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Bohm and Einstein-Sasaki metrics, black holes, and cosmological event horizons
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We study physical applications of the Bohm metrics, which are infinite sequences of inhomogeneous Ein-
stein metrics on spheres and products of spheres of dimension 5<d<9. We prove that all the Bohm metrics on
S33S2 andS33S3 have negative eigenvalue modes of the Lichnerowicz operator acting on transverse trace-
less symmetric tensors, and by numerical methods we establish that Bohm metrics onS5 have negative
eigenvalues too. General arguments suggest that all the Bohm metrics will have negative Lichnerowicz modes.
These results imply that generalized higher-dimensional black-hole spacetimes, in which the Bohm metric
replaces the usual round sphere metric, are classically unstable. We also show that the classical stability
criterion for Freund-Rubin solutions, which are products of Einstein metrics with anti–de Sitter spacetimes, is
the same in all dimensions as that for black-hole stability, and hence such solutions based on the Bohm metrics
will also be unstable. We consider possible end points of the instabilities, and in particular we show that all
Einstein-Sasaki manifolds give stable solutions. Next, we show how analytic continuation of Bohm metrics
gives Lorentzian metrics that provide counterexamples to a strict form of the cosmic baldness conjecture, but
they are nevertheless consistent with the intuition behind the cosmic no-hair conjectures. We indicate how
these Lorentzian metrics may be created ‘‘from nothing’’ in a no-boundary setting. We argue that Lorentzian
Bohm metrics are unstable to decay to de Sitter spacetime. Finally, we argue that noncompact versions of the
Bohm metrics have infinitely many negative Lichnerowicz modes, and we conjecture a general relationship
between Lichnerowicz eigenvalues and nonuniqueness of the Dirichlet problem for Einstein’s equations.
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I. INTRODUCTION

The properties of higher-dimensional black holes, a
more generally spacetimes with event horizons, have co
to play an increasingly important role in physics. This is n
only for the purely theoretical reason that they may thr
light on some hitherto intractable problems of black holes
311 spacetime dimensions, but also because, if cur
ideas about large extra dimensions are correct, then s
black holes may possibly be created by high energy co
sions in accelerator experiments, and their behavior migh
accessible to direct observation@1,2#. As well as having pos-
sible applications to laboratory scale physics, high
dimensional black holes, and other types of horizons suc
cosmological event horizons@3#, may also have played a
important role in the early universe.

Many of the properties of black holes and event horizo
in higher dimensions are very similar to their counterparts
311 dimensions. For example, the analogue of the sph
cally symmetric Schwarzschild black hole exists in all d
mensions, with the two-sphere of the four-dimensional so
tion replaced by a (D22) sphere inD dimensions. Likewise,
there is an obvious higher-dimensional analogue of the u
four-dimensional de Sitter spacetime. Moreover, subjec
the strict condition of asymptotic flatness, the former a
their charged versions are unique@4,5#. However, if one
drops the condition of strict asymptotic flatness, by allowi
other compact Einstein metrics in place of the usual rou
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sphere in the spatial sections at constant radius, then
higher dimensions there are many more possibilities
black hole solutions, even on manifolds with the same top
ogy as the higher-dimensional Schwarzschild solution. T
is because of the remarkable fact, discovered by Bohm@6#,
that for 5<d<9, the sphereSd carries infinitely many other
inhomogeneous Einstein metrics, in addition to its us
round metric. One might wonder whether the resulting bla
hole solutions in spacetime dimensions 7<D<11 could
arise during scattering processes. This depends upon
stability. In this paper, we find evidence, and in some ca
proofs, that they are in fact unstable. To do so we use m
ods developed in Ref.@7#, which showed that the stability
depends on the non-negativity of the spectrum of the op
tor

Dstab5DL1
L

d21 S 42
~52d!2

4 D , ~1!

whereDL is the Lichnerowicz Laplacian on transverse trac
less second rank symmetric tensor fields on
d-dimensional compact Einstein space, which satisfiesRab
5Lgab . We obtain numerical results establishing the ex
tence of negative Lichnerowicz modes in Bohm metrics
S5, hence demonstrating the instability of seven-dimensio
black holes constructed using these metrics. We present
eral arguments suggesting that all the other Bohm sph
metrics will have negative Lichnerowicz modes too.
©2003 The American Physical Society24-1
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Bohm also showed the existence of infinitely many inh
mogeneous Einstein metrics on the products of spheresSN1

3SN2, for 4<N11N2<9, with N1>2 and N2>2. The
lowest-dimensional such examples are onS33S2. We have
also investigated the associated topologically nontriv
black holes~including the homogeneous product metric!, and
we prove that these are unstable. It is also known thatS3

3S2 admits infinitely many other homogeneous Einste
metrics, the so calledTp,q[spin(4)/U(1) spaces. Of these
only T1,1 admits Killing spinors, and in fact only the blac
hole associated withT1,1 is stable@7#. There are in addition
some otherinhomogeneousmetrics onS33S2 with Killing
spinors; these are examples of Einstein-Sasaki metrics.
show here that the associated black holes using these me
are stable. One might think therefore that an unstable b
hole based on the usual productS33S2 metric would evolve
dynamically into one based on one of theS33S2 Einstein-
Sasaki spaces. Presumably however, in doing so the are
the event horizon must increase. Now at fixed ‘‘mass para
eter’’ we show the areas of the horizons of the Einste
Sasaki horizons with topologyS33S2 are less than those o
the S33S2 Bohm metrics. Thus in the evolution, the ma
parameter would have to increase, which seems rather p
doxical. Another way to say this is that at fixed temperat
~which is proportional to the inverse of the mass parame!
the entropy of the Einstein-Sasaki metrics is less than tha
the Bohm metrics.

In addition to constructing black holes, one may use B
hm’s metrics to obtain static inhomogeneous Lorentzian
lutions of the Einstein equations with a positive cosmolo
cal constant, which are topologically the same as the stati
Sitter metric. As with the de Sitter spacetime, they contai
cosmological event horizon@3#. As such they provide coun
terexamples in<D<9 spacetime dimensions to the lon
standing and hitherto intractable cosmic baldness conjec
@8#, which would be a generalization of Israel’s uniquene
theorem to cover the de Sitter situation. The area of the c
mological event horizon in the Lorentzian Bohm metrics
smaller than that in de Sitter spacetime. We believe there
that they are unstable, and that under a small perturba
they would evolve, at least within the event horizon of
given observer, to a static de Sitter–like state. If this is
case, then although evading the strict letter of the cos
baldness conjecture they would respect the spirit of
weaker no-hair conjecture. The latter asserts that apart f
unstable cases of measure zero, the generic solution sh
settle down to a de Sitter–like state within the horizon of a
given observer. This is all that is needed to justify the us
intuition behind inflationary models of the early univers
Another possible application for these generalized de S
spacetimes would be as tunneling metrics.

The plan of this paper is as follows. In Sec. II we revie
the link established in Ref.@7# between black-hole stability
and the spectrum of the Lichnerowicz Laplacian on the co
pact d-dimensional Einstein spaceMd that forms the
constant-radius spatial sections. We also show that this
bility criterion is identical, for all dimensions ofMd , to that
for the stability of Freund-Rubin type AdSn3Md solutions
of gravity coupled to ad form. We then discuss a lowe
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bound on the spectrum of the Lichnerowicz operator, ba
on considerations of the Weyl curvature, that was conside
in Refs.@9,10#.

In Sec. III we give a detailed discussion of the Boh
metrics, and we exhibit negative modes of the Lichnerow
operator in some of these backgrounds. In certain cases
cluding all the Bohm metrics onS33S2 and onS33S3, we
obtain an analytic proof of the existence of negative mod
Intuition leads one to expect negative modes in all the Bo
metrics, and we back this up with some numerical results
certain examples where an analytic proof is lacking. Th
are also noncompact examples of Bohm metrics, which
Ricci flat. We give analytic proofs that the noncompa
Bohm metrics onR33S2 and R33S3, recently considered
by Kol @11#, have negative modes of the Lichnerowicz L
placian. Again, intuition leads one to expect negative mo
for all the noncompact Bohm examples.

In Sec. IV we discuss Einstein-Sasaki metrics, which m
be defined as odd-dimensional Einstein metricsds2 whose
conedŝ25dr21r 2ds2 is Ricci flat and Ka¨hler. They admit
Killing spinors, and we use this fact to obtain a lower bou
on the spectrum of the Lichnerowicz operator. In particu
we use this to demonstrate that the associated black hole
always stable. Likewise, this establishes that Freund-Ru
compactifications using Einstein-Sasaki manifolds will
ways be stable.

Section V contains a description of the analytic continu
tion of the Bohm metrics to give Lorentzian spacetimes t
are generalizations of de Sitter spacetime. These pro
counterexamples to the Cosmic Baldness conjecture. In
VI we try to relate the existence of negative modes for
Lichnerowicz Laplacian to the nonuniqueness of the Diric
let problem for the Einstein equations. Section VII gives o
main conclusions, and points to some other applications
Bohm metrics. For example, they can provide magne
monopole solutions in Kaluza-Klein theory. An append
gives further details about our numerical techniques, and
cludes some graphs illustrating the behavior of the me
functions in the Bohm solutions.

II. STABILITY AND THE LICHNEROWICZ LAPLACIAN

Our first aim will be to study the classical stability of tw
types of spacetime constructed using a general positive
vature Einstein metricMd . The first of these comprises gen
eralizations to higher dimensions of the four-dimensio
Schwarzschild black hole, in which the spatial two-sphere
constant radius is generalized to a higher-dimensional E
stein spaceMd . The second class of examples compris
Freund-Rubin type solutions AdSn3Md to a theory of Ein-
stein gravity coupled to ad-form field strength. As we shal
show below, the classical stability criteria for both of the
classes of spacetimes are expressible as thesamecriterion on
the spectrum of the Lichnerowicz operator acting on tra
verse traceless symmetric two-index tensors onMd . To set
the stage for this discussion, we begin in Sec. II A with
general discussion of the Lichnerowicz operator, review
the manner in which it arises from a consideration of t
second variation of the Einstein-Hilbert action. We then
4-2
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view the black-hole stability@7# and AdSn3Md stability
@12,13# criteria in Secs. II B and II C, and in Sec. II D w
review an argument given in Refs.@9,10# which shows how a
lower bound on the Lichnerowicz spectrum can be obtai
by considering the eigenvalues of the Weyl tensor.

A. Stability criteria

We begin by considering the Einstein-Hilbert action ind
dimensions

S5E
M
Agddx@R2~d22!L#, ~2!

whose Euler-Lagrange equations give the Einstein equa

Rab5Lgab . ~3!

Under the perturbation

gab→gab1hab , ~4!

one finds that up to quadratic order inhab , the actionS is
given on-shell byS5S01S11S21¯ , with

S052LE
M
Agddx, S150,

S25E
M
Agddx@2 1

4 habD2hab1 1
4 hD0h1 1

2 ~¹ahab!2#, ~5!

whereh[ha
a , h[¹a¹a and

D0h[2hh1 1
2 ~d22!Lh, D2[DL22L. ~6!

Here DL is the Lichnerowicz Laplacian operator acting o
symmetric rank two tensors:

DLhab[2hhab22Racbdh
cd1Rcahb

c1Rcbha
c . ~7!

If we consider a transverse traceless perturbation

¹ahab50, ha
a50, ~8!

then the second variation of the action is simply given by

S252
1

4 EM
AgddxhabD2hab . ~9!

We will be using these formulas on ad-dimensional Ein-
stein manifolds that appear as part of the full spacetime
particular we will consider generalized vacuum black ho
solutions, with total spacetime dimensionD5d12 @7#,
where the two extra dimensions are the time and radial
rections. Also we will be considering spacetimes that ar
direct product of (D2d)-dimensional anti–de Sitter with
d-dimensional compact Einstein manifold@13#. The anti–de
Sitter spacetimes are supported by a gauge field of appro
ate rank.
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In a perturbative classical stability analysis one as
whether there are finite energy solutions to the lineariz
equations of motion

D̂2ĥAB50 ~10!

that grow exponentially in time. We use hats to denote
full D-dimensional spacetime tensors and operators and
per case indices run overD dimensions.

B. Generalized Schwarzschild-Tangherlini spacetimes

Generalized Schwarzschild-Tangherlini black holes ha
the form

dŝ252F12S ,

r D d21Gdt21
dr2

F12S ,

r D d21G 1r 2dsd
2,

~11!

where, is a constant anddsd
2 is the metric on ad dimen-

sional compact Einstein manifoldB with the curvature nor-
malized to be that ofSd

Rab5~d21!gab . ~12!

The black hole solution has vanishing cosmological const
It was found in Ref.@7# that the dangerous mode for in

stability is a transverse tracefree eigenfunction of
Lichnerowicz Laplacian on the Einstein manifoldB:

ĥ0a5ĥ1a5ĥ115ĥ005ĥ1050,

ĥab5hab~x!r 2f~r !eivt, ~13!

wherex are coordinates onB and

DLhab5lhab . ~14!

HereDL is the Lichnerowicz Laplacian onB. The stability of
the spacetime was found to depend on the spectrum$l% of
the Lichnerowicz Laplacian acting on transverse tracef
modes onB. Concretely, if the spectrum contains an eige
value that is too negative, the spacetime is unstable bec
v2,0, giving an exponential growth in time in Eq.~13!:

lmin,lc[42
~52d!2

4
⇔ instability. ~15!

This result follows from considering the behavior of the r
dial dependence of the perturbation~13! f(r ). When the
criterion ~15! is satisfied, the solution forf(r ) that decays at
infinity also oscillates as sin lnr for small r. This allows it to
be matched to a solution that is well behaved at the hori
r 5, @7#. Thus a finite energy mode exists in this case a
the spacetime is unstable.

It is perhaps worth pointing out here that a form
Birkhoff theorem holds for the metrics we are considering.
other words if we had assumed a general time depen
metric of the form
4-3
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ds252e22f~r ,t !dt21e2c~r ,t !dr21Y2~r ,t !dsd
2, ~16!

wheredsd
2 is ad-dimensionaltime-independentEinstein met-

ric with scalar curvatured(d21), we would have found, on
imposing the Einstein equations, that the metrics had to
static. In fact this result also holds if the metric is coupled
a two-form field strength~in the electric case! or a d-form
field strength the magnetic case. It also holds if one inclu
a cosmological term. It means that when perturbing the st
metric we must consider time dependent perturbations of
transverse or base Einstein metricdsd

2. This is another way
of seeing why we need information about the the spectrum
the Lichnerowicz operator on this space.

We shall not give a detailed proof of Birkhoff’s theore
here, but merely indicate how to modify an existing tre
ment of Wiltshire@14# which assumesSO(d11) invariance,
i.e., thatdsd

2 is the unit round metric onSd. Wiltshire gives a
proof which also covers the case when Gauss-Bonnet te
are present. The argument he presents will not go over to
case of a general Einstein metric, since it makes special
of properties of its Riemann tensor. Thus in what follows
ignore that term, which means we setã50 in his equations.
It is an interesting question to ask whether Birkhoff’s the
rem remains true when one includes a Gauss-Bonnet te

The discussion depends upon whether]Y is spacelike,
timelike, or null. We assume the first case, and make a c
dinate choice such thatY5r . The field equationRt

r50 @Eq.
~6b! in his paper# then yields

] tc50.

The equationRt
t1Rr

r50 then gives

] rf1] rc50.

This means thatf1c5 f (t), wheref (t) is an arbitrary dif-
ferentiable function oft. By choice of the coordinatet, f (t)
may be taken to vanish. It follows that bothf and c are
independent of timet, and the metric is therefore static. Th
remaining field equations show that it takes t
Schwarzschild-Tangherlini form.

C. Anti –de Sitter product spacetimes

These are solutions to a system with ad-form field
strength minimally coupled to gravity

dŝ25dsAdSD2d

2 1dsd
2,

Fd5S 2~D22!~d21!

D2d21 D 1/2

volB , ~17!

where we have taken the same normalization for the cu
ture of B as previously@Eq. ~12!#. It was shown in Refs.
@12,13# that the dangerous mode is a transverse trace
mode on the manifoldB multiplying a scalar on the AdS
spacetime
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ĥ0a5ĥ1a5ĥ115ĥ005ĥ1050,

ĥab5hab~x!f~y!, ~18!

wherey are the coordinates on the AdS. The modehab(x) on
B is an eigentensor as in Eq.~14!. From the AdS point of
view, f(y) is seen as a scalar field with mass given by@13#

m25l22~d21!. ~19!

Instability of massive scalars on AdS spacetime is expres
in terms of the Breitenlohner-Freedman bound@15,16#. In
our units, this reads

m2S D2d21

d21 D 2

,2
~D2d21!2

4
⇔ instability. ~20!

Using the value of the mass in Eq.~19!, the criterion~20! is
just

lmin,lc[42
~52d!2

4
⇔ instability. ~21!

This is immediately seen to be the same as the crite
found for the black-hole spacetimes~15!. This is an intrigu-
ing match.

D. Lichnerowicz Laplacian and the Weyl tensor

In order to make estimates of the lowest eigenvalue of
Lichnerowicz Laplacian, it is convenient first to rewrite E
~7! in terms of the Weyl tensor. Since we are assuming t
the metric is Einstein, withRab5Lgab , this is given ind
dimensions by

Cabcd5Rabcd2
L

d21
~gacgbd2gadgbc!. ~22!

Thus the Lichnerowicz Laplacian becomes

DLhab52hhab22Cacbdh
cd1

2dL

d21
hab . ~23!

A method for obtaining a lower bound on the smalle
eigenvalue ofDL was introduced in Ref.@9#. One considers
the integral of 3@¹ (ahbc)#

2, which, after performing an inte
gration by parts and using the transversality and tracel
ness ofhab , gives
4-4
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E
M
AgddxhabDLhab5E

M
Agddx$3@¹ (ahbc)#

2

24habRabcdh
cd14LHabh

ab%,

5E
M
AgddxH 3@¹ (ahbc)#

2

24habCabcdh
cd1

4dL

d21
habh

abJ
>E

M
AgddxS 24habCabcdh

cd

1
4dL

d21
habh

abD . ~24!

Viewing Cabcd as a map acting on symmetric traceless t
sorshab , we can define its eigenvaluesk by

Cacbdh
cd5khab . ~25!

For homogeneous spaces, we therefore have a simpl
equality

DL>
4dL

d21
24kmax, ~26!

where kmax is the largest eigenvalue of the Weyl tens
Equality is attained if the corresponding eigentensorhab is a
Staeckel tensor, satisfying¹(ahbc)50. The bound~26! was
derived for homogeneous Einstein seven-manifoldsM7 in
Ref. @9#. It was also shown that in the case ofU(1) bundles
over the Einstein-Ka¨hler product six-manifoldsS23CP2 and
S23S23S2, the eigentensor that maximisesk is in fact
Staeckel, and thus the equality in Eq.~26! is attained@9,10#.

For inhomogeneous spaces, such as the Bohm metrics
we shall be studying later in this paper, the bound~24! must
be kept in its integrated form, and so we have

E
M
AgddxhabDLhab

>E
M
AgddxS 4dL

d21
24kmax~x! Dhabh

ab, ~27!

wherekmax(x) represents the~position dependent! largest ei-
genvalue of the Weyl tensor. If we definekmax

0 to be the
largest value attained by any of the eigenvalues of the W
tensor anywhere inM, kmax

0 [supxkmax(x), then we obtain the
inequality

DL>
4dL

d21
24kmax

0 . ~28!

It is clear, however, that this bound is not likely to be ve
sharp, especially ifkmax depends strongly on position.

We can, nevertheless, extract a general feature of
spectrum of the Lichnerowicz operator from the above c
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siderations, namely that in Einstein spaces of positive R
tensor, the minimum eigenvalue tends to be lowered by h
ing a large positive eigenvalue of the Weyl tensor. Indeed,
can see from Eq.~28! that if the largest Weyl tensor eigen
value is not sufficiently positive, thenDL could never be
negative or zero. We shall see when we study the Bo
metrics in detail that in these cases the Weyl tensor ca
fact have sufficiently large eigenvalues that the Lichnerow
spectrum includes negative eigenvalues. By using
Rayleigh-Ritz variational method we shall be able to obt
upper bounds on the lowest eigenvalue of the Lichnerow
Laplacian, allowing us in some cases to give an analy
proof of the existence of negative-eigenvalue modes.

III. THE BOHM EINSTEIN METRICS
ON SN AND SN1ÃSN2

A. Description of the Bohm construction

Bohm’s construction@6# gives rise to a countable infinity
of Einstein metrics with positive Ricci tensor on the sphe
SN for 5<N<9, and on the product topologiesSN13SN2 for
5<N11N2<9 with N1>2 and N2>2. We can use these
metrics in the black-hole and AdS3Md spacetimes of the
previous section.

The starting point for the construction is the followin
ansatz for metrics of cohomogeneity one:

ds25dr21a2dVp
21b2dṼq

2, ~29!

wherea andb are functions of the radial variabler, anddVp
2

anddṼq
2 are the standard metrics on the unit spheresSp and

Sq. An elementary calculation shows that in the orthonorm
frame e05dt, ei5aēi , ea5bēa, where ēi ēi5dVp

2 and

ēaēa5dṼq
2, the components of the Riemann tensor a

given by

R0i0 j52
ä

a
d i j , R0a0b52

b̈

b
dab , Ria j b52

ȧḃ

ab
d i j dab ,

Ri jk ,5
12ȧ2

a2 ~d ikdk,2d i ,d jk!,

Rabgd5
12ḃ2

b2 ~dagdbd2daddbg!. ~30!

Note thatȧ5]a/]r. The components of the Ricci tensor a
given by

R0052
pä

a
2

qb̈

b
,

Ri j 52F ä

a
1

qȧḃ

ab
1

~p21!~ ȧ221!

a2 Gd i j ,

Rab52F b̈

b
1

pȧḃ

ab
1

~q21!~ ḃ221!

b2 Gdab . ~31!
4-5
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The Einstein equationsRab5Lgab give rise to two second
order differential equations fora andb

ä

a
1

qȧḃ

ab
1

~p21!~ ȧ221!

a2 52L,

b̈

b
1

pȧḃ

ab
1

~q21!~ ḃ221!

b2 52L, ~32!

together with the first-order constraint

p~p21!~ ȧ221!

a2 1
q~q21!~ ḃ221!

b2 1
2pqȧḃ

ab

1~p1q21!L50. ~33!

We shall adopt the conventional normalization, when cons
ering Einstein metrics with positiveL, of taking

L5p1q, ~34!

which is one less than the total dimension of the space.
When p.1 and q.1, which we shall be considerin

here, the general solution of the Einstein equations is
known explicitly. A well-known special solution is

a5sinr, b5cosr, ~35!

in which case the metric~29! becomes just the standar
round metric onSp1q11

ds25dr21sin2 rdVp
21cos2 rdṼq

2, ~36!

written as a foliation bySp3Sq. This can easily be recog
nized as the metric on the unitSp1q11 by introducing coor-
dinatesxA on Rp1q12, subject to the unit-radius constrain
xAxA51, and then introducing orthogonal unit vectorsmA

and nA in Rp1q12, such that a general point on the un
Sp1q11 in Rp1q12 can be written as

xA5mA sinr1nA cosr. ~37!

A second well-known special solution to the Einste
equations is

a5Ap

L
sinSAL

p
r D , b5Aq21

L
, ~38!

with, using our conventional choice,L5p1q. This gives
the standard homogeneous Einstein metric onSp113Sq,

ds25dr21
p

L
sin2SAL

p
r D dVp

21
q21

L
dṼq

2. ~39!

There is an analogous solution forSp3Sq11 too. Since there
is obviously always a discrete transformation under wh
the roles of the spheresSp andSq are interchanged, we sha
not in general bother to mention the symmetry-related p
sibility.

It is shown in Ref.@6# that the Einstein equations~32! and
~33! admit a countably infinite number of solutions givin
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rise to inequivalent metrics that extend smoothly onto ma
fold of topology Sp1q11, and another countable infinity o
solutions for which the metrics extend smoothly onto ma
folds of topologySp113Sq. We shall denote these metric
by Bohm(p,q)n , where the integern runs overn50,2,4,...,
for the Sp1q11 sequence, andn51,3,5,..., for theSp113Sq

sequence. The standard unit metric~35! on Sp1q11 corre-
sponds to Bohm(p,q)0 , and the standard product Einste
metric ~38! on Sp113Sq corresponds to Bohm(p,q)1 .

The higher metrics Bohm(p,q)n with n>2 are all inho-
mogeneous. The radial coordinater runs between endpoint
which can be taken to be 0 andr f , defined by the vanishing
of one or other of the metric functionsa andb. The metric
extends onto the corresponding degenerate orbit becaus
associated metric function vanishes similar tor or (r f2r),
so that one has a regular collapsing ofp spheres orq spheres
as in the origin of spherical polar coordinates. For all t
Sp1q11 metrics Bohm(p,q)2m one has

a~0!50, ȧ~0!51, b~0!5b0 , ḃ~0!50;

a~r f !5a0 , ȧ~r f !50, b~r f !50, ḃ~r f !521. ~40!

On the other hand, for the Sp113Sq metrics
Bohm(p,q)2m11 one has

a~0!50, ȧ~0!51, b~0!5b0 , ḃ~0!50;

a~r f !50, ȧ~r f !521, b~r f !5b̃0 , ḃ~r f !50. ~41!

The functionsa andb are strictly positive for 0,r,r f , and
the quantitiesa0 , b0 , andb̃0 are certain constants.

Plots of the metric functionsa and b for various Bohm
metrics are presented in the Appendix. These have been
tained by performing a numerical integration of the Einste
equations ~32!. It can be seen that as the indexn for
Bohm(p,q)n increases, the metrics rapidly become appro
mations to the ‘‘double-cone’’ Einstein metric

ds25dr21
1

~p1q21!
sin2 r@~p21!dVp

21~q21!dṼq
2#,

~42!

for most of the range of the radial coordinate. The met
~42! itself is singular at the apexesr50 and r5p, since
near to each of these points one has a collapse ofSp3Sq

surfaces. The actual Bohm(p,q)n metrics with largen devi-
ate from Eq.~42! just in the vicinity of the apexes, instea
approaching the forms given in Eqs.~40! or ~41!. It is inter-
esting to note that Eq.~42! is in fact the singular limit both of
the regularSp1q11 sequence Bohm(p,q)2m and the regular
Sp113Sq sequence Bohm(p,q)2m11 .

Note that in the case of the Bohm metric
Bohm(p,q)2m11 with the topologySp113Sq, the fact that
the metric functionb(r) never vanishes means that we c
replace the associated round sphereSq with its metricdṼq

2 in
Eq. ~29! by any Einstein spaceQq of dimensionq, whose
~positive! Ricci curvature is normalized toR̃ab5(q
21)g̃ab , and we will again have a complete and nonsing
4-6
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lar Bohmian metric in (p1q11) dimensions, now with the
topology Sp113Qq . The Einstein spaceQq could itself be
taken to be a Bohm metric such as Bohm(2,2)n ,
Bohm(2,3)n , or Bohm(3,2)n .

B. Estimates and bounds for Lichnerowicz in Bohm metrics

1. Eigenvalues of the Weyl tensor

We saw earlier, in Sec. II D, that positive eigenvalues
the Weyl tensor tend to drive the lowest mode of the Lichn
owicz more negative. Accordingly, we can gain insights in
the bounds on the spectrum of the Lichnerowicz operato
the Bohm metrics by studying the Weyl tensor. From E
~30!, and our choice of normalization whereRab5(p
1q)gab , we have

C0i0 j5x1d i j , C0a0b5x2dab , Cia j b5x3d i j dab ,

Ci jk ,5x4~d ikd j ,2d i ,d jk!,

Cabgd5x5~dagdbd2daddbg!, ~43!

where

x15212
ä

a
, x25212

b̈

b
, x35212

ȧḃ

ab
,

x45
12ȧ22a2

a2 , x55
12ḃ22b2

b2 . ~44!
in-
en
tiv
r

o

f
-
ia

e
es
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Note that these coefficientsxi are not all independent, an
thus

px152qx25 1
2 q~q21!x52 1

2 p~p21!x4 ,

x352
p~p21!x41q~q21!x5

2pq
. ~45!

It is straightforward to see that with multiplicitiesm, the
traceless eigenvectorshAB and eigenvaluesk of the Weyl
tensor are given by

h0i : m5p, k52x1 ,

h0a : m5q, k52x2 ,

$hi j uhii 50%: m5 1
2 p~p11!21, k52x4 ,

$habuhaa50%: m5 1
2 q~q11!21, k52x5 ,

hia : m5pq, k52x3 , ~46!

together with two eigenvectors of the form

h0052pu2qv, hi j 5ud i j , hab5vdab ~47!

for which the eigenvalues are given by the roots of a q
dratic equation
k65 1
2 ~p21!x41 1

2 ~q21!x56
Apq@~p21!x41~q21!x5#21~p1q11!@p~p21!x42q~q21!x5#2

2Apq
. ~48!
ct

um
as

e

e

The coefficientsu andv are then given by

u522qk62p~p21!x41q~q21!x5 ,

v52pk62p~p21!x41q~q21!x5 . ~49!

In total, we have the expected12 (p1q11)(p1q12)21
symmetric traceless eigenmodes in (p1q11) dimensions.

Using the output of the numerical integration of the E
stein equations for the Bohm metrics, we find that the eig
value of the Weyl-tensor that achieves the largest posi
value isk1 given by Eq.~48!. It is therefore in this secto
that one can expect to find the lowest-lying eigenmodes
the Lichnerowicz operator. We can see from Eq.~47! that the
associated eigenvector is of a type that may be thought o
a ‘‘ballooning mode’’ in timet. That is to say, if we consid
ered the associated black hole spacetime with its assoc
time dependent perturbation int ~13!, it is a mode where one
of the spheresSp or Sq tends to inflate at the expense of th
other. This accords with one’s intuition, which would sugg
-
e

f

as

ted

t

that the most likely instability for metrics with direct-produ
orbits would be ballooning modes of this general type.

Some examples of our numerical results for the maxim
value of the largest eigenvalue of the Weyl tensor are
follows. For the Bohm(2,2)n metrics onS5 and S33S2 we
find from Eq.~48! that k1 attains its maximum value at th
endpoints of the radial coordinate range, and so

kmax
0 5

5~12b0
2!

3b0
2 . ~50!

In fact, asn increases, the functionk1 peaks more and more
strongly around the endpoints. Forn50,...,6, we have ap-
proximately

kmax
0 5$0,5,24.26,118.45,579.76,3013.72,15106.9%.

~51!

~The results forn50 and n51 are exact, since these th
standard homogeneous metrics onS5 and S33S2.) Using
Eq. ~28!, we obtain the lower bound
4-7
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DL>2
20~124b0

2!

3b0
2 ~52!

on the spectrum of the Lichnerowicz operator
Bohm(2,2)n . From our numerical results for the values ofb0
for the first few examples, we find

Bohm~2,2!0 : DL>20,

Bohm~2,2!1 : DL>0,

Bohm~2,2!2 : DL>277.04,

Bohm~2,2!3 : DL>2453.8,

Bohm~2,2!4 : DL>22342,

Bohm~2,2!5 : DL>211972,

Bohm~2,2!6 : DL>260407. ~53!

The bounds forn50 andn51 are in fact exactly attained
corresponding to the the cases of the homogeneousS5 and
S33S2 metrics, respectively. The zero mode in the latter c
is the ballooning mode onS33S2. As we mentioned previ-
ously, the lower bounds we obtain for the inhomogene
Bohm metrics are not expected to be very sharp.

In general for the Bohm(p,q)n metrics we find

kmax
0 5

~q21!~p1q11!~12b0
2!

~p11!b0
2 , ~54!

and hence we have the lower bound

DL>2
4~p1q11!@q212~p1q!b0

2#

~p11!b0
2 , ~55!

where as usual we have normalized the scale so thatRab
5(p1q) gab .

2. Transverse tracefree ballooning modes

In order to study transverse tracefree perturbations,
consider a metric of the form

ds25c2dr21a2dVp
21b2dṼq

2. ~56!

This is similar to Eq.~29!, except that we have, for conve
nience, introduce the coordinate gauge functionc(t) in the
metric. Substituting into the Einstein-Hilbert action

S5E Agddx@R2~d22!~d21!# ~57!

~whered5p1q11) and omitting a constant factor equal
the volume of the product metric on the unitSp3Sq, this
gives
08402
e

s

e

S5E apbqcF2pq
ȧḃ

abc2 1p~p21!
ȧ2

a2c2 1q~q21!
ḃ2

b2c2

1
p~p21!

a2 1
q~q21!

b2 2~p1q!~p1q21!Gdr. ~58!

Ballooning modes in product metrics, in which one fact
contracts and the other expands, are Lichnerowicz z
modes and are typically associated with instabilit
@12,9,13,7#. It is reasonable to expect, therefore, as we
gued in Sec. III B 1, that if instabilities were to arise in th
Bohm metrics, they would be associated with modes o
similar type. We are therefore led to seek a generalization
ballooning modes to the warped product of spheres pre
in Eq. ~56!. The perturbation

a→aA11u, b→bA11v, c51→A11g ~59!

is tracefree at the linearized level ifg1pu1qv50, and
transverse if

ġ1S p
ȧ

a
1q

ḃ

b
D g 2p

ȧ

a
u2q

ḃ

b
v50. ~60!

These two conditions can be used in order to solve foru and
v in terms ofg:

u5
ġ1@~q11!ḃb211pȧa21#g

p~ ȧa212ḃb21!
,

v5
ġ1@~p11!ȧa211qḃb21#g

q~ ḃb212ȧa21!
. ~61!

One is free to choose the functiong, which completely
determines the perturbation through Eq.~61!. However, the
Bohm(p,q)n metric hasn interior points at which (ȧa21

2ḃb21) vanishes, and hence the expressions foru andv are
singular for generic choices ofg. This problem can be solved
by inverting Eq.~61! to give g in terms ofu,

g5
1

apbq11 E apbq11F ȧ

a
2

ḃ

b
Gudr. ~62!

The remaining functionv is given by the trace-free conditio
pu1qv1g50. One is now free to choose a nonsingu
function u to obtain a perturbation that will at worst be sin
gular at the end pointsr50, r5r f . These singularities can
be avoided as described in the next subsection. One sim
choice is

u5
p2m

pambp1q112m , v5
2~p112m!

qambp1q112m ,

g5
1

ambp1q112m . ~63!
4-8
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We will use these expressions below in order to exhibit ne
tive Lichnerowicz modes in some of the Bohm metrics.

3. Rayleigh-Ritz estimates for the lowest Lichnerowicz
eigenvalue

In the eigenvalue problemDf5lf for a self-adjoint op-
eratorD, one can obtain an upper bound on the lowest eig
value by the Rayleigh-Ritz method: namely,

lmin<

E
M

cDcdr

E
M

c2dr

, ~64!

with equality being achieved if the trial functionc is actually
the eigenfunction corresponding to the lowest eigenvalue
this section, we shall apply this method to obtain an up
bound on the lowest eigenvalue of the Lichnerowicz opera
on transverse traceless~TT! modes in the Bohm metrics, an
in particular, we shall find that there is a negative-eigenva
mode in some of cases we examine.

The easiest cases to consider are the Bohm me
Bohm(p,q)2m11 on the product topologiesSp113Sq. In
these metrics, the functionb in Eq. ~29! is nowhere vanish-
ing, and so we can take our trial function to be given by E
~63! with m50:

u5
e

bp1q11 , v5
2~p11!e

qbp1q11 , g5
e

bp1q11 . ~65!

Here we have introducede as a small constant order param
eter. As we shall see below, this trial function allows us
prove that certain of the Bohm metrics on products
spheres have negative eigenvalue modes of the Lichnero
operator.

C. Negative Lichnerowicz eigenvalues in Bohm metrics

1. Analytic results for negative modes for Bohm metrics
on S3ÃS2

It turns out that the easiest cases to study are the B
metrics Bohm(2,2)2m11 , whose topology isS33S2. We are
able to obtain completely analytic and explicit results th
prove the existence of negative modes of the Lichnerow
operator for all these examples~for m>1), and so we shal
present the details for these metrics here. For these exam
we takeg5e/b5 as our trial function, as suggested by E
~65!, implying that we haveu5e/b5 and v523e/(2b5).
From the expansion ofS given in Eq.~58!, with the pertur-
bation ~59!, we can easily extract the terms quadratic ine,
and so by comparing with Eqs.~6! and ~9! we obtain a
Rayleigh-Ritz bound for the lowest eigenvaluelmin of the
Lichnerowicz operator
08402
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lmin<

E
0

t f
Pdr

E
0

t f
Qdr

, ~66!

where

P52
3a2

b10
1

7

b8
2

30a2

b8
1

7ȧ2

b8
2

112aȧḃ

b9
2

91a2ḃ2

2b8
,

Q5
15a2

2b8
, ~67!

and r f52rc is the upper limit of the range of the radia
coordinater. Note that in fact it suffices to evaluate th
integrals only up to the midpointr5rc in these cases, sinc
the metric functions are symmetric aboutr5rc here.

Using the constraint~33!, with p5q52, we can eliminate
the term involvingȧ2 in P. We also note that upon use of th
second-order equations~32!, we can prove the identities

d

dr S aȧ

b8 D52
10aȧḃ

b9 1
124a2

b8 ,

d

dr
S a2ḃ

b9 D 52
10a2ḃ2

b10 1
a2~124b2!

b10 . ~68!

Sinceaȧ/b8 anda2ḃ/b9 vanish at both endpoints of the fu
integration range, we can use these in order to perform i
grations by parts in the evaluation of*P. Specifically, we
use the former to remove the term inP involving ȧḃ, and
then using the latter, we find that

E
0

r f
Pdr52

25

2 E
0

r f a2ḃ2

b10 dr, ~69!

which is manifestly nonpositive. We therefore have t
Rayleigh-Ritz bound

lmin<2
5

3

E
0

r f
a2b210ḃ2dr

E
0

r f
a2b28dr

~70!

for the lowest eigenvalue of the Lichnerowicz operator.~Re-
call that we are working in units whereRab54gab .) This
proves that the Einstein metrics Bohm(2,2)2m11 have a
negative eigenvalue for the Lichnerowicz operator on tra
verse traceless symmetric two-index tensors, form>1. ~The
casem50 is the standard product Einstein metric onS3

3S2, with b5 1
2 . In this case the numerator gives zero, a

in fact we exactly saturate the upper bound, finding
known lowest eigenvalueDL50 on the product metric.!
4-9
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Using the numerical results described in the Appendix,
find the following upper bounds on the lowest Lichnerowi
eigenvalue for the Bohm(2,2)3 and Bohm(2,2)5 Einstein
metrics onS33S2:

Bohm~2,2!3 : lmin<27.2766,

Bohm~2,2!5 : lmin<2198.008. ~71!

~Recall that we are normalizing the metrics so thatRab
54gab .) As one goes to higher examples Bohm(2,2)2m11
with increasingm, one finds that the upper bound on th
lowest Lichnerowicz eigenvalue becomes increasingly ne
tive, tending to2` in the limit as m→`. Note that our
upper bounds~71! are considerably larger than the rath
crude lower bounds~53! that we obtained by considering th
eigenvalues of the Weyl tensor.

2. Analytic results for negative modes for Bohm metrics
on S3ÃS3

For general values ofp and q, the analogous expressio
for the integrandsY in Eq. ~69! andQ in Eq. ~67! that appear
in the numerator and denominator of the Rayleigh-Ritz fu
tional ~66! turn out to be

P5q21~p1q11!2~p222p231pq2q!apb22p2q24ḃ2,

Q5q21~p1q11!~p11!apb22p2q22, ~72!

if we take the trial functiong5b2p2q21. In general, this
gives us a rather weak positive upper bound on the low
Lichnerowicz eigenvalue for the Bohm(p,q)2m11 metrics on
Sp113Sq. In fact only for p5q52, which we discussed
above, andp52, q53, does one get a nonpositive boun
from this choice of trial function. Interestingly, forp52, q
53 the numerator integrandP in Eq. ~72! vanishes identi-
cally, and so we obtain the bound

lmin<0 ~73!

in this case. It is straightforward to see that form>1 the trial
function g51/b6 does not give an eigenfunction, and hen
the inequality in Eq.~73! is not saturated. Thus we have a
analytic proof that for the Bohm(2,3)2m11 Einstein metrics
on S33S3 with m>1, the lowest eigenvalue of the Lichne
owicz operator on TT symmetric tensors is strictly negati

For all other cases aside from Bohm(2,2)2m11 and
Bohm(2,3)2m11 , the trial function g5b2p2q21 does not
give a negative upper bound onlmin . We believe that this is
a consequence of a nonoptimal choice of trial function, si
the qualitative arguments would suggest the existence
negative Lichnerowicz modes for all the Bohm metrics.

3. Numerical results for negative modes forBohm„2,2)2m

metrics

The analytic methods that allowed us to prove the ex
tence of negative modes of the Lichnerowicz operator in
S33S2 andS33S3 Bohm metrics do not directly extend t
any of the Bohm metrics onSp1q11. The reason for this is
08402
e
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that whilst our trial functiong51/bp1q11 is regular every-
where in the metrics onSp113Sq, it diverges at the right-
hand end point of the range of the radial coordinater in the
metrics onSp1q11. A natural modification to the trial func-
tion to take account of this is to interpolate smoothly b
tweeng51/bp1q11 on the left-hand side andg51/ap1q11

on the right-hand side of the range ofr. We have carried out
this procedure numerically in the case of examples of
Bohm(2,2)2m metrics onS5, and we find that indeed ther
are negative modes of the Lichnerowicz operator, in acc
dance with the qualitative arguments. Specifically, we fi
approximately

Bohm~2,2!2 : lmin<20.7937,

Bohm~2,2!4 : lmin<238.86,

Bohm~2,2!6 : lmin<21040.6. ~74!

These upper bounds are again all considerably larger than
corresponding lower bounds in Eq.~53! that we obtained
from the eigenvalues of the Weyl tensor.

D. Noncompact Bohm metrics

A class of complete and nonsingular noncompact met
was also constructed by Bohm@17#. These include example
where the metric ansatz is again taken to be Eq.~29!, but
now the metric is required to be Ricci flat. These metr
have been considered recently in Ref.@11# in studies of the
possibility of topology change. It was shown in Ref.@17# that
regular metrics exist in whicha(r) and b(r) satisfy the
boundary conditions

a~0!50, ȧ~0!51, b~0!5b0 , ḃ~0!50. ~75!

Unlike the previous compact examples, here regularity
poses no constraint on the allowed values for the cons
b0 , and in fact the value ofb0 now merely sets the overa
scale of the metric. Note thatb is everywhere nonvanishing
and so the there is anSq bolt at r50. The metrics are as
ymptotically conical, approaching cones over the stand
product Einstein metric onSp3Sq.

A representative example is presented in the Appen
for the case ofp52, q52. The Rayleigh-Ritz method tha
we described earlier for finding an upper bound on the sm
est Lichnerowicz eigenvalue can be applied in these n
compact Bohm metrics too. In fact the trial functiong
5b2p2q21 can be considered here too, since it remains
nite everywhere and it falls off rapidly at larger. We find
that the numerator and denominator integrands are t
again given by Eq.~72!, and so again we obtain a negativ
upper bound on the lowest Lichnerowicz eigenvalue for
casesp5q52, andp52, q53.

Evaluating the integrands numerically for the casep5q
52, we find that

lmin<2
0.110433

b0
2 . ~76!
4-10
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For p52, q53, we find, as for Bohm(2,3)2m11 , that the
bound islmin<0, and we can again argue that since the t
function g51/b6 does not give an eigenfunction, we mu
havelmin,0. For all otherp andq, our choice of trial func-
tion does not give a negative upper bound on the low
eigenvalue of the Lichnerowicz operator. Again, we belie
that this is because the trial function is nonoptimal in the
other cases, since general arguments suggest that the
compact Bohm metrics should all have negative eigenva
modes of the Lichnerowicz operator.

IV. EINSTEIN-SASAKI MANIFOLDS

A. Introduction and definition

In this section we remind the reader that as well as
infinite sequence of cohomogeneity one Bohm metrics
have featured in our discussion, the manifoldS33S2 admits
many other Einstein metrics. For example, it has been kno
for some time that there are infinitely-many homogene
but nonsupersymmetricTp,q spaces, corresponding toU(1)
bundles overS23S2 in which theU(1) fibers windp times
over oneS2, andq times over the other. These all have t
topologyS33S2 and they all admit an Einstein metric. On
T1,1 admits Killing spinors.

There are, by contrast, also many inequivalent supers
metric examples ofS33S2 Einstein metrics, which do admi
Killing spinors. They can thus be used in the AdS conform
field theory ~CFT! correspondence, replacingS5 in the D3
brane metric and its near-horizon limit.

An Einstein-Sasaki metric may be defined as
(2m11)-dimensional Einstein metric such that the co
over it is a Calabi-Yau metric

dsCalabi-Yau
2 5dR21R2dsEinstein-Sasaki

2 , ~77!

or in other words, the cone is a Ricci-flat Ka¨hler metric. The
Killing spinors in the Einstein-Sasaki metric come by dire
projection from the covariantly-constant spinors of t
Calabi-Yau metric. If one uses the complex structureJ of the
Calabi-Yau metric to act on the Euler vector of the co
R(]/]R), one gets a Killing vector on the Einstein-Sasa
manifold with constant magnitude, and thus we may wr
locally

dsEinstein-Sasaki
2 5~dc1A!21dsEinstein-Kähler

2 , ~78!

whereJ(]/]R)5]/]c anddsEinstein-Kähler
2 is locally Einstein-

Kähler with positive scalar curvature. Globally theU(1) ac-
tion generated by]/]c may be free~in which case one
speaks of a regular Sasaki structure! and the base is a smoot
Einstein-Kähler manifold, or it may have fixed points i
which case the Einstein-Ka¨hler base has orbifold singular
ties. The total space however will still be smooth. We give
more detailed discussion of the relation between
Einstein-Kähler and Einstein-Sasaki spaces below.

TakingCP2 or CP13CP1 as the Einstein-Ka¨hler base met-
ric gives the standard homogeneous Sasaki metrics onS5 or
T1,1, respectively. If the fibration is regular the only remai
ing possible base metrics for five-dimensional Einste
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Sasaki metrics are inhomogeneous metrics on del Pezzo
faces, i.e.,CP2 blown up atk points, with 3<k<8, giving
Einstein-Sasaki metrics on the connected sum ofk copies of
S33S2.1

Recently Boyer, Galickiet al. @18–21# have constructed
many inhomogeneous Einstein-Sasaki (2n21) metrics on
the linksL f5CfùS2n11 of weighted homogeneous polyno
mials f on Cn11. The notation is as follows:CfPCn11 is the
zero setf (z)50 of the polynomial, andS2n11 is the stan-
dard sphere. One readily sees that the Hopf fibration dese
to L f , and this gives the fibration associated to the Sas
structure. Note that this description is purely topological. T
metric is obtained indirectly by means of an existence pro
The present state of the art is that there are at least 14
equivalent Einstein-Sasaki structures onS33S2 @21#. Of
these, onlyT1,1 is homogeneous, and so if used in the Ad
CFT correspondence the other 13 examples would give
persymmetric vacua with no R symmetry.

The volume ofT1,1 is well known to be 16p3/27. Accord-
ing to Ref. @22#, the volume ofL f is given, in five dimen-
sions, by

p3

27w
~ uwu2d!3, ~79!

where d is the degree off, w5(w0 ,w1 ,w2 ,w3) are the
weights,uwu5w01w11w21w3 , andw5w0w1w2w3 . The
two inhomogeneous Einstein-Sasaki metrics onS33S2 con-
structed in Ref.@18# are both of degree 256 and have weigh
w5(11,49,69,128) andw5(13,35,81,128). They therefor
have volumesp3/2734760448 andp3/2734717440, re-
spectively. These may be compared with the volume of
product metric onS33S2, which is p3/&, and of the lim-
iting singular double cone Bohm metric, which is 2p3/3.

B. Einstein-Sasaki manifolds asU„1… bundles over
Einstein-Kähler manifolds

In this subsection, we present what is essentially a rev
of how Einstein-Sasaki manifolds can be constructed
U(1) bundles over Einstein-Ka¨hler manifolds, focusing in
particular on the construction of the Killing spinors. The co
struction can be applied to obtain Einstein-Sasaki manifo
in any odd dimension, and so we shall give the construct
for this general case.

Suppose we have an Einstein-Ka¨hler metric gab on a
manifold Mn of ~even! dimensionn52m. By the standard
formulas of Kaluza-Klein reduction, the (n11)-dimensional
metric

dŝ25~dc1A!21ds2 ~80!

has Ricci tensorR̂AB whose frame components are given

1It is worth remarking thatany five-dimensional closed simply
connected spin manifold with no torsion in the second homolo
group is diffeomorphic to a connected sum of copies ofS33S2.
4-11
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R̂ab5Rab2
1

2
Fa

cFbc , R̂005
1

4
FabF

ab, R̂0a5
1

2
¹bFab ,

~81!

where F5dA and ê05dc1A, êa5ea. Taking Fab
5mJab , whereJab is the Kähler form onMn , we therefore
have

R̂ab5S L2
1

2
m2D ĝab , R̂005

1

4
nm2, R̂0a50, ~82!

where Rab5Lgab in Mn , and so the (n11)-dimensional
metric dŝ2 will be Einstein,R̂AB5L̂ĝAB , and

L̂5n, L5n12, ~83!

provided that we takem52.
The covariant exterior derivative on spinors,D̂[d

11/4v̂ABGAB, is easily seen to be given by

D̂5D2 1
4 AJabG

ab1 1
2 Jabe

bG0a2 1
4 JabdcGab, ~84!

where D5d1 1
4 vabG

ab is the covariant exterior derivativ
on spinors in the base spaceMn . Note that sincen is neces-
sarily even, the spinors in the total spaceM̂ have the same
dimension as those in base spaceMn , and so we do not nee
to make any tensor-product decomposition of the Dirac m
trices. The equation for Killing spinors in th
(n11)-dimensional bundle spaceM̂ , in the normalization
R̂AB5nĝAB that we established above, is simplyD̂Ah
5 1

2 isGAh, where s561. From Eq. ~84!, this gives the
equations

Dah2Aa

]h

]c
5 1

2 JabG
0bh1 1

2 isGah,

]h

]c
5 1

4 JabG
abh1 1

2 isG0h. ~85!

As is well known, the Einstein-Ka¨hler spaceMn admits a
gauge-covariantly constant spinor«, satisfying

Da«2 ieAa«50, ~86!

where as above we havedA5F52J, and e is the electric
charge carried by«. This can be determined by examinin
the integrability condition @Da ,Db#«5 1

4 RabcdG
cd«

22ieJab«. Multiplying by Gab, this gives in(n12)«
54eJabG

ab«. It is a straightforward exercise to calculate t
eigenvalues of the matrixJabG

ab, and to show, in particular

TABLE I. The progression from Einstein-Ka¨hler to Einstein-
Sasaki to Ricci-flat Ka¨hler cone.

2m-dimensional (2m11)-dimensional (2m12)-dimensional
Einstein-Kähler Einstein-Sasaki Calabi-Yau cone

L.0 L.0 Rab50
(Da2 ieAa)«50 Dah56 imGah Dah50
08402
-

that in general it has only two singlet eigenvalues, which
6 in. It is these singlets that are associated with the gau
covariant constant spinor« ~and its charge conjugate!, and so
we can deduce that

e5 1
4 ~n12!. ~87!

One can also then easily show thatG0«5s«, wheres5
61. From the second equation in Eq.~85! we therefore de-
duce that if we takeh5 f (c)« we shall have

f 5e~1/4!~n12!ic, ~88!

and then the first equation in Eq.~85! confirms that indeed«
satisfies

Da«2 1
4 i ~n12!Aa«50. ~89!

In other words, we have proved that if« is the gauge-
covariantly constant spinor in the Einstein-Ka¨hler manifold
Mn , thenh5e(1/4)(n12)ic« is a Killing spinor in theU(1)
bundle overMn , which is therefore an Einstein-Sasaki man
fold M̂ . The conjugate spinor satisfies the Killing-spin
equation with the opposite sign on the right-hand side. Lif
up further using Eq.~77!, one obtains the conjugate pair o
covariantly constant spinors in the Ricci-flat Ka¨hler cone
over the Einstein-Sasaki manifold. The situation is summ
rized in Table I.

C. Lichnerowicz bound for Einstein-Sasaki spaces

In any Einstein spaceM that admits Killing spinors, we
can prove that the bound~21! that governs the stability o
AdS3M solutions, and also the stability of Schwarzschil
Tangherlini black holes, is always satisfied. In other wor
we can prove that an Einstein space ind dimensions with
cosmological constantL has a Lichnerowicz spectrum suc
that

DL>
L

d21 S 42
~52d!2

4 D . ~90!

To prove this we shall first, for convenience, make o
conventional choice of normalizationL5d21. A Killing
spinor therefore satisfiesDah5 1

2 iGah. Suppose thathab is a
transverse traceless mode of the Lichnerowicz operator
M:

DLhab5lhab , ¹ahab50, ha
a50. ~91!

We now define two vector spinors

fa[habG
bh, xa[~¹bhac!G

bch. ~92!

The assumed properties ofhab can easily be seen to impl
that

Dafa50, Gafa50, Daxa50, Gaxa50. ~93!

We now calculate the action of the Rarita-Schwinger o
erator on the vector-spinors, finding after some algebra t
4-12
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iGbDbfa5xa2
i

2
~d22!fa ,

iGbDbxa52~l2d!fa1
i

2
~d24!xa . ~94!

Thus by taking an appropriate linear combination of the t
vector-spinors, we can form an eigenfunctionca5fa1kxa
of the Rarita-Schwinger operator on transverse gam
traceless spin32 modes

iGbDbca5mca . ~95!

It follows immediately from Eq.~94! that we shall have an
eigenfunction if

m5 1
2 ~d22!2 ik~l2d!, km5 i 2 1

2 k~d24!. ~96!

These equations determine the constant of proportionalit
bek5 i /@m1 1

2 (d24)#, and hence that the Rarita-Schwing
eigenvaluem satisfies

4m224m2d2110d2854l. ~97!

Reorganizing this we obtain

l5 1
4 ~2m21!2142 1

4 ~d25!2. ~98!

From the reality of the Rarita-Schwinger eigenvaluem, we
therefore deduce that

l>42 1
4 ~d25!2. ~99!

Restoring the cosmological constant, we therefore obtain
claimed inequality~90!, which must hold for any Einstein
space of positive Ricci tensor that admits Killing spinors.
particular, this encompasses the case of all Einstein-Sa
manifolds, in all odd dimensions.

It is worth remarking that the above proof is a genera
sation of an argument that was used in Ref.@12# in the case
of seven-dimensional Einstein-Sasaki manifolds. It was
gued there that such a manifoldM7 could be used in order to
obtain a supersymmetric solution AdS43M7 of eleven-
dimensional supergravity. Now it is known that eigenfun
tions of the Lichnerowicz operator in the internal space g
rise to scalar fields in the AdS spacetime. The supersym
try of the background implies that these scalars must
members of supermultiplets, including fermions. Since
Kaluza-Klein reduction must necessarily give rise toreal
masses for the fermions, it follows that the masses of
bosons~making due allowance for the need to define m
carefully in AdS! must be real also. This translates into t
statement@12# that the~mass!2 of the scalars must respect th
Breitenlohner-Freedman@15# bound for stability, and hence
it follows that the spectrum of the Lichnerowicz operat
must be bounded from below by the stability limit, as giv
in Eq. ~21!, for the cased57. The same argument was us
recently for AdS53M5 compactifications in Ref.@13#. Of
course our general proof above can be seen to be essen
an extension of the supersymmetry argument of Ref.@12#,
since in fact the crucial ingredient was not really supersy
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metry per se, but rather, the fact that the mass spectrum
scalar fields can be related to the mass spectrum of sp1

2

fields. Since the Lichnerowicz Laplacian is the mass opera
for scalar fields, and the Rarita-Schwinger operator is
mass operator for spin12 fields, our demonstration above th
the eigenfunctions of the two operators are related w
there are Killing spinors can be seen to reduce to the su
symmetry argument in those special dimensions where
persymmetric AdS vacua can be found. Our argument ab
is much more general, however, since it dispenses with
excess baggage of supersymmetry, and the need to inte
mass in AdS backgrounds.

In Refs. @9,10# the Lichnerowicz bounds were invest
gated for seven-dimensional Einstein metrics on the spa
M (m,n) and Q(k,,,m) which areU(1) bundles overCP2

3S2 and S23S23S2, respectively, with the integers spec
fying the winding numbers of theU(1) fibers over the base
components. It is was found that for the Einstein-Sasaki
amples, namely,M (3,2) andQ(1,1,1), the boundDL> 1

2 L
in Eq. ~90! is strictly exceeded. This has the interesting co
sequence that for a range of ratiosm:n or k:,:m around the
Einstein-Sasaki values, the stability bound is still satisfi
despite the absence of supersymmetry@9,10#. By contrast, it
was shown recently in an analogous five-dimensional ca
lation for the Tp,q spaces with Einstein metrics that th
bound DL>L in Eq. ~90! is exactly saturated by the
Einstein-Sasaki caseT1,1, and that all the nonsupersymmetr
pÞq spaces have a Lichnerowicz mode lying strictly belo
the bound@13#.

It is worth remarking that, in view of the equivalence
the criteria for black hole stability and AdS stability de
scribed in Secs. II B and II C, we have the immediate con
quence that Einstein-Sasaki manifolds will always gi
stable Schwarzschild-Tangherlini black holes.

A further consequence is that any Einstein metric who
Lichnerowicz spectrum does not respect the lower bou
~90! cannot admit Killing spinors, and so it cannot give ri
to supersymmetric backgrounds in any supergravity comp
tification. Examples include not only the case of produ
metrics, for which it has long been known that there exist
Lichnerowicz zero mode@12#, but also cases such as th
Bohm metrics whose negative Lichnerowicz modes we h
demonstrated in this paper.

V. LORENTZIAN BOHM METRICS, REAL TUNNELING
GEOMETRIES, AND COUNTEREXAMPLES TO

THE COSMIC BALDNESS CONJECTURE

In this section we discuss metrics obtained by analy
continuation of the Bohm metrics. These metrics, which p
vide generalizations of de Sitter spacetime as locally st
solutions with cosmological horizons, have a number of
plications. In particular, they provide counterexamples to
certain form of the Cosmic Baldness conjecture. Furth
more, the Riemannian Bohm metrics have a totally geode
hypersurface. This allows them to be viewed as real tunn
ing geometries for the creation of the Lorentzian Bohm m
rics ‘‘from nothing.’’ We first review the geometry by dis
cussing the case of the roundS55Bohm(2,2)0 .
4-13
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A. Round S5 and dS5

The round metric onS5 may be written as

ds25dr21sin2 r~du21sin2 udf2!

1cos2 r~du821sin2 u82df82!. ~100!

This provides an isometric embedding intoE6, with
Cartesian coordinates denoted by the variab
(X1 ,X2 ,X3 ,X18 ,X28 ,X38), via

~X1 ,X2 ,X3!5sinr~sinu cosf,sinu sinf,cosu! ~101!

and

~X18 ,X28 ,X38!5cosr~sinu8 cosf8,sinu8 sinf8,cosu8!.
~102!

Thus, as required, one has

X1
21X2

21X3
21X18

21X28
21X38

251. ~103!

Note also, for later use, that

X1
21X2

21X3
25sin2 r, X18

21X28
21X38

25cos2 r. ~104!

The range ofr is seen to berP@0,p/2#.
To get the locally static Lorentzian de Sitter solutiondS5 ,

one can set the anglef5 it with t real. This means thatX2
5 iT with T real, and the embedding is into~but not onto! the
quadric

X1
22T21X3

21X18
21X28

21X38
251. ~105!

Equations~104! now become

X1
22T21X3

25sin2 r, X18
21X28

21X38
25cos2 r. ~106!

It is clear that there can be points ondS5 for which X1
2

2T21X3
2 is negative, and therefore for whichX18

21X28
2

1X38
2 exceeds unity. It follows that we need to use a diff

ent parameterization. We set sin2 r512b2 and get the metric

ds25
db2

12b2 1~12b2!~du22sin2 udt2!

1b2~du821sin2 u8df82!. ~107!

In this metricbP@0,̀ ). However,b51 is a coordinate sin-
gularity, and forb.1 the orbits of] t are spacelike. We us
Eq. ~107! in the region 0<b,1, where] t is timelike. There
are Killing horizons of] t at u50 andu5p. The metric on
the horizon is

ds25
db2

12b2
1b2~du821sin2 u8df82!, ~108!

which is the standard metric onS3. It is important to note,
that in order to get all of theS3, we need both of the copie
of this metric with 0<b,1. These arise from the two value
u50 and u5p, each of which covers half of the horizon
This is best seen from the embedding of Eqs.~101! and
08402
s
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~102!. The cosmological event horizon is not unique, sin
one may act with theSO(5,1) isometry group. This fact is
connected with the observer dependence of the assoc
Hawking thermal radiation@3#. The coordinate singularity a
b51 arises because the two-dimensional orbit ofSO(2,1)
on thedS2 factor changes from being timelike to spaceli
as it crosses the surfaceb51.

It is interesting to observe that with the metric onS5

written as in~100!, the mapf→2f is an isometry, which
fixes pointwise a separating totally-geodesic hypersurfaceS,
given byf50 and f5p ~because2p;p here!. In terms
of the embedding described earlier,S is the hypersurface
X250. TheZ2 isometry implies the vanishing of the secon
fundamental form onS, i.e., K[ 1

2 Lng50, and hence the
totally geodesic property. Heren is the normal toS. The
metric onS is

ds25
db2

12b2
1~12b2!du21b2~du821sin2 u8df82!,

~109!

which is in fact just the round metric onS4. We get all ofS4

because we have two copies of this metric, each withu
P@0,p#, corresponding tof50 and f5p. Again, this is
seen most immediately in terms of the embedding Eqs.~101!
and ~102!, whereX250 manifestly defines anS4. Thus we
have a real tunneling geometry in the sense of Ref.@23#. That
is, we have a compact gravitational instanton with tota
geodesic boundary, such as one might use to approxima
proposed wave function for the universe. The Riemann
metric may be grafted onto the LorentziandS5 metric ~107!
at t50, where it is clear that Eq.~107! also has the same
totally geodesic hypersurface with metric~109! defined as
the fixed point set oft→2t.

B. Lorentzian Bohm metrics

The setup of the previous Sec. V A generalizes straig
forwardly to Bohm metrics. An isometric embedding is n
longer possible, because spheres are the only positive cu
ture Einstein metrics that may be embedded isometric
into Euclidean space of one dimension higher. However,
topological statements go through. The analytic continuat
f→ i t , of the five-dimensional Bohm metrics gives

ds25dr21a2~r!~du22sin2 udt2!

1b2~r!~du821sin2 u8df82!. ~110!

Note that we could have analytically continued the seco
sphere instead. In some cases this gives two inequiva
Lorentzian metrics; we shall discuss making this intercha
a↔b below. We will distinguish between these two analy
continuations using subscripts. ThusS1 and S2 correspond
to the totally geodesic hypersurfaces in each case. Again
have Killing horizons atu50 and u5p. The range ofr
depends on the specifics of the Bohm metric.

Consider first the cases where the corresponding R
mannian Bohm metric has topologyS5. The topology of the
horizon isS3, as it was for the roundS5 of the previous Sec.
4-14
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TABLE II. Volumes of various Bohm metrics.

Bohm Topology b0 r f in

V516p2

3*a2b2dr
Vol(S2)58p2

3*a2bdr
Vol(S1)58p2

3*ab2dr

(2,2)0 S5 1 1.57079 31.006 26.320 26.320
(2,2)2 S5 0.253554 2.68470 20.814 20.302 20.302
(2,2)4 S5 0.053054 3.04979 20.672 20.2605 20.2605
(2,2)1 S33S2 0.5 2.22143 21.924 21.924 19.739
(2,2)3 S33S2 0.117794 2.93537 20.684 20.189 20.335
(2,2)5 S33S2 0.023571 3.10092 20.6709 20.267 20.254
(2,2)̀ bi-cone onS23S2 0 3.14159 20.6708 20.2603 20.2603
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V A. This follows from the fact that the metric function
a(r) andb(r) behave near the two end pointsr50 andr
5r f in the same way as sinr and cosr, respectively, behave
near the end pointsr50 andr5p/2 of the roundS5 metric.
As we shall see shortly, the areaA of this cosmological even
horizon is always less than in the round case. Interchangia
and b in the S5 Bohm examples gives the same Lorentzi
metric.

When the Riemannian Bohm metric has topologyS3

3S2, an exchange of functionsa↔b in Eq. ~110! will
change the topology of the Lorentzian manifold, and in p
ticular the topology of the event horizon. This is because
these casesa(r) goes to zero at both endpoints, whileb(r)
never goes to zero. For topological purposes, we may th
of a as behaving as sinr with end pointsr50, r5p andb
behaving as a constant function@just as in the ‘‘trivial’’
Bohm metric Bohm(2,2)1 , which is simply the product Ein-
stein metric onS33S2]. Thus we have two possibilities. Th
metric ~110! has a horizon with topologyS13S2. If we ex-
changea and b, the horizon will have topologyS3. These
topologies are seen in the same way as in the previous
V A, and as always we should take care to include the t
valuesu50 andu5p. The area of the horizons are

A158pE a2dr ~111!

and

A258pE b2dr, ~112!

respectively. Note that there is an extra factor of 2 beca
there are contributions from bothu50 andu5p. The argu-
ments of the following sections suggest that these two qu
tities should be equal, and less than the horizon area for
de Sitter spacetimedS5 . These are nontrivial conditions o
the functionsa and b. The nonuniqueness of these cosm
logical horizons is reduced compared to the de Sitter c
because the relevant isometry group is now onlySO(2,1).

The Z2 isometry of the previous Sec. V A is also prese
in the Bohm metrics, and therefore we recover a tota
geodesic submanifold. Thus one might consider using Bo
metrics in tunneling calculations for the creation of a Lore
zian Bohm universe. In that application the number of ne
tive modes ofD2 should be an odd number, so as to get
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imaginary part for the free energy when one evaluates
functional integral. Usually one expects just one negat
mode, and the contribution of instantaneous with more th
one is often ignored.

Another interesting question is what is the volume ofS,
the totally geodesic boundary. For tunneling geometries c
structed from hyperbolic tunneling manifolds@24#,2 Vol~S! is
a measure of the complexity ofS and it is possible to bound
the volume of the tunneling geometry in terms of the volum
of the boundary such that larger complexity, i.e., larg
Vol~S!, means larger volume@25#. In the case of positive
scalar curvature, and with boundariesS of simple topology
(S4 or S23S2 in our case!, the notion of complexity is not
relevant. However, it is still interesting to know how th
volume of the manifold is related to the volume of the tota
geodesic boundary. Specifically, the volume of the fiv
dimensional manifold is

V516p2E a2b2dr, ~113!

while

Vol~S2!58p2E a2bdr,

Vol~S1!58p2E ab2dr. ~114!

The two different values forS correspond to interchanginga
andb in the metric. In theS5 cases these will be the sam
but for the S33S2 cases they will be different. Some ex
amples are illustrated in Table II. The table also collects
formation about the corresponding values ofb0 andrfin .

In this table the results for the double cone are fou
analytically, and the Bohm(2,2)0 metric ~the round five-
sphere! may also be calculated analytically as a check on
numerics. The volumes decrease from the round spher
the double cone, as expected from Bishop’s theorem@26#.
The volumes of theS’s decrease with the volume in theS5

cases, but not in theS33S2 cases.

2Note thatD2 has no negative modes in this case, and so
might worry about the tunneling interpretation.
4-15
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Similar calculations may of course be done with high
dimensional Bohm metrics, as illustrated in Table III. T
generalization ofS to higher dimensions is slightly mor
involved, and will not be discussed here.

There is another analytic continuation of the Bohm m
rics to a Lorentzian metric that is possible in the ca
B2m11(p,p). In these cases the metric functionsa(r), b(r)
are symmetric about the midpointr5rc . Thus r5rc de-
fines a totally geodesic hypersurface, with topologySp

3Sp, stabilized by a reflection. It follows that settingr
2rc5 i t gives a Lorentzian expanding universe with spa
cross sectionsSp3Sp. We anticipate that the scale factors
each of the spheres will be expanding. A special case of
situation isB1(p,p), which corresponds to analytically con
tinuing S33S2 to dS33S2. Note that in this case theS2

factor does not expand, but this will not be the case for
general Bohm metrics where neither of the functionsa(r),
b(r) are constant.

C. Cosmological event horizons

In the Riemannian metrics, the circle action onS5 gener-
ated by]f rotates theX1-X2 plane. The action has anS3’s
worth of fixed points for whichX150 and X250, corre-
sponding tou50 andu5p. Because the reversal off is
also an isometry, we have in fact anO(2) action, which
allows the analytic continuation to a locally static, i.e., tim
reversal invariant, metric with a hypersurface-orthogonal
cally timelike Killing vector field with a Killing horizon.
These are the cosmological horizons of the previous sub
tions. In such cases the Lorentzian metric may be writ
locally as

ds252U2dt21gi j dxidxj , ~115!

TABLE III. Volumes of some higher dimensional Bohm metric

Bohm Topology b0 r f in

V54p4

*a3b3dr

(3,3)0 S7 1 1.5707 32.470
(3,3)2 S7 0.305521 2.6933 24.499
(3,3)1 S43S3 0.577351 2.2207 24.995
(3,3)3 S43S3 0.14291 2.9322 24.482
(3,3)̀ bi-cone onS33S3 0 3.1416 24.4816
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wheregi j is the metric on the orbit spaceQ of ] t , and the
gravitational field equations imply in particular that

¹2U52LU. ~116!

The quantityU vanishes on the horizon, and its norm
derivative]U/]n on the horizonU50 is a constant, which
is called the surface gravityk. The period in imaginary time
i.e., the real period oft[ i t , is 2p/k. If V is the volume of
the corresponding Riemannian manifold, andA is the area of
the event horizon in the Lorentzian manifold, one has

V5
2p

k E
Q

UAgdn21x. ~117!

The boundary]Q is the event horizon, where the orbits d
generate. For example, when the Bohm metric has topol
S5 the boundaryQ is a four-ball, B4, with boundary the
event horizonS3. The metric onQ is in fact given by Eq.
~109!. However, the crucial difference is that we take on
f50 to intersect all the orbits of]f once, whilst forS we
needed to take bothf50 andf5p. The S4 that we had
before corresponded to gluing two copies ofB4s across their
boundaryS3.

Integration of¹2U gives

LE
Q

UAgdn21x5kA, ~118!

whence

VL52pA. ~119!

This argument shows that when there are two possible
equivalent analytic continuations, such as for the Bohm m
rics on S33S2, the horizon areas should be the same,A1
5A2 . This is illustrated in Table IV, which also illustrate
the relationship~119!, showing that it works for the various
topologies. The values ofV are repeated from Table III.

Note thatk cancels in Eq.~119!, as it must since it de-
pends on the normalization of the length of the Killing fiel
which is arbitrary. This relation between area and volume
quite universal and holds for any Einstein metric admitti
an O(2) action. It allows us to relate the on-shell action
the area of the horizon, and hence to show that formally
least, the entropyS is given by

S5 1
4 A, ~120!

just as in four dimensions. This general argument was fi
given in four dimensions in Ref.@27#. Now, a theorem of
TABLE IV. Horizon areas and volumes of Bohm metrics.

Topology b0 A1 A25A1 ? V 4V52pA ?

S5 1 19.74 Yes 31.006 Yes~5124.02!
S5 0.253554 13.25 Yes 20.814 Yes~583.25!
S5 0.053054 13.160 Yes 20.672 Yes~582.688!

S23S3 0.5 13.96 Yes 21.925 Yes~587.69!
S23S3 0.117794 13.168 Yes 20.684 Yes~582.74!
S23S3 0.023571 13.15954 Yes 20.6709 Yes~582.684!

bi-cone onS23S2 0 13.15948 Yes 20.6708 Yes~582.683!
4-16
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Bishop @26# tells us that for fixedL, the volumeV never
exceeds its value for the round sphere, with equality only
the case of roundness. It follows that this area or entrop
always less than the area or entropy of the correspon
horizon indS5 .

Since dynamically one expects the area to increase,
thermodynamically one expects the entropy to increase, t
seem to be some physical grounds for believing that
static Lorentzian Bohm metrics are dynamically unstable.
deed, one might conjecture that if they are perturbed slig
at some initial time, then they will evolve to an asympto
cally de Sitter state, and that this evolution will be such t
the area of the cosmological horizon increases monotonic
from a value near, but smaller than, its value for the init
Bohm metric, to its value for the de Sitter spacetime.
should not be impossible to investigate this conjecture
merically.

D. Consequences for cosmic baldness

It has been conjectured for some time@8# ~in four dimen-
sions! that there should exist only one regular static solut
of the Einstein equations with a cosmological constant t
has only a single cosmological horizon~so that]Q5Sn22).
In fact one usually thinks ofQ as being topologically an (n
21) ball, as described above. This is a much stronger st
ment than that locally, within the event horizon of eve
observer or most observers, the metric will settle down to
static de Sitter form. In fact for generic initial data one ca
not hope that the metric will settle down globally to the
Sitter state, as was originally made clear in@8# @see also Ref.
@28# for a detailed discussion using the exact Lorentz
Taub-NUT~Newman-Unti-Tanburino! metrics#.

It is now clear that the Bohm metrics provide infinite
many counterexamples to the cosmic baldness conjectu
dimensions 5<n<9. The situation in four dimensions re
mains unclear. It is still possible to believe an even stron
conjecture, the truth of which would imply the cosmic bal
ness conjecture, namely, that there is only one Einstein m
ric on S4. At present all that is known is that if there
another Einstein metric onS4, then its volume must be les
than that of the round metric by a factor of 3@29#, and that
the magnitude of the Weyl tensor must exceed a cer
threshold@30#. This is interesting in the light of the fact tha
it is the magnitude of the Weyl tensor which appears to p
a role in controlling the spectrum of the Lichnerowicz ope
tor. It may perhaps suggest that any counterexample
have a negative mode ofD2 .

Curiously, there are some proofs of a form of the cosm
no-hair conjecture in the literature@31,32#, but these proofs
require a smooth structure at future spacelike infinityI 1. It
seems likely that in our examples, the future timelike infin
will not be of the sort envisaged in those proofs. It would
interesting to investigate this point further, but this wou
seem to require analytic formulas fora(r) and b(r). As
mentioned in the previous subsection it seems likely t
these static metrics will be dynamically unstable, and th
may well evolve into an asymptotically de Sitter–like sta
If this is true then the main physical spirit of the no-ha
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conjecture will hold, even though the letter of the baldne
conjecture is broken.

VI. NEGATIVE MODES AND NONUNIQUENESS
OF THE DIRICHLET PROBLEM

The existence of negative Lichnerowicz modes has bee
major theme in this work. This section contains speculat
comments on a generic connection between nega
Lichnerowicz modes and the nonuniqueness of solution
the Dirichlet problem. In particular, we argue that there w
be infinitely many negative Lichnerowicz modes on thenon-
compactRicci-flat Bohm metrics. The existence ofL2 nega-
tive modes for the Lichnerowicz operator for noncompa
Ricci flat manifolds such as the Riemannian Schwarzsc
solution first came to light when considering the negat
specific heat of black holes. Since then a considerable lit
ture has grown up, analyzing that and related cases.

In the noncompact Ricci flat case, it seems that the g
eral picture is as follows. One has a class of metrics o
manifold Mn depending on some parameters, in the simp
case just one overall scaling parameterm, such as the mass in
the Schwarzschild case. One asks whether this metric ca
in a given boundarySn21 that has a given metrichi j . That
is, one tries to solve the Dirichlet problem for the Einste
equations. In the four-dimensional Riemannia
Schwarzschild case, for example, the boundary is taken t
S23S1 with the product metric. This is specified by the r
dius R of the two-sphere and the periodb of the circle.
Physically, we are putting a black hole in a spherical box
radiusR, and fixing the temperature on the boundary of t
box to equalT5b21. If the metric and the boundary data a
to agree then we must have

8pmA12
2p

R
5b. ~121!

The number of solutions of this equation form depends on
the ratiob/R that specifies, up to a scale, the boundary m
ric hi j . One finds that if the ratio is small there are tw
solutions form. The Einstein actionI of the two solutions
differs. The action for the smaller value ofm is the smaller.
We shall refer to these two solutions as branches. If the r
is large there are no solutions form. At the critical value the
two solutions form coincide, and givem5 1

3 R.
Now consider the operatorD2 ~which equalsDL in this

Ricci-flat situation!, subject to Dirichlet boundary condi
tions, which gives the Hessian of the actionI. For a large box
~in relation to the scale set by the temperatureT5b21), D2
has a single negative mode for the branch with the sma
value of m, and a positive but no negative mode for th
branch with the larger value. As one reaches the criti
value, the two branches coincide and so do the two eigen
ues. At the critical point there is an eigenmode ofDL with
zero eigenvalue. In other words, at the critical point there
a marginally stable mode. Because the specific heat is g
essentially by the Hessian of the action~i.e., the free energy!
considered as a function of the boundary data, it chan
sign at this value.
4-17
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Next, consider what happens as the radius of the box
creases to infinity, so that the ratiob/R goes to zero while
keepingb a constant, and take the branch on whichm is
smaller. In the limit, one finds thatm→b/(8p). On the other
branch, one finds thatm→`. Thus, in the limitR→` one
gets a noncompact Ricci-flat Einstein manifold, namely
standard Schwarzschild solution, and by following the mo
which first appears as a zero-mode at the critical value,
gets anL2 negative mode forDL on that manifold. This
process is illustrated at fixed temperature in Fig. 1.

The picture described above has been vindicated by
tailed numerical calculations in this and related cases@33–
37#. For example, Hawking and Page@38# studied black
holes in anti–de Sitter spacetime. The classical solutio
the Kottler or Schwarzschild anti–de Sitter solution, an E
stein metric with negative scalar curvature 4L. The role of
the radiusR is now played by the cosmological constantL,
and the manifolds considered are always noncompact,
the general picture is similar.

The arguments given above are heuristic rather than b
completely rigorous, but they suggest the following gener
zation. One considers a one-parameter family of Dirich
problems for the Einstein equations. As the parameter va
one finds a discrete nonuniqueness, with more and m
branches appearing, generically in pairs, and as each
branch appears a zero mode ofD2 occurs, which then splits
into a pair of modes, one with positive eigenvalue and o
with negative eigenvalue. In the limit that one gets a no
compact manifold, one should have found, on the corr
branch, as manyL2 negative modes as the number of critic
values one has passed.

An obvious example on which to try this argument is t
noncompact metric of Bohm onR33S2 @17#, recently con-
sidered by Kol@11# and discussed above. In fact it exhibits
feature not seen previously, which is that even within
restricted framework of cohomogeneity one metrics, the
richlet problem may have infinitely many solutions.

These metrics are determined by a single~scale! param-
eter, which may be taken to be the radiusb0 of the two-
sphere bolt. Now the geometry of a boundary at some fi
value of the radiusR is given by the ratioa(R)/b(R). Thus
the possible filling solutions are determined by the inters

FIG. 1. Relationship between Lichnerowicz modes and mas
for the Schwarzschild solution in a finite cavity.
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tions of the curve ofa/b with a straight line at 45° through
the origin in the~a,b! plane. Clearly, if we leta/b tend to one
there are more and more intersections, which appear at c
cal points in pairs when the straight line touches the sligh
wiggly but almost straighta/b curve. It seems reasonable
suppose that an additional zero mode ofDL appears at this
point, and then as the slope of the straight line gets close
unity, a pair of eigenvalues, one positive and one negat
branches off. If this intuition is correct, and if the branch
are connected ata/b51 say, then one expects that the no
compact Bohm metrics onR33S3 should have infinitely
manyL2 Lichnerowicz negative modes. This process is illu
trated in Fig. 2.

Some evidence for this viewpoint comes from examini
SO(p)3SO(q)-invariant transverse trace-free perturbatio
of the singular Ricci-flat cone onSp3Sq obtained in the
limit b0→0. That is to say, the cone is

ds25dr21
r 2

p1q21
@~p21!dVp

21~q21!dṼq
2#,

~122!

and the perturbation is

hab5r 2f~r !S 1

p
gp

2
1

q
g̃q

D
ab

, ~123!

wheregp andg̃q are the round metrics onSp andSq, respec-
tively. This is a zero mode onSp3Sq. If we want a mode on
the cone with Lichnerowicz eigenvalue2l, the equation for
f is @7#

d2f

dr2
1

d

r

df

dr
1

2d22

r 2 f5lf. ~124!

The solutions to this equation forlÞ0 are, writingd5p
1q,

es
FIG. 2. The noncompact Bohm metric in a box with a fixe

value ofa/b at the boundary. Allowed values ofR are shown along
with the corresponding positive, negative, and zero modes f
branching. It is expected that the branches will join ata(R)/b(R)
51.
4-18
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f~r !5r ~12d!/2@AIm~l1/2r !1BKm~l1/2r !#,

m5
1

2
A~d21!~d29!, ~125!

whereA andB are constants, andI m andKm are the modified
Bessel functions. Whenl50 we get

f~r !5r ~12d!/26 iA~d21!~92d!/2. ~126!

This expression was written down in Ref.@11# ~his d is
shifted by one!. It is also the behavior of the Bessel functio
solutions in Eq.~125! asr→0. As r→`, the Bessel function
solutions go asr 2d/2e6r . TheKm Bessel function is the bet
ter behaved.

We are interested in the Bohm cases 4,d,9 that coin-
cide with oscillatory behavior in Eqs.~125! and ~126!. For
these dimensions, the zero-mode solutions are not norm
able asr→` or as r→0, although they are bounded asr
→`. The negative mode solution withKm is normalizable at
infinity.

Thus theKm solutions decay at infinity, and as we mov
in towards the origin, start oscillating atr;l21/2. In the
singular cone limit, the modes are not normalisable at
origin. However, suppose we are in a rounded-off cone.
r @b0 the metric is essentially that of the singular cone, a
we may use our solutions~125!. If further we havel21/2

@b0 , logarithmic oscillations will set in, within this
asymptotic regime. We should then expect to be able
match this solution to a solution in the inner regions tha
well behaved at the origin~see Ref.@7#!, for a certain dis-
crete set of values forl. This will give us a spectrum o
negative Lichnerowicz modes. It would seem that there w
be an infinity of such modes, accumulating at zero.

VII. CONCLUSIONS AND DISCUSSION

The principal focus of this paper has been to study ap
cations of the countable infinities of inhomogeneous Eins
metrics on certain spheres and products of spheres, w
were discovered recently by Bohm@6#. These occur for the
topologiesSp1q11 and Sp113Sq, for 5<p1q<9 and p
>2, q>2. They may be used in place of the usual roun
sphere Einstein metrics in a variety of constructions incl
ing black holes and Freund-Rubin solutions, and after a W
rotation to a Lorentzian section, they may be interpreted
spacetime metrics in their own right.

The stability of generalized Schwarzschild-Tangherl
black holes, where thed-dimensional constant-radius spati
sectionsMd in the (d12)-dimensional spacetime are take
to be positive Ricci curvature Einstein spaces, was stud
recently in Ref.@7#. It was shown that a solution will be
classically stable if the spectrum of eigenvalues of
Lichnerowicz operator on transverse traceless symme
two-index tensors inMd is bounded below by a value corre
sponding toDstab>0 in Eq. ~1!. One of our results in this
paper has been to show that this stability criterion is ident
to one obtained in Refs.@12,13# for the stability of Freund-
Rubin solutions AdSn3Md of gravity coupled to ad-form
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~or n-form! field strength. Thus it becomes of considerab
interest to try to obtain bounds on the spectrum of
Lichnerowicz operator on Einstein spacesMd .

The Bohm metrics are sequences of cohomogeneity
Einstein metrics of the form~29!, which more and more
nearly approach a ‘‘double-cone’’ form~42! as one
progresses along the sequence. One therefore intuitively
pects that the ‘‘ballooning’’ instabilities associated with d
rect products of the sphere metrics forming the principal
bits will give rise to negative-eigenvalue modes of t
Lichnerowicz operator. Such modes woulda fortiori violate
the stability criterion described above, implying th
Schwarzschild-Tangherlini black holes or AdSn3Md solu-
tions constructed using the Bohm metrics would be unsta
In certain cases, including all the Bohm metrics onS33S2

andS33S3, we constructed analytic proofs that indeed sh
the existence of negative modes of the Lichnerowicz ope
tor. Numerical calculations for other examples, nam
Bohm metrics onS5, have confirmed that these too hav
negative-eigenvalue modes of the Lichnerowicz operator.
believe that in fact all the Bohm metrics have negat
Lichnerowicz modes.

One can perform analytic coordinate continuations in
Bohm metrics in order to obtain spacetimes with posit
cosmological constant that generalize de Sitter spacetim
one does this for the Bohm metrics that are themselves
pologically spheres, then the resulting spacetimes have
same topology and global structure as de Sitter space
itself. These metrics provide infinitely many countere
amples, in dimensions 5<n<9, to the cosmic baldness con
jecture, which asserted the uniqueness of regular static s
tions of the Einstein equations with a single cosmologi
horizon. However, although the Bohmian analogues of
Sitter spacetime are regular, we have argued that they
unstable and that they are likely to decay into a de Sitter–
state. This would mean that the no-hair conjecture wo
remain inviolate.

In order to explore possible endpoints for the decay
spacetimes constructed using Bohm metrics, we were
led to consider other geometries for Einstein spacesMd that
would satisfy the criteria for stability. In particular, we con
sidered compact Einstein spaces of positive Ricci curva
that admit Killing spinors. We showed that in all such spac
in any dimension, one can derive a lower bound on the sp
trum of the Lichnerowicz operator which implies that th
stability criterion Dstab>0 is satisfied. These examples in
clude all the Einstein-Sasaki spaces, which may be defi
as odd-dimensional Einstein spaces whose cones give R
flat Kähler spaces in one higher dimension. It is straightf
ward to see that the covariantly constant spinors on
Ricci-flat Kähler cone project down as Killing spinors on th
Einstein-Sasaki base. A by-product of our results is tha
demonstrates that the Bohm metrics, for whichDL ~and
hencea fortiori Dstab) can be negative, cannot admit Killin
spinors.

There also exist Ricci-flat Bohm metrics, with noncom
pact topology. The structure of these metrics at short dista
looks very similar to that near one of the two endpoints
the compact metrics. However, lacking the cosmologi
4-19
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term that causes the metric functions to turn over and re
lapse in the compact examples, the noncompact space
ymptotically approach the cone over the anSp3Sq direct-
product base. The noncompact spaces have the topo
Rp113Sq. The only parameter in the noncompact metrics
the overall scale. We constructed an analytic proof that
noncompact Bohm metrics forp5q52 and p52, q53
have negative Lichnerowicz modes, and we presented a
eral argument that indicates that all the noncompact Bo
metrics will have infinitely manyL2 normalizable negative
eigenvalue Lichnerowicz modes.

Another possible use of the Bohm metrics is to constr
four-dimensional gravitating monopoles and black holes
dimensional reduction, as studied in Ref.@39#. This is pos-
sible because many of the Bohm metrics haveS3 factors.
Recalling thatS3 is isomorphic toSU(2), one canquotient
by a U(1) action onS3 to end up withSU(2)/@U(1)3Z2#
.S2. Thus the resulting lower-dimensional space will ha
an S2 factor, i.e., it will look similar to a monopole or blac
hole, and it will come with aU(1) gauge field. Explicitly,
one can write the metric onS3 using Euler angles as

ds25du21sin2 udc21~df1cosudc!2, ~127!

where 0<u<p, 0<f,2p, and 0<c<4p. The quotient
by the ]f isometry, and theZ2 quotientc;c12p, leaves
us with the standard metric onS2, namely,du21sin2 udc2,
and a charge-two Dirac monopoleA5cosudc. One can also
quotient by the wholeSU(2), and inthis case because the
is no fibration over theS3 the SU(2) gauge fields obtained
will be trivial.

Thus, for example, take the seven-dimensional nonc
pact Bohm metric over two copies ofS3, supplement the
metric by an eighth timelike direction2dt2, and dimension-
ally reduce onSU(2)3U(1). Onewill obtain a gravitating
U(1) monopole with four scalar fields. Another possibili
would be to take the generalized black hole in eight dim
sions over a compact Bohm metric in six dimensions w
topology S33S3. Again quotient bySU(2)3U(1), where
theSU(2) is acting on the roundS3 in the Bohm metric. We
will obtain a U(1) magnetically charged black hole in fou
dimensions. Because theS3 that theU(1) was acting on is
not round, the black hole will not be spherically symmetr
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APPENDIX: NUMERICAL SOLUTIONS FOR BOHM
METRICS

Numerical techniques. The Einstein equations~32! and
~33! cannot be solved explicitly whenp.1 andq.1. It was
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shown in Ref.@6# that countable infinities of smooth solu
tions satisfying theSp1q11 or Sp113Sq boundary condi-
tions ~40! or ~41! exist. It is quite a straightforward matter t
obtain these solutions by numerical methods, since it tu
out that the second-order equations~32! are quite stable.

We have constructed numerical solutions by first obta
ing Taylor-series expansions for the metric functionsa andb
near tor50, imposing ther50 boundary conditions given
in Eq. ~40! @or, equivalently, in Eq.~41!#. To the first couple
of orders, these give

a5r2
q~q21!1b0

2~p1q!~p2q11!

6b0
2p~p11!

r31O~r5!,

b5b01
q212b0

2~p1q!

2b0~p11!
r21O~r4!. ~A1!

Note that a is an odd function ofr, while b is an even
function.

Using a Taylor expansion of the form~A1! ~which we
actually evaluated up to orderr9), we then set initial data
just outside the singular point, for a very small positive val
of r. These data are then evolved forward inr numerically,
using the second-order equations~32!. The exercise then be
comes a ‘‘shooting problem,’’ in which one seeks to adju
the one free initial parameterb0 so as to achieve a smoot
termination of the evolved data at a pointr5r f wherea and
b satisfy one or other of ther5r f boundary conditions given
in Eqs.~40! or ~41!.

In cases wherep5q, the numerical analysis is simple
since the regular solutions are all symmetric under reflec
about the midpointr5rc5r f /2. Thus one can avoid the
need to handle the integrations in the region nearr5r f
where one or other metric function is tending to zero.
stead, the shooting problem reduces to finding ab0 for which
either ȧ5ḃ50 at some pointr5rc @for the Bohm(p,p)2m

5S2p11 metrics# or else for whicha5b andȧ52ḃ @for the
Bohm(p,p)2m115Sp113Sp metrics#.

It is known from the results in Ref.@6# that there is a
countable infinity of valuesb0 for which a regular termina-
tion at somer f occurs. The largestb0 yielding a regular
solution isb051, leading to the standard unitSp1q11 metric
~35!, which is called Bohm(p,q)0 . The next value isb0

5A(q21)/(p1q), giving the direct-product Einstein metri
~38! on Sp11,q that we call Bohm(p,q)1 . There is then a
monotonically decreasing sequence ofb0 values, giving the
Bohm(p,q)n sequence of Einstein metrics, alternating b
tween terminatingr0 boundary conditions given by Eqs.~40!
and~41!. The limit point of the sequence isb050, giving the
double-cone singular metric~42!.

Plots for the five-dimensional Einstein metric
Bohm(2,2)n on S5 and S33S2 are given in Figs. 3–11 for

0<n<6, with b05(1,1
2 ,0.253554255,0.117794,0.05305

0.023571,0.010503). We also give a plot for the case
4-20
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FIG. 3. The Bohm(2,2)0 ~standard! Einstein metric onS5. The left-hand figure shows the metric coefficientsa andb as functions of the
radial variabler. The functiona vanishes atr50 andb5b051 there. The crossover occurs atr5rc5

1
4 p. The right-hand figure is a

parametric plot ofb vs a.

FIG. 4. The Bohm(2,2)2 Einstein metric onS5. The left-hand figure shows the metric coefficientsa and b as functions of the radia
variable r. At r50 the functiona vanishes andb5b0'0.253554255. The midpoint is atrc'1.34235319. The right-hand figure is
parametric plot ofb vs a.

FIG. 5. The Bohm(2,2)4 Einstein metric onS5. The functionb starts atb0'0.053054, and the midpoint is atrc'1.524951.
084024-21
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FIG. 6. The Bohm(2,2)6 Einstein metric onS5. The functionb starts atb0'0.010503 and the midpoint is atrc'1.56174.

FIG. 7. The Bohm(2,2)1 ~standard! Einstein metric onS33S2. The left-hand figure shows the metric coefficientsa andb as functions of
the radial variabler. At r50 the functiona vanishes andb05

1
2 . The midpoint is atr05(1/2&)p. The right-hand figure is a parametri

plot of b vs a.

FIG. 8. The Bohm(2,2)3 Einstein metric onS33S2. The left-hand figure shows the metric coefficientsa andb as functions of the radia
variabler. At t50 the functiona vanishes andb0'0.117794. The midpoint is atrc'1.46768843. The right-hand figure is a parametric p
of b vs a.
084024-22



l
ric

l
lot

BOHM AND EINSTEIN-SASAKI METRICS, BLACK . . . PHYSICAL REVIEW D67, 084024 ~2003!
FIG. 9. The Bohm(2,2)5 Einstein metric onS33S2. The left-hand figure shows the metric coefficientsa andb as functions of the radia
variabler. At r50 the functiona vanishes andb0'0.023571. The midpoint is attc'1.550472593. The right-hand figure is a paramet
plot of b vs a.

FIG. 10. The Bohm(2,2)2 Einstein metric onS6. The left-hand figure shows the metric coefficientsa andb as functions of the radia
variabler. At r50 the functiona vanishes andb0'0.297647. The end point is atr f'2.68296. The right-hand figure is a parametric p
of b vs a.

FIG. 11. The noncompact Ricci-flat Bohm metric onR33S2. The left-hand figure shows the metric coefficientsa andb as functions of
the radial variabler. At r50 the functiona vanishes andb0 is taken to be 1. The right-hand figure is a parametric plot ofb vs a.
084024-23
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Bohm(2,3)2 , which is topologicallyS6, to illustrate an ex-
ample where there is no symmetry betweena andb. This has
b0'0.297647, and the end point is atr f'2.68296~there is
no natural significance to the midpoint of the radial coor
nate range in thepÞq examples!.

A few isolated examples for other values ofp andq are as
follows. The Bohm(3,3)2 metric on S7 has b0
'0.3055210896, with the midpoint occurring atr5rc
'1.34689859293. The Bohm(3,3)3 metric on S43S3 has
b0'0.14291337 andrc'1.4691901856. The Bohm(4,4)2
metric on S9 has b0'0.2851829 andrc'1.376730624,
while the Bohm(4,4)3 metric on S53S4 has b0'0.09135
andrc'1.5099148.

We can also treat the analysis of the noncompact Bo
metrics described in Sec. III D in a similar fashion. Sin
these are Ricci-flat solutions of the Einstein equations,
,
e,

k-

tt.

itz

08402
-

m

e

terms involving the cosmological constant will be absent
Eqs.~32! and~33!, but otherwise all the formulas are anal
gous. The short-distance Taylor expansions~A1! now be-
come

a5r2
q~q21!

6b0
2p~p11!

r31O~r5!,

b5b01
q21

2b0~p11!
r21O~r4!. ~A2!

Using this, taken to orderr9, to set initial data just outside
the Sq bolt at r50, we again performed numerical integr
tions. The plots for the functionsa andb in the representative
examplep5q52 are given in Figs. 3–11.
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