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Energy in generic higher curvature gravity theories
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We define and compute the energy of higher curvature gravity theories in arbitrary dimensions. Generically,
these theories admit constant curvature va@ven in the absence of an explicit cosmological congtamid
asymptotically constant curvature solutions with nontrivial energy properties. For concreteness, we study
quadratic curvature models in detail. Among them, the one whose action is the square of the traceless Ricci
tensor always has zero energy, unlike conforiivsieyl) gravity. We also study the string-inspired Einstein-
Gauss-Bonnet model and show that both its flat and anti—de Sitter vacua are stable.
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I. INTRODUCTION gravity model considergds rather simple and straightfor-
ward, although its applications to specific gravity models re-

Recently, de SittefdS) and anti—de SittefAdS) spaces quire care, in choosing correct vacua, with global symme-
have received renewed interest both in string thdéwglS  tries and in converting “volume” to “surface” integrals.
-conformal field theory(CFT) correspondendeand in cos-  Historically, the first application of this procedur,e was in
mology where a positive cosmological constant may havezinstein’s gravity for flat backgrounds with its Poincasem-
been observed. This motivates a detailed study of energgetries [“Arnowitt-Deser-Misner (ADM) mass” [3]]. The
about these vacua, for systems that also involve higher cugecond step was to ti8)dS vacua of cosmological Einstein
vature terms, such as naturally arise in string theory anéheory[“Abbott-Deser (AD) mass”[2]].
other quantum gravity models. In this paper, we define and The outline of the paper is as follows: In Sec. I, we
compute the global chargésspecially energyof asymptoti-  reexamine the AD?2] Killing charge for the cosmological
cally constaniincluding zer9 curvature space-times for ge- Einstein theory and the energies of its SchwarzsctAlitS
neric gravitational models. (collectively “SdS”) solutions. Section Il is devoted to the

In a recent Lettef1], which summarized some of the derivation and computation of the Killing charges in generic
present work, we defined the global charges primarily in fourquadratic theoriegwith or without Einstein termsas well as
dimensional quadratic theories. In this paper we extend thaheir various limits, particularly in Einstein-GB models. In
discussion in several directions: We first present a reformuSec. IV, we discuss the purely quadratic zero energy theory
lation of the original definitior[2] of conserved charges in constructed from the traceless Ricci tensor. Section V in-
cosmological Einstein theory; then we derive the generigludes our conclusions and some open questions. The Ap-
form of the energy for quadratic gravity theoriesDrdimen- ~ pendix collects some formulas useful for linearization prop-
sions and specifically study the ghost-free low energy stringerties of quadratic curvature terms aboddS backgrounds.
inspired model: Gauss-Bonn@sB) plus Einstein terms. We
also briefly indicate how higher curvature models can be Il. REFORMULATION OF AD ENERGY
similarly treated. . ) )

We will demonstrate that, among purely quadratic theo- In this section, we reformulate the AD constructifi?i
ries, the one whose Lagrangian is the square of the tracele3§d obtain new and perhaps more transparent surface inte-
Ricci tensor has Zero energy for ﬂ about |ts asymptoti_ grals fOI’ energy in Cosmological Einstein theOI’y. One Of the
cally flat or asymptotically constant curvature vacua, unlike easons for revisiting the AD formulation is, as will become
for example, conformalWeyl) gravity in D=4. clear, that in the hlghe( curvature models we shall study in

A definition of gauge invariant conservégloba) charges ~ detail, the only non-vanishing parts of energy, for asymptoti-
in a diffeomorphism-invariant theory rests on the “Gausscally SdS spaces come precisely from AD integrals, but with
law” and the presence of asymptotic Killing symmetries. €ssential contributions from the higher terms. _
More explicitly, in any diffeomorphism-invariant gravity ~ First, let us recapitulatel] how conserved charges arise
theory, a vacuum satisfying the classical equations of motioff? & generic gravity theory coupled to a covariantly con-
is chosen as the background relative to which excitations angerved bounded matter soureg,,
any background gauge-invariant propertisach as energy
are defined. Two important model-independent features of P, (9 RVRR? ...)=kTy,, @)
these charges are: First, the vacuum itself has zero charge;
secondly, they are expressible as surface integrals. As wahere® ,, is the “Einstein tensor” of a local, invariant, but
shall show below, a generic formulatigindependent of the Otherwise arbitrary, gravity action andis an effective cou-

pling constant. Now decompose the metric into the sum of a

backgroundg,,, [which solves Eq(1) for 7,,=0] plus a
*Email address: deser@brandeis.edu (not necessarily smalldeviation h,,, that vanishes suffi-
"Email address: tekin@brandeis.edu ciently rapidly at infinity,
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=q 1 _ -
9= Gur N @ RS, =R,,~R,,=5(~0N,,~V,Th+7"Th,,
Separating the field equatiori$) into a part linear inh,,, o
plus all the non-linear ones that constitute the total source +VV,h,,), (10)
T,,, including the matter source,,, one obtains .
O(a),waﬁh“ﬁ: KT, &) with h=§’“’hw and ﬁ=5‘”VMVV. The energy momentum-

- tensor(9) is background covariantly constan? (T#"=0),
as®,,(g,R,VR,R?...)=0, by assumption; the Hermitian as can be checked explicitly. _ .
operatorO(E) depends only on the background meffticat This procedure lef2] to the following energy expression:
a_Iso moves all indices and defines the covariant derivatives 1 B -

VM). It .is. clee}r that this operator inherit; both background E(E): %J ds \/—_E{EVVBKOiVﬁ_ KOj Vingy}_ (11)
Bianchi identity and background gauge invariance, namely

@O(E)Mvaﬁ: 0(5)#”“/3%:0, from (the Bianchi identities The Superpotentia{p«avﬁ is defined by
of) the full theory. As a consequence of these invariances, it

is guaranteed that if the backgrou@w admits a set of

1 _ _ _
- vafB— __ B va va B_ vqaB _ ~yaB v
Killing vectors €2, KEreP= S [g# R+ 9" H#P = gH"H* = g®"H*"],

V. +V,ED=0, @ 1
o H#*"=h*"— —g*"h. (12
then they can be used to construct the followingdinarily) 2

conserved vector density current, . . )
It has the symmetries of the Riemann tensor. In converting

—OTHY 3= —OTHY £ = the volume to surface integrals, we follow a somewhat dif-
VM(\/_QT &) a”(\/_gT £)=0. ® ferent route, which will be convenient in the higher curvature
Therefore, the conserved Killing charges are expressed ascases. Using Eqg9), (10), straightforward rearrangements
of terms, and the aforementioned antisymmetry, we can
move the covariant derivatives to yield

QH(8)= fMdelx —gTHE= Ldsw‘. ®)

_ _ o AN _
Here M is a spatial D—1) hypersurface and is its O  2&,91"=2&,R{"—£,0""R"— D25
—2) dimensional boundary; as will follow from Eq13),

FH is an antisymmetric tensor obtained frafi{g), whose =& —0Oh*"=VAV?h+V V h7*+V V+ho"}
explicit form, of course, depends on the theory.

Let us first apply the above procedure to cosmological Sy —Oh+V.V ho'— 2A ht— 4N £ he
Einstein theory to rejoifi2]. Our conventions are: signature i D-2 D-2°"

(_,+,+, . +), [V,U,'VV]V)\:R/.LV)\ U—Va., R,uVER,u)\V )\. _— — J— —
The Einstein equations =V &, VIhPY = § VPhiY 4 VPN — §PV N

1 +h#PVPE,—hPYVHE + EPV MY — EXV hPY
R,uv_ Eg/.LVR_’_AgMV:O’ (7) .
+hV#Ery. (13
are solved by the constant curvature vacugp, whose i . .
Riemann, Ricci and scalar curvature are Since the charge densities are surface terms, the Killing
charges become those []:

T T gl L[ s (T B
D-2YDJX

_ 2 — — 2DA R e — —_
Ruv=p55A0w, R=Eg—- ® — EVAh+h#VIE, —h"VAE, + 8V, h#7— gy i
Linearization of Eq/(7) about this background yields +hveg), (14

Lo = 2 B wherei ranges over (1,2 .. ,D—2); the charge is normal-
Gu=Ru~ §9MVR - ﬁAhwz KTy ©) ized by dividing by the(D-dimensional Newton'’s constant
and solid angle. Before we perform the explicit computation
whereRLz(g“VRW)L and the linear part of the Ricci tensor of the energyQ? in specific coordinates for asymptotically
reads (A)dS spaces, let us check that it is in fact background
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gauge-invariant. Under an infinitesimal diffeomorphism,
generated by a vectaf,, the deviation part of the metric
transforms as _To

(19
5§'h;1,v:€,u,§v+€vé‘,u- (15)

For AdS,E(r—=)=ry/2G=M, as expected. On the other
hand, for dSE(r=1)=0. This is, however, misleading since
> in dS we should really only consider smajl objects, which
5gRL=a“V5gRLy— _Aguvgghwzo, (16)  do not change the location of the background horiZdm.
¥ D=2 deed, if we naively include the effect of a larggas chang-
ing the horizon to *ry/r—r2/12=0, thenE(r) itself di-
This leads toagg}w:[Z/(D—Z)]A d:,, and eventually to verges] But, we derived the energy formula using
8,Q*=0: the Killing charge is indeed background gauge-asymptotic Killing vectors, so the only way to make sense of
invariant. Another test of Eqa4) is that, in the limit of an  the above result for asymptotically dS spaces is to consider
asymptotically flat background, we should obtain the ADMthe smallr, limit, which then givesE=M [2]. In the limit of
charge. In that case, we may write the timelike Killing vectora vanishing cosmological constaht-o; the ADM energy
as¢,=(1,0). The time component of Eq14) reduces to the is of course recovered as—.
desired result: The above argument easily generalizeDtalimensions,
where one obtains

To show thatTWEV is invariant, first note thaR, is

1 L
0_ - - hi—gh.. D-2
Q"=Mapm 4QDZGDL d§ {g;h" —d'hy}  (17) E= re 2. (20
4Gy
in terms of Cartesian coordinates. Herer, can be arbitrarily large in the AdS case but must be

Having established the energy formula for asymptoticallysmall in dS.
(A)dS spaces, we can now evaluate the energy of SdS solu- Finally, let us note that analogous computations can also
tions. First, we must recall that the existence of a cosmologibe carried out irD=3; the proper solution is
cal horizon is an important difference between dS and AdS .
cases. In the former, the background Killing vector stays r? 5 r2 5 oo
time-like only within the cosmological horizofWe will not ds’=—|1-ro— 2 dt®+| 1-ro— 2 dri+ride
go into the complications for physics of this horizon, since it (21)
is a well-known and ongoing problem. |&], it was simply
assumed that interesting system should be describable withfar which the energy i€ =r,/2G again but, nowys, is a
the horizon. For related ideas d&g.) For small black holes, dimensionless constant ah@]=[M '], in agreement with
whose own event horizons lie well inside the cosmologicakhe original result$5].
one, Eq.(14) provides a reasonable approximation.

In static coordinates, the line element Bfdimensional IIl. STRING-INSPIRED GRAVITY
SdS reads

In flat backgrounds, the ghost freedom of low energy
D-3 .2 string theory requires the quadratic corrections to Einstein’s
ds?=— 1_(_0) — ¢ dt? gravity to be of the GB forni6], an argument that should
carry over to the AdS backgrounds. Below we construct and
b3 o) -1 compute the energy of various asymptoticaly)dS spaces
-3 9 . . : ;
+I1_(TO) _ _] dr2+r2dQ%_2, (18) that solve generic Einstein plus quadratic gravity theories,

-

|2 particularly the Einstein-GB model.
At quadratic order, the generic actiort is

where 1?2=(D—2)(D—1)/2A. The background r;=0)

Killing vector is &#=(—1,0), which is time-like everywhere sz de\/—_g

for AdS (12<0) but remains time-like for dSI{>0) only

inside the cosmological horizog;, &&= —(1—r?/1?). (22)
Let us concentrate oD =4 first and calculate the surface In D=4, the GB part ¢ termg is a surface integral and

integral (14) not atr =0, but at some finite distanaefrom  plays no role in the equations of motion. >4, on the

the origin; this willnot be gauge-invariant, since energy is to

be measured only at infinity. Nevertheless, for dS space———

(which has a horizon that keeps us from going smoothly to we will later add an explicit cosmological constant term in the

infinity), let us first keep finite as an intermediate step. The discussion. Note also that the normalizationsagf3 differ from

integral becomes those of[1].

R
2 2 2 2 2
—+aR%+ R+ Y(RE,,,—4RE, TR |

nwrpo
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contrary, GB is the only viable term, since non-zero 8 Using Eq.(24) one hasT,,(g)=0 and the last term also
produce ghost$7]. Here k=2Qp_,Gp, whereGp is the  vanishes, yielding
D-dimensional Newton’s constant.

The equations of motion that follow from E(R2) are . 1 AAD B
n L L Tuw=9. —;+(D_2)2 2a+ 5|t +(2a+B)
;(R#V_EQ#VR)—’_ZQR (RMV_ZgMV R +(2a+,8) S oA _
X g#VD—VMVV'F mgﬂv RL+ﬁ DQW
X(9,,0-V,V,)R+ 27{ RR,,—2R,4,R7 A
_ mgMR,_). (26)

+R, RI’"—2R R"—E R% —4R?> +R?
nopT Mv no' Ny 4g,u.1/( TApOT ap )

This is a background conserved tensgr“(l'#fO) as can

RO be checked explicitly with the help of the expressions

1
Ruu— EgMR) +28

—[— — —=  2A
=7 (23) V’u( QMD_VMVV"‘ mg/“,) RLZO

v

+IBD R/.LU’Vp_ Zg/.wRop

In the absence of matter, flat spaceaisolution of these _ oA _

equations. But so i$A)dS with cosmological constant, v# DQLV— =—=0,,|R.=0. (27
S . . “ D-1

which in our conventions issee alsd8])

An important aspect of Eq26) is the sign change of the &/
1 — (b-4) y(D-4)(D-3) term relative to Einstein theory, due to the GB contributions
(Da+pB)+ , A#0. ) > : - b T
2Ak  (D-2)? (b-2)(D-1) as already noticed ifil0]. Hence in the Einstein-GB limit,
(24 we haveT,,=—G ';w/ «, with overall sign exactly opposfte
_ - to that of the cosmological Einstein theof9). But, as we
Several comments are in order here. In the string-inspiredhall see below, this does not mean tBas negative there.
Einstein-GB model ¢=5=0 and y>0), only AdS back- There remains now to obtain a Killing energy expression
ground (A <0) is allowed(the Einstein constant is posi-  from Eq. (26), namely, to write¢, T** as a surface integral.
tive with our conventions String theory is known to prefer The first term is the usual AD piec4), which we have
AdS to dS(see for example the no-go theor¢fl) we can  ajready dealt with in the previous section. The middle term
now see why this is so in the uncompactified theory. Anothegyith the coefficient 2+ 8, is easy to handle. The relatively

interesting limit is the “traceless” theory Ma=—p),  cumbersome last term can be written as a surface plus extra
which, in the absence of @ term, does not allow constant arms:

curvature spaces unless the Einstein term is also dropped.
For D=4, the y term drops out, and the pure quadratic
theory allows(A)dS solutions with arbitranA. For D>4, v
relation (24) leaves a 2-parameter s@ay «,8) of allowed
solutions.

Follqwmg the proced.ure outlined n the previous section sing the definition of the Killing vector, and its trace prop-
and using the formulas in the Appendix, we expand the fiel ry
equations to first order im,, and define the total energy ’
momentum tensor as 2A

Va VBEV = ﬁl:ﬁ a

0G5, = VA £V “GL £V~ GV 6, + GVE )

+GEOE,+EN VG- GV VEE,.  (29)

= 5251 Grafs9asé).
_ (1 4ADa 4Ap SECERICE Vi
T(M=T,(9+G) -+ 55 T =1

= — 22 2
4Ay(D-4)(D-3) e @9

(D-2)(D-1) 9= VW

+(2a+pB)

along with the identity

— L 2N
RL+18 Dg,uv_ mguvRL

+ D_Zg,uV _€€/—L av_ 2AD —_ ,LLV+ A ,U«R
VYU oo eIt T e E Ry
PTC P P il N (30
v 2AK (D—2)2( a B)
y(D—4)(D—3) 2This overall sign change is also shared by the model's small
+ ICEDICENE (25  oscillations about the AdS vacuum.
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one can show thag,,Dg can indeed be written as a sur- which in turn yieldsR, = g””RL —[2A/(D—2)]h=0 and
face term. Collecting everythmg, the final form of the con-thus Qh =0 in the asymptotic region. Therefore the total

served charges for the generic quadratic theory reads energy of the full @,8,y) system, for geometries that are

asymptotically SdS, is given only by the first term in Eq.
_ (31,
Q“(§)=[ - (Da+p)
(D—2)? 8A K (D-2) ;4
Ep={ -1+ (Da+pB) ro >, D>4,
D-1v [ 7 ~uv (D—2)? 4G
X | d¥7 X V=0&,G{"+(2a+B) (35)

— — - = == wherey is implicitly assumed not to vaniskiNote again the
XJ dSV-g{¢*VRLHRVH & —EVER 48 sign change of the “Einstein contribution” as explained be-
fore) For D=4, we computecE in [1]; equivalently from

XJ ds\/_—g{aﬁgfv_gvgﬂgi_y_gtwﬁa Eq. (25), it reads (for models with an explicit\)

For brevity we have left the AD part as a volume integral From Eq.(35), the asymptotically SdS solution seemingly
whose surface form we know is given by H@4); note that has negative energy, in the Einstein-GB model:
v does not appear explicitly since it has been tradedAfor
through the relatiori24). E=— (D-2) ;D3 (37)
In the above analysis, there was no bare cosmological 4G 0
term in the action. Clearly, this need not be the case: we can

add one, say Pd°x\—gA,/x. The A, contributes to the While this is of course correct in terms of the usual SdS
overall effective cosmological constant\, which now is  Signs, one must be more careful about the external solutions

in Einstein-GB theory. Their exact form j40]

given by
1 ds?=godt?+ g, dr2+r2dQp_, (39
A A p L 2
X{1= 1+ 8xf(a B,7) Ao} (32) ~90= 0 = B -3)(D-4)
(D-3 1/2
e poene ity el s
(39

If f>0, as in Einstein-GB theory, the effective cosmological
constantA is smaller than the “bare” oné\y: thus stringy
corrections(at quadratic orderreduce the value of the bare

Note that there is a branching here, with qualitatively differ-
ent asymptotics: Schwarzschild and Schwarschild-AdS,

cosmological constant appearing in the Lagrangian. Given r.\D-3
that A is arbitrary, there is a bound {8\ ,f=—1) on these —goo=1— (-0) ,
corrections since the effectivk becomes imaginary other- r
wise. N "
Now let us compute the energy of an asymptotically SdS —g :1+(r_0 n r (40)
geometry that might be a solution to our generic model. 00 ky(D-3)(D—-4)"
Should such a solution exist, we only require its asymptotic
behavior to be [Here we have restorel, usingxy(D—3)(D—4)=—12.]
The first solution has the usual positiyir positive r of
ro| P2 ro|P3 cours¢ ADM energy E=+(D—2)r)%/4G, since the GB

, h=+ O(rd). (33  term does not contribute when expanded around flat space.
On the other hand, as noted [A0] the second solution
which is asymptoucally SdS, has the wrong sign for the

mass term.” But, to actually compute the energy here, one

hoo~+|—

r r

It is easy to see that for asymptotically SdS spaces the sec-
ond and the third lines of Eq31) do not contribute, since
for any Einstein space, to linear order

A %ln D=3, the GB density vanishes identically and the energy
RL = 2 h (34) expression has the same form of the=4 model, with the differ-
“rop—2 H# ence that, comes from the metri¢21).
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needs our energy expressi¢dl), and not simply the AD pure quadratic models in ab, for both asymptotically flat
formula which is valid only for cosmological Einstein theory. and(A)dS spaces. For flat backgrounds, the higher derivative
Now from Eqg.(40), we have terms do not change the form of the energy expressions. On
the other hand, for asymptoticallfyA)dS backgrounds
(which are generically solutions to these equations, even in
the absence of an explicit cosmological constetihie energy
expression$31) essentially reduce to the AD formulap to
whose sign is opposite to that of the usual SdS. This sign judtigher order corrections that vanish for space-times that as-
compensates the flipped sign in the energy definition, so thgmptotically approachiA)dS at least as fast as SdS spdces
energy(35) readsE=(D—2)rJ ~3/4G and the AdS branch, Among quadratic theories, we have studied the string-
just like the flat branch, has positive energy, after the GBnspired Einstein-GB model in more detail. Just like the oth-

effects are taken into account also in the energy definitioners, this one, in the absence of an explicit cosmological con-
Thus, for every Einstein-GB external solution, energy isstant, has both flat and AdS vacua, the latter with specific

positive and AdS vacuum is stafle. (negative cosmological constants determined by the New-
ton’s constant and the GB coefficient, the latter sign being
fixed from the string expansion to be positive. The explicit
spherically symmetric black hole solutions in this theory
In D=4, every quadratic curvature theory, i.e. amy, 8) consist of two branchefl0]: asymptotically Schwarzschild
combination, is scale invariant. These models were studied iapaces with a positive mass parameter or asymptotically
[12] in terms of the slightly different parametrization Schwarzschild AdS spaces withnagativeone. The asymp-
totically Schwarzschild branch has the usual positive ADM

rO D-3 rO D-3
h00~—(7> , h”w—(T) +0(r3), (41

IV. ZERO ENERGY MODELS

B 4y vor 5 energy. Using the compensation of two minus signs in the
S_f d*xV=g{aC,,s, C*7’+bR% (42) solution and in the correct energy definition, we noted that
the AdS branch has likewise positive energy and that the AdS
whereC,,,,, is the Weyl tensor. Using the equivalent of the vacuum was a stable zero energy state.

ADM energy for the asymptotically flat solutions, it was  Amusingly, we instead identified a unique, purely qua-
shown that this energy vanished for all of them. As discussedratic theory with zero energy for all constaier zerg cur-

in [1], with our definition of energy, this statement is correct,vature backgrounds. That, one such model must exist, is al-
but simply reflectat Einsteinian levglthe Newtonian im- ready clear from the fact that each term in

possibility of having asymptotically vanishing solutions of

V4¢p=p. This property of higher derivative gravity is well

understood13]. It has deeper consequences such as viola- |=f d°xV=g{aR?+ BRZ,+ ¥(R%,,,— 4R%,+ R?)},

tions of the equivalence principle: massive sources here have (43)

no gravitational mass. Violations of the equivalence principle

are not unheard of and occur already at the simple level Oéontributes linearly to E. The condition thé)dS be a so-

scalar-tensor gravity. In the asymptotical()dS branch, lution, with arbitrary cosmological constant, is
however, energy no longer vanishes: Even pure conformally ' '

invariant Weyl theory has finite energy.

Interestingly, there is one purely quadratic theory which
doeshave vanishing energy iall dimensions, for asymptoti-
cally flat or (A)dS vacua. It has actioyide\/—gRM;R“V,
where R,,=R,,—(R/D)g,,. This vanishing is obvious In all D, the zero energy models hav® ¢+ B)=0=y.
from Eq. (35), dropping the Einstein contribution: E is then While we have not yet understood what this result means
proportional to Da+ B). In addition to its zero-energy flat physically, we can at least argue in favor of its plausibility.
vacuum, the/A)dS branch is infinitely degenerate, having aFirst, note that this model is the only one that stays special in
1-dimensional moduli space denoted by the Schwarzschildll D, unlike either Weyl gravity, good only i®=4 or R?,
parameter,. For example, creating larger and larger blackscale invariant also only iD=4. A second argument is that
holes costs nothing in this theory. Of course, once an Einthis is the only quadratic theory that cannot be reformulated
stein term is present, the energy is no longer zero. as Einstein plus mattéd 1], making it hard to expect any of
the others to have no energy.

In this paper, we have only looked at constant curvature
vacua, but there may exist more general vacua with some
We have defined the energy of generic Einstein plus cosadditional structure. One example may be Weyl gravity, for
mological term plus quadratic gravity theories as well aswhich the most general spherically symmetric solution is

[14,15

1 ¥(D-3)] _
(D—4) m(D&-ﬁ-B)-FW =0. (44)

V. CONCLUSIONS

“In [10], it was erroneously concluded th&t, was negative for 1 (2—3ab)b r2
the AdS branch, despite having obtained both the cofresgjative —ggpo=—=1—-3ab— ar——: (45
sign of T#” and of course the correct solutig®9). rr |2
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a,b,l are integration constants. Birkhoff's theorem is valid 8A L
and this is the unique external solution. One choice of back- O(RyupoaRy P74 = me
ground might be to sét=0. This space is only asymptoti-
cally (A)dS, since for itR=—6a/r +1212. Our earlier re- 8A2
marks on the loss of “visibility” of matter source - mhw
contributions to E in higher derivative theories might lead
one to expect thar term to carry this information. However
this is not the case: the=0 geometry is a solution every- (R REPTa) — 8A R
where. npoa (D-1)(D-2) *

The framework for energy definition presented here can
clearly be applied to models with generic higher powers of 2DA .
curvature[1]. For any such theory that supports constant d(RR,,)= R';w+ 5 9.,RL
curvature vacua—and all but monomials in scalar curvature D-2 (D-2)
do so—it is just a matter of turning the crank to obtain its
energy. . 4N 4A2

5(R'u,RV(T)_ D_ZR/.LI/ (D_Z)Zh,uv
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APPENDIX , , . AA(D-3)

Here we list some useful linearization expressions about I(Ronpo 4R, + R = WRL
(A)dS for pure quadratic terms, using the conventions of Sec.
II; barred quantities refer to the background: oA

R- E(rp:RL _
novp # (D-1)(D—-2)

o 2A L
5( R,u.pvoRp ): mR,u.V

2A T R
BCENICE
+ 4n° h

(D-2)D-1) "

X(h,u.v_a,uvh)'
Finally, we compute the GB density of a cosmological space:

4ADA%(D-3)

B2 ADp2 p2_ " "
R R R= 51

[1] S. Deser and B. Tekin, Phys. Rev. Le3®, 101101(2002.

[2] L.F. Abbott and S. Deser, Nucl. PhyB195, 76 (1982.

[3] R. Arnowitt, S. Deser, and C. Misner, Phys. R&t6 1322
(1959; 117, 1595(1960; in Gravitation An Introduction to
Current Researchedited by L. Witten(Wiley, New York,
1962.

[4] E. Witten, “Quantum gravity in de Sitter space,”
hep-th/0106109; A. Strominger, J. High Energy Phy3.034
(2001.

[5] S. Deser and R. Jackiw, Ann. Physl.Y.) 153 405 (1984).

[6] B. Zwiebach, Phys. Lettl56B, 315(1985.

[7] K.S. Stelle, Phys. Rev. 06, 953(1977).

[8] M. Cvetic, S. Nojiri, and S.D. Odintsov, Nucl. PhyB628 295

(2002.

[9] J.M. Maldacena and C. Nunez, Int. J. Mod. Physl@\ 822
(2001.

[10] D.G. Boulware and S. Deser, Phys. Rev. LB, 2656(1985.

[11] A. Jakubiec and J. Kijowski, Phys. Rev. ¥, 1406(1988.

[12] D.G. Boulware, G.T. Horowitz, and A. Strominger, Phys. Rev.
Lett. 50, 1726(1983.

[13] E. Pechlaner and R. Sexl, Commun. Math. Ph#s.165
(1966; P. Havas, Gen. Relativ. GravB, 631(1977.

[14] R.J. Riegert, Phys. Rev. Lefi3, 315(1984).

[15] P.D. Mannheim and D. Kazanas, Astrophys. 3%2 635
(1989.

084009-7



