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We study physical applications of the Bohm metrics, which are infinite sequences of inhomogeneous Ein-
stein metrics on spheres and products of spheres of dimensio®. We prove that all the Bohm metrics on
S$3x $? and S°x S® have negative eigenvalue modes of the Lichnerowicz operator acting on transverse trace-
less symmetric tensors, and by numerical methods we establish that Bohm met@shawve negative
eigenvalues too. General arguments suggest that all the Bohm metrics will have negative Lichnerowicz modes.
These results imply that generalized higher-dimensional black-hole spacetimes, in which the Bohm metric
replaces the usual round sphere metric, are classically unstable. We also show that the classical stability
criterion for Freund-Rubin solutions, which are products of Einstein metrics with anti—de Sitter spacetimes, is
the same in all dimensions as that for black-hole stability, and hence such solutions based on the Bohm metrics
will also be unstable. We consider possible end points of the instabilities, and in particular we show that all
Einstein-Sasaki manifolds give stable solutions. Next, we show how analytic continuation of Bohm metrics
gives Lorentzian metrics that provide counterexamples to a strict form of the cosmic baldness conjecture, but
they are nevertheless consistent with the intuition behind the cosmic no-hair conjectures. We indicate how
these Lorentzian metrics may be created “from nothing” in a no-boundary setting. We argue that Lorentzian
Bohm metrics are unstable to decay to de Sitter spacetime. Finally, we argue that noncompact versions of the
Bohm metrics have infinitely many negative Lichnerowicz modes, and we conjecture a general relationship
between Lichnerowicz eigenvalues and nonuniqueness of the Dirichlet problem for Einstein’s equations.
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I. INTRODUCTION sphere in the spatial sections at constant radius, then in
higher dimensions there are many more possibilities for
The properties of higher-dimensional black holes, anddlack hole solutions, even on manifolds with the same topol-
more generally spacetimes with event horizons, have comegy as the higher-dimensional Schwarzschild solution. This
to play an increasingly important role in physics. This is notiS because of the remarkable fact, discovered by Bf&in
only for the purely theoretical reason that they may throwthat for 5=d=9, the spher& carries infinitely many other
light on some hitherto intractable problems of black holes ininhomogeneous Einstein metrics, in addition to its usual
3+1 spacetime dimensions, but also because, if currerfound metric. One might wonder whether the resulting black-
ideas about large extra dimensions are correct, then sudiple solutions in spacetime dimensionssD<11 could
black holes may possibly be created by high energy colliarise during scattering processes. This depends upon their
sions in accelerator experiments, and their behavior might bétability. In this paper, we find evidence, and in some cases
accessible to direct observatiph2]. As well as having pos- Proofs, that they are in fact unstable. To do so we use meth-
sible applications to laboratory scale physics, higher0ds developed in Ref7], which showed that the stability
dimensional black holes, and other types of horizons such a&epends on the non-negativity of the spectrum of the opera-
cosmological event horizor8], may also have played an tor
important role in the early universe. )
Many of the properties of black holes and event horizons _ A ( . (5-d) )
- : ) T . \ Aga= AL+ 4 , 1)
in higher dimensions are very similar to their counterparts in d-1 4
3+1 dimensions. For example, the analogue of the spheri-
cally symmetric Schwarzschild black hole exists in all di- whereA, is the Lichnerowicz Laplacian on transverse trace-
mensions, with the two-sphere of the four-dimensional soluless second rank symmetric tensor fields on the
tion replaced by alp — 2) sphere irD dimensions. Likewise, d-dimensional compact Einstein space, which satisRgs
there is an obvious higher-dimensional analogue of the usuat Ag,,. We obtain numerical results establishing the exis-
four-dimensional de Sitter spacetime. Moreover, subject tdence of negative Lichnerowicz modes in Bohm metrics on
the strict condition of asymptotic flatness, the former andS®, hence demonstrating the instability of seven-dimensional
their charged versions are uniqiié,5]. However, if one black holes constructed using these metrics. We present gen-
drops the condition of strict asymptotic flatness, by allowingeral arguments suggesting that all the other Bohm sphere
other compact Einstein metrics in place of the usual roundnetrics will have negative Lichnerowicz modes too.
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Bohm also showed the existence of infinitely many inho-bound on the spectrum of the Lichnerowicz operator, based
mogeneous Einstein metrics on the products of sphgies on considerations of the Weyl curvature, that was considered
x SN2, for 4<N;+N,<9, with N;=2 and N,=2. The in Refs.[9,10].
lowest-dimensional such examples are®x S?>. We have In Sec. Ill we give a detailed discussion of the Bohm
also investigated the associated topologically nontrivialmetrics, and we exhibit negative modes of the Lichnerowicz
black holegincluding the homogeneous product metraend ~ operator in some of these backgrounds. In certain cases, in-
we prove that these are unstable. It is also known 8%at cluding all the Bohm metrics 08°x S* and onS*x S*, we
X S? admits infinitely many other homogeneous Einsteinobtain an analytic proof of the existence of negative modes.
metrics, the so calle@®9=spin(4)/U(1) spaces. Of these, Intuition leads one to expect negative modes in all the Bohm
only T** admits Killing spinors, and in fact only the black metrics, and we back this up with some numerical results in
hole associated witA’! is stable[7]. There are in addition certain examples where an analytic proof is lacking. There
some otheinhomogeneousetrics onS®x S? with Killing are also noncompact examples of Bohm metrics, which are
spinors; these are examples of Einstein-Sasaki metrics. Waicci flat. We give analytic proofs that the noncompact
show here that the associated black holes using these metriBohm metrics onR®x S? and R*x S, recently considered
are stable. One might think therefore that an unstable blacRy Kol [11], have negative modes of the Lichnerowicz La-
hole based on the usual prod®&tx S? metric would evolve ~ Placian. Again, intuition leads one to expect negative modes
dynamically into one based on one of tB&x S? Einstein-  for all the noncompact Bohm examples.

Sasaki spaces. Presumably however, in doing so the area of In Sec. IV we discuss Einstein-Sasaki metrics, which may
the event horizon must increase. Now at fixed “mass parambe defined as odd-dimensional Einstein metded whose

eter” we show the areas of the horizons of the Einstein-coned¥=dr?+r?ds” is Ricci flat and Kaler. They admit
Sasaki horizons with t0p0|og$3>< 52 are less than those of Kllllng Spinors, and we use this fact to obtain a lower bound
the S3x S2 Bohm metrics. Thus in the evolution, the mass©On the spectrum of the Lichnerowicz operator. In particular
parameter would have to increase, which seems rather parw_e use this to demonstrate that the associated black holes are
doxical. Another way to say this is that at fixed temperaturea|WayS stable. Likewise, this establishes that Freund-Rubin
(Wh|Ch is proportiona' to the inverse of the mass parametercompaCtiﬁcationS Using Einstein-Sasaki manifolds will al-

the entropy of the Einstein-Sasaki metrics is less than that ovays be stable. o _ _
the Bohm metrics. Section V contains a description of the analytic continua-

In addition to constructing black holes, one may use Bodion of the Bohm metrics to give Lorentzian spacetimes that
hm’s metrics to obtain static inhomogeneous Lorentzian sodre¢ generalizations of de Sitter spacetime. These provide
lutions of the Einstein equations with a positive cosmologi-counterexamples to the Cosmic Baldness conjecture. In Sec.
cal constant, which are topologically the same as the static ¥l we try to relate the existence of negative modes for the
Sitter metric. As with the de Sitter spacetime, they contain d-ichnerowicz Laplacian to the nonuniqueness of the Dirich-
cosmological event horizof8]. As such they provide coun- let problem for the Einstein equations. Section VIl gives our
terexamples in<D=<9 spacetime dimensions to the long Main conclusions, and points to some other applications of
standing and hitherto intractable cosmic baldness conjectufdohm metrics. For example, they can provide magnetic
[8], which would be a generalization of Israel's uniquenesgnonopole solutions in Kaluza-Klein theory. An appendix
theorem to cover the de Sitter situation. The area of the cogives further details about our numerical techniques, and in-
mological event horizon in the Lorentzian Bohm metrics iscludes some graphs illustrating the behavior of the metric
smaller than that in de Sitter spacetime. We believe thereforBinctions in the Bohm solutions.
that they are unstable, and that under a small perturbation
they would evolve, at least within the event horizon of a ' gtaB| Ty AND THE LICHNEROWICZ LAPLACIAN
given observer, to a static de Sitter—like state. If this is the
case, then although evading the strict letter of the cosmic Our first aim will be to study the classical stability of two
baldness conjecture they would respect the spirit of theypes of spacetime constructed using a general positive cur-
weaker no-hair conjecture. The latter asserts that apart fromature Einstein metrid/ 4. The first of these comprises gen-
unstable cases of measure zero, the generic solution shouddalizations to higher dimensions of the four-dimensional
settle down to a de Sitter—like state within the horizon of anySchwarzschild black hole, in which the spatial two-sphere at
given observer. This is all that is needed to justify the usuatonstant radius is generalized to a higher-dimensional Ein-
intuition behind inflationary models of the early universe.stein spaceMy. The second class of examples comprises
Another possible application for these generalized de SitteFreund-Rubin type solutions Ag8 M4 to a theory of Ein-
spacetimes would be as tunneling metrics. stein gravity coupled to d-form field strength. As we shall

The plan of this paper is as follows. In Sec. Il we review show below, the classical stability criteria for both of these
the link established in Ref7] between black-hole stability classes of spacetimes are expressible asaheecriterion on
and the spectrum of the Lichnerowicz Laplacian on the comthe spectrum of the Lichnerowicz operator acting on trans-
pact d-dimensional Einstein spacély that forms the verse traceless symmetric two-index tensorsvbp. To set
constant-radius spatial sections. We also show that this stéhe stage for this discussion, we begin in Sec. Il A with a
bility criterion is identical, for all dimensions d#l4, to that  general discussion of the Lichnerowicz operator, reviewing
for the stability of Freund-Rubin type A¢gS M, solutions the manner in which it arises from a consideration of the
of gravity coupled to ad form. We then discuss a lower second variation of the Einstein-Hilbert action. We then re-
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view the black-hole stabilityf7] and Ad$ XMy stability In a perturbative classical stability analysis one asks
[12,13 criteria in Secs. 1B and IIC, and in Sec. IID we Whether there are finite energy solutions to the linearized
review an argument given in Ref&,10] which shows how a equations of motion

lower bound on the Lichnerowicz spectrum can be obtained o

by considering the eigenvalues of the Weyl tensor. Ashpag=0 (10

that grow exponentially in time. We use hats to denote the

full D-dimensional spacetime tensors and operators and up-
We begin by considering the Einstein-Hilbert actiondin  per case indices run ov& dimensions.

dimensions

A. Stability criteria

B. Generalized Schwarzschild-Tangherlini spacetimes

S= fM \/§ddx[R—(d—2)A], 2 Generalized Schwarzschild-Tangherlini black holes have
the form
whose Euler-Lagrange equations give the Einstein equation ¢\d-1 dr2
d¥ [1 (—) dt*+ ————g— +r2ds3,
Rab=AGab- () 1— (f)
r

Under the perturbation (11)
Jab—Jab™t Nab, (4 where¢ is a constant andsj is the metric on a dimen-

sional compact Einstein manifol with the curvature nor-
one finds that up to quadratic order lig,, the actionSis  malized to be that og&?

given on-shell byS=S;+S;+S,+---, with
Rap=(d—1)Jap. (12

Sp=2A JM Vgdx, $;=0, The black hole solution has vanishing cosmological constant.
It was found in Ref[7] that the dangerous mode for in-
stability is a transverse tracefree eigenfunction of the

Szzf \/addx[—%habAzhabJr%hth+%(Vahab)2], (5) Lichnerowicz Laplacian on the Einstein manifdid
M

whereh=h%, 0=V?V, and

F] =h 2 iwt' 13
Agh=-Dh+1(d-2)Ah, A,=A ~2A.  (6) = Rap(X)re(r)e (3

. , ) i , wherex are coordinates oB and
Here A, is the Lichnerowicz Laplacian operator acting on

symmetric rank two tensors: A hap=Nhgp. (14

Aphap=—DOhap—2Raepd®+Reahf+Rephs. (7)) HereA, is the Lichnerowicz Laplacian oB. The stability of
the spacetime was found to depend on the spec{iunof

If we consider a transverse traceless perturbation the Lichnerowicz Laplacian acting on transverse tracefree
. a modes onB. Concretely, if the spectrum contains an eigen-
Vaha,=0, h3=0, (8)  value that is too negative, the spacetime is unstable because

) »?<0, giving an exponential growth in time in E(L3):
then the second variation of the action is simply given by
(5—d)?

Amin<A=4-— <instability. (15

1
S=-3 JM Jgdixh@PA,h,, . 9)

This result follows from considering the behavior of the ra-

We will be using these formulas ondadimensional Ein- dial dependence of the perturbatioh3) ¢(r). When the
stein manifolds that appear as part of the full spacetime. Imriterion(15) is satisfied, the solution fap(r) that decays at
particular we will consider generalized vacuum black holesnfinity also oscillates as sin infor smallr. This allows it to
solutions, with total spacetime dimensidb=d+2 [7], be matched to a solution that is well behaved at the horizon
where the two extra dimensions are the time and radial dir=¢ [7]. Thus a finite energy mode exists in this case and
rections. Also we will be considering spacetimes that are ahe spacetime is unstable.
direct product of D —d)-dimensional anti—de Sitter with a It is perhaps worth pointing out here that a form of
d-dimensional compact Einstein manifdldi3]. The anti—-de  Birkhoff theorem holds for the metrics we are considering. In
Sitter spacetimes are supported by a gauge field of approprother words if we had assumed a general time dependent
ate rank. metric of the form
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ds’=—e 2#00dt?+e?"Vdr2+ Y2 (r t)ds],  (16) Poa=R1a=N11=hoo=P10=0,
whereds; is ad-dimensionatime-independerEinstein met-
ric with scalar curvaturel(d— 1), we would have found, on ﬁab= hap(X) d(Y), (18
imposing the Einstein equations, that the metrics had to be
static. In fact this result also holds if the metric is coupled to
a two-form field strengthin the electric caseor a d-form  wherey are the coordinates on the AdS. The mbgg(x) on
field strength the magnetic case. It also holds if one include8 is an eigentensor as in E@l4). From the AdS point of
a cosmological term. It means that when perturbing the statigiew, ¢(y) is seen as a scalar field with mass given[ bg]
metric we must consider time dependent perturbations of the
transverse or base Einstein metrde;. This is another way 5
of seeing why we need information about the the spectrum of m*=\—2(d—1). (19)
the Lichnerowicz operator on this space.
We shall not give a detailed proof of Birkhoff's theorem o . L
here, but merely indicate how to modify an existing treat__Instablllty of massive scalars on AdS spacetime is expressed
ment of Wiltshire[14] which assumeS OQ(d+ 1) invariance, n te”‘?ts (?[L_the B(;eltenlohner-Freedman bour, 16. In
i.e., thatds? is the unit round metric o8". Wiltshire gives a ourunits, this reads
proof which also covers the case when Gauss-Bonnet terms
are present. The argument he presents will not go over to the 2( D—d— 1) 2 (D—d—1)2
m _

case of a general Einstein metric, since it makes special use i1 7

of properties of its Riemann tensor. Thus in what follows we

ignore that term, which means we &et 0 in his equations.

It is an in'geresting guestion to ask whether Birkhoff’s theO'Using the value of the mass in EQ.9), the criterion(20) is

rem remains true when one includes a Gauss-Bonnet termjust
The discussion depends upon whetl#f is spacelike,

timelike, or null. We assume the first case, and make a coor-

<instability. (20

dinate choice such that=r. The field equatiorR{ =0 [Eq. (5—-d)2 N
(6b) in his papet then yields Amin<A.=4-— 2 < instability. (21
o"tl,bz O
This is immediately seen to be the same as the criterion
The equatiorR{+ R; =0 then gives found for the black-hole spacetim€E5). This is an intrigu-
ing match.
d,p+ 0, 4=0.

D. Lichnerowicz Laplacian and the Weyl tensor
This means that + = f(t), wheref(t) is an arbitrary dif- ) ,
ferentiable function of. By choice of the coordinatg f(t) _Inorder to make estimates of the lowest eigenvalue of the
may be taken to vanish, It follows that both and ¢ are  Lichnerowicz Laplacian, it is convenient first to rewrite Eq.
independent of timé, and the metric is therefore static. The (7) in terms of the Weyl tensor. Since we are assuming that
remaining field equations show that it takes theth® metric is Einstein, withR.p=Agap, this is given ind

Schwarzschild-Tangherlini form. dimensions by

A
C. Anti—de Sitter product spacetimes Cabcd™ Rabed™ a-1 (9acObd— YadIbe)- (22)
These are solutions to a system withdaorm field
strength minimally coupled to gravity

Thus the Lichnerowicz Laplacian becomes
d¥=dsfys,  +ds],

cd 2dA
Aphgp=—0hgp—2C,p "+ mhab- (23
4=

17

2(D—2)(d—1))1’2
“b-d-1 | "

where we have taken the same normalization for the curva- A method for obtaining a lower bound on the smallest
ture of B as previously[Eg. (12)]. It was shown in Refs. eigenvalue ofA, was introduced in Ref9]. One considers
[12,13 that the dangerous mode is a transverse tracefretie integral of :EV(ahbc)]z, which, after performing an inte-
mode on the manifold multiplying a scalar on the AdS gration by parts and using the transversality and traceless-
spacetime ness ofh,,, gives
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oab § ) siderations, namely thgt in Einstein spaces of positive Ricci
jM VgdixhaPA hyp,= fM Vgdx{3[ V zhpg] tensor, the minimum eigenvalue tends to be lowered by hav-
ing a large positive eigenvalue of the Weyl tensor. Indeed, we
—4h?°R, 9+ 4AHabhab}- can see from Eq(28) that if the largest Weyl tensor eigen-

value is not sufficiently positive, theh| could never be
:J' Jadix 3[V .heg ]2 negative or zero. We shall see when we study the Bohm
w9 (a’bo) metrics in detail that in these cases the Weyl tensor can in
fact have sufficiently large eigenvalues that the Lichnerowicz
spectrum includes negative eigenvalues. By using a
Rayleigh-Ritz variational method we shall be able to obtain

—4h3PC,, .9+ —4dA h hab]
abc d—1 ab
upper bounds on the lowest eigenvalue of the Lichnerowicz

J ab o Laplacian, allowing us in some cases to give an analytic
= JM Vodix| —4h2°Cypcch proof of the existence of negative-eigenvalue modes.
4dA lll. THE BOHM EINSTEIN METRICS
+ _d— 1 habhab) . (24) ON SN AND SNlXSNZ

. . . A. Description of the Bohm construction
Viewing C,,cq @S @ map acting on symmetric traceless ten-

sorsh,,, we can define its eigenvaluasby Bohm’s constructiof6] gives rise to a countable infinity
of Einstein metrics with positive Ricci tensor on the spheres
Cacbd®?= khap. (25 SN for 5<N=9, and on the product topologi&'1x S\z for

) 5=<N;+N,=<9 with N;=2 andN,=2. We can use these
For homogeneous spaces, we therefore have a simple ifnetrics in the black-hole and AdSM4 spacetimes of the
equality previous section.
4dA The starting point for the construction is the following
A= m—m‘max, (26) ~ansatz for metrics of cohomogeneity one:

_ _ ds’=dp?+a%dQ3+b%d07, (29
where knax IS the largest eigenvalue of the Weyl tensor.
Equality is attained if the corresponding eigenterisgyis @ wherea andb are functions of the radial variabje andd()}

Staeckel tensor, satisfying,hp)=0. The bound26) was ;144732 are the standard metrics on the unit sphe&®and

. ! . i foMtls i q _ _
derived for homogeneous Elns.tem seven-manifdiig in S9. An elementary calculation shows that in the orthonormal
Ref.[9]. It was also shown that in the caseld{l1) bundles

res o= . ; frame e°= i=ad, e*=be”, whereee'=d0?2 an
over the Einstein-Klaler product six-manifold$?x CP? and _fwe € Zdt’ e=ae, e’=be’, whe cee de; and
Px X <2, the eigentensor that maximisesis in fact € © =d()g, the components of the Riemann tensor are

Staeckel, and thus the equality in E86) is attained9,10..  9iven by
For inhomogeneous spaces, such as the Bohm metrics that

we shall be studying later in this paper, the bou2d) must R. —_ é(s.. R _ E s R - @5” P
be kept in its integrated form, and so we have i) g Ty 0BTy Tapy THajf gp Tl Tabs
dy rab 1—a2
JM\@d XP*EA hap Rijku—ar(5ik5kf—5ie5jk),
4dA .
= \/Eddx(——4;< x(x))h ,h2,  (27) 1-b?
J v d-1 T Repys= 57 (8aydps— 8asdpy)- (30

where k2{X) represents théposition dependeptargest ei-
genvalue of the Weyl tensor. If we define,,, to be the .
largest value attained by any of the eigenvalues of the We)ﬁ"ven by

tensor anywhere i, K%axzsup(xmagx), then we obtain the . .
inequality Re= pa_gb

Note thata= da/dp. The components of the Ricci tensor are

0= g p

4,0 .
A= g A @9 a_gab (p-1ia-1)

a ab a2

Rij =~ i
It is clear, however, that this bound is not likely to be very
sharp, especially ik, depends strongly on position. N . >

We can, nevertheless, extract a general feature of the R B:_{Eer_ab (@—1)(b"—1)

: . +
spectrum of the Lichnerowicz operator from the above con- b ab b?

Sup- (31)
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The Einstein equationR,,= Ag,, give rise to two second- rise to inequivalent metrics that extend smoothly onto mani-

order differential equations fa andb fold of topology SP*9%1, and another countable infinity of
. solutions for which the metrics extend smoothly onto mani-
a qgab (p—1)(a®-1) folds of topologySP*1x S9. We shall denote these metrics
2t T a2 T —A, by Bohm(p,q),, where the integen runs overn=0,2,4,...,
for the SP* 971 sequence, and=1,3,5,..., for theSPT1x Sd
b pab (q—1)(b>—1) sequence. The standard unit met{®5) on SP*4*? corre-
5+ 54— —bz—:—A, (320  sponds to Bohn,q),, and the standard product Einstein
metric (38) on SP*1x S¥ corresponds to Bohmp(q); .
together with the first-order constraint The higher metrics Bohnp(,q),, with n=2 are all inho-
mogeneous. The radial coordingteuns between endpoints
p(p—1)(a>-1) q(q—1)(b*—1) 2pqgab which can be taken to be 0 apg, defined by the vanishing
a2 + b2 + ab of one or other of the metric functiorssandb. The metric
extends onto the corresponding degenerate orbit because the
+(p+g—1)A=0. (33)  associated metric function vanishes similaptor (p;—p),

_ o ~ so that one has a regular collapsingoapheres og spheres
We shall adopt the conventional normalization, when considas in the origin of spherical polar coordinates. For all the

ering Einstein metrics with positiva, of taking SP*a*1 metrics Bohmp,q),, one has

A=pta, 34 a(0)=0, a(0)=1, b(0)=by, b(0)=0;
which is one less than the total dimension of the space. _ ; B P _

When p>1 and gq>1, which we shall be considering a(pr)=ap, a(py)=0, b(py)=0, b(p)=—1. (40
here, the general solution of the Einstein equations is nobn the other hand. for theSP*1xSd metrics
known explicitly. A well-known special solution is Bohm(p,q), one has’

’ m+1

a=sinp, b=cosp, @9 a(0)=0, 4(0)=1, b(0)=b,, b(0)=0:;

in which case the metri¢29) becomes just the standard

round metric onSP+a*? a(p;)=0, a(p;)=—1, b(p;)=by, b(py)=0.  (41)
ds?=dp?+sir Per23+ cog pd(?, (36)  The functionsa andb are strictly positive for 8<p<p¢, and

) o ) _ the quantitiesay, by, andb, are certain constants.
written as a foliation bySPx S. This can easily be recog-  Pplots of the metric functions and b for various Bohm

nized as the metric on the urd*9** by introducing coor- metrics are presented in the Appendix. These have been ob-
dinatesx” on RP*9%2, subject to the unit-radius constraint tained by performing a numerical integration of the Einstein
x"x*=1, and then introducing orthogonal unit vector8  equations(32). It can be seen that as the index for

and n” in RP*9*2 such that a general point on the unit Bohm(p,q), increases, the metrics rapidly become approxi-

SP*a*1in RP*9*2 can be written as mations to the “double-cone” Einstein metric
xA=m"sinp+n” cosp. (37) 1 _
ds?=dp?+ +—1$in2 pl(p—1)dQ2+(q—1)d07],
A second well-known special solution to the Einstein (p+a-1) 42
equations is (42
n ) for most of the range of the radial coordinate. The metric
a= \ﬁsin( \ﬁp), b= /q_, (38) (42) itself is singular at the apexgs=0 andp=, since
A p A near to each of these points one has a collapsgPafS”

surfaces. The actual Bohm(q),, metrics with largen devi-
ate from Eq.(42) just in the vicinity of the apexes, instead
approaching the forms given in Eq40) or (41). It is inter-
D A q-1 esting to note that Eq42) is in fact the singular limit both of
d=dp?+ —sin2( \/:p)dQ'23+ —dﬁg. (39  the regulars’**! sequence Bohm(q),., and the regular
A P A SP*1x S sequence Bohnp( Q) o1 -

: . : Note that in the case of the Bohm metrics
+1
There is an analogous solution 87X S77* too. Since there Bohm(p,q) o, 1 With the topologySP*1x ¢, the fact that

is obviously always a discrete transformation under Whid}he metric functiorb(p) never vanishes means that we can
the roles of the sphere® andS" are interchanged, we shall P

not in general bother to mention the symmetry-related postepPlace the associated round spHgtevith its metricd(1g in
sibility. Eq. (29) by any Einstein spac&, of dimensiong, whose

It is shown in Ref[6] that the Einstein equatiori82) and  (positive Ricci curvature is normalized toﬁaﬁz(q
(33) admit a countably infinite number of solutions giving —1)d,s, and we will again have a complete and nonsingu-

with, using our conventional choicéy=p+q. This gives
the standard homogeneous Einstein metricSBh! x S7,
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lar Bohmian metric in p+q+1) dimensions, now with the Note that these coefficients are not all independent, and
topology SP*1x Qq- The Einstein spac@, could itself be  thus
taken to be a Bohm metric such as Bohm(g,2)

Bohm(2,3),, or Bohm(3,2),. PX;=—Q0X%=30(q— 1)Xxs—3p(p—1)X,,
B. Estimates and bounds for Lichnerowicz in Bohm metrics - p(p—1)X,+q(g—1)xs (45)
3=—
1. Eigenvalues of the Weyl tensor 2pq

We saw earlier, in Sec. IID, that positive eigenvalues of |t js straightforward to see that with multiplicities, the
the Weyl tensor tend to drive the lowest mode of the Lichneryrgceless eigenvectols,z and eigenvaluex of the Weyl

owicz more negative. Accordingly, we can gain insights intotensor are given by
the bounds on the spectrum of the Lichnerowicz operator in

the Bohm metrics by studying the Weyl tensor. From Eq. hoi: M=p, k=—Xq,
(30, and our choice of normalization wherR,,=(p
+Q)0gap, We have hoy: M=0, K=—X,,

Coioi =X15» Couos=X20ug: Ciuis=XsdiOug,
POIT AT TReOp T T el i Ra T el {hjlhii=0}: m=3p(p+1)—1, k=—Xx,,
Cijke=Xa( ik 8je— 6i¢Oji)

{haplhaa=0}: m=3q(g+1)—1, k=—Xs,

Caﬁyﬁz X5( 50(755'5_ 5a55ﬁ7)1 (43)
where hie: M=pg, x=—Xs, (46)
Py b ah together with two eigenvectors of the form
Xlz_l_—, X2: 1 B, X3 1 _b,
a hoo=—puU—quv, hjj=udij, h,z=vdug (47)
X :1_32_32 X :1_b2_b2 (44) for which the eigenvalues are given by the roots of a qua-
4 a® ' ° b2 dratic equation

VPAL(p—1)X4+ (d—1)xs]°+(p+q+1)[p(p—1)X4s—q(q—1)xs]?

Ke=3(P=1)X4+2(q—1)Xs = (48)
2 2 2@
|
The coefficientas andv are then given by that the most likely instability for metrics with direct-product

orbits would be ballooning modes of this general type.
Some examples of our numerical results for the maximum
value of the largest eigenvalue of the Weyl tensor are as
follows. For the Bohm(2,2) metrics onS® and S®x S? we
v=2pk+—P(P—1)X4+0d(q—1)Xs. (49 find from Eq.(48) that x. attains its maximum value at the
endpoints of the radial coordinate range, and so

u=—209k-—p(p—1)x;+a(q—1)xs,

In total, we have the expectef(p+q+1)(p+q+2)—1 )
symmetric traceless eigenmodes mH{q+1) dimensions. o _95(1—bg)
Using the output of the numerical integration of the Ein- Kmax™ 3bj

stein equations for the Bohm metrics, we find that the eigen-

value of the Weyl-tensor that achieves the largest positivén fact, asn increases, the functior, peaks more and more
value isk, given by Eq.(48). It is therefore in this sector strongly around the endpoints. Far=0,...,6, we have ap-
that one can expect to find the lowest-lying eigenmodes ofroximately

the Lichnerowicz operator. We can see from &) that the

associated eigenvector is of a type that may be thought of as K%axz{0,5,24,26,118,45,579,76,3013.72,151@6.9

a “ballooning mode” in timet. That is to say, if we consid- (51
ered the associated black hole spacetime with its associated

time dependent perturbation ir{13), it is a mode where one (The results fom=0 andn=1 are exact, since these the
of the sphereS$P or SY tends to inflate at the expense of the standard homogeneous metrics 8h and S*x S?.) Using
other. This accords with one’s intuition, which would suggestEqg. (28), we obtain the lower bound

(50
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ab a? b?

20(1— 4bj)
29Qm+p(P—1)W+Q(q—1)W

3b2

(52

L=

S= J aPblc

on the spectrum of the Lichnerowicz operator on . p(p—1) N q(q—1)
Bohm(2,2),. From our numerical results for the valuesbgf a? b2
for the first few examples, we find

—(p+a)(p+g—1)|dp. (598

Ballooning modes in product metrics, in which one factor
contracts and the other expands, are Lichnerowicz zero
modes and are typically associated with instabilities

Bohm(2,2)4: A =20,

Bohm(2,2);: A =0, [12,9,13,1. It is reasonable to expect, therefore, as we ar-
gued in Sec. llIB 1, that if instabilities were to arise in the
Bohm(2,2),: A =—-77.04, Bohm metrics, they would be associated with modes of a
similar type. We are therefore led to seek a generalization of
Bohm(2,2)5: A, =—453.8, ballooning modes to the warped product of spheres present
in Eq. (56). The perturbation
Bohm(2,2),: A, =—2342,
M2.2)4 - a—ayl+u, b—byl+v, c=1—-Jl+vy (59
Bohm(2,2)s: A =—11972, is tracefree at the linearized level #+pu+quv=0, and
t if
Bohm(2,2)5: A,=—60407. (53 oneversel
_ _ - : _ a b a b
The bounds fon=0 andn=1 are in fact exactly attained, y+|p+ag|y—pu-apu=0. (60)
corresponding to the the cases of the homogen&usnd a a

S®x % metrics, respectively. The zero mode in the latter case . .
is the ballooning mode 068X S2. As we mentioned previ- 1hese two conditions can be used in order to solveufand

ously, the lower bounds we obtain for the inhomogeneoug in terms ofy:

Bohm metrics are not expected to be very sharp.
In general for the Bohny(,q), metrics we find

o (@=1)(p+g+1)(1-bf)

Kmax— (p+ 1)b% ’ (54)
and hence we have the lower bound
4(p+q+1)[q—1—(p+q)b?
- (p+a+1)[g—1—(p+q)bg] 55

(p+1)b} ’

where as usual we have normalized the scale so Rjat
=(P+0) Gab-

2. Transverse tracefree ballooning modes

In order to study transverse tracefree perturbations, we

consider a metric of the form

ds’=c?dp?+a%d0;+b2d0)7. (56)
This is similar to Eq.(29), except that we have, for conve-
nience, introduce the coordinate gauge functgt) in the
metric. Substituting into the Einstein-Hilbert action

szf Jgdix[R—(d—2)(d—1)] (57)

(whered=p+q+1) and omitting a constant factor equal to

the volume of the product metric on the uig®x %, this
gives

y+[(gq+1)bb~'+paa1]y
u= . ’
p(aa t—bb™1)

y+[(p+1)aa *+qbb~*
oo [(p _ ) . q ]7. 61)
q(bb"1—aa?1
One is free to choose the function which completely
determines the perturbation through E61). However, the
Bohm(p,q),, metric hasn interior points at which §a !

—bb~1) vanishes, and hence the expressionsifandv are
singular for generic choices of This problem can be solved
by inverting Eq.(61) to give y in terms ofu,

1 NN
YZWJ aPb 5— = Udp. (62

b

The remaining functiow is given by the trace-free condition
pu+qu++y=0. One is now free to choose a nonsingular
function u to obtain a perturbation that will at worst be sin-
gular at the end points=0, p=p; . These singularities can

be avoided as described in the next subsection. One simple
choice is

p—m —(p+1-m)
UZW’ U:W'

1

Y= Jpprariom- (63
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We will use these expressions below in order to exhibit nega- tg
tive Lichnerowicz modes in some of the Bohm metrics. f Pdp
Nmin< (66)
3. Rayleigh-Ritz estimates for the lowest Lichnerowicz f Qdp
eigenvalue 0
In the eigenvalue problemy =\ ¢ for a self-adjoint op- here
eratorA, one can obtain an upper bound on the lowest eigen-
value by the Rayleigh-Ritz method: namely, 322 7 3082 722 11zmab  91a2h?
TP bR b bR b0 2pf
f YAydp
M 15a?
i< ————, (64) Q=—, (67)
f yPdp 2b°
M

and p;=2p. is the upper limit of the range of the radial

. ) . ) ) ) o coordinatep. Note that in fact it suffices to evaluate the
with equality being achieved if the trial functiahis actually  jntegrals only up to the midpoini= p, in these cases, since
the eigenfunction corresponding to the lowest eigenvalue. Ifhe metric functions are symmetric abgut p., here.
this section, we shall _apply this methoq to obta|_n an upper  sing the constraint33), with p=q=2, we can eliminate
bound on the lowest eigenvalue of the Lichnerowicz operatofye term involvinga? in P. We also note that upon use of the
on transverse tracele§ET) modes in the Bohm metrics, and gocond-order equatior82), we can prove the identities
in particular, we shall find that there is a negative-eigenvalue

mode in some of cases we examine.

The easiest cases to consider are the Bohm metrics i aa)_ _ 10aab+ 1—4a
s+ dp|BF) " " BT B
Bohm(p,q),m+1 on the product topologieSP™ X S%. In P
these metrics, the functiomin Eqg. (29) is nowhere vanish-
ing, and so we can take our trial function to be given by Eq. d (a%b 10a2b?  a%(1-—4b?)
(63) with m=0: dp\ % i + o - (68)
€ —(p+1)e € Sinceaa/b® anda®b/b® vanish at both endpoints of the full

pprari YT ppraric (65) integration range, we can use these in order to perform inte-
grations by parts in the evaluation ¢P. Specifically, we
use the former to remove the term fhinvolving ab, and

Here we have introducedas a small constant order param- then using the latter, we find that

eter. As we shall see below, this trial function allows us to

u= pPFa+tl: v=

q

prove that certain of the Bohm metrics on products of s 25 (pf a’b?
spheres have negative eigenvalue modes of the Lichnerowicz f p==> dep, (69
operator. 0
which is manifestly nonpositive. We therefore have the
C. Negative Lichnerowicz eigenvalues in Bohm metrics Rayleigh-Ritz bound
1. Analytic results for negative modes for Bohm metrics ot )
on S$3X 2 f a’b~%2dp
0

It turns out that the easiest cases to study are the Bohm Nmin< — 3 (70
metrics Bohm(2,2).,.;, whose topology i$*x S?. We are f faZ[ySdp
able to obtain completely analytic and explicit results that 0

prove the existence of negative modes of the Lichnerowicz

operator for all these examplé®r m=1), and so we shall for the lowest eigenvalue of the Lichnerowicz opera(Re-
present the details for these metrics here. For these examples|l that we are working in units wherR,,=44g,,.) This

we takey=e/b® as our trial function, as suggested by Eq.proves that the Einstein metrics Bohm(2,2); have a
(65), implying that we haveu=e/b® and v =—3e/(2b°). negative eigenvalue for the Lichnerowicz operator on trans-
From the expansion df given in Eq.(58), with the pertur-  verse traceless symmetric two-index tensorspnfier 1. (The
bation (59), we can easily extract the terms quadraticein casem=0 is the standard product Einstein metric 8A
and so by comparing with Eq$6) and (9) we obtain a X S?, with b=%. In this case the numerator gives zero, and
Rayleigh-Ritz bound for the lowest eigenvalhg;, of the in fact we exactly saturate the upper bound, finding the
Lichnerowicz operator known lowest eigenvalud, =0 on the product metrig.
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Using the numerical results described in the Appendix, wethat whilst our trial functiony=1/bP"9%1 is regular every-
find the following upper bounds on the lowest Lichnerowiczwhere in the metrics o8P*1x S, it diverges at the right-
eigenvalue for the Bohm(2,2)and Bohm(2,2) Einstein  hand end point of the range of the radial coordinaia the

metrics onS3x S2: metrics onSP*9*1 A natural modification to the trial func-
tion to take account of this is to interpolate smoothly be-
Bohm(2,2)3: Apn<—7.2766, tweeny=1/bP"9% on the left-hand side angi=1/aP"9**
on the right-hand side of the range @fWe have carried out
Bohm(2,2)5: A= —198.008. (71)  this procedure numerically in the case of examples of the

o . Bohm(2,2),,, metrics onS®, and we find that indeed there
(Recall that we are normalizing the metrics so R,  4re negative modes of the Lichnerowicz operator, in accor-

=49gap.) As one goes to higher examples Bohm(2:2)1  dance with the qualitative arguments. Specifically, we find
with increasingm, one finds that the upper bound on the 56ximately

lowest Lichnerowicz eigenvalue becomes increasingly nega-

tive, tending to—o in the limit asm—c. Note that our Bohm(2,2),: Amin=<—0.7937,
upper boundgq71) are considerably larger than the rather
crude lower bound&s3) that we obtained by considering the Bohm(2,2),: \,<—38.86

eigenvalues of the Weyl tensor.
2. Analytic results for negative modes for Bohm metrics Bohm(2,2)6: Amin<—1040.6. (74)

on $*xS® . .
These upper bounds are again all considerably larger than the

For general values gb and g, the analogous expression corresponding lower bounds in E¢3) that we obtained
for the integrand¥ in Eq. (69) andQ in Eq. (67) that appear from the eigenvalues of the Weyl tensor.
in the numerator and denominator of the Rayleigh-Ritz func-

tional (66) turn out to be D. Noncompact Bohm metrics
P=q Y(p+q+1)%(p?—2p—3+pg—q)aPb 2P~ a-4h2 A class of complete and nonsingular noncompact metrics
’ was also constructed by Bohh7]. These include examples
Q=q Yp+g+1)(p+1)aPh 2P-a-2 (72) where the metric ansatz is again taken to be @§), but

now the metric is required to be Ricci flat. These metrics
if we take the trial functiony=b P~ 971, In general, this have been considered recently in Rfl] in studies of the

gives us a rather weak positive upper bound on the lowedRossibility of topology change. It was shown in REf7] that
Lichnerowicz eigenvalue for the Bohmyq),m, 1 metrics on ~ regular metrics exist in whicta(p) and b(p) satisfy the
SP*1x S, In fact only for p=q=2, which we discussed Poundary conditions

above, andp=2, =3, does one get a nonpositive bound . .

from this choice of trial function. Interestingly, fgr=2, q a(0)=0, a(0)=1, b(0)=Db,, b(0)=0. (75
=3 the numerator integrand in Eq. (72) vanishes identi-

cally, and so we obtain the bound Unlike the previous compact examples, here regularity im-

poses no constraint on the allowed values for the constant
Amin=<0 (73)  bo, and in fact the value db, now merely sets the overall
scale of the metric. Note thatis everywhere nonvanishing,
in this case. It is straightforward to see thatfioe 1 the trial  and so the there is a8 bolt at p=0. The metrics are as-
function y=1/b® does not give an eigenfunction, and henceymptotically conical, approaching cones over the standard
the inequality in Eq(73) is not saturated. Thus we have an product Einstein metric o8P SA.
analytic proof that for the Bohm(2,3)., Einstein metrics A representative example is presented in the Appendix,
on $*x S® with m=1, the lowest eigenvalue of the Lichner- for the case ofp=2, q=2. The Rayleigh-Ritz method that
owicz operator on TT symmetric tensors is strictly negative we described earlier for finding an upper bound on the small-
For all other cases aside from Bohm(2,2); and est Lichnerowicz eigenvalue can be applied in these non-
Bohm(2,3%m.1, the trial functiony=b P 9! does not compact Bohm metrics too. In fact the trial function
give a negative upper bound an,,. We believe that this is =b P~ 9! can be considered here too, since it remains fi-
a consequence of a nonoptimal choice of trial function, sincdlite everywhere and it falls off rapidly at large We find
the qualitative arguments would suggest the existence dhat the numerator and denominator integrands are then
negative Lichnerowicz modes for all the Bohm metrics. ~ again given by Eq(72), and so again we obtain a negative
upper bound on the lowest Lichnerowicz eigenvalue for the
3. Numerical results for negative modes f@&ohm(2,2,m casep=q=2, andp=2, q=3.
metrics Evaluating the integrands numerically for the caseq

The analytic methods that allowed us to prove the exis-:2’ we find that

tence of negative modes of the Lichnerowicz operator in the
SBx S? and S¥x S® Bohm metrics do not directly extend to
any of the Bohm metrics 08° 791, The reason for this is

0.110433
Amin< — Tz (76)
0
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For p=2, g=3, we find, as for Bohm(2,3),,1, that the Sasaki metrics are inhomogeneous metrics on del Pezzo sur-
bound is\ ,j;<0, and we can again argue that since the triaffaces, i.e.,CP? blown up atk points, with 3<k=<8, giving
function y=1/b® does not give an eigenfunction, we must Einstein-Sasaki metrics on the connected surk abpies of
have\ ,,<0. For all otherp andg, our choice of trial func- S®x S2.!

tion does not give a negative upper bound on the lowest Recently Boyer, Galicket al. [18—21] have constructed
eigenvalue of the Lichnerowicz operator. Again, we believemany inhomogeneous Einstein-Sasakn{2l) metrics on

that this is because the trial function is nonoptimal in thesehe linksL;=C;NS*"*! of weighted homogeneous polyno-
other cases, since general arguments suggest that the nanialsf on C"*. The notation is as followsC e C"*1 is the
compact Bohm metrics should all have negative eigenvalugero setf(z)=0 of the polynomial, an&®"*? is the stan-

modes of the Lichnerowicz operator. dard sphere. One readily sees that the Hopf fibration desends
to L, and this gives the fibration associated to the Sasaki
IV. EINSTEIN-SASAKI MANIFOLDS structure. Note that this description is purely topological. The

metric is obtained indirectly by means of an existence proof.
The present state of the art is that there are at least 14 in-
In this section we remind the reader that as well as thequivalent Einstein-Sasaki structures 8ix S? [21]. Of
infinite sequence of cohomogeneity one Bohm metrics thathese, onlyT'! is homogeneous, and so if used in the AdS/
have featured in our discussion, the maniféftk S> admits ~ CFT correspondence the other 13 examples would give su-
many other Einstein metrics. For example, it has been knowpersymmetric vacua with no R symmetry.
for some time that there are infinitely-many homogeneous The volume ofTtis well known to be 16-3/27. Accord-
but nonsupersymmetric”? spaces, corresponding td(1) ing to Ref.[22], the volume ofL; is given, in five dimen-
bundles oveiS?x S? in which theU(1) fibers windp times  sions, by
over oneS?, andq times over the other. These all have the
topology S®x S? and they all admit an Einstein metric. Only w3
T admits Killing spinors. ﬂ(|W|—d)3, (79
There are, by contrast, also many inequivalent supersym-
metric examples 08°x S? Einstein metrics, which do admit _
Killing spinors. They can thus be used in the AdS conformalVhere d is the degree off, w=(wo,w;,wW,,ws) are the
field theory (CFT) correspondence, replacir® in the D3 WeIghts,|w|=wo+w;+w,+ws, andw=wow,;W,ws. The
brane metric and its near-horizon limit. two inhomogeneous Einstein-Sasaki metricss3x S? con-
An Einstein-Sasaki metric may be defined as asStructedin Ref[18] are both of degree 256 and have weights

(2m+1)-dimensional Einstein metric such that the coneW=(11,49,69,128) anav=(13,35,81,128). They therefore

A. Introduction and definition

over it is a Calabi-Yau metric have V0|um68773/27>< 4760448 and’773/27>< 4717440, re-
spectively. These may be compared with the volume of the
A2 apivar= R2+ RS2, <iein-sasaki (770 product metric or8®x S?, which is 7°/v2, and of the lim-

) iting singular double cone Bohm metric, which isr¥3.
or in other words, the cone is a Ricci-flat iar metric. The
Killing spinors in the Einstein-Sasaki metric come by direct
projection from the covariantly-constant spinors of the
Calabi-Yau metric. If one uses the complex structlicé the
Calabi-Yau metric to act on the Euler vector of the cone In this subsection, we present what is essentially a review
R(4/4R), one gets a Killing vector on the Einstein-Sasakiof how Einstein-Sasaki manifolds can be constructed as
manifold with constant magnitude, and thus we may writeU(1) bundles over Einstein-Kder manifolds, focusing in

B. Einstein-Sasaki manifolds adJ (1) bundles over
Einstein-Kahler manifolds

locally particular on the construction of the Killing spinors. The con-
struction can be applied to obtain Einstein-Sasaki manifolds
A2 stein-sasaie (A + AP +dSE e (78)  in any odd dimension, and so we shall give the construction
for this general case.
whereJ(d/dR) =l 9y anddsZ, i ke 1S l0CIlY Einstein- Suppose we have an Einsteinter metric g, on a

Kahler with positive scalar curvature. Globally th{1) ac- manifold M, of (even dimensionn=2m. By the standard
tion generated by/dy may be free(in which case one formulas of Kaluza-Klein reduction, then-1)-dimensional
speaks of a regular Sasaki struchumad the base is a smooth metric
Einstein-Kaler manifold, or it may have fixed points in
which case the Einstein-Kéer base has orbifold singulari-
ties. The total space however will still be smooth. We give a
more detailed discussion of the relation between thehas Ricci tensoR,g whose frame components are given by
Einstein-Kaler and Einstein-Sasaki spaces below.

Taking CP? or CP*X CP! as the Einstein-Kialer base met-
ric gives the standard homogeneous Sasaki metric3®an It is worth remarking thatny five-dimensional closed simply
T respectively. If the fibration is regular the only remain- connected spin manifold with no torsion in the second homology
ing possible base metrics for five-dimensional Einstein-group is diffeomorphic to a connected sum of copieSbk S2.

d¥=(dy+A)>+ds? (80)
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TABLE I. The progression from Einstein-Kéer to Einstein-
Sasaki to Ricci-flat Kaler cone.

2m-dimensional
Einstein-Kaler

(In+1)-dimensional
Einstein-Sasaki

(+2)-dimensional
Calabi-Yau cone

A>0
(Dy—ieA)e=0

A>0
Dap=ximl 7

Rab=0
D,n=0

1 c £ 1 ab - 1 b
Rap= Rab_EFancr ROO:ZFabF ) ROaZEV Fab,
(82)

where F=dA and &°=dy+A, &2=e? Taking Fg,
= udap, Whereld,, is the Kaler form onM,, we therefore
have

« 1 .
Roo=7 nu®, Rea=0, (82

. 1),
Rap= A_EM Jab,
where R;,=Ag,, in M,,, and so the i+ 1)-dimensional
metric d&? will be Einstein,Rag=Agag, and

A=n, A=n+2, (83

provided that we take.= 2.
The covariant exterior derivative on spinorf=d

+ 1/40 '8, is easily seen to be given by

D=D—1AJ %+ 1J,,ePr%—13.,dyl'2, (84)

where D=d+ ; w,,I"®" is the covariant exterior derivative
on spinors in the base spabk,. Note that since is neces-

sarily even, the spinors in the total spadehave the same
dimension as those in base spatg, and so we do not need

PHYSICAL REVIEW D57, 084024 (2003

that in general it has only two singlet eigenvalues, which are
*in. It is these singlets that are associated with the gauge-
covariant constant spiner(and its charge conjugateand so

we can deduce that

e=1(n+2). (87)
One can also then easily show tHate=oe, where o=
+1. From the second equation in E&5) we therefore de-
duce that if we takep=f(¢)e we shall have
f=e(LM4(n+ 2)i(//’ (89)

and then the first equation in E@5) confirms that indeed
satisfies

D,e—3i(N+2)A,e=0. (89
In other words, we have proved that if is the gauge-
covariantly constant spinor in the Einsteinti{er manifold
M, , then »=eM0+2)ivg is 3 Killing spinor in theU(1)
bundle oveiM ,, which is therefore an Einstein-Sasaki mani-
fold M. The conjugate spinor satisfies the Killing-spinor
equation with the opposite sign on the right-hand side. Lifted
up further using Eq(77), one obtains the conjugate pair of
covariantly constant spinors in the Ricci-flat idar cone
over the Einstein-Sasaki manifold. The situation is summa-
rized in Table I.

C. Lichnerowicz bound for Einstein-Sasaki spaces

In any Einstein spac#! that admits Killing spinors, we
can prove that the boun@1) that governs the stability of
AdSX M solutions, and also the stability of Schwarzschild-
Tangherlini black holes, is always satisfied. In other words,
we can prove that an Einstein spaceddimensions with

to make any tensor-product decomposition of the Dirac macosmological constank has a Lichnerowicz spectrum such

trices. The equation for Kiling spinors in
(n+1)-dimensional bundle spadd, in the normalization
Rag=Ngas that we established above, is simp®.n
=3iol' 55, where o=+1. From Eq.(84), this gives the
equations

an

ao»“/,: %JabFObn+ %i al’a7,

D.,np—A

=33l 9+ 3i0Ton. (85

an

Y

As is well known, the Einstein-Kder spaceM , admits a
gauge-covariantly constant spingrsatisfying
D,e—ieAe=0, (86)

where as above we hawbPA=F=2J, ande is the electric

charge carried by. This can be determined by examining

the integrability condition [D,,Dple=32Raped %
—2ied,,e. Multiplying by T'2° this gives n(n+2)s

=4eJ,,I'®%. Itis a straightforward exercise to calculate the

eigenvalues of the matri%,,I'®", and to show, in particular,

(90)

L= a1

A (5—d)?
A (4_ - )_

To prove this we shall first, for convenience, make our
conventional choice of normalization =d—1. A Killing
spinor therefore satisfid, 7= 3iI",7. Suppose that,, is a
transverse traceless mode of the Lichnerowicz operator on
M:

ALhab:)\habv Vahab:O, h:=0 (91)
We now define two vector spinors
ba= habrbna XaE(Vbhac)Fbcn- (92

The assumed properties bf, can easily be seen to imply
that
D%¢p,=0, T?ph,=0, D%*,=0, T?,=0. (93

We now calculate the action of the Rarita-Schwinger op-
erator on the vector-spinors, finding after some algebra that
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i metry per se but rather, the fact that the mass spectrum of
iT°Dp o= xa— 5 (d=2)¢a, scalar fields can be related to the mass spectrum of Spin
fields. Since the Lichnerowicz Laplacian is the mass operator
i for scalar fields, and the Rarita-Schwinger operator is the
iTPDpxa=—(A—d)d,+ 5(d=4)xa. (94)  mass operator for spipfields, our demonstration above that
the eigenfunctions of the two operators are related when

Thus by taking an appropriate linear combination of the tWothere are Killing spinors can be seen to reduce to the super-

vector-spinors, we can form an eigenfunctiop=é,+ ky. symmetry argument in those special dimensions where su-

of the Rarita-Schwinger operator on transverse gammagersymmetric AdS vacua can be fo.und.'Ou.r argument.above
traceless spif modes Is much more general, however, since it dispenses with the

excess baggage of supersymmetry, and the need to interpret
inDbl/fa:M%- (95) mass in AdS backgrounds.
In Refs.[9,10] the Lichnerowicz bounds were investi-
It follows immediately from Eq(94) that we shall have an gated for seven-dimensional Einstein metrics on the spaces
eigenfunction if M(rzn,n) ar;d ng,e,zm) which areU(1) bundles over:P?
. . X S and S*X S°X S, respectively, with the integers speci-
p=3(d=2)—ik(\—d), kp=i-zk(d=4). (96  fing the winding numbers of the)(1) fibers over the base

These equations determine the constant of proportionality t§°MPONents. Itis was found that for the Einstein-Sasaki ex-
d prop Y amples, namelyM (3,2) andQ(1,1,1), the bound\ =1 A

k=il[u+3(d—4 h hat the Rarita-Schwi
2%%\'/21['5% Zs(aciisfie)s], and hence that the Rarita-Schwinger in Eq. (90) is strictly exceeded. This has the interesting con-

sequence that for a range of ratimsn or k: €:m around the

4uP—4u—d?+10d—8=4\. (97)  Einstein-Sasaki values, the stability bound is still satisfied
despite the absence of supersymmé®L0]. By contrast, it
Reorganizing this we obtain was shown recently in an analogous five-dimensional calcu-
. 5 . 5 lation for the TP9 spaces with Einstein metrics that the
A=3(2p—1)"+4-3(d=5)" 98 pound A=A in Eg. (90) is exactly saturated by the

Einstein-Sasaki case™!, and that all the nonsupersymmetric
p# g spaces have a Lichnerowicz mode lying strictly below
the bound 13].
A=4—1(d—5)2. (99) It is. wqrth remarking that, in y_iew of the equivalgnce of
the criteria for black hole stability and AdS stability de-
Restoring the cosmological constant, we therefore obtain thecribed in Secs. 1IB and |1 C, we have the immediate conse-
claimed inequality(90), which must hold for any Einstein quence that Einstein-Sasaki manifolds will always give
space of positive Ricci tensor that admits Killing spinors. Instable Schwarzschild-Tangherlini black holes.
particular, this encompasses the case of all Einstein-Sasaki A further consequence is that any Einstein metric whose
manifolds, in all odd dimensions. Lichnerowicz spectrum does not respect the lower bound
It is worth remarking that the above proof is a generali-(90) cannot admit Killing spinors, and so it cannot give rise
sation of an argument that was used in R&2] in the case to supersymmetric backgrounds in any supergravity compac-
of seven-dimensional Einstein-Sasaki manifolds. It was artification. Examples include not only the case of product
gued there that such a manifditi, could be used in order to metrics, for which it has long been known that there exists a
obtain a supersymmetric solution AgSM, of eleven- Lichnerowicz zero mod¢12], but also cases such as the
dimensional supergravity. Now it is known that eigenfunc-Bohm metrics whose negative Lichnerowicz modes we have
tions of the Lichnerowicz operator in the internal space givedemonstrated in this paper.
rise to scalar fields in the AdS spacetime. The supersymme-

try of the background implies that these scalars must be,, | joenTZIAN BOHM METRICS, REAL TUNNELING

Eelmberé,I Qf sugerrpultlpletsi including _Iferrmons: Su;c;? the GEOMETRIES, AND COUNTEREXAMPLES TO
aluza-Klein reduction must necessarily give riser THE COSMIC BALDNESS CONJECTURE

masses for the fermions, it follows that the masses of the

bosons(making due allowance for the need to define mass In this section we discuss metrics obtained by analytic
carefully in AdS must be real also. This translates into the continuation of the Bohm metrics. These metrics, which pro-
statemenf12] that the(mas$? of the scalars must respect the vide generalizations of de Sitter spacetime as locally static
Breitenlohner-Freedmalril5] bound for stability, and hence solutions with cosmological horizons, have a number of ap-
it follows that the spectrum of the Lichnerowicz operator plications. In particular, they provide counterexamples to a
must be bounded from below by the stability limit, as givencertain form of the Cosmic Baldness conjecture. Further-
in Eq. (21), for the casal=7. The same argument was used more, the Riemannian Bohm metrics have a totally geodesic
recently for AdSX M5 compactifications in Ref{13]. Of  hypersurface. This allows them to be viewed as real tunnel-
course our general proof above can be seen to be essentiailyg geometries for the creation of the Lorentzian Bohm met-
an extension of the supersymmetry argument of REZ), rics “from nothing.” We first review the geometry by dis-
since in fact the crucial ingredient was not really supersymcussing the case of the rousi=Bohm(2,2),.

From the reality of the Rarita-Schwinger eigenvajugwe
therefore deduce that
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A. Round S° and dSg

The round metric or8®> may be written as
ds?=dp?+sir? p(d 6>+ sir? 6d¢?)
+cog p(d@'2+sir? 0'%d¢'?). (100

This provides an isometric embedding int6®, with
Cartesian  coordinates denoted by the
(X1,X5,X3,X1,X5,X3), via

(X1,X5,X3)=sinp(sinf cos¢,sinf sing,cosh) (101
and

(X1,X5,X3)=cosp(sin@’ cose¢’,sinéd’ sing’,cosd’).

(102
Thus, as required, one has
X2+ X3+ X5+ X2+ X523+ X52=1. (103
Note also, for later use, that
X2+ X3+ X5=sifp, X;2+X2+Xi?=cop. (104

The range of is seen to be [ 0,7/2].

To get the locally static Lorentzian de Sitter solutb;,
one can set the angké=it with t real. This means thaX,
=iT with T real, and the embedding is intbut not onto the
quadric

X = T2+ X5+ X2+ X57+ X5P=1. (105
Equations(104) now become
XI-T2+X3=sifp, Xi*+X;>+Xi?=codp.  (106)

It is clear that there can be points af; for which Xi
—T2+X3 is negative, and therefore for whick;?+ X}?

+X4? exceeds unity. It follows that we need to use a differ-

ent parameterization. We set $p=1—b? and get the metric

db? )
dsz=mz+(1—b2)(d02—sm2 0dt2)
+b2(d6'?+si 0'dg’?). (107

In this metricb e [0,0). However,b=1 is a coordinate sin-

gularity, and forb>1 the orbits ofg; are spacelike. We use

Eq. (107 in the region B=b<1, whered, is timelike. There
are Killing horizons ofg; at #=0 and #= 7. The metric on
the horizon is

2

db
o|sZ:l +b2(d6'?+sir? 0'd¢'?), (108

—p?

which is the standard metric 8. It is important to note,

variables

PHYSICAL REVIEW D67, 084024 (2003

(102). The cosmological event horizon is not unique, since
one may act with the&sQ(5,1) isometry group. This fact is
connected with the observer dependence of the associated
Hawking thermal radiatiof3]. The coordinate singularity at
b=1 arises because the two-dimensional orbitSa)(2,1)

on thedS, factor changes from being timelike to spacelike
as it crosses the surfate=1.

It is interesting to observe that with the metric &
written as in(100), the map¢— — ¢ is an isometry, which
fixes pointwise a separating totally-geodesic hypersurface
given by =0 and ¢ =7 (because- 7~ 7 here. In terms

of the embedding described earliét, is the hypersurface
X,=0. TheZ, isometry implies the vanishing of the second
fundamental form or®, i.e., K=3£,9=0, and hence the
totally geodesic property. Hena is the normal to3. The
metric onY is

2

ds’=

+(1-b)d6?+b2(do'+si? 'dg'?),
(109

1—b?

which is in fact just the round metric &&. We get all ofS*
because we have two copies of this metric, each with
e[0,7], corresponding tap=0 and ¢= . Again, this is
seen most immediately in terms of the embedding Eb31)

and (102, whereX,=0 manifestly defines as*. Thus we
have a real tunneling geometry in the sense of R3] That

is, we have a compact gravitational instanton with totally
geodesic boundary, such as one might use to approximate a
proposed wave function for the universe. The Riemannian
metric may be grafted onto the Lorentzid& metric (107)

at t=0, where it is clear that Eq107) also has the same
totally geodesic hypersurface with metiit09 defined as
the fixed point set of— —t.

B. Lorentzian Bohm metrics

The setup of the previous Sec. V A generalizes straight-
forwardly to Bohm metrics. An isometric embedding is no
longer possible, because spheres are the only positive curva-
ture Einstein metrics that may be embedded isometrically
into Euclidean space of one dimension higher. However, the
topological statements go through. The analytic continuation,
¢—it, of the five-dimensional Bohm metrics gives

d2=dp?+a2(p)(d62—sir? 6dt2)

+b?(p)(dO'?+sir? 0'd¢’?). (110
Note that we could have analytically continued the second
sphere instead. In some cases this gives two inequivalent
Lorentzian metrics; we shall discuss making this interchange
a—b below. We will distinguish between these two analytic
continuations using subscripts. This and%, correspond

to the totally geodesic hypersurfaces in each case. Again, we
have Killing horizons at§=0 and = . The range ofp

that in order to get all of th&®, we need both of the copies depends on the specifics of the Bohm metric.

of this metric with O<b< 1. These arise from the two values

Consider first the cases where the corresponding Rie-

6=0 and 6=, each of which covers half of the horizon. mannian Bohm metric has topolo@;. The topology of the

This is best seen from the embedding of E¢B01) and

horizon isS?, as it was for the roun&® of the previous Sec.
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TABLE Il. Volumes of various Bohm metrics.

V=16w2  \ol(2,)=8n? \ol(2;)=8m?

Bohm Topology bo Piin X [a2b2dp X [a’bdp X [ab?dp
(2,2) s 1 1.57079 31.006 26.320 26.320
(2,2), s° 0.253554 2.68470 20.814 20.302 20.302
(2,2), s° 0.053054  3.04979 20.672 20.2605 20.2605
(2,2), SBx &2 0.5 2.22143 21.924 21.924 19.739
(2,2) $Bx S? 0.117794  2.93537 20.684 20.189 20.335
(2,2)s X S? 0.023571  3.10092 20.6709 20.267 20.254
(2,2)., bi-cone onS$?*x §? 0 3.14159 20.6708 20.2603 20.2603

V A. This follows from the fact that the metric functions imaginary part for the free energy when one evaluates the
a(p) andb(p) behave near the two end poiniss0 andp  functional integral. Usually one expects just one negative
= ps in the same way as sjpnand cog, respectively, behave mode, and the contribution of instantaneous with more than
near the end points=0 andp= /2 of the roundS® metric. ~ one is often ignored.

As we shall see shortly, the ar@zof this cosmological event Another interesting question is what is the volumeXof
horizon is always less than in the round case. Intercharajing the totally geodesic boundary. For tunneling geometries con-
andb in the S° Bohm examples gives the same Lorentzianstructed from hyperbolic tunneling manifolf4],? Vol (3) is

metric. a measure of the complexity @f and it is possible to bound
When the Riemannian Bohm metric has topolo§y the volume of the tunneling geometry in terms of the volume
X S?, an exchange of functiona«—b in Eq. (110 will of the boundary such that larger complexity, i.e., larger

change the topology of the Lorentzian manifold, and in parVol(X), means larger volumg25]. In the case of positive
ticular the topology of the event horizon. This is because irscalar curvature, and with boundariEsof simple topology
these casea(p) goes to zero at both endpoints, whidép) (S* or X S? in our casg the notion of complexity is not
never goes to zero. For topological purposes, we may thinkelevant. However, it is still interesting to know how the
of a as behaving as smwith end pointsp=0, p=7 andb  volume of the manifold is related to the volume of the totally
behaving as a constant functidjust as in the “trivial”  geodesic boundary. Specifically, the volume of the five-
Bohm metric Bohm(2,2), which is simply the product Ein- dimensional manifold is

stein metric or8®>x S?]. Thus we have two possibilities. The
metric (110 has a horizon with topolog$'x S. If we ex-
changea and b, the horizon will have topologys®. These
topologies are seen in the same way as in the previous Sec.
VA, and as always we should take care to include the twawhile
values#=0 and 6= 7. The area of the horizons are

V=167 f ab?dp, (113

Vol(3, )=872f a’bdp,

A8 [ a%dp (119 ’ ’
and VO|(21)=87rzf ab?dp. (114
Ar= 87’] bZdp, (112 The two different values fok, correspond to interchangiray

andb in the metric. In theS® cases these will be the same,

respectively. Note that there is an extra factor of 2 becausbut for the S*x S? cases they will be different. Some ex-
there are contributions from bo#h=0 andf= . The argu- amples are illustrated in Table Il. The table also collects in-
ments of the following sections suggest that these two quarformation about the corresponding valuesbgfand pyy, .
tities should be equal, and less than the horizon area for the In this table the results for the double cone are found
de Sitter spacetimdS;. These are nontrivial conditions on analytically, and the Bohm(2,g2)metric (the round five-
the functionsa and b. The nonuniqueness of these cosmo-spherg may also be calculated analytically as a check on the
logical horizons is reduced compared to the de Sitter cas@umerics. The volumes decrease from the round sphere to
because the relevant isometry group is now ddi{y(2,1). the double cone, as expected from Bishop’s theof26i.

The Z, isometry of the previous Sec. VA is also presentThe volumes of th&’s decrease with the volume in tH&®
in the Bohm metrics, and therefore we recover a totally-cases, but not in th8*x S? cases.
geodesic submanifold. Thus one might consider using Bohm
metrics in tunneling calculations for the creation of a Lorent-
zian Bohm universe. In that application the number of nega- 2Note thatA, has no negative modes in this case, and so one
tive modes ofA, should be an odd number, so as to get anmight worry about the tunneling interpretation.
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TABLE Ill. Volumes of some higher dimensional Bohm metrics. whereg;; is the metric on the orbit spad@ of J;, and the
gravitational field equations imply in particular that

V=47 5
Bohm Topology b prin Ja%b3dp VU=-AU. (116
(3,3) g7 1 15707  32.470 The quantityU vanishes on the horizon, and its normal
(3,3), S S 0577351  2.2207 24995 IS called the surf_ace gra\_/my._The period in imaginary time,
(3.3) Py P 014291  2.9322 oaagy € the real pepod Qf-z|t, is 21l k. !f Vis the volume of
G . 30 3 ‘ : ) the corresponding Riemannian manifold, @i the area of
(3,3).  bi-cone onS™S 0 81416 244816 1o event horizon in the Lorentzian manifold, one has

7
V= —WJ Uygd™ Ix. (117
K JQ

Similar calculations may of course be done with higher- _ _ _
dimensional Bohm metrics, as illustrated in Table IIl. The The boundaryQ is the event horizon, where the orbits de-
generalization ofS to higher dimensions is slightly more generate. For example, when the Bohm metric has topology
involved, and will not be discussed here. S° the bounda3ryQ is a four-ball, B4, with boundary the

There is another analytic continuation of the Bohm met-€vent horizonS®. The metric onQ is in fact given by Eq.
rics to a Lorentzian metric that is possible in the case%o%- tHO.V\{ever, ':heil (t’rrluc'albf:'ﬁgence 1S thﬁ‘,tl "t"? tazke only
Boms+1(P,P). In these cases the metric functica), b(p) =% to Intersect all the orbils at, once, whrst for we
are symmetric about the midpoipt=p.. Thus p=p, de- needed to take botk=0 and $=1. The S’ that we had
fines a totally geodesic hypersurface, with topolog¥ before corresponded to gluing two copiesBdf across their

3
x P, stabilized by a reflection. It follows that seting ~°oundans’.
v ; . . . . Integration ofV<U gives

—pc=it gives a Lorentzian expanding universe with spatial
cross sectionSPx SP. We anticipate that the scale factors of -
each of the spheres will be expanding. A special case of this AjQU \/ﬁd X= KA, (118
situation isB4(p,p), which corresponds to analytically con-
tinuing S*x S? to dS°x S%. Note that in this case th€>  whence
factor does not expand, but this will not be the case for the
general Bohm metrics where neither of the functiaip),
b(p) are constant. This argument shows that when there are two possible in-
equivalent analytic continuations, such as for the Bohm met-
rics on S3X S?, the horizon areas should be the same,
=A,. This is illustrated in Table IV, which also illustrates

In the Riemannian metrics, the circle action 8hgener-  the relationshig(119), showing that it works for the various
ated byd, rotates theX;-X, plane. The action has £H's topologies. The values.c\f are repeateq from Ta}ble I_II.
worth of fixed points for whichX;=0 and X,=0, corre- Note thatx cancels in Eq(119), as it must since it de-
sponding to#=0 and §= 7. Because the reversal @f is  Pends on the normalization of the length of the Killing field,
also an isometry, we have in fact @(2) action, which which is arbitrary. This relation between area and volume is

allows the analytic continuation to a locally static, i.e., time-duite universal and holds for any Einstein metric admitting
reversal invariant, metric with a hypersurface-orthogonal Io-ﬁ]neoa(r?a %?t't?]g' rl]toﬁlzlc())\:]vs:ns dtﬂgﬁlcegetothsigx'fgae:l fgfr:;gﬂ t?at
cally timelike Killing vector field with a Killing horizon. least, the entrop is gi\;en by y
These are the cosmological horizons of the previous subsec-"""

tions. In such cases the Lorentzian metric may be written S=1A, (120

locally as

VA=27A. (119

C. Cosmological event horizons

just as in four dimensions. This general argument was first
ds?=—U2dt?+ gijdx‘dxj, (115 given in four dimensions in Ref27]. Now, a theorem of

TABLE IV. Horizon areas and volumes of Bohm metrics.

Topology bg A A=A, ? \% 4V=27A?

s° 1 19.74 Yes 31.006 Yec=124.02

S 0.253554 13.25 Yes 20.814 Yés83.25

53 0.053054 13.160 Yes 20.672 Yes82.689

Fx S 0.5 13.96 Yes 21.925 Yes=87.69

Fx S 0.117794 13.168 Yes 20.684 Yés82.74
xS 0.023571 13.15954 Yes 20.6709 Yes82.689
bi-cone on$?x §? 0 13.15948 Yes 20.6708 Yes-82.683
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Bishop [26] tells us that for fixedA, the volumeV never  conjecture will hold, even though the letter of the baldness
exceeds its value for the round sphere, with equality only irconjecture is broken.
the case of roundness. It follows that this area or entropy is
always less than the area or entropy of the corresponding  vi. NEGATIVE MODES AND NONUNIQUENESS
horizon indS;. OF THE DIRICHLET PROBLEM
Since dynamically one expects the area to increase, and ) ) ) )
thermodynamically one expects the entropy to increase, there 1€ existence of negative Lichnerowicz modes has been a
seem to be some physical grounds for believing that thé&"&jor theme in this work._ This section contains speculatl\_/e
static Lorentzian Bohm metrics are dynamically unstable. InOmments on a generic connection between negative
deed, one might conjecture that if they are perturbed slightlj-ichnérowicz modes and the nonuniqueness of solutions to
at some initial time, then they will evolve to an asymptoti- the Dirichlet problem. In particular, we argue that there will
cally de Sitter state, and that this evolution will be such thaf® infinitely many negative Lichnerowicz modes on tiue-
the area of the cosmological horizon increases monotonicallfompactRicci-flat Bohm metrics. The existence bf nega-
from a value near, but smaller than, its value for the initialtivé modes for the Lichnerowicz operator for noncompact
Bohm metric, to its value for the de Sitter spacetime. ItRicci flat manifolds such as the Riemannian Schwarzschild
should not be impossible to investigate this conjecture nuselution first came to light when considering the negative
merically. specific heat of black holes. Since then a considerable litera-
ture has grown up, analyzing that and related cases.
In the noncompact Ricci flat case, it seems that the gen-
D. Consequences for cosmic baldness eral picture is as follows. One has a class of metrics on a
It has been conjectured for some tifi& (in four dimen- manif_old M), depending on some parameters, in the simplest
case just one overall scaling parameiesuch as the mass in

siong that there should exist only one regular static solution : i . .
of the Einstein equations with a cosmological constant tha}he Schwarzschild case. One asks whether this metric can fill

i ; i _an-2 In a given boundary.,_, that has a given metrib;; . That
rna?ag? g/ni 3235; (t)ﬁir:fslogg leht?é:ﬁgs?oi)ho?ggi?cali an)n.( is, one tries to solve the Dirichlet problem for the Einstein

1) ball as described above. This is a much svonger st SRS | 0 T o SRR ERRCIET
ment than that locally, within the event horizon of every ! PIe, y

2 1 . . . . . _
observer or most observers, the metric will settle down to theS XS with the product metric. This is specified by the ra

static de Sitter form. In fact for generic initial data one can-g'ﬁs R (I)If the two-spggre art;clj ﬂl:eh [Jler!qﬂ of thhe. C|r|ctl)e. f
not hope that the metric will settle down globally to the de ysically, we are putling a black nole in a spherical box o

Sitter state, as was originally made cleaf@i [see also Ref. radiusR, and fixing the temperature on the boundary of the

[28] for a detailed discussion using the exact Lorentzianbox to equall = 8. If the metric and the boundary data are
Taub-NUT (Newman-Unti-Tanburinometricg. to agree then we must have

It is now clear that the Bohm metrics provide infinitely
many counterexamples to the cosmic baldness conjecture in 87 /1_ 2—77:,8 (121)
dimensions 5n=<9. The situation in four dimensions re- R '
mains unclear. It is still possible to believe an even stronger
conjecture, the truth of which would imply the cosmic bald- The number of solutions of this equation fardepends on
ness conjecture, namely, that there is only one Einstein methe ratio8/R that specifies, up to a scale, the boundary met-
ric on S*. At present all that is known is that if there is ric hij. One finds that if the ratio is small there are two
another Einstein metric 08, then its volume must be less solutions foru. The Einstein actiori of the two solutions
than that of the round metric by a factor of 29], and that differs. The action for the smaller value pfis the smaller.
the magnitude of the Weyl tensor must exceed a certaile shall refer to these two solutions as branches. If the ratio
threshold[30]. This is interesting in the light of the fact that is large there are no solutions far At the critical value the
it is the magnitude of the Weyl tensor which appears to playtwo solutions foru coincide, and giveu= 3R.
a role in controlling the spectrum of the Lichnerowicz opera- Now consider the operatak, (which equalsA, in this
tor. It may perhaps suggest that any counterexample wilRicci-flat situation, subject to Dirichlet boundary condi-
have a negative mode df,. tions, which gives the Hessian of the actiofror a large box

Curiously, there are some proofs of a form of the cosmid(in relation to the scale set by the temperatlire 1), A,
no-hair conjecture in the literatuf@1,32, but these proofs has a single negative mode for the branch with the smaller
require a smooth structure at future spacelike infihity It~ value of u, and a positive but no negative mode for the
seems likely that in our examples, the future timelike infinity branch with the larger value. As one reaches the critical
will not be of the sort envisaged in those proofs. It would bevalue, the two branches coincide and so do the two eigenval-
interesting to investigate this point further, but this wouldues. At the critical point there is an eigenmodeqf with
seem to require analytic formulas fa(p) and b(p). As  zero eigenvalue. In other words, at the critical point there is
mentioned in the previous subsection it seems likely that marginally stable mode. Because the specific heat is given
these static metrics will be dynamically unstable, and theyessentially by the Hessian of the actidm®., the free energy
may well evolve into an asymptotically de Sitter—like state.considered as a function of the boundary data, it changes
If this is true then the main physical spirit of the no-hair sign at this value.
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Positive mode Radius of
Mass (M) box (R) +mode
0 mo - mode
+ mode
0 m%
+ mode
0 mo
Zero mode -mode
Negative mode a(R)/b(R)

Radius of box (R)

FIG. 2. The noncompact Bohm metric in a box with a fixed
FIG. 1. Relationship between Lichnerowicz modes and massegalue ofa/b at the boundary. Allowed values 8fare shown along
for the Schwarzschild solution in a finite cavity. with the corresponding positive, negative, and zero modes from
branching. It is expected that the branches will joiraéR)/b(R)
Next, consider what happens as the radius of the box in=1.
creases to infinity, so that the rat@/R goes to zero while
keeping B8 a constant, and take the branch on whjehs tions of the curve ofi/b with a straight line at 45° through
smaller. In the limit, one finds that— B/(87). On the other  the origin in the(a,b) plane. Clearly, if we lea/b tend to one
branch, one finds thgt—. Thus, in the limitR—% one there are more and more intersections, which appear at criti-
gets a noncompact Ricci-flat Einstein manifold, namely thecal points in pairs when the straight line touches the slightly
standard Schwarzschild solution, and by following the modewiggly but almost straigh&/b curve. It seems reasonable to
which first appears as a zero-mode at the critical value, onguppose that an additional zero modeAgf appears at this
gets anL? negative mode forA, on that manifold. This point, and then as the slope of the straight line gets closer to
process is illustrated at fixed temperature in Fig. 1. unity, a pair of eigenvalues, one positive and one negative,
The picture described above has been vindicated by désranches off. If this intuition is correct, and if the branches
tailed numerical calculations in this and related cd$&5-  are connected at/b=1 say, then one expects that the non-
37]. For example, Hawking and Pad&8] studied black compact Bohm metrics of®x S® should have infinitely
holes in anti-de Sitter spacetime. The classical solution ignanyL? Lichnerowicz negative modes. This process is illus-
the Kottler or Schwarzschild anti—de Sitter solution, an Ein-trated in Fig. 2.
stein metric with negative scalar curvaturd.4The role of Some evidence for this viewpoint comes from examining
the radiusR is now played by the cosmological constant  SQ(p) x SO(q)-invariant transverse trace-free perturbations
and the manifolds considered are always noncompact, b@f the singular Ricci-flat cone 0SPx S obtained in the

the general picture is similar. limit by— 0. That is to say, the cone is

The arguments given above are heuristic rather than being .

completely rigorous, but they suggest the following generali- o r ) ~ 5
zation. One considers a one-parameter family of Dirichlet ~ dS°=dr’+ p+q_1[(p—l)de+(q—1)qu],
problems for the Einstein equations. As the parameter varies (122

one finds a discrete nonuniqueness, with more and more o
branches appearing, generically in pairs, and as each neand the perturbation is
branch appears a zero mode/of occurs, which then splits

into a pair of modes, one with positive eigenvalue and one Eg

with negative eigenvalue. In the limit that one gets a non- 5 P

compact manifold, one should have found, on the correct hap=r¢(r) 1 ' (123
branch, as mank? negative modes as the number of critical — —q

values one has passed. q ap

An obvious example on which to try this argument is the _ . F
noncompact metric of Bohm oR®x S? [17], recently con- v_vheregp _an_dgq are the round metrics and$, respec-
tively. This is a zero mode o8 x S, If we want a mode on

sidered by Ko[11] and discussed above. In fact it exhibits a h ith Lich . . | h ;
feature not seen previously, which is that even within the"€ cone with Lichnerowicz eigenvalueh, the equation for

restricted framework of cohomogeneity one metrics, the Di-# is [7]
richlet problem may have infinitely many solutions. B
These metrics are determined by a sin(eale param- d_¢+ 9 d_¢+ 2d—2 _
; —7¢=\o. (124
eter, which may be taken to be the radiog of the two- dr2 r dr r
sphere bolt. Now the geometry of a boundary at some fixed
value of the radiuR is given by the rati@(R)/b(R). Thus  The solutions to this equation for#0 are, writingd=p
the possible filling solutions are determined by the intersec-q,
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¢(r)=r<1‘d)’2[AIM()\1/2r)+BKM()\”Zr)], (or n-form) field strength. Thus it becomes of considerable
interest to try to obtain bounds on the spectrum of the
Lichnerowicz operator on Einstein spadds .

V(d=1)(d-9), (125 The Bohm metrics are sequences of cohomogeneity one
Einstein metrics of the form(29), which more and more

whereA andB are constants, arlg, andK , are the modified nearly approach a “double-cone” form42) as one

w=

N =

Bessel functions. When=0 we get progresses along the sequence. One therefore intuitively ex-
pects that the “ballooning” instabilities associated with di-
(r)=rA-DR2=Nd=DO-d)/2 (126) rect products of the sphere metrics forming the principal or-

bits will give rise to negative-eigenvalue modes of the
This expression was written down in Rdfll] (his d is  Lichnerowicz operator. Such modes wowdortiori violate
shifted by ong It is also the behavior of the Bessel function the stability criterion described above, implying that
solutions in Eq(125) asr—0. Asr—o, the Bessel function Schwarzschild-Tangherlini black holes or AgSM4 solu-
solutions go as ~%%e=". The K, Bessel function is the bet- tions constructed using the Bohm metrics would be unstable.
ter behaved. In certain cases, including all the Bohm metrics K S?

We are interested in the Bohm casesd<9 that coin- andS®x S3, we constructed analytic proofs that indeed show
cide with oscillatory behavior in Eqg125 and (126). For  the existence of negative modes of the Lichnerowicz opera-
these dimensions, the zero-mode solutions are not normalizer. Numerical calculations for other examples, namely
able asr—o or asr—0, although they are bounded as Bohm metrics onS°, have confirmed that these too have
— . The negative mode solution with, is normalizable at negative-eigenvalue modes of the Lichnerowicz operator. We

infinity. believe that in fact all the Bohm metrics have negative
Thus theK , solutions decay at infinity, and as we move Lichnerowicz modes.
in towards the origin, start oscillating at~x~*2 In the One can perform analytic coordinate continuations in the

singular cone limit, the modes are not normalisable at théohm metrics in order to obtain spacetimes with positive
origin. However, suppose we are in a rounded-off cone. Foeosmological constant that generalize de Sitter spacetime. If
r> b, the metric is essentially that of the singular cone, andone does this for the Bohm metrics that are themselves to-
we may use our solution€l25). If further we havex "Y2  pologically spheres, then the resulting spacetimes have the
>by, logarithmic oscillations will set in, within this Same topology and global structure as de Sitter spacetime
asymptotic regime. We should then expect to be able tdtself. These metrics provide infinitely many counterex-
match this solution to a solution in the inner regions that isamples, in dimensionsSn<09, to the cosmic baldness con-
well behaved at the origifisee Ref[7]), for a certain dis- jecture, which asserted the uniqueness of regular static solu-
crete set of values fok. This will give us a spectrum of tions of the Einstein equations with a single cosmological
negative Lichnerowicz modes. It would seem that there willhorizon. However, although the Bohmian analogues of de

be an infinity of such modes, accumulating at zero. Sitter spacetime are regular, we have argued that they are
unstable and that they are likely to decay into a de Sitter—like
VIl. CONCLUSIONS AND DISCUSSION state. This would mean that the no-hair conjecture would

remain inviolate.

The principal focus of this paper has been to study appli- In order to explore possible endpoints for the decay of
cations of the countable infinities of inhomogeneous Einsteirspacetimes constructed using Bohm metrics, we were also
metrics on certain spheres and products of spheres, whidbd to consider other geometries for Einstein spadgshat
were discovered recently by Bohffi]. These occur for the would satisfy the criteria for stability. In particular, we con-
topologiesSP™ 91 and SPT1x S9, for 5<p+q<9 andp sidered compact Einstein spaces of positive Ricci curvature
=2, g=2. They may be used in place of the usual round-that admit Killing spinors. We showed that in all such spaces,
sphere Einstein metrics in a variety of constructions includin any dimension, one can derive a lower bound on the spec-
ing black holes and Freund-Rubin solutions, and after a Wickrum of the Lichnerowicz operator which implies that the
rotation to a Lorentzian section, they may be interpreted astability criterion Ag,=0 is satisfied. These examples in-
spacetime metrics in their own right. clude all the Einstein-Sasaki spaces, which may be defined

The stability of generalized Schwarzschild-Tangherlinias odd-dimensional Einstein spaces whose cones give Ricci-
black holes, where thd-dimensional constant-radius spatial flat Kahler spaces in one higher dimension. It is straightfor-
sectionsMy in the (d+2)-dimensional spacetime are taken ward to see that the covariantly constant spinors on the
to be positive Ricci curvature Einstein spaces, was studie®icci-flat Kahler cone project down as Killing spinors on the
recently in Ref.[7]. It was shown that a solution will be Einstein-Sasaki base. A by-product of our results is that it
classically stable if the spectrum of eigenvalues of thedemonstrates that the Bohm metrics, for whigh (and
Lichnerowicz operator on transverse traceless symmetrihencea fortiori A,y can be negative, cannot admit Killing
two-index tensors itM 4 is bounded below by a value corre- spinors.
sponding toA4,=0 in Eq. (1). One of our results in this There also exist Ricci-flat Bohm metrics, with noncom-
paper has been to show that this stability criterion is identicapact topology. The structure of these metrics at short distance
to one obtained in Ref§12,13 for the stability of Freund- looks very similar to that near one of the two endpoints of
Rubin solutions Ad$x My of gravity coupled to ad-form  the compact metrics. However, lacking the cosmological
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term that causes the metric functions to turn over and recolshown in Ref.[6] that countable infinities of smooth solu-
lapse in the compact examples, the noncompact spaces amns satisfying theSP* 971 or SP*1x S boundary condi-
ymptotically approach the cone over the @< S% direct-  tions(40) or (41) exist. It is quite a straightforward matter to
product base. The noncompact spaces have the topologptain these solutions by numerical methods, since it turns
RPT1x S, The only parameter in the noncompact metrics isout that the second-order equatiq8®) are quite stable.
the overall scale. We constructed an analytic proof that the We have constructed numerical solutions by first obtain-
noncompact Bohm metrics fop=q=2 and p=2, q=3 ing Taylor-series expansions for the metric functiarendb
have negative Lichnerowicz modes, and we presented a genear top=0, imposing thep=0 boundary conditions given
eral argument that indicates that all the noncompact Bohnn Eq. (40) [or, equivalently, in Eq(41)]. To the first couple
metrics will have infinitely many.2 normalizable negative- of orders, these give
eigenvalue Lichnerowicz modes.

Another possible use of the Bohm metrics is to construct
four-dimensional gravitating monopoles and black holes by a(g—1)+b3(p+q)(p—gq+1) 3 5
dimensional reduction, as studied in RE89]. This is pos- a=p— 6bZp(p+ 1) p°+0(p°),
sible because many of the Bohm metrics h&efactors. 0
Recalling thatS? is isomorphic toSU(2), one carguotient
by aU(1) action onS® to end up withSU(2)/[U(1)X Z,] 5
=S?. Thus the resulting lower-dimensional space will have b=b q—1-bg(p+a)
anS? factor, i.e., it will look similar to a monopole or black -0 2bo(p+1)
hole, and it will come with aJ(1) gauge field. Explicitly,
one can write the metric 08° using Euler angles as

p?+0(p*). (A1)

Note thata is an odd function ofp, while b is an even
function.

Using a Taylor expansion of the forfAl) (which we
actually evaluated up to ordes®), we then set initial data
just outside the singular point, for a very small positive value
of p. These data are then evolved forwardeimumerically,
using the second-order equatidi3®). The exercise then be-
comes a “shooting problem,” in which one seeks to adjust

ds?=d#?+sir? 0dy®+ (dp+cosdy)?, (127

where O< 0=, 0<¢<2w, and O<¢=<4m. The quotient
by the 9, isometry, and the/, quotienty)~ +2m, leaves
us with the standard metric d&, namely,d 6%+ sir? 6dy?,
and a charge-two Dirac monopaofe= cosédy. One can also
quotient by the whol&U(2), and inthis case because there

. . . 3 . .
is no fibration over thes* the SU(2) gauge fields obtained the one free initial parametdr, so as to achieve a smooth

will be trivial. L )
Thus, for example, take the seven-dimensional noncomt-ermm"’1t|0n of the evolved data at a pojit p; wherea and

pact Bohm metric over two copies &, supplement the _bsatlsfy one or other of the= p; boundary conditions given
. ) S S 2 ; : in Egs.(40) or (41).
metric by an eighth timelike directiorr dt“, and dimension- In cases wher@=a. the numerical analvsis is simpler
ally reduce onSU(2)xU(1). Onewill obtain a gravitating : $=0. Y pier,
. . . > since the regular solutions are all symmetric under reflection
U(1) monopole with four scalar fields. Another possibility about the midoointo=o.— p./2. Thus one can avoid the
would be to take the generalized black hole in eight dimen'need to handlg thtg_inﬁ;_r’;ftioﬁs in the region near
sions over a compact Bohm metric in six dimensions with 9 L 9 BaTP
. : where one or other metric function is tending to zero. In-
topology S°X S°. Again quotient bySU(2)xU(1), where stead, the shooting problem reduces to finditg &r which
the SU(2) is acting on the roun8® in the Bohm metric. We > - "™ 9p )
will obtain aU(1) magnetically charged black hole in four €ithera=b=0 at some poinp=p. [for the Bohmp,p)am
dimensions. Because ti# that theU(1) was acting on is =S?*"* metricg or else for whicha=b anda=—b [for the
not round, the black hole will not be spherically symmetric. Bohm(p,p)sm1=SP* X SP metricd.
It is known from the results in Ref.6] that there is a
ACKNOWLEDGMENTS countable infinity of valued®, for which a regular termina-
) ) ~ tion at somep; occurs. The larges, yielding a regular
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APPENDIX: NUMERICAL SOLUTIONS FOR BOHM Plots for the five-dimensional Einstein metrics

METRICS Bohm(2,2), on S° and S®x S? are given in Figs. 3—11 for

Numerical techniquesThe Einstein equation§32) and 0<n=6, with by=(1,5,0.253554255,0.117794,0.053054,
(33) cannot be solved explicitly whep>1 andg>1. It was  0.023571,0.010503). We also give a plot for the case of
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FIG. 3. The Bohm(2,2) (standardl Einstein metric or8°®. The left-hand figure shows the metric coefficieatsndb as functions of the
radial variablep. The functiona vanishes ap=0 andb=by=1 there. The crossover occursmt:pczﬁw. The right-hand figure is a

parametric plot ob vs a.
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FIG. 4. The Bohm(2,2) Einstein metric orS°. The left-hand figure shows the metric coefficieatandb as functions of the radial
variable p. At p=0 the functiona vanishes and=by=~0.253554255. The midpoint is at,~1.34235319. The right-hand figure is a

parametric plot ob vs a.

FIG. 5. The Bohm(2,2) Einstein metric orS°. The functionb starts athy~0.053054, and the midpoint is at~1.524951.
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FIG. 6. The Bohm(2,2) Einstein metric orS°. The functionb starts athy~0.010503 and the midpoint is at~1.56174.

P

FIG. 7. The Bohm(2,2) (standardl Einstein metric ors®x S?. The left-hand figure shows the metric coefficieamndb as functions of
the radial variablg. At p=0 the functiona vanishes ant,=3. The midpoint is ap,= (1/2v2) . The right-hand figure is a parametric

plot of b vs a.
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FIG. 8. The Bohm(2,2) Einstein metric or8®x S?. The left-hand figure shows the metric coefficieatsndb as functions of the radial
variablep. At t=0 the functiona vanishes anth,~0.117794. The midpoint is at,~1.46768843. The right-hand figure is a parametric plot

of bvsa.
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FIG. 9. The Bohm(2,2) Einstein metric or83x S?. The left-hand figure shows the metric coefficieatandb as functions of the radial
variablep. At p=0 the functiona vanishes and,~0.023571. The midpoint is at~1.550472593. The right-hand figure is a parametric
plot of b vs a.
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FIG. 10. The Bohm(2,2)Einstein metric orS®. The left-hand figure shows the metric coefficieatandb as functions of the radial
variablep. At p=0 the functiona vanishes and,~0.297647. The end point is pt~2.68296. The right-hand figure is a parametric plot
of bvsa
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FIG. 11. The noncompact Ricci-flat Bohm metric BAx S. The left-hand figure shows the metric coefficieatandb as functions of
the radial variablep. At p=0 the functiona vanishes andb, is taken to be 1. The right-hand figure is a parametric pldi v$ a.
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Bohm(2,3),, which is topologicallyS®, to illustrate an ex-
ample where there is no symmetry betweesmdb. This has
by~0.297647, and the end point is @t~2.68296(there is

no natural significance to the midpoint of the radial coordi-

nate range in th@#q exampleg

A few isolated examples for other valuespéndq are as
follows. The Bohm(3,3) metric on S’ has b,
~0.3055210896, with the midpoint occurring at=p.
~1.34689859293. The Bohm(3g3)metric on $*xS® has
by~0.14291337 and.~1.4691901856. The Bohm(44)
metric on S° has by~0.2851829 andp.~1.376730624,
while the Bohm(4,4) metric on S°XS* has by~0.09135
andp.~1.5099148.

PHYSICAL REVIEW D57, 084024 (2003

terms involving the cosmological constant will be absent in
Egs.(32) and(33), but otherwise all the formulas are analo-
gous. The short-distance Taylor expansidAd) now be-
come

a(q—1)

0y 340(p5
a=p 662p(pr1)” O(p),

b=b,y+ 24+ 0(p%. (A2)

q—1
2bo(p+1)°

Using this, taken to ordes®, to set initial data just outside

We can also treat the analysis of the noncompact Bohrthe S bolt at p=0, we again performed numerical integra-
metrics described in Sec. llID in a similar fashion. Sincetions. The plots for the functioressandb in the representative
these are Ricci-flat solutions of the Einstein equations, thexamplep=q=2 are given in Figs. 3—-11.
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