associated with the radiation is 1/(2p l ).

2. Lemaître coordinate system

Consider a quantum field propagating in the gene
spherically symmetric space-times described by the Lemaˆtre
line element~12!. The scalar field equation@for the2 sign in
the expression~11!# is given by

2
]

]tP
F r 2A12g~r !

]C

]tP
G1

]

]RF r 2

A12g~r !

]C

]RG
2A12g~r !L2C50, ~A8!

where F(xm)5C(tP ,R)Ylm(u,f). Noting from Eq. ~11!
thatr is related toR2tP[U, the above equation rewritten i
terms of the light-cone coordinates (U,V) translates into

]

]V F „F~U !21…G~U !
]C

]V G1
]

]U F „F~U !21…G~U !
]C

]U G
1

]

]V F „F~U !11…G~U !
]C

]V G
1

]

]U F „F~U !11…G~U !
]C

]V G
22

AF~U !

G~U !
L2C50. ~A9!

Making the standard semiclassical ansatz forC and expand-
ing S in powers of\, we get, to the lowest order ofS0,

S ]S0

]U D 2

1S ]S0

]V D 2

12S 11F~U !

12F~U ! D ]S0

]U

]S0

]V

2S L2

12F~U ! D50. ~A10!

The above equation is the Hamilton-Jacobi equation o
massive particle propagating in the Lemaiˆtre line element
~12!. Substituting the ansatzS052EV1B(U) in the above
expression, we get~for L50)

B~U !5EEU

dU
11F~U !62AF~U !

12F~U !
. ~A11!

@Near the horizon the contribution due toL can be neglected
since it is multiplied byg(r ).# Notice that the denominator i
singular atU51 only for the positive sign. Our interest i
this exercise is to obtain the principal part of the action n
the horizonr 5r 0. The transformation relation~11! near the
horizon translates into
6-10
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U52
A12R~r 0!~r 2r 0!

R~r 0!
, ~A12!

thus giving

F~U ![12R~r 0!~r 2r 0!5S R~r 0!U

2 D 2

. ~A13!

Substituting the above expression in Eq.~A11!, we get

S0@emission#52
4E

R~r 0!
E

12e

11e

dU
U

12U
1real part

5
4ipE

R~r 0!
1real part, ~A14!

whereU is rescaled as@R(r 0)U/2#→U.
In order to obtain the action for absorption of particl

corresponding to the ingoing particles@(]S0 /]r ),0#, we
have to repeat the above calculation for the metric~12! with
the 1 sign of expression~11!. In this case, it is easy to se
that the only singular solution corresponds to ingoing p
ticles and so

S0@absorption#52
4ipE

R~r 0!
1real part. ~A15!

Constructing the semiclassical propagator in the usual m
ner and taking the modulus squared we obtain the proba
ity. Now, extending the double mapping of the paths to
generalized Lemaiˆtre coordinates and squaring the modulu
we get the temperature associated with the quantum sc
fields propagating in the generalized Lemaiˆtre coordinates as

b215
R~r 0!

4p
5

k~r 0!

2p
, ~A16!

which is the same as the expression obtained in genera
Painlevé coordinates. For dS space-time, we getb21

51/(2p l ).

APPENDIX B

In this appendix, we recover Bogoliubov coefficients~for
space-times with a single horizon! solely by the mode func-
tions of the scalar field near the horizon@27#. Let us consider
a quantum field propagating in a spherically symmetric
ordinate~5!. The equation of motion of the scalar fieldF
5C(t,r )Ylm(u,f) is

r 2

g~r !

]2C

]t2
2

]

]r S r 2g~r !
]C

]r D1L2C50. ~B1!

Since our interest is near the horizon, we can transform
above expression in terms of a new variablex[r 2r 0. The
solution to the scalar field, close to the horizonx50, is
given by
08402
r-

n-
il-
e
,
lar

ed

-

e

C5C1 exp~2 iEt !xiE/R(0), ~B2!

where C1 is an arbitrary constant. Note thatC* is also a
solution to the scalar field equation.

In the usual field theory description, Bogoliubov transfo
mations relate two distinct orthonormal sets of modes t
are solutions to the equation of motion. In the case of
method of complex paths, the two sets of modes corresp
to C(x,0) and C(x.0). We can write the two sets o
modes as

C~x,0!5C1c~2x!1C2c* ~2x!,

C~x.0!5Cac~x!1Cbc* ~x!, ~B3!

whereC1 , C2 , Ca , andCb are constants to be determine
In the regionx,0, c(2x) represents an outgoing partic
from the left of the horizon. Implementing the method
complex paths by rotating in theupper complex plane, we
get

Ca5C1 exp@pE/R~0!#. ~B4!

In the regionx,0, c* (2x) represents an ingoing particl
to the left of the horizon. Here again, implementing t
method of complex paths by rotating in thelower complex
plane, we obtain

Cb5C2 exp@2pE/R~0!#. ~B5!

This leaves us with identifying a relation betweenC1 and
C2. In order to do this, let us consider the physical situat
of particle production near the black-hole horizon. In th
case, a virtual particle-antiparticle pair to the left of the h
rizon gets converted to a real particle-antiparticle pair to
right of the horizon by the tidal action of the gravitation
field, implying that the total current to the left of the horizo
is zero. Thus, we get

uC1u25uC2u2. ~B6!

This implies

uCbu25uCau2 exp@22pE/k#. ~B7!

InterpretinguCau2[uaEu2 and uCbu2[ubEu2 as the Bogoliu-
bov coefficients and using the unitarity condition, we get

uaEu25
1

12exp@22pE/k#
,

ubEu25
1

exp@2pE/k#21
. ~B8!

These are the well known relations for the Bogoliubov co
ficients.
6-11
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