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We present here the general transformation that leaves unchanged the form of the field equations for perfect
fluid Friedmann-Robertson-Walker and Bianchi type V cosmologies. The symmetries found can be used as
algorithms for generating new cosmological models from existing ones. A particular case of the general
transformation is used to illustrate the crucial role played by the number of scalar fields in the occurrence of
inflation. Related to this, we also study the existence and stability of Bianchi type V power law solutions.
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[. INTRODUCTION perfect fluid FRW and Bianchi V cosmologies leading to
unchanged field equations. Then, we exploit the equivalence
Symmetries are the cornerstone of the development dgeetween that kind of matter content and a scalar field with a

modern physics and in particular of the description of theself-interaction potential to write equivalent transformation

Universe at large scales. Even general relativity, the frametul€S for them. The existence of this symmetry provides us

work used for that description, has its roots in symmetryW'th algorithms to generate new cosmological solutions from

requirements. Not long ago, a new proposal for exploitingknOWn Ones. We are mainly coqcerned here by the possibility
the symmetries of the Einstein field equations was njagle of generating mf!atlonary solutions from others that do not
In this framework two spacetimes are said to be equivalent FNOW that behavior. o .

the corresponding set of equations is form invariant under A stralgh_tf(_)rward par_t|cular|z_at|on of the transformau_on
the action of a given transformation. This unusual concept of/oWS obtaining spacetimes with a Hubble factor that is a

equivalence has been successfully applied to the study nst?jn(tij(las trt].e O:('g'?al gne. As a conﬁeq;fnci,] the.trgnsl,-
equivalences among different cosmological models, and in°'Med deceleration factor becomes smaller than he origina

particular to those exhibiting inflation. one, provided this constant is larger than unity. One key fea-

The equations that govern the evolution of spatially flatture here is that this information on the spacetime expansion

Friedmann-Robertson-WalkéFRW) cosmologies filled with is obtained without knowing the metric functions explicitly.

a perfect fluid or massive scalar fields happen to admit a Th|s IS, as we see, very S|m|lar to what happ?f.‘ed.'” the
peculiar type of form invariance. It directly relates an in- assisted mflat.lon §cenar(we .W'” dwell on th_e |dent|f|qat|on
crease in the energy density of the model with an increase i f, the "’?”1‘09'6? n thz sections bIeDO\m?V'.OUS sbtudles onh
its expansion rate. This provides a mechanism for using nor'S ltOP'C_ ave focuse fon Eower-l aw so ;J'gonhs Fecausg they
accelerating FRW models as seeds for inflationary cosmold?'® atg time attractors for the evolution of bot Wa”

gies. Bianchi types 1-V{ [3] models(see as well4] for a discus-
Remarkably, this link between the energy density and th&!On regarding general geometjieve reach in Sec. Il an

expansion rate is the key feature of the assisted inﬂatioreimal090us result in the Bianchi type V case, and in particular,

proposal. According to it, for some cosmological models, thave will see that the expression of the potential in terms of

occurrence of inflation is directly related to the number ofthe scale factor fc_)r.the power-law solutior)s gives the clue to
scalar fields driving the expansid@]. This cooperative ef- a method of obtaining new exact scalar field solutions up to

fect can be easily illustrated in terms of the form invarianceduadratures. . :
we alluded to. In particular, for the expansion rate of a spa- The discussion fits into a method to obtain solutions that,

tially flat FRW model to increase by a factor ofit is only as will be explaineq in Sec. I_V’ has turn out to be fruitful_
necessary that the energy density gets multipliechhyin before. The scalar fle!d potentials, or thg equation of state in
: s@e case of perfect fluids, and the evolution of the scale factor

containing a single self-interacting field has transformed int'® derived from the history of the potential. We use these

one withn fields interacting with themselves but not amongstS°Utions to present simple examples of the action of the
them. transformation on models with well known potentials. Fi-

The natural question that comes to mind is whether thi§a||y’ we outline our future prospects and main conclusions

form invariance symmetry is just a very special feature of" Sec. V.

spatially flat FRW or commonplace. We have addressed this

guestion here, and our results show that form invariance

transformations do exist for any FRW model and their sim-

plest generalization, Bianchi type V models. Let us consider a FRW spacetirfisotropic and spatially
In Secs. | and Il we outline the details of the transforma-homogeneoyswith curvaturek, which is described by the

tions of the metric functions, pressure and energy density ofetric

1. FORM INVARIANCE SYMMETRY
IN FRW SPACETIMES
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ds?=—dt?+a?(t)[(1—kr?)~* dr? p in the right-hand sidérhs). Then, the first conclusion we
Fr2(de?+sirPo dé?)1. 1 drayv is thatH=H(a,H,p). If we replace now Eq96) and
r S! ¢] @ (8) in Eqs._(4)_and(5), and u_se_the same argument we con-
If the source of the geometry is a perfect fluid with energyclude thata=a(a,H,p) andp=p(a,H,p).
density p and identical pressurp along the three spatial ~ The next step is to calculatd from Eq. (6) using the
directions (isotropic perfect fluigi then the model is gov- definition H=4/a. so that
erned by the Friedmann equation '
3H(p+p) da
—_— = %,
(12)

k I

and the energy conservation equation where Egs(3) and (10) have been used. Sin¢¢ does not

: _ depend orp, the coefficient ofp in Eq. (12) must vanish as
p+3H(p+p)=0, @ well. For that reason,

whereH =a/a is the Hubble factor as usual. Given a differ- Pry ia

ent perfect fluid with energy densify and pressure, the —+-—=0, (13
corresponding equations take the form d(3H?) dp

ok and the general solution to the latter as=a(a,p—3H?)
3H2+3== (4) Y, 2 ic 3
22 P =a(a,3k/a“), that is,a depends ora only.
Summarizing, the transformation turns out to be

p+3H(p+p)=0. (5 a=aa), (14
Our goal is to obtain a transformation that leaves the form of na
the system of equationd), (5) unchanged. In other words, H= dina (15)
we want to find the symmetry transformation that méfs dlna "’
(5) into (2), (3). Since we mean to obtain this transformation
explicitly, we make the following ansatz: — _|dlna” 3k
= H*+ =, (16)
— — dlna a2
=a(a,H,p,p), (6)
_— —_— —_— — - k
H=H(a,H,p,p), (7 =—p—2H+2=, (17)
a
;=;(a,H,Pxp)a (8)

where H has to be calculated using E@l5). Here, a
EZE(&H,P,D)- 9) =a(a) is the only “parameter” of the symmetry transforma-
tion. Once more, we must emphasize the general character of
From Egs.(2), (3) and (4), (5) we obtain the Raychaudhuri the transformation as no assumption on the equation of state
equation of the fluid had to be made.
Now, it is interesting to investigate the transformation
properties of other physical parameters so that one can
H=- E(P+p)+ ; (10 deepen in the comparison between the features of the two
models. For instance, the deceleration parameter

and its transformed version

.

Q)=-—3 (18)
-1 — k 2
H=—5(p+p)+=. (1) aH

N
Q
N

transforms as

In what follows, we are going to use the fact that a transfor- 1 1
mation can be regarded as a symmetry transformation when EJrl: Lnﬂ (q+1)+ L ? '”ﬂ (19)
it does not impose restrictions on the functions appearing in dlna dlnaldlna

the equations, that is, when one always obtains identities for

any function. If we differentiate Ec(7) a term proportional under the symmetry transformatio(& and (9).

to p arises, but if we insert the expression in the left-hand AS @n example let us look at the power-law transforma-

side (Ihs) of Eq. (11), it can be noticed immediately that it tiona=a". In this particular case, we obtain from E¢s5),
must vanish identically for there are no terms proportional ta(16) and(17) the transformation rulesl=nH,
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. K K possess a non-Abelian group of three isometries. We write
p=n? p—3—|+3—- (20)  the line element agcf. [6])
a? a
ds?=—dt*+e/0dZ2+ G(t)e?(e"® dx?+e "M dy?),
and (29
_ oo .k with G(t)=0. Considering once again a universe filled with
p=-3n°H —2nH—ﬁ. (21)  an isotropic perfect fluid, the Einstein equations (@8) are
The transformation rule for the deceleration parameter is 2 Z(éfﬂ) p—e =0, (29)
ge—14 2 ! (22)
" " h+h f + G =0 30
E a — Y, ( )

It becomes negative far high enough, showing in this case
that the inflation is more likely. In other words, the strong 5
energy conditiofSEQ) p+3p=—6(n?H2+nH)>0 is vio- — —f=0, (31)
lated for largen. So, we will be interested in the cases with G

n>1, where the transformed evolution will always be closer

to de Sitter spacetime than the original one. G Gf G? h? e f
The fluid interpretation of the scalar field has proven very G 26 g2 2 TPTPt 5 =0 (32)
useful in the study of the inflationary and quintessence sce-
narios[5]. The energy-momentum tensor of the scalar field 36
may be written in the perfect fluid form p+ %([H_ p)=0. 33)
Tik=(p+ p)Ujux+ PpYix (23
From Egs.(30) and(31) one readily gets
if one defines
. e'=G, (39
_ T2
567+ V(9), (24 A
=—, (35
3/2
1., G
p=5¢"-V(¢), (25

with the integration constamk# 0. Combining the remain-

. ) ing Einstein equations in terms of the new variables
where we have taken into account that the scalar figld 9 q

depends om only. Inserting Eqs(24), (25) in Egs.(20), (21)

; a G
we find that _l2 _e_-2
a=G" H=_=-<, (36)
PO 1 n
d>=n¢?+2k T——Zl, (26)  we get
as" a
3 A’
3H?=p+—+—, (37)
6
V=nV+3n(n— 1)H2+2k———2. (27 48’ 4a
a
p+3H(p+p)=0. (39

Asymptotically(i.e., whena— ) and for large and positive

n the transformatiori20) reduces tgp~n?p and we recover These equations are equivalent to those of negatively curved
in this limit the results found ifi1] for the particular case of FRW models filled with a perfect fluid and stiff matter. The
flat FRW metrics. Under these specific conditions one carshear’s contribution to the expansion is precisely the last
speak in terms of a single field model transforming into aterm in Eq.(37) and basically can be associated with a free
multifield model in the fashion of assisted inflation. scalar field. Equation37) together with the conservation
equation(38) forms the set of equations to be solved.

lll. BIANCHI TYPE V MODELS

. . . . . A. Form invariance symmetry
We wish to investigate now the form invariance symmetry

of the Einstein equations of an anisotropic universe de- Remarkably, the pair formed by E¢87) and(38) is form
scribed by the Bianchi type V metric. These spacetimes argwarlant as well. This means that for a different fluid with
the simplest generalizations of FRW open universes and theu}ensnyp and pressur@ @ the equations
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_ 3 A2 density p to the asymptotic critical densitg.=3H2. The
3H?=p+ —+ =, (39  asymptotic critical density corresponds to the asymptotically
4a”  4a flat spacetime solution of Eq(45). Thus, insertingQ
P =plp.=pl3H? in Egs. (37), (38), we find the dynamical
p+3H(p+p)=0 (400 equation for the cosmological density parameter:
become Eqgs(37), (38) under the symmetry transformation at+ A2 p
o = ﬁ—3(1+— Q(1-Q)H. (49
a=a(a), (41) 3a"+A P
sna Stable constant solutions of this equation are relevant to un-
na

(42) derstand the asymptotic behavior of that spacetime, where

dlna Eq. (49) reduces to
—_g/2Ina 2H2 3 A 43 0--[1+3"] au-omH+ol = (50)
P2 9Ina 422 4a° “3) p at)’
1 A2 The constant solution of Eq$49) and (50), compatible
= _;_ Ao (44) with observations at late times, =1. It is asymptotically

2a? ﬁ’ stable for expanding universesl &0) when the SEC is vio-

- ) __lated. Hence the model inflates, i.a/a= —(p+3p)/6>0
where H has to be calculated using E@42). Here,a  and the expansion of the universe is driven by a gravitation-
=a(a) is the “parameter” of the transformation. ally repulsive stress.

Since our main objective is to use this symmetry in the The general form of the perfect fluid Bianchi type V so-
context of inflation, it is of interest to exploit the customary lution, up to a quadrature, has been knoMg] for a long
equivalence between a perfect fluid and a self-interactingime (see alsg11-13). Here, however, we adopt a different

scalar field with potentiaV(#) whena=a". In this case Perspective in what exact solutions are regarded. In order to

Egs.(37), (38) become investigate the existence of power-law solutions in the Bian-
chi type V model with a self-interacting scalar field and their
, 1., 3 A? stability, we combine the scaling parameter — 2H/3H?
SH =3¢ +V+ EJF 1t (49 with Egs.(45) and (46), so that we get
_ V—(H/a?)
- .0V w=(w—2)|————+3Hw 51
b8P+ S5=0, (49 N vweyeees 51

The fixed point solution of Eq(51), w= wy=const, corre-

where the last one is the Klein-Gordon equation. Transform
sponds to

ing Eqgs.(24), (25) according to Eqs43), (44) we obtain the
transformation properties of the scalar field and the corre- a= 1230 (52)
sponding potential '

— 2(2— 1
. o1fn 1) 1/nm A JAEeo) 1 (53)
PT=n¢"+ 5 2 o T2l e ) (47) 3wia’?  2a
where the scalar field can be calculated from &&):
_ n
V=nV+3n(h—1)H?+ — — . (48) 2
2a2 2a2n l 2_ 2 B 1 B A (54)
27 Bwgt? 4t 4tdeo
It can be shown that the transformation rule for the decelera-
tion factor under the transformati@n=a" is again Eq(22).  Furthermore, Eq(51) becomes
0=3(w—2)(w—wg)H. (55)

B. Asymptotic behavior and power-law solutions

The combined measurements of the cosmic microwavd herefore, for the potential53) the power-law solution is
background temperature fluctuations and the distribution ofsymptotically stable wheneves,<2. When wy<2/3 the
galaxies on large scales seem to imply that the Universe maSEC is violated and there is an accelerated scenario. If 2/3
be flat or nearly fla{7-9]. The equivalence between Eqgs. <wy<2 we can construct an inflationary model by substi-
(37), (38) for the Bianchi type V model and those of open tuting wy/n for wy and takingn large enough, because
FRW type permits us to introduce the cosmological density o
parameter), defined as the ratio of the scalar field energy a=t2"30 (56)
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is an asymptotically stable exact power-law solution of Egsso that we obtain the first integral
(45), (46) for the potential

1., 6 F C
2n? 1 ¢ V() —— fda—=—6, (63)
3wéa3w0/n 2a2 !

n
whereC is an arbitrary integration constant. Then, using Egs.

where the scalar field can be calculated from &d): (2) and (46) we obtain
1., 2n 1 A2 da[ 6 F C i
Z 2= — — - il el i+ g
2 ¢ 3w0t2 4t4n/3w0 4t4n/w0 ’ (58) At= \/§J’ a a6J' daa * a6 3a2 ! (64)
Quantities ¢,V) and (J)V) are related by transformations 12
(47), (48). Also from Eqs.(41), (42) and (56), we obtain da| “F16 f daF/a+C
- rp=6 | 2 .9

a=a", H=nH. (59 6f daF/a+C—3ka*

For largen the energy density of the scalar field transforms
- 5 . . . where At=t—ty, Ap=¢— ¢y andty, ¢y are two other
as p~n<p, showing that the cumulative effects of adding _ .. ; ;
density in the 00 t of the Einstei i arbitrary integration constants.
energy density in the U9 component ot the EInstein équalions <" nconventional procedure of solving the field equa-

leads to an accelerated scenario. In this regime tions starting from the history of the potential was also used

~2(n/3wo)*Ant and the potential is exponential to obtain exact solutions in two and four dimensional space-
) times with a scalar field and a perfect fluid in Rgfs4,15.
N7 2n ol An interesting simple class of models arise for potentials
- _ 20\~ Bag/n & _ g simple P
V(¢) 3wg<2 n)c (60 with power-law historiess=Ba™ and C=0. In this case,

ps=—3H}?<0 impliesm<6 for H>0 and$?>0 implies
Whenn is an integer it could represent the number of scalaB/m>0. Then, for positive definite potentials, hen&e
fields contained in the Bianchi type V universe. This particu->0, we have 8m<6. We find hyperbolic potentials for
lar multifield Bianchi type V problem is equivalent to the m#4 andk=1:
usual assisted inflation in the FRW model withidentical
non-interacting scalar fields, in a negatively curved space- m) (6=m/(4=m)
time filled with an extra free scalar field. Hence we have V(d’):(E)
extended the previous results obtained 14 for the FRW
model to the Bianchi type V metrics. Again we have seen B (4—m)A ¢
that form invariance of the Einstein equations leads to a x B~ cosit .
simple generalization of the assisted inflation linking two 2(6—m)
different cosmological models, one of which is accelerated. (66)

] (6—m)/(4—m)

IV. TRANSFORMATION BETWEEN CLOSED ork=-1

FORM SOLUTIONS m)(em)/(4m)

We seek now models for which the potenti&{¢) and V(¢)=(§
the scale factor evolutiom(t) can be obtained in closed
form and exhibit the action of the power-law transformation 2m-4)) o (4—m)A ¢
in simple terms. The expressida7) for the potential sug- xB sintf A i

) . 2(6—m)

gests we start looking for exact solutions where the scale
factor is the independent variable. In REf4] it was shown (67)
the reduction of the systelt2), (3) to quadratures using as
input the history of the potential. In this case H) be-  While an exponential potential arises for=4, k=—1 or
comes Eq(46). We write the potential as k=1 with B>2,

] (6—m)/(4—m)

F B—2k\?
Vl¢(a)]= ;‘Z‘) (62) V(¢>)=Bexr{—(2T) Agb}. (68)

As we see, potentials of this class include hyperbolic po-
tentials that are relevant to describe the scalar dark matter
a2 qv [16_—1&_3; anq they als_o include the expo_nen_tial p_otential,
—~t+af—=0, (62) which is typically considered when modelling inflation, and
d»? dé is motivated by supergravity theorig$9,20.

and make the change of variableés=ad 7 in Eq. (46),
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For these models, the scale factor can be obtained iwill request that the transformed potential has power-law his-
closed, implicit form wherm+#4 in terms of the hypergeo- tory only asymptotically fom>1 and a large scale factor.

metric function. Folk=1 we obtain This case occurs fan=4 and we have
om\ Y2g3-m2 _ 3
At:(F 6= m B:n{B 1+ E(n—l) —(3n—1)k] (73

1 m-6 3m-14 ma*™m
2'2(m-4)'2(m—4)" 2B

. (69  andagaim=6-—2/n. This transformation maps the linearly
expanding model with exponential potential into a model
with a deceleration parameter so close-td as required
while n is made large enough. Equatiof&6), (67) show
explicitly how the slope of the potential can be made arbi-

(70 trarily small in this limit.
Following similar steps we can integrate the sysi@®),
r446) by quadratures:

X oF1

while for k=—1 we get

We wish to see the action of the symmetry transformation o

this class of models, linking non-accelerated expansions with dal 6 F A2\ 1 3 172

accelerated ones. So we start looking at their late time be- At:@f - _f da—+|CH+r—|] =+ — '

havior. a|af a 4/a% 4a?
Fork=1 and 4<m<6, the scale factor has a bounce and (74

its asymptotic behavior for large timest&©~™  while for

0<m<4 the scale factor has an upper bound so that we will = J v
. X —F+6 | daF/a+C
not consider this case any further. Hor—1 and O<m da
<4 the scale factor evolves from an unaccelerated initial 29~ \/Ef a
phase witha=At?(6=™ at small times to a linear expansion GJ daF/a+C+A?%4+3a’/4
at late times, while for 4m<6 the scale factor evolves (75)
from a linear stage at small times to an accelerated sdtage
=t2(6=m gt |ate times. Finally, fok=*=1 andm=4, the In this case, the action of the symmetry transformation
expansion is linear. (41)—(44) becomes the map(F(a),C,A)—(F(a),C,A)

Taking into account E¢(63) we observe that the action of where Eq.(74) remains invariant. In the case of the power-
the symmetry transformatiol4)—(17) becomes the map |aw transformation(47), (48) we get
(F(a),C)—(F(a),C), where Eg.(64) remains invariant.

. . . 2
That is, the set of the solutions that can be expressed interms = 5,1 _ d_a A_
of quadratures transforms into itself. In the case of the F=na F+(n=1)|6 a FreC+ 4
power-law transformatiori26), (27) we get
n3n-1) ., a¥
_ da — (76)
F=na®" Y F+(n-1) 6f —F+C
and for models with power-law history of their potential it
—n(3n—1)ka®" 2+ 2ka*", (7)) becomes
For the models with power-law history of their potential the n—-1 n(3n—1) a4n
transformation becomes F=nB| 1+6— ab—htmy — ~gbn-2_ -
— n—1 77
F=nB|1+6——|af " D*M—_n(3n—1)ka®" 2+ 2ka*". , _
m Comparing Eqs(74) and(75) with Eqgs.(64), (65) we see

(72)  that the solutions of the FRW model fdr= —1 give the

. . leading behavior of the solutions of Bianchi type V space-
So, the requirement that the transformed potential has g Elence, the simple action of the power Ia)\:\?transf[c))rma—
power-law history, i.eF=Ba™ can be satisfied fok=—1  tjon in the FRW model still holds for Bianchi type V in the
with B=n(3n—1) and m=(32_— 6m)/(6—m)=6—2/n. asymptotic sense.

The requirements than>0 andm>0 constrain the trans-  We recover the solutiof62)—(54) inserting

formation exponent to 1Bn<3 and the history exponents

to the interval (0,16/3). We observe that the transformation _2(2=@0) 3054 a*

with n>1 maps unaccelerated models witi< 4 into accel- F= 302 a 2 (78)
erated ones witlm>4, while the linearly expanding model

with m=4 transforms into itself. into Eqgs.(61), (74) and (75), and similarly we recover the

As a second example we consider transformationskfor asymptotic behavio(60) inserting into Eq(75) the leading
=1 that allow an arbitrary large exponent. In this case weterm of Eq.(78), transformed by Eq(76), whenwy<2n/3.
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V. CONCLUSIONS structed the invariant set of perfect fluid Friedmann-

Robertson-Walker and Bianchi type V spacetimes that may

We. havg shown_the symmetry transfor.mauon under Wh'crbe obtained by quadratures. These solutions are characterized
the Einstein equations in the general Fnedmann—Robertsorﬂ)-

Walker and Bianchi type V cosmologies are form invariant. y the history of the scalar field potential and their paramet-

. . . . ric expression is shown. We give th tion of th mmetr
It relates geometrical quantities with the energy density an?r;rfsfzr?nszti%n isnsth(i)s repreesgntzeiti or? action otthe symmetry

pressure of the perfect fluid. We have seen that the coopera- Finally, we conclude that it is very interesting to study

tive effect of adding energy density into the spacetime leadﬁwese kinds of symmetry transformations, which have re-

to inflation and gives a way to link a non-accelerated sce, . 4 up to now little attention. We shall continue exploring
nario with an inflationary scenario by means of a symmetr

X Yhis subject for other metrics in future papers.
transformation.

As an example, we have investigated the connections be-
tween assisted inflation and this symmetry transformation.
We have shown that assisted inflation can be generalized to This work was supported by the University of Buenos
any potential that increases the energy density of the scaldires under Project X223, the Spanish Ministry of Science
field configuration without specifying the number of fields. and Technology jointly with FEDER funds through research

The violation of the strong energy condition has beengrant BFM2001-0988, and the University of the Basque
shown to be required for the asymptotic stability of power-Country through research grant UPV172.310G02/99. The
law solutions in Bianchi type V spacetime, and the potentiawork of R.L. was also supported by the Basque Government
leading to these solutions has been found. We have also cothirough fellowship BFI01.412.
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