PHYSICAL REVIEW D 67, 084020(2003

Quasinormal modes of the near extremal Schwarzschildde Sitter black hole
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We present an exact expression for the quasinormal modes of scalar, electromagnetic, and gravitational
perturbations of a near extremal Schwarzschild—de Sitter black hole and we show that is why a previous
approximation holds exactly in this near extremal regime. In particular, our results give the asymptotic behav-
ior of the quasinormal frequencies for highly damped modes, which has recently attracted much attention due
to the proposed identification of its real part with the Barbero-Immirzi parameter.
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[. INTRODUCTION Schwarzschild spacetim@vhere some of the lowest lying
scalar quasinormal frequencies have already been computed
The quasinormal modes of spacetimes containing blackl1]), or Schwarzschild—de Sitter or anti—de Sitter space-
holes have proved to be extremely important in several agimes. In this work we shall take a step further in carrying
trophysical aspects; for instance, they allow us to ascertaifut this program by computing exactly the quasinormal fre-
whether or not the spacetime is stable against deviationguencies of the near extremal Schwarzschild—de Sitter black
from equilibrium, and they give us invaluable information on hole, which is the spacetime for which the black-hole hori-
what kind of signal one expects if one perturbs the spacezon and the cosmological horizon are close to each other, in
time. In fact, the quasinormal modes and their associated manner to be defined latter. For this spacetime, we find that
frequencies are a signature of the spacetime, in that theij/is possible to solve the field equations exactly in terms of
depend only on the conserved charges, such as the mass dnpergeometric functions, and therefore an exact analytical
electrical charge, making it possible to identify the spacetimexpression for the quasinormal frequencies of scalar, electro-
just by seeking its quasinormal frequencies. This has motimagnetic and gravitational perturbations is also possible. In
vated a wide effort to find the quasinormal frequencies, andparticular, this will give us the quasinormal frequencies with
several numerical and analytical techniques have been dé@ very large imaginary part. We demonstrate why an ap-
vised[1]. proach by Moss and Normd®] based on fitting the poten-
It has been also realized that the quasinormal modes aital to the Pshl-Teller potential works well in the
important in the context of the anti—de SitigkdS) confor- ~ Schwarzschild—de Sitter spacetime.
mal field theory(CFT) conjecturg 2,3]. According to it, the
black hole corresponds to a thermal state in the conformal
field theory, and the decay of the test field in the black-hole
spacetime corresponds to the decay of the perturbed state in Our notation will follow that of{ 12] which we have found
the CFT. The dynamical timescale for the return to thermatonvenient. The metric of the Schwarzschild—de Siig=9
equilibrium is very hard to compute directly, but can be donespacetime is given by
relatively easily using the AdS/CFT correspondence. This
ha_s motivat_ed a sgarch for the quasinormal modes in asymp- d?=— fdt2+f~Ldr2+r2(d 6%+ sif 6 db?), 1)
totically anti—de Sitter black hold8-6].
Very recently, the quasinormal modes have acquired a dif-
ferent importance. Following an observation by Hag, it ~ Where
has been proposdd] that the Barbero-Immirzi parameter
[9], a factor introduced by hand in order that loop quantum oM r2
gravity reproduces correctly the black-hole entropy, is equal f=1- T 2 (2
to the real part of the quasinormal frequencies with a large .
imaginary part. The identification came from what first
seemed to be a numerical coincidence, but which has beamith M denoting the black-hole mass amd is given in
proved to be exact for Schwarzschild black holes by Motlterms of the cosmological constart by a?=3/A. The
[10], assuming the gauge group of the theory to34(3). spacetime possesses two horizons: the black-hole horizon is
It is now important to see whether the agreement worksat r =r, and the cosmological horizon is atr., where
only for Schwarzschild black holes, or if it continues to ber >r,. The functionf has zeros at,, r., andry=—(r,
true in different spacetimes, for example, higher dimensionak-r ). In terms of these quantitiescan be expressed as

II. EQUATIONS
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It is useful to regard, andr. as the two fundamental pa-

r Fe—r
rameters of the SdS spacetime, and to expMsmda? as ro~—2ri; a?~3rz; M~§b; Kp~ — Zb. (12)
functions of these variables. The appropriate relations are 2ry
al= rﬁ“bfcﬂ% (4) Furthermore, and this is the key point, sincis constrained
to vary betweemn,, andr., we getr —ry~r,—rqo~3rqy and
and thus
2Ma’=rro(rp+re). (5) r—rp)(re—r)
b'cllb c f~( b ( c . (13)

2
We also introduce the surface gravity associated with the b
black-hole horizonr=r,, as defined by the relatiok,

=%df/dfr=rb- Explicitly, we have In this limit, one can invert the relation, (r) of Eq. (8) to

get
(re=rp)(rp=—ro) .
Kb:%- (6) o rce2 br*+rb (14)
2a°ry, —]_-|-e2"br* .
After a Fourier decomposition in frequencies and a multipole
expansion, the scalar, electromagnetic, and gravitational pe§-
turbations all obey a wave equation of the fof#6]

ubstituting this in the expressi@m3) for f, we find

(rc_rb)2

2 :4 > _2.
TN w2 V(r)]d(wr) =0, @ "poostlxry)

(15

2
I As such, and taking into account the functional form of the

potentials(9)—(11) we see that for the near extremal SdS

where the tortoise coordinate is given by black hole, the wave equatidii) is of the form

= 1 @® Phlwr v
. #+ w———2 | (w,r)=0, (16)
_ _ _ ars coshkpr, )2
and the potential/ depends on the kind of field under con-
sideration. Explicitly, for scalar perturbations with
1+ N 2M 2 © Kkl (1+1), scalar and electromagnetic
s )
r? r’ a v perturbations,
while for electromagnetic perturbations ® | ki(1+2)(1-1), gravitational
1+ 1) perturbations.
1
o=t =5 (10 a7

The potential in Eq(16) is the well known Pshl-Teller po-

The gravitational perturbations decompose into two Béls tential[13]. The solutions_ to Eq(16) were studied and_they
the odd and the even parity one. We find however that fof® of the hypergeometric tyriéor details, see Ferrari and
this spacetime, they both yield the same quasinormal freMashhoon[14]). It should be solved under appropriate
quencies, so it is enough to consider one of them, the odRoundary conditions

arity ones say, for which the potential[i$ i
parity Y, wni p | [] ¢~e Iwr*, Fe——; (18)

I(1+1)  6M

grav— > 3 (11 ¢~eiwr*, Iy —. (19
r r

These boundary conditions impose a nontrivial condition on
In all cases, we denote Bythe angular quantum number that , [14], and those that satisfy both simultaneously are called
gives the multipolarity of the field. quasinormal frequencies. For théghbTeller potential, one
can show 14] that they are given by
The near extremal SdS black hole

Let us now specialize to the near extremal SdS black hole, (1 /Mo 1
which is defined as the spacetime, for which the cosmologi- b 2 ki 4 ' R
cal horizonr is very close(in ther coordinate to the black- (20)
hole horizonr,, i.e., (r.—rp)/r,<<1. For this spacetime one
can make the following approximations Thus, with Eq.(17) one has
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1 1 and we obtain from Eq.22)
—=—|n+z]i+ +1)—— = .
p, n 5 i I(1+1) 7 n=0,1, (21
for scalar and electromagnetic perturbations; and %;3.122 499-j n+% ) (26)
b
L, A/ (I+2)(1—-1 L 0,1
K—b— n+§|+ (1+2)( ) Z, n=0,1, ...

So this remarkable agreement allows us to be sure that Eqs.
(21), (22) are indeed correct.

for gravitational perturbations. Our analysis shows that Egs.
(21), (22) are correct up to terms of the ord®(r.—ry) or
higher. Moss and Normafs] have studied the quasinormal IIl. CONCLUSIONS

frequencies in the SdS geometry numerically and also ana- e have found an analytical expression for the quasinor-
lytically by fitting the potential to a Pshl-Teller potential. 131 modes and frequencies of a nearly extreme

Their analytical resultssee their Figs. 1 and)@vere in €x-  gchwarzschild—de Sitter black hole. These expressions, Egs.
cellent agreement with their numerical results, and thi 21), (22), are correct up to terms of the ord®(r,—r) or
1] 3 C

agreement was even more remarkable for near extrem@figher for alln. This means that we can be confident that, for
black holes and for high values of the angular quantum numpigh overtones, i.e., large our expression is still valid. One
berl. We can now understand why for near extremal black.a see that the real part of the quasinormal frequency does
holes, the true potential is indeed given by thestereller depend on the integer labeling the mode. Therefore,

potential. Furthermore, for near extremal SdS black h°|e?requencies with a large imaginary part still have a real part

and for highl, our formula(22) is approximately equal to . I .
formula (19) of Moss and Normafi5]. With their analytical ~91ven by VI(I+1)—z for scalar and electromagnetic pertur-

method of fitting the potential one can never be sure if thebations and by/(1+2)(I—1)—  for gravitational perturba-
results obtained will continue to be good as one increases th#ns. Can one explain a highly damped quasinormal fre-
mode numben. However, we have now proved that if one is quency with anl-dependent real part in light of the recent
in the near extremal SdS black hole, thesRleTeller is the  conjectureg8] relating it to the Barbero-Immirzi parameter?
true potential, and so Eq&1), (22) are exact. For example, We think it is too early to answer this, and much more work
Moss and Norman obtain numerically, for gravitational per-is still necessary, specially in higher dimensional spacetimes,
turbations withl =2 of nearly extreme SdS black holes, the and on anti—de Sitter spacetimiglb|, where the AdS/CFT
result conjecture may have a word to say about this.

(22
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