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Low energy effective theory for a two branes system: Covariant curvature formulation
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We derive the low energy effective theory for a two branes system solving the bulk geometry formally in the
covariant curvature formalism developed by Shiromizu, Maeda, and Sasaki. As expected, the effective theory
looks like an Einstein-scalar system. Using this theory we can discuss the cosmology and nonlinear gravity at
low energy scales.
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[. INTRODUCTION the bulk to brane curvature radii. After that we derive the
effective theory at the 1st order. The equation includes the

The recent progress in superstring theory provides us witfionlinear part of the induced gravity on the branes. In the
a new picture of the universe, the so-called brane worldSec. IV, we summarize the present work.
where our universe is like a domain wall in higher dimen-
sional spacetime. The matter is confined on the three-branes. Il. COVARIANT CURVATURE FORMALISM
The simplest model was proposed by Randall and Sundrum
[1,2]. In their model the bulk spacetime is a five-dimensional
anti—de Sitter spacetime and the brane is a four-dimensional
Minkowski spacetime. Their first mod€RS1) gives us a

geometrical solution to the gauge hierarchy problem. The

RS1 model consists of two branes, a positive and negativil! the above it is supposed that the positive and negative

tension brane. For the gauge hierarchy problem, it is suplension branes are locatedyat:0 andy=y,, respectively.

posed that the visible brane where we are is the negativéN€ proper distance between two branes is giveruiyx)
tension one. The linealized theory has been carefully inves=Jy°dye’ . q,,(y,x) is the induced metric ofy
tigated in[3,4] (see Refs[5-7] for the cosmological cases. = constant hypersurfaces.
See Ref[8] for other issue$. As a result, it turns out that the We follow the geometrical procedufeovariant curvature
gravity on the brane looks like scalar-tensor gravity. How-formalism developed in Refd.13,14. For simplicity, we do
ever, we have no successful analysis on the nonlinear aspectst include the bulk fields except for the bulk consmological
of the gravity except for the second order perturbafi®h  constant. From the Gauss-Codacci equations, first of all, we
Recently there has been impressive progf#6s-12 on this  have two key equations
issue. In Ref[11], the effective equation is derived at the
low energy scale. 3 1
In this paper, we rederive the effective theory for a two ~ G4=— oh+KKL—KAK; — §5§(K2—K§K§)—E’;
branes systems which was obtained by Kanno and §ida ¢
in the metric based approach. On the other hand, our ap- @
proach is based on the covariant curvature formalism
[13,14). As seen later, our derivation is much simpler andand
more straightforward than the metric based approach. The
covariant curvature formalism gives us a gravitational equa-
tion on the branes. For RS2 models, which consist of a single . _ o .
brane, this approach is a powerful tool to look at the fullWhereD,, is the covariant danvaﬂv_e with respectdg, . ¢
view of the brane world. Indeed, it was easy to see thalS the bulk curvature radius¥G,,, is the four-dimensional
Newton’s gravity is recovered at low energy. The approachEinstein tensor with respect ty,, , K, is the extrinsic cur-
however, is not regarded as so useful for RS1 models. W¥ature ofy=constant hypersurfaces defined by
shall show this is not true. This is the main purpose of this 1
paper. For simplicity, we will not address the stabilization _ _
issue of two brane&adion stabilization problem$15—17. K“V_§£”q“V_V“nV+n“DV¢’ @
The rest of this paper is organized as follows. In Sec. Il,
we summarize the covariant curvature formalism. In Sec. I,
we formally solve the bulk perturbatively up to the 1st order. lIin Ref.[11] it is assumed that(y,x) does not depend op.
The infinitesimal and dimensionless parameter is the ratio oflowever, as seen later, the assumption can be removed.

We employ the following metric form:

ds?=e?*¥dy?+q,,,(y,x)dx“dx". (1)

D,K“-D,K=0, 3)
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where n=e~ ¢’&y. Here note that a#=n"V n#= 1
—D*¢(y,x). E,, is a part of the projected Weyl tensor e*‘f’&yKﬁz—D“DV¢—D“¢DV¢—K§K§+ —25’5—E‘;.
defined by ¢
11
EL=0)C,,,znn?
Equation(1l) is just the rearrangement of Ecp). The deri-
1 vation is basically the same as that in R€f3].
=—D*D,¢p—D*¢D,¢p—E,K)—KLKT+ pyf, (5 The junction condition directly implies the boundary con-
dition on the branes foK ,, andB,,,, because of

where (?)CMV_QB is the five-dimensional Weyl tensor. B —aD. K 12
The junction conditions on the branes are wva [w™v]a-
2
K Ill. DERIVATION OF LOW ENERGY EFFECTIVE
K= 88K]y—o=— 5 (-0 84+ TH
[ v v ]y—O 2 ( 010, 1 V) (6) THEORY
and We are now ready to derive the low energy theory for a

two branes system. To do so, as stressed in the previous

section, we must knoi& ,, and solve the equation f&,, in

the bulk. By low energy we mean that the typical scale of the

curvature scalé on the brane is much larger than the bulk

T4, andT4 , are the energy-momentum tensor localized oncurvature scalé€, that is,L>¢. The dimensionless param-

the positive and negative brane; and o, are the brane eter ise=(£/L)? which is tacitly entered into the equations

tensions. If one substitutes the above conditions to(By. below. We expanK’ andE% as

we might be able to derive the Einstein equation on the

brane. Indeed, this was a successful procedure for a single KH=OKE+DKHy .. (13

brane[13]. This is becausd,, comes from just Kaluza-

Klein modes and vanishes at low enefd13]. For a two and

branes system, on the other hand, we have to carefully evalu-

ateE,,, due to the existence of the radion fields. Otherwise, Ef=ME;t. .. (14

we have a wrong prediction on the gravity on the branes. So

we need the evolutional equation far,, in the bulk. Even

for the low energy scale, we learned from the linealized

theory[3] thatE,,, is not negligible. At theIOth order, the evolutional equation which we have
To evaluateE,, in the bulk, we derive its evolutional t0 Solve is only one foK

equation. The result is

2
K
[Kl— 84Ky = 5 (— 0854 TE ). (D)

A. Oth order

3 e ¢(9§°)K“:i st —ORHOKe, (15)
o w4 2 14 €2 14 a 14

£0E 5= D#B (ap T K*'C 5+ 4KEE g, 5 KEap

And K ,, satisfies the constraint

1 ~ o~ o~
— EanK’“’EM-I— 2D B (ap) T 2KLK K

D{OK%-D,OK=0. (16)
I K “vK Loz KHK Py It is easy to see that the solution is
- ngK Kap— EanKprK , (8) y
~ 1
where B,,,=0q7)C,,.n* and K,,=K,,—10,,K. OKH=— 7o (17)
Since the right-hand side containB,,,, K,,, and
Cap, we also need their evolutional equations. After ar o m the definition
long calculation we arrive at
1 1
4 4 -
E8 R usap 2Ry fy + 2D (,Bjapp +2(D Db se aPa,,=— 7%, (18)
+DM¢D[a¢)KB]V_2(DVD[a¢_DV¢D[a¢))KB]p,

the metric at the Oth order becomes

_ZBaB[MDv]QS_ZB/u/[aDB](ﬁ:O! (9)
£,Buvat2D[,E 10t 2D, BE 1, B, sKE+ 2B g K

(10) whereh,,(x) is a tensor field depending only on the coor-

dinatex on the brane and(y,x)=[}e? ¥dy’.
and At this order the junction condition is

©q,,,(y,x)=e 2000 (x), (19

4 _
+(R,,0p— KoK, s+ K, 5K, ,)DP$=0,
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o o K2 For comparison, note tha,, cannot be determined by the
[OKE— 5 )K]y=02?015¢f (200 junction condition in the RS2 mod¢l2,13. To do so, we
need the boundary condition near the Cauchy horizon.
and
) C. Low energy effective theory for two brane systems
[(O)K/:_ 55(0)K]y:y =— K_gzgllf_ (21) At the 1st order the junction condition on the positive and
0 2 negative tension brane becomes
Thus the junction condition implies the relation between the P
bulk curvature radiug and the brane tensiom, , as (MKL(0x) — 84K (0x) =~ 511, (29)
1 1 1
Tl 2y = T2 and
¢ 6 K 01 6 K O»p. (22)
2
This is just the fine tuning of Randall-Sundrum moddlg]. WK A(yq,x)— DK (yg,X) =K7T’2L L. (30
B. 1st order

Using the above Ed30), the Gauss equation on the negative
At the 1st order, the Riemann tensor does appear in thtension brane becomes

basic equations. So we can expect that the Einstein field

equation will be able to be described at this order. Indeed, the

2
4 — 1 1 1
Gauss equation of Eq2) becomes WGy =— ?[( KA (Yo%) — 84K (yo,%) ]~ PEL(Yo,%)

2 2
WGy = — Z(WKy = oy WK) - Wy, (23 =- %T*; ,~ MEL(Y0.%). (31)

The first term in the right-hand side will be easily written in  ysing the expression of E¢28), the junction condition
terms of the energy-momentum tensor on the branes usingh the negative tension brane is written as

the junction condition at this order. So the unknown tensor is
VE; . KA (Yo%) = 3K (yo.X)

The evolutional equations which we must solve are )

K
=~ 5?1} —(D*D,do—D*D,dy)

_ 2 2
e ‘f’ay(l)EW=z(1)EW (24)
! #doD,d Lo do)?
and + 7| D*#doD,do+ 5 5,(Ddyo)
2 ¢ —2dg /(1)
e %9,(VK#=—(D*D,¢p+ D $D,¢)+ Z(l)K’j—(l)E’; . — 5 (1= ) E(do,X)
(25)
K2
Equation(24) is easily solved as = ?T‘Z‘ - (32
Mg, =e?00/te (x 26
i (%) (26) On the right-hand side of the first line, we used the solution
or of Eq. (28). The second line is just the junction condition.
From Eq.(32), then, the tensce,,,(and thenE ,,) is com-
(1)E/::e4d(y,x)/€é/]f(x), (27) pletely fixed as
whereé’;(x):h““eay(x). f(l_e*Zdolf)e‘ldo/fé/;(x)
Substituting the expression of E7) into Eq. (25), we 2
can obtain the solution fofYK# easily: 2

- %(eZdOMT}f V+T/éL v) (DMDde_ &:/LDZdO)
WKLy x) =2 DKL (0x) ~ gu—e*d")(”Eﬁ(y,x) L .
+ 7| D#doD ,do + 55‘;(Dd0)2 . (33

1 1
—[D“Dvd— Z( D*dD,d— E5*;(Do|)2)

The trace of Eq(33) gives the equation fod, because’, is
(28  traceless. In general the radion field is massive. Substituting
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Eg. (33 into the Gauss equation at the 1st order, we carg,, at low energy. In Refl13], we thought that the antigrav-
obtain the effective equation on the branes. On the negativity appears on the negative tension brane suppoBipgis

tension brane, we have

k> 1 k> (1+d)? 1
(4)G’j=7 gt g TW.tg(DDe
o(P)

1
_ SH2 7 o R~ 2
SDP) += -=| DD, b= 5 5(D)?),

(34)
where®=e?%/ —1 andw(P®)=—3d/(1+P). As should

be so, this is exactly the same result obtained by Kanno an
Soda[11]. We also derive the effective equation on the posi-

tive tension brane easily:

wgpe L (AT L s g
v_e 7 1v ¢ R 2v \I,( v
5 o(V) | . ~ 1 Ao
— 64D + DA¥YD, ¥ — - 465(DW)-|,
P2 2

(35
where W =1—e 2%/¢ (¥)=3¥/(1-¥), andD is the

covariant derivative with respect to the induced melrjg,
on the positive tension brane.

IV. SUMMARY

negligible. However, this is not correct afkg,, is not neg-
ligible even at low energy.

Here we should comment on the difference between the
study in Ref.[11] and the present one. In Rdfll] E,,
appears as the “constant of integration.” Thus it is difficult
to proceed with the discussion while keeping the physical
meaning. This is just because of the metric based approach.
On the other handg,, explicitly enters into the basic equa-
tions in the covariant curvature formalism and its physical
meaning is manifest. Yet, the evolutional equationEgy, is
g’mple at the low energy limit.

For simplicity, we focused on the two branes system with-
out the radion stabilization. If one is serious about the gauge
hierarchy problem, we must assume that we are living on the
negative tension brane. In this case, the gravity on the nega-
tive tension brane is scalar-tensor type and the scalar cou-
pling is not permitted from the experimental point of view
[3]. So we should reconstruct our formalism in a two branes
system with the radion stabilization mechanism. This issue is
left for future study.

We are also interested in the higher order effects. We can
expect that the effective theory with higher order corrections
is higher-derivative type due to the nonlocal feature of the
brane world[11,12,18.
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