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Finite action for three dimensional gravity with a minimally coupled scalar field
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Three-dimensional gravity with a minimally coupled self-interacting scalar is considered. The falloff of the
fields at infinity is assumed to be slower than that of a localized distribution of matter in the presence of a
negative cosmological constant. However, the asymptotic symmetry group remains to be the conformal group.
The counterterm Lagrangian needed to render the action finite is found by demanding that the action attain an
extremum for the boundary conditions implied by the above falloff of the fields at infinity. These counterterms
explicitly depend on the scalar field. As a consequence, the Brown-York stress-energy tensor acquires a
nontrivial contribution from the matter sector. Static circularly symmetric solutions with a regular scalar field
are explored for a one-parameter family of potentials. Their masses are computed via the Brown-York quasilo-
cal stress-energy tensor, and they coincide with the values obtained from the Hamiltonian approach. The
thermal behavior, including the transition between different configurations, is analyzed, and it is found that the
scalar black hole can decay into the Ban˜ados-Teitelboim-Zanelli solution irrespective of the horizon radius. It
is also shown that the AdS conformal field theory correspondence yields the same central charge as for pure
gravity.
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I. INTRODUCTION

The asymptotic behavior of gravity with a negative co
mological constant has been extensively explored since
1980s, initially in the context of symmetries and conserv
charges@1–16#, and now in relation with the AdS conforma
field theory ~CFT! correspondence@17–19#. The usual as-
sumption is that matter fields fall off sufficiently fast to e
sure that conserved charges can be written as surface
grals involving only the metric and its derivatives. Here w
deal with a case where the matter fields drop off so slowly
the asymptotic region that they add a nontrivial contribut
to the conserved charges, as well as to the Euclidean ac
This issue is addressed for three-dimensional gravity wit
minimally coupled self-interacting real scalar field. Th
theory admits interesting asymptotically AdS solutions,
cluding black holes@20# and a sort of degenerate groun
state, both with nontrivial regular scalar fields. To distingu
those black holes with a non-trivial scalar field fro
Bañados-Teitelboim-Zanelli~BTZ! black holes~which are
solutions with the scalar field constant! we call the former
‘‘scalar black holes.’’ With the exception of the BTZ geom
etries, the solutions have a slower than expected fallof
AdS in the asymptotic region. The scalar potential is co
structed so that this weaker falloff is preserved by the ac
of the Virasoro group generated by the asymptotic Killi
vector fields.
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Since the scalar field behaves asO(r 21/2), it necessarily
contributes to the action and its variations in the asympto
region, and the counterterms of@8# will not yield a finite
action or charges@9# in this case. In the next section, w
obtain suitable counterterms, which depend explicitly on
scalar field, from the requirement that the action must
functionally differentiable for both metric and scalar field
which obey these weaker falloff conditions. This means t
the quasilocal stress-energy tensor defined in Ref.@21# also
acquires a contribution coming from the scalar field. In S
III we will first briefly review the asymptotic conditions o
Ref. @20#, and we will display static circularly symmetri
solutions with a regular scalar field for a one-parameter fa
ily of potentials, and compute the mass using the Brow
York stress-energy tensor. In Sec. IV we will calculate t
action for the Wick-rotated solutions, and use this to disc
some aspects of the thermodynamics of the solutions. It tu
out that there is a nonvanishing probability for the decay o
scalar black hole into the BTZ black hole. The central cha
is computed via the AdS/CFT correspondence, yielding
same value as one would obtain for pure gravity@4#.

II. ACTION, COUNTERTERMS AND QUASILOCAL
STRESS-ENERGY TENSOR

A. Asymptotic fall-off conditions

The asymptotic behavior of three-dimensional pure gr
ity with a negative cosmological constant is described by
Brown-Henneaux boundary conditions@4#, which are left in-
variant under a symmetry group generated by the follow
asymptotic Killing vectors:
©2003 The American Physical Society07-1
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h t5 l FT11T21
l 2

2r 2
~]1

2 T11]2
2 T2!G1O~r 24!,

h r52r ~]1T11]2T2!1O~r 21!, ~1!

hw5T12T22
l 2

2r 2
~]1

2 T12]2
2 T2!1O~r 24!,

whereT1(x1) andT2(x2) generate two independent copi
of the Virasoro algebra andx65t/ l 6w.

These conditions hold also for localized matter fie
which falloff sufficiently fast at infinity, so as to give n
contributions to the surface integrals defining the genera
of the asymptotic symmetries. With these assumptions,
charges that generate the asymptotic symmetries inv
only the metric and its derivatives, and their algebra cor
sponds to a central extension of the asymptotic symm
algebra, where the central charge is given by

c5
3l

2G
. ~2!

However, there are instances in which the matter fie
modify the asymptotic behavior of the metric. A well-know
example is the electrically charged black hole, where
metric has a logarithmic divergence@22–24#. In those cases
there is a possibility of having divergent contributions co
ing both from the gravitational and matter actions. In the
situations, the asymptotic conditions must be such that
sum of both contributions converges.

The case in which the falloff of the fields at infinity i
slower than that of a localized distribution of matter w
analyzed in Ref.@20#. The matter sector was assumed to
given by a single self-interacting scalar field minima
coupled to three-dimensional gravity, with the action

I Bulk@g,f#5
1

pGE d3xA2gF R

16
2

1

2
~¹f!22V~f!G .

~3!

Black hole solutions with a nontrivial scalar field were fou
for a one-parameter family of potentialsV(f), whose
asymptotic behavior belongs to the following class:

f5
x

r 1/2
2a

x3

r 3/2
1O~r 25/2! ~4!

grr 5
l 2

r 2
2

4l 2x2

r 3
1O~r 24!, gtt52

r 2

l 2
1O~1!

gtr5O~r 22!, gww5r 21O~1! ~5!

gwr5O~r 22!, gtw5O~1!

wherex5x(t,w), anda is an arbitrary constant. Note tha
the asymptotic behavior ofgrM has a slower falloff than tha
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discussed by Brown and Henneaux.1 Consistency of these
relaxed asymptotic boundary conditions with the field eq
tions is sufficient to fix the potentialV(f) to be of the form

V~f!52
1

8l 2
2

3

8l 2
f22

1

2l 2
f41f6U~f!, ~6!

whereU(f2) could be any function which is smooth in
neighborhood off50. In spite of the fact thatV(f) could
even be unbounded from below, this potential satisfies
conditions that guarantee the perturbative stability of A
space@25,26#.

Remarkably, it was found that this set of conditions is a
left invariant under the Virasoro algebra generated by
asymptotic Killing vectors ~1!. Furthermore, using the
Regge-Teitelboim approach@27#, it was found that the gen
erators of the asymptotic symmetries acquire a contribu
from the scalar field2

Q~j!5
1

16pGE dwH j'

lr
@~gww2r 2!22r 2~ lg21/221!#

12jwpw
r 1j'

2r

l Ff222l
f] rf

Agrr
G J , ~7!

and the algebra of these canonical generators has the
dard central extension given by Eq.~2!

In the next section we use the background independ
method of@8# to find the counterterm Lagrangian needed
render the action finite~see also@9#!. In contrast to the case
of a localized distribution of matter, it is shown that th
counterterms acquire contributions, depending explicitly
the scalar field. This allows us to construct an alternative
Eq. ~7! which we obtain from the Brown-York stress-energ
tensor.

B. Counterterm action

In analogy with the counterterm prescription in Re
@8,9#, we consider the following action:

I 5
1

pGE
M

d3xA2gS R

16
2

1

2
~¹f!22V~f! D

1
1

8pGE
]M

d2xA2gQ1I ct@g,f#, ~8!

where the boundary term containing the trace of the extrin
curvatureQ is required to fix Dirichlet conditions for the
metric. Owing to the asymptotic behavior of the fields, t

1Henceforth, capital latin indices stand for three-dimensio
spacetimes coordinates, and greek indices label the coordinat
the boundary.

2Equation ~7! is a slightly improved version of the expressio
found in Ref.@20#, because it does not depend on the parametea
appearing in Eq.~4!.
7-2
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counterterm actionI ct is assumed to depend not only on t
boundary metricgmn, , but also on the scalar field.

The strategy for obtaining the counterterm action will
to require that the action~8! has an extremum for the solu
tions satisfying the asymptotic conditions~4! and~5!. It turns
out that this approach also ensures the convergence o
action.

The variation of Eq.~8! is given by

dI 5E
M

EIdF I1E
]M

d2xpmndgmn

2
1

pGE
]M

d2xA2gn̂M]Mfdf1dI ct , ~9!

whereF I
ª$gMN ,f% are the dynamical fields andEI are the

corresponding equations of motion. The spacetime me
gMN has been decomposed in a radial ADM foliation as

ds25N2dr21gmn~dxm1Nmdr !~dxn1Nndr !, ~10!

and the boundary momenta are

pmn
ª

1

16pG
A2g~Qgmn2Qmn!. ~11!

Here the extrinsic curvatureQmn, defined through the cova
riant derivative of the outward pointing normal vectorn̂M

5(0,1/Agrr ,0) to the boundary]M , is

Qmn
ª

1

2
~¹mn̂n1¹nn̂m!. ~12!

Hence the action attains an extremum when the equation
motion hold, and the variation of the counterterm action s
isfies

dI ct52E
]M

d2x pmndgmn1
1

pGE
]M

d2xA2gn̂M]Mfdf,

which, by virtue of the asymptotic conditions~4! and ~5!,
becomes

dI ct52
1

16pGE
]M

d2xS 1

l 2
dhww2dhttD

2
1

4pGl2
E

]M
d2x@rdx21~113a!dx4#. ~13!

Here hmn(t,w) denotes the deviation from the Ad
asymptotic metric. The first term at the right-hand side of E
~13! corresponds to the variation of the volume of]M

dF E
]M

d2x A2gG5
l

2E]M
d2xS 1

l 2
dhww2dhttD ,

and using the asymptotic form of the scalar field, it is sim
to see that the second term in Eq.~13! corresponds to the
variation of a covariant expression that reads
08400
he

ic

of
t-

.

e

1

8pGlE]M
d2xA2g ~2lfn̂M]Mf2f2!,

which depends on the boundary metric as well as on
scalar field.

Therefore, the counterterm action can be written as

I ct5I ct
G1I ct

f

5
1

8pGl F2E
]M

d2xA2g

1E
]M

d2xA2g~2lfn̂M]Mf2f2!G , ~14!

whereI ct
G is the counterterm required for asymptotically Ad

spacetimes in the sense of Brown and Henneaux, andI ct
f is

required to cancel the variation coming from the kinetic te
in the bulk, provided the relaxed asymptotic conditions~4!
and ~5! are imposed.

The presence ofI ct
f implies that the surface integrals de

fining the conserved charges acquire a nontrivial contribut
coming from the matter sector. This will be explicitly dem
onstrated in the next section, where we employ the Brow
York approach@21# to define the quasilocal stress-energy te
sor.

C. Quasilocal stress-energy tensor

The quasilocal stress-energy tensorTmn associated with a
region of the spacetime that is bounded by a surface w
metric gmn is given by

Tmn5
2

A2g

dI

dgmn
.

Considering a radial Arnowitt-Deser-Misner~ADM ! folia-
tion as in Eq.~10!, the variation of the action on shell is

dI

dgmn
5E

]M
d2x pmn1

dI ct

dgmn

wherepmn is given by Eq.~11!. Hence, using Eq.~11!, the
stress-energy tensor reads

Tmn5
1

8pG
~Qgmn2Qmn!1

2

A2g

dI ct

dgmn
,

which by virtue ofI ct in Eq. ~14!, can be written as

Tmn5TG
mn1Tf

mn

5
1

8pG S Qgmn2Qmn2
1

l
gmnD

1
1

8pGl
gmn~2l fn̂M]Mf2f2!. ~15!
7-3
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The conserved charges can be constructed by choosin
ADM foliation at ]M with spacelike surfacesS, so that

gmndxmdxn52NS
2 dt21s~dw1NS

wdt!2.

Hence

QBY~j!5E
S
dx AsumjnTmn .

Hereum is the timelike unit normal toS, andjm is a Killing
vector of the boundary. Thus, choosingjm5NSum, the mass
is written as a surface integral,

M5E
S
dx AsNSumun~Tmn

G 1Tmn
f !

5MG1Mf . ~16!

Note that the mass acquires a nontrivial contribution fr
the matter sector.

In what follows, the previous formalism is tested for som
exact solutions possessing the asymptotic behavior give
Eqs. ~4! and ~5! for a one-parameter family of potentials o
the form ~6!.

III. TESTING THE COUNTERTERMS WITH EXACT
SOLUTIONS

Exact solutions for which the metric and the scalar fie
satisfy the asymptotic conditions~4! and~5! can be obtained
for a particular one-parameter family of potentials of t
form @20#

Vn~f!52
1

8l 2
~cosh6f1n sinh6f!. ~17!

This potential belongs to the class~6!, and different forms of
U(f2) are obtained for different values of the dimensionle
parametern. This parameter can be interpreted as the s
interacting coupling constant in the conformal frame@20#.

A. Black hole with a regular non-constant scalar field

For the rangen.21, the potential is unbounded from
below and satisfies the conditions that guarantees the pe
bative stability of AdS space@26#. In this case, a static cir
cularly symmetric black hole solution, dressed with a sca
field which is regular everywhere3 was found in Ref.@20#.
The scalar field is given by

f5arctanhA B

H~r !1B
, ~18!

3The solution forn50 was found in the conformal frame in Re
@28#. Recently, a four-dimensional black hole dressed with a c
formally coupled scalar field has been obtained in@29# for a posi-
tive cosmological constant.
08400
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whereB is a non-negative integration constant and

H~r !5
1

2
~r 1Ar 214Br !.

The metric reads

ds252S H

H1BD 2

F~r !dt21S H1B

H12BD 2 dr2

F~r !
1r 2dw2,

~19!

with

F5
H2

l 2
2~11n!S 3B2

l 2
1

2B3

l 2H
D .

The event horizon is located at

r 15Bqn ,

where the constantqn is expressed in terms ofz511 iAn,
as

qn52~zz̄!2/3
z2/32 z̄2/3

z2 z̄
. ~20!

As a function ofn, qn is monotonically increasing, and as
ymptotically grows asAn. The causal structure of this ge
ometry is identical to that of the non-rotating BTZ black ho
@22#.

The mass of this black hole can be obtained from
quasilocal stress-energy tensor~15! choosing um

5(1/NS)d t
m in the surface integral~16!, which now reads

M5MG1Mf52 lim
r→`

E
S1

rdw A2gttgtt~TG
tt 1Tf

tt !,

5
1

8pG
lim
r→`

E
S1

rdwA2gttF S 2
1

rAgrr

1
1

l D
1

1

l S f22
2l

Agrr

f] rf D G .

Note that the contribution coming from the matter piece

Mf5
1

2Gl2
~Br2B2!,

has a linearly divergent term which is exactly cancelled
the one appearing inMG , which is given by

MG5
1

2Gl2
S 2Br1

B2~713n!

4 D ,

and therefore, the black hole mass is

-

7-4
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M5
3B2

8Gl2
~11n!. ~21!

This result coincides with the expression~7! obtained from
the Hamiltonian formalism forj5] t , i.e., Q(] t)5M .

B. New solutions

For the rangen<0, an independent static circularly sym
metric solution with a nontrivial scalar field exists.4 The sca-
lar field is given by

f5arctanhSA B

f ~r !1BA2n
D , ~22!

with

f ~r !5 1
2 $r 2B~A2n21!

1A@r 2B~A2n21!#214BA2nr %, ~23!

so thata in Eq. ~4! differs from 2 2
3 , the value it attains in

the black hole case, but now depends on the parametern:

a52
113A2n

6
.

The metric is given by

ds252
r 2

l 2
dt21

l 2@ f 1B~A2n21!#2~ f 1BA2n!2

f 2@ f 22B~B22 f !A2n2B2n#2
dr2

1r 2dw2, ~24!

with asymptotic behavior of the form~5!. The integration
constantB is non-negative, and forB50, this solution re-
duces to the massless BTZ black hole withf50. The geo-
metric behavior of Eq.~24! radically varies, depending o
the range of the parametern.

The nullnut

For the rangen,21, the potential looks like a ‘‘Mexican
hat.’’ In this case, the scalar field~22! is regular everywhere
and the metric~24! possesses a timelike Killing vector whos
norm vanishes atr 50. Note that, under a suitable time re
caling, the line element aroundr 50 can be written as a
massless BTZ black hole with an effective AdS radiusl̃
5 l @(A2n21)/A2n#,

dsr→0
2 52

r 2

l̃ 2
dt21

l̃ 2

r 2
dr21r 2dw2.

4In the conformal frame@20#, this solution corresponds to a mas

less BTZ black hole dressed with a scalar field given byf̂
5AB/(r 1BA2n), which for n,0 is regular everywhere. For th
casen50 @30,31#, the scalar field diverges at the origin.
08400
This means that the geometry is smooth, as can be seen
the behavior of the Ricci scalar near the origin

Rr→052
6

l̃ 2
1O~r 2!.

This geometry has been dubbed ‘‘nullnut’’ because it ha
nut on the null curver 50. Its causal structure is the same
for the massless BTZ black hole, irrespective of the value
the integration constantB. As can be foreseen through th
invariance under boosts in thet-w plane, this solution, inde-
pendently of the integration constantB, has a vanishing
mass. This can be explicitly checked from the quasilo
stress-energy tensor~15! by choosingum5(1/NS)d t

m in the
surface integral~16!. In this case, the contribution comin
from the matter piece,

Mf5
Br

2l 2
1

B2~123A2n!

4l 2
,

is exactly cancelled by the contribution of the gravitation
sector, that is,MG52Mf , yielding zero total mass. Owing
to this fact, these configuration can be regarded as a so
degenerate ground state.

For the range21<n<0, the metric~24! describes a dif-
ferent geometry, because it has what we consider to be a
naked singularity atr 50, since its mass vanishes, and it h
a finite Euclidean action.

IV. THERMODYNAMICS FROM THE EUCLIDEAN
ACTION

Since our action~8! has been regularized by the presen
of the counterterm~14!, in the semiclassical approximatio
the partition function is determined by the exponential of t
Euclidean action,Z5exp(I), evaluated on the classical solu
tion, without the need of a background subtraction. Hen
the thermodynamics for the scalar black hole~18!, ~19! can
be read from the Euclidean action evaluated on the Wi
rotated solution.

On shell, the bulk term reduces to

I Bulk5
2

pGE
M

d3xAgV~f!

52
b

2Gl2
lim

r 0→`
E

r 1

r 0
dr

r @~H1B!31nB3#

H2~H12B!

52
b

4Gl2
@r 0

212Br02B2~513n!#,

and, when the cutoffr 0→`, the surface terms read

1

8pGE
]M

d2xAgQ5
b

4Gl2
@2r 0

214Br02B2~713n!#,
7-5
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1

8pGE
]M

d2x
Ag

l
5

b

4Gl2
F r 0

22
3

2
B2~11n!G ,

1

8pGlE]M
d2xA2g~2lfn̂M]Mf2f2!

5
b

4Gl2
@2B222Br0#.

As the scalar black hole solution, described by Eqs.~18! and
~19!, has an inverse Hawking temperature given by

b5
2p l 2

3B

qn

~11n!
, ~25!

the Euclidean action is

I 52bF5
pqn

4G
B, ~26!

and consequently, the counterterm prescription reprodu
the expected thermodynamic expression for the free ene
Indeed, the mass in Eq.~21! and the entropy are recovere
from Eq. ~26! through

M52
]I

]b
5

3B2

8Gl2
~11n!,

S5S 12b
]

]b D I 5
pr 1

2G
5

A

4G
.

An analogous computation shows that, for the nullnut
lution given by Eqs.~22! and ~24! with n,21, the Euclid-
ean action vanishes. This is consistent with the fact that
nullnut has vanishing mass and temperature, as well as a
entropy.

A. Thermal decay

Note that the specific heat of the scalar black hole is gi
by C5]M /]T5(p/2)r 1 , which is always positive. This
means that the scalar black hole can always reach the
equilibrium with a heat bath. However, for a fixed tempe
ture, in addition to the scalar black hole~SBH!, a BTZ black
hole with a vanishing scalar field can also be at equilibri
with the heat bath. This raises the question of whether
scalar black hole could decay into the BTZ black hole.
examine this question, one needs to evaluate the differe
between their respective free energies.

As both geometries approach AdS at infinity, the mat
ing of the temperatures leads to the following relations
between both horizon radii:

r 1
SBH5

qn
2

3~11n!
r 1

BTZ .
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The action for the scalar black hole is given by Eq.~26!, and
the action for BTZ can be readily obtained in the same w
I BTZ5pr 1

BTZ/4G. Therefore their difference

I SBH2I BTZ5
p

4G Fqn2
3~11n!

qn
GB,

which is always negative sinceqn2@3(11n)/qn#,0 for
the rangen.21. This means that there is a nonvanishi
probability for the decay of a scalar black hole into the BT
black hole, induced by the thermal fluctuations, irrespect
of the value of the horizon radius. Furthermore, since

MSBH

MBTZ
5

SSBH

SBTZ
5

qn
2

3~11n!
,1,

in the decay process, the scalar black hole absorbs en
from the thermal bath, thus increasing its horizon radius,
consequently its entropy. This suggests that in this proc
the scalar field is, in some sense, absorbed by the black h

Analogously, since the nullnut solution, given by Eq
~22! and~24!, has vanishing temperature and action, there
probability of decaying into a BTZ black hole. Hence, in
similar way, the nullnut would be able to absorb its ow
scalar field.

B. Central charge

Note that, even though the falloff of the fields at infinit
given by Eqs.~4! and ~5!, is slower than that of a localized
distribution of matter, this set of conditions is also left i
variant under the Virasoro algebra generated by Eq.~1!.
Moreover, although the expression for canonical charges
fers from the one found in@4#, it was shown in@20# that their
algebra is identical, i.e., two copies of the Virasoro alge
with exactly the same central extension. This follows fro
the results of Ref.@32#, which states that the bracket of tw
charges provides a realization of the asymptotic symme
algebra with a possible central extension. For the class
potentials which are consistent with the modified asympto
behavior~4! and~5!, the massless BTZ black hole with van
ishing scalar field corresponds to the ground state. Thus,
central charge can be determined by computing the varia
of the charges on the vacuum. It is simple to check that
same result is obtained for the nullnut solution given in S
III B 1.

The purpose of this section is to show that the cen
charge can also be obtained in the context of the AdS/C
correspondence. The latter associates the Brown-Y
quasilocal stress-energy tensorTmn with the stress-energy
tensor of a conformal field theory living at the spacetim
boundary. For the three-dimensional cases considered h
the boundary metric is conformal to a flat cylinder, i.e.,ds2

52(dt2/ l 2)1dw252dx1dx2, with x65(t/ l )6w. It is
well known that under diffeomorphisms of the form

x1→x12j1~x1!,

x2→x22j2~x2!,
7-6
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the T11 component of the stress-energy tensor for a tw
dimensional CFT transforms as

djT115~2]1j1T111j1]1T11!2
c

24p
]1

3 j1, ~27!

where the last term is the quantum anomaly. Hence, the
tral chargec can be obtained by identifying the Brown-Yor
tensor in Eq.~15! with that of the dual CFT. Indeed, makin
the variation of Eq.~15! using the asymptotic Killing vectors
given by

x1→x12j12
l 2

2r 2
]2

2 j2,

x2→x22j22
l 2

2r 2
]1

2 j1,

r→r 1
r

2
~]1j11]2j2!,

and evaluating the expression for the ground state~for which
Tmn vanishes!, one obtains

djT1152
l

16pG
]1

3 j1. ~28!

Comparison of Eq.~28! with Eq. ~27! yields the same ex
pression as one obtains for pure gravity with a negative c
mological constant,

c5
3l

2G
,

and hence, the Brown-Henneaux central charge is recov
from the AdS/CFT correspondence. It is simple to check t
the counterterms explicitly containing the scalar field do
contribute to the variation of the quasilocal stress-energy
sor, and also that the same result would hold if we had c
sen the nullnut solution as the ground state.

In the case of pure gravity with the standard asympto
conditions, the central charge was first obtained through
AdS/CFT correspondence by Henningson and Skenderis@8#.

As was noted in@20#, it is worth mentioning that if one
naively follows the Cardy-Strominger approach@33#, for the
black hole solution given by Eqs.~18! and ~19!, a value for
-

08400
-

n-

s-

ed
t
t
n-
o-

c
e

the entropy that always exceeds the semiclassical resu
obtained, thus violating in this way the holographic bou
@34,35#.

V. DISCUSSION AND COMMENTS

A finite action for three-dimensional gravity with a min
mally coupled self-interacting scalar field has been c
structed. Since the falloff of the fields at the asymptotic
gion was assumed to be slower than that of a locali
distribution of matter, the counterterm Lagrangian needed
render the action finite acquires contributions depending
plicitly on the scalar field. This means that the quasilo
conserved charges also acquires a non-trivial contribu
coming from the matter sector. This fact is in agreement w
results obtained via the Hamiltonian@20# as well as covariant
methods@36#.

The same central charge as for pure gravity was found
means of the AdS/CFT correspondence. The required co
terterms were found by demanding that the action attain
extremum for the boundary conditions mentioned above,
this also ensures the convergence of the action. A treatm
of this method in a more general setting will appear el
where.

The asymptotic conditions considered here correspon
exact solutions, including black holes. Had we assumed
ferent asymptotic behavior for the fields, different count
terms would be found. This problem has also been explo
in three and higher dimensions@37–39#.

The possibility of a phase transition between black ho
and solutions with naked singularities@40# in three dimen-
sions, as well as its relevance for the AdS/CFT corresp
dence, has been recently explored in Ref.@41#. A more gen-
eral discussion of the problem of the thermodynami
properties of naked singularities in this model is curren
under study.
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