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Quantum radiation from a 5-dimensional rotating black hole
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We study a massless scalar field propagating in the background of a five-dimensional rotating black hole. We
show that in the Myers-Perry metric describing such a black hole the massless field equation allows the
separation of variables. The obtained angular equation is a generalization of the equation for spheroidal
functions. The radial equation is similar to the radial Teukolsky equation for the 4-dimensional Kerr metric. We
use these results to quantize the massless scalar field in the space-time of the 5-dimensional rotating black hole
and to derive expressions for energy and angular momentum fluxes from such a black hole.
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I. INTRODUCTION

Solutions of Einstein’s equations describing black holes
space-times with more than usual (311) dimensions have
been known in literature for 40 yr@1#. Until recently, they
were practically only of academic interest. The situation h
changed with the appearance of so-called brane world m
els @2# in which large extra spatial dimensions can ex
~much larger than the apparent Planck length sc
;10233 cm). In this framework, the fundamental quantu
gravity energy scale could be in the 1 TeV range, while
characteristic length scale~compactification radius of extra
dimensions! can be as large as 0.1 mm. This allows the
istence of higher dimensional mini-black holes which can
described within the classical theory of gravity. Being gra
tational solitons, black holes in the brane world can ‘‘live
out of the brane in the bulk space. If the gravitational rad
of such a black hole is much smaller than the distance to
brane and the characteristic length defined by the bulk
vature and/or the size of extra dimensions, the influence
the external conditions on the properties of the space-t
near the horizon is small. Under these conditions in orde
describe the black hole one can use solutions of vacu
Einstein equations. This also can be true for small bla
holes attached to the brane provided the brane is ‘‘soft’’; t
is, its tension is small.

From a phenomenological point of view, the most exc
ing possibility is that such mini-black holes can be produc
in particle collisions in near future accelerator and cosm
ray experiments@3#. In order to predict the correct exper
mental signature of these events, one has to know the b
properties of solutions of these higher dimensional bla
holes. In general case, the impact parameter in particle
lision will be nonzero. Therefore, majority of black hole
produced in such way would be rotating.

Higher dimensional black holes were studied before
different contexts. For example, supersymmetric rotat
black holes were studied in@4,5#. The solution analyzed
there is not a vacuum solution of Einstein’s equations a
requires some special choice of parameters in order to
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commodate the supersymmetry. In@6,7#, rotating black holes
were studied in the context of string theory. Scalar field gr
body factors were calculated for a very general case o
boosted vacuum solution of Einstein’s equations.

The metric for higher dimensional rotating black hol
was first derived by Myers and Perry@8#. In the present
paper, we study the massless scalar field equation in
background of a five-dimensional rotating black hole d
scribed by the Myers-Perry metric. We show that this eq
tion allows the separation of variables. The obtained ang
equation is a generalization of the equation for sphero
functions. The radial equation is similar to the radial Teuk
sky equation for the 4-dimensional Kerr metric.

In the case of 311 dimensions, there is only one param
eter of rotation and there is an axis of rotation which sta
invariant under rotation. The rotation group in 411 dimen-
sions, SO(4), has twoCasimir operators. Rather than an ax
of rotation, there exist planes of rotation which stay invaria
under the rotation. This implies that, in general, there are
parameters of rotation corresponding to two independ
planes of rotation. In a special case, one can set one of
parameters to zero and consider rotations only in one pla
We find interesting that in another special case, when b
parameters of rotation are nonzero and equal in magnitu
the angular equation reduces to a case of a nonrotating b
hole. For this special case, the space-time has two additi
Killing vectors. It is interesting that the spatial 3-dimension
slices of this space-time are homogeneous and belong to
Bianchi-type VIII class.

We analyze the structure and asymptotics of solutions
the radial equation which determine the black hole gr
body factors. We use these results to quantize the mas
scalar field in the space-time of the 5-dimensional rotat
black hole and to derive expressions for energy and ang
momentum fluxes from such a black hole.

II. MYERS-PERRY METRIC

A. Generic case

Following Myers and Perry@8#, we write the metric of a
5-dimensional rotating black hole in the form
©2003 The American Physical Society04-1
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ds252dt21~r 21a1
2!~dm1

21m1
2 df1

2!

1~r 21a2
2!~dm2

21m2
2 df2

2!1
P F

P2r 0
2 r 2

dr2

1
r 0

2 r 2

P F ~dt1a1 m1
2 df11a2 m2

2 df2!2, ~2.1!

F512
a1

2 m1
2

r 21a1
2 2

a2
2 m2

2

r 21a2
2 , ~2.2!

P5~r 21a1
2!~r 21a2

2!. ~2.3!

Here r 0 is length parameter connected with the black h
massM:

M5
3r 0

2

8ApG
, ~2.4!

where G is the (411)-dimensional gravitational couplin
constant. Besidesr 0 the metric~2.1! contains two rotation
parametersa1 anda2. The variablesm1 andm2 are not in-
dependent. They obey a constraint

m1
21m2

251. ~2.5!

Instead of keeping the symmetric form of the metric~2.1!,
we prefer to solve the constraint~2.5! explicitely. We use the
following parametrization:

m15sinu, m25cosu. ~2.6!

Let us also introduce the following notation:

a5a1 , b5a2 , f5f1 , c5f2 , ~2.7!

r25r 21a2 cos2u1b2 sin2u, ~2.8!

D5~r 21a2!~r 21b2!2r 0
2 r 2. ~2.9!

Then, the metric~2.1! takes the form

ds25dg21
r 2r2

D
dr21r2 du2, ~2.10!

dg2[gAB dxA dxB

52dt21~r 21a2!sin2u df21~r 21b2!cos2u dc2

1
r 0

2

r2 @dt1a sin2u df1b cos2u dc#2. ~2.11!

HereA,B50,3,4 andx05t, x35f, x45c. Anglesf andc
take values from the interval@0,2p#, while angleu takes
values@0,p/2#.

The metric~2.10! is invariant under the following trans
formation:

a↔b, u↔ p

2
2u, f↔c. ~2.12!
08400
e

It possesses three Killing vectors,] t , ]f , and]c . For this
metric,

A2g5sinu cosu r r2. ~2.13!

The black hole horizon is located atr 5r 1 , where

r 6
2 5

1

2
@r 0

22a22b26A~r 0
22a22b2!224a2b2#.

~2.14!

The angular velocitiesVa andVb and the surface gravityk
are

Va5
a

r 1
2 1a2 , Vb5

b

r 1
2 1b2 , ~2.15!

k5
] rP22r 0

2 r

2r 0
2 r 2 U

r 5r 1

. ~2.16!

B. Degenerate case

As we already mentioned in a general case the Mye
Perry metric has three Killing vectors. The space-time
comes more symmetric whena5b. To demonstrate this le
us consider first the geometry of the sectiont5const. It has
the form

ds4
25

r 2 ~r 21a2!

~r 21a2!22r 0
2 r 2 dr21ds3

2 , ~2.17!

ds3
25a ~du21sin2u df21cos2u dc2!

1b~sin2u df1cos2u dc!2, ~2.18!

where

a5r 21a2, b5
r 0

2 a2

r 21a2 . ~2.19!

By introducing new coordinates

F5c2f, C5c1f, q52u, ~2.20!

where C takes values from the interval@0,4p#, F from
@22p,2p#, andq from @0,p#, one can rewrite the metric
~2.18! as follows:

ds3
25A ~dq21sin2q dF2!1B ~cosq dF1dC!2.

~2.21!

Here,

A5
a

4
, B5

a1b

4
. ~2.22!
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This is a canonical form of the Bianchi-type VIII metri
when there exists a four-parameter group of isometries ac
transitively in the 3-dimensional space@10#.1 The corre-
sponding Killing vectors are

K15]F , K25]C ,

K35cosF ]q2cotq sinF ]F1
sinF

sinq
]C , ~2.23!

K452sinF ]q2cotq cosF ]F1
cosF

sinq
]C .

It is easy to check that these vectors~together with] t) are
also Killing vectors for the 5-dimensional space-time met
~2.10! whena5b.

Killing vectors can be viewed as generators of the sy
metry group of the manifold. We can obtain a more famil
form of these Killing vectors. First note that

K3K42K4K35K1 , ~2.24!

where multiplications denote successive applications of
operator. Then, the quadratic combinationK3

21K4
21K1

2

yields

K3
21K4

21K1
25

]2

]q2
1cotq

]

]q

1
1

sin2q
S ]2

]F2
22 cosq

]2

]F]C
1

]2

]C2D .

~2.25!

We can identify

JF[2 iK 1 , JC[2 iK 2 , J2[2~K3
21K4

21K1
2!,

~2.26!

whereJF , JC , andJ2 are familiar angular momentum op
erators, whileF, C, andq are Euler angles for the rotatio
group O(3).

The scalar curvatureR for the metric~2.18!,

R52
3~r 21a2!22a2r 0

2

~r 21a2!3
, ~2.27!

is constant at fixedr and has a positive sign as long asr
.aA(A3/3)(r 0 /a)21.

Another interesting observation is the following. Inste
of metric on slices t5const, one can consider th
4-dimensional foliation of the space-time by the Killing tr
jectories of the fieldj t5] t . The metric on this foliations is
determined as@11#

1In @9# rotating black hole solutions to four-dimensional Einste
Maxwell-dilaton-axion gravity were analyzed. It was shown th
they are closely related to the 5-dimensional rotating Myers-P
black hole witha5b.
08400
g
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gmn
(4)5gmn2

jmjn

j2
. ~2.28!

For the Myers-Perry metric~2.1! this metric is

dS2[gmn
(4)dxm dxn5

r 2 ~r 21a2!

~r 21a2!22r 0
2 r 2 dr21dS3

2 ,

~2.29!

wheredS3
2 has the form~2.18!, with

a5r 21a2, b5
r 0

2 a2

r 21a22r 0
2 . ~2.30!

Thus this metric is also a metric of homogeneo
3-dimensional space with the four-parameter group of m
tion.

The scalar curvature for the metricdS3
2

R52
3~r 21a2!223r 0

2r 224r 0
2a2

@~r 21a2!2~r 21a22r 0
2!#

~2.31!

is also constant forr 5const and it is positive for

r . 1
6
A18r 0

2236a216A~9r 0
4112r 0

2a2!. ~2.32!

C. Flat space-time limit

When r 050 the metric takes the form

ds252dt21~r 21a2!sin2u df21~r 21b2!cos2u dc2

1
r 2r2 dr2

~r 21a2!~r 21b2!
1r2 du2. ~2.33!

Such a space-time is flat and the metric can be rewritten

ds252dT21dX21dY21dZ21dW2

52dT21dR21R2 dV3
2 , ~2.34!

whereT5t and

X5Ar 21a2 sinu cosf̃, Y5Ar 21a2 sinu sinf̃,

Z5Ar 21b2 cosu cosc̃ , W5Ar 21b2 cosu sinc̃.

~2.35!

Here,

f̃5f2tan21~a/r !, c̃5c2tan21~b/r !, ~2.36!

R2[X21Y21Z21W25r2, ~2.37!

anddV3
2 is the line element on a unit three-sphereS3. At far

distancesR and r differs only by terms of the order ofa2/r
and b2/r . Also normals toR5const andr 5const coincide
with the same accuracy.

t
ry
4-3
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A two-dimensional planeZ5W50 (X-Y-planePXY) is a
plane of rotation, whilePZW whereX5Y50 is a two-plane
orthogonal toPXY .

III. SCALAR FIELD EQUATION: SEPARATION
OF VARIABLES

Let us consider a scalar massless fieldw with the action

W@w#52
1

2 E d5x A2g @~¹w!21jRw2#. ~3.1!

It obeys the following equation:

hw2jRw5
1

A2g
]m~A2g gmn]nw!2jRw50. ~3.2!

The space-time~2.10! is Ricci flat so thatR50. Let us de-
noteh* 5r2 h. Then the field equation

h* w50, ~3.3!

can be identically written in the form

HABw ,AB1
1

r
] rFDr ] rw G 1

1

sinu cosu
]u@sinu cosu]u w#50,

~3.4!
al
es

08400
whereHAB5r2 gAB. We usedGRTENSORprogram to calcu-
late gmn andA2g. The components ofHAB are

Htt5~a22b2!sin2u2
~r 21a2!@D1r 0

2~r 21b2!#

D
,

~3.5!

Hff5
1

sin2u
2

~a22b2!~r 21b2!1b2r 0
2

D
, ~3.6!

Hcc5
1

cos2u
1

~a22b2!~r 21a2!2a2r 0
2

D
, ~3.7!

Htf5
ar0

2~r 21b2!

D
, Htc5

br0
2~r 21a2!

D
,

Hfc52
abr0

2

D
. ~3.8!

The Eq.~3.4! allows the separation of variables. Namely,
solution can be decomposed into modes of the form

w;e2 iv teimfeikcR~r !Q~u!. ~3.9!

The angular functionQ obeys the equation
d

du S sinu cosu
dQ

du D1Fl2v2~a2 sin2u1b2 cos2u!2
m2

sin2u
2

k2

cos2uGsinu cosu Q50. ~3.10!
eld
e

be

on.
lar
The radial equation reads

D

r

d

dr FDr dR

dr G1WR50, ~3.11!

W5DS 2l1v2~r 21a21b2!

1
m2~a22b2!

r 21a2
1

k2~b22a2!

r 21b2 D
1r 0

2~r 21a2!~r 21b2!S w2
ma

r 21a2
2

kb

r 21b2D 2

.

~3.12!

We used the freedoml→l1const in the choice of the
separation constantl in order to get the angular and radi
equations in the most symmetric way. For this choice th
equations are invariant under the transformation

a↔b, u↔ p

2
2u, m↔k. ~3.13!
e

It should be emphasized that the separability of the fi
equation~3.3! is directly connected with the existence of th
Killing tensor for the metric~2.10!,~2.11!. The explicit form
of this Killing tensor and discussion of its properties can
found in @12#.

IV. HYPERSPHEROIDAL FUNCTIONS

A. Generic case

The angular equation can be rewritten forS(u)
5Acosu Q(u) as follows:

d2S

du2 1
cosu

sinu

dS

du
1UlS50, ~4.1!

Ul5l̃2a sin2u2
m2

sin2u
2

k221/4

cos2u
, ~4.2!

wherea5(a22b2)v2 and l̃5l2v2b21 3
4 .

We discuss now properties of solutions of this equati
We are looking for solutions which are regular at singu
points of the equation,u50 and u5p/2. This condition
singles out special discrete values ofl which we enumerate
by an integer number,. Finding eigenvaluesl,(m,kua) and
4-4
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eigenfunctionsS,
m,k(uua) is a well defined problem. Stan

dard arguments show that the eigenfunctions with differ
l,(m,kua) are orthogonal to one another with the prop
chosen measure. Thus we write

E
0

p/2

du sinu S,
m,k~uua! S,8

m,k
~uua!5d,,,8 . ~4.3!

In what follows, we shall use the following normalized set
functions:

Y,mk~u,f,cua!5
eimf1 ikc

2p

S,
m,k~uua!

Acosu
. ~4.4!

We shall also use the compact notation for the indexA
5$,,m,k%. This set of functions possess the following no
malization conditions

E dg YAȲA8 5dAA8 , ~4.5!

where

E dg~••• !5E
0

p/2

sinu cosu du

3E
0

2p

df E
0

2p

dc ~••• !,

dAA85d,,8dmm8dkk8 . ~4.6!

With x5cos(u), the Eq.~4.1! can be rewritten as follows:

d

dx F ~12x2!
dS

dxG1UlS50, ~4.7!

Ul5l̃1ax22
m2

12x2 2
k221/4

x2 . ~4.8!

This equation besides̀ has three singular pointsx50,61 at
which solutions have the following asymptotic behavior:

S~x!;x6k at x50, S~x!;~17x!6m/2 at x561.

~4.9!

For a regular solution, we have

S~x!5xuku ~12x2! umu/2 F~x!, ~4.10!

whereF is a solution of the equation

x2~12x2!F91~22x3umu22x3uku

12xuku22x3!F8S a2v2x41@l2~ umu1uku!2

2~ umu1uku!# x21
1

4
2uku DF50. ~4.11!
08400
t
r
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The regularity condition means that we are looking for
solutionsF(x) which are finite atx50 and atx51. This
gives us the two-point boundary value problem.

B. Degenerate case

Consider now the degenerate case whena5b. A solution
S of Eq. ~4.1! is of the form

S,
umu,uku~u!5sinumu u Acosu @C1 cosuku us,

umu,uku~ uku,u!

1C2 cos2uku us,
umu,uku~2uku,u!#, ~4.12!

s,
umu,uku~ uku,u!5F~a1 ,a2 ;11uku;cos2u!, ~4.13!

a65
umu111uku

2
6

1

2
A11l. ~4.14!

Here F(a,b;c;z) is a hypergeometric function. The coeffi
cients of this function in our case posses the propertya1b
2c5umu5(positive) integer number. The regularity ofS at
u5p/2 requiresC250, while its regularity atu50 implies

umu111uku
2

2
1

2
A11l52,, ~4.15!

where, is an integer number. Thus we have

l,~ umu,uku!5~2,1umu1uku11!221. ~4.16!

The corresponding eigenfunctions are the Jacobi polyno
als P,

umu,uku(122 cos2 u). Thus

Y,mk~u,f,cua50!

5
eimf1 ikc

2p
~12z! umu/2~11z! uku/2B,

umu,ukuP,
umu,uku~z!,

~4.17!

wherez5cos(2u)5cosq and

B,
umu,uku522(umu1uku21)/2A2,1umu1uku11

3AG~,11!G~,1umu1uku11!

G~,1umu11!G~,1uku11!
. ~4.18!

Note that fora5b the hyperspheroidal harmonics~4.4! are
eigenfunctions of the operatorsJF , JC , andJ2 determined
by Eq. ~2.26!. Using this fact one can demonstrate that t
set~4.4! of hyperspheroidal harmonics is complete~see, e.g.,
@13,14#!. For this set, we havem50,61,62, . . . , k50,
61,62, . . . , l 50,1,2, . . . .

V. RADIAL EQUATION

It is convenient to rewrite the radial equation~3.11! as
follows. Let us define

R5F r

~r 21a2!~r 21b2!G
1/2

R. ~5.1!
4-5
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Then, one has

d2R
dr

*
2

1V R50, ~5.2!

wherer is a tortoise coordinate with the property
*

o

-
e

08400
dr*
dr

5
~r 21a2!~r 21b2!

D
. ~5.3!

The effective potentialV is2
V5

r 2DF2l1v2 ~r 21a21b2!1
m2 ~a22b2!

r 21a2
1

k2 ~b22a2!

r 21b2 G
~r 21a2!2~r 21b2!2

1
ZD2

4r 2~r 21a2!4~r 21b2!4

1

r 0
2r 2S v2

ma

r 21a2
2

kb

r 21b2D 2

~r 21a2!~r 21b2!
, ~5.4!
so-

ex-

e
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g
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here
ply
ults.
n

ork
where

Z521r 8114r 6~a21b2!15r 4~a22b2!2

210r 2a2b2~a21b2!23a4b4.

The radial equation is evidently invariant under the transf
mation

a↔b, m↔k. ~5.5!

At the horizon, i.e.,r 5r 1 , the effective potentialV takes the
form

Vhor5~v2mVa2kVb!2, ~5.6!

with Va and Vb defined by the Eq.~2.15!. The asymptotic
value of the potentialV at infinity is

Vin f5v2. ~5.7!

We define two sets of solutionsR A
in(r uv) and R A

up(r uv)
~with A5$,,m,k%) by the boundary conditions

R A
in~r uv!;H tA

in~v!e2 iÃr
* as r→r 1

e2 ivr
* 1r A

in~v!e1 ivr
* as r→`

~5.8!

and

R A
up~r uv!;H r A

up~v!e2 iÃr
* 1e1 iÃr

* as r→r 1

tA
up~v!e1 ivr

* as r→`.
~5.9!

Here,

Ã5v2mVa2kVb . ~5.10!

Since the eigenvaluesl,(mkua) are real the functions com
plex conjugated toR J

in andR J
up are also solutions. Using th
r-

constancy of the Wronskian for various combinations of
lutions of the radial equation one gets

12ur A
in~v!u25

Ã

v
utA

in~v!u2, 12ur A
up~v!u25

v

Ã
utA

up~v!u2,

~5.11!

v t̄ A
up~v!r J

in~v!52Ã r̄ A
up~v! tA

in~v!, v tA
up~v!5Ã tA

in~v!.

~5.12!

It should be emphasized that, as it was the case in 311
dimensions, for certain values ofv it is possible to have the
reflection coefficients greater than one. This implies the
istence of the so-calledsuper-radiance effect. The condition
for super-radiance is

0,v,mVa1kVb . ~5.13!

In this case, it follows from Eq.~5.11! that the reflection
coefficientsr A

in,up(v) become greater than one. This is th
consequence of the fact that the scalar field modes obe
~5.13! are amplified by the rotating black hole.

VI. ENERGY AND ANGULAR MOMENTUM FLUXES

Quantization of massless fields in the 4-dimensio
space-time of a rotating black hole was discussed in@15–18#
~see also@19#!. Main aspects of the quantization includin
the choice of the state remain practically the same in
5-dimensional case. For this reason, we shall not repeat
all the formal elements of the standard procedure but sim
introduce the required notations and present the final res
We shall follow the paper@18#, where necessary details ca
be found.

2The more general setup adopted for the string theory framew
was studied in@6,7#.
4-6



t

ws

la

,

w
a

s

ss

e

n

the

ntum

al

ev-
nd
ar a
of

ve
in

t is
a

od-

QUANTUM RADIATION FROM A 5-DIMENSIONAL . . . PHYSICAL REVIEW D 67, 084004 ~2003!
In order to quantize the field one uses the complete se
orthonormal complex solutions of the field equation~3.2!.
The scalar product for these solutions is defined as follo

^w1 ,w2&5
i

2ES
A2g ~ ū2,m u12ū1,m u2! dSm, ~6.1!

whereS is any complete Cauchy surface. Since the sca
product~6.1! does not depend on the choice ofS, it is con-
venient in our case to chooseS5J 2øH2, whereJ 2 is the
past null infinity andH2 is the past horizon.~For details, see
e.g.,@19#.!

Using solutions of the radial and angular equations,
define the following normalized solutions of the field equ
tion ~3.2! @in coordinates (t,r ,u,f,c)]:

uL
in~x!5F r

4pv~r 21a2!~r 21b2!G
1/2

3e2 ivtR,mk
in ~r uv!Y,mk~u,f,cuav!, ~6.2!

uL
up~x!5F r

4puÃu~r 21a2!~r 21b2!G
1/2

3e2 ivtR,mk
up ~r uv!Y,mk~u,f,cuav!. ~6.3!

Here L5$v,mk%. The solutionsuL
in are defined forv.0.

The solutionsuL
up are naturally defined forÃ.0. For super-

radiant modes, when condition~5.13! is satisfied, one use
solutionsu2v,2m2k

up .
The unrenormalized expectation value of the stre

energy tensor in the state of the Unruh vacuum is~see@18#!

^UuT̂mnuU&5(
J

F E
0

`

dÃ cothS pÃ

k DTmn@uL
up,ūL

up#

1E
0

`

dv Tmn@uL
in ,ūL

in#G , ~6.4!

wherek is the surface gravity and

Tmn@u,ū#5S 1

2
2j D ~u;m ū;n1u;n ū;m!2j~u;mn ū1u ū;mn!

1S 2
1

2
12j Dgmnu;l ū;l. ~6.5!

Here j is the parameter of nonminimal coupling. For th
conformal field in 5-dimensional space-timej53/16 and
Tm

n @u,ū#50.
Let us define the following expressions for the energy a

angular momentum density fluxes at infinity,

«52^UuT̂mnuU&j t
mnn, ~6.6!

j 52^UuT̂mnuU&jf
m nn. ~6.7!

Here nm is a unit vector inr direction at infinity and we
denoted byj t

m and jf
m the Killing vectors which generate
08400
of

:

r

e
-

-

d

translation in timet and rotation in anf direction. Substitut-
ing the asymptotics of functionsuL

in and uL
up into Eq. ~6.4!

one gets for the renormalized value of fluxes~see@18#!

«~u!;
1

8p3r 3 (
,,m,k

E
0

` v2 dv

Ã~e2pÃ/k21!
ut,mk

up ~v!u2

3
uS,

m,k~uua!u2

cosu
, ~6.8!

j ~u!;
1

8p3r 3 (
,,m,k

E
0

` mv dv

Ã ~e2pÃ/k21!
ut,mk

up ~v!u2

3
uS,

m,k~uua!u2

cosu
. ~6.9!

As we already mentioned, in the case ofa5bÞ0 the angular
harmonicsS,

m,k are the same as the angular harmonics in
absence of rotation. However, the radial equations~and
therefore the gray-body factors! are different for these two
cases. Because of that, the energy and angular mome
fluxes differ from those derived in the nonrotating case.

In the degenerate casea5bÞ0, we have

«~u!;
1

8p3r 3 (
,,m,k

E
0

` v2 dv

Ã~e2pÃ/k21!
ut,mk

up ~v!u2~12z! umu

3~11z! uku~B,
umu,uku!2@P,

umu,uku~z!#2, ~6.10!

j ~u!;
1

8p3r 3 (
,,m,k

E
0

` mv dv

Ã~e2pÃ/k21!
ut,mk

up ~v!u2~12z! umu

3~11z! uku~B,
umu,uku!2@P,

umu,uku~z!#2, ~6.11!

whereB,
umu,uku is defined in Eq.~4.18! andz5cos(2u).

By integrating over the angle variables~over three-sphere
boundary at infinity!, we obtain the expressions for the tot
energy and angular moment emission

Ė5
1

2p (
,,m,k

E
0

` v2 dv

Ã~e2pÃ/k21!
ut,mk

up ~v!u2, ~6.12!

J̇5
1

2p (
,,m,k

E
0

` mv dv

Ã~e2pÃ/k21!
ut,mk

up ~v!u2. ~6.13!

VII. DISCUSSION

The results obtained in this paper are important from s
eral points of view. First, they allow one to better understa
the dynamics of massless scalar fields propagating ne
rotating higher dimensional black holes. The separation
variables which occurs in 5-dimensional scalar field wa
equation indicates that separation which occurred
4-dimensional case was not merely an accident, but i
rather a property which follows from the symmetries of
rotating black hole.

The results are readily applicable to the brane world m
4-7
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V. FROLOV AND D. STOJKOVIĆ PHYSICAL REVIEW D 67, 084004 ~2003!
els where phenomenologically valid rotating higher dime
sional black holes can exist. Nontrivial structure of rotation
group in four spatial dimensions~such as the existence o
two parameters of rotation, the notion of invariant planes
rotations rather than axis of rotation, etc.! gives rise to rich
phenomenology concerning radiation from such black ho
For example, one of the parameters of rotation could be z
in which case the black hole would be spinning only in o
plane. This case is of particular interest in brane world m
els where in the first approximation the black holes produ
in collisions of standard model particles can spin only in
planes defined by the brane where all the standard m
fields are confined. However, if we take a back reaction i
account, after such a black hole emits higher dimensio
graviton into the bulk, it gains the general angular mom
tum which cannot be described with a single paramete
rotation. Due to stochastic nature of the black hole evapo
tion, it is not likely that the black hole rotation will spin itse
up significantly in any general direction. However, th
makes the general form of rotation important to study,
least, in principle. It is interesting to mention that if bo
parameters of rotation are nonvanishing but equal, the an
lar equation coincides with that of a nonrotating case.
each of these particular cases, using expressions give
B

e
,

;
lo

ra

.
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Eqs.~6.10! and~6.11!, we can calculate the angular distribu
tions as well as the total amount of energy and angular m
mentum emitted by a black hole.

We demonstrated that similarly to the 4-dimensional ca
5-dimensional rotating black hole allows the super-radia
effect. If m and k are azimuthal quantum numbers with r
spect to two rotation axes, then the condition of sup
radiance isv,mVa1kVb , whereVa and Vb are angular
velocities. One can expect that another feature of quan
radiation from 4-dimensional rotating black holes, name
its strong spin dependence@20#, is also present in the
5-dimensional case. If it occurs then the bulk radiation
gravitons might be the leading channel of the black h
decay. In order to check this conjecture, it is necessary
solve higher spin massless field equations in the higher
mensional space-time of a rotating black hole. This is
interesting challenge.
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