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Quantum radiation from a 5-dimensional rotating black hole
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We study a massless scalar field propagating in the background of a five-dimensional rotating black hole. We
show that in the Myers-Perry metric describing such a black hole the massless field equation allows the
separation of variables. The obtained angular equation is a generalization of the equation for spheroidal
functions. The radial equation is similar to the radial Teukolsky equation for the 4-dimensional Kerr metric. We
use these results to quantize the massless scalar field in the space-time of the 5-dimensional rotating black hole
and to derive expressions for energy and angular momentum fluxes from such a black hole.
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[. INTRODUCTION commodate the supersymmetry.[B7], rotating black holes
were studied in the context of string theory. Scalar field gray-
Solutions of Einstein’s equations describing black holes inbody factors were calculated for a very general case of a
space-times with more than usual«3) dimensions have boosted vacuum solution of Einstein’s equations.
been known in literature for 40 yrl]. Until recently, they The metric for higher dimensional rotating black holes
were practically only of academic interest. The situation hasvas first derived by Myers and Perf@]. In the present
changed with the appearance of so-called brane world mogsaper, we study the massless scalar field equation in the
els [2] in which large extra spatial dimensions can eXisthackground of a five-dimensional rotating black hole de-
(mughgg larger than the apparent Planck length scal@cribed by the Myers-Perry metric. We show that this equa-
~10 " cm). In this framework, the fundamental quantum o gllows the separation of variables. The obtained angular
gravity energy scale could be in the 1 TeV range, while thesquation is a generalization of the equation for spheroidal

characteristic length scaleompactification radius of extra nctions. The radial equation is similar to the radial Teukol-

dimensiong can be as large as 0.1 mm. This allows the ex'sky equation for the 4-dimensional Kerr metric.

istence of higher dimensional mini-black holes which can be In the case of 3 1 dimensions, there is only one param-

?a?[isgr:ge:omgz? tglch&aﬁi:gzl iﬁﬁ?ﬁ;ﬁfﬁﬂ?iﬁﬁ %ir\?;/,!'eter of rotation and there is an axis of rotation which stays

out of the brane in the bulk space. If the gravitational radiuér?v"’m"’mt under rotation. Th_e rotation group ir-4 dimen- .
of such a black hole is much smaller than the distance to th&°"S: S@4), has twoCasimir operators. Rather than an axis
brane and the characteristic length defined by the bulk cuf@f rotation, there exist planes of rotation which stay invariant
vature and/or the size of extra dimensions, the influence gfnder the rotation. This implies that, in general, there are two
the external conditions on the properties of the space-timgarameters of rotation corresponding to two independent
near the horizon is small. Under these conditions in order t®lanes of rotation. In a special case, one can set one of the
describe the black hole one can use solutions of vacuurfarameters to zero and consider rotations only in one plane.
Einstein equations. This also can be true for small blackWe find interesting that in another special case, when both
holes attached to the brane provided the brane is “soft”; thaparameters of rotation are nonzero and equal in magnitude,
is, its tension is small. the angular equation reduces to a case of a nonrotating black
From a phenomenological point of view, the most excit-hole. For this special case, the space-time has two additional
ing possibility is that such mini-black holes can be producedKilling vectors. It is interesting that the spatial 3-dimensional
in particle collisions in near future accelerator and cosmicslices of this space-time are homogeneous and belong to the
ray experimentg3]. In order to predict the correct experi- Bjanchi-type VIII class.
mental Signature of these events, one has to know the basic We ana|yze the structure and asymptotics of solutions of
properties of solutions of these higher dimensional blackhe radial equation which determine the black hole gray-
holes. In general case, the impact parameter in particle Colsody factors. We use these results to quantize the massless
lision will be nonzero. Therefore, majority of black holes g¢qiar field in the space-time of the 5-dimensional rotating

prod.uced n such way would be rotating. . . black hole and to derive expressions for energy and angular
. Higher dimensional black holes were studled' before. INmomentum fluxes from such a black hole.

different contexts. For example, supersymmetric rotating

black holes were studied if4,5]. The solution analyzed

there is not a vacuum solution of Einstein’s equations and

requires some special choice of parameters in order to ac- Il. MYERS-PERRY METRIC

A. Generic case

*Email address: frolov@phys.ualberta.ca Following Myers and Perry8], we write the metric of a
TEmail address: dstojkov@phys.ualberta.ca 5-dimensional rotating black hole in the form
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ds’=—dt*+(r?+af)(dui+uide)

+(r?+ag)(dus+p; dgs)+ ———dr?
M—rgr
r2r2
0 2 2 2
+ (dt+a; uydeés+a, uzde,)”, 2.1
Inr
2 2 2 2
. ajpm; M)
F=1 r’+a’ r?+a3’ (2.2
= (r?+a?)(r?+aj). 2.3
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It possesses three Killing vector&,, d,, andd,. For this
metric,

J—g=sinfcosér p?. (2.13
The black hole horizon is located etr , , where
2 1 2 2 2 2 2 2\2 22
ri=>[r§—a?—b?x \(rg—a’—b*)?-4a’p?].
(2.19

The angular velocitie§), and(}, and the surface gravity
are

Hererg is length parameter connected with the black hole

massM:
v 3r2
8\JmG’
where G is the (4+1)-dimensional gravitational coupling
constant. Besides, the metric(2.1) contains two rotation

parametersa, anda,. The variablesu; and u, are not in-
dependent. They obey a constraint

(2.9

(2.9

Instead of keeping the symmetric form of the mef2cl),
we prefer to solve the constraif®.5) explicitely. We use the
following parametrization:

2, 2_
mitur=1.

Mm1=Sin6, wu,=Cosb. (2.6

Let us also introduce the following notation:
a:a11 b:a21 ¢:¢11 ¢:¢21 (27)
p?=r2+a’cog6+b?sirfe, (2.9
A=(r?+a?)(r?+b?—-rr2 (2.9

Then, the metrid2.1) takes the form
r2p2

dSZZd’yz'f' Tdr2+p2d02, (2.10

d’yzE YAB dXA dXB

=—dt?+(r2+a?sirfd d¢?+ (r’+b?)cogo dy?
2

+%[dt+asin20d¢+bco§0d¢f]2. (2.11

HereA,B=0,3,4 and’=t, x3= ¢, x*= . Angles¢ andy
take values from the intervdl0,27], while angle# takes
values[ 0,7/2].

The metric(2.10 is invariant under the following trans-
formation:

T
a—b, 0=

o a B b (2.19
A 242 T2 4 p? :

o I1—2r3r -
S 219

B. Degenerate case

As we already mentioned in a general case the Myers-
Perry metric has three Killing vectors. The space-time be-
comes more symmetric whex=b. To demonstrate this let
us consider first the geometry of the secttenconst. It has
the form

r2(r’+a?)

dsﬁ=mdr2+d§, (2.17)
dsi=a (d6?+sirP9 d¢p?+cog o dy?)
+ B(sirtdd¢+cosody)?, (2.18
where
2.2
a=r?+a? ,Bzrrziaaz. (2.19
By introducing new coordinates
O=y—¢, V=y+¢, V=26, (2.20

where ¥ takes values from the interv@D,4s], ® from
[—2m,27], and ¥ from [0,7], one can rewrite the metric
(2.18 as follows:

ds3=A (d9?+sir?9 dd?)+ B (cosd dd +dW)2.
(2.20)

Here,

(2.22

084004-2



QUANTUM RADIATION FROM A 5-DIMENSIONAL . .. PHYSICAL REVIEW D 67, 084004 (2003

This is a canonical form of the Bianchi-type VIII metric I
when there exists a four-parameter group of isometries acting o)=9,,— “ZV. (2.28
transitively in the 3-dimensional spadd0].! The corre- &

sponding Killing vectors are ) ) o
For the Myers-Perry metri€2.1) this metric is

K]_:t?(p y Kzza\p,

r2(r2+a?
sind dszzggfgdxﬂdxvz—(r2+;2)2 rzrzdr2+d8§,
= — i - —To
Ks=cos® d4—cotd sind dq,+ sno Ay (2.23 (2.29
_ cos® wheredS; has the form(2.18), with
Ky=—sin® dy—cotd cos® dgp+ ———< vy .
sind (292
2442 _ 0
It is easy to check that these vectdtsgether withd,) are a=rtas, p= r’+a?—r2’ (2.30

also Killing vectors for the 5-dimensional space-time metric

(2.10 whena=h. Thus this metric is also a metric of homogeneous
Killing vectors can be viewed as generators of the sym-3-dimensional space with the four-parameter group of mo-

metry group of the manifold. We can obtain a more familiartion.

form of these Killing vectors. First note that The scalar curvature for the memit%
KaKa=KaKa=Ky, (2.24 3(r?+a??—3rir2—4r3a®
where multiplications denote successive applications of an R=2 [(r2+a?)2(r?+a?—r2)] (231
operator. Then, the quadratic combinatidth+ K3+ K2
yields is also constant for=const and it is positive for
7 ] 1\/18:2— 3622+ 6+/(9r%+ 12r2a2)
K2+ K24+ K2=— +cotd— r>zsV18rg—36a°+ 6+ (9ry+12rza“). (2.32
3 4 1 9 2 99
1 92 pr: 52 C. Flat space-time limit
+ Sired | op? —2cosd oot v2) Whenr,=0 the metric takes the form
(2.29 ds?=—dt’+(r’+a?)sirf0d¢p?+ (r’>+b?)cog g dy?
2 2 2
- i r r
We can identify p o2 de?. (2.33

+
_ . , s o, (r’+a?)(r’+b?)
Jo=—1Ky, Jy=-iK,, J=—-(K3+K;+K9),
(2.2  Such a space-time is flat and the metric can be rewritten as

wherelJy,, Jy, andJ? are familiar angular momentum op- ds2= — d T2+ d X2+ d Y2+ d Z2+ d W2
erators, whiled, ¥, and ¢ are Euler angles for the rotation
group 3). =—dT?+dR?+R?dQ3, (2.34

The scalar curvatur® for the metric(2.18),
whereT=t and
3(r?+a?)?-a’}

R=2 (r2+a?? (2.27) X=\r?+a?sinfcosp, Y= r?+asindsing,
is constant at fixed and has a positive sign as long &s Z=\r?+b?%cosfcosyr, W= r?+b?cosfsiny.

>a\(V3/3)(rg/a)— 1. (2.395
Another interesting observation is the following. Instead

of metric on slices t=const, one can consider the Mere

4-dimensional foliation of the space-time by the Killing tra- ~ ~

jectories of the fieldt,= 4,. The metric on this foliations is ¢=¢—tan ‘(alr), Y=y—tan Y(b/r), (2.36

determined a$l1]
R?=X2+Y2+ 722+ W?=p?, (2.37

2 . . .
Yin [9] rotating black hole solutions to four-dimensional Einstein- andd{13 is the line element on a unit three-sph&fe At far

Maxwell-dilaton-axion gravity were analyzed. It was shown thatdistancesR andr differs only by terms of the order _CEfZ/_I’
they are closely related to the 5-dimensional rotating Myers-Pernand b?/r. Also normals toR=const andr = const coincide
black hole witha=b. with the same accuracy.
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A two-dimensional plan€=W=0 (X-Y-planellyy) is a
plane of rotation, whildI,,, whereX=Y=0 is a two-plane
orthogonal tollyy .

Ill. SCALAR FIELD EQUATION: SEPARATION
OF VARIABLES

Let us consider a scalar massless figlavith the action

1 5 2 2
Wlel=—5 | dxV=gl(Ve)"™+ R (8.1
It obeys the following equation:

1
He—¢éRe=—=—=03,(V-99""d,¢)—£Rp=0. (3.2
The space-timé2.10 is Ricci flat so thatR=0. Let us de-
note[1* = p2 . Then the field equation
O0* =0, (3.3

can be identically written in the form

PHYSICAL REVIEW D 67, 084004 (2003

whereH”B=p? g”B, We usedsRTENSORprogram to calcu-
late g*¥ and —g. The components dfi*® are

(r’+a?)[A+r3(r?+b?)]

H'=(a’—b?)sirto—

A 1
(3.5
vo_ 1 (a®—b?)(r?+b?)+b?r3
H™=Gee A : (3.6
" 1 (a?-b?(r?+a?)—a%} .
"~ cosh A ' 37
2/.2 2 2/.2 2
Hto_ BOTHDT) L, Bro(rThat)
A ' A ’
abr?
H*V=— AO. (3.9

The Eq.(3.4) allows the separation of variables. Namely, its
solution can be decomposed into modes of the form

114 i taime ik
AB iy el - ; _ p~e '?eMPe™R(r)0(0). (3.9
H™ @ At ; d; r&r(p + Singcosd dglsin@ cosbd, =0,
(3.4  The angular functior® obeys the equation
|
s 0 0d® +| A —w?(@®sirfg+b? cos m K s 6 cosf ®=0 3.1
ﬁsm cosﬁ w (acsi co )m@—esm cos6 ®=0. (3.10
|
The radial equation reads It should be emphasized that the separability of the field
equation(3.3) is directly connected with the existence of the
A d[AdR Killing tensor for the metriq2.10),(2.11). The explicit form
T3l gr|tWR=0. (31D of this Killing tensor and discussion of its properties can be
found in[12].
W=A| =\ + 0?(r2+a2+b?) IV. HYPERSPHEROIDAL FUNCTIONS
A. Generic case
m*(a®—~b?) k*b*-a?) The angular equation can be rewritten fcB(6)
r2+a2 r2+p? =./cos#B(h) as follows:
2 d?S cosh dS
ma kb
+r2(r2+a2)(r2+b?)| w— ——— — —— —>»+ ——+U,S=0, 4.1)
ol )( ) 222 12ap? d#® ' sine de
(3.12 e _ m?  k*-1/4
U)\—7\ a sirfé m TSZQ’ (42)

We used the freedom— A\ + const in the choice of the

separation constant in order to get the angular and radial where a=(a2—b?)w? andX =\ — w?b2+ 2.
equations in the most symmetric way. For this choice these e discuss now properties of solutions of this equation.

equations are invariant under the transformation

a—b, m«—K.

(3.13

We are looking for solutions which are regular at singular
points of the equation=0 and #==/2. This condition
singles out special discrete values)ofvhich we enumerate
by an integer numbeft. Finding eigenvalues ,(m,k|a) and
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eigenfunctionsS?"k(0| «) is a well defined problem. Stan-

PHYSICAL REVIEW D 67, 084004 (2003

The regularity condition means that we are looking for a

dard arguments show that the eigenfunctions with differensolutionsF(x) which are finite atx=0 and atx=1. This
A¢(m,k|a) are orthogonal to one another with the propergives us the two-point boundary value problem.

chosen measure. Thus we write
2

)

In what follows, we shall use the following normalized set of
functions:

dosind S(0la) ST (0la)=6,0 . (43

gimo-+iky S?l,k( 0|a)

2 \Jcosé

We shall also use the compact notation for the index
={¢,m,k}. This set of functions possess the following nor-
malization conditions

y{’mk(aigb!lma): (44)

f d')’yAyA’ IV (4.5
where
/2
J dy(-~-)=f sinfcosfde
0
2 2
><J d¢ dg(---),
0 0
5AA’:5€€’5mm’ 5kk’ . (46)

With x=cos(), the Eq.(4.1) can be rewritten as follows:

1—x2 ds +U,S=0 4

ax (1—-x )& rS=0, 4.7
- 5 m?>  k?’-1/4

U)\=7\+aX _1—X2_ X2 . (48)

This equation besides has three singular poinis=0,*+1 at
which solutions have the following asymptotic behavior:

S(x)~x"K atx=0, S(x)~(1¥x)"™? atx==*1.
(4.9

For a regular solution, we have
S(x)=xM (1—x?)M2E(x), (4.10

whereF is a solution of the equation

x2(1—x?)F"+ (—2x3|m|— 2x3|K|

+2x|k|—2x3)F'| @2w?x*+ [N —(Jm|+|k|)?

F=0.

1
— i+ [k 1+ 7 K (@12

B. Degenerate case

Consider now the degenerate case waerb. A solution
Sof Eq. (4.1) is of the form

gkl g)=sin™ 6 Jcosa [ C, coddl o™ (|k], 6)

+C,cos M psim K~ K], 0)7], (4.12

SN (K|, 0)=F(ay ,a_;1+|k|;c00), (4.13
m|+1+|k|] 1

LIS SILE Y Py (414

Here F(a,b;c;z) is a hypergeometric function. The coeffi-
cients of this function in our case posses the propartb
—c=|m|=(positive) integer number. The regularity &fat
0= /2 requiresC,= 0, while its regularity at¥=0 implies

m|+1+]k] 1

5 E\/1+)\:—€, (4.15
wheref is an integer number. Thus we have
Ne(Im|,[K))=(2€+|m|+|k|+1)>-1.  (4.16

The corresponding eigenfunctions are the Jacobi polynomi-
als P™HKI(1—2 co 6). Thus

Yemi( 0,6, a=0)

gime+iky
:T(1_z)|m|/z(1+Z)|k|/zB\€m\,|k|pwem\,lkl(z),
(4.17
wherez= cos(2)=cos? and
Bl =2 =Uml+IK=1)/2, 20 4 [m[+ K] +1
\/F(€+1)F(€+|m|+|k|+l) i1
C(+|m|+1)T(€+|kl+1) (4.18

Note that fora=b the hyperspheroidal harmoni¢4.4) are
eigenfunctions of the operatods,, Jy, andJ? determined
by Eg. (2.26). Using this fact one can demonstrate that the
set(4.4) of hyperspheroidal harmonics is complésee, e.g.,
[13,14)). For this set, we haven=0,=1,+2,..., k=0,
+1,+2,...,1=0,12....

V. RADIAL EQUATION

It is convenient to rewrite the radial equati¢8.11) as
follows. Let us define
1/2
“x

.
(r’+a®)(r’+b?

(5.9
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Then, one has

PHYSICAL REVIEW D 67, 084004 (2003

dr, (r’+a?)(r?+b?)

d?R dr A (5.3
— +VR=0, (5.2
dry
wherer , is a tortoise coordinate with the property The effective potentiaV/ is®
|
m?(a’—b? k?(b%*-a?)
r2A| =N+ w?(r?+a?+b?)+
v ( ) r2+a? r2+b? ZA?
- (r2+a2)2(r2+Db?)? T AT )t YR
2.2 ma kb \?
rgrel wo— ——-—=———
. 0 r’+a? r?+p? 5.4
(r?+a?)(r?+b?) ’ '

where
Z=21r8+14r%a%+b?) +5r*(a®—b?)?
—10r2a”’b?(a’+b?) —3a*b*.

The radial equation is evidently invariant under the transfor-

mation

a<—b, mek.

(5.9

At the horizon, i.e.r =r, , the effective potentiaV takes the
form
Vhor=(w—mQa— ka)z, (56)

with Q, andQ,, defined by the Eq(2.15. The asymptotic
value of the potentiaV/ at infinity is

(5.7

We define two sets of solutionsR (r|w) and R Y(r|w)
(with A={¢,m,k}) by the boundary conditions

Vinf: w2.

. th(w)e ™M« asr—r,
RA(rw)~ . - : 5.8
A(r]e) e " +ri(w)ex  as o ©8
and
. ri(w)e ™ +e" " asror,
7zAp(rM))N up, +ior
ta(w)e asr—o,
(5.9
Here,
w=w—mQ,—kQy. (5.10

Since the eigenvalues,(mk a) are real the functions com-

constancy of the Wronskian for various combinations of so-
lutions of the radial equation one gets

w

. . w
1-[ri(e)*=_Jtd(w)|%  1=[rfw)?=—|td(w)[?

(5.17

It
w

wtP(w)=w tN(w).
(5.12

It should be emphasized that, as it was the case 13
dimensions, for certain values af it is possible to have the
reflection coefficients greater than one. This implies the ex-
istence of the so-callesuper-radiance effecThe condition

for super-radiance is

0 tP(@)rN(w)=—o (o) (),

0<w<mQ +kQy. (5.13

In this case, it follows from Eq(5.11) that the reflection
coefficientsr"""(w) become greater than one. This is the
consequence of the fact that the scalar field modes obeying
(5.13 are amplified by the rotating black hole.

VI. ENERGY AND ANGULAR MOMENTUM FLUXES

Quantization of massless fields in the 4-dimensional
space-time of a rotating black hole was discussdd i+19
(see alsd19]). Main aspects of the quantization including
the choice of the state remain practically the same in the
5-dimensional case. For this reason, we shall not repeat here
all the formal elements of the standard procedure but simply
introduce the required notations and present the final results.
We shall follow the papefl8], where necessary details can
be found.

2The more general setup adopted for the string theory framework

plex conjugated t&R ' andR {® are also solutions. Using the was studied if6,7].
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In order to quantize the field one uses the complete set dfanslation in time and rotation in anp direction. Substitut-

orthonormal complex solutions of the field equatit312).

ing the asymptotics of functions and u%’ into Eq. (6.4)

The scalar product for these solutions is defined as followspne gets for the renormalized value of fluxese[18])

i _ _
(P1,92)= EL\/__Q(UZ” Up—ug, Up) dX#, (6.1

where ¥ is any complete Cauchy surface. Since the scalar

product(6.1) does not depend on the choiceXf it is con-
venient in our case to choo%e=.7 UH ", whereJ " is the
past null infinity andH ™ is the past horizor(For details, see,
e.g.,[19].)

Using solutions of the radial and angular equations, we
define the following normalized solutions of the field equa-

tion (3.2 [in coordinates,r, 6, ¢, ¥)]:

_ r 172
W00 =| Tl P (74 )
xe R (r|0) Vimi 0,6, ¥law), (6.2
r r 1/2
UY00= | a7+ ) (7 b))
xe R 0) Vemk( 6.4, Ylaw). (6.3

Here A={w¢mk}. The solutionsu} are defined forw>0.
The solutionau'P are naturally defined fots >0. For super-
radiant modes, when conditia.13 is satisfied, one uses
solutionsu*® ,_ . _.

The unrenormalized expectation value of the stress-

energy tensor in the state of the Unruh vacuurfsee[18])
~ *® kol _
<U|TMV|U>:E [J dw COtr(T) Tm[pr,UXp]
J 0

, (6.4

+ fo do T,,[uf,ul

wherex is the surface gravity and

_ 1 _ _ _ _
Tluul=|5 =& (U, u,+u,u,) —§(u,, utuu,,)
1 —
+ —54—25 gl Ut (6.5

Here ¢ is the parameter of nonminimal coupling. For the

confoEnaI field in 5-dimensional space-tinge=3/16 and
T,[u,u]=0.

2
* w dw
o)~ —|tUP 2
¢ 8733 (imk fo m(e2'n'm/;<_l)| i @)
ERURIE
" cosd (6.9)
1 * Mo dw
| (6)~ f P — 2
1(6) 8m3r3imk Jo W(e2”mfk_1)| @)

ISP 0] a)|?

cosé 6.9

As we already mentioned, in the caseasf b+ 0 the angular
harmonicsS;** are the same as the angular harmonics in the
absence of rotation. However, the radial equatidaad
therefore the gray-body factgrare different for these two
cases. Because of that, the energy and angular momentum
fluxes differ from those derived in the nonrotating case.

In the degenerate case=b+0, we have

e(0)~3 [t @) *(1=2)™

1 5 ® 2
T3 K fo w(e?™™x—1)

X (1+2) MBI 2P ()2, (6.10

Mo dw

0 m(eZTTUI/K_ 1)

1 %

1(9)~W2

up 204 _ \|m|
r° ¢k |[temi(@)[%(1—2)

X (1+2)MBIMH) P ()2, (6.1
whereB'e'“L|k| is defined in Eq(4.18 andz=cos(%).

By integrating over the angle variablésver three-sphere
boundary at infinity, we obtain the expressions for the total
energy and angular moment emission

- 1 o (,l)2 ®

= on f — et il @)% 6.1
2 €%k 0 m(ezqrm/K_ 1) | emk(w)| (6.12

: 1 * Mo dw

o f — e @) 6.1
277(7%1( 0 m(eZﬂ'm/K_l) | €mk(w)| (6.13

VIl. DISCUSSION

The results obtained in this paper are important from sev-

Let us define the following expressions for the energy anckra| points of view. First, they allow one to better understand

angular momentum density fluxes at infinity,

e=—(U|T,|U)¢&n?, (6.6

j=—(U|T,,|U)égsn". (6.7)

Here n* is a unit vector inr direction at infinity and we
denoted byéf* and & the Killing vectors which generate

the dynamics of massless scalar fields propagating near a
rotating higher dimensional black holes. The separation of
variables which occurs in 5-dimensional scalar field wave
equation indicates that separation which occurred in
4-dimensional case was not merely an accident, but it is
rather a property which follows from the symmetries of a
rotating black hole.

The results are readily applicable to the brane world mod-
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els where phenomenologically valid rotating higher dimen-Egs.(6.10 and(6.11), we can calculate the angular distribu-
sional black holes can exist. Nontrivial structure of rotationaltions as well as the total amount of energy and angular mo-
group in four spatial dimensionsuch as the existence of mentum emitted by a black hole.

two parameters of rotation, the notion of invariant planes of We demonstrated that similarly to the 4-dimensional case,
rotations rather than axis of rotation, @tgives rise to rich  5-dimensional rotating black hole allows the super-radiance
phenomenology concerning radiation from such black holeseffect. If m andk are azimuthal quantum numbers with re-
For example, one of the parameters of rotation could be zergpect to two rotation axes, then the condition of super-
in which case the black hole would be spinning only in oneradiance iso<mQ,+kQ,, whereQ, and (), are angular
plane. This case is of particular interest in brane world modvelocities. One can expect that another feature of quantum
els where in the first approximation the black holes producedadiation from 4-dimensional rotating black holes, namely,
in collisions of standard model particles can spin only in theits strong spin dependendg0], is also present in the
planes defined by the brane where all the standard modé&tdimensional case. If it occurs then the bulk radiation of
fields are confined. However, if we take a back reaction intayravitons might be the leading channel of the black hole
account, after such a black hole emits higher dimensionadlecay. In order to check this conjecture, it is necessary to
graviton into the bulk, it gains the general angular momen=solve higher spin massless field equations in the higher di-
tum which cannot be described with a single parameter ofmensional space-time of a rotating black hole. This is an
rotation. Due to stochastic nature of the black hole evaporainteresting challenge.

tion, it is not likely that the black hole rotation will spin itself
up significantly in any general direction. However, this
makes the general form of rotation important to study, at
least, in principle. It is interesting to mention that if both  The authors are greatful to Don Page for stimulating dis-
parameters of rotation are nonvanishing but equal, the angwussions. This work was partly supported by the Natural Sci-
lar equation coincides with that of a nonrotating case. Foences and Engineering Research Council of Canada. The au-
each of these particular cases, using expressions given thors are grateful to the Killam Trust for its financial support.
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