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Finite action for three dimensional gravity with a minimally coupled scalar field
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Three-dimensional gravity with a minimally coupled self-interacting scalar is considered. The falloff of the
fields at infinity is assumed to be slower than that of a localized distribution of matter in the presence of a
negative cosmological constant. However, the asymptotic symmetry group remains to be the conformal group.
The counterterm Lagrangian needed to render the action finite is found by demanding that the action attain an
extremum for the boundary conditions implied by the above falloff of the fields at infinity. These counterterms
explicitly depend on the scalar field. As a consequence, the Brown-York stress-energy tensor acquires a
nontrivial contribution from the matter sector. Static circularly symmetric solutions with a regular scalar field
are explored for a one-parameter family of potentials. Their masses are computed via the Brown-York quasilo-
cal stress-energy tensor, and they coincide with the values obtained from the Hamiltonian approach. The
thermal behavior, including the transition between different configurations, is analyzed, and it is found that the
scalar black hole can decay into the Bdns-Teitelboim-Zanelli solution irrespective of the horizon radius. It
is also shown that the AdS conformal field theory correspondence yields the same central charge as for pure
gravity.
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I. INTRODUCTION Since the scalar field behaves @¢r ~*?), it necessarily
contributes to the action and its variations in the asymptotic
The asymptotic behavior of gravity with a negative cos-region, and the counterterms {#] will not yield a finite
mological constant has been extensively explored since thaction or charge$9] in this case. In the next section, we
1980s, initially in the context of symmetries and conserveddbtain suitable counterterms, which depend explicitly on the
chargeg1-16], and now in relation with the AdS conformal scalar field, from the requirement that the action must be
field theory (CFT) correspondencgl7—19. The usual as- functionally differentiable for both metric and scalar fields
sumption is that matter fields fall off sufficiently fast to en- which obey these weaker falloff conditions. This means that
sure that conserved charges can be written as surface intéhe quasilocal stress-energy tensor defined in Rdf| also
grals involving only the metric and its derivatives. Here weacquires a contribution coming from the scalar field. In Sec.
deal with a case where the matter fields drop off so slowly inlll we will first briefly review the asymptotic conditions of
the asymptotic region that they add a nontrivial contributionRef. [20], and we will display static circularly symmetric
to the conserved charges, as well as to the Euclidean actiofolutions with a regular scalar field for a one-parameter fam-
This issue is addressed for three-dimensional gravity with dy of potentials, and compute the mass using the Brown-
minimally coupled self-interacting real scalar field. This York stress-energy tensor. In Sec. IV we will calculate the
theory admits interesting asymptotically AdS solutions, in-action for the Wick-rotated solutions, and use this to discuss
cluding black holeg20] and a sort of degenerate ground some aspects of the thermodynamics of the solutions. It turns
state, both with nontrivial regular scalar fields. To distinguishout that there is a nonvanishing probability for the decay of a
those black holes with a non-trivial scalar field from scalar black hole into the BTZ black hole. The central charge
Barados-Teitelboim-Zanell(BTZ) black holes(which are is computed via the AdS/CFT correspondence, yielding the
solutions with the scalar field constante call the former Same value as one would obtain for pure gray#y
“scalar black holes.” With the exception of the BTZ geom-
etries, the solutions have a slower than expected falloff to
AdS in the asymptotic region. The scalar potential is con4l. ACTION, COUNTERTERMS AND QUASILOCAL
structed so that this weaker falloff is preserved by the action STRESS-ENERGY TENSOR
3; Ct?:r ]}i/érlzss?ro group generated by the asymptotic Killing A. Asymptotic fall-off conditions
The asymptotic behavior of three-dimensional pure grav-
ity with a negative cosmological constant is described by the

*Email address: lenin@math.unb.ca Brown-Henneaux boundary conditiof¥], which are left in-
"Email address: martinez@cecs.cl variant under a symmetry group generated by the following
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12 discussed by Brown and Henneaugonsistency of these
=TT+ (AT +AT) [ +0(r %), relaxed asymptotic boundary conditions with the field equa-
2r tions is sufficient to fix the potentidl(¢) to be of the form

7'=—r(d, T +a_T)+0(r 1), (1) 1 , e 45U
. V(e)=- o3 8|2¢ 2I2¢> °U(p), (6
=T =T ——(FT =T )+0(r %), , o ,
2r2 where U(¢?) could be any function which is smooth in a
neighborhood oip=0. In spite of the fact tha¥/(¢) could
whereT"(x*) andT~(x~) generate two independent copies even be unbounded from below, this potential satisfies the
of the Virasoro algebra anxt" =t/ + ¢. conditions that guarantee the perturbative stability of AdS
These conditions hold also for localized matter fieldsspace25,26.
which falloff sufficiently fast at infinity, so as to give no Remarkably, it was found that this set of conditions is also
contributions to the surface integrals defining the generatorieft invariant under the Virasoro algebra generated by the
of the asymptotic symmetries. With these assumptions, thasymptotic Killing vectors(1). Furthermore, using the
charges that generate the asymptotic symmetries involvRegge-Teitelboim approadi27], it was found that the gen-
only the metric and its derivatives, and their algebra correerators of the asymptotic symmetries acquire a contribution
sponds to a central extension of the asymptotic symmetrjrom the scalar fielti
algebra, where the central charge is given by

1 él 2 2 -1/2
C:3_|. @ Q(§)—mf d@[w[(gw—f )—2re(lg= " =1)]
2G
. . . - r n 2r 2 ¢al’¢
However, there are instances in which the matter fields +28¢m,+ & | -2 , (7)
modify the asymptotic behavior of the metric. A well-known I VOrr

example is the electrically charged black hole, where the )
metric has a logarithmic divergenf22—24. In those cases, and the algebra of these canonical generators has the stan-
there is a possibility of having divergent contributions com-dard central extension given by E@) _
ing both from the gravitational and matter actions. In these [N the next section we use the background independent
situations, the asymptotic conditions must be such that thé1ethod of[8] to find the counterterm Lagrangian needed to
sum of both contributions converges. render the action finitésee aIS({9]) In contrast to the case
The case in which the falloff of the fields at infinity is of a localized distribution of matter, it is shown that the
slower than that of a localized distribution of matter wascounterterms acquire contributions, depending explicitly on
analyzed in Ref[20]. The matter sector was assumed to bethe scalar field. This allows us to construct an alternative to
given by a single self-interacting scalar field minimally Ed. (7) which we obtain from the Brown-York stress-energy
coupled to three-dimensional gravity, with the action tensor.

lgud 9, ¢]——f d3x\/_[E—§(v¢ ~V(¢)|. B. Counterterm action

In analogy with the counterterm prescription in Refs.

3 [8,9], we consider the following action:

Black hole solutions with a nontrivial scalar field were found

for a one-parameter family of potential(¢), whose = —f d3x/— (—— 5(Ve)>=V(¢)
. ) . i 16 2

asymptotic behavior belongs to the following class:

1

3 — d2x\/— O+l v, 4] (8
L_ X_ —5/2 87TG Y ctl Vs ’
b= (12 ar3/2+0(r ) (4)
where the boundary term containing the trace of the extrinsic
12 412)2 L r2 curvature® is required to fix Dirichlet conditions for the
Or=—7—"—>3 TOU ™), gu=——+0(1) metric. Owing to the asymptotic behavior of the fields, the
r r [
_ -2 _ 2
9y =0(r ), Gpp=T +0(1) (5 IHenceforth, capital latin indices stand for three-dimensional

spacetimes coordinates, and greek indices label the coordinates at
U,r=0(r ?), g,=0(1) the boundary.
2Equation (7) is a slightly improved version of the expression
where y= x(t,¢), anda is an arbitrary constant. Note that found in Ref.[20], because it does not depend on the parameter
the asymptotic behavior @, has a slower falloff than that appearing in Eq(4).
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counterterm action; is assumed to depend not only on the ) )
boundary metricy,,,, , but also on the scalar field. 877G|f d2\ =y (2l pnM oy d— ¢?),
The strategy for obtaining the counterterm action will be
t_o require that the actio(8) h.as an (_e>.<tremum for the solu- which depends on the boundary metric as well as on the
tions satisfying the asymptotic conditio® and(5). It turns scalar field.

gg:.;zat this approach also ensures the convergence of the Therefore, the counterterm action can be written as

The variation of Eq(8) is given by l=18+1¢
Cc
5|=f E,5<D'+f d?x74" 8y, 1

i 2y [—

M oM = 87TG|[ J:;Md XN — 7y

—ij d?x\— ynMay pSp+ 5 9) .

7G Jom M - +f d2 = y(21 pnMay p— $?) |, (14)

M

where®':={gy\ ¢} are the dynamical fields arfg} are the
corresponding equations of motion. The spacetime metnwherel is the counterterm required for asymptotically AdS
gun has been decomposed in a radial ADM foliation as spacehmes in the sense of Brown and Henneaux Iand
o e required to cancel the variation coming from the kinetic term
ds’=N?dr?+y,,(dx“+Ndr)(dx”+N"dr), (100 iy the bulk, provided the relaxed asymptotic conditidds
and(5) are imposed.

The presence df;ﬁ implies that the surface integrals de-
fining the conserved charges acquire a nontrivial contribution
V= (O =), (1) coming from the matter sector. This will be explicitly dem-

onstrated in the next section, where we employ the Brown-

Here the extrinsic curvatur®**, defined through the cova- York approactj21]to define the quasilocal stress-energy ten-

and the boundary momenta are

’166

riant derivative of the outward pointing normal vectoy, sor.
=(0,1//g"",0) to the boundaryM, is
C. Quasilocal stress-energy tensor
MV::%(VMﬁv+VVﬁ;L). (12) The quasilocal stress-energy ten3dr’ associated with a

region of the spacetime that is bounded by a surface with

etric is given b
Hence the action attains an extremum when the equations g}J Yu 1S 4

motion hold, and the variation of the counterterm action sat- 2 Sl
isfies TH =——=

1 “
ol ct:_f d®x 7Sy, + prey d*xy— ynMay ¢, Considering a radial Arnowitt-Deser-Misn¢ADM) folia-
M m IM . . .. . .
tion as in Eq.(10), the variation of the action on shell is

which, by virtue of the asymptotic conditiorig) and (5),

becomes sl _ d2x v+ Sl et
57;1,11 M Yuv
1 , [1
Ol =~ RLMd X |_25h«o<p_5htt where 7#" is given by Eq.(11). Hence, using Eq(l11), the
stress-energy tensor reads
d2[r6x?+(1+3a)sx*]. (13 1 2 4l
47TG|2-f rox™+( )ox71 (13 TMV:_(@YW M)+ — o
N

Here h,,(t,¢) denotes the deviation from the AdS
asymptotic metric. The first term at the right-hand side of Eqwhich by virtue ofl in Eq. (14), can be written as

(13) corresponds to the variation of the volumeadfl
TH=TE"+TY"

I 1
2y [—aol—_ 2y| = _
5 f{de X "y Zfr?Md X( |25h(P(P 6htt), 1 @ v @ﬂy_ l v
" 8aG| Y
and using the asymptotic form of the scalar field, it is simple 1
to see that the second term in E43) corresponds to the v M Y
variation of a covariant expression that reads * 8nGl Y (21 ¢nToué=¢%). (19
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The conserved charges can be constructed by choosing arhereB is a non-negative integration constant and
ADM foliation at M with spacelike surfacey, so that

1
Y XX’ = ~N2dE+ o(de+ NEd)2, H(r)=5(r+vr+4Br).
Hence The metric reads
2 2 2
Qerté)= [ ax JoureT,,. - ., [HFB|2d?
s z ds? o/ F(Nde+| 5og F(r)+r de?,
(19

Hereu* is the timelike unit normal t&, and£&* is a Killing
vector of the boundary. Thus, choosi&#y=Nyu*, the mass ith
is written as a surface integral,

_H? 38> 2B°
|v|=f dx JoNsuu"(TS, +T9) F=l At 5ty
>
=Mg+M,. (16) The event horizon is located at
r.,=Bd,,

Note that the mass acquires a nontrivial contribution from
the matter sector. ) ) )
In what follows, the previous formalism is tested for someWhere the constant, is expressed in terms af=1+i/7,
exact solutions possessing the asymptotic behavior given bjS
Egs.(4) and (5) for a one-parameter family of potentials of

the form(6). 213_213

9,= 2(27)2’3—i. (20)
z—-z
Ill. TESTING THE COUNTERTERMS WITH EXACT
SOLUTIONS As a function ofv, 9, is monotonically increasing, and as-
ymptotically grows as\/v. The causal structure of this ge-
Exact solutions for which the metric and the scalar fieldometry is identical to that of the non-rotating BTZ black hole
satisfy the asymptotic conditiorid) and(5) can be obtained [22].

for a particular one-parameter family of potentials of the The mass of this black hole can be obtained from the
form [20] guasilocal stress-energy tensof15 choosing u*
=(1/Ny) 8 in the surface integrall6), which now reads

1
V,(h)=— —2(cosﬁ>¢+ vsintf¢). (17
8l M:MG+M¢=—IimJ1rd<p V= 9ugu(TE+T),
r—o S

This potential belongs to the cla&), and different forms of
U(¢?) are obtained for different values of the dimensionless

parameterv. This parameter can be interpreted as the self- _ 1 ”mj rde /_—g _ 1 + 1
interacting coupling constant in the conformal fraf2é]. 87G, . Jst B ro, !
A. Black hole with a regular non-constant scalar field 1 2 2
T + 1| P =sae]|.
For the rangev>—1, the potential is unbounded from VOrr

below and satisfies the conditions that guarantees the pertur-
bative stability of AdS spacf26]. In this case, a static cir- Note that the contribution coming from the matter piece
cularly symmetric black hole solution, dressed with a scalar
field which is regular everywhetavas found in Ref[20].

— _R2
The scalar field is given by M¢_ZGI2(Br B),
B . . S
$=arctanhy/ ————, (18)  has a linearly divergent term which is exactly cancelled by
H(r)+B the one appearing iM ¢, which is given by
1 B%(7+3
3The solution forv=0 was found in the conformal frame in Ref. Mg= —Br+ M ,
[28]. Recently, a four-dimensional black hole dressed with a con- 2GI? 4
formally coupled scalar field has been obtained28] for a posi-
tive cosmological constant. and therefore, the black hole mass is
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BZ

M_

= 8G|2(l+ V).

(21)

This result coincides with the expressi6f obtained from
the Hamiltonian formalism fo€=4;, i.e.,Q(d;) =M.

B. New solutions

For the ranger<0, an independent static circularly sym-
metric solution with a nontrivial scalar field exi$t3he sca-
lar field is given by

/ B
b= arctan?( f(l’)-i-—B\/—_V) )

f(n=4{r-B(Y-v-1)
A =B(=v—1)]2+4BV— 1},

so thate in Eq. (4) differs from — 2, the value it attains in
the black hole case, but now depends on the parameter

1+3V—v

6

(22

with

(23

a=

The metric is given by

2 2 — 2 —
qoe gy VB v DBV
ff2—B(B—2f)\— v—B2])?

|2

+r2de?, (24)
with asymptotic behavior of the forn(). The integration
constantB is non-negative, and foB=0, this solution re-
duces to the massless BTZ black hole wjik-0. The geo-
metric behavior of Eq(24) radically varies, depending on
the range of the parameter

The nullnut

For the rangee<—1, the potential looks like a “Mexican
hat.” In this case, the scalar fiel@2) is regular everywhere,
and the metri¢24) possesses a timelike Killing vector whose
norm vanishes at=0. Note that, under a suitable time res-
caling, the line element around=0 can be written as a

massless BTZ black hole with an effective AdS radius

=I[(V=v=1)N=v],

r2 T2
— A2 __ A2 2 2
ds? o= Tzdt + r2onr +r2de?.

“4In the conformal framé20], this solution corresponds to a mass-
less BTZ black hole dressed with a scalar field given dy

= \/B/(r+B;?— v), which for v<<O is regular everywhere. For the
caser=0 [30,31], the scalar field diverges at the origin.

PHYSICAL REVIEW D67, 084007 (2003

This means that the geometry is smooth, as can be seen from
the behavior of the Ricci scalar near the origin

6
R o= —T—2+O(r2).

This geometry has been dubbed “nullnut” because it has a
nut on the null curve =0. Its causal structure is the same as
for the massless BTZ black hole, irrespective of the value of
the integration constarB. As can be foreseen through the
invariance under boosts in thiep plane, this solution, inde-
pendently of the integration consta® has a vanishing
mass. This can be explicitly checked from the quasilocal
stress-energy tensot5) by choosingu®=(1/Ny) 8t in the
surface integral16). In this case, the contribution coming
from the matter piece,

Br

_Br, B%(1-3-)
212

412

Mg

is exactly cancelled by the contribution of the gravitational
sector, that isMg=—M,, yielding zero total mass. Owing

to this fact, these configuration can be regarded as a sort of
degenerate ground state.

For the range- 1< v=<0, the metric(24) describes a dif-
ferent geometry, because it has what we consider to be a mild
naked singularity at =0, since its mass vanishes, and it has
a finite Euclidean action.

IV. THERMODYNAMICS FROM THE EUCLIDEAN
ACTION

Since our actior{8) has been regularized by the presence
of the countertern{14), in the semiclassical approximation
the partition function is determined by the exponential of the
Euclidean actionZ=exp(), evaluated on the classical solu-
tion, without the need of a background subtraction. Hence,
the thermodynamics for the scalar black h@l8), (19) can
be read from the Euclidean action evaluated on the Wick-
rotated solution.

On shell, the bulk term reduces to

2
loui= —5 f L ExVgV(4)

"o
m dr
M+

2G 1%,

r[(H+B)%+vB]
H2(H+2B)

B

B

Gl?

[r2+2Bro—B(5+3v)],

and, when the cutoffy,— o, the surface terms read

B

4G|2[2rg+43r0—52(7+3v)],

1
— 2 =
stLMd X\[yO
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1 , N , 3., The acf[ion for the scalar black _hoIe is given_ by E26), and
3G d X = 5| To— EB 1+wv)|, the action for BTZ can be readily obtained in the same way:

T3t oM 4Gl lgr7=mr 2T%/4G. Therefore their difference

1 . T 3(1+v)

2 _ M 42 _ - —
—87TGILMd XV=y(21¢n"dyd— ¢°) lsgr—ITZ G 9, 3 :
B which is always negative sincé,—[3(1+v)/4¥,]<0 for
= 2B2-2B . : .
- 4GI2[ Fol- the ranger>—1. This means that there is a nonvanishing

probability for the decay of a scalar black hole into the BTZ
black hole, induced by the thermal fluctuations, irrespective

As the scalar black hole solution, described by &) and of the value of the horizon radius. Furthermore, since

(19), has an inverse Hawking temperature given by
MSBH_ SSBH_ '912}

27?9, = = 1,
:WW’ (25) Mgrz Sgrz 3(1+vw)
) o in the decay process, the scalar black hole absorbs energy
the Euclidean action is from the thermal bath, thus increasing its horizon radius, and
consequently its entropy. This suggests that in this process,
md, the scalar field is, in some sense, absorbed by the black hole.
l=—BF= B, (26) . : :
4G Analogously, since the nullnut solution, given by Egs.

(22) and(24), has vanishing temperature and action, there is
and consequently, the counterterm prescription reproducegyobability of decaying into a BTZ black hole. Hence, in a
the expected thermodynamic expression for the free energ§imilar way, the nullnut would be able to absorb its own
Indeed, the mass in E§21) and the entropy are recovered scalar field.
from Eq. (26) through
B. Central charge

g 3B? Note that, even though the falloff of the fields at infinity,

B 8GI2(1+ v), given by Eqgs(4) and(5), is slower than that of a localized
distribution of matter, this set of conditions is also left in-
variant under the Virasoro algebra generated by @&jg.

S= ( 1_ﬁi) | = e i Moreover, although the expression for canonical charges dif-
B 2G 4G fers from the one found if4], it was shown if20] that their

algebra is identical, i.e., two copies of the Virasoro algebra

An analogous computation shows that, for the nullnut sowith exactly the same central extension. This follows from
lution given by Egs(22) and(24) with v<—1, the Euclid- the results of Ref[32], which states that the bracket of two
ean action vanishes. This is consistent with the fact that theharges provides a realization of the asymptotic symmetry
nullnut has vanishing mass and temperature, as well as a nidlgebra with a possible central extension. For the class of
entropy. potentials which are consistent with the modified asymptotic
behavior(4) and(5), the massless BTZ black hole with van-
ishing scalar field corresponds to the ground state. Thus, the
central charge can be determined by computing the variation

Note that the specific heat of the scalar black hole is giverf the charges on the vacuum. It is simple to check that the
by C=dM/dT=(m/2)r., which is always positive. This same result is obtained for the nullnut solution given in Sec.
means that the scalar black hole can always reach thermg| B 1.
equilibrium with a heat bath. However, for a fixed tempera-  The purpose of this section is to show that the central
ture, in addition to the scalar black hai8BH), a BTZ black  charge can also be obtained in the context of the AdS/CFT
hole with a vanishing scalar field can also be at equilibriumcorrespondence. The latter associates the Brown-York
with the heat bath. This raises the question of whether tthasilocal stress-energy tensof” with the stress-energy
scalar black hole could decay into the BTZ black hole. Totensor of a conformal field theory living at the spacetime
examine this question, one needs to evaluate the differengsoundary. For the three-dimensional cases considered here,
between their respective free energies. the boundary metric is conformal to a flat cylinder, i@s?

As both geometries approach AdS at infinity, the match-= — (dt?/12) + dg?= —dx"dx~, with x" = (t/l)*¢. It is

ing of the temperatures leads to the following relationshipwell known that under diffeomorphisms of the form
between both horizon radii:

A. Thermal decay

. X" X" = £ (xY),
SBH_ ¥ ez

R TE R R XX — £ (X7),
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the T, . component of the stress-energy tensor for a twothe entropy that always exceeds the semiclassical result is
dimensional CFT transforms as obtained, thus violating in this way the holographic bound
[34,35.

C
OT 4= (2048 Ty €70, o) = 5—03 €, (27) V. DISCUSSION AND COMMENTS

A finite action for three-dimensional gravity with a mini-

where the last term is the quantum anomaly. Hence, the Cef oy coypled self-interacting scalar field has been con-

tral chargec can be obtained by identifying the Brown-York g4\ cted. Since the falloff of the fields at the asymptotic re-
tensor in Eq(15) with that of the dual CFT. Indeed, making gion was assumed to be slower than that of a localized
the variation of Eq(15) using the asymptotic Killing vectors  gistribution of matter, the counterterm Lagrangian needed to

given by

X+—>X+—§+—?é’2,§_,
2
e 2

X —x —§ —?0+§+,

(o S (080,

and evaluating the expression for the ground statewhich
T,, vanisheg one obtains

8Ty = JLET (28)

167G

Comparison of Eq(28) with Eq. (27) yields the same ex-

render the action finite acquires contributions depending ex-
plicitly on the scalar field. This means that the quasilocal
conserved charges also acquires a non-trivial contribution
coming from the matter sector. This fact is in agreement with
results obtained via the HamiltonigR0] as well as covariant
methodg 36].

The same central charge as for pure gravity was found by
means of the AdS/CFT correspondence. The required coun-
terterms were found by demanding that the action attain an
extremum for the boundary conditions mentioned above, and
this also ensures the convergence of the action. A treatment
of this method in a more general setting will appear else-
where.

The asymptotic conditions considered here correspond to
exact solutions, including black holes. Had we assumed dif-
ferent asymptotic behavior for the fields, different counter-
terms would be found. This problem has also been explored
in three and higher dimensiof37-39.

The possibility of a phase transition between black holes

pression as one obtains for pure gravity with a negative cos2nd solutions with naked singulariti¢d0] in three dimen-

mological constant,

3l

°= 36"

and hence, the Brown-Henneaux central charge is recovered

sions, as well as its relevance for the AdS/CFT correspon-
dence, has been recently explored in Réf]. A more gen-
eral discussion of the problem of the thermodynamical
properties of naked singularities in this model is currently
under study.
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