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Gauge conditions for long-term numerical black hole evolutions without excision
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Numerical relativity has faced the problem that standard 3imulations of black hole spacetimes without
singularity excision and with singularity avoiding lapse and vanishing shift fail early on due to the so-called
slice stretching. We discuss lapse and shift conditions for the nonexcision case that effectively cure slice
stretching and allow run times of 1000and more.
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[. INTRODUCTION time allowed the extraction of gravitational waveforms from
a 3D numerical mergef8]. And even though singularity
A crucial role in numerical relativity simulations of two avoiding slicings with vanishing shift have so far been lim-
black holes(BH'’s) is played by the choice of coordinates. ited to a finite time interval before slice stretching becomes a
This gauge choice involves both the choice of a lapse funcfatal problem, this interval can be moved into the truly non-
tion and of a shift vector, which typically have to be deter-linear regime of a plunge starting from an approximate in-
mined dynamically during numerical evolution. The first re- nermost stable circular orb{tSCO) of two BH's, since the
sults for colliding BH’s were obtained for head-on collisions remainder of the merger and ring-down can be computed
using the Arnowitt-Deser-MisnefADM) decomposition of using the close limit approximatiof®]. Following such an
the Einstein equations with the lapse determined by thapproach, the first waveforms for the plunge from an ap-
maximal slicing condition and the shift vector set to zeroproximate ISCO have been obtainfkD].
[1-3]. Maximal slices are known to be singularity avoiding,  So far the most important strategy to avoid slice stretch-
that is, starting from BH initial data where the physical sin-ing has been black hole excisiphl,12. The idea is to use
gularity is to the future of the initial hypersurface, the lapsehorizon penetrating coordinaté@sotice that maximal slicing
approaches the Minkowski value of unity in the asymptoti-is horizon penetrating unless one imposes the extra boundary
cally flat regions, but approaches zero near the physical sircondition of having a vanishing lapse at the horizand to
gularity. In this way one can in principle foliate a BH space- excise the interior of the BH’s from the numerical grid. A
time without singularities, but since time marches on in thenon-vanishing shift is essential to keep grid points from fall-
far regions while being frozen in the interior, the slices be-ing into the BH. This approach has seen many successful
come more and more distorted. Historically, this phenomimplementations for single black holes. First demonstrated in
enon has been called “grid stretching” by the numerical rela-3D in [6], with further development it has, in particular, al-
tivity community, though we will refer to it as ‘slice lowed us to move a black hole across the numerical grid
stretching’ since it is a property of the slices themselves[13]. If a stable numerical implementation can be found, this
quite independent of the existence of a numerical grid. Sliceapproach should make it possible to simulate many orbits of
stretching introduces a difficult problem for numerical simu-two well separated BH’s. The key difference between BH
lations since the metric develops large gradients that keep cexcision and the use of singularity avoiding slicings with a
growing until the numerical code can no longer handle thenvanishing shift is that with excision single static BH’s can be
and fails. Advanced numerical methods can help in sphericatably evolved for essentially unlimited amounts of time; see
symmetry, see, e.g[4], but to date they have not proved [13] for the case of evolutions using null coordinatasich
successful in three-dimension@D) evolutions[5]. do not directly generalize to binary BH systemand[14]
Nonetheless, such singularity avoiding slicings with van-for a single BH with a 3-1 Cauchy code in octant symmetry.
ishing shift do allow black hole spacetimes to be evolvedBlack hole excision holds a lot of promise, even if currently
long enough so that useful physical information can be obevolutions of only 9—18 have been achieved for binary
tained, as first demonstrated in 1995 for the case of a singlBH's [15].
Schwarzschild BH6]. In [7] the first fully 3D simulation of In this paper we demonstrate that the new lapse and shift
the grazing collision of two nearby BH'&s measured by conditions introduced if16] for the case of a single dis-
their apparent horizon separatjomas performed with a sin- torted BH with excision(using the excision techniques of
gularity avoiding slicing and vanishing shift, lasting for [14]) can work well everwithout excisionThis allows us to
about ™. With improved techniques the grazing collision break through the barrier in achievable evolution time im-
has recently been pushed to abouM35which for the first posed by singularity avoiding slicings in+3 numerical
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relativity. Our gauge choice maintains singularity avoidance (0= L)Kjj= —DiDja+ a(Rj;+ KK _2KikKkj)a 2
but cures the main problems associated with slice stretching,

allowing us to reach 50@ and more for the evolution of and the constraints are

single or even distorted BH'’s. For BH'’s colliding head-on

that merge early on during the evolution, i.e., which start out H=R+K?-K;;K'=0, ©)
sufficiently close to each other, the final BH can again be
evolved for hundreds or even thousandsvof DiEDj(KiJ’ —¥1K)=0. (4)

Moreover, these gauge conditions have two important ef-
fects:(a) they drive the system toward a static state, virtually,Here £ s Is the Lie derivative with respect to the shift vector
if not completely, eliminating the chronic growth in metric g', D; is the covariant derivative associated with the
functions typical of slice stretching. Hence, in principle they 3-metric vij » Ryj is the three-dimensional Ricci tens@&the
should allow for indefinitely long evolutiongf no other in-  Ricci scalar, and is the trace oKj; .
stabilities develop; see below(b) Since unbounded growth ~ We will use the Baumgarte-Shapiro-Shibata-Nakamura
in metric functions is halted, they allomuch more accurate [19,20 (BSSN form of these equations. One introduces new
results to be obtained for extremely long times, and at lowevariables based on a trace decomposition of the extrinsic
resolution than before. Below we will show results obtainedcurvature and a conformal rescaling of both the metric and
for colliding black holes that show only 10% error in the the extrinsic curvature. The trace-free pagtof the extrinsic
horizon mass after more than 50800f evolution. curvature is defined by
The evolutions in this paper are carried out using the
puncture method for evolutions,6]. The starting point is 1
initial data of the Brill-Lindquist topology in isotropic coor- Aij =K~ §7’iJK- ®)
dinates[17]. This “puncture” data is defined oR® minus a
poipt for each of the internal asymptotically flat ends of theassuming that the metrigy; is obtained from a conformal
BH’s. If one treats the coordinate singularity at the puncwreipetric}i- by a conformal transformation,
appropriately, the punctures do not evolve as long as the shi !
vanishes there. That is, the metric and the extrinsic curvature o
do not evolve at the punctures. It can also be checked that the Y=V 6)
%?;??:hsélﬁgpgsgq;iﬂzn p%rr?c(:jtllj(r::ss. a smooth numerical SOIuWe can~chgose a conformal factgrsuch that the determi-
One basic observation for our choice of shift vector is that@nt of yj; is 1:
the “Gamma freezing” shift introduced if16] for our

project in simple BH excision has the following property y=7" ™
when the BH's are not excised but are represented as punc- _

tures: Initially the shift is zero, but as the slice stretching vi= v v =y Yy, )
develops, the shift reacts by pulling out points from the inner

asymptotically flat region near the punctures. The lapse and y=1, 9

shift conditions taken together are then able to virtually stop

the evolution of one or even two black holes, essentiallywherey is the determinant of;, and7 is the determinant of

mimicking the behavior of the lapse and shift known from~ .
stable evolutions of a BH in Kerr-Schild coordinates. This is i - Instead ofy;; andK;; we can therefore use the variables

a key result that will be detailed below. 1

The paper is organized as follows. First we introduce the d=Iny=—Iny, (10)
evolution equations and the constraints in Sec. Il. In Sec. Il 12
we discuss the gauge conditions. The puncture initial data

and puncture evolutions are discussed in Sec. IV and Sec. V. K= %jK”, (13)
In Sec. VI miscellaneous aspects of our numerical imple-
mentation are discussed. In Sec. VIl we present numerical ’}ij:e—w%j ' (12)

results for one and two BH's, and we conclude in Sec. VIII.

Aij :ei4¢A (13)

ij s
Il. FORMULATION - -
where y;; has determinant 1 and;; has vanishing trace.

The standard variables in thet3 formulation of ADM  Fyrthermore, we introduce the conformal connection func-
(Arnowitt-Deser-Misner, segl8]) are the 3-metricy;; and  tjons

the extrinsic curvaturé;; . The gauge is determined by the
lapse functione and the shift vectop'. We will only con- Ti= %Ki = — 57 (14)
sider the vacuum case. The evolution equations are Yok iy

wheref”ijk is the Christoffel symbol of the conformal metric

(0= Lp)yij=—2aKj;, (1) and where the second equality holds only if the determinant
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of the conformal 3-metricy is unity (which is true analyti-  weight of y=e? is , so the weight ofy; andA;; is — 5 and
cally but may not hold numericallyWe call$, K, y;;, A;,  the weight ofy'! is 5. To be explicit,
andT" the BSSN variables.

In terms of the BSSN variables the evolution equatibn L= B+ %ngk, (23)
becomes
~ o= ~ -~ ~ ~ 2.
(‘9t_£3)7ij_ 2a'A‘ij ) (15) Eﬁ’yijzﬁkﬁk’yij‘f"yikajﬁk"‘ ‘yik&iﬁk_g’yijakﬂk, (24)
(= Lg)p= ! K (16) 2.
A LY =pray =Y o B =Y ap +3y aB . (29

while Eq. (2) leads to ~.
The evolution equatioi21) for I'' therefore becomes

(&t—ﬁﬁ)ﬂij=ef4¢[—DiDja+aRij]TF - ' 1.
o' =y *a;0B' + 379, B

+ a(KZ” _Z’Aik’Akj), (17)
) -~ 1 +lgia.fi_f‘ja.'3i+zfia.ﬁi
(0~ LpK=—-D'Dja+a AijA”+§K2 , (18 j P T3
. . ~ ~ o~ _ 2.
where TF denotes the trace-free part of the expression in —2A"9ja+2a F'jkAJk+6A"aj¢— §y"&jK .
brackets with respect tg;; . Note that the right-hand side of
the evolution equatioil?7) for the trace-free variabléij is (26)

4 ~k . . . A )
t_race-free except for f‘he terdy AT . T_h's IS no contrf';ldlc- In the second line we see the formula for a vector density of
tion since the condition thak;; remains trace-free isd( weight 2, but sincel" is not really a tensor density but is

—Eﬁ)(;’”z\ij_)zo and th;’”(ﬁt—ﬁﬁ)z\ij =0. derived from Christoffel symbols we obtain extra terms in-
On the right-hand side of Eq.18) we have used the yolving second derivatives of the shifthe first line in the
Hamiltonian constrain{3) to eliminate the Ricci scalar, equation above
> On the right-hand sides of the evolution equationsﬁfqr
R=K;: Ku —K2=A: Au 3 ZK2 (199 andK, Egs.(17) and(18), there occur covariant derivatives

of the lapse function, and the Ricci tensor of the nonconfor-
) mal metric. Since
The momentum constrairi) becomes
B 5 Fkijzrkij+2(5ik5j¢+ 5}((?i¢_7ij')’klﬁl¢)r (27)
wherel';; is the Christoffel symbol of the conformal metric,
- we have, for example,
An evolution equation fof"' can be obtained from Eqé&l4) _
and(15), D'Dia=e **(Y1g,9,a—T*a+2y15,¢d,a). (29

atfi: _z(aaj’Aij _i_Aijaj a)_o—,.(ﬁﬁ“,)'/ij) 1) The Ricci tensor can be separated in two parts:

Rij=R;+R

2, (29)

where we will use the momentum constraint above to substi-

tute for the divergence oA'/. One subtlety in obtaining nu-

merically stable evolutions with the BSSN variables is pre-

cisely the question of how the constraints are used in the

evolution equations. Several choices are possible and havlq¢__25i5j¢_2;,ij5k5k¢+ 45i¢5j¢_47)’ij5k¢5k¢a

been studied, see, e.§21]. (30)
Note that in the preceding equations we are computing

Lie derivatives of tensor densities. If the weight of a tensomwith D the covariant derivative associated with the confor-

WhereRJ is the Ricci tensor of the conformal metric aﬁq
denotes additional terms depending én

density T is w, i.e., if T is a tensor times*/?, then mal metnc The conformal Ricci tensor can be written in
"o . terms of the conformal connection functions as

where the first term denotes the tensor formula for Lie de- Rij= 27 (9|&m'y” +7 k(i J)F +T lﬂ('J)k

rivatives with the derivative operatérand the second is the . .
additional contribution due to the density factor. The density + Y2 0T ke TomL k) (3D
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A key observation here is that if one introduces THeas More generally, one can relate the shift choice to the evolu-
independent variables, then the principal part of the right—t'on of these quantities, again allowing for a clean treatment

: . ~m. . ~ Of the shift condition.
hand side of Eq(17) conjtam; the wave operatof NomYij Our aim is to look for gauge conditions that at late times,
but no other second derivatives of the conformal metric. This . X .
once the physical system under consideration has settled to a

ggﬁgs the evolution system one step closer to being hyIOerf'inal stationary state, will be able to drive the coordinate

One of the reasons why we have written out the BSSI\Fystem to a frame where this stationarity is evident. In effect,
y .we are looking for “symmetry seeking” coordinates of the

system in such detail is to point out a subtlety that arises i ; .
the actual implementation if one wants to achieve numeric ype discussed by Gundlach and qufmkle and alsg by Brady,
reighton, and Thorng24,25 that will be able to find the

stability. In the computer code we do not use the numerlcallyapproximate Killing field that the system has at late times. In

evolvedI™ in all places, but we follow this rule: order to achieve this we believe that the natural approach is
Partial derivativeﬁjl“i are computed as finite differences to relate the gauge choice to the evolution of certain combi-
of the independent variabldg that are evolved using Eq. Nations of dynamic quantities in such a way that the gauge
(26). will _e|ther freeze_completely t_he_ evolutlc_)n of tho_se guantities
) ) ~ ) L (typically by solving some elliptic equationor will attempt
In all expressions that just requifé and not its derivative 5 4o so with some time delaipy solving instead parabolic
we substitutey* I, (y), that is we do not use the indepen- or hyperbolic equations

dently evolved variabl&' but recomputd”’ according to its We will consider the lapse and shift conditions in turn.
definition (14) from the current values 0~f’ij _ Special cases of the gauge conditions that we will introduce

In practice we have found that the evolutions are far Iesé1ere were recently used together W'th BH excision with re-
DR _ ) markable results if14], but as we will show below, the
stable if eitherI" is treated as an independent variable ev-;gnditions are so powerful that in the cases teted single

erywhere, or il is recomputed frorﬁzij before each time Schwarzschild black hole, distorted single black hole and the
step. The rule just stated helps to maintain the constidint head on collision of two black holes using puncture initial

=—d,;%"! well behaved without removing the advantage of 4218, they workeven without excision
reformulating the principal part of the Ricci tensor.

In summary, we evolve the BSSN variablgs, ¢, A;j,

K, andT" according to Eqs(15), (16), (17), (18), and(26), The starting point for our slicing conditions is the
respectively. The Ricci tensor is separated as shown in Eq.K-freezing” conditiond;K =0, which in the particular case
(29) with each part computed according to E¢30) and when K=0 reduces to the well known “maximal slicing”
(31), respectively. The Hamiltonian and momentum con-condition. TheK-freezing condition leads to the following
straints have been used to write the equations in a particuldliptic equation for the lapse:

way. The evolved variablek' are only used when their par- Aa=BaK+ oK, Ki, (32)
tial derivatives are need€ddhe one term in the conformal !

Ricci tensor(31) and the advection terBa, "' in the evo-  \ith A the Laplacian operator for the spatial metsig. In
lution equation for thd™' themselves, Eq26)]. the BSSN formulation, once we have solved the elliptic
equation for the lapse, th€-freezing condition can be im-
posed at the analytic level by simply not evolviKg
One can construct parabolic or hyperbolic slicing condi-
We will consider families of gauge conditions that are nottions by making eithep,a or 97« proportional todK. We
restricted to puncture data and that can be used in principleall such conditions K-driver” conditions (see[26]). The
with any 3+1 form of the Einstein’s equations that allows a hyperbolicK-driver condition has the forri¥,16]
general gauge. However, the specific family we test in this
paper is best motivated by considering the BSSN system da=—a?f(a)(K—Ky), (33
introduced above. For the present purposes, of special impor-
tance are the following two _properties of_this formulation: where f(&) is an arbitrary positive function of and K,
The trace of the extrinsic curvatute is treated as an —K(t=0). In our evolutions, we normally take
independent variable. For a long time it has been known that ' '
the evolution ofK is directly related to the choice of a lapse
function «. Thus, havingK as an independent field allows
one to impose slicing conditions in a much cleaner way.
The appearance of the “conformal connection functions”

I'" as independent quantities. As already noted by Baumgartehich is referred to as tlog slicing, since empirically we
and Shapird19] (see alsd22,23), the evolution equation have found that such a choice has excellent singularity
for these quantities can be turned into an elliptic condition oravoiding properties. In Sec. IV B we introduce a modifica-
the shift which is related to the minimal distortion condition. tion of f(a) for puncture evolutions. The hyperbolic

A. Slicing conditions

Ill. THE GAUGE CONDITIONS

2
fla)==, (34

084023-4



GAUGE CONDITIONS FOR LONG-TERM NUMERICA . .. PHYSICAL REVIEW D 67, 084023 (2003

K-driver condition is in fact only a slight generalization of  The I'-freezing condition is closely related to the well

the Bona-Masso family of slicing conditionf4]: o, known minimal distortion shift conditiofi29]. In order to

=—a?f(a)K. see exactly how these two shift conditions are related, we
By taking an extra time derivative of the slicing condition write here the minimal distortion condition

above, and using the evolution equation Kgrone can see

that the lapse obeys a generalized wave equation, vsi=o0, (38

(yfa: _(pt(azf)(K_ Ko)— azf(;tK whereEij is the so-called “distortion tensor” defined as
=a’f(Aa—aK; KI—B'DK+2af+a?f"). (35 1 ~

! I 2'] ZZE ’)/1/3(9t’yij f (39)

Previously we have also experimented with a somewhat dif-

ferent form of the hyperboli&-driver condition, with ~yij the same as before. A little algebra shows that the

(36) evolution equation for the conformal connection functions

Pa=—a’fiK, . .
t ! (26) can be written in terms ak;; as

where the right-hand side vanishes in the caseKHatezing ~ -
is achieved. However, one may anticipate the problem that a'=20;(y3E1). (40)
even in the case wheft\K=0 we only obtaind,« = const,
while for Eqg. (33) we see thaK=K, implies thatd,a=0.
Moreover, in black hole evolutions where the lapse collapses ~. o~ N
to zero, condition(33) guarantees that the lapse will stop gl'=2e*[ V3 T}, 3~ 6317;¢]. (41
evolving, while condition(36) only implies thaty,« will stop o . . o
evolving so the lapse can easily “collapse” beyond zero and We then see that the minimal distortion conditihX;;
become negative. For these reasons, in practice the condition0, and thel"-freezing conditiors,I''=0 are equivalent up
Eqg. (33) leads to more stable black hole evolutions, and thigo terms involving first spatial derivatives of the spatial met-
is the slicing condition that we consider in this paper. ric multiplied with the distortion tensor itself. In particular,
The wave speed in both casesvis= a+/f(a), which ex-  all terms involving second derivatives of the shift are iden-
plains the need fof («) to be positive. Notice that, depend- tical in both casesgbut not so terms with first derivatives of
ing on the value off(«), this wave speed can be larger or the shift which appear in the distortion tensof). That the
smaller than the physical speed of light. This represents ndifference between both conditions involves Christoffel sym-
problem, as it only indicates the speed of propagation of théols should not be surprising since the minimal distortion
coordinate system, i.e., it is only a “gauge speed.” In par-condition is covariant while th&'-freezing condition is not.
ticular, for the Xlog slicing introduced above withf Just as it is the case with the lapse, we obtain parabolic
=2/a, the gauge speed in the asymptotic regiGnbere o and hyperbolic shift prescriptions by making eithgp' or

=1) becomes = y2>1. One could then argue that choos- 4281 proportional to 4. We call such conditions

ing f=1/a should be a better alternative, as the asymptotic T"_griver” conditions. The paraboli€ -driver condition has
gauge speed would then be equal to the physical speed gfe form

light. However, experience has shown that such a choice is
not nearly as robust and seems to lead easily to gauge pa- 9B =F. oI 42
thologies as those studied [ia7,28. B=Fpaly 42

More explicitly, we have

whereF,, is a positive function of space and time. In analogy
B. Shift conditions to the discussion of the hyperboli¢-driver condition there

In the BSSN formulation, an elliptic shift condition is are two types of hyperboliE-driver conditions that we have

easily obtained by imposing thel“freezing” condition ~Cconsidered,
Tk_ ; ) ~. :
aI"*=0, or using Eq(26), RE=FaTi— pag, (43
~ A O ~ 2~ D
y*a,0,8'+ gy”aj HB =T, + §F'aj,31 +p1T! or alternatively,
~ 2. . ~ 2 i o T ok i
—2A19ja—2a| 379K —6A19;¢— T A | =0. hB=Fal"=| n=—"]ap, (44)

(37 whereF and » are positive functions of space and time. For

. . . . . . the hyperbolicl’-driver conditions we have found it crucial
Notice that, just as it happened with tKefreezing condition  , 54q a dissipation term with coefficientto avoid strong

for the lapse, once we have solved the previous elliptic equasgijjations in the shift. Experience has shown that by tuning
tions for the shift, thd'-freezing condition can be enforced he value of this dissipation coefficient we can manage to

at an analytic level by simply not evolving tHe. almost freeze the evolution of the system at late times.

084023-5



ALCUBIERRE et al. PHYSICAL REVIEW D 67, 084023 (2003

The rationale behind the two almost identical choiceFE of in order to have the longitudinal part of the shift propagate
driver is the following. First note that ¥ is independent of with the speed of light. The transverse part will propagate at
time, the two choices are identical. However, we typicallya different speed, but its contribution far away is typically
chooseF to be proportional toaP, with p some positive very small.
power (usually p=1). Anticipating a collapsing lapse near In the next section we will turn to puncture evolutions.
the black hole this implies that the terﬁ,ﬂtf‘i approaches Both f (@) andF(«) will be further adjusted for the presence

zero and the evolution of the shift tends to freeze indepen@f PUnctures.

dent of the behavior and numerical error&?&fi. We imple-

ment the first choice of th&-driver, Eq.(43), as IV. PUNCTURES

So far our discussion of the BSSN formulation and the

ap'=B', 9B'=Fol'—yB (45  proposed gauge conditions was quite independent of any par-

ticular choice of initial data, except that our gauge conditions

and the second choice, E@4), as are tailored for the late time stationarity of binary black hole
_ mergers even though they are also applicable in more general

B =FB', 4B'=4I"—7yB" (46)  situations. In this section we introduce puncture initial data

for black holes and the method of puncture evolutions.

The second variant has the advantage th&t dpproaches
zero due to the collapse of the Iapse.near a black- hole, then A. Puncture initial data
d;8' also approaches zero and the shift freezes. With the first
variant, on the other hand, it is onlB'=428' that ap-
proaches zero, which means the shift can still evolve. Both
drivers can give stable black hole evolutions, although th ; )
second one leads to less evolution near the black holes. 1" the Lichnerowicz-York conformal methd@0,1§ for the

An important point that needs to be considered when US(_:onstructlon_of black hole |r_1|t_|§1I data. In the conformal
ing the hyperbolicl’-driver condition is that of the gauge method, we mtroduie on th_e initial hypersurfaca a0 the
speeds. Just as it happened with the lapse, the use of a H§enformal variablesy;; andA;; by
perbolic equation for the shift introduces new “gauge

Consider the three-manifol@® with one or more points
(Xa,Ya,Za) removed. These points we call punctures. The
é)uncturedR3 arises naturally in solutions to the constraints

speeds” associated with the propagation of the shift. In order Yi= 0oy (52
to get an idea of how these gauge speeds behave, we will
consider for a moment the shift conditioh3) for small per- A= ¢52Kij , (53)

turbations of flat spacénd takingz=0). From the form of
a,I'" given by Eq.(26) we see that in such a limit the prin- where ¢, is the conformal factor, and leavi§ untrans-
cipal part of the evolution equation for the shift reduces to formed. Note thaﬁij = %SKH att=0.

Consider initial data with the conformally flat metric

_ _ 1
0—’2’8|:F(5Jk07.3 B+=58150 ﬁk). (47)
t 19k T 3 @ 71% ViJ:(pg(Sii' (54

Consider now only derivatives in a given direction, say ~ Assuming that the extrinsic curvatukg; vanishes, the mo-
We find mentum constraintéd) are trivially satisfied and the Hamil-
tonian constrain{3) reduces to

) o1
200 _ 2 pi iX X
—Fl 28+ 26 4
(?t :3 ( (?XB 3 ﬁxﬁxﬂ ) ’ ( 8) Aalﬁoz O, (55)
which implies whereA? is the flat space Laplacian. A particular solution to
4 this equation is
KB =5 FaB, (49 -

) ) 2r

G BI=Fa B, a#x. (50

_ , ~_ wherer?=x?+y?+7? and we assume#0. This way we
We can then see that in regions where the spacetime is alaye obtained initial data representing a slice of a Schwarzs-
most flat, the longitudinal part of the shift propagates withcpjig plack hole of mase in spatially isotropic coordinates
speedvong=2+F/3_while the transverse part propagatesgp g punctured?®. The horizon is located at=m/2. There

with speedy ;ane=\F. We therefore choose are two asymptotically flat regions, one for- and a sec-
ond one ar—0. In fact, the metric is isometric under

Fla)= §a (51) =m?/(4r). Since Eq.(55) is linear in ¢, one immediately
47 obtains solutions for multiple black holes, for example,
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an additional boundary condition imposed results in a sig-
YpL=1+5—+5—, (57)  nificant technical simplification.

! 2 That this is possible was first noticed experimentally for a
single Schwarzschild puncture {6] for ADM evolutions
WO puUNCtures atxs.y.z.), A=1,2. These solutions were With_a singulari_ty avoiding sli_c?ng and a vanishing shift. By
first mentioned in[31] and studied in detail by Brill and tUMing off the isometry condition at the throat and comput
Lindquist in[17]. While no longer isometric, this initial data ng e\_/erywhere. including next to the p_uncture, the lapse
contains one or two black holes depending on the separatio%quat'on can St'”. be soI_veq for a numerically smooth lapse
of the punctures, but in any case with two separate innef”th a vanishing first derivative at the puncture that collapses
asymptotic regions at the punctures. In particular, there is nﬂourzne(;?icztl ar:ic(Jj ?;Otjhldséh;ﬁ;?;;gfsc’igrgg th:rg\(;o;t:gﬁgd-rtui
physical singularity at the punctures, but there is a coordinate 9 99

. . . . uncture points.
singularity at each puncture if one considers the unpuncturet .
RS In [7], puncture evolutions are proposed as a general

Brill-Lindauist data can be aeneralized to lonaitudinal method for the evolution of the conformally flat, longitudinal
incq e 9 _'ong ' extrinsic curvature data of orbiting and spinning black holes
non-vanishing extrinsic curvatur&;; for multiple black

o discussed in Sec. IV A. In particular, an argument is given
holes with linear momentum and spid2,33. Here one uses thatthe punctures do not evolve by constructidhis is not
the Bowen-York extrinsic curvature,

a theorem about the regularity of the solutions, as is available
3 for puncture initial datd32,33, but it is consistent with the
A= nipPi+niPi— (s —nin)s.nkp' numerical results. . . '
2r2[ ( )% ] The basic idea is to examine the evolution equations and
the gauge conditions at=0 in the limit of small distance to
3 . K i ikl one of the punctures. For simplicity we move one of the
+ r_3(n eXlsn +nleksn)), (58)  punctures onto the origin and consider the limit 0.
In this section we will give a detailed version of the ar-
andK=0. The parameter®’ andS are the linear and an- 9YMent .Of[.7] for Fhe ADM equations with maximal sllc.mg .
P ' and vanishing shift, and then discuss the BSSN equations in

gular ADM momentum, ana'=x/r is the coordinate nor- . S
mal vector. The sum of two Bowen-York terms centered at>€¢ [V C. First note that for the puncture initial data based

two punctures is an explicit solution to the conformal mo-°" Eqs.(58) and (59 we haveyg =O(1/r) andu=0(1),
mentum constraint with=0. and therefore, =0,

The key observation for puncture initial data is that, even Yo=O(1lr), (60)
though there is a coordinate singularity at each puncture,
both in the conformal factor and in the Bowen-York extrinsic

where ra=(x—x)2+ (y—ya)?+(z—2,)? on anR® with

_1:
curvature, we can rewrite the Hamiltonian constraint as a Yo =0(n), (61)
regular equation oR® without any puncture points removed. 4. 4
This equation possesses a unique solutidhat isC? at the ¥ij = ¥odij = O(1/r), (62
punctures andC” elsewhere, and the original Hamiltonian —
constraint is solved by Kij= o “Ajj=0O(1/r). (63
Yo=u+ g, . (59)  We therefore observe that the ADM equatigthsand(2) for

the evolution of the metric and the extrinsic curvature are
Working onR? simplifies the numerical solution of the con- Singular at the punctures.
straints over methods that, for example, use an isometry con- The basic construction in puncture evolutions is to factor
dition at the throat of a black hole. out thetime-independentonformal factoryg, (and notiy)
Note that the puncture method for initial data can be apgiven by the initial data,
plied using a conformally flat metric and the Kerr extrinsic

curvature[34], and also to non-conformally flat initial data Yii= w‘é,}/ij , (64)
for multiple Kerr black holeg35]. In this paper we restrict
ourselves to the conformally flat puncture data with the K--=l//éLRij- (65

Bowen-York extrinsic curvature.

The key difference to the BSSN rescaling is that puncture
B. Puncture evolutions in the ADM system evolutions involve a special rescaling that is independent of

In this section we want to argue that one can obtain regutime'

lar evolutions of puncture initial data without removing a ___Eduation(64) gives rise to a method for accurate finite
region containing the puncture coordinate singularity fromdifférencing of the metric. For example, for the first partial
the grid by, say, an isometry condition at the throat of thed€rivative we have

black holes as i3], or through black hole excisidri1,17. -

Evolving onR?® instead of orR® with a sphere removed and INYij = VaLIYii T Vi kWAL, (66)
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where g, and g, are given analytically, andy; and Y;(H=0(1), dy;(t)=0(r?), (75
dyyij are assumed to remain regular during the evolution. By
staggering the puncture between grid points one can there- Rij(t)=0(r2), atRij(t)=O(r2). (76)

fore still obtain accurate derivatives gf; near the puncture,

and this applies to all quantities derived from the metric andThis argument suggests that if the lapsand its derivatives

its derivatives like the Christoffel symbols and the Ricci ten-do not introduce additional singularities at the punctures, and
sor. In particular, there is no finite differencing across theif there are no singularities appearing in the spatial deriva-
singularity of 1f terms. tives of the metrigwhich we have not completely ruled gut

_ Ingeneral, we havg/o=u-+ yg_and the analytic deriva- then the right-hand sides of the evolution equationsfgr
tives of , are not known, but we can still factor oy, as andK;; vanish at the punctures for all times. This means that

in Egs.(64) and (65) and obtain regular initial data: ~ ~
as. (64 9 g ¥ij andKj; should not evolve at all at the punctures for a
T g—hghe regular slicing and vanishing shift by construction, and the
= 8i=0(1), 6 :
7y = YeL o0 =O() €7 same is true fory; andK;; .

Kii= gy 2Ai =0(r3). 68
i~ VoL do A () 89 C. Puncture evolutions in the BSSN system
The question is Whethe}ij and Rij develop a singularity For accurate finite differencing in the BSSN system for
during the course of the evolution. puncture data we split the logarithmic conformal factbr
The ADM equations for}ij and Rij in the case of the into a singular but time-independent piece and an additional
vanishing shift are time-dependent contributiog,
at;’ij:_zaRij ) (69 p=x+InipL. (77

It remains to be seen whethgr and the remaining BSSN
quantities are regular throughout the evolution, i.e., whether
the coordinate singularity can be cleanly separated out with
gL as in the case of ADM. To decide this issue we have to

. . . ~ be specific about our gauge choice. In preparation for the
Let u§ examine the terms on the right-hand side O_fmi discussion of the gauge for puncture evolutions in Sec. V we
equation. Fory;;=0(1) andK;=0(r"), the terms involv-  note some properties of the BSSN system near the punctures.
ing Kj; are of orderO(r?"). According to Eq.(27), Fikj Each of the BSSN variables has the following initial value
:f=<j+(r¢BL)ikj . Assuming thafy;; and its derivatives are for puncture data at=0, which we assume to evolve as

~ ‘ indicated by the arrows:
O(1), we havel';;=0(1), but ", );j=O(1/). Hence

diKij= g (—DDja+aR;))

+3’k|(kijkk|_2Rikkj|)- (70)

I'i=0(1/r), and similarlyR;; = O(1/r?). Finally, let us also x=0(1)—0(1), (78
assume that the lapse and its derivatives are of dbqédr).
Then ¢ 'D;Dja=0(r®). K=0—0(r2), (79
With these assumptions we obtain ter 0 that 5
- ¥j=0(1)—0(1), (80)
d1yi;(0)=0(r3), (71)
- Aj=0(r%)—0(r?), (81)
diK;;(0)=0(r?), (72)
T'=0-0(r). (82)

where theO(r?) in Eq. (72) is contributed by the term in-
volving the Ricci tensor, the lapse terms @é¢r®), and the
extrinsic curvature terms a®(r®). In order to study the
time evolution, we can perform one finite differencing step in
time fromt=0 to t=At, for example,

Assume, furthermore, that=0O(1), andthat the derivatives

of the O(1) quantities aréd(1). Consider now the follow-
ing form of the evolution equations, where we have inserted
our assumptions fow, y;;, A, andI', but have kept the

~ ~ ~ H I .
Yij(At)=7y;;(0)+Atd,y;;(0)=0(1), (73)  explicit dependence of', ¢ andK:

Kij(A)=K;;(0)+AtaK;(0)=0(r?). (74 atxzﬁﬁcj)—%aK, (83)

Note thatK;; has dropped fron®(r?) to O(r?). However, it

is readily checked that a second finite time step does not
further lower the order of any variable since the order of the
right-hand side in the evolution equationroifj is dominated B ~
by 5. 'Ri; . We therefore find that dvvij=Lgyij+0(r?), (85)

atK=£BK+O(r4)[O(1)+O(a¢>)]+%aK2, (84)
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I = LA +KO(r?)+O(rH)[O(1) + O(d¢)
+0(5%¢p)+0(d¢)?], (86)

Odd lapse Even lapse

HT'= =0, 47+ O(17) + O(r)0(9) ~ 5 a7 K.

(87)
. . Zero gradient at puncture
If these equations are to hold for all times, to be checked by Y i
time stepping as in Sec. IV B, then we require certain as- "'»Tj\-//%

sumptions about the shift as well. In particular, each of the
terms involvingZ,; should be of the same or higher order as
the other terms in the corresponding equation, because oth- e ~
erwise there could be evolution toward lower orders.iin ‘
particular, even assuming andK are regular, we have to FIG. 1. Schematic representation on the Kruskal diagram of the
examine the behavior of ;¢ at the puncture before we can effect of the different boundary conditions on the slices obtained.

conclude thaty remains regular. The first panel shows the case of an odd lapse at the throat, the
Let us assume thagt and its derivatives are regular, so second panel the case of an even lapse at the throat, and the last
that panel the case of a lapse with zero gradient at the puncture. The

dashed lines show the singularities and the dotted lines the event
¢=0(Inr), 3,¢=0(1lr), 3dj¢p=0(1k?). (88  horizon.

If, furthermore,K=0O(r?), and if the shift terms are of suf-

ficiently high order, then the right-hand sides of E€E3)— It turns out that standard numerical methods to solve this

: . elliptic equation will find a regular solution fax for which
(87) are at leasO(r). In this case, the order of each equation da vanishes sufficiently rapidly so th&X( Lr) d« is zero at

IS su::h thgt ItheScorria/spond;]ng Otrﬁetrihm E((Tﬁ)—(82)t.are the puncture. Therefore, maximal slicing and the vanishing
maintained. in Sec. v we snow that Inese assumpltions €af} g 1044 to a sufficiently regular lapse such that indeed the

indeed be met by a proper gauge choice, and hence we arrive , . . ~
at the statement that in this case the punctures do not evolji@ht-hand sides of the ADM evolution equations fay and

by construction. Kj; vanish at the punctures.
Effectively, maximal slicing implements the condition

V. GAUGE CONDITIONS AND PUNCTURE EVOLUTIONS that thg lapse hgs a.vanishing gradient at the puncture. Notice

that this condition is very different from an isometry-type

The main question is whether there are lapse and shiftondition, where the lapse would be forced to-bé at the

conditions that behave appropriately for puncture evolutionspuncture. Figure 1 shows a schematic representation in the
We will show that this is indeed the case without the need tdruskal diagram of the type of slices one obtains in the case
introduce special boundary conditions at the punctures. Whajf a single Schwarzschild BH when using three different
is required is an appropriately regularized implementation oboundary conditions for the lapgahile keeping the same
our gauge conditions and a choice of initial data for lapsenterior slicing condition: odd at the throat, even at the

and shift such that the punctures do not evolve. throat and zero gradient at the puncture. When looking at
these plots it is important to keep in mind that the puncture
A. Lapse for puncture evolutions corresponds to a compactification of the second asymptoti-

cally flat region, and is at an infinite distance to the left of the
plots. Notice that, in all three cases, far away on the right-
hand side of the plot the slices approach the Schwarzschild
slices(in fact, if we use maximal slicing and ask for the lapse
to be odd we recover the Schwarzschild slices everywhere
Aa=aK;; Kl (89) Also, in the case with an odd lapse the slices do not penetrate
the horizon, but in the other two cases they do.

Since maximal slicing is computationally expensive, we
often use Ilog slicing that mimics the behavior of the

Ay dirk maximal lapse in that it also is singularity avoiding and the
Aa=yp ATa 5JF” I, (%0 lapse drops to zero when the physical singularity approaches.
Analytically, however, the log lapse does not necessarily
drop to zero at the puncture. Starting wit=1 andK=0
everywhere at=0, we see from the evolution equations for
the lapse and fokK,

Consider maximal slicing, which is implemented by
choosingK =0 att=0 and determining the lapse from the
elliptic equation resulting fron#,K= 0, which for vanishing
shift is

As discussed in7], for y;;= l//éﬁ’ij .

so the principal part is degenerating to zero@g*). To
avoid numerical problems we therefore multiply £g§9) by
zpéL, which normalizes the principal part but leaves a
O(1/r) term sinceI‘:‘j =0(1r):

AVa—O(1Ir)da=0(r%a. (91) dra=—a?f(a)(K—Ky), (92)
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A 1 gL . While a solution of this problem may be possible, we

f9tK=B'F7iK+§aK2+O(f3)- (93 focus here on finding a shift condition that counters slice
stretching while simultaneously satisfying a fall-off condi-

that neithera: nor K evolve at the puncture if the shift or the tion for the shift such that the punctures do not evolve at all
derivative ofK vanishes at the puncture. That means that tha&vhen using the BSSN equations.
lapse will remain 1 at the puncture, and the inner asymptoti- As a first step it is instructive to considg'=rn'=x'
cally flat region will evolve. Numerically, one may expect =O(r) (with n' the radial unit vectgrnear the puncture. In
this to be problematic if there is not sufficient resolution, asthis case several terms in the Lie derivatives cancel exactly
will be normally the case. The code can become unstabl@nd we have
near the puncture, and even if it remains stable the event

horizon may not prevent numerical inaccuracies from evolv- Linvij =Xkﬁk7ij , (96)
ing into the outer regions. In practice, however, we observe g

that the H-log lapse does collapse at the puncture, appar- LinAjj =X akAIl , (97)
ently precisely because of a lack of resolution. As the reso-

lution is increased, the lapse at the puncture remains close to L K=x6,K. (98

1 for longer, which causes a lack of convergence in the con-
straints near the puncture, but the code remains stable. Even However,
in this case we typically obtain convergence in the outer
regions where the lapse did not collapse.

In this paper we experiment with+log slicing with
f(a)=2/a replaced byf(«a, g ) =2¢g,/a, so that

1
Linp=X Gy + X G In gy + 5 =0O(1), (99

so y will evolve without a special combination of, K, and

da=—2ayg (K=Kyp), (99 a. Furthermore, the Lie derivative will not be as simple if
the shift is not exactly spherically symmetric.
i.e., we have introduced a factor that foe>0 can drive the We therefore turn to
lapse to zero at the puncture. For=0 we obtain standard
1+log slicing. A natural choice isn=4 since then the sin- B'=0(rd). (100

gularity in z,b‘é,_ exactly matches the degeneracy of the prin- B o
cipal part of the second order wave equation associated witlhhis happens to be the necessary condit@ssuming integer
the lapse evolution, see Eq85) and(90). In particular, for ~ powers ofr) for the norm of the shift in the nonconformal

m=4 the wave speed is regular at the puncture. metric to be zero at the puncture,
Another approach to obtaining a vanishing lapse at the o 4 L
puncture is to start with a different initial lapse, for example, viiB'B =0(1r*) 5 B'B. (101
a(t=0)=ygl=0(r?), (950  With g'=r3n'=r2x" we now have
so that thg lapse is zero at the_pu_ncture initially and there is /3r3n3’ij =O(r2)(Xkr9|5fi,- +3/”-)=O(r2), (102
no evolution due to a nonvanishing lapse at the puncture.
The power—2 is chosen so that the initial lapse has the same L 3,0=0(r?). (103

limit for r—o as the lapsea;soropic=[1—(M/2r)]/[1

+(m/2r)] of the static Schwarzschild metric in isotropic co- All other Lie derivative terms also turn out to be of order
ordinates. In practice, we have found that with such an initiab(rz) Finally, the shift derivatives in the evolution equation
lapse there sometimes is too much evolution in the stilk, T 4o
poorly resolved region between the puncture and the horizon,

which is why we do not use this option routinely. Instead of
guessing an initial lapse that minimizes the amount of initial
evolution one should use the lap@ad shify derived from a .
quasiequilibrium thin-sandwich puncture initial data set, In this sense the evolution &F poses the strictest condition

which, however, is currently not available. on the fall-off of the shift. .
The question remains how we guarantee @g~) fall-

off in the actual shift condition. We can enforce such a fall-
off by choosing

For long term stable evolutions, we want to construct a .
shift condition that counters slice stretching. However, for B'(t=0)=0, (105
the arbitrary nonvanishing shift, Eq&€3)—(87) show that
the punctures will evolve. It is possible to have the puncture@nd by changing the coefficieRtin the hyperbolicl” driver
move across the grid because of a nonvanishing shift. Oné®
problem would be the numerical treatment of the coordinate
singularity at the punctures, which so far was based on ana-
lytic derivatives of the time-independent conformal factor

9L 5y =3,0(r3)=0(r). (104

B. Shift for puncture evolutions

3
Fais0) = 7 atal=0(r"), (106
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where we typically choos&@=2 or 4. Note that the two grow, drift and change shape, butdannotcross over the
versions of thel” driver differ by the termd,F/F = d;al o, punctures for geometrical reasons, since the apparent horizon
which in the case of tlog slicing equals— 24§, (K—Ky).  area would become infinite before they could do that. For
Let us ignore the diffusion term. If the shift has evolved into orbiting black holes, since the punctures do not move by

B=0(r?, then&tfi=0(r). With =2 we have construction, it seems natural to _combme_the method of
puncture evolutions with a corotating coordinate system to
2BI=0(r3). (10 minimize the evolution of the metric data. We leave this

option for future work.

In fact, we have found that in the case of evolutions of just
one black hole(distorted or not changingF is not really VI. NUMERICS
necessary since there is enough symmetry in the problem to
guarantee that the shift will have the correct fall-off at the
puncture even without introducing the extra factor ygf"
into F. When dealing with two black holes, however, this is
no longer the case and the facigg," is required to stop the
shift from evolving at the punctures.

Anticipating the numerical results, let us point out that
due to a lack of numerical resolution the shift often looks

like O(r) even though we have choser-2 or 4. Some_—_ advection-type terms crucial for the stability of our code.
what surprisingly, even in these cases the gauge conditiongqsice that this is the only place in our implementation

are able to approximately freeze the evolution, for which weere any information about causality is usée., the di-
do not yet have a good analytic explanation. rection of the tilt in the light congs

The numerical time integration in our code uses an itera-
tive Crank-Nicholson scheme with 3 iterations, see, e.g.,
[36]. Derivatives are represented by second order finite dif-
ferences on a Cartesian grid. We use standard centered dif-
ference stencils for all terms, except in the advection terms
involving the shift vector(terms involvingB'é;). For these
terms we use second order upwind along the shift direction.
We have found the use of an upwind scheme in such

C. Vanishing of the shift at the punctures A. Outer boundary condition

Combining our choice of puncture initial data with the At the outer boundary we use a radiati®ommerfeld
lapse and shift conditions above, we have the expectatioggngary condition. We start from the assumption that near

that the BSSN variables will not evolve at the puncturesyne poyndary all fields behave as spherical waves, namely,
This is a natural situation considering that the punctures repy,o impose the condition

resent an asymptotically flat infinity, and that there is no

linear momentum at the inner infinities. Performing the f=fo+u(r—ovt)/r, (108
transformationr — 1/r for puncture data with the Bowen-

York extrinsic curvature defined in E@¢58) shows that the wheref, is the asymptotic value of a given dynamical vari-
1/r3 spin terms are mapped torifterms, but the 17 linear  able (typically 1 for the lapse and diagonal metric compo-
momentum terms are mapped to“lferms and there are no nents, and zero for everything elsand v is some wave
1/r? terms, and therefore there is no linear momentum at thepeed. If our boundary is sufficiently far away one can safely
inner infinity. In other words, viewed from the other assume that the speed of light is 1,ise 1 for most fields.
asymptotic end, the black hole does not move in the data welowever, the gauge variables can easily propagate with a
use. different speed implying a different value of

One can add a 7 term toA;; to make the holes move in In practice, we do not use the boundary conditib08) as
the inner ends, but then the puncture initial data constructioff stands, but rather we use it in differential form:
and the puncture evolutions &? fail for a lack of regularity
at the punctures. In general, with a different choice of extrin-
sic curvature that does not satisfy the fall-off conditions ofs. dei . inC . i
the Bowen-York data58), there can be nontrivial or even ince our code is written in Cartesian coordinates, we trans-
singular evolution at the punctures in both the ADM and theform the last condition to
BSSN systems.

In summary, our puncture initia! data correspond. tq two ﬁ&tf+vﬁif+ U_Xi(f_fo)zo' (110
black holes which are momentarily at rest at their inner r r2
asymptotic ends. For a given coordinate system the black
holes could start moving if there is a nonvanishing shift atWe finite difference this condition consistently to second or-
the punctures, but we explicitly construct a vanishing shift atder in both space and time and apply it to all dynamic vari-
the punctures. The main consequence for the puncture datdles (with possible different values of, and v) at all
of orbiting and colliding black holes is that by construction boundaries.
the inner asymptotic ends of the black hole will not move in  There is one other subtlety in our boundary treatment.
our coordinate system, i.e., the punctures remain glued to thé/ave propagation is not the only reason why fields evolve
grid. That still allows for general dynamics around the punc-near a boundary. Simple in-fall of the coordinate observers
tures, which shows in the evolution of the metric and extrin-will cause some small evolution as well, and such evolution
sic curvature. For example, the apparent horizon can easilg poorly modeled by a propagating wave. This is particularly

af+va,f+uv(f—fo)/r=0. (109
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important at early times, when the radiative boundary condihigh resolution in the region containing the black holes, then
tion introduces a bad transient effect. In order to minimizewe want a region where the resolution decreases with dis-
the error at our boundaries introduced by such nonwavelikéance and finally we want a regioftontaining the outer

evolution, we allow for boundary behavior of the form: boundaries with constant low resolution. Denoting the
. physical radius byr and the coordinate radius hy., the
f=fo+u(r—vt)/r+h(t)/r" (11D previous requirements can be met with the following radial

. . . coordinate transformation:
with h a function oft alone anch some unknown power. This

leads to the differential equation Fetro
r=ar.+(1l—a) In(cosh—)
v oh(t) () 2 tanl’{ r—(’) s
ﬂtf+v(9rf+r(f—f0)= rn+l (1_nv)+_rn S
Fe—ro
h'(t) —In coshT , (119

= r_“ for larger, (112

where a is a parameter specifying the scale factor in grid

or in Cartesian coordinates spacingr is the radius of the transition region ands the
width of the transition region.

Xi UX; x;h'(t) By differentiatingr in Eq. (114) with respect ta . we find

?3tf+vﬁif+r—2(f—fo)2 e (113 thatdr/dr.=1 for r,=0 anddr/dr.=a for r.—o as re-

quired. Note that the radial coordinate is mapped tar,

This expression still contains the unknown function PIUS @ nonvanishing constant, and therefore the Jacobian of
h'(t). Having chosen a value ai, one can evaluate the thlg, transformatlon dqes not correspond tc_) just a simple res-
above expression one point away from the boundary to soleallng of rf‘d'al r.e.solu.tlon. Th(f transformaticii4) we refer
for h'(t), and then use this value at the boundary itself.[0 @S the “transition f|sh-eye. . L -
Empirically, we have found that taking=3 almost com- Since we are dealing with tensor equations, it is sufficient

pletely eliminates the bad transient caused by the radiativgn) apply the transformati(_)n consistently to the i_nitial data_and
boundary condition on its own then evolve the data with unchanged evolution equations.

As a final remark, it is important to mention here the factFOr puncture data this is done by f_'.FSt evaluating in Eq.
that imposing a boundary condition on all dynamical quan{57), the flat background metric ard’ in Eq. (58) at every
tities, as we have done here, will in general be inconsisterrid point using the physical coordinates and then transform-
with the constraints. However, as long as the boundary coring the flat metric and\" back to the numerical coordinates.
ditions do not cause instabilitigas they do not seem to do Finally the constraints are solved using the Laplacian corre-
in our simulationg the violation of the constraints intro- sponding to the transformed flat metric.
duced by them will generally be very small when compared An important point to keep in mind when using a fish-eye
with errors accumulating in the central regions. Neverthelesgransformation is the fact that both the asymptotic values of
one should always be aware of the small violation of themetric components and the physical speed of ligmd
constraints introduced at the boundaries and should, whemauge speedswill be affected by the transformation. This
ever possible, study their effects on the simulation by movimeans that special care should be taken when applying
ing the position of the boundaries. One can, in fact, desigmoundary conditions.
boundary treatments that take the constraints into consider-
ation (see, for example[37—39), but such treatments are VII. APPLICATIONS
usually very complex.
In the numerical application of our method we focus on
B. Fish-eye transformation e;tablishing the b_asic _validity of the puncture evolutions
] ] ) ) ~with the hyperbolic shift. We consider evolutions of the
Setting up a reasonable numerical simulation, there is alspnerically'symmetric Schwarzschild spacetime, of a single
ways the conflicting interest of having the boundary as faiyistorted black hole, and of the head-on collision of two

out as possible and having as good resolution as possiblgyij\.| indquist punctures. We will report on orbiting binary
With limited numerical resources it is almost never possiblegysiems elsewhere.

to obtain both at the same time, unless adaptive mesh refine-
ment is used. One way to stretch limited resources as far as
possible is to introduce a radial coordinate transformation
that decreases the resolution with distance. Such coordinate For the evolution of Schwarzschild we use the Cartoon
transformations can also be applied to 3D Cartesian gridsnethod of{41] for implementing axisymmetric systems with
see the “fish-eye transformation” if®,40]. 3D Cartesian finite differencing stencils. Choosing treis

In order to make the outer boundary conditions as simplas the axis of symmetry, we evolve a 3D Cartesian slab with
as possible, we would like the resolution to be constant at thpust 5 points in they direction. On they=0 plane standard
location of the outer boundaries. That is, we want constan8D stencils are computed, and the data at the points wvith

A. Evolution of a single Schwarzschild puncture
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x(M) FIG. 3. Schwarzschild black hole evolved far=1000M.

FIG. 2. Schwarzschild black hole evolved fdre=1000M. Shown are the BSSN variablés K, Ve, Ay andT™ along thex
Shown are lapse and shift componeng* along thex axis, which  axis, and also the Hamiltonian constrakht
are (anti-)symmetric abouk=0. By that time lapse and shift are

approximately static. The lapse has gollapsed tq zero at the punctuEﬁ)eS not grow with time and does not affect the evolution
and approache_s one in the outer region. The shift crosses zero at tBfewhere. One expects that this kink can be resolved at
puncture, p_omtlng away from the puncture and thereby halting thehigher resolutions, see, for example, Fig. 6.
in-fall of points toward the puncture. In Fig. 4 we compare data from this run with a run for
identical parameters except that instead of &¢) we use
#0 are obtained by interpolation in thedirection in they  Eq. (43) for the shift. The differences are quite small in the
=0 plane and by tensor rotation about tkeaxis. For case of this Schwarzschild run, including the presence of a
Schwarzschild we also use the reflection symmetry inzthe kink in some of the quantitiegot shown.
=0 plane. In Fig. 5 we show the maximum of the shift and the
We choose the Schwarzschild puncture data of Sec. IV Aoot-mean-square value of the Hamiltonian constraint as a
with m=1.0M and the apparent horizon e=0.5M. As we  function of time. After a short time interval of less than
have discussed, there are several choices for the gauge cdi®OM (recall that previous runs with vanishing shift lasted
ditions. For the Schwarzschild puncture, we initialize lapseonly to about 30—481), evolution is approximately frozen
and shift toa=1 andB'=0. We consider *log slicing, Eq.  for more than 30001. The observed drift in various quanti-
(33), and the hyperbolic shift, Eq44), with the specific ties is crucially affected by the value gfthat determines the
choice of

3
f=2a 'y, F=gayg?, 7=20M. (115 8005
< 4e-05
In Fig. 2 we show lapse and shift for an evolution with 201 _, |
points in thex andz directions, starting at the staggered point ; 0
at the origin and extending to aboutMOwith a grid spacing |
of 0.1IM. We plot the data after an evolution bf 100QM, -°~$0 5 1o -49-0020 5 10
which corresponds to 40000 time steps with a Courant factol ‘ . | ‘
of 0.25. 08 b ,/,——‘ i
Lapse and shift show the characteristic feature of puncture . [ ]

evolutions. Both lapse and shift are zero at the punctures ’
indicating that there is no evolution at the inner asymptoti- 94/ ]
cally flat end of the black hole. The lapse approaches oneir 45| i

the outer region, while the shift points outward from the

puncture and approaches zero in the outer region. The shif %o 5 10 0 5 10
counters the in-fall of points toward the puncture, thereby 0

stopping the slice stretching. FIG. 4. Schwarzschild black hole evolved fdr=1000M.

Figure 3 shows various other quantities of the sameshown is a comparison along thexis between two versions of the
Schwarzschild run at=1000M. Note that near the puncture hyperbolicI” driver for the shift, Eq(43) (dashed lingand Eq.(44)
there is a kink in some of the quantities, which, however,(solid line).
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max(f)

0.025

0.020

0.015

x (M)

rms(H)

0.010
0.005 | 1 FIG. 7. Schwarzschild black hole evolved for 1M. Shown is
0.000 ‘ . the effect of varying the powerin y" in the shift equation fop*
0 1000 2000 3000 a|0ng thex axis.
(M)

FIG. 5. Schwarzschild black hole evolved far=3000M. same gauge as in E¢L15), except that inF we useyg,"
Shown are the maximum of the shift and the root-mean-squargnstead oflpgf for a broader profile of the shift near the
value of the Hamiltonian constraint as a function of time, again forpuncture.
two versions of the hyperbollf driver for the Shiﬁ, Eq(43) F|gure 6 ShOWS the Hamlltor“an Constra|nt along the
(dashed linand Eq.(44) (solid line). After a short time interval  axis near the single Schwarzschild puncture at the three reso-
during which lapse and shift adjust themselves dynamically, thgytions, rescaled by the corresponding factors expected for
evolution slows down significantly. second order convergence. The coincidence of the three lines

e : . . indicates a clean second order convergence. Therefore, for
dn‘qumn in the hyperbohd“ dnvgr. In Fig. 5 we compare g ,ch high resolutions the BSSN system exhibits the expected
again the two Versions .Of tE o!rlver for .’7:2'0/M' ltis a regular and convergent behavior near the punctures. As men-
matter of experlmentat[on to find a sungble valuespiin tioned in Sec. V B, we often do not have enough numerical
dependence on the various parameters in the run. Runs M&solution to have the required shift profile near the punc-
crash before 10@ for a bad choice of. On the other hand, v o5 in order to guarantee a well behaved evolution there.

once determined for a particular initial data set and set o herefore it is remarkable that even at a four times coarser
grid parameters, we found that the runs were rather robu%SOIutiOn of 0.M . the evolution is well behaved

under s_ma!l variations. It W.OUId be usefl_JI t_o have a dynamic Note in particular that the shift in Fig. 2 seems to be linear

detgrmlnatlon and adaptation gf but this is currently not at the puncture, in contrast with the expec@€t3) behav-

avaﬂaple. . . ... ior. Figure 7 shows the effect of different powersaf, in
Having established the basic features and the stability O[Pe shift equation for the grid parameters of the medium

our gauge .ch0|ce, we .want' to study convergence forresolution run of the convergence test. We use the shift equa-
Schwarzschild. A crucial issue is whether we obtain conversio, (44), and

gence near the puncture. We choose three grid sizes and reso-

lutions: 20+ 1 points in both thex and z directions and a 3

grid spacing ofdx=0.025hn for n=1,2,4. With a Courant E=" quoh —2.0M 116
factor of 0.25 in the BSSN evolution scheme it takes 160, 4L, m=20M, (116
320, and 640 iterations, respectively, for an evolution time of

IM. The outer boundary is at aboutb We choose the \yith different values fom. Figure 7 shows the shift for

=1M. Note the resolution that is required to make the

2xt0* ' O(r®) behavior visible fom=2. By t=10M, the shift for
. (dx = 0.025M) / 16 i n= 2is no longer completely resolved at the puncture with a
e (dlx = 0.0125M) / 4 grid spacing of 0.0128, but as we have seen, even at

1x10+4 ==~ {dx = 0.00625M) /1 1 coarser resolutions the approxima®¥r) behavior of the

shift at the puncture allows stable evolutions.

rms{H)

B. Evolution of a single, distorted black hole

. ‘ The second application we present is that of a distorted
0 ! ” 2 BH. Referring to[42], we choose a distortion paramet@y
0 =0.5, positionyy=0, and widthc=1. The ADM mass of
FIG. 6. Schwarzschild black hole evolved te:5M at three  this system isM=1.83. Such data has been previously
high resolutions, demonstrating second order convergence at tievolved in 2D and in 3D using excision. Here we discuss a
puncture. 3D puncture evolution with octant symmetry, £2points
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FIG. 10. The solid line shows th&=2m=0 waveform ex-

FIG. 8. Lapse and shift for the evolution of a single distortedtracted at a radius of 5.45 for the even-parity distorted BH de-
BH. After around 2M, the evolution of lapse and shift slows down scribed in the text, while the two dashed lines show the result of the
significantly (note the time labe)s The approach to the final profile Same simulation carried out in the 2D and 3D code with vanishing
in lapse and shift is not monotonic. shift. The 2D code crashes at aroutrd 100M and the 3D code
crashes arount=40M. The lower panel shows a fit for the time
interval fromt=9M to t=80M to the two lowest quasi-normal
modes of the BH for the new gauge conditions in 3D, confirming
that the ring-down of the distorted BH is simulated accurately.

and a grid spacing of OM =0.183. The outer boundary is at
about 12.81. For the gauge we usetlog slicing with the
initial lapse not unity but given by Eq95) and the hyper-
bolic shift condition(44) with 3
f=2a tys , F= Zawgf, 7=1.25M~0.68.

x(M)

FIG. 9. The evolution of the radial metric function, /43, for

‘ ' ' (117
In Fig. 8 we show the evolution of the lapse and the shift
— =0M _ componen{B* along thex axis. Note that the shift, although
------------ =10M vanishing initially, develops the needed profile simply
o t’:;% 1 through its evolution equation, without any special initial
condition. After a short while, the evolution effectively
| freezes, allowing the waves to propagate on an effectively
: : : fixed BH background, just as one would like.
8 10 12 14 For comparison, we show in Fig. 9 the evolution of the
- ,=01;, ‘ radial component of the metrig, /z//éL, for the new gauge
------------ =10M i condition (lower panel and for a singularity avoiding the
. 1 slicing run with Z+log slicing and vanishing shiftupper
o =50M ] pane). For the H-log slicing and vanishing shift we see the
— =100M well-known slice stretching effect. With the new gauge evo-
o t’:jzzz i lution is slowed significantly at late times. The peak of the
] metric neaix=0.5M grows to about 12 by time=20M and
- - - ” does not grow significantly after that unti=400M (lower

pane), while for vanishing shift already at=30M the peak
in the metric has reached 40 without any sign of slowing
growth (upper panel For the new gauge we expect that we

a distorted BH along the axis. The upper panel shows the slice can reliably extract the waveform for the ring-down, and this
stretching in the metric for singularity avoiding slicing with vanish- is indeed the case as shown in Fig. 10.

ing shift, while the lower panel shows the metric for the new gauge

conditions. Without shift the metric grows out of control after
=40M, while with the new shift condition a peak begins to form
initially but later almost freezes as lapse and shift drive the BH into
an essentially static configuratignote the time labe)s

C. Head-on collision of two Brill-Lindquist punctures

The third application we present is that of a head-on col-
lision of two Brill-Lindquist BH's. The parameters for these
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FIG. 11. The extracted=2, m=0 waveforms for the head on )
collision of two Brill-Lindquist BH’s at three different resolutions FIG. 12. The convergence order in the extracted2, m=0
extracted at 18M@. The resolutions for the solid, dashed, and dash-waveforms for the head on collision of two Brill-Lindquist BH’s
dotted line are 0.03d, 0.064M, and 0.128&1, respectively. extracted at 18/, based on the same three resolutions (0M32
0.064V, 0.128V) as in Fig. 11.

Convergence order

simulations arem;=m,=0.5M, C;={0,1.1518,0}, C,
={0,—1.1515v,0}, wherem; andm, are the masses of the
BH’s andC; andC, are the locations of the two punctures.
These parameters correspond to an initial separation of t solution run on a 384grid (the physical boundaries at
BH's equal to that of an approximate ISCO configuration asl37M) there is no trace of these features.
determined in43]. Such data has been previously evolved For a wave signah extracted at three resolutions, 2A
without shift with the Lazarus technique that combines short, .+ 4\ the order of convergenae can be estimate’d as,
fully numerical evolutions with a close limit approximation '
for the wave extractio9] (see[44] for runs starting at
larger separation o=log,
We present two types of runs for the head-on collision
starting at the approximate ISCO separation. In the first type
we use X-log slicing and the hyperboli€ driver (43) with

form. Repeating the medium and low resolution runs with
the boundaries further out clearly shows that these features
are caused by reflections from the boundaries. In the low

(119

A(4A)—A(2A)
A(2A)—A(A) |

In Fig. 12 we show this estimate of the convergence factor
for the three waveforms from Fig. 11. Several features in this
3 figure deserve comment. First of all, for the firstM.5he

f=2a"!, F=—ayg', 7n=2.8M, (118  signal is very small, so the estimate of the convergence order

4 is not very accurate. Secondly, the phase evolution of the

waveforms is somewhat resolution dependent. This means

with an initial lapse equal to one and an initial shift equal tothat the curves cross over each other at different times, lead-
zero. We also use the transition fish-eye with parameters ing to the spikes clearly visible in the plot. The differences in

=3, s=1.2M, andr,=5.5M. This places the outer bound- phase evolution seem to decrease with increasing resolution,

ary at a distance of 25\ with central resolutions 0.128, although only at somewhere between first and second order.
0.064V, and 0.03% and grid sizes 96 192, and 384, However, excluding the initial part and the spikes, we see a

respectively, in octant mode. reasonable second order convergence in the waveforms up to
In Fig. 11 we show the extracte=2 andm=0 wave- t=80M. . _
forms untilt=80M for all three resolutions. The code actu- In Table | we try to circumvent the problem of the differ-

ally continued beyond=140M at the highest resolution e€ntly evolving phase by locating the extrema of the wave-
(more thant=200M at the lower resolutionsbefore we forms and estimating the convergence order using these ex-
stopped it because it was computationally fairly expensive. _ ) )
Initially there seem to be some small amplitude oscillations TABLE I. The convergence of the amplitude for the first six
superposed on the larger oscillations. These seem to be rl@cal extrema of the extracteft=2, m=0 waveforms for the head
lated to an initial wave pulse in the lapse moving outward a¥" collision of two Brill-Lindquist BH'’s extracted at radius 1815

the lapse collapses from its initial value, which is not quite

handled by the wave extraction procedure. However, these Extremum logl[A(44) ~ARA) MTA2) ~AL) ]
oscillations decrease with increasing resolution. With 1 1.17
=2a*1</;‘,_l,L as we used in the previous examples instead of 2 211
Eqg. (118), the oscillations are larger, probably because the 3 2.00
lapse is more dynamic in the initial phase of the evolution. 4 1.95
But as already mentioned in Sec. VA, even with 5 1.96
=2a" 42, the lapse collapses at the punctures. After about 6 224

t=80M we see some non-quasi-normal features in the wave
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Le[ ‘ ' ' ' ‘ ] showing that it is constant and very close to zerotat
Lo — ] =5000M. The features in the initial part of this waveform
[ ] are very similar to the features in the-log run of the same
resolution. However, it is completely smooth in the initial
phase, where theHllog waveform has the small amplitude
oscillations, since with an elliptic lapse condition, there is no
wave pulse in the lapse moving outward.
As mentioned before, these evolutions were done in oc-
tant symmetry. We repeated the maximal slicing evolution in
ool | . . “bitant” symmetry (reflection about one coordinate plane
o 1000 2000 3000 4000 5000 6000 with exa}ctly the same physical and gauge parameters. How-
HM) ever, this evolution died at abotit=280M, showing some
clearly asymmetric features in the lapse and metric compo-
FIG. 13. The apparent horizon mass for the head on collision ohents in the directions where the symmetry is not imposed.
two Brill-Lindquist BH's with maximal slicing. Notice that there are no asymmetries in the implementation
of the equations, boundary conditions or initial data, and the
tremal values even if they do not occur at the same time. Asinstable asymmetric mode is apparently excited at the level
can be seen, except for the first maximum, there is generallgf machine round off error. We first encountered such a de-
nice second order convergence in the amplitude. In the cagsendence of the stability of the BSSN system on the octant
of the first maximum, it can be seen from Fig. 11 that thesymmetry in excision runs of a single black hlist]. The
difference between the three resolutions is very small andurrent results support the conclusion that the stability prob-
that especially the lowest resolution is influenced by thelem is not directly linked to the excision technique or the
pulse in the lapse moving out. gauge conditions, but is probably intrinsic to BSSN. We are
As a second type of gauge choice we use maximal slicingurrently investigating the cause of this probleiwhile re-
and the hyperbolic gamma driver condition with the samevising the manuscript for publication, Reff45] appeared
shift parameters as in thetlog case, except for the fact that where such a nonoctant instability is also observed and re-
7=2.0M here. In this case the resolution is 0.M2&nd the moved by modifying the BSSN equations. However, the
grid size is 88 in the octant mode. The fish-eye parametersmodification presented in that reference is dependent on the
area=4,s=1.2M, andr,=5.0M, placing the outer bound- specific form of the shift being used, so it will not necessar-
ary at a distance of 8. This run ran for about a month on ily work in a more general situation. Moreover, no explana-
two processors on a dual 1.7 GHz Xeon workstation reachtion is given as to the origin of the different behavior in
ing more thart=5000M, until the machine went down due octant and full 3D modes.
to an unrelated problem. By that time, the evolution was In conclusion, with the new gauge conditions we can
almost completely frozen as can be seen from Fig. 13 showevolve not only single black hole systems but also the
ing the common apparent horizon mass as function of timehead-on collision of two black holes with dynamically ad-
Most of the evolution occurs befote=200M and after that justing lapse and shift and reach an almost static solution for
there is just a slow drift of the apparent horizon mass givinghe final black hole. While we have argued in detail why the
about 10% error at=5000M. punctures should not evolve, and while it is plausible that
In Fig. 14 we plot the extracted waveform with a logarith- there is sufficient freedom in the gauge to almost freeze the
mic time scalgactually In¢+1)] in order to be able to see evolution of a single, spherical black hole, it is remarkable
the features in the beginning of the waveform, while still that the method is successful even in the region close to and
between two black holes.
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© o o
2 o
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r VIIl. CONCLUSION

0.05¢ ] We have discussed a new family of coordinate conditions
3 for 3D numerical relativity that are powerful, efficient, easy
] to implement, and respond naturally to spacetime dynamics.
] An application of these conditions to previously difficult BH
spacetimes shows their strength: even without excision, they
_ allow distorted and colliding BH spacetimes to be evolved
-0.15L : L : ] for more than two orders of magnitude longer than possible
! 10 t+17°(0M) 1000 10000 previously, for thousands dfl rather than tens of1, while
keeping errors down to a few percent and allowing accurate
FIG. 14. The extracted=2, m=0 waveforms for the head on Waveform extraction. The evolution methods and gauge
collision of two Brill-Lindquist BH's with maximal slicing. Note choices discussed here have already passed preliminary tests
that we plott+1 in order to be able to use a logarithmic scale onfor orbiting punctures. Work is in progress to modify the
the time axis. shift condition for corotating coordinates.
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