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Temperature and entropy of Schwarzschild-de Sitter space-time
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In the light of recent interest iquantum gravity in de Sitter spacee investigate semiclassical aspects of
four-dimensional Schwarzschild—de Sitter space-time using the method of complex paths. The standard semi-
classical techniquetsuch as Bogoliubov coefficients and Euclidean field thebgve been useful to study
quantum effects in space-times with single horizons; however, none of these approaches seem to work for
Schwarzschild—de Sitter space-time or, in general, for space-times with multiple horizons. We extend the
method of complex paths to space-times with multiple horizons and obtain the spectrum of particles produced
in these space-times. We show that the temperature of radiation in these space-times is proportional to the
effective surface gravity—the inverse harmonic sum of surface gravity of each horizon. For the
Schwarzschild—de Sitter space-time, we apply the method of complex paths to three different coordinate
systems—spherically symmetric, Painlevand Lemaie. We show that the equilibrium temperature in
Schwarzschild—de Sitter space-time is the harmonic mean of cosmological and event horizon temperatures. We
obtain Bogoliubov coefficients for space-times with multiple horizons by analyzing the mode functions of the
quantum fields near the horizons. We propose a new definition of entropy for space-times with multiple
horizons, analogous to the entropic definition for space-times with a single horizon. We define entropy for these
space-times to be inversely proportional to the square of the effective surface gravity. We show that this
definition of entropy for Schwarzschild—de Sitter space-time satisfie®tbeund conjecture.
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I. INTRODUCTION child) space-time has only one horizon.
Various semiclassical approaches or technigisesh as

Over the last three decades, quantum field theory in d&ogoliubov coefficients, particle detectors, effective action,
Sitter (dS) space has been a subject of growing interest. IrEuclidean field theoryhave been used in the literature to
the 1970s, the attention was due to the large symmetry grougtudy quantum effects in space-times with a single horizon
of dS space, which made the field theory in dS space lesdike dS and Schwarzschild space-timesll the approaches
ambiguous than, for example, in Schwarzschild space-timeonclude that the notion of temperatussnd entropy of the
In the 1980s, the focus was due to the role it played duringpace-time is associated with the horizon. In the case of Bo-
inflation—accelerated expansion in the universe’s distangoliubov coefficients, one uses the mode functions to obtain
past. Recent attention to dS space and asymptotic dS spagfie spectrum of particles, while using Euclidean field theory,
times is motivated by two aspeci§) Observation$1] sug-  one obtains temperature using periodicity arguments. Even
gest that the universe m|ght“be currently asymptotic dS a“ﬂwough these approaches work well for space-times with a
approach a pure dS spacei) the success of the AdS/ gjngie horizon, none of them work for SdS or, in general,
conformal field theoryCFT) correspondenck?] has led to space-times with multiple horizons. A naive extension of

the intense study of the quantum gravity of de Sitter spac?ese approaches to SdS space-time leads us to the conclu-

E?I]:.TTD:rrZ);uc?nEercheﬁln dt(S) gb;[ggnpﬂaggggst (;fttéhme '?ES ion that the SdS space-time has two different temperatures
P P X P ssociated with the two horizons. Using this extension, it has

on the semiclassical aspects of dS and asymptotic dS space- e
time in the light of the ES/CFT correspongen?:e, pleasepse een argued,17] that the SdS space will inevitably evolve

Refs. [6—10). [The authors in Refs[6,7] extended the tpward an empty de Sitter space, indi.cating't.ha.t SdS space-
method introduced in Ref11] to the Painleveoordinates of ~{iMe& may never be in thermodynamic equilibrium with a
(SchwarzschilldS space-timé. single temperature associated with the space-t.lm'e. '

Even though there has been an extensive study of the The above argument seems to be in contradiction with the
Semic'assica' aspects Of ds Space_t(ﬁm a recent revieW, well known case of a Schwarzschild black hole in thermal
see Ref[12]) very little has been understood in the case ofequilibrium with radiation in a bounded box. In this case, the
Schwarzschild-de SittetSdS space-time.(An incomplete  black hole has a negative specific heat while the radiation
list of references, with regard to the semiclassical aspect, iBas a positive specific heat. The two will be in thermal equi-
given in Refs.[13-16.) The fundamental difference be- librium if the box is bounded, in other words compact. On
tween SdS and d%also Schwarzschildspace-times is the the contrary, if the box is unbounded the black hole evapo-
existence of multiple horizons. SdS space-time has two—ates completely. The situation is identical to the case of our
cosmological and event—horizons, while @#d Schwarzs- interest—black holes in de Sitter space. The de Sitter space

is compact with no notion of spatial infinity. In addition, it
has a positive specific heat similar to the above mentioned
*Email address: shanki@notes.uac.pt case. The specific heat of de Sitter space is givelByl4]
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9E 1 II. SPHERICALLY SYMMETRIC SPACE-TIMES
=7712=Sys, (1)

CV:E - 47T-|-§S A. General analysis

The line element for an interval in a spherically symmet-

where Sys (Tq9) is the entropy(temperaturg of de Sitter "lC SPace-time can be written in the following form:

space. However, the difference between de Sitter space and d<2=a® dx* dx’=g@ dx®dx?+ —24(x3)1dO2
the bounding box is that the de Sitter hagcasmological Gy IX AX"=0gy dXTdxX™+exil —2(x) ]

horizon while the bounding box, by construction, does not @
possess a horizon. The similarity of the two systems strongly = — exf 1(x%,x1)](dx%)2+ exg A (x°,x1) ](dxt)?
suggests that we should be able to obtain a temperature for

SdS space corresponding to a system in thermal equilibrium. +exd —2¢(x°,x1)]dQ?, 3

Given this, one would like to ask the following question: 5. _ _ )
sponds to a system in thermal equilibrium using semiclassidiscussed in Ref.23] (see also Refd.19]), the space-time
cal techniques? The purpose of this paper is an attempt iBfructure of spherically symmetric space-times can b'e under-
this direction. As mentioned in earlier paragraphs, standargtood via theR and T regions. If at the given event in the
quantum field theoretic techniques have not proven usefutoordinate systen@) the inequality
for space-times with multiple horizons. In this paper, we ex- P
tend the method of complex paths to space-times with mul- % ﬁ
tiple horizons and obtain the spectrum of particles produced ax0/  axt
in these space-timegThe method of complex paths has
proved to be useful in obtaining the temperature associateid satisfied, then the event is defined as in Eheegion. (If
with a quantum field propagating in a spherically symmetricthe above inequality is satisfied at a certain world point then
coordinate space-times with single horizfh8-21.) We by virtue of the continuityf exp—\), dd/ax°, dgploxt can-
show that the temperature of radiation in these space-times it be discontinuoyst is satisfied in some neighborhood of
proportional to the effective surface gravity—the inverse harthis point. Thus, the points in the neighborhood of this sys-
monic sum of the surface gravity of each horizon. In the caséem of coordinates satisfy the above inequality and Rre
of Schwarzschild—de Sitter space time we apply the methog@oints and a set of them is &R region) If the opposite
of complex paths to three different coordinate systems—inequality is satisfied, the event is inTaregion. The defini-
spherically symmetric, Painléyand Lemaie. We show that tions of R and T regions can be shown to be coordinate
the equilibrium temperature in Schwarzschild—de Sitterinvariant.
space time is the harmonic mean of the cosmological and Spherically symmetric coordinate Choosing the
event horizon temperatures. We obtain Bogoliubov coeffi-Schwarzschild gauge, the line elemégf can be written as
cients for space-times with multiple horizons by analyzing g
the mode functions of the quantum fields near the horizons. r

We propose a new definition of entropy for space-times ds*=—g(r)dt*+ WHZ do?, ®)
with multiple horizons analogous to the entropic definition
for space-times with a single horizon. We define the entropyhereg(r) is an arbitrary(continuous, differentiabjefunc-
for these space-times to be inversely proportional to thdion of r. For space-times with a single horizofike
square of the effective surface gravity. We show that thisSchwarzschild, d§ g(r) vanishes at one point, say=r.
definition of entropy for SdS space-time satisfies theNearry, g(r) can be expanded as
D-bound conjecturé22].

The paper is organized as follows. In Sec. Il A, we discuss g(r)=R(ro)(r—ro), (6)
the general properties of spherically symmetric space-times. . . . .
A br?ef descrl?ptign of SdS geometr;isygiven in Sgc. I1B. In whereR(ro) is .tW'Ce the surfa_ce grav!tyk() .Of the horizon.
Sec. Il A, we apply the method of complex paths to general FOf space-times with multiple horizoriske SdS, g(r)
spherically symmetric space-times and show that the equilipv@nishes at more than one point, say-r;, where i
rilum temperature is proportional to the inverse harmonic— 12 - - - N- In generalg(r) can be written in the follow-
sum of the surface gravity of each horizon. In Secs. Ill B and"9 form
[IIC, we apply the method of complex paths to three coor-
dinate systems—spherically symmetric, Painlevand g(r):a(r_rl)(f—rz)(r—r3)- . -(r—fn)' @
Lemaire—of SdS space-time. In Sec. V, we propose a new rm
definition of entropy for space-times with multiple horizons
and discuss its implications for SdS space-time. Finally, irwherea is a constantm<n, r,>r,_;>--->r, and all
Sec. VI, we discuss the results. ri;'s are assumed to be positive. Around each of these points

Throughout this paper, the metric signature we shall adoppne can expandj(r)=R(r;) (r—r;) where R(r;)/2 is the
is (—,+,+,+). We use greek letters f@8+1)D and lower surface gravity &;) of each of these horizons.
case latin letters fof1+1)D. The quantum field is a mass-  The R(T) region in the spherically symmetric coordinate
less, minimally coupled scalar fieldb(). system satisfies the inequality conditiog(r)>0 [g(r)

exdv—A]> (4)

2
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<0]. For space-times with multiple horizons, sing@) has  From Eq.(11) it can be seen that
multiple zeros, there are multipR and T regions. )

Painleve coordinate In order to obtain a line element r=function of (R+tp). (14)
which is regular at the horizon, we define a new time coor-

: L L . For the upper sign in Eq11), defining 1-g(r)=F(U) and
g;n?gz Etgl)a;/i\tl)hr:Ch is related to the static time coordindte r’=G(U), the Lemadire line element(12) in terms of the

light cone coordinatesU,V) (U=R—tp, V=R—tp) is
t=tp=f(r), (8)

=" vesque
wheref is required to be a function afalone to ensure that B 4 (
the metric remains stationaf$,7]. The form off(r) can be F(U)+1
obtained by imposing the condition that the resulting metric 2 ) V+ 02 1
be regular at the horizon. This can be realized by demanding 4 du dv+G(U)da”. (15

that the constant-time slices be flat, i.e., ) ) ] )
For the line element corresponding to an infalling observer,

1 df]? df Ji1—g(r) the R region is given byF(U)>0. For theT region, the
W_g(r) ar =1 ar W 9 inequality is opposite. For an outfalling observer, fRee-
gion is given by the inequalitf (V)>0.
Substituting the expressions fofr) andt in Eq. (5), we get In the T region there is an asymmetry in the direction of
flow and hence th@ regions corresponding to the infalling
ds?=—g(r)dtd+2\1—g(r) drdtp+dr?+r2dQ2. and outfalling observer will be different while ttieregions

(10 will be the same(For an elaborate discussion on this aspect,
please refer to Refs[19].) Hence, theT region in the

We_will refer to the a_bove line ele_ment as tRainleveco- Lematre coordinates is a doubly mapp&degion of spheri-
ordinate The above line element is a stationary—but not 3cally symmetric coordinated 9.

static—system. The- sign in the cross term corresponds to
the ingoing null geodesic while the sign corresponds to an
outgoing null geodesic.

For both ingoing and outgoing null geodesics, the in- The spherically symmetric coordinate of SdS space-time
equality condition for theR region is given byg(r)>0, is given by the line elemer(6), where
implying that the whole of space-time is doubly mapped with
respect to spherically symmetric coordinate sysfé&#j. _

Lematre coordinate We can get rid of the cross term in 9= ( ST
line element(10) by performing a transformation of the ra-
dial coordinate (). This can be achieved by demanding thatM is the mass of the black hole, ahé is related to the
a set of curvegtp,r(tp)] have tangent vectors dr/d7) positive cosmological constant. The space-time has more
orthogonal to the surface of constant Painlgiree. This  than one horizon if & y<1/27 wherey=M?/12. The black
gives hole horizon () and the cosmological horizon {) are lo-

cated, respectively, at

B. Schwarzschild-de Sitter space-time

(16)

dr
R:tp: . (11) 2M +
vi=g(r) M= \/Tcoswa—w, (17
Substituting forr in Eq. (10), we get Y
d?=—d3+[1—g(r)]dR+r2d0% (12 e M ¥ 18)
By 3

We will refer to the above line element as thematre co-

ordinate The line element is explicitly dependent on time where
and test particles at rest relative to the reference system are
particles moving freely in the given field. The coordinate y=cos 1(3y3y). (19
system can be modeled as that natural to a freely infalling/ o

outfalling observer whose velocity at radial infinity is zero. I the limit of y—0, we getr,—2M andr.—1. (Note that
[The — sign in Eq.(11) corresponds to the infalling observer "h<Fc. I-€., the event horizon is the smallest positive rpot.
while the + sign in Equ.(11) corresponds to an outfalling | "€ Space-time is dynamic forcr, andr>r.. In the limit

observei y—1/27, the two horizons—event and cosmological—
In terms of the spherically symmetric coordinate ting ( €0incide and is the well known Nariai space-time. yif
we have >1/27, the space-time is dynamic for al>0.
The surface gravity of these horizons is given[B¥]
Rt f dr 1 13 "
+l=| = — 7. r
9(r) J1-g(r) Kn=a r_2_|_2' (20)
h
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FIG. 1. (A) is the Penrose diagram of the de Sitter space where the left and right sides are identified. The spherically symmetric
coordinate system of de Sitter space covers region | while the Paiatevéemaire coordinate systems cover regions | and®) is the
Penrose diagram illustrating the causal structure of the Schwarzschild—de Sitter space-time. Here again, the left and right sides are identified.
The spherically symmetric coordinate system covers regions | and Il. The Paadewdinate system covers regions Il and lI.

M r to the ingoing null geodesic while the sign corresponds to
Ke=a|— = = (21 an outgoing null geodesjcFor both ingoing and outgoing
re | null geodesics, the inequality condition for tReegion[23]
is given byg(r)>0, implying that the whole of space-time
where is doubly mapped with respect to the spherically symmetric
coordinate systenb).
_ 1 _ (22) The Lemaire line element is given by
1-(2m)™
2
In the limit of y—0, we getk,— 1/(4M) andk.— 1/1. The ds’=—dt3+| —+ — [dRC+r?dQ?, (27)
ranges ofx, and k. are
3\/§ \/§ | 1 4 where
h + +
2r3’2=(2MI2)exp{——2| . }—exp{—m .
1 3 1 1 28
—< Kc<\/——:> —<—<I. (24 8
I I J3 ke

The line element is explicitly dependent on time and test

Th ; : particles at rest relative to the reference system are particles
[_)(i/;t;oi\:]eEgzn(%%? (;Sa] obtained by setting 0 and y moving freely in the given fieldR—tp in the right-hand side

Figure XB) illustrates one version of the Penrose diagram(RHS) of th? above equatlon corresponds to the mfa”mg
of SAS space-time(For an easy comparison, we have alsoobserverwhne th&®+tp in the RHS of thg above expression
provided the Penrose diagram of de Sitter spatke static corre§pon_ds to an outfalling observer. _L|ke the Painieive
coordinate system covers regions | and Il of the Penroséem"’1tre “_”e element also covers regions Il and Il of the
diagram. The boundaries of the static region consisti)of enrose dla_gram. . . .
past and future cosmological horizons, il past and fu- For the line element corresponding to an infalling ob-
ture event horizons. server, theR region [23] is given by F(U)>0 (U=R

The Painlevdine element of SdS space-time is given by —te). For theT region, the inequality is opposite. For an
outfalling observer, thdR region is given by the inequality

) oM r2 o, , F(V)>0.
d52=—g(r)dtpj2 T+I—2drdtp+dr +rcdQ-.

IIl. PARTICLE PRODUCTION IN SPACE-TIMES

(25) WITH MULTIPLE HORIZONS
wheretp is related tot by the relation In Refs.[18—20 the method of complex paths was ap-
> plied to space-times with a single horizon. The temperature
t=t fdr VZM/r+ 17/ (26) associated with the quantum fielth the three coordinate
P (1- OM/r—=r2/12 systems—spherically symmetric, Painleead Lematie) in

these space-times were shown to be consistent with the tem-
The above line element is a stationary—but not a static—peratures obtained by using other quantum field theoretic
system and it covers regions Il and Ill of the Penrose diatechniques like Bogoliubov coefficients, Euclidean field
gram. The+ sign in the above chart is suitable for studying theory, and the effective action. As discussed in the Introduc-
the physical experience of observers falling freely and radition, the standard quantum field theoretic techniques do not
ally into the hole(The + sign in the cross term corresponds work well for space-times with multiple horizons. In this
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section, we extend the method of complex paths to spacewvhere
times with multiple horizons and in particular to
Schwarzschild—de Sitter space-time. We show that the effec-

m n
tive temperature for the quantum fields in these space-times Ai=r—i 1
is proportional to the inverse harmonic sum of the surface aj=i (ri—ry)
gravity at each horizon. 1
= m—1x’ J#1, (39

A. General spherically symmetric space-time

In this subsection, we obtain the effective temperature in a . , i i
general spherically symmetric space-time with multiple ho_an_d k; is the surface gravity of_ each of the horizons. Substi-
rizons. (The result in this subsection is from RE26] and is  uting the above expressions in H§3), we get
summarized here for completengss.

Consider a quantum field propagating in a general spheri- E M 1 rrfdr
cally symmetric space-timé) with multiple horizons. The B(rs,re)= im, <l = (36)
wave equation is given by =1 KiJre T

d,(N—99""d,)P=0, The sign ambiguity is related to thmutgoing (9S,/dr >0)

or ingoing (dSy/dr <0) nature of the particle. Unlike space-

5 oV times with a single horizof18,19, space-times with mul-

g(r) g2 or r g(r)W t@ple horizons have many possible ways of choosing the ini-
tial (r1) and final ¢,) points. However, we will consider a

where ®(x*) =W (t,r)Y,,(#,$). The semiclassical wave particular situation of the particle crossing all the horizons,

functions satisfying the above are obtained by making thé-€., rs<ry andr¢>r,. (This result can be used to obtain
ansatz other possible casgs.

For an outgoing particledSy/dr >0) with respect to the

r2 v 9
+L2¢=0. (29

[ horizon (r4), the contribution tdS; is
\If(r,t)=exr{%8(r,t) : (30) ) %o
. . . . . o E rite dr
whereSis a functional which will be expanded in powers of So(emission=— f
fi. ExpandingSin a power series of, (M=D)kyJr el =11
S(r,t) =So(r,) +AS(r,H) +A2Sy(r 1) +---,  (31) __E Jrff dar
_ . o (M=D) Ky +el =15
and substituting the resulting expression in &9) (neglect-
ing terms of ordet: or highey, we have E e dr
— (=1« j T +real part
1 [0)\2 9S\2 L2 nofaren on
———|—=] t9(r)|—| +5=0. (32 =E
g(r) 1 at o r =j{——— +real part (37)
(M= Dykgr P
This is simply the Hamilton-Jacobi equation satisfied by a
massless particle moving in a general spherically symmetric h
coordinate. Making the ansaB=—Et+B(r), we get where
rdr "
B(r =tf ——JE?—(L?/r?)g(r 1 1
(r) 9(n) ( )g(r) Keﬁ_gl p (39)

r rm
_iaf dr(r—rl)(r—rz)- c(r=rpy)’ (33 and the— sign in front of the integrals corresponds to the
condition thatgS,/dr>0 atr=r.<r; and dS,/dr<0 atr

(The last expression is obtained by setting 0 and noticing = >y and the integrals are evaluated by taking the con-
that near the horizon the presence of thieterm can be tours to lie in the upper complex plane. It should be noted
neglected. It can also be noted that the above expression fgat the above expression can also be considered as the ac-
valid for an arbitrary dimension and hence the followingtion for the ingoing particles with respect to the horizgn
result is true for a spherically symmetric space-time in aNote that we have assumed gk to be positive, and hence
arbitrary dimension. Rewriting the RHS in the above ex- s, will have animaginarycontribution from all of them. For

pression with partial fractions, i.e., SdS space-time, which we consider in detail, one of the roots
m n of g(r) is negative and will not contribute 18§;. ]
1 ' => Ai (34) Using the above procedure, the action for an ingoing par-
a(r—ry(r—ry)---(r=ry =1 (r=ry’ ticle (9S,/dr <0) with respect to the horizon, is given by
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. E ri—e dr where the last expression is obtained by setting0. After
Sp(absorption= — m= 1)K1fr rrs a bit of lengthy algebra, it can be shown that
1 €
E rote dr (1 2M I’Z)l_ a a
_(m—l)xzfrz_er—rz_“' ro2 2Kkp(r—rn)  2xe(r—re)
E rnte dr all 1 1
- —=|l===]—, 43
(m_l)anrner_ n+real part Z(Kh )T oA (43)
. wE where «;,,x. are given by expression0),(21) andry,,r,
= (M= 1) Kor Keﬁﬂea' part. (39 are given by Eqs(17),(18). Substituting the above expres-
sion in Eqg.(42), we get
The last expression is obtained by evaluating the integrals Ea (r d Ea (r d
with the contours taken in the lower half plane. Taking the B(r)= il ' Sl '
modulus square of Eq$37),(39), we get 2kp) =1 2kc] T—1¢
_Eaf1l 1 fr dr 24
P[emissior]:exp{—mf P[absorptiod. (40) T2 \kn ko)) THrotry (44

, The sign ambiguity is related to thautgoing (S, /dr >0)
The exponential dependence on the energy allows one tginqqing (4s,/4r <0) nature of the particle. Unlike space-
give athermallnterpre_tatlon for the _abo_ve result. The tem- times with a single horizofil8,19, SAS has many possible
perature of the emission spectrum is given by ways of choosing the initialr¢) and the final (,) points.
The following scenarios will be investigated.

(1) ry<ry andr,>r.: The first two integrals in the RHS
of Eq. (44) do not exist.

(2) ri<rypandr,<r.: The first integral in the RHS of the
The above result shows that the spectrum of particles createtbove expression does not exist since the denominator van-
in a spherically symmetric space-time with multiple horizonsishes atr =r,.
is thermal, and the temperature is proportional to the inverse (3) r,>r, andr,>r.: The second integral in the RHS of
harmonic sum of the surface gravity of each horizon. Thehe above expression does not exist since the denominator
above result can be interpreted as a particle propagating frofanishes at =r,, .
inside the horizon1(;) to outside the horizonr() and pick- In what follows, we shall obtain the spectrum of particles
ing up expt-BE) at each horizon, resulting in expBE).  produced in the first scenariéThe other two cases follows
(Note that we have neglected the backscattering of the pakutomatically from this discussion.
ticles from the horizon. The above analysis can be per- In the first case, both the points are outside the region
formed in Painleveand Lemdie coordinates for these (r,,r.). Hence, the contribution to the probability amplitude
multiple-horizon space-times as discussed in Appendix A. Irfor emission and absorption will be due to both the
the next section, we explicitly demonstrate the above resuliorizons—event and cosmological. For an outgoing particle
for three different coordinate systems of SdS space-time. (9S,/4r >0) with respect to the event horizon,j, the con-

tribution to Sy is

_(m-1)

e et (41)

B. Spherically symmetric SdS coordinate
] o ) o Ea (rnte dr Ea (re—e dr
For a quantum field propagating in the spherically sym-  Sp(emission=— PN . —
metric coordinate system of SdS space-time, the field equa- KhJ/rh—e h Kelrote ¢

tion is given by Eq(29) whereg(r) is given by Eq.(16). In +real part (45)
the previous section we assumed that all the rooty of are
positive and henc&, has contributions from all;’'s. How- mEa
ever, for SdS space-time, one of the rootg(f) is negative =i 5 +real part, (46)
and the results in the previous section do not follow auto- Kef
matically. where

Making the usual semiclassical ansatzYoy and expand-
ing Sin powers off, we get 1 1171

Keff= K—+ PR 47
h c

;
B(r)ztf i\/EZ—LZ/ng(r)
9(r) and the— sign in front of the integrals corresponds to the

. dr condition thatdSy/dr >0 atr=r,<r, and dSy/dr<0 atr
= iEf - (42) =r,>r. and the integrals are evaluated by taking the con-
1-2M/r—r?/1? tours to lie in the upper complex plane. It should be noted
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V2M/r +r3/12+1

1-2M/r—r?/12

that the above expression can also be considered as the ac- ;
tion for the ingoing particles with respect to the cosmological B(r)= Ef dr
horizon ().

(53

Using the above procedure, the action for an ingoing par- ) o _ )
ticle (#S,/dr <0) with respect to the event horizon.j is As discussed in Sec. Il B, Painleegeordinates cover regions
Il and Ill. In the Painlevecoordinate system, as opposed to

Ea (h—€ dr Ea (rete dr spherically symmetric coordinates, there are only two pos-

So(@bsorption=— - — T o p— sible ways of choosing the initiar () and final ¢,) points:
KhJrptel=Th  £lelre—el ™ le (i) both the points are on one side of and (ii) the two
+real part (48 points lie on the opposite sides of the event horizon.
For an outgoing particledS,/dr >0) with respect to the
mEa event horizon (), the contribution tdS, is
=—j P +real part, (49
eff Ea (rnte dr
Syl emissio= — — +real terms
where the integrals are evaluated by taking the contour in the KnJry-e"—Tn
lower half plane. Taking the modulus squared, we get TEa
=i » +real terms. (59
h

P[absorptio.  (50)

2mEa
P[emissiorj= ex;{ -—
Keft In order to obtain the action for absorption of particles cor-
tr@sponding to the ingoing particlg6dS,/dx)<0], we have
to repeat the above calculation for the lower sign of the met-
ric given in Eq.(25). In this case, it is easy to see that the
only singular solution corresponds to ingoing particles and

The exponential dependence on the energy allows one
give athermalinterpretation for the above result. The tem-
perature of the emission spectrum is given by

1 kpk we get
e ——2 (51)
B 2ma kpt K . TEa
Syl absorptio= — —— +real terms. (55
The following features are noteworthy regarding this result. Kn

(i) The equilibrium temperature in SdS space-time is in-
versely proportional to the harmonic mean of the two hori-
zons.[The range ofiqg is (11) < keg<(V/31).]

(i) In this case, radiation is propagating inward from the

Constructing the semiclassical propagator in the usual man-
ner and taking the modulus squared we obtain the probabil-
ity. From the earlier discussion, we know that in calculating

cosmological horizon and outward from the black-hole hori-the probability of absorption/emission there is an extra con-

zon. (We have neglected the scattering of the radiation frorrfrib.u“o.n to the prqbabil[ty from four Sets of C.O”.‘p'ex paths
these horizons.Thus, there is a constant flux of radiation satisfying the semiclassical ansatz. Taking this into account,

flowing between these horizons and a static observer is in We get

thermal bath of radiation with the above temperat(féis

result was obtained in R€f15] from the Euclidean quantum g l= Kh (56)
gravity point of view) 27a’

(i) In the limit of 11—0, it reproduces the Hawking .
temperature for a Schwarzschild black hole in asymptoticallyin the case of Leméie coordinates, repeating the above pro-
flat space-time. cedure it is easy to show that the temperature of the radiation
(iv) In the limit of M—0, this reproduces the Gibbons- is the same as that obtained in the case of Paintexedi-
Hawking temperature for a vacuum de Sitter space-time. nates and case Il of spherically symmetric coordinates. The
(v) In the Nariai limit (y— 1/27), the event and cosmo- Painleveand Lemaire observers will be in thermal equilib-
logical horizons coincide. Thus, the results obtained forrium with the above temperature.
space-times with multiple horizons cannot be applied. In the

Nariai Iimit, using the analysis performed in R¢18] and IV. BOGOLIUBOV COEFEICIENTS FOR SPACE-TIMES
Appendix A, we ge{24] WITH MULTIPLE HORIZONS
. J3 In this section, we extend the analysis of Appendix B and
BNariai:m' (52)  obtain Bogoliubov coefficients for space-times with multiple

horizons. The equation of motion for the scalar field in the
. spherically symmetric coordinate is given by E9). Near
C. Painleveand Lemaitre SdS coordinate each of the horizons, the solution to the wave equation is

Let us now consider a scalar field propagating in the Paind/Ven by
leve coordinate system of SdS space-time. Retracing the i _ IR
steps as discussed in Appendix A, we fet L=0) W=Cyexp(—iEt)(x)=", (57)
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whereC] is an arbitrary constant’* is also a solution to (4) In the Nariai limit, the conditior{61) is not valid and
the scalar field equatiof29). For each horizon, we can write we need to impose the conditi¢B6) (which implies that the
the two sets of modes as net current to the left of the horizon is zérdn this case, the
_ . Bogoliubov coefficients are given by Eq&8) where «
W(x;<0)=Cygh(—xi) + Copp* (— X)), =1/3.
W (x;>0)=C, (X)) + Cph* (X;), (58) V. ENTROPY OF SdS

whereC' |2 Cia’ andCiB are constants to be determined.  In this section, we propose a new definition of entropy for
We obtain a relation between the different constants similafPace-times with multiple horizons analogous to the entropic

to that in the single horizon case. They are given by definition for space-times with a single horizon and discuss
the implications in the context of SdS space-time.
C' =Cl exg mE/R(r})], (59 For space-times with e&compact single horizon, the en-
tropy is given by
Cj=Chexd — 7E/R(r))]. (60) A
. ) a
This leaves us with identifying the relation between the two S(single horizon= Z:CE’ (64)

constants C},C}) to the left of the horizorr;. For space-

times with a Single horizon, we assumed that the net Currer“/hereczl and 1/4 for dS and Schwarzschild Space_timeS’
to the left of the horizon is zero. However, for space-timesrespectively. Assuming that the relation betweBmnd «
with multiple horizons, the above assumption is not valid. ho|ds true for space-times with multiple horizons, the en-

~ In order to see this explicitly, let us consider a quantumyopy for space-times with multiple horizons can be written
field propagating in spherically symmetric coordinates of agg

SdS space-time which has two horizons—event and cosmo-

logical. Letr; be the cosmological horizon. To the left of the

cosmological horizon, the net current is nonzero due to the S(multiple horizong=
presence of an event horizon which produces thermal radia- K
tion. (Here we are assuming that the backscattering of the

particles from the event horizons can be neglegtidthis ~ Where ke is given by Eq.(38). The following features are

case,C} andC}, are related by noteworthy regarding this expression.
(i) The above expression can be treated as an entropy

|Cl|2=exp(— 2maE/kp)|Chl2. (61  associated with a singléeffective horizon for space-times
with multiple horizon. For SdS space-times, this corresponds
This gives to the entropy of the system in thermal equilibrium with the
temperaturg51).
Ciﬁ 2 (i) In the literature, the entropy of space-times with mul-
—| =exd—2maE/kenl. (62) tiple horizons is defined as the sum of the entropies of indi-
vidual horizons. Using our definition, the entropy will have

) i 12 i 12 i 2 i i extra nonzero contributions. In the case of SdS space-times,
Interpreting|C,|“=|ag|* and [Cp|“=|Bg|* as Bogoliubov \ye pave

coefficients and using the unitary condition, we have

a
2 1
eff

(65

T T 2

i 1 Ssas=—+ — (66)
12— SdS™ » 2 .
| 1—exd —27maE/keg]’ Kn K HcKh
If we set
L|2= : 63
| Bl exd2maE/ k] —1 63 - o . .
The following features are noteworthy regarding this K2 =S K2
result.
(€N) |,8iE|2 is a Planck spectrum with a temperature giventhen the expression for the entropy of SdS space-times can
by Eq. (51). be written as
(2) The Bogoliubov coefficients at each of the horizons
are the same implying that the space-time is in thermal equi- Ssqs=Sht S+ 2VS:Sh, (68)

librium with temperature proportional tegs.

(3) The condition in Eq(61) has been crucial in obtaining where S;,,S. are the entropies of event and cosmological
the result. The condition implies that a particle propagatinchorizons, respectively.
from inside the horizonr(,) to outside the horizonr() picks (i) The entropy of the SdS space-time obtained in Eq.
up exg—BE] and exp— B.E], resulting in exp— BE). (66) satisfies theD-bound conjecturg22].
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APPENDIX A
(iv) The form of the entropy in Eq68) is similar to Eq. ) i _
(5.1) of Ref.[17]. In Ref.[17], the authors showed that the !N this appendix, we generalize the results of R&€] to

final values of the entropies of the evers] and cosmo- WO _nonsingular — coordinate  systems—Painlevand
logical (Sc) horizons satisfy the inequality Le_matre_—of a ggneral spherically symmetric space-time
(with a single horizop We show that the temperature asso-

I 2 ciated with the radiation in these two coordinate systdonrs,
St Set VSeSe=l". 70 space-times with a single horizois the same as in the
spherically symmetric coordinate system. These results can
be extended to space-times with multiple horizons where
g(r) is given by Eq.(7).

In the context of the method of complex paths, these two
coordinate systems possess the interesting feature of double
mapping of the paths. In the following, we briefly describe

VI. CONCLUSIONS the multiple mapping of space-time and the measure of these
: : aths. In Refs[19], it was argued that the family of complex
In this paper, we have studied the spectrum of created ths used to calculate the emission/absorption probability

particles in SAS space-time for a linear, massless scalar fie d\ es into account all paths irrespective of the multiole man-
using the method of complex paths. We have shown that it iS”. P P P P

. ; : ._ping of that part/whole of the space-time.
possible to obtain a temperature for SdS space-time whicR . ) - .
corresponds to a system in thermal equilibrium. The equilib- Let us consider a coordinate system like the Painkye

rium temperature is the harmonic mean of the event an&e.m where the whole of the space-tlme'ls doub!y mapped
\Hlth respect to the spherically symmetric coordinate. The

cosmological horizon temperatures. We have also obtaineS ace-time has two distin&andT regions. Hence. the com-
the same result by calculating the Bogoliubov coefficients Fex aths will haves ualcontributic?ns frém both' of these
using the wave modes near the horizons. piex p q o .

It has been assumed in the literature that the entropy qb\f’h'Ch do not have any point in common. Hence, the contri-
space-times with multiple horizons is the sum of the entro- g?r?snvt/cijlltgz ?nﬂfdglﬂgeeg;ﬁg\'lsesmn/ absorption by these two
pies of individual horizons. In this paper, we have propose In the case of coordinate systéms where part of the space-

a new definition of entropy for space-times with multiple time is doubly mapped with respect tg the spherically sym-
horizons, analogous to the entropic definition of entropy for etric coordinatdas in the case of Le . coordinates it

space-times with a single horizon. We have defined the eny

tropy for these space-times to be inversely proportional td> always poss_lble to find one point that is common to the
the square of the effective surface gravity. Using this deﬁnipa’[hs contributing to abs_orptlon/emlssmn. Hence, these paths
tion, we have shown that the entropy of SdS space-time safir® not mutually exclusive. These paths, on the other hand,
isfies theD-bound conjectur¢22]. In Ref.[25], the authors will be mutually exclusive when one considers the prababil-
have proposed a definition for entropy outside the cosmo'—ty amplitude—which IS the Important quantity in our ap-
logical horizon in SAS space-time which satisfies e proach. Hence, the action we obtain by regularizing the sin-

bound. It is interesting to look for the connection betweengu'amy. and .th_e resyltmg probablllty_ a”.‘p"t“de' for
the two proposed entropies. absorption/emission, will have equal contributions from both
The above result brings attention to the following inter- these paths.
esting questions.
(1) For space-times with a single horizon, there is a
unique way of obtaining a global coordinate system. For Let us consider a quantum field propagating in the Pain-
space-times with multiple horizons, it has not been possibléeveline elemen{(10) with the + signature in the cross term.
to obtain a global coordinate system. Is it possible to obtairf he equation for a scalar field propagating in general Pain-
a global coordinate system whose Euclidean metric has pdeve coordinates is given by
riodicity proportional tok.4? ) )
(2) Can we obtain stress tensors for SdS space-time which rzﬂ +2r2J1—g(r) i
correspond to the thermal state with the temperature propor- 2 9 ar dtp
tional to ke?
(38) What kind of quantum vacuum state will this corre- v d A
spond to0? ) —rzg(r)—2+m[rz\/l—g(r)]xz—Lz\P,
We hope to return to study some of these problems in the o P
near future. (A1)

In our case, the inequalit§69) is satisfied for all values of
entropies of the event and cosmological horizons. The
bound we have obtained in E(G9) is a stronger inequality
than that of(70).

1. Painlevecoordinate system

d o
2 +a[r 9(0]7
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where & (x*)=Y(tp,r)Ym(6,¢). Making the standard the probability, we get the temperature associated with the
semi-classical ansatz fo¥ and expanding in powers of# quantum fields propagating in generalized Painlegerdi-

as discussed in Sec. lll A, we get, to the lowest order, nates as
IS ISy ,lzR(ro)zK(ro)
_(W +2y1-9(r) ( )( ) B 4ar 2 A7)
9S\2 L2 For dS space-timeg(r)=(1—r?/1%), «=(1/), and hence
+g(r)(— +—=0. (A2)  the temperature associated with the radiation is #I{j2
r

. . . . . 2. Lemaitre coordinate system
The above equation is the Hamilton-Jacobi equation of a 4

massless particle propagating in a general Painlieecele- Consider a quantum field propagating in the general
ment (10). Substituting the ansat3,= —Etp+B(r) in the  spherically symmetric space-times described by the Legai
above expression, we get line elemen{12). The scalar field equatidiior the — sign in
the expressiorill)] is given by
dB Ey1—g(r) 5
dr - g(n AN (0 il UL
(9t 9 (9R 1—g(r) R
J4E2[1 g(r)]1—4g(r)[E*—L?%/r?]
. (A3) - \/1—g(r)L2\If=0, (A8)

g(r)

where ® (x*)=W¥(tp,R)Y|n(6,¢). Noting from Eq. (11)
thatr is related toR—tp=U, the above equation rewritten in
terms of the light-cone coordinatebl (V) translates into

It is easy to see that, near the horizon, the presence dfthe
term can be neglected since it is multiplieddpyr). Thus for
L=0 we have

B(r)— EJ v1- g(r)+1

v v
av| F(U)— 1)G(U)—+—[(F U)-DGWU) -5

Jd av
+ N (F(U)+1)G(U)0—V

= e

(A4)

9 d [ a\If}
+—|(F(U)+1)G(U) —
For space-times with a single horizon, one can expg(Td au N
around the horizon ag(r)=R(rg)(r —rg). The numerator m
in the first integralin the RHS of the above expression can -2 L2W=0. (A9)
be approximated to unity near the horizon. Noticing that the (U)

denominator is singular at=r, only for the positive sign,

we get the action for the outgoing particle as Making the standard semiclassical ansatz¥oand expand-

ing Sin powers off, we get, to the lowest order &,

So[emissiorjz—2Efr0+éi+real part (@ 2+ @)2 1+F(U)) @ﬁ
ro—e 9(r) U by, 1-F(U)] U oV
2imE L2
+ R(ro) +real part. (A5) _(F(U)) =0. (A10)

In order to obtain the action for absorption of particles cor-The above equation is the Hamilton-Jacobi equation of a
responding to the ingoing particlgédSy/dr)<0], we have massive particle propagating in the Letnailine element

to repeat the above calculation for the metti€) with a — (12). Substituting the ansa®,= — EV+B(U) in the above
sign in the cross term. In this case, it is easy to see that thexpression, we gefor L=0)

only singular solution corresponds to ingoing particles and

) U 1+F(U)=2{F(U)
B(U)zEf du T-F () . (AlD)
bsorptiol= — ~ "= 4 realpart. (A
Sol absorptio=— R(ro) realpar (A6) [Near the horizon the contribution dueltccan be neglected

since it is multiplied byg(r).] Notice that the denominator is
Constructing the semiclassical propagator in the usual marsingular atU=21 only for the positive sign. Our interest in
ner and taking the modulus squared we obtain the probabikthis exercise is to obtain the principal part of the action near
ity. Extending the double mapping of the paths to the generthe horizonr =r,. The transformation relatio(l1) near the
alized Painlevecoordinates and squaring the modulus to gethorizon translates into

084026-10



TEMPERATURE AND ENTROPY OF SCHWARZSCHILD-. . . PHYSICAL REVIEW D 67, 084026 (2003

V1I=R(ro)(r—ro) ¥ =C, exp(—iEt)xERO), (B2)
U=- R(ro) , (A12)
0 where C, is an arbitrary constant. Note thdt* is also a
thus giving solution to the scalar field equation.
R(ro)U\2 In the usual field theory description, Bogoliubov transfor-
0 ) ] (A13)  Mations relate two distinct orthonormal sets of modes that
2 are solutions to the equation of motion. In the case of the
method of complex paths, the two sets of modes correspond
to ¥ (x<0) and ¥ (x>0). We can write the two sets of

F(U)El_R(ro)(r_ro):(

Substituting the above expression in E411), we get

o AE (1+e U modes as
So[ emission= — R0 dum+real part
(fo)Ja-e W(X<0) = Cyh( —X) + Coth* (—X),
4i7E *
= Rir )+real part, (A14) W(x>0)=C,(x)+Cgp* (X), (B3)
0
whereU is rescaled agR(ro)U/2]—U. whereC,, C,, C,, andC are constants to be determined.

In order to obtain the action for absorption of particles!n the regionx<0, #(—x) represents an outgoing particle
corresponding to the ingoing particlé&dS,/ar)<0], we from the left of the horlzor_m Implementing the method of
have to repeat the above calculation for the mett) with ~ COMPlex paths by rotating in thepper complex plane, we
the + sign of expressioiill). In this case, it is easy to see get
':irglié;r;é)glg singular solution corresponds to ingoing par- C,=C, exq 7E/R(0)]. (B4)

. 4iE In the regionx<<0, *(—Xx) represents an ingoing particle
So[absorptloﬂ:—mﬂeal part.  (Al5)  to the left of the horizon. Here again, implementing the

0 method of complex paths by rotating in thewer complex
Constructing the semiclassical propagator in the usual marplane, we obtain
ner and taking the modulus squared we obtain the probabil-
ity. Now, extending the double mapping of the paths to the Cp=Coexd — mE/R(0)]. (BS)
generalized Lemé#ie coordinates and squaring the modulus, o o )
we get the temperature associated with the quantum scaldfis leaves us with identifying a relation betwe€n and

fields propagating in the generalized Letraicoordinates as Co- In order to do this, let us consider the physical situation
of particle production near the black-hole horizon. In this

—1:R(r0) _ x(ro) (A16) case, a virtual particle-antiparticle pair to the left of the ho-
A 27’ rizon gets converted to a real particle-antiparticle pair to the

ht of the horizon by the tidal action of the gravitational

L . . ) B
which is the same as the expression obtained in genelrallzq;gd, implying that the total current to the left of the horizon
Painleve coordinates. For dS space-time, we g@t is zero. Thus, we get

—1/(2l).

|C4?=]C,J%. (B6)
APPENDIX B
This implies
In this appendix, we recover Bogoliubov coefficieffisr 5 5

space-times with a single horizpsolely by the mode func- Cpl*=[Cal” exd —27E/«]. (B7)
tions of the scalar field near the horiz[#v]. Let us consider i ) ) 5 5 )
a quantum field propagating in a spherically symmetric colnterpreting|C,|“=|ag|® and|C4|*=[Bg|* as the Bogoliu-
ordinate (5). The equation of motion of the scalar fieddl bov coefficients and using the unitarity condition, we get
=W(t,r)Yim(0,9) is

1
2 52 |aE|2: — _ )
S S AL A 1—exfd —27E/«]
W?_ﬁ_r r g(r)W +L“¥=0. (Bl)
. . . . |,8E|2: oA 11 (B8)
Since our interest is near the horizon, we can transform the exg2wE/k]—1

above expression in terms of a new variakter —r,. The
solution to the scalar field, close to the horizes0, is  These are the well known relations for the Bogoliubov coef-
given by ficients.

084026-11



S. SHANKARANARAYANAN PHYSICAL REVIEW D 67, 084026 (2003

[1] S. Perimutteet al,, Astrophys. J483 565(1997); B. Schmidt Padmanabhan, “Entropy and Energy of a Class of Spacetimes
et al, ibid. 507, 46 (1998; A. J. Riesset al, Astron. J.116, with Horizon: A General Derivation,” gr-qc/0202080.
1009(1998. [15] Feng-Li Line and Chopin Soo, Class. Quantum Gi#y.551

[2] J. Maldacena, Adv. Theor. Math. Phy%.231(1998; E. Wit- (1999.
ten,ibid. 2, 253(1998; S. Gubser, I. Klebanov, and A. Polya- [16] S. Nojiri and S. D. Odintsov, Phys. Rev. 59, 044026(1999;
kov, Phys. Lett. B428 105(1998; O. Aharony, S. Gubser, J. A. Bytsenko, S. Nojiri, and S. Odintsov, Phys. Lett4B4, 121
Maldacena, H. Ooguri, and Y. Oz, Phys. R8@3 183(2000. (1998; S. Nojiri and S. D. Odintsov, Int. J. Mod. Phys.14,

[3] E. Witten, “Quantum graVIty in de Sitter space,” 1293(1999 15 989 (2000
hep-th/0106109. [17] K. Maeda, T. Koike, M. Narita, and A. Ishibashi, Phys. Rev. D

[4] A. Strominger, J. High Energy Phy&0, 034 (2001).
[5] C. M. Hull, J. High Energy Phy€7, 021(1998; Mu-In Park, -
18] K. Srinivasan and T. Padmanabhan, Phys. Re0D24007
Phys. Lett. B440, 275(1998; Nucl. Phys.B544, 377(1999; (18] v 4 »

I. Antoniadis, P. Mazur, and E. Mottola, astro-ph/9705200; A. (1999.

Volovich, hep-th/0101176; V. Balasubramanian, P. Horava, ancglg] '\SA :hg:karal_naraﬁgag,?lK.zggn.lvgszr;; a:d T Padmanat%han,
D. Minic, J. High Energy PhysD5, 043 (2001). od. Phys. Lett. AL6, 571(200D; S. Shankaranarayanan, T.

57, 3503(1998.

[6] A. J. M. Medved, Phys. Rev. B6, 124009(2002 Padmanabhan, and K. Srinivasan, Class. Quantum G#fav.

[7] M. Parikh, Phys. Lett. B546 189 (2002. 2671(2002. _

[8] R. Bousso, A. Maloney, and A. Strominger, Phys. Re\6® [20] S. Shankaranarayanan, Ph.D. thesis, IUCAA, Pune.
104039(2002. [21] Elias C. Vagenas, hep-th/0111047; Damien A. Easson, J. High

[9] Kyung-Seok Cha, Bum-Hoon Lee, and Chanyong Park, “ds/  Energy Phys02, 037 (2003.
CFT Correspondence from the Brick Wall Method,” [22] R. Bousso, J. High Energy Phy4l, 038 (2000; 04, 035

hep-th/0207194. (2001).
[10] S. Nojiri and S. Odintsov, J. High Energy Phys2, 033  [23]l. D. Novikov, Commun. Shternberg State Astron. Ink82
(2002); Phys. Lett. B523 165(2001). 3-42(1964).

[11] M. Parikh and F. Wilczek, Phys. Rev. Le&5, 5042(2000. [24] R. Bousso and S. W. Hawking, Phys. Rev5B) 6312(1996);
[12] M. Spradlin, A. Strominger, and A. Volovich, “Les Houches 57, 2436(1998; J. Niemeyer and R. Boussibjd. 62, 023503

Lectures on De Sitter Space,” hep-th/0110007. (2000.

[13] G. W. Gibbons and S. W. Hawking, Phys. Rev.15, 2738 [25] R. Mann and M. Ghezelbash, J. High Energy PHyk. 005
(1977; W. Hiscock,ibid. 39, 1067 (1989; D. Markovic and (2002.
W. Unruh,ibid. 43, 332(1991); Zhong Chao Wu, Gen. Relativ. [26] S. Shankaranarayanan and T. Padmanalypaper in prepara-
Gravit. 32, 1823(2000. tion).

[14] T. Padmanabhan, Class. Quantum GrES. 5387 (2002; T. [27] K. Srinivasan(private communication

084026-12



