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Quasinormal modes of the near extremal Schwarzschild–de Sitter black hole
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We present an exact expression for the quasinormal modes of scalar, electromagnetic, and gravitational
perturbations of a near extremal Schwarzschild–de Sitter black hole and we show that is why a previous
approximation holds exactly in this near extremal regime. In particular, our results give the asymptotic behav-
ior of the quasinormal frequencies for highly damped modes, which has recently attracted much attention due
to the proposed identification of its real part with the Barbero-Immirzi parameter.
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I. INTRODUCTION

The quasinormal modes of spacetimes containing bl
holes have proved to be extremely important in several
trophysical aspects; for instance, they allow us to ascer
whether or not the spacetime is stable against deviat
from equilibrium, and they give us invaluable information o
what kind of signal one expects if one perturbs the spa
time. In fact, the quasinormal modes and their associa
frequencies are a signature of the spacetime, in that
depend only on the conserved charges, such as the mas
electrical charge, making it possible to identify the spaceti
just by seeking its quasinormal frequencies. This has m
vated a wide effort to find the quasinormal frequencies, a
several numerical and analytical techniques have been
vised @1#.

It has been also realized that the quasinormal modes
important in the context of the anti–de Sitter~AdS! confor-
mal field theory~CFT! conjecture@2,3#. According to it, the
black hole corresponds to a thermal state in the confor
field theory, and the decay of the test field in the black-h
spacetime corresponds to the decay of the perturbed sta
the CFT. The dynamical timescale for the return to therm
equilibrium is very hard to compute directly, but can be do
relatively easily using the AdS/CFT correspondence. T
has motivated a search for the quasinormal modes in asy
totically anti–de Sitter black holes@3–6#.

Very recently, the quasinormal modes have acquired a
ferent importance. Following an observation by Hod@7#, it
has been proposed@8# that the Barbero-Immirzi paramete
@9#, a factor introduced by hand in order that loop quant
gravity reproduces correctly the black-hole entropy, is eq
to the real part of the quasinormal frequencies with a la
imaginary part. The identification came from what fir
seemed to be a numerical coincidence, but which has b
proved to be exact for Schwarzschild black holes by M
@10#, assuming the gauge group of the theory to beSO(3).

It is now important to see whether the agreement wo
only for Schwarzschild black holes, or if it continues to
true in different spacetimes, for example, higher dimensio
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Schwarzschild spacetime~where some of the lowest lying
scalar quasinormal frequencies have already been comp
@11#!, or Schwarzschild–de Sitter or anti–de Sitter spa
times. In this work we shall take a step further in carryi
out this program by computing exactly the quasinormal f
quencies of the near extremal Schwarzschild–de Sitter b
hole, which is the spacetime for which the black-hole ho
zon and the cosmological horizon are close to each othe
a manner to be defined latter. For this spacetime, we find
it is possible to solve the field equations exactly in terms
hypergeometric functions, and therefore an exact analyt
expression for the quasinormal frequencies of scalar, elec
magnetic and gravitational perturbations is also possible
particular, this will give us the quasinormal frequencies w
a very large imaginary part. We demonstrate why an
proach by Moss and Norman@5# based on fitting the poten
tial to the Po¨shl-Teller potential works well in the
Schwarzschild–de Sitter spacetime.

II. EQUATIONS

Our notation will follow that of@12# which we have found
convenient. The metric of the Schwarzschild–de Sitter~SdS!
spacetime is given by

ds252 f dt21 f 21dr21r 2~du21sin2u df2!, ~1!

where

f 512
2M

r
2

r 2

a2
, ~2!

with M denoting the black-hole mass anda2 is given in
terms of the cosmological constantL by a253/L. The
spacetime possesses two horizons: the black-hole horizo
at r 5r b and the cosmological horizon is atr 5r c , where
r c.r b . The functionf has zeros atr b , r c , and r 052(r b
1r c). In terms of these quantities,f can be expressed as

f 5
1

a2r
~r 2r b!~r c2r !~r 2r 0!. ~3!
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It is useful to regardr b and r c as the two fundamental pa
rameters of the SdS spacetime, and to expressM anda2 as
functions of these variables. The appropriate relations ar

a25r b
21r br c1r c

2 ~4!

and

2Ma25r br c~r b1r c!. ~5!

We also introduce the surface gravitykb associated with the
black-hole horizonr 5r b , as defined by the relationkb
5 1

2 d f /drr 5r b
. Explicitly, we have

kb5
~r c2r b!~r b2r 0!

2a2r b

. ~6!

After a Fourier decomposition in frequencies and a multip
expansion, the scalar, electromagnetic, and gravitational
turbations all obey a wave equation of the form@4,6#

]2f~v,r !

]r
*
2

1@v22V~r !#f~v,r !50, ~7!

where the tortoise coordinate is given by

r * [E f 21 dr, ~8!

and the potentialV depends on the kind of field under co
sideration. Explicitly, for scalar perturbations

Vs5 f F l ~ l 11!

r 2
1

2M

r 3
2

2

a2G , ~9!

while for electromagnetic perturbations

Vel5 f F l ~ l 11!

r 2 G . ~10!

The gravitational perturbations decompose into two sets@4#,
the odd and the even parity one. We find however that
this spacetime, they both yield the same quasinormal
quencies, so it is enough to consider one of them, the
parity ones say, for which the potential is@4#

Vgrav5 f F l ~ l 11!

r 2
2

6M

r 3 G . ~11!

In all cases, we denote byl the angular quantum number th
gives the multipolarity of the field.

The near extremal SdS black hole

Let us now specialize to the near extremal SdS black h
which is defined as the spacetime, for which the cosmolo
cal horizonr c is very close~in the r coordinate! to the black-
hole horizonr b , i.e., (r c2r b)/r b!1. For this spacetime on
can make the following approximations
08402
e
r-

r
e-
d
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i-

r 0;22r b
2 ; a2;3r b

2 ; M;
r b

3
; kb;

r c2r b

2r b
2

. ~12!

Furthermore, and this is the key point, sincer is constrained
to vary betweenr b and r c , we getr 2r 0;r b2r 0;3r 0 and
thus

f ;
~r 2r b!~r c2r !

r b
2

. ~13!

In this limit, one can invert the relationr * (r ) of Eq. ~8! to
get

r 5
r ce

2kbr
* 1r b

11e2kbr
*

. ~14!

Substituting this in the expression~13! for f, we find

f 5
~r c2r b!2

4r b
2cosh~kbr * !2

. ~15!

As such, and taking into account the functional form of t
potentials~9!–~11! we see that for the near extremal Sd
black hole, the wave equation~7! is of the form

]2f~v,r !

]r
*
2

1Fv22
V0

cosh~kbr * !2Gf~v,r !50, ~16!

with

V055
kb

2l ~ l 11!, scalar and electromagnetic

perturbations,

kb
2~ l 12!~ l 21!, gravitational

perturbations.
~17!

The potential in Eq.~16! is the well known Po¨shl-Teller po-
tential @13#. The solutions to Eq.~16! were studied and they
are of the hypergeometric type~for details, see Ferrari and
Mashhoon @14#!. It should be solved under appropria
boundary conditions

f;e2 ivr
* , r * →2`; ~18!

f;eivr
* , r * →`. ~19!

These boundary conditions impose a nontrivial condition
v @14#, and those that satisfy both simultaneously are ca
quasinormal frequencies. For the Po¨shl-Teller potential, one
can show@14# that they are given by

v5kbF2S n1
1

2D i 1AV0

kb
2

2
1

4G , n50,1, . . . .

~20!

Thus, with Eq.~17! one has
0-2
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v

kb
52S n1

1

2D i 1Al ~ l 11!2
1

4
, n50,1, . . . ~21!

for scalar and electromagnetic perturbations; and

v

kb
52S n1

1

2D i 1A~ l 12!~ l 21!2
1

4
, n50,1, . . .

~22!

for gravitational perturbations. Our analysis shows that E
~21!, ~22! are correct up to terms of the orderO(r c2r b) or
higher. Moss and Norman@5# have studied the quasinorm
frequencies in the SdS geometry numerically and also a
lytically by fitting the potential to a Po¨shl-Teller potential.
Their analytical results~see their Figs. 1 and 2! were in ex-
cellent agreement with their numerical results, and t
agreement was even more remarkable for near extre
black holes and for high values of the angular quantum nu
ber l. We can now understand why for near extremal bla
holes, the true potential is indeed given by the Po¨shl-Teller
potential. Furthermore, for near extremal SdS black ho
and for high l, our formula ~22! is approximately equal to
formula ~19! of Moss and Norman@5#. With their analytical
method of fitting the potential one can never be sure if
results obtained will continue to be good as one increases
mode numbern. However, we have now proved that if one
in the near extremal SdS black hole, the Po¨shl-Teller is the
true potential, and so Eqs.~21!, ~22! are exact. For example
Moss and Norman obtain numerically, for gravitational p
turbations withl 52 of nearly extreme SdS black holes, th
result

vnum

kb
51.936 482 i S n1

1

2D , ~23!

and we obtain from Eq.~22!

v

kb
51.936 4922 i S n1

1

2D . ~24!

For l 53, Moss and Norman@5# obtain

vnum

kb
53.122 492 i S n1

1

2D , ~25!
.
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v

kb
53.122 4992 i S n1

1

2D . ~26!

So this remarkable agreement allows us to be sure that
~21!, ~22! are indeed correct.

III. CONCLUSIONS

We have found an analytical expression for the quasin
mal modes and frequencies of a nearly extre
Schwarzschild–de Sitter black hole. These expressions,
~21!, ~22!, are correct up to terms of the orderO(r c2r b) or
higher for alln. This means that we can be confident that,
high overtones, i.e., largen, our expression is still valid. One
can see that the real part of the quasinormal frequency d
not depend on the integern labeling the mode. Therefore
frequencies with a large imaginary part still have a real p

given byAl ( l 11)2 1
4 for scalar and electromagnetic pertu

bations and byA( l 12)(l 21)2 1
4 for gravitational perturba-

tions. Can one explain a highly damped quasinormal f
quency with anl-dependent real part in light of the rece
conjectures@8# relating it to the Barbero-Immirzi parameter
We think it is too early to answer this, and much more wo
is still necessary, specially in higher dimensional spacetim
and on anti–de Sitter spacetimes@15#, where the AdS/CFT
conjecture may have a word to say about this.
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