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Gauge conditions for long-term numerical black hole evolutions without excision
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Numerical relativity has faced the problem that standard 311 simulations of black hole spacetimes without
singularity excision and with singularity avoiding lapse and vanishing shift fail early on due to the so-called
slice stretching. We discuss lapse and shift conditions for the nonexcision case that effectively cure slice
stretching and allow run times of 1000M and more.
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I. INTRODUCTION

A crucial role in numerical relativity simulations of tw
black holes~BH’s! is played by the choice of coordinate
This gauge choice involves both the choice of a lapse fu
tion and of a shift vector, which typically have to be dete
mined dynamically during numerical evolution. The first r
sults for colliding BH’s were obtained for head-on collisio
using the Arnowitt-Deser-Misner~ADM ! decomposition of
the Einstein equations with the lapse determined by
maximal slicing condition and the shift vector set to ze
@1–3#. Maximal slices are known to be singularity avoidin
that is, starting from BH initial data where the physical s
gularity is to the future of the initial hypersurface, the lap
approaches the Minkowski value of unity in the asympto
cally flat regions, but approaches zero near the physical
gularity. In this way one can in principle foliate a BH spac
time without singularities, but since time marches on in
far regions while being frozen in the interior, the slices b
come more and more distorted. Historically, this pheno
enon has been called ‘‘grid stretching’’ by the numerical re
tivity community, though we will refer to it as ‘slice
stretching’ since it is a property of the slices themselv
quite independent of the existence of a numerical grid. S
stretching introduces a difficult problem for numerical sim
lations since the metric develops large gradients that kee
growing until the numerical code can no longer handle th
and fails. Advanced numerical methods can help in spher
symmetry, see, e.g.,@4#, but to date they have not prove
successful in three-dimensional~3D! evolutions@5#.

Nonetheless, such singularity avoiding slicings with va
ishing shift do allow black hole spacetimes to be evolv
long enough so that useful physical information can be
tained, as first demonstrated in 1995 for the case of a si
Schwarzschild BH@6#. In @7# the first fully 3D simulation of
the grazing collision of two nearby BH’s~as measured by
their apparent horizon separation! was performed with a sin
gularity avoiding slicing and vanishing shift, lasting fo
about 7M . With improved techniques the grazing collisio
has recently been pushed to about 35M , which for the first
0556-2821/2003/67~8!/084023~18!/$20.00 67 0840
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time allowed the extraction of gravitational waveforms fro
a 3D numerical merger@8#. And even though singularity
avoiding slicings with vanishing shift have so far been lim
ited to a finite time interval before slice stretching become
fatal problem, this interval can be moved into the truly no
linear regime of a plunge starting from an approximate
nermost stable circular orbit~ISCO! of two BH’s, since the
remainder of the merger and ring-down can be compu
using the close limit approximation@9#. Following such an
approach, the first waveforms for the plunge from an a
proximate ISCO have been obtained@10#.

So far the most important strategy to avoid slice stret
ing has been black hole excision@11,12#. The idea is to use
horizon penetrating coordinates~notice that maximal slicing
is horizon penetrating unless one imposes the extra boun
condition of having a vanishing lapse at the horizon! and to
excise the interior of the BH’s from the numerical grid.
non-vanishing shift is essential to keep grid points from fa
ing into the BH. This approach has seen many succes
implementations for single black holes. First demonstrate
3D in @6#, with further development it has, in particular, a
lowed us to move a black hole across the numerical g
@13#. If a stable numerical implementation can be found, t
approach should make it possible to simulate many orbits
two well separated BH’s. The key difference between B
excision and the use of singularity avoiding slicings with
vanishing shift is that with excision single static BH’s can
stably evolved for essentially unlimited amounts of time; s
@13# for the case of evolutions using null coordinates~which
do not directly generalize to binary BH systems!, and @14#
for a single BH with a 311 Cauchy code in octant symmetr
Black hole excision holds a lot of promise, even if curren
evolutions of only 9 –15M have been achieved for binar
BH’s @15#.

In this paper we demonstrate that the new lapse and s
conditions introduced in@16# for the case of a single dis
torted BH with excision~using the excision techniques o
@14#! can work well evenwithout excision. This allows us to
break through the barrier in achievable evolution time i
posed by singularity avoiding slicings in 311 numerical
©2003 The American Physical Society23-1
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relativity. Our gauge choice maintains singularity avoidan
but cures the main problems associated with slice stretch
allowing us to reach 500M and more for the evolution o
single or even distorted BH’s. For BH’s colliding head-o
that merge early on during the evolution, i.e., which start
sufficiently close to each other, the final BH can again
evolved for hundreds or even thousands ofM.

Moreover, these gauge conditions have two important
fects:~a! they drive the system toward a static state, virtua
if not completely, eliminating the chronic growth in metr
functions typical of slice stretching. Hence, in principle th
should allow for indefinitely long evolutions~if no other in-
stabilities develop; see below!. ~b! Since unbounded growth
in metric functions is halted, they allowmuch more accurate
results to be obtained for extremely long times, and at low
resolution than before. Below we will show results obtain
for colliding black holes that show only 10% error in th
horizon mass after more than 5000M of evolution.

The evolutions in this paper are carried out using
puncture method for evolutions@7,6#. The starting point is
initial data of the Brill-Lindquist topology in isotropic coor
dinates@17#. This ‘‘puncture’’ data is defined onR3 minus a
point for each of the internal asymptotically flat ends of t
BH’s. If one treats the coordinate singularity at the punctu
appropriately, the punctures do not evolve as long as the
vanishes there. That is, the metric and the extrinsic curva
do not evolve at the punctures. It can also be checked tha
maximal slicing equation produces a smooth numerical s
tion for the lapse at the punctures.

One basic observation for our choice of shift vector is t
the ‘‘Gamma freezing’’ shift introduced in@16# for our
project in simple BH excision has the following proper
when the BH’s are not excised but are represented as p
tures: Initially the shift is zero, but as the slice stretchi
develops, the shift reacts by pulling out points from the inn
asymptotically flat region near the punctures. The lapse
shift conditions taken together are then able to virtually s
the evolution of one or even two black holes, essentia
mimicking the behavior of the lapse and shift known fro
stable evolutions of a BH in Kerr-Schild coordinates. This
a key result that will be detailed below.

The paper is organized as follows. First we introduce
evolution equations and the constraints in Sec. II. In Sec
we discuss the gauge conditions. The puncture initial d
and puncture evolutions are discussed in Sec. IV and Se
In Sec. VI miscellaneous aspects of our numerical imp
mentation are discussed. In Sec. VII we present numer
results for one and two BH’s, and we conclude in Sec. V

II. FORMULATION

The standard variables in the 311 formulation of ADM
~Arnowitt-Deser-Misner, see@18#! are the 3-metricg i j and
the extrinsic curvatureKi j . The gauge is determined by th
lapse functiona and the shift vectorb i . We will only con-
sider the vacuum case. The evolution equations are

~] t2Lb!g i j 522aKi j , ~1!
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~] t2Lb!Ki j 52DiD ja1a~Ri j 1KKi j 22KikKk
j !, ~2!

and the constraints are

H[R1K22Ki j K
i j 50, ~3!

D i[D j~Ki j 2g i j K !50. ~4!

HereLb is the Lie derivative with respect to the shift vect
b i , Di is the covariant derivative associated with t
3-metricg i j , Ri j is the three-dimensional Ricci tensor,R the
Ricci scalar, andK is the trace ofKi j .

We will use the Baumgarte-Shapiro-Shibata-Nakam
@19,20# ~BSSN! form of these equations. One introduces ne
variables based on a trace decomposition of the extrin
curvature and a conformal rescaling of both the metric a
the extrinsic curvature. The trace-free partAi j of the extrinsic
curvature is defined by

Ai j 5Ki j 2
1

3
g i j K. ~5!

Assuming that the metricg i j is obtained from a conforma
metric g̃ i j by a conformal transformation,

g i j 5c4g̃ i j , ~6!

we can choose a conformal factorc such that the determi
nant of g̃ i j is 1:

c5g1/12, ~7!

g̃ i j 5c24g i j 5g21/3g i j , ~8!

g̃51, ~9!

whereg is the determinant ofg i j andg̃ is the determinant of
g̃ i j . Instead ofg i j andKi j we can therefore use the variable

f5 ln c5
1

12
ln g, ~10!

K5g i j K
i j , ~11!

g̃ i j 5e24fg i j , ~12!

Ãi j 5e24fAi j , ~13!

where g̃ i j has determinant 1 andÃi j has vanishing trace
Furthermore, we introduce the conformal connection fu
tions

G̃ i5g̃ jkG̃ i
jk52] j g̃

i j , ~14!

whereG̃ i
jk is the Christoffel symbol of the conformal metri

and where the second equality holds only if the determin
3-2
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of the conformal 3-metricg̃ is unity ~which is true analyti-
cally but may not hold numerically!. We callf, K, g̃ i j , Ãi j ,

and G̃ i the BSSN variables.
In terms of the BSSN variables the evolution equation~1!

becomes

~] t2Lb!g̃ i j 522aÃi j , ~15!

~] t2Lb!f52
1

6
aK, ~16!

while Eq. ~2! leads to

~] t2Lb!Ãi j 5e24f@2DiD ja1aRi j #
TF

1a~KÃi j 22ÃikÃk
j !, ~17!

~] t2Lb!K52DiDia1aS Ãi j Ã
i j 1

1

3
K2D , ~18!

where TF denotes the trace-free part of the expressio
brackets with respect tog i j . Note that the right-hand side o
the evolution equation~17! for the trace-free variableÃi j is
trace-free except for the termÃikÃk

j . This is no contradic-
tion since the condition thatÃi j remains trace-free is (] t

2Lb)(g̃ i j Ãi j )50 and notg̃ i j (] t2Lb)Ãi j 50.
On the right-hand side of Eq.~18! we have used the

Hamiltonian constraint~3! to eliminate the Ricci scalar,

R5Ki j K
i j 2K25Ãi j Ã

i j 2
2

3
K2. ~19!

The momentum constraint~4! becomes

] j Ã
i j 52G̃ i

jkÃjk26Ãi j ] jf1
2

3
g̃ i j ] jK. ~20!

An evolution equation forG̃ i can be obtained from Eqs.~14!
and ~15!,

] tG̃
i522~a] j Ã

i j 1Ãi j ] ja!2] j~L bg̃ i j !, ~21!

where we will use the momentum constraint above to sub
tute for the divergence ofÃi j . One subtlety in obtaining nu
merically stable evolutions with the BSSN variables is p
cisely the question of how the constraints are used in
evolution equations. Several choices are possible and h
been studied, see, e.g.,@21#.

Note that in the preceding equations we are compu
Lie derivatives of tensor densities. If the weight of a tens
densityT is w, i.e., if T is a tensor timesgw/2, then

LbT5@LbT#]
w501wT]kb

k, ~22!

where the first term denotes the tensor formula for Lie
rivatives with the derivative operator] and the second is th
additional contribution due to the density factor. The dens
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weight ofc5ef is 1
6 , so the weight ofg̃ i j andÃi j is 2 2

3 and
the weight ofg̃ i j is 2

3 . To be explicit,

Lbf5bk]kf1
1

6
]kb

k, ~23!

Lbg̃ i j 5bk]kg̃ i j 1g̃ ik] jb
k1g̃ jk] ib

k2
2

3
g̃ i j ]kb

k, ~24!

L bg̃ i j 5bk]kg̃
i j 2g̃ ik]kb

j2g̃ jk]kb
i1

2

3
g̃ i j ]kb

k. ~25!

The evolution equation~21! for G̃ i therefore becomes

] tG̃
i5g̃ jk] j]kb

i1
1

3
g̃ i j ] j]kb

k

1b j] j G̃
i2G̃ j] jb

i1
2

3
G̃ i] jb

j

22Ãi j ] ja12aS G̃ i
jkÃjk16Ãi j ] jf2

2

3
g̃ i j ] jK D .

~26!

In the second line we see the formula for a vector density

weight 2
3 , but sinceG̃ i is not really a tensor density but i

derived from Christoffel symbols we obtain extra terms
volving second derivatives of the shift~the first line in the
equation above!.

On the right-hand sides of the evolution equations forÃi j
andK, Eqs.~17! and ~18!, there occur covariant derivative
of the lapse function, and the Ricci tensor of the nonconf
mal metric. Since

Gk
i j 5G̃k

i j 12~d i
k] jf1d j

k] if2g̃ i j g̃
kl] lf!, ~27!

whereG̃k
i j is the Christoffel symbol of the conformal metric

we have, for example,

DiDia5e24f~g̃ i j ] i] ja2G̃k]ka12g̃ i j ] if] ja!. ~28!

The Ricci tensor can be separated in two parts:

Ri j 5R̃i j 1Ri j
f , ~29!

whereR̃i j is the Ricci tensor of the conformal metric andRi j
f

denotes additional terms depending onf:

Ri j
f522D̃ i D̃ jf22g̃ i j D̃

kD̃kf14D̃ ifD̃ jf24g̃ i j D̃
kfD̃kf,

~30!

with D̃ i the covariant derivative associated with the conf
mal metric. The conformal Ricci tensor can be written
terms of the conformal connection functions as

R̃i j 52
1

2
g̃ lm] l]mg̃ i j 1g̃k( i] j )G̃

k1G̃kG̃ ( i j )k

1g̃ lm~2G̃k
l ( i G̃ j )km1G̃k

imG̃kl j !. ~31!
3-3
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A key observation here is that if one introduces theG̃ i as
independent variables, then the principal part of the rig
hand side of Eq.~17! contains the wave operatorg̃ lm] l]mg̃ i j
but no other second derivatives of the conformal metric. T
brings the evolution system one step closer to being hy
bolic.

One of the reasons why we have written out the BS
system in such detail is to point out a subtlety that arise
the actual implementation if one wants to achieve numer
stability. In the computer code we do not use the numeric

evolvedG̃ i in all places, but we follow this rule:

Partial derivatives] j G̃
i are computed as finite difference

of the independent variablesG̃ i that are evolved using Eq
~26!.

In all expressions that just requireG̃ i and not its derivative

we substituteg̃ jkG̃ i
jk(g̃), that is we do not use the indepe

dently evolved variableG̃ i but recomputeG̃ i according to its
definition ~14! from the current values ofg̃ i j .

In practice we have found that the evolutions are far l

stable if eitherG̃ i is treated as an independent variable e

erywhere, or ifG̃ i is recomputed fromg̃ i j before each time

step. The rule just stated helps to maintain the constrainG̃ i

52] j g̃
i j well behaved without removing the advantage

reformulating the principal part of the Ricci tensor.
In summary, we evolve the BSSN variablesg̃ i j , f, Ãi j ,

K, and G̃ i according to Eqs.~15!, ~16!, ~17!, ~18!, and~26!,
respectively. The Ricci tensor is separated as shown in
~29! with each part computed according to Eqs.~30! and
~31!, respectively. The Hamiltonian and momentum co
straints have been used to write the equations in a partic

way. The evolved variablesG̃ i are only used when their par
tial derivatives are needed@the one term in the conforma

Ricci tensor~31! and the advection termbk]kG̃
i in the evo-

lution equation for theG̃ i themselves, Eq.~26!#.

III. THE GAUGE CONDITIONS

We will consider families of gauge conditions that are n
restricted to puncture data and that can be used in princ
with any 311 form of the Einstein’s equations that allows
general gauge. However, the specific family we test in t
paper is best motivated by considering the BSSN sys
introduced above. For the present purposes, of special im
tance are the following two properties of this formulation

The trace of the extrinsic curvatureK is treated as an
independent variable. For a long time it has been known
the evolution ofK is directly related to the choice of a laps
function a. Thus, havingK as an independent field allow
one to impose slicing conditions in a much cleaner way.

The appearance of the ‘‘conformal connection function

G̃ i as independent quantities. As already noted by Baumg
and Shapiro@19# ~see also@22,23#!, the evolution equation
for these quantities can be turned into an elliptic condition
the shift which is related to the minimal distortion conditio
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More generally, one can relate the shift choice to the evo
tion of these quantities, again allowing for a clean treatm
of the shift condition.

Our aim is to look for gauge conditions that at late time
once the physical system under consideration has settled
final stationary state, will be able to drive the coordina
system to a frame where this stationarity is evident. In effe
we are looking for ‘‘symmetry seeking’’ coordinates of th
type discussed by Gundlach and Garfinkle and also by Bra
Creighton, and Thorne@24,25# that will be able to find the
approximate Killing field that the system has at late times.
order to achieve this we believe that the natural approac
to relate the gauge choice to the evolution of certain com
nations of dynamic quantities in such a way that the ga
will either freeze completely the evolution of those quantit
~typically by solving some elliptic equations!, or will attempt
to do so with some time delay~by solving instead parabolic
or hyperbolic equations!.

We will consider the lapse and shift conditions in tur
Special cases of the gauge conditions that we will introd
here were recently used together with BH excision with
markable results in@14#, but as we will show below, the
conditions are so powerful that in the cases tested~i.e., single
Schwarzschild black hole, distorted single black hole and
head on collision of two black holes using puncture init
data!, they workeven without excision.

A. Slicing conditions

The starting point for our slicing conditions is th
‘‘ K-freezing’’ condition] tK50, which in the particular case
when K50 reduces to the well known ‘‘maximal slicing’
condition. TheK-freezing condition leads to the following
elliptic equation for the lapse:

Da5b i] iK1aKi j K
i j , ~32!

with D the Laplacian operator for the spatial metricg i j . In
the BSSN formulation, once we have solved the ellip
equation for the lapse, theK-freezing condition can be im
posed at the analytic level by simply not evolvingK.

One can construct parabolic or hyperbolic slicing con
tions by making either] ta or ] t

2a proportional to] tK. We
call such conditions ‘‘K-driver’’ conditions ~see@26#!. The
hyperbolicK-driver condition has the form@4,16#

] ta52a2f ~a!~K2K0!, ~33!

where f (a) is an arbitrary positive function ofa and K0
5K(t50). In our evolutions, we normally take

f ~a!5
2

a
, ~34!

which is referred to as 11log slicing, since empirically we
have found that such a choice has excellent singula
avoiding properties. In Sec. IV B we introduce a modific
tion of f (a) for puncture evolutions. The hyperboli
3-4
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K-driver condition is in fact only a slight generalization
the Bona-Masso family of slicing conditions@4#: ] ta
52a2f (a)K.

By taking an extra time derivative of the slicing conditio
above, and using the evolution equation forK, one can see
that the lapse obeys a generalized wave equation,

] t
2a52] t~a2f !~K2K0!2a2f ] tK

5a2f ~Da2aKi j K
i j 2b iDiK12a f 1a2f 8!. ~35!

Previously we have also experimented with a somewhat
ferent form of the hyperbolicK-driver condition,

] t
2a52a2f ] tK, ~36!

where the right-hand side vanishes in the case thatK freezing
is achieved. However, one may anticipate the problem
even in the case when] tK50 we only obtain] ta5const,
while for Eq. ~33! we see thatK5K0 implies that] ta50.
Moreover, in black hole evolutions where the lapse collap
to zero, condition~33! guarantees that the lapse will sto
evolving, while condition~36! only implies that] ta will stop
evolving so the lapse can easily ‘‘collapse’’ beyond zero a
become negative. For these reasons, in practice the cond
Eq. ~33! leads to more stable black hole evolutions, and t
is the slicing condition that we consider in this paper.

The wave speed in both cases isva5aAf (a), which ex-
plains the need forf (a) to be positive. Notice that, depend
ing on the value off (a), this wave speed can be larger
smaller than the physical speed of light. This represents
problem, as it only indicates the speed of propagation of
coordinate system, i.e., it is only a ‘‘gauge speed.’’ In p
ticular, for the 11log slicing introduced above withf
52/a, the gauge speed in the asymptotic regions~wherea
.1) becomesva5A2.1. One could then argue that choo
ing f 51/a should be a better alternative, as the asympto
gauge speed would then be equal to the physical spee
light. However, experience has shown that such a choic
not nearly as robust and seems to lead easily to gauge
thologies as those studied in@27,28#.

B. Shift conditions

In the BSSN formulation, an elliptic shift condition i
easily obtained by imposing the ‘‘G-freezing’’ condition

] tG̃
k50, or using Eq.~26!,

g̃ jk] j]kb
i1

1

3
g̃ i j ] j]kb

k2G̃ j] jb
i1

2

3
G̃ i] jb

j1b j] j G̃
i

22Ãi j ] ja22aS 2

3
g̃ i j ] jK26Ãi j ] jf2G̃ jk

i Ã jkD50.

~37!

Notice that, just as it happened with theK-freezing condition
for the lapse, once we have solved the previous elliptic eq
tions for the shift, theG-freezing condition can be enforce

at an analytic level by simply not evolving theG̃k.
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The G-freezing condition is closely related to the we
known minimal distortion shift condition@29#. In order to
see exactly how these two shift conditions are related,
write here the minimal distortion condition

¹jS
i j 50, ~38!

whereS i j is the so-called ‘‘distortion tensor’’ defined as

S i jª
1

2
g1/3] tg̃ i j , ~39!

with g̃ i j the same as before. A little algebra shows that
evolution equation for the conformal connection functio
~26! can be written in terms ofS i j as

] tG̃
i52] j~g1/3S i j !. ~40!

More explicitly, we have

] tG̃
i52e4f@¹jS

i j 2G̃ jk
i S jk26S i j ] jf#. ~41!

We then see that the minimal distortion condition¹ jS i j

50, and theG-freezing condition] tG̃
i50 are equivalent up

to terms involving first spatial derivatives of the spatial m
ric multiplied with the distortion tensor itself. In particula
all terms involving second derivatives of the shift are ide
tical in both cases~but not so terms with first derivatives o
the shift which appear in the distortion tensorS i j ). That the
difference between both conditions involves Christoffel sy
bols should not be surprising since the minimal distorti
condition is covariant while theG-freezing condition is not.

Just as it is the case with the lapse, we obtain parab
and hyperbolic shift prescriptions by making either] tb

i or

] t
2b i proportional to ] tG̃

i . We call such conditions
‘‘ G-driver’’ conditions. The parabolicG-driver condition has
the form

] tb
i5Fp] tG̃

i , ~42!

whereFp is a positive function of space and time. In analo
to the discussion of the hyperbolicK-driver condition there
are two types of hyperbolicG-driver conditions that we have
considered,

] t
2b i5F] tG̃

i2h] tb
i , ~43!

or alternatively,

] t
2b i5F] tG̃

i2S h2
] tF

F D ] tb
i , ~44!

whereF andh are positive functions of space and time. F
the hyperbolicG-driver conditions we have found it crucia
to add a dissipation term with coefficienth to avoid strong
oscillations in the shift. Experience has shown that by tun
the value of this dissipation coefficient we can manage
almost freeze the evolution of the system at late times.
3-5
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The rationale behind the two almost identical choices oG
driver is the following. First note that ifF is independent of
time, the two choices are identical. However, we typica
chooseF to be proportional toap, with p some positive
power ~usually p51). Anticipating a collapsing lapse nea

the black hole this implies that the termF] tG̃
i approaches

zero and the evolution of the shift tends to freeze indep

dent of the behavior and numerical errors of] tG̃
i . We imple-

ment the first choice of theG-driver, Eq.~43!, as

] tb
i5Bi , ] tB

i5F] tG̃
i2hBi , ~45!

and the second choice, Eq.~44!, as

] tb
i5FBi , ] tB

i5] tG̃
i2hBi . ~46!

The second variant has the advantage that ifF approaches
zero due to the collapse of the lapse near a black hole,
] tb

i also approaches zero and the shift freezes. With the
variant, on the other hand, it is only] tB

i5] t
2b i that ap-

proaches zero, which means the shift can still evolve. BotG
drivers can give stable black hole evolutions, although
second one leads to less evolution near the black holes.

An important point that needs to be considered when
ing the hyperbolicG-driver condition is that of the gaug
speeds. Just as it happened with the lapse, the use of a
perbolic equation for the shift introduces new ‘‘gau
speeds’’ associated with the propagation of the shift. In or
to get an idea of how these gauge speeds behave, we
consider for a moment the shift condition~43! for small per-
turbations of flat space~and takingh50!. From the form of

] tG̃
i given by Eq.~26! we see that in such a limit the prin

cipal part of the evolution equation for the shift reduces

] t
2b i5FS d jk] j]kb

i1
1

3
d i j ] j]kb

kD . ~47!

Consider now only derivatives in a given direction, sayx.
We find

] t
2b i5FS ]x

2b i1
1

3
d ix]x]xb

xD , ~48!

which implies

] t
2bx5

4

3
F]x

2bx, ~49!

] t
2bq5F]x

2bq, qÞx. ~50!

We can then see that in regions where the spacetime i
most flat, the longitudinal part of the shift propagates w
speedv long52AF/3 while the transverse part propagat
with speedv trans5AF. We therefore choose

F~a!5
3

4
a, ~51!
08402
-

en
st

e

s-

hy-

r
ill

al-

in order to have the longitudinal part of the shift propaga
with the speed of light. The transverse part will propagate
a different speed, but its contribution far away is typica
very small.

In the next section we will turn to puncture evolution
Both f (a) andF(a) will be further adjusted for the presenc
of punctures.

IV. PUNCTURES

So far our discussion of the BSSN formulation and t
proposed gauge conditions was quite independent of any
ticular choice of initial data, except that our gauge conditio
are tailored for the late time stationarity of binary black ho
mergers even though they are also applicable in more gen
situations. In this section we introduce puncture initial da
for black holes and the method of puncture evolutions.

A. Puncture initial data

Consider the three-manifoldR3 with one or more points
(xA ,yA ,zA) removed. These points we call punctures. T
puncturedR3 arises naturally in solutions to the constrain
in the Lichnerowicz-York conformal method@30,18# for the
construction of black hole initial data. In the conform
method, we introduce on the initial hypersurface att50 the
conformal variablesḡ i j and Āi j by

g i j 5c0
4ḡ i j , ~52!

Ai j 5c0
22Āi j , ~53!

where c0 is the conformal factor, and leaveK untrans-
formed. Note thatÃi j 5c0

26Āi j at t50.
Consider initial data with the conformally flat metric

g i j 5c0
4d i j . ~54!

Assuming that the extrinsic curvatureKi j vanishes, the mo-
mentum constraints~4! are trivially satisfied and the Hamil
tonian constraint~3! reduces to

Ddc050, ~55!

whereDd is the flat space Laplacian. A particular solution
this equation is

c0511
m

2r
, ~56!

where r 25x21y21z2 and we assumerÞ0. This way we
have obtained initial data representing a slice of a Schwa
child black hole of massm in spatially isotropic coordinates
on a puncturedR3. The horizon is located atr 5m/2. There
are two asymptotically flat regions, one forr→` and a sec-
ond one atr→0. In fact, the metric is isometric underr 8
5m2/(4r ). Since Eq.~55! is linear in c0 one immediately
obtains solutions for multiple black holes, for example,
3-6
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cBL511
m1

2r 1
1

m2

2r 2
, ~57!

where r A
25(x2xA)21(y2yA)21(z2zA)2 on an R3 with

two punctures at (xA ,yA ,zA), A51,2. These solutions wer
first mentioned in@31# and studied in detail by Brill and
Lindquist in @17#. While no longer isometric, this initial dat
contains one or two black holes depending on the separa
of the punctures, but in any case with two separate in
asymptotic regions at the punctures. In particular, there is
physical singularity at the punctures, but there is a coordin
singularity at each puncture if one considers the unpunctu
R3.

Brill-Lindquist data can be generalized to longitudina
non-vanishing extrinsic curvatureKi j for multiple black
holes with linear momentum and spin@32,33#. Here one uses
the Bowen-York extrinsic curvature,

Āi j 5
3

2r 2
@ni Pj1nj Pi2~d i j 2ninj !dkln

kPl #

1
3

r 3
~nie jklSknl1nje iklSknl !, ~58!

andK50. The parametersPi andSi are the linear and an
gular ADM momentum, andni5xi /r is the coordinate nor-
mal vector. The sum of two Bowen-York terms centered
two punctures is an explicit solution to the conformal m
mentum constraint withK50.

The key observation for puncture initial data is that, ev
though there is a coordinate singularity at each punct
both in the conformal factor and in the Bowen-York extrins
curvature, we can rewrite the Hamiltonian constraint a
regular equation onR3 without any puncture points removed
This equation possesses a unique solutionu that isC2 at the
punctures andC` elsewhere, and the original Hamiltonia
constraint is solved by

c05u1cBL . ~59!

Working onR3 simplifies the numerical solution of the con
straints over methods that, for example, use an isometry
dition at the throat of a black hole.

Note that the puncture method for initial data can be
plied using a conformally flat metric and the Kerr extrins
curvature@34#, and also to non-conformally flat initial dat
for multiple Kerr black holes@35#. In this paper we restric
ourselves to the conformally flat puncture data with t
Bowen-York extrinsic curvature.

B. Puncture evolutions in the ADM system

In this section we want to argue that one can obtain re
lar evolutions of puncture initial data without removing
region containing the puncture coordinate singularity fro
the grid by, say, an isometry condition at the throat of
black holes as in@3#, or through black hole excision@11,12#.
Evolving onR3 instead of onR3 with a sphere removed an
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an additional boundary condition imposed results in a s
nificant technical simplification.

That this is possible was first noticed experimentally fo
single Schwarzschild puncture in@6# for ADM evolutions
with a singularity avoiding slicing and a vanishing shift. B
turning off the isometry condition at the throat and comp
ing everywhere including next to the puncture, the lap
equation can still be solved for a numerically smooth lap
with a vanishing first derivative at the puncture that collap
to zero at and around the puncture during the evolution. T
numerical grid in these simulations is staggered around
puncture points.

In @7#, puncture evolutions are proposed as a gene
method for the evolution of the conformally flat, longitudin
extrinsic curvature data of orbiting and spinning black ho
discussed in Sec. IV A. In particular, an argument is giv
that the punctures do not evolve by construction. This is not
a theorem about the regularity of the solutions, as is availa
for puncture initial data@32,33#, but it is consistent with the
numerical results.

The basic idea is to examine the evolution equations
the gauge conditions att50 in the limit of small distance to
one of the punctures. For simplicity we move one of t
punctures onto the origin and consider the limitr→0.

In this section we will give a detailed version of the a
gument of@7# for the ADM equations with maximal slicing
and vanishing shift, and then discuss the BSSN equation
Sec. IV C. First note that for the puncture initial data bas
on Eqs.~58! and ~59! we havecBL5O(1/r ) andu5O(1),
and therefore, att50,

c05O~1/r !, ~60!

c0
215O~r !, ~61!

g i j 5c0
4d i j 5O~1/r 4!, ~62!

Ki j 5c0
22Āi j 5O~1/r !. ~63!

We therefore observe that the ADM equations~1! and~2! for
the evolution of the metric and the extrinsic curvature a
singular at the punctures.

The basic construction in puncture evolutions is to fac
out thetime-independentconformal factorcBL ~and notc0)
given by the initial data,

g i j 5cBL
4 g̃ i j , ~64!

Ki j 5cBL
4 K̃ i j . ~65!

The key difference to the BSSN rescaling is that punct
evolutions involve a special rescaling that is independen
time.

Equation~64! gives rise to a method for accurate fini
differencing of the metric. For example, for the first part
derivative we have

]kg i j 5cBL
4 ]kg̃ i j 1g̃ i j ]kcBL

4 , ~66!
3-7
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where cBL
4 and ]kcBL

4 are given analytically, andg̃ i j and

]kg̃ i j are assumed to remain regular during the evolution.
staggering the puncture between grid points one can th
fore still obtain accurate derivatives ofg i j near the puncture
and this applies to all quantities derived from the metric a
its derivatives like the Christoffel symbols and the Ricci te
sor. In particular, there is no finite differencing across
singularity of 1/r terms.

In general, we havec05u1cBL and the analytic deriva
tives ofc0 are not known, but we can still factor outcBL as
in Eqs.~64! and ~65! and obtain regular initial data:

g̃ i j 5cBL
24c0

4d i j 5O~1!, ~67!

K̃ i j 5cBL
24c0

22Āi j 5O~r 3!. ~68!

The question is whetherg̃ i j and K̃ i j develop a singularity
during the course of the evolution.

The ADM equations forg̃ i j and K̃ i j in the case of the
vanishing shift are

] tg̃ i j 522aK̃ i j , ~69!

] tK̃ i j 5cBL
24~2DiD ja1aRi j !

1g̃kl~K̃ i j K̃kl22K̃ ikK̃ j l !. ~70!

Let us examine the terms on the right-hand side of the] tK̃ i j

equation. Forg̃ i j 5O(1) andK̃ i j 5O(r n), the terms involv-
ing K̃ i j are of orderO(r 2n). According to Eq.~27!, G i j

k

5G̃ i j
k 1(GcBL

) i j
k . Assuming thatg̃ i j and its derivatives are

O(1), we have G̃ i j
k 5O(1), but (GcBL

) i j
k 5O(1/r ). Hence

G i j
k 5O(1/r ), and similarlyRi j 5O(1/r 2). Finally, let us also

assume that the lapse and its derivatives are of orderO(1).
ThencBL

24DiD ja5O(r 3).
With these assumptions we obtain fort50 that

] tg̃ i j ~0!5O~r 3!, ~71!

] tK̃ i j ~0!5O~r 2!, ~72!

where theO(r 2) in Eq. ~72! is contributed by the term in
volving the Ricci tensor, the lapse terms areO(r 3), and the
extrinsic curvature terms areO(r 6). In order to study the
time evolution, we can perform one finite differencing step
time from t50 to t5Dt, for example,

g̃ i j ~Dt !5g̃ i j ~0!1Dt] tg̃ i j ~0!5O~1!, ~73!

K̃ i j ~Dt !5K̃ i j ~0!1Dt] tK̃ i j ~0!5O~r 2!. ~74!

Note thatK̃ i j has dropped fromO(r 3) to O(r 2). However, it
is readily checked that a second finite time step does
further lower the order of any variable since the order of
right-hand side in the evolution equation ofK̃ i j is dominated
by cBL

24Ri j . We therefore find that
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g̃ i j ~ t !5O~1!, ] tg̃ i j ~ t !5O~r 2!, ~75!

K̃ i j ~ t !5O~r 2!, ] tK̃ i j ~ t !5O~r 2!. ~76!

This argument suggests that if the lapsea and its derivatives
do not introduce additional singularities at the punctures,
if there are no singularities appearing in the spatial deri
tives of the metric~which we have not completely ruled out!,
then the right-hand sides of the evolution equations forg̃ i j

andK̃ i j vanish at the punctures for all times. This means t
g̃ i j and K̃ i j should not evolve at all at the punctures for
regular slicing and vanishing shift by construction, and t
same is true forg i j andKi j .

C. Puncture evolutions in the BSSN system

For accurate finite differencing in the BSSN system
puncture data we split the logarithmic conformal factorf
into a singular but time-independent piece and an additio
time-dependent contributionx,

f5x1 ln cBL . ~77!

It remains to be seen whetherx and the remaining BSSN
quantities are regular throughout the evolution, i.e., whet
the coordinate singularity can be cleanly separated out w
cBL as in the case of ADM. To decide this issue we have
be specific about our gauge choice. In preparation for
discussion of the gauge for puncture evolutions in Sec. V
note some properties of the BSSN system near the punctu

Each of the BSSN variables has the following initial val
for puncture data att50, which we assume to evolve a
indicated by the arrows:

x5O~1!→O~1!, ~78!

K50→O~r 2!, ~79!

g̃ i j 5O~1!→O~1!, ~80!

Ãi j 5O~r 3!→O~r 2!, ~81!

G̃ i50→O~r !. ~82!

Assume, furthermore, thata5O(1), andthat the derivatives
of the O(1) quantities areO(1). Consider now the follow-
ing form of the evolution equations, where we have inser

our assumptions fora, g̃ i j , Ãi j , and G̃ i , but have kept the
explicit dependence onb i , f andK:

] tx5Lbf2
1

6
aK, ~83!

] tK5LbK1O~r 4!@O~1!1O~]f!#1
1

3
aK2, ~84!

] tg̃ i j 5Lbg̃ i j 1O~r 2!, ~85!
3-8
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] tÃi j 5LbÃi j 1KO~r 2!1O~r 4!@O~1!1O~]f!

1O~]2f!1O~]f!2#, ~86!

] tG̃
i52] jL bg̃ i j 1O~r 2!1O~r 2!O~]f!2

4

3
ag̃ i j ] jK.

~87!

If these equations are to hold for all times, to be checked
time stepping as in Sec. IV B, then we require certain
sumptions about the shift as well. In particular, each of
terms involvingLb should be of the same or higher order
the other terms in the corresponding equation, because
erwise there could be evolution toward lower orders inr. In
particular, even assuminga and K are regular, we have to
examine the behavior ofLbf at the puncture before we ca
conclude thatx remains regular.

Let us assume thatx and its derivatives are regular, s
that

f5O~ ln r !, ] if5O~1/r !, ] i] jf5O~1/r 2!. ~88!

If, furthermore,K5O(r 2), and if the shift terms are of suf
ficiently high order, then the right-hand sides of Eqs.~83!–
~87! are at leastO(r ). In this case, the order of each equati
is such that the corresponding orders in Eqs.~78!–~82! are
maintained. In Sec. V we show that these assumptions
indeed be met by a proper gauge choice, and hence we a
at the statement that in this case the punctures do not ev
by construction.

V. GAUGE CONDITIONS AND PUNCTURE EVOLUTIONS

The main question is whether there are lapse and s
conditions that behave appropriately for puncture evolutio
We will show that this is indeed the case without the need
introduce special boundary conditions at the punctures. W
is required is an appropriately regularized implementation
our gauge conditions and a choice of initial data for lap
and shift such that the punctures do not evolve.

A. Lapse for puncture evolutions

Consider maximal slicing, which is implemented b
choosingK50 at t50 and determining the lapse from th
elliptic equation resulting from] tK50, which for vanishing
shift is

Da5aKi j K
i j . ~89!

As discussed in@7#, for g i j 5cBL
4 g̃ i j ,

Da5cBL
24Dg̃a2d i j G i j

k ]ka, ~90!

so the principal part is degenerating to zero asO(r 4). To
avoid numerical problems we therefore multiply Eq.~89! by
cBL

4 , which normalizes the principal part but leaves
O(1/r ) term sinceG i j

k 5O(1/r ):

Dg̃a2O~1/r !]ka5O~r 6!a. ~91!
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It turns out that standard numerical methods to solve
elliptic equation will find a regular solution fora for which
]ka vanishes sufficiently rapidly so thatO(1/r )]ka is zero at
the puncture. Therefore, maximal slicing and the vanish
shift lead to a sufficiently regular lapse such that indeed
right-hand sides of the ADM evolution equations forg̃ i j and
K̃ i j vanish at the punctures.

Effectively, maximal slicing implements the conditio
that the lapse has a vanishing gradient at the puncture. No
that this condition is very different from an isometry-typ
condition, where the lapse would be forced to be21 at the
puncture. Figure 1 shows a schematic representation in
Kruskal diagram of the type of slices one obtains in the c
of a single Schwarzschild BH when using three differe
boundary conditions for the lapse~while keeping the same
interior slicing condition!: odd at the throat, even at th
throat and zero gradient at the puncture. When looking
these plots it is important to keep in mind that the punct
corresponds to a compactification of the second asymp
cally flat region, and is at an infinite distance to the left of t
plots. Notice that, in all three cases, far away on the rig
hand side of the plot the slices approach the Schwarzsc
slices~in fact, if we use maximal slicing and ask for the lap
to be odd we recover the Schwarzschild slices everywhe!.
Also, in the case with an odd lapse the slices do not penet
the horizon, but in the other two cases they do.

Since maximal slicing is computationally expensive, w
often use 11log slicing that mimics the behavior of th
maximal lapse in that it also is singularity avoiding and t
lapse drops to zero when the physical singularity approac
Analytically, however, the 11log lapse does not necessari
drop to zero at the puncture. Starting witha51 andK50
everywhere att50, we see from the evolution equations f
the lapse and forK,

] ta52a2f ~a!~K2K0!, ~92!

FIG. 1. Schematic representation on the Kruskal diagram of
effect of the different boundary conditions on the slices obtain
The first panel shows the case of an odd lapse at the throat
second panel the case of an even lapse at the throat, and th
panel the case of a lapse with zero gradient at the puncture.
dashed lines show the singularities and the dotted lines the e
horizon.
3-9
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] tK5b i] iK1
1

3
aK21O~r 3!, ~93!

that neithera nor K evolve at the puncture if the shift or th
derivative ofK vanishes at the puncture. That means that
lapse will remain 1 at the puncture, and the inner asympt
cally flat region will evolve. Numerically, one may expe
this to be problematic if there is not sufficient resolution,
will be normally the case. The code can become unsta
near the puncture, and even if it remains stable the ev
horizon may not prevent numerical inaccuracies from evo
ing into the outer regions. In practice, however, we obse
that the 11log lapse does collapse at the puncture, app
ently precisely because of a lack of resolution. As the re
lution is increased, the lapse at the puncture remains clos
1 for longer, which causes a lack of convergence in the c
straints near the puncture, but the code remains stable. E
in this case we typically obtain convergence in the ou
regions where the lapse did not collapse.

In this paper we experiment with 11log slicing with
f (a)52/a replaced byf (a,cBL)52cBL

m /a, so that

] ta522acBL
m ~K2K0!, ~94!

i.e., we have introduced a factor that form.0 can drive the
lapse to zero at the puncture. Form50 we obtain standard
11log slicing. A natural choice ism54 since then the sin
gularity in cBL

4 exactly matches the degeneracy of the pr
cipal part of the second order wave equation associated
the lapse evolution, see Eqs.~35! and~90!. In particular, for
m54 the wave speed is regular at the puncture.

Another approach to obtaining a vanishing lapse at
puncture is to start with a different initial lapse, for examp

a~ t50!5cBL
225O~r 2!, ~95!

so that the lapse is zero at the puncture initially and ther
no evolution due to a nonvanishing lapse at the punct
The power22 is chosen so that the initial lapse has the sa
limit for r→` as the lapsea isotropic5@12(m/2r )#/@1
1(m/2r )# of the static Schwarzschild metric in isotropic c
ordinates. In practice, we have found that with such an ini
lapse there sometimes is too much evolution in the s
poorly resolved region between the puncture and the horiz
which is why we do not use this option routinely. Instead
guessing an initial lapse that minimizes the amount of ini
evolution one should use the lapse~and shift! derived from a
quasiequilibrium thin-sandwich puncture initial data s
which, however, is currently not available.

B. Shift for puncture evolutions

For long term stable evolutions, we want to construc
shift condition that counters slice stretching. However,
the arbitrary nonvanishing shift, Eqs.~83!–~87! show that
the punctures will evolve. It is possible to have the punctu
move across the grid because of a nonvanishing shift.
problem would be the numerical treatment of the coordin
singularity at the punctures, which so far was based on a
lytic derivatives of the time-independent conformal fac
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cBL . While a solution of this problem may be possible, w
focus here on finding a shift condition that counters sl
stretching while simultaneously satisfying a fall-off cond
tion for the shift such that the punctures do not evolve at
when using the BSSN equations.

As a first step it is instructive to considerb i5rni5xi

5O(r ) ~with ni the radial unit vector! near the puncture. In
this case several terms in the Lie derivatives cancel exa
and we have

Lrng̃ i j 5xk]kg̃ i j , ~96!

LrnÃi j 5xk]kÃi j , ~97!

LrnK5xk]kK. ~98!

However,

Lrnf5xk]kx1xk]k ln cBL1
1

2
5O~1!, ~99!

so x will evolve without a special combination ofx, K, and
a. Furthermore, the Lie derivative will not be as simple
the shift is not exactly spherically symmetric.

We therefore turn to

b i5O~r 3!. ~100!

This happens to be the necessary condition~assuming integer
powers ofr ) for the norm of the shift in the nonconforma
metric to be zero at the puncture,

g i j b
ib j5O~1/r 4!d i j b

ib j . ~101!

With b i5r 3ni5r 2xi we now have

L r 3ng̃ i j 5O~r 2!~xk]kg̃ i j 1g̃ i j !5O~r 2!, ~102!

L r 3nf5O~r 2!. ~103!

All other Lie derivative terms also turn out to be of ord
O(r 2). Finally, the shift derivatives in the evolution equatio

for G̃ i are

] jL bg̃ i j 5] jO~r 2!5O~r !. ~104!

In this sense the evolution ofG̃ i poses the strictest conditio
on the fall-off of the shift.

The question remains how we guarantee theO(r 3) fall-
off in the actual shift condition. We can enforce such a fa
off by choosing

b i~ t50!50, ~105!

and by changing the coefficientF in the hyperbolicG driver
to

F~a,cBL!5
3

4
acBL

2n5O~r n!, ~106!
3-10
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where we typically choosen52 or 4. Note that the two
versions of theG driver differ by the term] tF/F5] ta/a,
which in the case of 11log slicing equals22cBL

m (K2K0).
Let us ignore the diffusion term. If the shift has evolved in

b i5O(r 3), then] tG̃
i5O(r ). With n>2 we have

] t
2b i5O~r 3!. ~107!

In fact, we have found that in the case of evolutions of j
one black hole~distorted or not!, changingF is not really
necessary since there is enough symmetry in the proble
guarantee that the shift will have the correct fall-off at t
puncture even without introducing the extra factor ofcBL

2n

into F. When dealing with two black holes, however, this
no longer the case and the factorcBL

2n is required to stop the
shift from evolving at the punctures.

Anticipating the numerical results, let us point out th
due to a lack of numerical resolution the shift often loo
like O(r ) even though we have chosenn52 or 4. Some-
what surprisingly, even in these cases the gauge condit
are able to approximately freeze the evolution, for which
do not yet have a good analytic explanation.

C. Vanishing of the shift at the punctures

Combining our choice of puncture initial data with th
lapse and shift conditions above, we have the expecta
that the BSSN variables will not evolve at the punctur
This is a natural situation considering that the punctures
resent an asymptotically flat infinity, and that there is
linear momentum at the inner infinities. Performing t
transformationr→1/r for puncture data with the Bowen
York extrinsic curvature defined in Eq.~58! shows that the
1/r 3 spin terms are mapped to 1/r 3 terms, but the 1/r 2 linear
momentum terms are mapped to 1/r 4 terms and there are n
1/r 2 terms, and therefore there is no linear momentum at
inner infinity. In other words, viewed from the othe
asymptotic end, the black hole does not move in the data
use.

One can add a 1/r 4 term toĀi j to make the holes move in
the inner ends, but then the puncture initial data construc
and the puncture evolutions onR3 fail for a lack of regularity
at the punctures. In general, with a different choice of extr
sic curvature that does not satisfy the fall-off conditions
the Bowen-York data~58!, there can be nontrivial or eve
singular evolution at the punctures in both the ADM and
BSSN systems.

In summary, our puncture initial data correspond to t
black holes which are momentarily at rest at their inn
asymptotic ends. For a given coordinate system the b
holes could start moving if there is a nonvanishing shift
the punctures, but we explicitly construct a vanishing shif
the punctures. The main consequence for the puncture
of orbiting and colliding black holes is that by constructio
the inner asymptotic ends of the black hole will not move
our coordinate system, i.e., the punctures remain glued to
grid. That still allows for general dynamics around the pun
tures, which shows in the evolution of the metric and extr
sic curvature. For example, the apparent horizon can ea
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grow, drift and change shape, but itcannot cross over the
punctures for geometrical reasons, since the apparent hor
area would become infinite before they could do that. F
orbiting black holes, since the punctures do not move
construction, it seems natural to combine the method
puncture evolutions with a corotating coordinate system
minimize the evolution of the metric data. We leave th
option for future work.

VI. NUMERICS

The numerical time integration in our code uses an ite
tive Crank-Nicholson scheme with 3 iterations, see, e
@36#. Derivatives are represented by second order finite
ferences on a Cartesian grid. We use standard centered
ference stencils for all terms, except in the advection ter
involving the shift vector~terms involvingb i] i). For these
terms we use second order upwind along the shift direct
We have found the use of an upwind scheme in su
advection-type terms crucial for the stability of our cod
Notice that this is the only place in our implementatio
where any information about causality is used~i.e., the di-
rection of the tilt in the light cones!.

A. Outer boundary condition

At the outer boundary we use a radiation~Sommerfeld!
boundary condition. We start from the assumption that n
the boundary all fields behave as spherical waves, nam
we impose the condition

f 5 f 01u~r 2vt !/r , ~108!

where f 0 is the asymptotic value of a given dynamical va
able ~typically 1 for the lapse and diagonal metric comp
nents, and zero for everything else!, and v is some wave
speed. If our boundary is sufficiently far away one can saf
assume that the speed of light is 1, sov51 for most fields.
However, the gauge variables can easily propagate wit
different speed implying a different value ofv.

In practice, we do not use the boundary condition~108! as
it stands, but rather we use it in differential form:

] t f 1v] r f 1v~ f 2 f 0!/r 50. ~109!

Since our code is written in Cartesian coordinates, we tra
form the last condition to

xi

r
] t f 1v] i f 1

vxi

r 2
~ f 2 f 0!50. ~110!

We finite difference this condition consistently to second
der in both space and time and apply it to all dynamic va
ables ~with possible different values off 0 and v) at all
boundaries.

There is one other subtlety in our boundary treatme
Wave propagation is not the only reason why fields evo
near a boundary. Simple in-fall of the coordinate observ
will cause some small evolution as well, and such evolut
is poorly modeled by a propagating wave. This is particula
3-11
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important at early times, when the radiative boundary con
tion introduces a bad transient effect. In order to minim
the error at our boundaries introduced by such nonwave
evolution, we allow for boundary behavior of the form:

f 5 f 01u~r 2vt !/r 1h~ t !/r n, ~111!

with h a function oft alone andn some unknown power. This
leads to the differential equation

] t f 1v] r f 1
v
r

~ f 2 f 0!5
vh~ t !

r n11
~12nv !1

h8~ t !

r n

.
h8~ t !

r n
for larger , ~112!

or in Cartesian coordinates

xi

r
] t f 1v] i f 1

vxi

r 2
~ f 2 f 0!.

xih8~ t !

r n11
. ~113!

This expression still contains the unknown functi
h8(t). Having chosen a value ofn, one can evaluate th
above expression one point away from the boundary to s
for h8(t), and then use this value at the boundary its
Empirically, we have found that takingn53 almost com-
pletely eliminates the bad transient caused by the radia
boundary condition on its own.

As a final remark, it is important to mention here the fa
that imposing a boundary condition on all dynamical qua
tities, as we have done here, will in general be inconsis
with the constraints. However, as long as the boundary c
ditions do not cause instabilities~as they do not seem to d
in our simulations!, the violation of the constraints intro
duced by them will generally be very small when compa
with errors accumulating in the central regions. Neverthele
one should always be aware of the small violation of
constraints introduced at the boundaries and should, wh
ever possible, study their effects on the simulation by m
ing the position of the boundaries. One can, in fact, des
boundary treatments that take the constraints into consi
ation ~see, for example,@37–39#!, but such treatments ar
usually very complex.

B. Fish-eye transformation

Setting up a reasonable numerical simulation, there is
ways the conflicting interest of having the boundary as
out as possible and having as good resolution as poss
With limited numerical resources it is almost never possi
to obtain both at the same time, unless adaptive mesh re
ment is used. One way to stretch limited resources as fa
possible is to introduce a radial coordinate transformat
that decreases the resolution with distance. Such coordi
transformations can also be applied to 3D Cartesian gr
see the ‘‘fish-eye transformation’’ in@9,40#.

In order to make the outer boundary conditions as sim
as possible, we would like the resolution to be constant at
location of the outer boundaries. That is, we want cons
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high resolution in the region containing the black holes, th
we want a region where the resolution decreases with
tance and finally we want a region~containing the outer
boundaries! with constant low resolution. Denoting th
physical radius byr and the coordinate radius byr c , the
previous requirements can be met with the following rad
coordinate transformation:

r 5arc1~12a!
s

2 tanhS r 0

s D F lnS cosh
r c1r 0

s D

2 lnS cosh
r c2r 0

s D G , ~114!

where a is a parameter specifying the scale factor in g
spacing,r 0 is the radius of the transition region ands is the
width of the transition region.

By differentiatingr in Eq. ~114! with respect tor c we find
that dr/drc51 for r c50 anddr/drc5a for r c→` as re-
quired. Note that the radialr coordinate is mapped toarc
plus a nonvanishing constant, and therefore the Jacobia
this transformation does not correspond to just a simple
caling of radial resolution. The transformation~114! we refer
to as the ‘‘transition fish-eye.’’

Since we are dealing with tensor equations, it is suffici
to apply the transformation consistently to the initial data a
then evolve the data with unchanged evolution equatio
For puncture data this is done by first evaluatingcBL in Eq.
~57!, the flat background metric andĀi j in Eq. ~58! at every
grid point using the physical coordinates and then transfo
ing the flat metric andĀi j back to the numerical coordinate
Finally the constraints are solved using the Laplacian co
sponding to the transformed flat metric.

An important point to keep in mind when using a fish-e
transformation is the fact that both the asymptotic values
metric components and the physical speed of light~and
gauge speeds! will be affected by the transformation. Thi
means that special care should be taken when appl
boundary conditions.

VII. APPLICATIONS

In the numerical application of our method we focus
establishing the basic validity of the puncture evolutio
with the hyperbolic shift. We consider evolutions of th
spherically symmetric Schwarzschild spacetime, of a sin
distorted black hole, and of the head-on collision of tw
Brill-Lindquist punctures. We will report on orbiting binar
systems elsewhere.

A. Evolution of a single Schwarzschild puncture

For the evolution of Schwarzschild we use the Carto
method of@41# for implementing axisymmetric systems wit
3D Cartesian finite differencing stencils. Choosing thez axis
as the axis of symmetry, we evolve a 3D Cartesian slab w
just 5 points in they direction. On they50 plane standard
3D stencils are computed, and the data at the points wity
3-12
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Þ0 are obtained by interpolation in thex direction in they
50 plane and by tensor rotation about thez-axis. For
Schwarzschild we also use the reflection symmetry in thz
50 plane.

We choose the Schwarzschild puncture data of Sec. I
with m51.0M and the apparent horizon atr 50.5M . As we
have discussed, there are several choices for the gauge
ditions. For the Schwarzschild puncture, we initialize lap
and shift toa51 andb i50. We consider 11log slicing, Eq.
~33!, and the hyperbolic shift, Eq.~44!, with the specific
choice of

f 52a21cBL
4 , F5

3

4
acBL

22 , h52.0/M . ~115!

In Fig. 2 we show lapse and shift for an evolution with 2
points in thex andz directions, starting at the staggered po
at the origin and extending to about 20M with a grid spacing
of 0.1M . We plot the data after an evolution oft51000M ,
which corresponds to 40000 time steps with a Courant fa
of 0.25.

Lapse and shift show the characteristic feature of punc
evolutions. Both lapse and shift are zero at the punct
indicating that there is no evolution at the inner asympto
cally flat end of the black hole. The lapse approaches on
the outer region, while the shift points outward from t
puncture and approaches zero in the outer region. The
counters the in-fall of points toward the puncture, there
stopping the slice stretching.

Figure 3 shows various other quantities of the sa
Schwarzschild run att51000M . Note that near the punctur
there is a kink in some of the quantities, which, howev

FIG. 2. Schwarzschild black hole evolved fort51000M .
Shown are lapsea and shift componentbx along thex axis, which
are ~anti-!symmetric aboutx50. By that time lapse and shift ar
approximately static. The lapse has collapsed to zero at the pun
and approaches one in the outer region. The shift crosses zero
puncture, pointing away from the puncture and thereby halting
in-fall of points toward the puncture.
08402
A

on-
e

t

or

re
e,
-
in

ift
y

e

r,

does not grow with time and does not affect the evolut
elsewhere. One expects that this kink can be resolved
higher resolutions, see, for example, Fig. 6.

In Fig. 4 we compare data from this run with a run f
identical parameters except that instead of Eq.~44! we use
Eq. ~43! for the shift. The differences are quite small in th
case of this Schwarzschild run, including the presence o
kink in some of the quantities~not shown!.

In Fig. 5 we show the maximum of the shift and th
root-mean-square value of the Hamiltonian constraint a
function of time. After a short time interval of less tha
100M ~recall that previous runs with vanishing shift laste
only to about 30–40M ), evolution is approximately frozen
for more than 3000M . The observed drift in various quant
ties is crucially affected by the value ofh that determines the

re
the
e

FIG. 3. Schwarzschild black hole evolved fort51000M .

Shown are the BSSN variablesf, K, g̃xx , Ãxx , andG̃x along thex
axis, and also the Hamiltonian constraintH.

FIG. 4. Schwarzschild black hole evolved fort51000M .
Shown is a comparison along thex axis between two versions of th
hyperbolicG driver for the shift, Eq.~43! ~dashed line! and Eq.~44!
~solid line!.
3-13
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diffusion in the hyperbolicG driver. In Fig. 5 we compare
again the two versions of theG driver for h52.0/M . It is a
matter of experimentation to find a suitable value ofh in
dependence on the various parameters in the run. Runs
crash before 100M for a bad choice ofh. On the other hand
once determined for a particular initial data set and se
grid parameters, we found that the runs were rather rob
under small variations. It would be useful to have a dynam
determination and adaptation ofh, but this is currently not
available.

Having established the basic features and the stability
our gauge choice, we want to study convergence
Schwarzschild. A crucial issue is whether we obtain conv
gence near the puncture. We choose three grid sizes and
lutions: 200n11 points in both thex andz directions and a
grid spacing ofdx50.025/n for n51,2,4. With a Courant
factor of 0.25 in the BSSN evolution scheme it takes 1
320, and 640 iterations, respectively, for an evolution time
1M . The outer boundary is at about 5M . We choose the

FIG. 5. Schwarzschild black hole evolved fort53000M .
Shown are the maximum of the shift and the root-mean-squ
value of the Hamiltonian constraint as a function of time, again
two versions of the hyperbolicG driver for the shift, Eq.~43!
~dashed line! and Eq.~44! ~solid line!. After a short time interval
during which lapse and shift adjust themselves dynamically,
evolution slows down significantly.

FIG. 6. Schwarzschild black hole evolved tot55M at three
high resolutions, demonstrating second order convergence a
puncture.
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same gauge as in Eq.~115!, except that inF we usecBL
24

instead ofcBL
22 for a broader profile of the shift near th

puncture.
Figure 6 shows the Hamiltonian constraint along thex

axis near the single Schwarzschild puncture at the three r
lutions, rescaled by the corresponding factors expected
second order convergence. The coincidence of the three
indicates a clean second order convergence. Therefore
such high resolutions the BSSN system exhibits the expe
regular and convergent behavior near the punctures. As m
tioned in Sec. V B, we often do not have enough numeri
resolution to have the required shift profile near the pu
tures in order to guarantee a well behaved evolution th
Therefore it is remarkable that even at a four times coa
resolution of 0.1M , the evolution is well behaved.

Note in particular that the shift in Fig. 2 seems to be line
at the puncture, in contrast with the expectedO(r 3) behav-
ior. Figure 7 shows the effect of different powers ofcBL in
the shift equation for the grid parameters of the medi
resolution run of the convergence test. We use the shift eq
tion ~44!, and

F5
3

4
acBL

2n , h52.0/M , ~116!

with different values forn. Figure 7 shows the shift fort
51M . Note the resolution that is required to make t
O(r 3) behavior visible forn>2. By t510M , the shift for
n52 is no longer completely resolved at the puncture wit
grid spacing of 0.0125M , but as we have seen, even
coarser resolutions the approximateO(r ) behavior of the
shift at the puncture allows stable evolutions.

B. Evolution of a single, distorted black hole

The second application we present is that of a distor
BH. Referring to@42#, we choose a distortion parameterQ0
50.5, positionh050, and widths51. The ADM mass of
this system isM51.83. Such data has been previous
evolved in 2D and in 3D using excision. Here we discus
3D puncture evolution with octant symmetry, 1293 points

re
r

e

he

FIG. 7. Schwarzschild black hole evolved fort51M . Shown is
the effect of varying the powern in cBL

2n in the shift equation forbx

along thex axis.
3-14
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and a grid spacing of 0.1M50.183. The outer boundary is a
about 12.8M . For the gauge we use 11log slicing with the
initial lapse not unity but given by Eq.~95! and the hyper-
bolic shift condition~44! with

FIG. 8. Lapse and shift for the evolution of a single distort
BH. After around 20M , the evolution of lapse and shift slows dow
significantly~note the time labels!. The approach to the final profile
in lapse and shift is not monotonic.

FIG. 9. The evolution of the radial metric functiong rr /cBL
4 for

a distorted BH along thex axis. The upper panel shows the slic
stretching in the metric for singularity avoiding slicing with vanis
ing shift, while the lower panel shows the metric for the new gau
conditions. Without shift the metric grows out of control aftert
540M , while with the new shift condition a peak begins to for
initially but later almost freezes as lapse and shift drive the BH i
an essentially static configuration~note the time labels!.
08402
f 52a21cBL
4 , F5

3

4
acBL

22 , h51.25/M'0.68.

~117!
In Fig. 8 we show the evolution of the lapse and the sh

componentbx along thex axis. Note that the shift, althoug
vanishing initially, develops the needed profile simp
through its evolution equation, without any special initi
condition. After a short while, the evolution effectivel
freezes, allowing the waves to propagate on an effectiv
fixed BH background, just as one would like.

For comparison, we show in Fig. 9 the evolution of t
radial component of the metric,g rr /cBL

4 , for the new gauge
condition ~lower panel! and for a singularity avoiding the
slicing run with 11log slicing and vanishing shift~upper
panel!. For the 11log slicing and vanishing shift we see th
well-known slice stretching effect. With the new gauge ev
lution is slowed significantly at late times. The peak of t
metric nearx50.5M grows to about 12 by timet520M and
does not grow significantly after that untilt5400M ~lower
panel!, while for vanishing shift already att530M the peak
in the metric has reached 40 without any sign of slowi
growth ~upper panel!. For the new gauge we expect that w
can reliably extract the waveform for the ring-down, and th
is indeed the case as shown in Fig. 10.

C. Head-on collision of two Brill-Lindquist punctures

The third application we present is that of a head-on c
lision of two Brill-Lindquist BH’s. The parameters for thes

e

o

FIG. 10. The solid line shows thel 52,m50 waveform ex-
tracted at a radius of 5.45M for the even-parity distorted BH de
scribed in the text, while the two dashed lines show the result of
same simulation carried out in the 2D and 3D code with vanish
shift. The 2D code crashes at aroundt5100M and the 3D code
crashes aroundt540M . The lower panel shows a fit for the tim
interval from t59M to t580M to the two lowest quasi-norma
modes of the BH for the new gauge conditions in 3D, confirmi
that the ring-down of the distorted BH is simulated accurately.
3-15
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simulations arem15m250.5M , C15$0,1.1515M ,0%, C2

5$0,21.1515M ,0%, wherem1 andm2 are the masses of th
BH’s andC1 andC2 are the locations of the two puncture
These parameters correspond to an initial separation of
BH’s equal to that of an approximate ISCO configuration
determined in@43#. Such data has been previously evolv
without shift with the Lazarus technique that combines sh
fully numerical evolutions with a close limit approximatio
for the wave extraction@9# ~see @44# for runs starting at
larger separation!.

We present two types of runs for the head-on collis
starting at the approximate ISCO separation. In the first t
we use 11log slicing and the hyperbolicG driver ~43! with

f 52a21, F5
3

4
acBL

24 , h52.8/M , ~118!

with an initial lapse equal to one and an initial shift equal
zero. We also use the transition fish-eye with parametea
53, s51.2M , andr 055.5M . This places the outer bound
ary at a distance of 25.8M with central resolutions 0.128M ,
0.064M , and 0.032M and grid sizes 963, 1923, and 3843,
respectively, in octant mode.

In Fig. 11 we show the extracted,52 andm50 wave-
forms until t580M for all three resolutions. The code act
ally continued beyondt5140M at the highest resolution
~more thant5200M at the lower resolutions! before we
stopped it because it was computationally fairly expens
Initially there seem to be some small amplitude oscillatio
superposed on the larger oscillations. These seem to b
lated to an initial wave pulse in the lapse moving outward
the lapse collapses from its initial value, which is not qu
handled by the wave extraction procedure. However, th
oscillations decrease with increasing resolution. Withf
52a21cBL

4 as we used in the previous examples instead
Eq. ~118!, the oscillations are larger, probably because
lapse is more dynamic in the initial phase of the evolutio
But as already mentioned in Sec. V A, even withf
52a21cBL

0 the lapse collapses at the punctures. After ab
t580M we see some non-quasi-normal features in the wa

FIG. 11. The extracted,52, m50 waveforms for the head on
collision of two Brill-Lindquist BH’s at three different resolution
extracted at 18.5M . The resolutions for the solid, dashed, and da
dotted line are 0.032M , 0.064M , and 0.128M , respectively.
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form. Repeating the medium and low resolution runs w
the boundaries further out clearly shows that these feat
are caused by reflections from the boundaries. In the
resolution run on a 3843 grid ~the physical boundaries a
137M ) there is no trace of these features.

For a wave signalA extracted at three resolutions,D, 2D,
and 4D, the order of convergences can be estimated as

s5 log2UA~4D!2A~2D!

A~2D!2A~D!
U. ~119!

In Fig. 12 we show this estimate of the convergence fac
for the three waveforms from Fig. 11. Several features in t
figure deserve comment. First of all, for the first 15M the
signal is very small, so the estimate of the convergence o
is not very accurate. Secondly, the phase evolution of
waveforms is somewhat resolution dependent. This me
that the curves cross over each other at different times, le
ing to the spikes clearly visible in the plot. The differences
phase evolution seem to decrease with increasing resolu
although only at somewhere between first and second or
However, excluding the initial part and the spikes, we se
reasonable second order convergence in the waveforms u
t580M .

In Table I we try to circumvent the problem of the diffe
ently evolving phase by locating the extrema of the wa
forms and estimating the convergence order using these

-
FIG. 12. The convergence order in the extracted,52, m50

waveforms for the head on collision of two Brill-Lindquist BH’
extracted at 18.5M , based on the same three resolutions (0.032M ,
0.064M , 0.128M ) as in Fig. 11.

TABLE I. The convergence of the amplitude for the first s
local extrema of the extracted,52, m50 waveforms for the head
on collision of two Brill-Lindquist BH’s extracted at radius 18.5M .

Extremum log2u@A(4D)2A(2D)#/@A(2D)2A(D)#u

1 1.17
2 2.11
3 2.00
4 1.95
5 1.96
6 2.24
3-16
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tremal values even if they do not occur at the same time
can be seen, except for the first maximum, there is gene
nice second order convergence in the amplitude. In the c
of the first maximum, it can be seen from Fig. 11 that t
difference between the three resolutions is very small
that especially the lowest resolution is influenced by
pulse in the lapse moving out.

As a second type of gauge choice we use maximal slic
and the hyperbolic gamma driver condition with the sa
shift parameters as in the 11log case, except for the fact tha
h52.0/M here. In this case the resolution is 0.128M and the
grid size is 803 in the octant mode. The fish-eye paramet
area54, s51.2M , andr 055.0M , placing the outer bound
ary at a distance of 26M . This run ran for about a month o
two processors on a dual 1.7 GHz Xeon workstation rea
ing more thant55000M , until the machine went down du
to an unrelated problem. By that time, the evolution w
almost completely frozen as can be seen from Fig. 13 sh
ing the common apparent horizon mass as function of ti
Most of the evolution occurs beforet5200M and after that
there is just a slow drift of the apparent horizon mass giv
about 10% error att55000M .

In Fig. 14 we plot the extracted waveform with a logarit
mic time scale@actually ln(t11)] in order to be able to se
the features in the beginning of the waveform, while s

FIG. 13. The apparent horizon mass for the head on collisio
two Brill-Lindquist BH’s with maximal slicing.

FIG. 14. The extracted,52, m50 waveforms for the head on
collision of two Brill-Lindquist BH’s with maximal slicing. Note
that we plott11 in order to be able to use a logarithmic scale
the time axis.
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showing that it is constant and very close to zero at
55000M . The features in the initial part of this waveform
are very similar to the features in the 11log run of the same
resolution. However, it is completely smooth in the initi
phase, where the 11log waveform has the small amplitud
oscillations, since with an elliptic lapse condition, there is
wave pulse in the lapse moving outward.

As mentioned before, these evolutions were done in
tant symmetry. We repeated the maximal slicing evolution
‘‘bitant’’ symmetry ~reflection about one coordinate plane!,
with exactly the same physical and gauge parameters. H
ever, this evolution died at aboutt5280M , showing some
clearly asymmetric features in the lapse and metric com
nents in the directions where the symmetry is not impos
Notice that there are no asymmetries in the implementa
of the equations, boundary conditions or initial data, and
unstable asymmetric mode is apparently excited at the le
of machine round off error. We first encountered such a
pendence of the stability of the BSSN system on the oc
symmetry in excision runs of a single black hole@14#. The
current results support the conclusion that the stability pr
lem is not directly linked to the excision technique or t
gauge conditions, but is probably intrinsic to BSSN. We a
currently investigating the cause of this problem.~While re-
vising the manuscript for publication, Ref.@45# appeared
where such a nonoctant instability is also observed and
moved by modifying the BSSN equations. However, t
modification presented in that reference is dependent on
specific form of the shift being used, so it will not necess
ily work in a more general situation. Moreover, no explan
tion is given as to the origin of the different behavior
octant and full 3D modes.!

In conclusion, with the new gauge conditions we c
evolve not only single black hole systems but also
head-on collision of two black holes with dynamically a
justing lapse and shift and reach an almost static solution
the final black hole. While we have argued in detail why t
punctures should not evolve, and while it is plausible th
there is sufficient freedom in the gauge to almost freeze
evolution of a single, spherical black hole, it is remarkab
that the method is successful even in the region close to
between two black holes.

VIII. CONCLUSION

We have discussed a new family of coordinate conditio
for 3D numerical relativity that are powerful, efficient, ea
to implement, and respond naturally to spacetime dynam
An application of these conditions to previously difficult B
spacetimes shows their strength: even without excision, t
allow distorted and colliding BH spacetimes to be evolv
for more than two orders of magnitude longer than poss
previously, for thousands ofM rather than tens ofM, while
keeping errors down to a few percent and allowing accur
waveform extraction. The evolution methods and gau
choices discussed here have already passed preliminary
for orbiting punctures. Work is in progress to modify th
shift condition for corotating coordinates.
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