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Inflation without a beginning: A null boundary proposal
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We develop our recent suggestion that inflation may be made past eternal, so that there is no initial cosmo-
logical singularity or “beginning of time.” Inflation with multiple vacua generically approaches a steady-state
statistical distribution of regions at these vacua, and our model follows directly from making this distribution
hold at all times. We find that this correspor{ds the semiclassical levyeio particularly simple cosmological
boundary conditions on an infinite null surface near which the spacetime looks de Sitter. The model admits an
interesting arrow of time that is well defined and consistent for all physical observers that can communicate,
even while the statistical description of the entire universe admits a symmetry that includes time reversal.
Our model suggests, but does not require, the identification of antipodal points on the manifold. The
resulting “elliptic” de Sitter spacetime has interesting classical and quantum properties. The proposal may be
generalized to other inflationary potentials, or to boundary conditions that give semieternal but nonsingular

cosmologies.
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[. INTRODUCTION with a singular initial epoch came to dominate cosmolbgy.

Attention has since focused on how this primordial singular-

The ancient philosophical question of whether the uni-ity (where some presently unknown theory of quantum grav-
verse is finite or infinite in time, and whether time “had a ity presumably appliescould give rise to a classical “initial”
beginning,” entered the domain of scientific study during thestate that could evolve into the observed universe.
20th century with the development of generally relativistic  The required “initial” classical state, however, seemed
cosmologies in which the universe is homogeneous and exather special: the universe had to have been extremely flat,
panding, as observed on the largest accessible scales. and statistically homogeneouse. obey the CPon scales

Chief among these cosmologies, and representing oppdarger than the horizon size. The theory of inflation was de-
site answers to the question of the universe’s beginning, wereised and widely accepted as a solution to this problem of a
the classic big-bang and steady-state models. As Friedmangpecial initial state: given inflation, a flat, homogeneous uni-
Robertson-WalkeXFRW) models, both are based on some verse (with the necessary Gaussian scale-invariant density
form of the “cosmological principle”(CP) that the large- fluctuations is an attractor. That is, within some inflating
scale statistical properties of the universe admit spatial trangegion of fixed, finite physical size, the CP holds more and
lational and rotational symmetries. The models differ greatlymore precisely with time. What is perhaps more surprising
however, in their time evolution. In the big-bang model, the@nd less widely appreciated, however, is that in generic in-
properties of the universe evolve in a finite time from aflation models the universe also comes to obey, with ever-

dense, singular initial state. In contrast, the steady-state unfif€ater precision, theerfect cosmological principle. This
verse is said to obey the “perfect cosmological principle” occurs because inflation is generically “semieternal:” rather

(PCB in that it admits, in additional to spatial translational ;[Easnoiqgl?g C“i’(ljonbsa"éﬁé st?]rgeut;]rpli,rér;flatllggaeﬁlwzys ?c?anctzlr?gssa
and rotational symmetries, a time-translation symmetry 9 ’ 9 Y app

Since all times are equivalent. there can be no “beginnin O'guasi—steady—state distribution of inflating and thermalized
o € equivalent, thel : 9 9 regions, the statistical description of which becomes asymp-
time,” and the universe is infinite in duration.

. o ; . otically independent of timgl].
Unlike their philosophical predecessors, the big-bang ané Since inflation genericallyapproachesa steady state, it
steady state models were observationally distinguishabl

; X %eems physically reasonable to ask whether the universe can
and a;tronomlcal evidence eventually turned nearly all COSsimply be'in an inflationary steady state, thus avoiding a
mologists away from the steady-state. Moreover, theoremggsmological singularity or “beginning of time.” Indeed, the
proven within general relativity showed that the classical sinpossibility of truly eternal inflation was raised soon after
gularity of the big-bang cosmology was robust and could not
be avoided by relaxing simplifying assumptions such as that———
of homogeneity. Thus the idea of a temporally finite universe ithere have been a number of proposals for avoiding a beginning
of time, but generally these involve either continuing through the
cosmological singularity by invoking quantum gravitational effects,
*Electronic address: aguirre@ias.edu or modifying GR at the classical level. Our approach aims to de-
TElectronic address: sgratton@princeton.edu velop a nonsingular cosmology without appeal to either possibility.
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inflation’s invention, but no satisfactory model was immedi- At any timet, we can derive the distribution of bubbles

ately devised2], and in subsequent years several theoremsnd inflating region within our comoving volume, with the

were formulated proving the geodesic incompleteness oéim of showing that the distribution approaches a steady

models globally satisfying conditions seeming necessary fostate. To avoid complications resulting from bubble colli-

eternal inflation[3,4]. These theorems suggested that infla-sions and the ambiguities in connecting the time slicings

tionary cosmologies necessarily contain singularities, but thevithin and outside bubbles, we concentrate on the statistics

exact nature of the implied singularities was obscure. describing the inflating region outside of the bubbles. This
In a recent paper, we constructed a counterexample teegion is necessarily unaffected by the bubbles’ presence be-

these theorems by providing a model for geodesically comeause they expand at the speed of light: both its global and

plete truly eternal inflatioi5]. There, we analyzed the clas- local properties depend only on its initial statet@tBut we

sical steady-state model in detail, then extended our analysieay describe three effects of the bubble encroachment

to inflation. Here, we develop the model from a differentupon it.

standpoint, focusing on an eternal inflation in a double-well  First, let us consider the inflating region left at tirnby

inflaton potential, and on the corresponding cosmologicabubbles forming sincé,. This region must consist entirely

boundary conditions. Section Il motivates and develops ouof points each of which doesot have a nucleation event in

model, and describes its general features. Various aspects it past light cone(PLC) going back tot,. Denoting the

the model are developed in subsequent sections: Section Nolume of this PLC byQ(t,t), it can then be shown that

discusses the arrow of time in our model, and elucidates thsuch points comprise a volume fraction

failure of the singularity theorems to forbid our construction;

Sec. IV discusses the cosmological boundary conditions,

which are specified on a null surface; Sec. V discusses the finf=exq—)\Q]:exp{

relation of our model to the “antipodally identified” or “el-

liptic” interpretation of de Sitter spacetime that it suggests.for (t—t,)>H"* [9,10]. Although f;x—0 for larget—t,,

and briefly discusses quantum field theory in elliptic de Sitthe spacetime is said to be eternally inflating because for

ter; Sec. VI discusses generalizations and extensions of oWna| )\ the physical inflating volume within our comoving

model. We summarize and conclude in Sec. VII. region nonetheless increases exponentially with time:

—4m(t—to)] .

3H3

Il. THE PROPOSAL Vin* fin EXPSHD) ~exp(DHY 3

.for any fixedt,, with D=3—4m\/3H".

Second, one can shdw] that at fixedt the distribution of
inflating regions about any inflating point is described by a
fractal of dimensionD [that is, the inflating volumeV;
13 (r)rP] up to a scale of orderg(t,to), where

In this section we develop an eternally inflating cosmo
ogy based on a double-well inflaton potentla(¢) with
minima at¢; and ¢, whereU(¢;)>U(¢;)=0. This sort
of potential is posited in “old” inflation[6] or “open” infla-
tion [7,8]. We will first review semieternal double-well infla-
tion, then extend this to eternal inflation, then analyze and — -1 aH(t—tg) _
address the geodesic completeness of the model. foltito)=H e . @

is the physical radius dtof a bubble nucleated a&.
A. Semieternal “double-well” inflation Third, we may calculate, for a given point in the inflating

) ) ) . region at time, the number per unit tinlhgr,t) of incoming
A semieternally inflating cosmology naturally arises from jy ,pples of physical radius This is

a generic double-well potenti§,10]. Consider some large

comoving region in which, at an initial timnte=t,, the energy Amnr?

density is dominated by the inflato#, with ¢=d; and N(r,t)zm ®

d,,¢=0. Assume the spacetime to locally resemble de Sitter

("dS” ) space, with(for conveniencenearly-flat spatial sec- for r<rg(t,t,) and zero for >rg.

tions, i.e. with a metri¢11] approximated by An observer within a bubble can never leave, but will

> oMt a2 5 eventually be encountered by an encroaching bubble wall

ds’=—dt*+ e (dx*+dy*+dZ). @) after a typical timer, wherero} is related to the inte-

gral of Eq.(5) by some transformation between the bubble

In this background, bubbles of true vacudinnucleate at observer’s proper time and cosmic timed. Since this rate

a fixed ratex per unit physical 4-volume that depends upondepends on—t,, a patient and very sturdy observer could in

the potentialU(¢) [12]. The interior of each bubble looks principle discover the global time at which it formed by

like an open FRW cosmology to observers inside it. For acounting the frequency of incoming bubbles.

suitably designedl (¢) (as in open inflatiori7,8]), there can Now, ast—oo, four things occur. First, the nearly flat

be a slow-roll inflation epoch inside the bubble so that thespatial sections approach perfect flatness. Second, the incom-

FRW regions are nearly flat and homogeneous, and havieg bubble rateN(r,t) becomes homogeneous and indepen-

scale-invariant density perturbations. One such region couldent of time on arbitrarily large physical scales. To see this,

therefore in principle represent our observable cosmologicamagine that the rate is inhomogeneous at early times be-

surroundings. cause bubble nucleation starts at different times in different
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regions. But since the impact rate depends on the initial timejo J*

only for bubbles of radius greater thamg(t,ty)~exgH(t

10

—tg)], it is then homogeneous and independent of time on 5

arbitrarily large scales as—. Third, and for essentially the

same reason, the distribution of inflating region around any

given inflating region also becomes homogeneous and inde \

pendent of time on arbitrarily large scales. Fourth, observers

within bubbles lose the information about the “global time”
at which they exisfsee Eq.(5)], and all bubbles become

equivalent. Thus the physical description of the universe,

relative to any fixed length scale suchds?, satisfies the
perfect cosmological principle arbitrarily well &s-»oo.

B. Eliminating the beginning

statistical properties depend only upbnt,, for specified
conditions at the state at fixed with ty— — o is the same
as that fort— oo with fixed t,.

listed above: The spatial sections are exactly (faitside of
the bubbley the bubble distributiorfas characterized by the

incoming bubble rateis homogeneous and independent of

II

FIG. 1. Conformal diagram for de SittédS spacetime. Each
point represents one point id+1)D dS, or half of a 2-sphere in
) ) ] (3+1)D dS. The left and rightdotted edges are identified. The

The above semieternally inflating model can be madepaged regioriregion ) is covered by coordinates with flat spatial
eternal by setting the “state” of the universe to be exactlysections(spacelike lineswith spacelike infinity ai; the straight,
that stateapproachedby semieternal inflation: because the timelike lines represent comoving geodesics. The null surface
represent$— —co. True-vacuum “test bubbles(hot disturbing the
background spacetimeare darkly shaded and open toward future
timelike infinity 7. Also shown are the light cones of poisand
The state so obtained has the four basic characteristid? in regions | and Il that open toward ™ , and null(“ Y") and
timelike (“ X") geodesic segments with an end poink;aénd cross-

ing J~ .

time, as is the distribution of inflating regions about anytimelike geodesicgsuch as X”) other than the comoving
inflating region, and the bubbles are all statistically identical.ones have only a finite proper tim@r affine parameter
between a point in region | and coordinate tithe —« (see,
scales. This means that, although inflating regions exist, the.g.,[5]). Most geodesics thus “leave the spacetime” to their
global inflating fractionf; is zero, just as the fraction of 3D past, encountering/~ , the limit surface of the flat equal-
Minkowski spacetime filled by an infinite 2-plane of finite time surfaces as— —o. (On the conformal diagram this
thickness—an object of fractal dimension two—would van-surface looks like a null cone emanating from a point at the
ish. (The zero probability that a randomly chosen point is inbottom edge.
Although the spacetime is geodesically incomplete there
PLC of each point there is an infinite 4-volume in which is no curvature blowup or other obvious pathology/at, so

the spacetime is extendible rather than singular. One may

The inflating region is a fractal of dimensidd<3 on all

an inflating region accords with the fad] that within the

bubbles can nucleate toward that pairitinlike the region

filled by the plane, however, the inflating region is statisti-take the position that this sort of incompleteness is allowed,
cally homogeneous and isotropic, in that it exactly satisfiesince the edge is outside of the future of any point in the
the “conditional cosmographic principle” of Mandelbrot that region, and any given thing in the spacetime was made at
the statistical description of the inflating region about anysome particular coordinate time- — .2 From this point of
given inflating region is independent of the inflating regionview, there is no clear reason to reject the model as defined
chosen(see Ref[13] for a discussion of this and other as- in region |.
pects of “cosmological” fractals It seems quite reasonable, however, to ask instead how the
This model (essentially derived by Vilenkif9]) would  manifold could be extended, and what could be in the exten-
seem to have exactly the properties expected of an eternalljion. We start by extending the manifold to incluge ,
inflating spacetime, has been straightforwardly constructedvhich is the boundary of the open set comprising region |.
using the steady state generated by a semieternally inflatingle shall see, as follows, that Qfi~ the field must every-
model, and extends to infinite negative cosmic time. Yet thavhere be in the false vacuum. Defigg\) as the field value
arguments of3,4] (discussed in more detail in Sec.)lim-  at affine parametex of a noncomoving geodesic starting at
ply that it should be geodesically incomplete. This issue cagome arbitrary poink; in region |, wherek increases away
be addressed with reference to the conformal diagram of thom 7~ . We know that for some affine parametey, the
model, shown in Fig. 1. The background inflating spacetimeyeodesic encounterg ™, and also that if our point is within

is represented by the lightly shaded region. Each equal-timg pubble, there is also a finite valug>\ ; at which the
surface is intersected by an infinite number of bubljiedi-

cated by light cones opening towagd"), which are concen-

trated along7* and neai®.

region henceforth called “region )"is geodesically incom-
plete: all null geodesicgsuch as Y” in Fig. 1), and all

) ) 2This was the view taken by investigators of the “cyclic model”
The model thus far constructe@defined in the shaded [14] which is geodesically incomplete in a very similar way, and
may be the view taken by the adherents of the classic steady-state

model.
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geodesic leaves the bubble and enters the false vaghum
Then forA<\;, we have

lim @(N)= . (6)

)\-*)\] V+

t=const.

If we then require that the field be continuous along any
geodesic, we then find that the field must be in the false
vacuume; everywhere on the surfacg™ . That is, at the >°< I
semiclassical level of descriptiorrf ~ must be an infinite ?
null surface of pure false vacuum, through which no bubbles
pass.

Let us now examine the global classical structure of the
background spacetime by momentarily neglecting semiclas
sical processes such as bubble nucleations. Then the mar
fold comprised of region | ang7 ™ is locally dS (constant
Ricci scalarR and vanishing Weyl curvature teng@very-
where, with¢ in the false vacuumd¢= ¢¢). This manifold
can still be extended past™ , and the obvious extension is
to complete dS spacetime. This is certaialgolution com-

atible with our state af ~ , and(as we will argue in Sec. IV _ . )
P ar ( 9 Bubbles are open FRW regions; equal time slices are shown as

and the Appendixit seems likely to be unique. Thus we wil curved horizontal lines. For clarity we have not included bubble

take the maximal extension of the background spacetime t%tersections. Also shown are past light cones, cut off/at, of

be full dS spacetime. That is, the nonshaded region of Fig. ]both a pointP and its antipode- P (note thatP and — P are also

henceforth called “region II” must simply be the rest of dS (rjeflected across the suppressed two-spheres in the 4 case
spacetime. Consider now a classical field in the backgroun

spacetime obeying a homogeneous hyperbolic equation. . . _
Given any pointP in region |, almost all inextendible nons- reflection of region | throughy™ . Thus the answer to the

pacelike curves througR intersect7 ™ . Therefore specify- guestlzn 9f hOV\r’] the model C'aTI b% ext'enlded, an(fj what I|Ies
ing the field values o7~ effectively poses a “characteristic eyon J 15 that an essentially I e_nt_lca copy or region
initial value problem”[15,16 with a unique solution every- lies In region I, connected. by the. |.nf|n_|te null surfage .
where in region I(this is the analog of the Cauchy problem, This completes the basic specn‘lqatlon c.)f our model. Thg
but with boundary conditions on a null surface; see Sec. I\;:osmology obeys the CP and PCP in that it admits a coordi-

and the Appendix for more detallsExactly the same argu- natization such thgt _aII spatial slices are statistically hor_no-
ment can be made, however, for any point in region Il. ThugdNeoUs, a_nd s_tatlst_|cally fche same as all others. There_|s no
specifying classical fields everywhere qfi determines p_referreq jume in this $I|C|ng, nor 1s there a cosm_ologlcal
their values everywhere in dS spacetime. This means that thSénguIar]tyg. t.hifl TOdel ,ls gt;_e?desmally cc;r?hpleée.bl(jlven th%
conditions found to obtain oy~ (by specifying the state in gppro%rla €m t? on p§| ential, ané/. one ot the bubbles cou
region | and requiring fields to be continugwidsodetermine escribe our observable surroundings.
the state in region Il and we can extend our model to region
[l in an essentially unique way. ll. THE ARROW OF TIME
We may now examine the extension of the model to re-
gion Il at the semiclassical level by including the bubble If we consider all bubbles to expand with time, then Fig.
nucleations. The form o) (¢) indicates that bubbles must 2 suggests that while in region | the future is toward the top
nucleaté at a fixed rate per unit physical 4-volume. In region of the diagram(“up” ), in region Il future lies toward the
I, this led to an asymptotically steady-state bubble distribubottom (“down” ). This leads us to the issue of the cosmo-
tion which, when made exact, implied that there a® logical arrow of time(AOT): why does the time-asymmetric
bubbles passing througly ™. Thus in region Il, though 2nd law of thermodynamics hold universally, given that fun-
bubbles must nucleate at the required rate, none must padamental physics is thought to admit a symme@\P(T) that
through7™ . includes time reversal? There is some consensus that if this
The only way this may occur is, in exact symmetry with question has an answer, it must ultimately be cosmological,
region I, to have a steady-state bubble distribution on the flatvith the time asymmetry resulting from some qualitative dif-
slices of region Il, with the bubbles openiagvayfrom 7~ .  ference between cosmological “initial” and “final” condi-
This is illustrated in Fig. 2. Region Il is, then, a sort of mirror tions[18] that precludes a time-reversdl)(symmetry of the
physical state in any subregion of the universe, and hence
induces an AOT.
3Bubble nucleation has been perhaps most rigorously analyzed in Although our our model has no “initial” conditions, it
Ref.[17], and the boundary conditions for bubble nucleation in ourdoes have boundary conditions gh (discussed in detail in
model correspond exactly to those analyzed in their study. Sec IV below and we can discuss the AOT in light of them.

FIG. 2. Conformal diagram for eternal double-well inflation.
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To do so we must divide the universe into two types of
subregions: those entirely outside of bubbles, and those pat
tially or wholly within them. Outside of the bubbldsr al- t
ternatively near enough t¢~ ) thereis no local AOT the
description of such a region admits a time-reversal symme-
try. Were we to hypothesize, for example, an imaginary ob-
server outside of a bubble with its own AQjpointing away
from the time of its creation that observer would see only
T-invariant dS spacetime. The observer could not know
whether it moved “up” or “down” on the conformal dia-
gram, nor if it was in region | or Il, nor if it crossed ™ . Vi)
What the observer is guaranteed, however, is that it will \/\
eventually be encountered by, and find itself within, a
bubble. FIG. 3. The decay ofleft) an unstable particle an@ight) an
The bubble interiors are not time symmetric: within a unstable vacuum state. In the particle case, the trajectory is classi-
bubble, there is a unique time direction in which the mearcally describable to good precision at early and late times, but not
energy density decreases. This direction is away from th&ear the decayshaded region Likewise, the inflatong is classi-
bubble wall or slow-roll inflation epoch, at which the FRw cally describable at Iarge_ invariant dis’Farme‘r'om the nucleatipn
region is known to be nearly homogeneous. If one bubble €Nt a0, but not near it(shaded region This quantum region

to represent our observable surroundings, this direction mugpnnects the classically describable field configuration of the bubble
. . . e interior to that of locally dS spacetime.
correspond to the time direction in which the entropy of an

isolated system increases. It_has been _often firgued, particllouid oceur at<0 so that this purely quantum description
larly by Penrose[19], that this connection arises because,q,id beT symmetric. Now, asemiclassicatlescription of

when gravity is included homogeneity corresponds t0 an exqe system would describe the system classically at both
tremely low-entropy state. We shall assume this corresponsayly and late times, but with a quantum-mechanical transi-
dence heréand that the bubble does not begin in some veryion"connecting the classical trajectories at some given time.
special state for which the density fluctuations decred&e-  Thjs ransition time is random, and in an ensemble of such
der this assumption the physical AOT within any bubblegysiemgas is required for a correct probabilistic description
must pointaway from the bubble walls; globally this means o4 follow a probability distribution given by a WKB-type
that the AOT(where defineipoints away from7 . calculation of the decay rate. Near the transition time the
As illustrated in Fig. 2, one can therefore indeed drawgysiem cannot be described classically; we must “shade out”

timelike geodesicgsuch as “X”) along which the physical e region where only a quantum description is accurate, as
AOT reverses, but the reversal always occurs to the past gf, Fig. 3.

any physical observell of which are within bubbles and Bubble nucleation can be described semiclassically in a

within a region(the locally dS spacetimén which there is  gimilar way. Here, we must attach allowed classical solutions

no well-defined physical AOT. _ of the field equations along some boundary that represents
We have argued that within bubbles the physical laws, bufhe nycleation event. To do this in a covariant way, this

not the physical state, admit a symmet@RT) including  poundary must be a surface of zero proper distance, i.e. a
time reversal, while outside of bubbles the laavelthe state cone, as shown in Fig 3. A bubble nucleation “event” is
admit time symmetry; but what about the b_ubble nucleati_0n§hus comprised of a regicishown as the shaded upper quad-
themselves? Is there not some AOT telling them “which gy where a classical bubble interior solution applies, at-
way” to nucleate, depending upon which side 8f they  (ached to locally dS regions by a “shaded out” region
areon? ) _ ~(within some proper separation squared of the nucleation
To clarify th|§ point, consider the process of semmlassmaboint) where only a quantum description is valid. To produce
bubble nucleation by analogy to the decay of an unstablg semiclassical description of a spacetime in which nucle-
particle, described by a potenti®l(x) as in Fig. 3. Classi-  ation events occur, one must then populate it with these con-
cally, one allowed trajectory is for the particle to sit at con-figyrations in such a way that the nucleation sites are ran-
stantx in the false minimunx; (vertical line on diagram a  gomly situated and occur at the correct rate per unit four
second, equal-energy ftrajectory is for the particle toyolume, while the classical description, which applies far
“bounce” off of the potential(curved line in diagram A from the nucleation site, is in accord with thelassical
purely quantum description of the systémthe Schrainger  poundary conditions. When the classical boundary condi-
representationwould start, for example, with a Gaussian tjons are ours, given oy, this yields the bubble distribu-
wave function centered a& at some timet=0, and hence tjon indicated in Fig. 2. Thésemiclassicalboundary condi-
with the position expectation valug)=x;. With time, the  tions do, then, control the time direction of bubble
wave function spreads, angk) increases, eventually ap- nucleation, not by introducing some locally-detectable AOT,
proaching the classical trajectory fox)>x; (we could say but by controlling the allowed global configuration of bubble
roughly that the particle has “decayed” whém) changes nucleation events.
significantly fromx;). Note also that the same spreading There is one final “region” in which we can check the

X
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AOT: the entire universe. Interestingly, we here find thatplicit definition of what Bordeet al. mean by an eternally
while each bubble nucleation event is non-time-symmetricinflating spacetime. The logic is that* might be indepen-
by virtue of the symmetry of the cosmological boundary con-dent of test geodesic and simply be the velocity field of some
ditions, the statistical description of the universe does admiset of comoving world lines in the inflating spacetime. So
a sort of T symmetry. In Sec. V we will discuss the possibil- what the theorem actually implies is that is it impossible to
ity of making this symmetry exact via an identification on entirely cover a spacetime with such a set of world lines in a
the manifold. This raises the intriguing possibility of having way that allows all test geodesics cutting these world lines to
a well-defined(and consistent among communicating ob-obey the Hubble parameter condition.
serverg AOT for all observers even while the physical laws  For illustration, let us consider dS space. We note that as
and the global physical description of the universe both adpure dS is a maximally symmetric spacetime, it does not
mit a time-reversal symmetry. make sense to regard some parts as inflating and others not—
one must break the symmetry by adding some other ingredi-
ents, and then frame a discussion in terms of them. Never-
The singularity theorems theless, let us investigate if the geodesics defined by having

Having examined the AOT, we may turn to the singularity fixed comoving coordinates themselves constitute* dield
theorems, for the AOT proves crucial in their analysis. Both*a,>0 for all geodesics. It turns out thadt reduces to the
the older theoremE3] and the newer theorefd] assert that usuala/a in this situation. In the closed slicing with metric
if certain conditions are satisfied everywhere within a space-
time, then not all past non-spacelike geodesics have infinite ds’=—dt?+H 2cosfHt(dy?+sirPxdQ3), (7)
proper time or affine parameter. This indicates that the space-
time is either extendible or contains singularities.

The older theorem poses four such conditions, of whichthe coordinates cover all of dS, sg* is globally defined.
our model satisfies three, as does region | or Il by itself. TheHowever, H<0 for T<0 so H,, goes negative. Now con-
fourth condition is that there exists a poftsuch that there sider using a single flat or open coordinate patch to define
is a finite difference in volume between the interior of they”, >0 here(at least for the appropriate choice of time
PLC of P and that of any poinP’ in the past ofP. This is  orientation. However, because neither of these coordinate
motivated by double-well inflation, and claimed as necessarpatches covers the spacetime, neither dgesFurthermore,
for semieternal inflatiorithe argument being that if this con- one may choose an infinite number of flat coordinatizations
dition does not hold, then any inflating point will find itself of dS, each with a different null boundary where thé
in a bubble at the next instant, with probability on®e  construction fails. This makes it clear that the boundary of a

argue that this condition is not quite necessary: what is regiven u* field cannot be unambiguously used to define an
quired is that there be a finite volume in the region betweeredge to an inflating region.

the PLCs ofP andP’ in which bubbles can nucleate toward  We do not believe that the global existence of a suitable
P. Thus if, as in the proof of the theorem, the “pastitis  u* is necessarily the best definition of what is meant by an
taken to be the full volume interior to the light-cone pointing eternally inflating spacetinteln particular, equating{ with
in the time direction away from which a bubble nucleated atphysical expansion entails a tacit assumption that the physi-
P would expand, then the fourth condition applies to region Ical AOT is everywhere in accord with that defined b4.
alone (and Correctly ImplIeS that it is eXtendibleBUt it The model we have proposed could be covered by a congru-
would not apply to the full spacetim@vhich is neither ex-  ence of geodesicéhose comoving in two flat coordinate
tendible nor Singular because the relevant part of the ||ght patches Covering dShat would y|e|d7—[<0 in some regions_
cone extends only tg~ . However, we have argued that these regions may still be
The argument of the newer singularity theorpfi con-  regarded as expanding with respect to the physical AOT de-
sists of the definition of a local “Hubble parametef!  fined by the cosmological boundary conditions.
meant to represent the rate of divergence of neighboring co- |n summary, both singularity theorems postulate condi-
moving test particles, along with an argument that any regioflions for a region to be “inflating,” and find that such a
for which a suitable averagh,, of H is greater than zero region cannot be geodesically complete. However, interpret-
along all geodesics must be geodesically incomplete. ing these theorems as forbidding eternal inflation seems to us
We understand Bordet al.'s argument as follows. One to require an unwarranted assumption about the global AOT

imagines some timelike or null test geodesic with affine paindependent of the cosmological boundary conditions.
rameter\ in the spacetime in question, then attempts to con-

struct a timelike vector fieldi“(\) along the test geodesic
into its past such thakt,, (defined viau”) exceeds 0. Itis  4ndeed the term “eternal inflation” has been used with a variety
shown that this can only be achieved along some finite affingf meanings. For example, the recent paj28i used it to describe
length of the test geodesic, since the imposed condition rapmodels that are eternally inflating to the future, but simply geode-
idly forces u towards nullness. Bordet al. [4] then take sjcally complete to the past(and/ora may go negative theye
their result to mean that an eternally inflating spacetime iSsuch histories, with a globally defined arrow of time, seem physi-
past-geodesically incomplete. cally unrealistic with a typical mechanism for exiting inflation,
We take the hypothetical satisfaction of their averagedsince this would render them unstable to the formation of thermal-
Hubble parameter condition for all test geodesics as the imized regions in the putatively eternal early phi2g
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IV. BOUNDARY CONDITIONS AND THE NULL and ability to correctly generate a big-bang-like region that
BOUNDARY PROPOSAL can describe our observable surroundings.

We have seen how extending semieternal inflation to eter-
nal inflation implies particular behavior on the infinite null ) ) N
surface . Here we discuss the converse, describing how It iS conventional to pose boundary conditions for a set of
the eternal double-well inflation model we have describedf!2ssical fields by specifying the fieldand generally their

can be specified by a particularly simple set of cosmological "¢ derivatives on a spacelike surface. This is in accord
bound diti that : d.6n with the intuitive idea of specifying the state at an initial
oundary conditions that are imposed gn . time. An alternative procedure, more relativistic in spirit be-

cause it does not assume a particular time coordinate, is to
o N specify boundary conditions on a null surface such as the
A. On cosmological “initial” conditions light cone of a point(See the Appendix and Refd5,16,24
The correct specification even of a complete set of physifor treatments of the null initial value problem.
cal laws does not by itself allow prediction of any physical Our boundary surface/ ™ is a null surface that, when
system’s behavior; these laws must be supplemented awn on the conformal d|agram, looks like thelllght cone of
boundary conditions that suffice to fully characterize the sys< pointV_ at the bottor_n(l.e. at” the co_nvent|onal pas.t
tem being modeled. The big-bar®B) model essentially t|meI|I§e infinity) andthe Ilght_ cone of a poinV . at the top;
consists of a set of such boundary conditions for our obsen:€€ Fig. 2 As such, one might expect that one may deter-

able cosmic surroundings: at some early time, our region warsnine fieIds(inc[uding the spacetime megjichroughout t_he
' ' Space by specifying them afi” . The conformal mapping,

a h(.)t’ dense, _nearl_y homogeneous and_ isotrop_i_c r_nixtu_re However, hides the fact thaf ~ is not a fully closed light
particles and fields in thermal and chemical equilibrium, in a '

. . cone: there is always a nonzero physical volufokorder
nearly flat expanding background geometry with scale-Hfs or greater on any spacelike surface bounded Y .

inv_ariant gravitational potential pe'rturbatipns of amplitudeWe must therefore ask if specifying fields gfi suffices to
10°° on the sca_le_ .Of the cc_;_smologlcal hon_zo_n. . fix them everywhere, or if there is information that may
While thes_e initial conc_lmons yield predlcnons in excel- .ome “though the hole” a¥/_ andV, . In the Appendix, we
lent accord with astronorr_ucal observations, they are d‘E’G'T“a&gue(using the Green function for a massive scalar field in
by many to be too special: they seem to comprise an €X39) that the fields al. are irrelevantas long as they are

trelmelydsmall eorti'on of some “ens”emble of ‘,”;I,l g?]ssible ini- reasonably well behavedas their effect is infinitely diluted.
tial conditions, ﬁsmr? somé}gf_er;lera y _unspdecll i easu(;e We can thus pose boundary conditions for our cosmology
(see e.g[21]). The theory of inflation is widely accepted as ,; ihe classical level as:

a way to broadr—_zn the range of allow initial conditions_ by (1) There exists an infinite connected null hypersurface
funneling a relatively wide class of physical conditions into J~ of topology RX S?, on which the 4-dimensional Weyl

satlsfchory BB initial condition$22]. tensor vanishes and the 4D curvature scalar is constant.
This is perhaps reasonable as a stop-gap measure as 10N, 5) The inflaton field, with a “double well” potential, is

as the true(prelnflanor_) _|r_1|t|al con_d_lt|ons are unknown. But everywhere in the false vacuum on this surface.
I _dpes nofcs_olve the |.n|t|all cond_mon. problem, f_or_ not all (3) On this surface, all classical fields are zero or are in
initial conditions will give rse to_lnflat_|0|i23_], noris it C'9af minima of their potentials. This precludes any radiation
that all of those that do give inflation will yield a viable ; -
big-b de[21]. Th ¢ stilhssumethat suit-  ProPagating througy - -

ig-bang mode[21]. Thus one must stilassumethat suit- This cosmology is classically very dull, as it is just de

{ahble condm?_ns emerge frc(;jmtthe ‘fnltlal_s;’f]gu‘llarlty; \.Nr,]etherSitter space everywhere with no dynamics. However, semi-
IS assumption corresponas to a Special”or "generic: con- ;|4 qqjca1 pubble nucleations can, without affecting the fields

F:itionhseﬁms iIIl—(;jefined Witglom a d_escriptioF of the s_itnguEI)art—on J ™, create interesting dynamics by forming bubbles that
Iy, which would presumably require quantum gravity. Bu pen everywhere away frony , and give rise to eternal

unless quantum gravity completely alters the way physic nflation as described in Sec. Il and shown in Fig. 2.
theories are applied, it is unlikely to yield unique initial

condition; it will still be necessary to supply a quantum state
(or something similar Even if it is possible to define the
ensemble of all possible states, the question of Hand Although a fully quantum description of semiclassical
why) a state was “chosen” for our universe can only be aphenomena—such as the nucleation of a bubble—is gener-
metaphysical one, and it seems that, just as in choosinglly prohibitively complex, we may hope that, because our
physical laws, we can at best posit a state on s@mossibly  set of boundary conditions is so simple at a semiclassical
symmetrical or aesthetic or philosophicgtounds, derive its level, it might be amenable to a simple quantum formulation,
consequences, and compare them to the observed universand it would be pleasing to specify our boundary conditions
The same holds for a nonsingular cosmological modein an explicitly quantum-mechanical way. There are two
such as that proposed in this paper, the basic structure e@fays one might think of doing this.
which is well-described by semiclassical physics, and where First, one might consider doing usual quantum field
there can be no hiding of the cosmological boundary conditheory on de Sitter space, but with a particular choice of
tions in an initial singularity. We instead specify a particularvacuum corresponding to our “false vacuum” classical con-
set, and analyze them in terms of their simplicity, symmetryditions on.7~ . This might be done by putting the field in a

B. (Semiclassical boundary conditions for eternal inflation

C. Quantum mechanical boundary conditions
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Gaussian wave packet around the false vacuuffiatslic-  slice running across the universe rather than at an initial sin-
ing) timet, as in[17], then taking a— — o limit. One might  gularity.

then assume that this is sufficient to define the quantum state The Hartle-Hawking no boundary propos@BP) is a
over all of de Sitter space. Alternatively, one could set suctprescription for the wave function of the universe. It pro-

an initial state at thé=0 slice in globalclosed coordinates ~ Vides¥ (h;; ,¢), the amplitude for a given three-metric and
(7), i.e. on the slice through the “throat” of the dS hyperbo- scalar field configuration on a spatial 3D surface. The con-
loid. This surface could then be boostédfinitely) to be- ~ Struction is designed to suppress irregular configurations
comeJ "~ . In either case, the procedure would be analogouselative to more regular ones, and to thus favor simple and
to putting an unstable particle into a Gaussian in the fals§ymmetric states. The notion of temporal evolution does not
vacuum at=0; away fromt=0 in both time directions, the appear explicitly. However, one can associate histories with
solution of the time-dependent Schinger equation would —Saddle-point approximations to the wave function, and it
evolve away from the unstable “initial” state. turns out that such universes are often smooth when they are
With our initial data surface being null, one might attemptYoung and small. Thus the NBP may be taken to imply that,
to define the quantum state directly on it. This would be@t the semiclassical level, there should exist a spatial surface

in a cosmological spacetime on which the boundary condi-

conceptually more pleasing, not requiring the limit through a cularly simpl20 | rath I
sequence of spacelike surfaces as above. Further, a null sii2"nS are particularly simpleOur proposal rather uses a nu

face formulation of initial data is rather elegaft6,24. ?nurfzycg(eti,ﬂsezsﬁgn\tﬂn? bgg:f:ilt '[\i/\(/)%uilr? :(;i\rfilrgrlcte?rzetf)t_the
However, unlike for a spacelike initial value surface, some 9 . paqg prescription ;
NBP which naturally leads to simplicity on certain null sur-

points onJ ™ are in causal contact. It is thus less easy to S€€1ces. For further details on both the WCH and NBP
how to move from a spacelike to a null boundary value S”r'see[zé]

face in quan.tum.field theoryQFT)., becau.se. fields do not The tunneling approach to quantum cosmoldgg] ar-
commute at lightlike separated points. A similar effect occursy;es that the semiclassical universe emerges via a quantum
in so-called “light-cone quantization” approaches to QFT inyynneling event. In the context of models with open-
Minkowski space25], where one uses infinite null she€s inflationary potentials the proposal suggests that the uni-
light fronts) instead of equal time slices, and fields again doyerse, when first semiclassically describable, is most likely
not in general commute. The vacuum state for interactingo be small and regular, with the field away from the true
fields is rather easier to define in the lightfront approach tosacuum: future-eternal inflation can then ensue. The tunnel-
QFT than in the usual spacelike approach to QFT, and oning is supposed to have occurred out of a quantum gravita-
might expect this to hold in a proper nubneapproach to tional chaos so severe as to preclude any space-time descrip-
QFT. Unfortunately, the authors know of no such formula-tion. While our proposal also leads to inflation from
tion of QFT even in Minkowski space. semiclassical boundary conditions, it explicitly avoids any
Thus while we suspect that our cosmological boundarysuch extreme quantum gravitational regime.
conditions may correspond to a the specification of a rather Over the years Sakharov has discussed various cosmo-
simple quantum state, we leave this difficult problem forlogical models involving time-reversdand CPT) invari-
future work and here concentrate on a semiclassical descrignce [30—33. In these models, the universe is generally

tion (though we return to QFT in Sec. V)A symmetric across a singular FRW bounce a0, at which
the universe assumes an especially simple state; away from
D. Discussion of the null boundary proposal this bounce entropy increases in both directions of {igig.

. n [30] he hypothesizes that phenomena<ad are theCPT
The boundary conditions we have proposed are extremel oflections of the phenomenatat 0. In[31,32 he considers

simple, in line with the view espoused above that one cannothe possibility of an infinite chain of further bounces or

avoid making a specific choice for cosmological boundar R . o
conditions, and that it is then reasonable to make a choic‘éyCIeS away fromt=0 in both time directions, and also the

that is as simple and as highly symmetric as possible, rathec}oss'b'.IIty that the minimum-entropy s_urface might be one
than hope to choose a “generic” boundary condition. of maximum expansion rather than a singular 8%&32. In

a paper primarily about signature chari@8] he alludes to
possibility of nonsingular time reversal around a surface of
] . ) ] minimal radius in a false vacuum state. Our proposal clearly
Our proposal is novel in that it requires no treatment of anas parallels with these ideas. We, however, concentrate on

initial singularity, and in that boundary conditions are plgcedan infinite nonsingular null surface, rather than a singular
on a null boundary that does not correspond to any particular

cosmic “time.” It does, however, have features in common

with other proposals for specifying the state of the universe. s, yhe context of models with open-inflationary potentials, the
_Penrose’s Weyl curvature hypothe8®CH) requires that  Ngp seems to favor histories in which the scalar field is everywhere
initial singularities are constrained to have vanishing Weyliy its true vacuuni26]. The NBP may still be relevant for inflation
tensor, corresponding to a low-entropy state. This, he arguegith the use of an anthropic constraint, or in a “top-down” ap-
gives rise to an arrow of time flowing away from the initial proach to calculating quantum probabilitigy]. Starting off in the
state. Our proposal is very similar, except of course that wérue vacuum is however not a problem for recycling models of
impose the vanishing of the Weyl tensor on a lightlike inflation, as discussed below.

1. Relation to other proposals
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spacelike one. Moreover, with the concepts of semiclassicaxists® This, however, is not necessarily the case. Imagine
bubble nucleation and open inflation, we are able to provide7 ~ as the limit of a sequence of spacelike slices obtained by

a relatively complete physical picture. boosting the spacelike surface giventy0 in global coor-
_ dinates. Because each such surface has voluniei23, we
2. The horizon problem might also attribute tg7 ~ the same finite invariant volunfe.
Inflation was originally conceived as a remedy for trou- Thus our construction would seem to ameliorate the horizon
bling issues concerning cosmological initial conditig@84],  problem (posed in terms of Hubble volumes within the
thus it is useful to compare how such shortcomings of théoundary condition surfageéo approximately the same de-
HBB model[22] are dealt with in our model. We focus on gree as does inflation beginning in the Planck epoch, and
what is (aside from the singularity problenperhaps the much better than does inflation with an early quasi-FRW
most vexing of these HBB difficulties: the horizon problem. phase.
The horizon problem is generally framed as follows:
choose two spatially antipodal points on the last-scattering
surface. They are similar in temperature, yet their PLCs V. THE ELLIPTIC VIEW
never intersect in a HBB cosmology, so there can be no . o
causal connection between them. Inflation is generally The model we have proposed consists of two indistin-
thought to solve this problem, because with sufficient infla-9uishable regions, each comprising an eternally inflating uni-
tion, the PLCs will intersect. But this doest suffice for the ~ Verse with an AOT(where defineflpointing away from an
points to have the same temperature, because the temperatiffinite null surface which connects the two regions. The
at each point depends on data across its full PLC, and there fatistical identity of these universes, along with lack of a
a portion of each PLC that does not intersect the other. TaKglobal physical time or|entat|on:‘ suggests some form of”an
ing this into account, for the two points to have similar prop-°ld idea concerning dS, called “the elliptic interpretatién
erties it must be assumed that there is sufficient inflation, antat would identify the two universes.
additionally that at inflation’s beginning at timg;, the re- The idea consists of deeming an event to be represented
gion to the past of the two points is homogeneous on lengtfOt Py @ single point of a spacetime manifold, but byaar
scales of ordeHi;fl. But suppose there is a earlier epoch of ant|p_odal_ pomt_s(dgfmed below _Th|s corresponds_to a
between some timeandt,. Then att the patch must be topological identification that, applied to our model, identi-

- fies regions | and I, and mapg~ onto itself [the Rx S?
h h [ h le of at |
omogeneous over a physical length scale of at least manifold 7~ becomes Rx S?)/Z,]. This identification has

a(hH(t)

-1
a(tin) H(ting) H (. ®

r(t)~

5This is apparently the case, for example, in the cyclic mpii4],
where if the cyclic behavior is to continue indefinitely into the
. o ) future and past, it seems necessary to place cosmological boundary
whereH(t)=a/a. If axt® («=1/2 for radiation-dominated congitions on an infinite spacelike surface. This specification ac-

expansioh prior to ti, then r/(H™!)=[a/a(ti)] Y. cords the same properties to points that are arbitrarily distant, and
Thus it is necessary to postulate that our region was, at somgusally disconnected.
initial time t,, homogeneous ovefa(ty)/a(ty)]C¢ 3 "One can also consider other ways of taking a limitfo , but

Hubble volumes. The horizon problem therefore persists ithis one seems most in accord with the symmetries of dS. Another
tini>1o and a<1. There are two escapes available withinapproach to the problem is to rather consider some distance mea-
inflation. The first is to sefi;=to=t,, SO that the expansion sure between any two points Qfi_ . A dS-invariant quantity, in

is inflationary all the way back to the Planck time, beforeunits whereH=1, between point$; and P, in the embedding
which one cannot speak of the expansion at all. The horizofPace{see Eq.(9) below] is given byD(P;,P;)=—viv,+wWiw,
problem is then greatly ameliorated, as it must only be as+X1X2+Y1Y2+ 212, [11]. In general—o<D <<, whereas for two
sumed that some regions “emerging” from the Planck epoctPoints onJ ™, [D|<1; they may thus be considered “close.” The
are homogeneous over a relatively snialit >1; see[23]) relation b_etweerD and _geodesm_dlstgnce is, unfortunately, not al-
number of Hubble volumes when they are first cIassicaII))’,"ayS defined. The points are tlmellke_ or null separated, respec-
describable; but whether this constitutes a true solution wilf'Y&!%: for D>1 orD=1. For|D| <1 points are connectable by a
be seen only if and when the Planck epoch itself is under—Space“ke geOdes'C qf length cd¢D)<; but for D=1 there is
stood. A second potential escape is to aetl, or (more no geodesic connecting; andP», although one does connely

: . . o the antipodd, of P, becaus® (P,,P,)=—D(P,,P,). Under
?nilr;?rl]ly for a to be nondecreasing, i.e. to have pas'['Etemaihe identification of antipodal pointsee beloy, anyP,; andP, are

. . null separated or spacelike separated by a geodesic distance
How, then, does the horizon problem look in the context_ 77/2H_p P P yad

of our eternal model with no initial time? Let us pose the erpe erymology of this term is obscure to the authors. The elliptic
problem in a slightly more general manner: when specifying,iew applied tospatial sections of dS was discussed first by de
the cosmological boundary conditions, must one do so over 8jiter, who preferred it to thenow) conventional “spherical” view,
region that is very large compared to some relevant physicalnd cited a letter from Einstein voicing the same preferd8&
volume such add~3? Posed this way, it might seem that Antipodally identifying in spaceand time was discussed in fond
because7 ™ is an infinite surface, a strong horizon problem detail by Schrdinger[36].
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been subject of some previo{i86—-39 and recen{40] in-
vestigations.
Pure dS can be represented as a 4D hyperboloid

J
— 02+ Wi X2+ y?+ 22 =H"? 9 &
embedded ir4+1)D Minkowski space with metric P
ds?= —dv?+dw?+dx?+dy*+dZ%. (10 - /

The elliptic interpretation consists of identifying each
point P with coordinates #,w,X,y,z) with its antipode— P
at (—v,—w,—x,—Yy,—2). In the conformal diagram, this

means that points such Bsand — P of Fig. 2 are physically The causal diamond of an observer following a geode3it fco-

iQentified; the .antipodall mapl looks like a vertical r_EﬂeC' ,_moving in the global coordinatizatiof7)] is the interior of the dark
tion and a horizontal shift through one half of the diagram’sgizmond. the antipodal copy of which is the light diamond.

horizontal extent.(Note that although this map makes an
orbifold of the embedding space, there are no fixed points itikewise, the space behind the observer’s particle horizon
the dS hyperboloid, leaving the identified space a manifold.(the space not reachable by nonspacelike geodesics emanat-
At the classical level, the identification can be enforced bying from an observer toward its futurés the same as the
demanding that all fields in dS are symmetric or antisymmetspace within it. In this precise sense, edS has no horizons.
ric under.4, and that all sources have an accompanying anJ he notion that in edS each observer has “full information”
tipodal copy. Parikret al.[40] have argued that charge con- about the space has been a prime motivation for the study of
jugation should be added td, and that the combination the spac¢3_6,4q. . . .
represent€ P T. Indeed, in classical field theories at least, Along with these appealing attributes however, and like

symmetry automatically entails opposite charges at antipodﬁggc;zr;tﬁlé%ﬁ;nﬁ]iel'Ofdjahasof%rge d:gi(;ggl\;ené'gggézm'
points. Consider, for example, a complex scalar field, satis.p y y :

X = : - includes time reversal, the spacetime is non-time-orientable:
fylng ¢(—P)—¢(P). Thgn th.e global time derivative of the one cannot continuously divide nonspacelike vectors into
field at the antipode- P is minus that at?, and hence the

: . .0 0 e . two classes which can be labeled “future” and “past.” Now,
charge density q/2i) V= g(¢* P p— $3°¢4*) is opposite. one may take the viei36] that since physics is essentially
However, in(3+1)D at least, we do not recover theT part  time reversible, this poses no fundamental problem. Non-
of their argument. A particle @ with 3-momentum vector  time-orientability does, however, have implications for quan-
p=(px,Py.P;) has an antipodal copy atP. By an argu-  tym mechanicg¢see Sec. V A an{38,39). In addition, while
ment like that of Parikhet al, parallel transporting the physics may be time symmetric, our physical world mani-

copy's trajectory back toP takes the momentum to festly is not, and this must be confronted in a cosmological
(—Px:Py:Pz). This looks like parity followed by a rotation moedel.

of 7 about thex axis. The same procedure, however, takes a The identification of points near “past” infinity with those
small displacemenk=(x,y,z) to (x,—y,—2z). The differ-  near “future” infinity also raises the specter of closed time-
ence in sign arises because the 3-momentum suffers an “aylke curves(CTCs and their accompanying paradoxes. The
tomatic” time reversal under, whereas the 3-displacement identification does not allow any self-intersecting timelike
does not. Thus the orbital angular momentisxXp trans-  curves inperfectdS because the full light cones Bfand
forms from (y,ly,1) to (=Igly,l), just as the —Pp neverintersectthe spacetime obeys the strong causality
3-momentum does. But under parify, x——x and p— principle of[41]). For the same reason, no observer can see
—p, while underT, x—x andp— —p. Therefore undePT  both an event and its antipodal copy. Note, though, that per-
(along with possible rotationsp and! transform oppositely. turbations of dS that tend to make the conformal diagram
Only underT (with rotations alone do they transform like- “taller” [42] would allow timelike curves from a point to
wise. So unfortunately we cannot concur with the beguilingtraverse the dS hyperboloid to the point’s antipode.
idea thatCPT conjugate events occur at antipodally conju-  These temporal features may not be what we are accus-
gate points in an elliptic universe. Rather, we must settle fotomed to, but perhaps we should not be surprised that any
a sort of CT conjugation between processes at antipodatosmology based on globally dS spacetime has an “uncon-
points. ventional” AOT. It is well known, for example, that while a

A second interestingand favorablgfeature of the antipo- patch of dS admits a static coordinatization, it admits no
dal identification, which holds in pure elliptic de Sitter spaceglobal timelike Killing vector; as shown in Fig. 4, the Killing
(ed9, is as follows. An immortal observer in dS can only vector is timelike only in half of the diagram, and moreover
eventually “see”(i.e. be connected to via a nonspacelike points toward the top of the diagram only in half of the
geodesic emanating into the past of the observelf of the  region in which it is timelike, reversing completely between
space, the rest being hidden behind the observer’'s dS eveattipodal points(In fact, the Killing vector field maps onto
horizon. Under the antipodal identification, however, thisitself underA.)
“hidden” space is exactly the same as the “visible” space. QOur model has much the behavior one would want in a

FIG. 4. Conformal diagram of dS including Killing vectotar-
rows), a pointP and its antipode- P, along with their light cones.
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cosmology based on edS. The physical AOT is defined only Consider a massive free scalar fieldx) obeying some
inside the bubbles, which may interséahd hence compare wave equation, for which we would like to construct a QFT
time orientationsonly within region | or region Il. The two in edS by defining a Hilbert space of statéscluding a
regions are separated by locally dS spacetime, where physi¢ggcuum  state |0)), and the two-point function
is fully time symmetric. Under the antipodal identification, (0| () $(y)|0). The latter can be decomposed into a com-
the regions are equated, and the physical AOT is consistepiytator D(x,y) and an anticommutatofor “Hadamard”)
everywhere that it can be compared by two physical observgy,nction G(1)(x,y). Under the antipodal identification, we
ers. "Only an imaginary observer that could travel “back inwould expect bottd andG™® to be symmetric in some sense
time” to leave a bubble, pass throught , and encounter under the exchange of and/ory with its antipode. How,

another bubble, could see that its own AOT agreed only wit : : o
that of one of the two bubblefin fact, it would seem that in qhen, might we d?f'”e such a .QFT' T_here are a number of
ways, none of which seem entirely satisfactory.

a non-time-orientable manifold the physical AOT must either First, one might just pick a particular “antipodally sym-

be undefined in some regions, or must suffer a reversal alon o Ffull ds. Indeed. taki e 00
some surface. Thus a construction something like ours maﬁc}]’e_t”C vacuum state of full dS. Indeed, taking ti
imit of the “ @ vacua” appropriate for d$43] does yield an

well be necessary in any cosmology based on)edS. ) :
However, an antipodally identified version of our model A-SymmetricG'~. However, this does not have the usual

does not quite share all of the desirable properties of edsshort distance behavior of the Minkowski 2-point function.
The bubbles, with a larger curvature radius than the embedn addition, the commutatob is independent of the state
ding space, allow the connection of antipodahd hence chosen, and has no antipodal symmet@ne might also
identified points by a timelike curve. These self-intersectinghope to find and-symmetric nonvacuum state with the cor-
timelike curves(SITC9 are not however CTCs of the usual rect short distance behavior, but this would still have the
grandfather paradox sort. To follow such a SITC an imagi-wrong commutatoy.

nary observer would, for part of its journey, have to travel A second approach would be to try to build an antipodally
backward in (bubble time. Moreover, when the two symmetric vacuum in a full dS background, by choosing a
branches of the SITC meet, they have opposite time orientgglobal) time coordinate and decomposing the fields into glo-
tion as defined by an affine parameter along the curve. Ongal positive-frequency modes that are antipodally symmetric.
might avoid these SITCs if the bubbles have a smaller curthe Fock vacuum would then as usual be the state destroyed
vature radius than the background spéaediscussed below py a1 annihilation operators. The problem with this approach
in Sec. V). In this case, however, horizons would return, i that any antipodally symmetric mode turns out to have
because there would be regions outside of an observer’s h%nishing Klein-Gordon norm when integrated over a
rizon that are not identified with any region within the hori- Cauchy surface for all of d&38], and the Fock construction
zon. o o _ breaks down.

While the elliptic interpretation is complicated by the A thirqg approach employed in the literat@8—44 is to
presence of bubbles, the background space of our model i§yandon the hope of a Fock vacuum, and to simply enforce
pure dS, and does benefit from the elliptic interpretation; alk,e antipodal symmetry at the level of the Green functions,
points onJ" , for example, would be connectable by geo-py writing antipodally symmetrized versions of the fields,
desics and have a maximal spacelike geodesic separatigfyq computing the resulting two-point functions in terms of
7/2H, and the volume of the boundary condition surfacethe two-point functions of unidentified dS. One problem with
would be halved. _ this approach is that it becomes somewhat unclear why the
~ The elliptic interpretation was suggested by a symmetn,niicommutator should take this value, as the construction
in the statistical description of the bubbles, and it is interestseems to lack an underlying quantum-mechanical motiva-
ing to ponder the connection between this statistical symme;on, Another problem is that while the anticommutator so
try and.A. Classically, we may have an ensemble of systemgptained is antipodally symmetric, the same procedure yields
each of which is notd symmetric, even while the statistical 5 commutator that vanishes identically.
properties of the ensemble are. Without bubble nucleation, A fourth approach is to define the vacuum in terms of a
our universe(dS) is A symmetric. The boundary conditions mgde decomposition over onpart of dS (such as a “causal
which determine the bubble distribution are symmetric,  diamond” [11]), where the modes can be consistently posi-
therefore it seems necessal’ily true that the statistics of thm/e or negative frequenc@o that a Fock representation ex-
bubble distribution ared symmetric. Given quantum me- ists), then provide a prescription for defining correlators be-
chanics, however, it is not clear how to relate a single memuyeen any two points in the space in terms of correlators
ber to the statistical propertiégiven by the wave function  within this region. This approach turns out to be promising;
without bringing in measurement theory, and we will leavefor one or both points in the causal diamond or its antipodal
the question aside for future consideration. copy, and for a particular choice of stai@ mixed thermal

_ one at twice the usual de Sitter—Hawking temperatureth
QFT in edS D andG) can be made to have the correct symmetry. The

The non-time-orientability of edS also makes quantumproblem arises when both points are outside of the causal
field theory on the space rather more subtle than in usual d$liamond and its copy; in this case the commutator turns out
We hope to treat this subject in some detail in a forthcomingo vanish for timelike separated points, and not for spacelike
paper(see alsd38—40). Here we sketch a brief summary. separated points. It is unclear whether this makes sense.
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In short, defining a satisfactory QFT in edS is rather dif-eternal inflation envisioned by Rd#6], in which quantum
ficult; the difficulties stem primarily from the commutator fluctuations in¢ dominate over classical rolling so that in-
function, because it is not symmetric under time reflectionflation becomes eternal. While the structure of the resulting
while the anticommutator is. It is then difficult for both func- region becomes extremely complicated, it can again be con-
tions to be symmetric unded, which includes time reflec- tained within a light cone of some point in the origirdd
tion. It is possible[40] that string theory in edS will make background space, so that the global structure of the universe
more sense than in dS. It is also conceivable that the ellipti¢filled with such light conesis still understandable, and
view could emerge from a correct quantum treatment of dSagain looks like Fig. 2.
and that the described troubles stem from doing QFT on a
fixed background not included in the dynamics. This would B. Different boundaries
be an interesting issue to pursue in string theory or other

theories of quantum gravity. For now we must leave it there, We were led to the '.qu” surfacﬂf by constructing an
and return to eternal inflation. eternal model with a time-translation symmetry. But the

same sort of boundary conditions we apply®n could also

VI. GENERALIZATIONS AND EXTENSIONS be applied to aspacelikeinitial surface, such as the=0
surface in the global coordinatizatigi) of dS. Such bound-

We have constructed our eternally inflating universe usingary conditions might be closely tied in to the Hartle-Hawking
an “open inflation” double-well potential and demanding NBP, as discussed above. The universe now has a preferred
that the inflatong rest in the false vacuum everywhere on (and initia) time, and constitutes “semieternal” inflation in
the infinite null surface . But these choices are not poth thef<0 andi>0 regions. The same arguments con-
unique, and the general principles of our construction can be

. . . < ~cerning the AOT apply here: it is undefined néar0 (out-
extended to models_employlng different potentials, or differ side all bubbles and defined in bubbles, pointing away from
ent boundary condition surfaces.

T=0. If the initial surface maps onto itself under the antipo-
dal map, we can apply the antipodal identification to the
universe. This model bears a stronger resemblance to the
A simple change in our model can be induced by leavingearlier ideas of Sakharof80—33 than does our proposal
V(¢) fixed, but demanding thas rest in the true, rather than using the null.7 .
false, vacuum o7~ . Although the field is now in dposi- Spacelike surfaces are easily deformable into other space-
tive) stable vacuum, bubbles délse vacuum may still be |ike surfaces, whereas the same is not true for null surfaces
able to nucleatg44]. Assuming this indeed occurs, the effect (see e.g[47]). Thus spacelike surfaces are in some sense less
of each bubble can be enclosed within a light cone, and th@onstrained than null ones and thus maybe less appropriate in
distribution of these light cones is essentially the same as fogmy attempt, such as ours, to specify cosmological boundary
bubbles of true vacuum, so all of the arguments of Sec. Il g@onditions in the most economical way. In addition, the re-
through. Now, within these bubbles of false vacuum newsyiting universe would not obey the perfect cosmological
bubbles of true vacuum can form, one of which could de'principle, having a preferred time dt=0. As discussed
scribe our observable universe. At lateubble times each  apove, we also might conjecture that the quantum state cor-
bubble interior would approach dS, dominated by the trugesponding to null boundary conditions is simpler. In gen-
vacuum(presumably of the magnitude we currently appeareral, however, there seems to be no strong argument against

to observg, in which false vacuum bubbles may nucleategych a boundary condition surface as compared to a null
(and so onad infinitum. This is a realization of the “recy- gyrface.

cling universe” of[45]. Because bubbles are nested infinitely
de_ep, the structure of this universe appears exceedingly com- VIl. SUMMARY AND CONCLUSIONS
plicated. But theglobal structure at the outermost level of
bubbles is known(and is as in Fig. £ because we have We have investigated the possibility of making “future-
specified it using explicit cosmological boundary conditions.eternal” inflation eternal also to the past. Starting with a de
One might argue that this scenario would have yet simpleBitter spacetime background dominated by the false-vacuum
boundary conditions than the scenario in which the inflatorenergy in which true-vacuum bubbles can form, we specify
is placed in the false vacuum off~. Since the lowest that the bubble distribution at any time is in exactly the
vacuum state must be positive for this scenario to work, itsteady-state configuration asymptotically approached by
also has the potential to connect with the presently observesemi-eternal inflation. All bubbles are then equivalent, and
positive vacuum energy. the statistical distribution of bubbles admits both a time-
A somewhat similar scenario can be realized using “chatranslation and space-translation invariance in the back-
otic inflation” potentials such a¥(¢)=\¢*+V,. Here we  ground inflating space.
set the inflaton to rest at=0 on 7~ , and require/,>0 so The described regiofiregion 1" ) has no initial time, but
that the space is locally dS nedr . This is, again, a stable has a null boundary7 ™ that is the limiting surface at—
configuration, yet regions of large potential may “nucleate” — of the flat spatial sections. The steady-state configura-
in this dS background as highly improbable quantum fluction att> —oo corresponds to the inflaton field being in the
tuations in the field. If such a region nucleates at highfalse vacuum state everywhere ¢fi , with no incoming
enoughe, it would provide the potential seed for the sort of radiation from7 ™~ . This surface can be reached by a past-

A. Different inflaton behaviors
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directed geodesic of finite proper length from any point inmological principle that governs a semieternally inflating
the space, so region | is geodesically incomplete; this is theniverse long after its beginning. If our construction survives
“singularity” pointed to by theorems purporting that past- scrutiny, and can be specified at the fully quantdan
eternal inflation is impossiblg3,4]. But the space cafend  quantum-gravitationallevel within a theory of fundamental
should be extended, as the state gfi  also constitutes Physics, it could serve as the basis for a realistic cosmology
boundary conditions for the region pa#t if the manifold is ~ that avoids a cosmological singularity, a beginning of time,
extended. These boundary conditions imply that a duplicat€r @ creation of the universe “from nothing.”

copy of region | exists on the other side gf . Together

region | and the new “region II” constitute a geodesically ACKNOWLEDGMENTS
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condition surface on which the universe is classically in a

particularly simple and symmetric state. Although is an APPENDIX

infinite null surface, some of its points are in causal contact,

and one might attribute a finite invariant volume®@(H ) problem in some detail, focusing for simplicity on the inho-

to it. Therefore specifying boundary conditions on itriot mogeneous scalar wave equation in fixed background space-
like specifying them on an infinite spacelike hypersurface 9 q 9 P

. Wt ” times. We are interested in how much information must be
(er]tlcrrr]\i\évr?tmt)deliiistizlz ?gvcec:ﬁstrr]l? é'tzgnqﬁgont;:fnbf state Correg,pecifigd, and where, in order to fix the field throughout
sponding to our classical boundary conditions/6n by tak- spacetime.
ing a null-limit of spacelike sections on which the wave
functional describing the fields is centered on the desired 1. Defining Green functions
classical state. But an explicitly null quantum formulation of  |magine that our scalar fielgh satisfies
our null boundary proposal has not been provided and would
constitute an interesting future study. (O—m?) p=q(xH), (A1)

It is widely thought that the “arrow of time” is connected
with cosmological boundary conditions. In our model, timewhereq is an arbitrary source term, and we wish to deter-
flows away from7~ , and the AOT is consistent among all mine ¢ at some poinP with coordinatexp . This is possible
physical observers that can compare it. The AOT is not, howgiven ¢ and its time derivative on some complete spacelike
ever, defined globally, and in our model the statistical deslice through the past light cofLC) of P. Let us see why
scription of the universe admits a global symmetry that in-this is so, and whether this is the only suitable set of initial
cludes time reversal. data for the problem.

This symmetry, along with the presence of two duplicate, First introduce another functio®, which depends o
noncommunicating universes, motivates—though does naind is assumed to satisfy
require—formally identifying antipodal points on the mani-
fold. We, and others, have studied this identification on de (O-m?)G=s(xH), (A2)
Sitter space classically and quantum-mechanically. Antipod-
ally identified (or “elliptic” ) dS has the virtues that it is wheres is to be chosen. TakinG times Eq.(A1l) minus ¢
causally stable and observers have no event horizons. It héisnes Eq.(A2) and integrating through some four dimen-
the disadvantage that its non-time-orientability makes definsional volumeV yields
ing a reasonable quantum field theory difficult. With antipo-
dal identification our model is more economical as the two
duplicate universes are identified; however not all of the at- f d“xaM(G\/—_gg“”&,,(p— ¢\/—_gg“”a,,G)
tractive features of “pure” edS remain.
Our model can be generalized to other inflaton potentials _ _ _ 4
(such as for chaotic inflatignand therefore allows one to f \/_g(qG s¢)dx. (A3)
partially understand the global structure of the eternally in-
flating spaces that result. One may also use an analogoddis allows determination ofp(P) in terms of its values
construction to specify a semieternally inflating but nonsin-elsewhere by a suitable choice ©fG, andV.
gular universe by placing boundary conditions on a spacelike To effect this, we must isolaté(P), either on the left- or
section. right- hand side of Eq(A3). Let us first use the right-hand
Our primary conclusion is that it is possible, using only side(RHS). Takesto be aé function atP (or, more carefully,
“standard” ingredients underlying popular models for infla- a function peaked ned that can be taken to &-function
tion, to specify simple cosmological boundary conditions onlimit). Then choosingV to encloseP gives ¢(P) for the
an infinite null surface that lead to past- and future-eternatecond term on the RHS of EGA3). Using Gauss'’s law, this
inflation. Such a universe would obey the same perfect cosequation can now be used to expresd) as a surface in-

Here we review Green functions and the initial value

083515-13



A. AGUIRRE AND S. GRATTON PHYSICAL REVIEW D67, 083515 (2003

to the future or to the past d?, we again may determine
¢(P) once data is given on a complete sli§ehrough one

T ——_ of the light conesG: may be called the commutator func-

" v, tion, because it turns out to be equal-ta times the com-

v _ - '.' N } mutator of a free quantum fielgt least in a globally hyper-

e . 4 Riw i bolic spacetimg Note also thaG.=G,—Gg: subtracting

v SN ) » " the (inhomogeneoysequations governinGg andG,4 leaves

L . S a homogeneous equation for the difference. Then the differ-
S L ence must vanish outside the light conePpjust as forG..

In all cases,G depends on the poir®, and so may be
considered as a function of two variable@sandxy . Because
FIG. 5. Possible choices of for different Green functions. The ¢ satisfies Eq(A1), it turns out that the also satisfies Eq.

solid lines indicate the region§ of 9V which contribute to the éAl) with respect toxp, at least away fronxp=x.
integral. On the left, we have volumes suitable for the retarded an

sgl\frl]rq]g:dsﬁ:tig Igp?ﬁgﬁinﬁgtgtg ; fir:]it%]tthe right we have 2. Green functions for Minkowski and dS spacetimes
Let us now outline a procedure to obtain some Green

tegral overg and its derivative over the bounda#y of V, functions for massive scalar fields in certain spacetimes, us-

p|us a volume integra| ovey of the source alone. Ing a Sllghtly unconventional but perhaps more intuitive

To fix G(x), we must choose boundary conditions spe-method not relying on the usual Fourier techniques eor

cific to our choice ofs. Two conventional choices are to Prescriptions. We start with the commutator function for a

requireG to vanish either to the future or to the pastofin ~ massless field it3+1)D Minkowski space,

the first caseG is known as the “retarded” Green function Mo 5

and may be denote@r; in the second case it is “advanced” =sgn(t) 8(t°—r9)/2m, (A4)

(Gp)- . . . - .
We must now choos¥ (see Fig. 5. It turns out(see, e.g. with coordinates such th&t is at the origin. That this solves

[15]) thatG,# 0 only on and within the FLC oP, and that =0 can be seen by e"pa”d"?g out t_h‘e‘unc_tlon and
Gr#0 only on and within the PLC oP. Hence only a seg- comparing to a general superposition (.)f mc_ommg_and out-
mentS of dV contributes to Eq(A3), enabling us to deduce going spherically symmetric wavegA nice discussion of
#(P) using only data on some connected surface making 3 th|s function is found if48].) Note that this is only nonzero
complete span through either the FLC or the PLPoTThe on the light-cone itself, vanishing even inside the cone. This
usual choice, consistent with our standard ideas about caIS a special property of massless fields in even-dimensional

spacetlme$see[15] for more details
sality, is to pick a spacelike surface of constant tiwee left To obtain the solution for the massive field in Minkowski

side of Fig. 5. Then evaluation of EA3) requires$ and ¢ space, we start by considering
on S. For a more generalV, we require¢ and its normal

derivative onS. (Note that this surface need not be every- G,=f(t>—r?)sgnt)O(t>—r?).

where spacelike, but if not then the data must be self-

consistend. The case of present interest is that of a null sur-The sgn and® functions enforce the gross features of the

face, for which the normal lies everywhere within the surfacebehavior that we require. Writing] using spherical polar

itself (this is made possible by the Lorentzian signature ofcoordinates, we find

the spacetimé Then specifyingp on the surface also speci- ) s o )

fies the normal derivative ab on it. A suitable null surface (H=m)Gy=sgr(t)O(t°—r) (0 —m)f

is, for example, the forward light corleof a pointQ to the — 4f(0)sgr(t) 8(t2—r2). (A5)

past ofP; now we need only know on the surface where

this FLC of Q is within the PLC ofP (see right side of Fig. Let us choosef(7%) (where herer?=t?>—r?) such that

5). (If the data nearQ is suitably regular, the nonsmooth (00—m?)f=0 inside the light cones; a general solution is

nature of the surface & is unimportany. In the same spirit,  f(72)=AJ;(m7)/7+BY;(m7)/7r where J; and Y, are

one might consider a “wedge” such as the boundary of thegessel functions as in R#9]. The first term of Eq(A5) is

future of the segment of a line in the pastRf then zero. For the second term, we notice that it is basically
Let us now consider the second way of isolatihgP),  the solution to the massless problem that we have already

using the LHS of EQ(A3). Sets=0, and choose some piece found. So let us simply add the massless solu@f? from

of dV to be spacelike and run throudgh Then choosé to Mo_
vanish everywhere on this surface. Further, choose it to ha\)éq (A4) to our ansatss,. Sincel1G;°=0, we have left

a & function atP in its normal derivative; the integral then —M°G¢ 2° on the RHS. By choosmg\ —m/4w and B
picks up a contribution proportional t¢(P). This choice =0, we obtain a complete cancellation, leaving us with our
comprises boundary conditions f&; and the function they desired solution. Thus the full Green function is

determine, which we deno®., now vanishes outside the 5

(full) light cone ofP and satisfies the homogeneous version GM:Sgr(t) 5(72)— mO(77)J(m1) (A6)

of Eq. (A2). Choosing now the remainder 6V to close off € 2x 27 '
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We may now consider generalizing EGA6) to other 3. Domains of dependence
spacetimes such as dS. First, let us note that we ftablove

to be_ a function of the proper timefrom the_ origin, Within. to what extent fixing the fields on a null-coheof a pointQ
Lhned(!?rll_g(r:gr?ti. Johousststh%?sg;nufstg :#th;tl'qogsw?gr'gxggqar;tdetermines the field values within that cone. We are particu-
' 99 y P ?arly interested in the importance of the field n€jras our

we make our commutator inside the forward light-cone in- logical bound facE b dered th
variant under isometries which leaw fixed. This is the CcoSmologica m:n ”ary sur ac§ can be considere €
gght cone withQ “at” past-timelike infinity.

same as saying that it should be a function of the proper tim ° ,
from the origin alone. One can define this quantity in terms 12K€, as a first example, the Green functiGg for a

of an “angle” in the 5D embedding spa¢#1] (see footnote m.assless field such as the scalar field in 4D Minkowski space
to Sec. IV D 2, but perhaps a more intuitive way to proceed With G from Eq. (A4). BecauseéSg has support only on the

is as follows. A patch of dS can be covered by coordinates if°LC of P, the field atP depends only on the intersection of
which the metric is the same as that for an open expanding’s PLC andL. This indicates two things. First, specifying
FRW universe, with scale factdd ~sinhHt. The proper data onlL explicitly determines the field everywhere inside
time along the geodesics representing comoving observers (s€. everywhere in the future @). Second, the field at any
just given by the coordinate timie These geodesics all in- point P inside L does not depend og(Q); we might thus
tersect at a point as—0, which we choose to b, and they  considerQ to be irrelevant in terms of what occurs witHin
cover all of the interior of the FLC oP. We therefore need This, however, hides a subtlety: whi& and¢ onL always
only find an appropriate spatially homogeneous solution ofllow the construction of a valid solution of the field equa-
the massive wave equation in the coordinate patch of th#ons, there is no guarantee that the field so obtained is con-
open slicing of dS. The equation reads tinuous with the field specified oh unless some assump-
tions of field regularity at the vertexQ) are made: if we
wish to evaluategp on L to check that we have a genuine

1 J,(SinFPH ) + m2p=0. (A7) solution to our boundary value problem, then we must either
sintPHt know ¢(Q), or assume that the field is regular @ss ap-
proached alond., so that we can extend the field @ by
continuity.

For a massive field the strict “Huygen’s principle” does
not hold; while much of the contribution to the integral in
Eqg. (A3) comes from the PLC d? whereGg is singular(see

[15] for some discussion of this “generalized Huygen’s prin-
)XZO, (A8) ciple”), there is also a contribution from inside’s PLC
becausésy is everywhere nonzero there.

In the dS caseGg as given by Eq(A9) falls off expo-
which is Legendre’s equation[49] with »=-1/2 nentially asr—o; thus we may expect that whenis taken
++/9/4—m“/H“ and = —1. The solution to this equation to be 7, where the vertex lies “atr=, the field values
which is regular ag— 1 is P#(z). In terms oft, this tends to  inside 7~ will not depend on the field at the vertéwhere
Ht/2 ast—0 independent ofm?, hence¢ tends toH/2. by “at the vertex” we mean within7~ in the limit 7

We can now use this result to deduce the form of the—o). More explicitly, we may consider a boundary surface
commutator over all of (_jS space. Extend the meaning?of comprised of 7~ att>1, for somet,, closed by the space-
to be the signed geodesic distance squared betRegwl the .0 o rfacet =T, whereT and, are in the global closed

poir_lt in qqestion. Note that we do not cpnsider the F’O".“ coordinates. Then the field integr@3) consists of an inte-
be in the light cone of the antipode Bf since no geodesic

exists which connects it t&. In this case we rather define grﬁl ﬁlﬁngj ; .";md r?n yntelzgralll over ]:[he;i(l? ygetrstﬁrface,
G to be zero(but see our discussion of the antipodal quan-" Ich has a finite p y§|ca volume o Pr . r ) u §n as
tum commutator above.Near P the space is locally to——%, 7—, so this second contribution will vanish un-
Minkowskian, so we can compare to our Minkowksi result toless either the average of the field orfiteerivative blow up

Given our Green functions, we would like to investigate

To solve this[50], write ¢=H y/sinhHt and setz=coshHt
to obtain

2
22—

_ 52 _
(1 Z)X,zz 2Z)(,z'l' 1_22

obtain faster tharG,;l. Hence we expect that the field at any point
in the space will dependnly on the values oy~ , and not
s Sgnt) , m20 (H272) N on the field behaw_or at past infinity, as long as the fields are
Ge =% o(T )_WP” (coshH7)|. assumed to be suitably finite and regular.
™ : T (A9) This argument might also be applicable to gravity; the

equations governing the Weyl conformal tensor can be cast,
at the linear level, as wave equations for a spin-2 field, and

Here by t is meant some suitable generalization of boundary conditions can be specified on a null surface such
Minkowski time, with sgnf) thus serving to mak&3°be of as 7~ [24]. We therefore expect that our boundary condi-
opposite sign in the future and past light cones, amd  tions onJ~ determine the Weyl tensor uniquely, and there-
+/72. The sgnf) 5(7?) should be interpreted as the gener-fore determine the spacetime to be pure dS when bubble
alization of the equivalent term in the Minkowski result. ~ nucleations are neglected.
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