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Low energy effective theory for a two branes system: Covariant curvature formulation
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We derive the low energy effective theory for a two branes system solving the bulk geometry formally in the
covariant curvature formalism developed by Shiromizu, Maeda, and Sasaki. As expected, the effective theory
looks like an Einstein-scalar system. Using this theory we can discuss the cosmology and nonlinear gravity at
low energy scales.
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I. INTRODUCTION

The recent progress in superstring theory provides us w
a new picture of the universe, the so-called brane wo
where our universe is like a domain wall in higher dime
sional spacetime. The matter is confined on the three-bra
The simplest model was proposed by Randall and Sund
@1,2#. In their model the bulk spacetime is a five-dimension
anti–de Sitter spacetime and the brane is a four-dimensi
Minkowski spacetime. Their first model~RS1! gives us a
geometrical solution to the gauge hierarchy problem. T
RS1 model consists of two branes, a positive and nega
tension brane. For the gauge hierarchy problem, it is s
posed that the visible brane where we are is the nega
tension one. The linealized theory has been carefully inv
tigated in@3,4# ~see Refs.@5–7# for the cosmological cases
See Ref.@8# for other issues.!. As a result, it turns out that th
gravity on the brane looks like scalar-tensor gravity. Ho
ever, we have no successful analysis on the nonlinear asp
of the gravity except for the second order perturbation@9#.
Recently there has been impressive progress@10–12# on this
issue. In Ref.@11#, the effective equation is derived at th
low energy scale.

In this paper, we rederive the effective theory for a tw
branes systems which was obtained by Kanno and Soda@11#
in the metric based approach. On the other hand, our
proach is based on the covariant curvature formal
@13,14#. As seen later, our derivation is much simpler a
more straightforward than the metric based approach.
covariant curvature formalism gives us a gravitational eq
tion on the branes. For RS2 models, which consist of a sin
brane, this approach is a powerful tool to look at the f
view of the brane world. Indeed, it was easy to see t
Newton’s gravity is recovered at low energy. The approa
however, is not regarded as so useful for RS1 models.
shall show this is not true. This is the main purpose of t
paper. For simplicity, we will not address the stabilizati
issue of two branes~radion stabilization problems! @15–17#.

The rest of this paper is organized as follows. In Sec.
we summarize the covariant curvature formalism. In Sec.
we formally solve the bulk perturbatively up to the 1st ord
The infinitesimal and dimensionless parameter is the ratio
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the bulk to brane curvature radii. After that we derive t
effective theory at the 1st order. The equation includes
nonlinear part of the induced gravity on the branes. In
Sec. IV, we summarize the present work.

II. COVARIANT CURVATURE FORMALISM

We employ the following metric form:1

ds25e2f(y,x)dy21qmn~y,x!dxmdxn. ~1!

In the above it is supposed that the positive and nega
tension branes are located aty50 andy5y0, respectively.
The proper distance between two branes is given byd0(x)
5*0

y0dyef(y,x). qmn(y,x) is the induced metric ofy
5constant hypersurfaces.

We follow the geometrical procedure~covariant curvature
formalism! developed in Refs.@13,14#. For simplicity, we do
not include the bulk fields except for the bulk consmologic
constant. From the Gauss-Codacci equations, first of all,
have two key equations

(4)Gn
m5

3

,2
dn

m1KKn
m2Ka

mKn
a2

1

2
dn

m~K22Kb
aKa

b!2En
m

~2!

and

DmKn
m2DmK50, ~3!

whereDm is the covariant derivative with respect toqmn . ,
is the bulk curvature radius.(4)Gmn is the four-dimensional
Einstein tensor with respect toqmn , Kmn is the extrinsic cur-
vature ofy5constant hypersurfaces defined by

Kmn5
1

2
£nqmn5“mnn1nmDnf, ~4!

1In Ref. @11# it is assumed thatf(y,x) does not depend ony.
However, as seen later, the assumption can be removed.
©2003 The American Physical Society22-1
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where n5e2f]y . Here note that am5nn
“nnm5

2Dmf(y,x). Emn is a part of the projected Weyl tenso
defined by

En
m5 (5)Cmanbnanb

52DmDnf2DmfDnf2£nKn
m2Ka

mKn
a1

1

,2
dn

m , ~5!

where (5)Cmnab is the five-dimensional Weyl tensor.
The junction conditions on the branes are

@Kn
m2dn

mK#y5052
k2

2
~2s1dn

m1T1 n
m ! ~6!

and

@Kn
m2dn

mK#y5y0
5

k2

2
~2s2dn

m1T2 n
m !. ~7!

T1 n
m andT2 n

m are the energy-momentum tensor localized
the positive and negative brane.s1 and s2 are the brane
tensions. If one substitutes the above conditions to Eq.~2!,
we might be able to derive the Einstein equation on
brane. Indeed, this was a successful procedure for a si
brane @13#. This is becauseEmn comes from just Kaluza-
Klein modes and vanishes at low energy@3,13#. For a two
branes system, on the other hand, we have to carefully ev
ateEmn due to the existence of the radion fields. Otherwi
we have a wrong prediction on the gravity on the branes.
we need the evolutional equation forEmn in the bulk. Even
for the low energy scale, we learned from the linealiz
theory @3# that Emn is not negligible.

To evaluateEmn in the bulk, we derive its evolutiona
equation. The result is

£nEab5DmBm(ab)1Kmn(4)Cmanb14K (a
m Eb)m2

3

2
KEab

2
1

2
qabKmnEmn12DmfBm(ab)12K̃a

mK̃mnK̃b
n

2
7

6
K̃mnK̃mnK̃ab2

1

2
qabK̃mnK̃r

mK̃rn, ~8!

where Bmna5qm
r qn

s(5)Crsabnb and K̃mn5Kmn2 1
4 qmnK.

Since the right-hand side containsBmna , Kmn , and
(4)Cmnab , we also need their evolutional equations. Afte
long calculation we arrive at

£n
(4)Rmnab12(4)Rmnr[aKb]

r 12D [mBuabun]12~DmD [af

1DmfD [af!Kb]n22~DnD [af2DnfD [af!Kb]m

22Bab[mDn]f22Bmn[aDb]f50, ~9!

£nBmna12D [mEn]a12D [mfEn]a2BmnbKa
b12Bab[mKn]

b

1~ (4)Rmnab2KmaKnb1KmbKna!Dbf50, ~10!

and
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e2f]yKn
m52DmDnf2DmfDnf2Ka

mKn
a1

1

,2
dn

m2En
m .

~11!

Equation~11! is just the rearrangement of Eq.~5!. The deri-
vation is basically the same as that in Ref.@13#.

The junction condition directly implies the boundary co
dition on the branes forKmn andBmna because of

Bmna52D [mKn]a . ~12!

III. DERIVATION OF LOW ENERGY EFFECTIVE
THEORY

We are now ready to derive the low energy theory fo
two branes system. To do so, as stressed in the prev
section, we must knowEmn and solve the equation forEmn in
the bulk. By low energy we mean that the typical scale of
curvature scaleL on the brane is much larger than the bu
curvature scale,, that is,L@,. The dimensionless param
eter ise5(,/L)2 which is tacitly entered into the equation
below. We expandKn

m andEn
m as

Kn
m5 (0)Kn

m1 (1)Kn
m1••• ~13!

and

En
m5 (1)En

m1•••. ~14!

A. 0th order

At the 0th order, the evolutional equation which we ha
to solve is only one forKmn :

e2f]y
(0)Kn

m5
1

,2
dn

m2 (0)Ka
m(0)Kn

a . ~15!

And Kmn satisfies the constraint

Dm
(0)Kn

m2Dn
(0)K50. ~16!

It is easy to see that the solution is

(0)Kn
m52

1

,
dn

m . ~17!

From the definition

1

2
e2f]y

(0)qmn52
1

,
(0)qmn , ~18!

the metric at the 0th order becomes

(0)qmn~y,x!5e22d(y,x)/,hmn~x!, ~19!

wherehmn(x) is a tensor field depending only on the coo
dinatex on the brane andd(y,x)5*0

yef(y8,x)dy8.
At this order the junction condition is
2-2
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@ (0)Kn
m2dn

m(0)K#y505
k2

2
s1dn

m ~20!

and

@ (0)Kn
m2dn

m(0)K#y5y0
52

k2

2
s2dn

m . ~21!

Thus the junction condition implies the relation between
bulk curvature radius, and the brane tensions1,2 as

1

,
5

1

6
k2s152

1

6
k2s2 . ~22!

This is just the fine tuning of Randall-Sundrum models@1,2#.

B. 1st order

At the 1st order, the Riemann tensor does appear in
basic equations. So we can expect that the Einstein fi
equation will be able to be described at this order. Indeed,
Gauss equation of Eq.~2! becomes

(4)Gn
m52

2

,
~ (1)Kn

m2dn
m(1)K !2 (1)En

m . ~23!

The first term in the right-hand side will be easily written
terms of the energy-momentum tensor on the branes u
the junction condition at this order. So the unknown tenso
(1)En

m .
The evolutional equations which we must solve are

e2f]y
(1)Emn5

2

,
(1)Emn ~24!

and

e2f]y
(1)Kn

m52~DmDnf1DmfDnf!1
2

,
(1)Kn

m2 (1)En
m .

~25!

Equation~24! is easily solved as

(1)Emn5e2d(y,x)/,emn~x! ~26!

or

(1)En
m5e4d(y,x)/,ên

m~x!, ~27!

whereên
m(x)5hmaean(x).

Substituting the expression of Eq.~27! into Eq. ~25!, we
can obtain the solution for(1)Kn

m easily:

(1)Kn
m~y,x!5e2d/,(1)Kn

m~0,x!2
,

2
~12e22d/,!(1)En

m~y,x!

2FDmDnd2
1

, S DmdDnd2
1

2
dn

m~Dd!2D G .
~28!
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e

e
ld
e

ng
is

For comparison, note thatemn cannot be determined by th
junction condition in the RS2 model@12,13#. To do so, we
need the boundary condition near the Cauchy horizon.

C. Low energy effective theory for two brane systems

At the 1st order the junction condition on the positive a
negative tension brane becomes

(1)Kn
m~0,x!2dn

m(1)K~0,x!52
k2

2
T1 n

m ~29!

and

(1)Kn
m~y0 ,x!2dn

m(1)K~y0 ,x!5
k2

2
T2 n

m . ~30!

Using the above Eq.~30!, the Gauss equation on the negati
tension brane becomes

(4)Gn
m52

2

,
@ (1)Kn

m~y0 ,x!2dn
m(1)K~y0 ,x!#2 (1)En

m~y0 ,x!

52
k2

,
T2 n

m 2 (1)En
m~y0 ,x!. ~31!

Using the expression of Eq.~28!, the junction condition
on the negative tension brane is written as

(1)Kn
m~y0 ,x!2dn

m(1)K~y0 ,x!

52
k2

2
e2d0 /,T1 n

m 2~DmDnd02DmDnd0!

1
1

, S Dmd0Dnd01
1

2
dn

m~Dd0!2D
2

,

2
~12e22d0 /,!(1)En

m~d0 ,x!

5
k2

2
T2 n

m . ~32!

On the right-hand side of the first line, we used the solut
of Eq. ~28!. The second line is just the junction conditio
From Eq.~32!, then, the tensoremn~and then(1)Emn) is com-
pletely fixed as

,

2
~12e22d0 /,!e4d0 /,ên

m~x!

52
k2

2
~e2d0 /,T1 n

m 1T2 n
m !2~DmDnd02dn

mD2d0!

1
1

, S Dmd0Dnd01
1

2
dn

m~Dd0!2D . ~33!

The trace of Eq.~33! gives the equation ford0 becauseen
m is

traceless. In general the radion field is massive. Substitu
2-3
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Eq. ~33! into the Gauss equation at the 1st order, we c
obtain the effective equation on the branes. On the nega
tension brane, we have

(4)Gn
m5

k2

,

1

F
T2 n

m 1
k2

,

~11F!2

F
T1 n

m 1
1

F
~DmDnF

2dn
mD2F!1

v~F!

F2 S DmFDnF2
1

2
dn

m~DF!2D ,

~34!

whereF5e2d0 /,21 andv(F)52 3
2 F/(11F). As should

be so, this is exactly the same result obtained by Kanno
Soda@11#. We also derive the effective equation on the po
tive tension brane easily:

(4)Gn
m5

k2

,

1

C
T1 n

m 1
k2

,

~12C!2

C
T2 n

m 1
1

C
~D̂mD̂nC

2dn
mD̂2C!1

v~C!

C2 S D̂mCD̂nC2
1

2
dn

m~D̂C!2D ,

~35!

whereC512e22d0 /,, v(C)5 3
2 C/(12C), and D̂ is the

covariant derivative with respect to the induced metrichmn

on the positive tension brane.

IV. SUMMARY

In this paper, we derived the gravitational equation on
branes for a two branes system at the low energy using
covariant curvature formalism@13# and low energy expan
sion scheme@11,12#. The theory obtained here is presumab
applicable to the cosmology and nonlinear gravity at l
energy scales. What we have done here is the evaluatio
. D

e

S.
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Emn at low energy. In Ref.@13#, we thought that the antigrav
ity appears on the negative tension brane supposingEmn is
negligible. However, this is not correct andEmn is not neg-
ligible even at low energy.

Here we should comment on the difference between
study in Ref. @11# and the present one. In Ref.@11# Emn

appears as the ‘‘constant of integration.’’ Thus it is difficu
to proceed with the discussion while keeping the physi
meaning. This is just because of the metric based appro
On the other hand,Emn explicitly enters into the basic equa
tions in the covariant curvature formalism and its physi
meaning is manifest. Yet, the evolutional equation forEmn is
simple at the low energy limit.

For simplicity, we focused on the two branes system wi
out the radion stabilization. If one is serious about the ga
hierarchy problem, we must assume that we are living on
negative tension brane. In this case, the gravity on the ne
tive tension brane is scalar-tensor type and the scalar
pling is not permitted from the experimental point of vie
@3#. So we should reconstruct our formalism in a two bran
system with the radion stabilization mechanism. This issu
left for future study.

We are also interested in the higher order effects. We
expect that the effective theory with higher order correctio
is higher-derivative type due to the nonlocal feature of
brane world@11,12,18#.
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