
PHYSICAL REVIEW D 67, 083515 ~2003!
Inflation without a beginning: A null boundary proposal
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We develop our recent suggestion that inflation may be made past eternal, so that there is no initial cosmo-
logical singularity or ‘‘beginning of time.’’ Inflation with multiple vacua generically approaches a steady-state
statistical distribution of regions at these vacua, and our model follows directly from making this distribution
hold at all times. We find that this corresponds~at the semiclassical level! to particularly simple cosmological
boundary conditions on an infinite null surface near which the spacetime looks de Sitter. The model admits an
interesting arrow of time that is well defined and consistent for all physical observers that can communicate,
even while the statistical description of the entire universe admits a symmetry that includes time reversal.
Our model suggests, but does not require, the identification of antipodal points on the manifold. The
resulting ‘‘elliptic’’ de Sitter spacetime has interesting classical and quantum properties. The proposal may be
generalized to other inflationary potentials, or to boundary conditions that give semieternal but nonsingular
cosmologies.
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I. INTRODUCTION

The ancient philosophical question of whether the u
verse is finite or infinite in time, and whether time ‘‘had
beginning,’’ entered the domain of scientific study during t
20th century with the development of generally relativis
cosmologies in which the universe is homogeneous and
panding, as observed on the largest accessible scales.

Chief among these cosmologies, and representing op
site answers to the question of the universe’s beginning, w
the classic big-bang and steady-state models. As Friedm
Robertson-Walker~FRW! models, both are based on som
form of the ‘‘cosmological principle’’~CP! that the large-
scale statistical properties of the universe admit spatial tra
lational and rotational symmetries. The models differ grea
however, in their time evolution. In the big-bang model, t
properties of the universe evolve in a finite time from
dense, singular initial state. In contrast, the steady-state
verse is said to obey the ‘‘perfect cosmological principl
~PCP! in that it admits, in additional to spatial translation
and rotational symmetries, a time-translation symme
Since all times are equivalent, there can be no ‘‘beginning
time,’’ and the universe is infinite in duration.

Unlike their philosophical predecessors, the big-bang
steady state models were observationally distinguisha
and astronomical evidence eventually turned nearly all c
mologists away from the steady-state. Moreover, theore
proven within general relativity showed that the classical s
gularity of the big-bang cosmology was robust and could
be avoided by relaxing simplifying assumptions such as
of homogeneity. Thus the idea of a temporally finite unive
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with a singular initial epoch came to dominate cosmolog1

Attention has since focused on how this primordial singul
ity ~where some presently unknown theory of quantum gr
ity presumably applies! could give rise to a classical ‘‘initial’’
state that could evolve into the observed universe.

The required ‘‘initial’’ classical state, however, seem
rather special: the universe had to have been extremely
and statistically homogeneous~i.e. obey the CP! on scales
larger than the horizon size. The theory of inflation was d
vised and widely accepted as a solution to this problem o
special initial state: given inflation, a flat, homogeneous u
verse ~with the necessary Gaussian scale-invariant den
fluctuations! is an attractor. That is, within some inflatin
region of fixed, finite physical size, the CP holds more a
more precisely with time. What is perhaps more surpris
and less widely appreciated, however, is that in generic
flation models the universe also comes to obey, with ev
greater precision, theperfect cosmological principle. This
occurs because inflation is generically ‘‘semieternal:’’ rath
than ending globally at some time, inflation always continu
in some regions, and the universe globally approache
quasi-steady-state distribution of inflating and thermaliz
regions, the statistical description of which becomes asym
totically independent of time@1#.

Since inflation genericallyapproachesa steady state, it
seems physically reasonable to ask whether the universe
simply be in an inflationary steady state, thus avoiding
cosmological singularity or ‘‘beginning of time.’’ Indeed, th
possibility of truly eternal inflation was raised soon aft

1There have been a number of proposals for avoiding a begin
of time, but generally these involve either continuing through
cosmological singularity by invoking quantum gravitational effec
or modifying GR at the classical level. Our approach aims to
velop a nonsingular cosmology without appeal to either possibi
©2003 The American Physical Society15-1
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A. AGUIRRE AND S. GRATTON PHYSICAL REVIEW D67, 083515 ~2003!
inflation’s invention, but no satisfactory model was imme
ately devised@2#, and in subsequent years several theore
were formulated proving the geodesic incompleteness
models globally satisfying conditions seeming necessary
eternal inflation@3,4#. These theorems suggested that infl
tionary cosmologies necessarily contain singularities, but
exact nature of the implied singularities was obscure.

In a recent paper, we constructed a counterexampl
these theorems by providing a model for geodesically co
plete truly eternal inflation@5#. There, we analyzed the clas
sical steady-state model in detail, then extended our ana
to inflation. Here, we develop the model from a differe
standpoint, focusing on an eternal inflation in a double-w
inflaton potential, and on the corresponding cosmolog
boundary conditions. Section II motivates and develops
model, and describes its general features. Various aspec
the model are developed in subsequent sections: Sectio
discusses the arrow of time in our model, and elucidates
failure of the singularity theorems to forbid our constructio
Sec. IV discusses the cosmological boundary conditio
which are specified on a null surface; Sec. V discusses
relation of our model to the ‘‘antipodally identified’’ or ‘‘el-
liptic’’ interpretation of de Sitter spacetime that it sugges
and briefly discusses quantum field theory in elliptic de S
ter; Sec. VI discusses generalizations and extensions of
model. We summarize and conclude in Sec. VII.

II. THE PROPOSAL

In this section we develop an eternally inflating cosm
ogy based on a double-well inflaton potentialU(f) with
minima atf t and f f , whereU(f f).U(f t)>0. This sort
of potential is posited in ‘‘old’’ inflation@6# or ‘‘open’’ infla-
tion @7,8#. We will first review semieternal double-well infla
tion, then extend this to eternal inflation, then analyze a
address the geodesic completeness of the model.

A. Semieternal ‘‘double-well’’ inflation

A semieternally inflating cosmology naturally arises fro
a generic double-well potential@9,10#. Consider some large
comoving region in which, at an initial timet5t0, the energy
density is dominated by the inflatonf, with f.f f and
]mf.0. Assume the spacetime to locally resemble de Si
~‘‘dS’’ ! space, with~for convenience! nearly-flat spatial sec
tions, i.e. with a metric@11# approximated by

ds252dt21e2Ht~dx21dy21dz2!. ~1!

In this background, bubbles of true vacuumf t nucleate at
a fixed ratel per unit physical 4-volume that depends up
the potentialU(f) @12#. The interior of each bubble look
like an open FRW cosmology to observers inside it. Fo
suitably designedU(f) ~as in open inflation@7,8#!, there can
be a slow-roll inflation epoch inside the bubble so that
FRW regions are nearly flat and homogeneous, and h
scale-invariant density perturbations. One such region co
therefore in principle represent our observable cosmolog
surroundings.
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At any time t, we can derive the distribution of bubble
and inflating region within our comoving volume, with th
aim of showing that the distribution approaches a ste
state. To avoid complications resulting from bubble co
sions and the ambiguities in connecting the time slicin
within and outside bubbles, we concentrate on the statis
describing the inflating region outside of the bubbles. T
region is necessarily unaffected by the bubbles’ presence
cause they expand at the speed of light: both its global
local properties depend only on its initial state att0. But we
may describe three effects of the bubble encroachm
upon it.

First, let us consider the inflating region left at timet by
bubbles forming sincet0. This region must consist entirel
of points each of which doesnot have a nucleation event in
its past light cone~PLC! going back tot0. Denoting the
volume of this PLC byQ(t,t0), it can then be shown tha
such points comprise a volume fraction

f inf5exp@2lQ#.expF24pl~ t2t0!

3H3 G ~2!

for (t2t0)@H21 @9,10#. Although f inf →0 for large t2t0,
the spacetime is said to be eternally inflating because
small l the physical inflating volume within our comovin
region nonetheless increases exponentially with time:

Vinf} f inf exp~3Ht !;exp~DHt ! ~3!

for any fixedt0, with D[324pl/3H4.
Second, one can show@9# that at fixedt the distribution of

inflating regions about any inflating point is described by
fractal of dimensionD @that is, the inflating volumeVinf
}r 3f inf (r )}r D] up to a scale of orderr B(t,t0), where

r B~ t,t0!5H21@eH(t2t0)21# ~4!

is the physical radius att of a bubble nucleated att0.
Third, we may calculate, for a given point in the inflatin

region at time, the number per unit timeN(r ,t) of incoming
bubbles of physical radiusr. This is

N~r ,t !5
4plr 2

~11Hr !4 ~5!

for r ,r B(t,t0) and zero forr .r B .
An observer within a bubble can never leave, but w

eventually be encountered by an encroaching bubble w
after a typical timetcoll , wheretcoll

21 is related to ther inte-
gral of Eq. ~5! by some transformation between the bubb
observer’s proper timet and cosmic timet. Since this rate
depends ont2t0, a patient and very sturdy observer could
principle discover the global time at which it formed b
counting the frequency of incoming bubbles.

Now, as t→`, four things occur. First, the nearly fla
spatial sections approach perfect flatness. Second, the in
ing bubble rateN(r ,t) becomes homogeneous and indepe
dent of time on arbitrarily large physical scales. To see th
imagine that the rate is inhomogeneous at early times
cause bubble nucleation starts at different times in differ
5-2
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INFLATION WITHOUT A BEGINNING: A NUL L . . . PHYSICAL REVIEW D 67, 083515 ~2003!
regions. But since the impact rate depends on the initial t
only for bubbles of radius greater thanr B(t,t0);exp@H(t
2t0)#, it is then homogeneous and independent of time
arbitrarily large scales ast→`. Third, and for essentially the
same reason, the distribution of inflating region around a
given inflating region also becomes homogeneous and in
pendent of time on arbitrarily large scales. Fourth, observ
within bubbles lose the information about the ‘‘global time
at which they exist@see Eq.~5!#, and all bubbles becom
equivalent. Thus the physical description of the univer
relative to any fixed length scale such asH21, satisfies the
perfect cosmological principle arbitrarily well ast→`.

B. Eliminating the beginning

The above semieternally inflating model can be ma
eternal by setting the ‘‘state’’ of the universe to be exac
that stateapproachedby semieternal inflation: because th
statistical properties depend only upont2t0, for specified
conditions att0 the state at fixedt with t0→2` is the same
as that fort→` with fixed t0.

The state so obtained has the four basic characteri
listed above: The spatial sections are exactly flat~outside of
the bubbles!, the bubble distribution~as characterized by th
incoming bubble rate! is homogeneous and independent
time, as is the distribution of inflating regions about a
inflating region, and the bubbles are all statistically identic
The inflating region is a fractal of dimensionD,3 on all
scales. This means that, although inflating regions exist,
global inflating fractionf inf is zero, just as the fraction of 3D
Minkowski spacetime filled by an infinite 2-plane of finit
thickness—an object of fractal dimension two—would va
ish. ~The zero probability that a randomly chosen point is
an inflating region accords with the fact@5# that within the
PLC of each point there is an infinite 4-volume in whic
bubbles can nucleate toward that point.! Unlike the region
filled by the plane, however, the inflating region is statis
cally homogeneous and isotropic, in that it exactly satis
the ‘‘conditional cosmographic principle’’ of Mandelbrot tha
the statistical description of the inflating region about a
given inflating region is independent of the inflating regi
chosen~see Ref.@13# for a discussion of this and other a
pects of ‘‘cosmological’’ fractals!.

This model ~essentially derived by Vilenkin@9#! would
seem to have exactly the properties expected of an etern
inflating spacetime, has been straightforwardly construc
using the steady state generated by a semieternally infla
model, and extends to infinite negative cosmic time. Yet
arguments of@3,4# ~discussed in more detail in Sec. III! im-
ply that it should be geodesically incomplete. This issue
be addressed with reference to the conformal diagram of
model, shown in Fig. 1. The background inflating spaceti
is represented by the lightly shaded region. Each equal-t
surface is intersected by an infinite number of bubbles~indi-
cated by light cones opening towardJ 1), which are concen-
trated alongJ 1 and neari 0.

The model thus far constructed~defined in the shaded
region henceforth called ‘‘region I’’! is geodesically incom-
plete: all null geodesics~such as ‘‘Y’’ in Fig. 1!, and all
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timelike geodesics~such as ‘‘X’’ ! other than the comoving
ones have only a finite proper time~or affine parameter!
between a point in region I and coordinate timet→2` ~see,
e.g.,@5#!. Most geodesics thus ‘‘leave the spacetime’’ to th
past, encounteringJ 2 , the limit surface of the flat equal
time surfaces ast→2`. ~On the conformal diagram this
surface looks like a null cone emanating from a point at
bottom edge.!

Although the spacetime is geodesically incomplete th
is no curvature blowup or other obvious pathology atJ 2 , so
the spacetime is extendible rather than singular. One m
take the position that this sort of incompleteness is allow
since the edge is outside of the future of any point in
region, and any given thing in the spacetime was made
some particular coordinate timet.2`.2 From this point of
view, there is no clear reason to reject the model as defi
in region I.

It seems quite reasonable, however, to ask instead how
manifold could be extended, and what could be in the ext
sion. We start by extending the manifold to includeJ 2 ,
which is the boundary of the open set comprising region
We shall see, as follows, that onJ 2 the field must every-
where be in the false vacuum. Definef(l) as the field value
at affine parameterl of a noncomoving geodesic starting
some arbitrary pointxi in region I, wherel increases away
from J 2 . We know that for some affine parameterlJ , the
geodesic encountersJ 2 , and also that if our point is within
a bubble, there is also a finite valuel f.lJ at which the

2This was the view taken by investigators of the ‘‘cyclic mode
@14# which is geodesically incomplete in a very similar way, a
may be the view taken by the adherents of the classic steady-
model.

FIG. 1. Conformal diagram for de Sitter~dS! spacetime. Each
point represents one point in~111!D dS, or half of a 2-sphere in
~311!D dS. The left and right~dotted! edges are identified. The
shaded region~region I! is covered by coordinates with flat spati
sections~spacelike lines! with spacelike infinity ati 0; the straight,
timelike lines represent comoving geodesics. The null surfaceJ 2

representst→2`. True-vacuum ‘‘test bubbles’’~not disturbing the
background spacetime! are darkly shaded and open toward futu
timelike infinity J 1. Also shown are the light cones of pointsP and
Q in regions I and II that open towardJ 2 , and null ~‘‘ Y’’ ! and
timelike ~‘‘ X’’ ! geodesic segments with an end point atxi and cross-
ing J 2 .
5-3
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A. AGUIRRE AND S. GRATTON PHYSICAL REVIEW D67, 083515 ~2003!
geodesic leaves the bubble and enters the false vacuumf f .
Then forl,l f , we have

lim
l→lJ

f~l!5f f . ~6!

If we then require that the field be continuous along a
geodesic, we then find that the field must be in the fa
vacuumf f everywhere on the surfaceJ 2 . That is, at the
semiclassical level of description,J 2 must be an infinite
null surface of pure false vacuum, through which no bubb
pass.

Let us now examine the global classical structure of
background spacetime by momentarily neglecting semic
sical processes such as bubble nucleations. Then the m
fold comprised of region I andJ 2 is locally dS ~constant
Ricci scalarR and vanishing Weyl curvature tensor! every-
where, withf in the false vacuum (f5f f). This manifold
can still be extended pastJ 2 , and the obvious extension i
to complete dS spacetime. This is certainlya solution com-
patible with our state atJ 2 , and~as we will argue in Sec. IV
and the Appendix! it seems likely to be unique. Thus we wi
take the maximal extension of the background spacetim
be full dS spacetime. That is, the nonshaded region of Fig
henceforth called ‘‘region II’’ must simply be the rest of d
spacetime. Consider now a classical field in the backgro
spacetime obeying a homogeneous hyperbolic equa
Given any pointP in region I, almost all inextendible nons
pacelike curves throughP intersectJ 2 . Therefore specify-
ing the field values onJ 2 effectively poses a ‘‘characteristi
initial value problem’’@15,16# with a unique solution every
where in region I~this is the analog of the Cauchy problem
but with boundary conditions on a null surface; see Sec.
and the Appendix for more details!. Exactly the same argu
ment can be made, however, for any point in region II. Th
specifying classical fields everywhere onJ 2 determines
their values everywhere in dS spacetime. This means tha
conditions found to obtain onJ 2 ~by specifying the state in
region I and requiring fields to be continuous! alsodetermine
the state in region II and we can extend our model to reg
II in an essentially unique way.

We may now examine the extension of the model to
gion II at the semiclassical level by including the bubb
nucleations. The form ofU(f) indicates that bubbles mus
nucleate3 at a fixed rate per unit physical 4-volume. In regio
I, this led to an asymptotically steady-state bubble distri
tion which, when made exact, implied that there areno
bubbles passing throughJ 2 . Thus in region II, though
bubbles must nucleate at the required rate, none must
throughJ 2 .

The only way this may occur is, in exact symmetry wi
region I, to have a steady-state bubble distribution on the
slices of region II, with the bubbles openingawayfrom J 2 .
This is illustrated in Fig. 2. Region II is, then, a sort of mirr

3Bubble nucleation has been perhaps most rigorously analyze
Ref. @17#, and the boundary conditions for bubble nucleation in o
model correspond exactly to those analyzed in their study.
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reflection of region I throughJ 2 . Thus the answer to the
question of how the model can be extended, and what
beyondJ 2 , is that an essentially identical copy of region
lies in region II, connected by the infinite null surfaceJ 2 .

This completes the basic specification of our model. T
cosmology obeys the CP and PCP in that it admits a coo
natization such that all spatial slices are statistically hom
geneous, and statistically the same as all others. There i
preferred time in this slicing, nor is there a cosmologic
singularity: the model is geodesically complete. Given t
appropriate inflaton potential, any one of the bubbles co
describe our observable surroundings.

III. THE ARROW OF TIME

If we consider all bubbles to expand with time, then F
2 suggests that while in region I the future is toward the
of the diagram~‘‘up’’ !, in region II future lies toward the
bottom ~‘‘down’’ !. This leads us to the issue of the cosm
logical arrow of time~AOT!: why does the time-asymmetri
2nd law of thermodynamics hold universally, given that fu
damental physics is thought to admit a symmetry (CPT) that
includes time reversal? There is some consensus that if
question has an answer, it must ultimately be cosmologi
with the time asymmetry resulting from some qualitative d
ference between cosmological ‘‘initial’’ and ‘‘final’’ condi-
tions @18# that precludes a time-reversal (T) symmetry of the
physical state in any subregion of the universe, and he
induces an AOT.

Although our our model has no ‘‘initial’’ conditions, it
does have boundary conditions onJ 2 ~discussed in detail in
Sec IV below! and we can discuss the AOT in light of them

in
r

FIG. 2. Conformal diagram for eternal double-well inflatio
Bubbles are open FRW regions; equal time slices are shown
curved horizontal lines. For clarity we have not included bub
intersections. Also shown are past light cones, cut off atJ 2 , of
both a pointP and its antipode2P ~note thatP and2P are also
reflected across the suppressed two-spheres in the 4D case!.
5-4
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INFLATION WITHOUT A BEGINNING: A NUL L . . . PHYSICAL REVIEW D 67, 083515 ~2003!
To do so we must divide the universe into two types
subregions: those entirely outside of bubbles, and those
tially or wholly within them. Outside of the bubbles~or al-
ternatively near enough toJ 2 ! there is no local AOT: the
description of such a region admits a time-reversal sym
try. Were we to hypothesize, for example, an imaginary
server outside of a bubble with its own AOT~pointing away
from the time of its creation!, that observer would see onl
T-invariant dS spacetime. The observer could not kn
whether it moved ‘‘up’’ or ‘‘down’’ on the conformal dia-
gram, nor if it was in region I or II, nor if it crossedJ 2 .
What the observer is guaranteed, however, is that it
eventually be encountered by, and find itself within,
bubble.

The bubble interiors are not time symmetric: within
bubble, there is a unique time direction in which the me
energy density decreases. This direction is away from
bubble wall or slow-roll inflation epoch, at which the FRW
region is known to be nearly homogeneous. If one bubbl
to represent our observable surroundings, this direction m
correspond to the time direction in which the entropy of
isolated system increases. It has been often argued, pa
larly by Penrose@19#, that this connection arises becau
when gravity is included homogeneity corresponds to an
tremely low-entropy state. We shall assume this corresp
dence here~and that the bubble does not begin in some v
special state for which the density fluctuations decrease!. Un-
der this assumption the physical AOT within any bubb
must pointaway from the bubble walls; globally this mean
that the AOT~where defined! points away fromJ 2 .

As illustrated in Fig. 2, one can therefore indeed dr
timelike geodesics~such as ‘‘X’’! along which the physica
AOT reverses, but the reversal always occurs to the pas
any physical observer~all of which are within bubbles!, and
within a region~the locally dS spacetime! in which there is
no well-defined physical AOT.

We have argued that within bubbles the physical laws,
not the physical state, admit a symmetry (CPT) including
time reversal, while outside of bubbles the lawsand the state
admit time symmetry; but what about the bubble nucleati
themselves? Is there not some AOT telling them ‘‘whi
way’’ to nucleate, depending upon which side ofJ 2 they
are on?

To clarify this point, consider the process of semiclassi
bubble nucleation by analogy to the decay of an unsta
particle, described by a potentialV(x) as in Fig. 3. Classi-
cally, one allowed trajectory is for the particle to sit at co
stantx in the false minimumxf ~vertical line on diagram!; a
second, equal-energy trajectory is for the particle
‘‘bounce’’ off of the potential ~curved line in diagram!. A
purely quantum description of the system~in the Schro¨dinger
representation! would start, for example, with a Gaussia
wave function centered atxf at some timet50, and hence
with the position expectation valuêx&.xf . With time, the
wave function spreads, and̂x̂& increases, eventually ap
proaching the classical trajectory for^x&@xf ~we could say
roughly that the particle has ‘‘decayed’’ when^x& changes
significantly from xf ). Note also that the same spreadi
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would occur att,0 so that this purely quantum descriptio
would beT symmetric. Now, asemiclassicaldescription of
the system would describe the system classically at b
early and late times, but with a quantum-mechanical tran
tion connecting the classical trajectories at some given ti
This transition time is random, and in an ensemble of su
systems~as is required for a correct probabilistic descriptio!
would follow a probability distribution given by a WKB-type
calculation of the decay rate. Near the transition time
system cannot be described classically; we must ‘‘shade o
the region where only a quantum description is accurate
in Fig. 3.

Bubble nucleation can be described semiclassically i
similar way. Here, we must attach allowed classical solutio
of the field equations along some boundary that repres
the nucleation event. To do this in a covariant way, t
boundary must be a surface of zero proper distance, i.
null cone, as shown in Fig 3. A bubble nucleation ‘‘event’’
thus comprised of a region~shown as the shaded upper qua
rant! where a classical bubble interior solution applies,
tached to locally dS regions by a ‘‘shaded out’’ regio
~within some proper separation squared of the nuclea
point! where only a quantum description is valid. To produ
a semiclassical description of a spacetime in which nuc
ation events occur, one must then populate it with these c
figurations in such a way that the nucleation sites are r
domly situated and occur at the correct rate per unit f
volume, while the classical description, which applies
from the nucleation site, is in accord with the~classical!
boundary conditions. When the classical boundary con
tions are ours, given onJ 2 , this yields the bubble distribu
tion indicated in Fig. 2. The~semiclassical! boundary condi-
tions do, then, control the time direction of bubb
nucleation, not by introducing some locally-detectable AO
but by controlling the allowed global configuration of bubb
nucleation events.

There is one final ‘‘region’’ in which we can check th

FIG. 3. The decay of~left! an unstable particle and~right! an
unstable vacuum state. In the particle case, the trajectory is cl
cally describable to good precision at early and late times, but
near the decay~shaded region!. Likewise, the inflatonf is classi-
cally describable at large invariant distanceD from the nucleation
event atO, but not near it~shaded region!. This quantum region
connects the classically describable field configuration of the bub
interior to that of locally dS spacetime.
5-5
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A. AGUIRRE AND S. GRATTON PHYSICAL REVIEW D67, 083515 ~2003!
AOT: the entire universe. Interestingly, we here find th
while each bubble nucleation event is non-time-symmet
by virtue of the symmetry of the cosmological boundary co
ditions, the statistical description of the universe does ad
a sort ofT symmetry. In Sec. V we will discuss the possib
ity of making this symmetry exact via an identification o
the manifold. This raises the intriguing possibility of havin
a well-defined~and consistent among communicating o
servers! AOT for all observers even while the physical law
and the global physical description of the universe both a
mit a time-reversal symmetry.

The singularity theorems

Having examined the AOT, we may turn to the singular
theorems, for the AOT proves crucial in their analysis. Bo
the older theorems@3# and the newer theorem@4# assert that
if certain conditions are satisfied everywhere within a spa
time, then not all past non-spacelike geodesics have infi
proper time or affine parameter. This indicates that the sp
time is either extendible or contains singularities.

The older theorem poses four such conditions, of wh
our model satisfies three, as does region I or II by itself. T
fourth condition is that there exists a pointP such that there
is a finite difference in volume between the interior of t
PLC of P and that of any pointP8 in the past ofP. This is
motivated by double-well inflation, and claimed as necess
for semieternal inflation~the argument being that if this con
dition does not hold, then any inflating point will find itse
in a bubble at the next instant, with probability one!. We
argue that this condition is not quite necessary: what is
quired is that there be a finite volume in the region betwe
the PLCs ofP andP8 in which bubbles can nucleate towar
P. Thus if, as in the proof of the theorem, the ‘‘past ofP’’ is
taken to be the full volume interior to the light-cone pointin
in the time direction away from which a bubble nucleated
P would expand, then the fourth condition applies to regio
alone ~and correctly implies that it is extendible!. But it
would not apply to the full spacetime~which is neither ex-
tendible nor singular!, because the relevant part of the lig
cone extends only toJ 2 .

The argument of the newer singularity theorem@4# con-
sists of the definition of a local ‘‘Hubble parameter’’H
meant to represent the rate of divergence of neighboring
moving test particles, along with an argument that any reg
for which a suitable averageHav of H is greater than zero
along all geodesics must be geodesically incomplete.

We understand Bordeet al.’s argument as follows. One
imagines some timelike or null test geodesic with affine
rameterl in the spacetime in question, then attempts to c
struct a timelike vector fieldum(l) along the test geodesi
into its past such thatHav ~defined viaum) exceeds 0. It is
shown that this can only be achieved along some finite af
length of the test geodesic, since the imposed condition
idly forces um towards nullness. Bordeet al. @4# then take
their result to mean that an eternally inflating spacetime
past-geodesically incomplete.

We take the hypothetical satisfaction of their averag
Hubble parameter condition for all test geodesics as the
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plicit definition of what Bordeet al. mean by an eternally
inflating spacetime. The logic is thatum might be indepen-
dent of test geodesic and simply be the velocity field of so
set of comoving world lines in the inflating spacetime. S
what the theorem actually implies is that is it impossible
entirely cover a spacetime with such a set of world lines i
way that allows all test geodesics cutting these world lines
obey the Hubble parameter condition.

For illustration, let us consider dS space. We note tha
pure dS is a maximally symmetric spacetime, it does
make sense to regard some parts as inflating and others n
one must break the symmetry by adding some other ingr
ents, and then frame a discussion in terms of them. Ne
theless, let us investigate if the geodesics defined by ha
fixed comoving coordinates themselves constitute aum field
Hav.0 for all geodesics. It turns out thatH reduces to the
usualȧ/a in this situation. In the closed slicing with metri

ds252d t̃ 21H22cosh2H t̃ ~dx21sin2xdV2
2!, ~7!

the coordinates cover all of dS, soum is globally defined.
However,H,0 for t̃,0 so Hav goes negative. Now con
sider using a single flat or open coordinate patch to de
um. H.0 here~at least for the appropriate choice of tim
orientation!. However, because neither of these coordin
patches covers the spacetime, neither doesum. Furthermore,
one may choose an infinite number of flat coordinatizatio
of dS, each with a different null boundary where theum

construction fails. This makes it clear that the boundary o
given um field cannot be unambiguously used to define
edge to an inflating region.

We do not believe that the global existence of a suita
um is necessarily the best definition of what is meant by
eternally inflating spacetime.4 In particular, equatingH with
physical expansion entails a tacit assumption that the ph
cal AOT is everywhere in accord with that defined byum.
The model we have proposed could be covered by a con
ence of geodesics~those comoving in two flat coordinat
patches covering dS! that would yieldH,0 in some regions.
However, we have argued that these regions may still
regarded as expanding with respect to the physical AOT
fined by the cosmological boundary conditions.

In summary, both singularity theorems postulate con
tions for a region to be ‘‘inflating,’’ and find that such
region cannot be geodesically complete. However, interp
ing these theorems as forbidding eternal inflation seems t
to require an unwarranted assumption about the global A
independent of the cosmological boundary conditions.

4Indeed the term ‘‘eternal inflation’’ has been used with a varie
of meanings. For example, the recent paper@20# used it to describe
models that are eternally inflating to the future, but simply geo

sically complete to the past (ȧ and/or ä may go negative there!.
Such histories, with a globally defined arrow of time, seem phy
cally unrealistic with a typical mechanism for exiting inflation
since this would render them unstable to the formation of therm
ized regions in the putatively eternal early phase@2#.
5-6
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INFLATION WITHOUT A BEGINNING: A NUL L . . . PHYSICAL REVIEW D 67, 083515 ~2003!
IV. BOUNDARY CONDITIONS AND THE NULL
BOUNDARY PROPOSAL

We have seen how extending semieternal inflation to e
nal inflation implies particular behavior on the infinite nu
surfaceJ 2 . Here we discuss the converse, describing h
the eternal double-well inflation model we have describ
can be specified by a particularly simple set of cosmolog
boundary conditions that are imposed onJ 2 .

A. On cosmological ‘‘initial’’ conditions

The correct specification even of a complete set of ph
cal laws does not by itself allow prediction of any physic
system’s behavior; these laws must be supplemented
boundary conditions that suffice to fully characterize the s
tem being modeled. The big-bang~BB! model essentially
consists of a set of such boundary conditions for our obs
able cosmic surroundings: at some early time, our region
a hot, dense, nearly homogeneous and isotropic mixtur
particles and fields in thermal and chemical equilibrium, in
nearly flat expanding background geometry with sca
invariant gravitational potential perturbations of amplitu
1025 on the scale of the cosmological horizon.

While these initial conditions yield predictions in exce
lent accord with astronomical observations, they are dee
by many to be too special: they seem to comprise an
tremely small portion of some ‘‘ensemble of all possible in
tial conditions,’’ using some~generally unspecified! measure
~see e.g.@21#!. The theory of inflation is widely accepted a
a way to broaden the range of allow initial conditions
funneling a relatively wide class of physical conditions in
satisfactory BB initial conditions@22#.

This is perhaps reasonable as a stop-gap measure as
as the true~preinflation! initial conditions are unknown. Bu
it does notsolve the initial condition problem, for not al
initial conditions will give rise to inflation@23#, nor is it clear
that all of those that do give inflation will yield a viabl
big-bang model@21#. Thus one must stillassumethat suit-
able conditions emerge from the initial singularity; wheth
this assumption corresponds to a ‘‘special’’ or ‘‘generic’’ co
dition seems ill-defined without a description of the singul
ity, which would presumably require quantum gravity. B
unless quantum gravity completely alters the way phys
theories are applied, it is unlikely to yield aunique initial
condition; it will still be necessary to supply a quantum st
~or something similar!. Even if it is possible to define the
ensemble of all possible states, the question of how~and
why! a state was ‘‘chosen’’ for our universe can only be
metaphysical one, and it seems that, just as in choo
physical laws, we can at best posit a state on some~possibly
symmetrical or aesthetic or philosophical! grounds, derive its
consequences, and compare them to the observed unive

The same holds for a nonsingular cosmological mo
such as that proposed in this paper, the basic structur
which is well-described by semiclassical physics, and wh
there can be no hiding of the cosmological boundary con
tions in an initial singularity. We instead specify a particu
set, and analyze them in terms of their simplicity, symme
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and ability to correctly generate a big-bang-like region th
can describe our observable surroundings.

B. „Semi…classical boundary conditions for eternal inflation

It is conventional to pose boundary conditions for a set
classical fields by specifying the fields~and generally their
time derivatives! on a spacelike surface. This is in acco
with the intuitive idea of specifying the state at an initi
time. An alternative procedure, more relativistic in spirit b
cause it does not assume a particular time coordinate, i
specify boundary conditions on a null surface such as
light cone of a point.~See the Appendix and Refs.@15,16,24#
for treatments of the null initial value problem.!

Our boundary surfaceJ 2 is a null surface that, when
drawn on the conformal diagram, looks like the light cone
a point V2 at the bottom~i.e. ‘‘at’’ the conventional past
timelike infinity! and the light cone of a pointV1 at the top;
see Fig. 2!. As such, one might expect that one may det
mine fields~including the spacetime metric! throughout the
space by specifying them onJ 2 . The conformal mapping
however, hides the fact thatJ 2 is not a fully closed light
cone: there is always a nonzero physical volume~of order
H23 or greater! on any spacelike surface bounded byJ 2 .
We must therefore ask if specifying fields onJ 2 suffices to
fix them everywhere, or if there is information that ma
come ‘‘though the hole’’ atV2 andV1 . In the Appendix, we
argue~using the Green function for a massive scalar field
dS! that the fields atV6 are irrelevant~as long as they are
reasonably well behaved!, as their effect is infinitely diluted.

We can thus pose boundary conditions for our cosmolo
at the classical level as:

~1! There exists an infinite connected null hypersurfa
J 2 of topology R3S2, on which the 4-dimensional Wey
tensor vanishes and the 4D curvature scalar is constant.

~2! The inflaton field, with a ‘‘double well’’ potential, is
everywhere in the false vacuum on this surface.

~3! On this surface, all classical fields are zero or are
minima of their potentials. This precludes any radiati
propagating throughJ 2 .

This cosmology is classically very dull, as it is just d
Sitter space everywhere with no dynamics. However, se
classical bubble nucleations can, without affecting the fie
on J 2 , create interesting dynamics by forming bubbles th
open everywhere away fromJ 2 , and give rise to eterna
inflation as described in Sec. II and shown in Fig. 2.

C. Quantum mechanical boundary conditions

Although a fully quantum description of semiclassic
phenomena—such as the nucleation of a bubble—is ge
ally prohibitively complex, we may hope that, because o
set of boundary conditions is so simple at a semiclass
level, it might be amenable to a simple quantum formulati
and it would be pleasing to specify our boundary conditio
in an explicitly quantum-mechanical way. There are tw
ways one might think of doing this.

First, one might consider doing usual quantum fie
theory on de Sitter space, but with a particular choice
vacuum corresponding to our ‘‘false vacuum’’ classical co
ditions onJ 2 . This might be done by putting the field in
5-7
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A. AGUIRRE AND S. GRATTON PHYSICAL REVIEW D67, 083515 ~2003!
Gaussian wave packet around the false vacuum at~flat slic-
ing! time t, as in@17#, then taking at→2` limit. One might
then assume that this is sufficient to define the quantum s
over all of de Sitter space. Alternatively, one could set su

an initial state at thet̃ 50 slice in global~closed! coordinates
~7!, i.e. on the slice through the ‘‘throat’’ of the dS hyperb
loid. This surface could then be boosted~infinitely! to be-
comeJ 2 . In either case, the procedure would be analog
to putting an unstable particle into a Gaussian in the fa
vacuum att50; away fromt50 in both time directions, the
solution of the time-dependent Schro¨dinger equation would
evolve away from the unstable ‘‘initial’’ state.

With our initial data surface being null, one might attem
to define the quantum state directly on it. This would
conceptually more pleasing, not requiring the limit through
sequence of spacelike surfaces as above. Further, a nul
face formulation of initial data is rather elegant@16,24#.
However, unlike for a spacelike initial value surface, so
points onJ 2 are in causal contact. It is thus less easy to
how to move from a spacelike to a null boundary value s
face in quantum field theory~QFT!, because fields do no
commute at lightlike separated points. A similar effect occ
in so-called ‘‘light-cone quantization’’ approaches to QFT
Minkowski space@25#, where one uses infinite null sheets~or
light fronts! instead of equal time slices, and fields again
not in general commute. The vacuum state for interact
fields is rather easier to define in the lightfront approach
QFT than in the usual spacelike approach to QFT, and
might expect this to hold in a proper nullconeapproach to
QFT. Unfortunately, the authors know of no such formu
tion of QFT even in Minkowski space.

Thus while we suspect that our cosmological bound
conditions may correspond to a the specification of a ra
simple quantum state, we leave this difficult problem
future work and here concentrate on a semiclassical des
tion ~though we return to QFT in Sec. V A!.

D. Discussion of the null boundary proposal

The boundary conditions we have proposed are extrem
simple, in line with the view espoused above that one can
avoid making a specific choice for cosmological bound
conditions, and that it is then reasonable to make a ch
that is as simple and as highly symmetric as possible, ra
than hope to choose a ‘‘generic’’ boundary condition.

1. Relation to other proposals

Our proposal is novel in that it requires no treatment of
initial singularity, and in that boundary conditions are plac
on a null boundary that does not correspond to any partic
cosmic ‘‘time.’’ It does, however, have features in comm
with other proposals for specifying the state of the univer

Penrose’s Weyl curvature hypothesis~WCH! requires that
initial singularities are constrained to have vanishing W
tensor, corresponding to a low-entropy state. This, he arg
gives rise to an arrow of time flowing away from the initi
state. Our proposal is very similar, except of course that
impose the vanishing of the Weyl tensor on a lightli
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slice running across the universe rather than at an initial
gularity.

The Hartle-Hawking no boundary proposal~NBP! is a
prescription for the wave function of the universe. It pr
videsC(hi j ,f), the amplitude for a given three-metric an
scalar field configuration on a spatial 3D surface. The c
struction is designed to suppress irregular configurati
relative to more regular ones, and to thus favor simple a
symmetric states. The notion of temporal evolution does
appear explicitly. However, one can associate histories w
saddle-point approximations to the wave function, and
turns out that such universes are often smooth when they
young and small. Thus the NBP may be taken to imply th
at the semiclassical level, there should exist a spatial sur
in a cosmological spacetime on which the boundary con
tions are particularly simple.5 Our proposal rather uses a nu
surface~but see Sec. VI B below!. It would be very interest-
ing to develop a quantum prescription in a similar vein to t
NBP which naturally leads to simplicity on certain null su
faces. For further details on both the WCH and NB
see@28#.

The tunneling approach to quantum cosmology@29# ar-
gues that the semiclassical universe emerges via a qua
tunneling event. In the context of models with ope
inflationary potentials the proposal suggests that the u
verse, when first semiclassically describable, is most lik
to be small and regular, with the field away from the tr
vacuum; future-eternal inflation can then ensue. The tun
ing is supposed to have occurred out of a quantum grav
tional chaos so severe as to preclude any space-time des
tion. While our proposal also leads to inflation fro
semiclassical boundary conditions, it explicitly avoids a
such extreme quantum gravitational regime.

Over the years Sakharov has discussed various cos
logical models involving time-reversal~and CPT) invari-
ance @30–33#. In these models, the universe is genera
symmetric across a singular FRW bounce att50, at which
the universe assumes an especially simple state; away
this bounce entropy increases in both directions of time@31#.
In @30# he hypothesizes that phenomena att,0 are theCPT
reflections of the phenomena att.0. In @31,32# he considers
the possibility of an infinite chain of further bounces
cycles away fromt50 in both time directions, and also th
possibility that the minimum-entropy surface might be o
of maximum expansion rather than a singular one@31,32#. In
a paper primarily about signature change@33# he alludes to
possibility of nonsingular time reversal around a surface
minimal radius in a false vacuum state. Our proposal clea
has parallels with these ideas. We, however, concentrat
an infinite nonsingular null surface, rather than a singu

5In the context of models with open-inflationary potentials, t
NBP seems to favor histories in which the scalar field is everywh
in its true vacuum@26#. The NBP may still be relevant for inflation
with the use of an anthropic constraint, or in a ‘‘top-down’’ a
proach to calculating quantum probabilities@27#. Starting off in the
true vacuum is however not a problem for recycling models
inflation, as discussed below.
5-8
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INFLATION WITHOUT A BEGINNING: A NUL L . . . PHYSICAL REVIEW D 67, 083515 ~2003!
spacelike one. Moreover, with the concepts of semiclass
bubble nucleation and open inflation, we are able to prov
a relatively complete physical picture.

2. The horizon problem

Inflation was originally conceived as a remedy for tro
bling issues concerning cosmological initial conditions@34#,
thus it is useful to compare how such shortcomings of
HBB model @22# are dealt with in our model. We focus o
what is ~aside from the singularity problem! perhaps the
most vexing of these HBB difficulties: the horizon problem

The horizon problem is generally framed as follow
choose two spatially antipodal points on the last-scatte
surface. They are similar in temperature, yet their PL
never intersect in a HBB cosmology, so there can be
causal connection between them. Inflation is gener
thought to solve this problem, because with sufficient infl
tion, the PLCs will intersect. But this doesnot suffice for the
points to have the same temperature, because the tempe
at each point depends on data across its full PLC, and the
a portion of each PLC that does not intersect the other. T
ing this into account, for the two points to have similar pro
erties it must be assumed that there is sufficient inflation,
additionally that at inflation’s beginning at timet inf , the re-
gion to the past of the two points is homogeneous on len
scales of orderH inf

21 . But suppose there is a earlier epo
between some timet and t inf . Then att the patch must be
homogeneous over a physical length scale of at least

r ~ t !;
a~ t !H~ t !

a~ t inf!H~ t inf!
H21~ t !, ~8!

whereH(t)[ȧ/a. If a}ta (a51/2 for radiation-dominated
expansion! prior to t inf , then r /(H21).@a/a(t inf)# (a21).
Thus it is necessary to postulate that our region was, at s
initial time t0, homogeneous over@a(t inf)/a(t0)# (323a)

Hubble volumes. The horizon problem therefore persist
t inf.t0 and a,1. There are two escapes available with
inflation. The first is to sett inf5t05tpl , so that the expansion
is inflationary all the way back to the Planck time, befo
which one cannot speak of the expansion at all. The hori
problem is then greatly ameliorated, as it must only be
sumed that some regions ‘‘emerging’’ from the Planck epo
are homogeneous over a relatively small~but .1; see@23#!
number of Hubble volumes when they are first classica
describable; but whether this constitutes a true solution
be seen only if and when the Planck epoch itself is und
stood. A second potential escape is to seta>1, or ~more
generally! for ȧ to be nondecreasing, i.e. to have past-eter
inflation.

How, then, does the horizon problem look in the cont
of our eternal model with no initial time? Let us pose t
problem in a slightly more general manner: when specify
the cosmological boundary conditions, must one do so ov
region that is very large compared to some relevant phys
volume such asH23? Posed this way, it might seem th
becauseJ 2 is an infinite surface, a strong horizon proble
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exists.6 This, however, is not necessarily the case. Imag
J 2 as the limit of a sequence of spacelike slices obtained

boosting the spacelike surface given byt̃ 50 in global coor-
dinates. Because each such surface has volume 2p2H23, we
might also attribute toJ 2 the same finite invariant volume.7

Thus our construction would seem to ameliorate the hori
problem ~posed in terms of Hubble volumes within th
boundary condition surface! to approximately the same de
gree as does inflation beginning in the Planck epoch,
much better than does inflation with an early quasi-FR
phase.

V. THE ELLIPTIC VIEW

The model we have proposed consists of two indist
guishable regions, each comprising an eternally inflating u
verse with an AOT~where defined! pointing away from an
infinite null surface which connects the two regions. T
statistical identity of these universes, along with lack of
global physical time orientation, suggests some form of
old idea concerning dS, called ‘‘the elliptic interpretation8

that would identify the two universes.
The idea consists of deeming an event to be represe

not by a single point of a spacetime manifold, but by apair
of antipodal points~defined below!. This corresponds to a
topological identification that, applied to our model, iden
fies regions I and II, and mapsJ 2 onto itself @the R3S2

manifold J 2 becomes (R3S2)/Z2]. This identification has

6This is apparently the case, for example, in the cyclic model@14#,
where if the cyclic behavior is to continue indefinitely into th
future and past, it seems necessary to place cosmological boun
conditions on an infinite spacelike surface. This specification
cords the same properties to points that are arbitrarily distant,
causally disconnected.

7One can also consider other ways of taking a limit toJ 2 , but
this one seems most in accord with the symmetries of dS. Ano
approach to the problem is to rather consider some distance m
sure between any two points onJ 2 . A dS-invariant quantity, in
units whereH51, between pointsP1 and P2 in the embedding
space@see Eq.~9! below# is given byD(P1 ,P2)52v1v21w1w2

1x1x21y1y21z1z2 @11#. In general2`,D,`, whereas for two
points onJ 2 , uDu<1; they may thus be considered ‘‘close.’’ Th
relation betweenD and geodesic distance is, unfortunately, not
ways defined. The points are timelike or null separated, resp
tively, for D.1 or D51. For uDu,1 points are connectable by
spacelike geodesic of length cos21(D),p; but for D<21 there is
no geodesic connectingP1 and P2, although one does connectP1

to the antipodeP̄2 of P2 becauseD(P1 ,P̄2)52D(P1 ,P2). Under
the identification of antipodal points~see below!, anyP1 andP2 are
null separated or spacelike separated by a geodesic dist
,p/2H.

8The etymology of this term is obscure to the authors. The ellip
view applied tospatial sections of dS was discussed first by
Sitter, who preferred it to the~now! conventional ‘‘spherical’’ view,
and cited a letter from Einstein voicing the same preference@35#.
Antipodally identifying in spaceand time was discussed in fond
detail by Schro¨dinger @36#.
5-9
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A. AGUIRRE AND S. GRATTON PHYSICAL REVIEW D67, 083515 ~2003!
been subject of some previous@36–39# and recent@40# in-
vestigations.

Pure dS can be represented as a 4D hyperboloid

2v21w21x21y21z25H22 ~9!

embedded in~411!D Minkowski space with metric

ds252dv21dw21dx21dy21dz2. ~10!

The elliptic interpretation consists of identifying eac
point P with coordinates (v,w,x,y,z) with its antipode2P
at (2v,2w,2x,2y,2z). In the conformal diagram, this
means that points such asP and2P of Fig. 2 are physically
identified; the antipodal mapA looks like a vertical reflec-
tion and a horizontal shift through one half of the diagram
horizontal extent.~Note that although this map makes a
orbifold of the embedding space, there are no fixed point
the dS hyperboloid, leaving the identified space a manifo!

At the classical level, the identification can be enforced
demanding that all fields in dS are symmetric or antisymm
ric underA, and that all sources have an accompanying
tipodal copy. Parikhet al. @40# have argued that charge co
jugation should be added toA, and that the combination
representsCPT. Indeed, in classical field theories at least,A
symmetry automatically entails opposite charges at antipo
points. Consider, for example, a complex scalar field, sa
fying f(2P)5f(P). Then the global time derivative of th
field at the antipode2P is minus that atP, and hence the
charge density (q/2i )A2g(f* ]0f2f]0f* ) is opposite.
However, in~311!D at least, we do not recover thePT part
of their argument. A particle atP with 3-momentum vector
p5(px ,py ,pz) has an antipodal copy at2P. By an argu-
ment like that of Parikhet al., parallel transporting the
copy’s trajectory back toP takes the momentum to
(2px ,py ,pz). This looks like parity followed by a rotation
of p about thex axis. The same procedure, however, take
small displacementx5(x,y,z) to (x,2y,2z). The differ-
ence in sign arises because the 3-momentum suffers an
tomatic’’ time reversal underA, whereas the 3-displaceme
does not. Thus the orbital angular momentuml5x3p trans-
forms from (l x ,l y ,l z) to (2 l x ,l y ,l z), just as the
3-momentum does. But under parityP, x→2x and p→
2p, while underT, x→x andp→2p. Therefore underPT
~along with possible rotations!, p and l transform oppositely.
Only underT ~with rotations! alone do they transform like
wise. So unfortunately we cannot concur with the beguil
idea thatCPT conjugate events occur at antipodally con
gate points in an elliptic universe. Rather, we must settle
a sort of CT conjugation between processes at antipo
points.

A second interesting~and favorable! feature of the antipo-
dal identification, which holds in pure elliptic de Sitter spa
~edS!, is as follows. An immortal observer in dS can on
eventually ‘‘see’’ ~i.e. be connected to via a nonspaceli
geodesic emanating into the past of the observer! half of the
space, the rest being hidden behind the observer’s dS e
horizon. Under the antipodal identification, however, th
‘‘hidden’’ space is exactly the same as the ‘‘visible’’ spac
08351
in
.
y
t-
-

al
s-

a

u-

g

r
l

ent

.

Likewise, the space behind the observer’s particle horiz
~the space not reachable by nonspacelike geodesics em
ing from an observer toward its future! is the same as the
space within it. In this precise sense, edS has no horiz
The notion that in edS each observer has ‘‘full informatio
about the space has been a prime motivation for the stud
the space@36,40#.

Along with these appealing attributes however, and l
our cosmological model, edS has some unconventional t
poral features that may or may not be desirable. BecausA
includes time reversal, the spacetime is non-time-orienta
one cannot continuously divide nonspacelike vectors i
two classes which can be labeled ‘‘future’’ and ‘‘past.’’ Now
one may take the view@36# that since physics is essential
time reversible, this poses no fundamental problem. N
time-orientability does, however, have implications for qua
tum mechanics~see Sec. V A and@38,39#!. In addition, while
physics may be time symmetric, our physical world ma
festly is not, and this must be confronted in a cosmologi
model.

The identification of points near ‘‘past’’ infinity with those
near ‘‘future’’ infinity also raises the specter of closed tim
like curves~CTCs! and their accompanying paradoxes. T
identification does not allow any self-intersecting timeli
curves inperfectdS because the full light cones ofP and
2P never intersect~the spacetime obeys the strong causa
principle of @41#!. For the same reason, no observer can
both an event and its antipodal copy. Note, though, that p
turbations of dS that tend to make the conformal diagr
‘‘taller’’ @42# would allow timelike curves from a point to
traverse the dS hyperboloid to the point’s antipode.

These temporal features may not be what we are ac
tomed to, but perhaps we should not be surprised that
cosmology based on globally dS spacetime has an ‘‘unc
ventional’’ AOT. It is well known, for example, that while a
patch of dS admits a static coordinatization, it admits
global timelike Killing vector; as shown in Fig. 4, the Killing
vector is timelike only in half of the diagram, and moreov
points toward the top of the diagram only in half of th
region in which it is timelike, reversing completely betwee
antipodal points.~In fact, the Killing vector field maps onto
itself underA .)

Our model has much the behavior one would want in

FIG. 4. Conformal diagram of dS including Killing vectors~ar-
rows!, a pointP and its antipode2P, along with their light cones.
The causal diamond of an observer following a geodesic ‘‘X’’ @co-
moving in the global coordinatization~7!# is the interior of the dark
diamond, the antipodal copy of which is the light diamond.
5-10
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INFLATION WITHOUT A BEGINNING: A NUL L . . . PHYSICAL REVIEW D 67, 083515 ~2003!
cosmology based on edS. The physical AOT is defined o
inside the bubbles, which may intersect~and hence compar
time orientations! only within region I or region II. The two
regions are separated by locally dS spacetime, where phy
is fully time symmetric. Under the antipodal identificatio
the regions are equated, and the physical AOT is consis
everywhere that it can be compared by two physical obs
ers. Only an imaginary observer that could travel ‘‘back
time’’ to leave a bubble, pass throughJ 2 , and encounter
another bubble, could see that its own AOT agreed only w
that of one of the two bubbles.~In fact, it would seem that in
a non-time-orientable manifold the physical AOT must eith
be undefined in some regions, or must suffer a reversal a
some surface. Thus a construction something like ours m
well be necessary in any cosmology based on edS.!

However, an antipodally identified version of our mod
does not quite share all of the desirable properties of e
The bubbles, with a larger curvature radius than the emb
ding space, allow the connection of antipodal~and hence
identified! points by a timelike curve. These self-intersecti
timelike curves~SITCs! are not however CTCs of the usu
grandfather paradox sort. To follow such a SITC an ima
nary observer would, for part of its journey, have to trav
backward in ~bubble! time. Moreover, when the two
branches of the SITC meet, they have opposite time orie
tion as defined by an affine parameter along the curve.
might avoid these SITCs if the bubbles have a smaller c
vature radius than the background space~as discussed below
in Sec. VI!. In this case, however, horizons would retur
because there would be regions outside of an observer’s
rizon that are not identified with any region within the ho
zon.

While the elliptic interpretation is complicated by th
presence of bubbles, the background space of our mod
pure dS, and does benefit from the elliptic interpretation;
points onJ 2 , for example, would be connectable by ge
desics and have a maximal spacelike geodesic separ
p/2H, and the volume of the boundary condition surfa
would be halved.

The elliptic interpretation was suggested by a symme
in the statistical description of the bubbles, and it is intere
ing to ponder the connection between this statistical sym
try andA. Classically, we may have an ensemble of syste
each of which is notA symmetric, even while the statistica
properties of the ensemble are. Without bubble nucleat
our universe~dS! is A symmetric. The boundary condition
which determine the bubble distribution areA symmetric,
therefore it seems necessarily true that the statistics of
bubble distribution areA symmetric. Given quantum me
chanics, however, it is not clear how to relate a single me
ber to the statistical properties~given by the wave function!
without bringing in measurement theory, and we will lea
the question aside for future consideration.

QFT in edS

The non-time-orientability of edS also makes quant
field theory on the space rather more subtle than in usual
We hope to treat this subject in some detail in a forthcom
paper~see also@38–40#!. Here we sketch a brief summary
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Consider a massive free scalar fieldf(x) obeying some
wave equation, for which we would like to construct a QF
in edS by defining a Hilbert space of states~including a
vacuum state u0&), and the two-point function
^0uf(x)f(y)u0&. The latter can be decomposed into a co
mutator D(x,y) and an anticommutator~or ‘‘Hadamard’’!
function G(1)(x,y). Under the antipodal identification, w
would expect bothD andG(1) to be symmetric in some sens
under the exchange ofx and/or y with its antipode. How,
then, might we define such a QFT? There are a numbe
ways, none of which seem entirely satisfactory.

First, one might just pick a particular ‘‘antipodally sym
metric’’ vacuum state of full dS. Indeed, taking thea→`
limit of the ‘‘ a vacua’’ appropriate for dS@43# does yield an
A-symmetricG(1). However, this does not have the usu
short distance behavior of the Minkowski 2-point functio
In addition, the commutatorD is independent of the stat
chosen, and has no antipodal symmetry.~One might also
hope to find anA-symmetric nonvacuum state with the co
rect short distance behavior, but this would still have t
wrong commutator.!

A second approach would be to try to build an antipoda
symmetric vacuum in a full dS background, by choosing
~global! time coordinate and decomposing the fields into g
bal positive-frequency modes that are antipodally symmet
The Fock vacuum would then as usual be the state destro
by all annihilation operators. The problem with this approa
is that any antipodally symmetric mode turns out to ha
vanishing Klein-Gordon norm when integrated over
Cauchy surface for all of dS@38#, and the Fock construction
breaks down.

A third approach employed in the literature@38–40# is to
abandon the hope of a Fock vacuum, and to simply enfo
the antipodal symmetry at the level of the Green functio
by writing antipodally symmetrized versions of the field
and computing the resulting two-point functions in terms
the two-point functions of unidentified dS. One problem w
this approach is that it becomes somewhat unclear why
anticommutator should take this value, as the construc
seems to lack an underlying quantum-mechanical mot
tion. Another problem is that while the anticommutator
obtained is antipodally symmetric, the same procedure yie
a commutator that vanishes identically.

A fourth approach is to define the vacuum in terms o
mode decomposition over onlypart of dS ~such as a ‘‘causa
diamond’’ @11#!, where the modes can be consistently po
tive or negative frequency~so that a Fock representation e
ists!, then provide a prescription for defining correlators b
tween any two points in the space in terms of correlat
within this region. This approach turns out to be promisin
for one or both points in the causal diamond or its antipo
copy, and for a particular choice of state~a mixed thermal
one at twice the usual de Sitter–Hawking temperature!, both
D andG(1) can be made to have the correct symmetry. T
problem arises when both points are outside of the ca
diamond and its copy; in this case the commutator turns
to vanish for timelike separated points, and not for space
separated points. It is unclear whether this makes sense
5-11
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A. AGUIRRE AND S. GRATTON PHYSICAL REVIEW D67, 083515 ~2003!
In short, defining a satisfactory QFT in edS is rather d
ficult; the difficulties stem primarily from the commutato
function, because it is not symmetric under time reflecti
while the anticommutator is. It is then difficult for both func
tions to be symmetric underA, which includes time reflec-
tion. It is possible@40# that string theory in edS will make
more sense than in dS. It is also conceivable that the elli
view could emerge from a correct quantum treatment of
and that the described troubles stem from doing QFT o
fixed background not included in the dynamics. This wou
be an interesting issue to pursue in string theory or ot
theories of quantum gravity. For now we must leave it the
and return to eternal inflation.

VI. GENERALIZATIONS AND EXTENSIONS

We have constructed our eternally inflating universe us
an ‘‘open inflation’’ double-well potential and demandin
that the inflatonf rest in the false vacuum everywhere o
the infinite null surfaceJ 2 . But these choices are no
unique, and the general principles of our construction can
extended to models employing different potentials, or diff
ent boundary condition surfaces.

A. Different inflaton behaviors

A simple change in our model can be induced by leav
V(f) fixed, but demanding thatf rest in the true, rather tha
false, vacuum onJ 2 . Although the field is now in a~posi-
tive! stable vacuum, bubbles offalse vacuum may still be
able to nucleate@44#. Assuming this indeed occurs, the effe
of each bubble can be enclosed within a light cone, and
distribution of these light cones is essentially the same as
bubbles of true vacuum, so all of the arguments of Sec. II
through. Now, within these bubbles of false vacuum n
bubbles of true vacuum can form, one of which could d
scribe our observable universe. At late~bubble! times each
bubble interior would approach dS, dominated by the t
vacuum~presumably of the magnitude we currently appe
to observe!, in which false vacuum bubbles may nuclea
~and so on,ad infinitum!. This is a realization of the ‘‘recy-
cling universe’’ of@45#. Because bubbles are nested infinite
deep, the structure of this universe appears exceedingly c
plicated. But theglobal structure at the outermost level o
bubbles is known~and is as in Fig. 2!, because we have
specified it using explicit cosmological boundary condition
One might argue that this scenario would have yet simp
boundary conditions than the scenario in which the infla
is placed in the false vacuum onJ 2 . Since the lowest
vacuum state must be positive for this scenario to work
also has the potential to connect with the presently obse
positive vacuum energy.

A somewhat similar scenario can be realized using ‘‘c
otic inflation’’ potentials such asV(f)5lf41V0. Here we
set the inflaton to rest atf50 onJ 2 , and requireV0.0 so
that the space is locally dS nearJ 2 . This is, again, a stable
configuration, yet regions of large potential may ‘‘nucleat
in this dS background as highly improbable quantum fl
tuations in the field. If such a region nucleates at h
enoughf, it would provide the potential seed for the sort
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eternal inflation envisioned by Ref.@46#, in which quantum
fluctuations inf dominate over classical rolling so that in
flation becomes eternal. While the structure of the result
region becomes extremely complicated, it can again be c
tained within a light cone of some point in the original~dS!
background space, so that the global structure of the univ
~filled with such light cones! is still understandable, and
again looks like Fig. 2.

B. Different boundaries

We were led to the null surfaceJ 2 by constructing an
eternal model with a time-translation symmetry. But t
same sort of boundary conditions we apply onJ 2 could also
be applied to aspacelikeinitial surface, such as thet̃ 50
surface in the global coordinatization~7! of dS. Such bound-
ary conditions might be closely tied in to the Hartle-Hawkin
NBP, as discussed above. The universe now has a prefe
~and initial! time, and constitutes ‘‘semieternal’’ inflation in
both the t̃ ,0 and t̃ .0 regions. The same arguments co
cerning the AOT apply here: it is undefined neart̃ 50 ~out-
side all bubbles!, and defined in bubbles, pointing away fro
t̃ 50. If the initial surface maps onto itself under the antip
dal map, we can apply the antipodal identification to t
universe. This model bears a stronger resemblance to
earlier ideas of Sakharov@30–33# than does our proposa
using the nullJ 2 .

Spacelike surfaces are easily deformable into other sp
like surfaces, whereas the same is not true for null surfa
~see e.g.@47#!. Thus spacelike surfaces are in some sense
constrained than null ones and thus maybe less appropria
any attempt, such as ours, to specify cosmological bound
conditions in the most economical way. In addition, the
sulting universe would not obey the perfect cosmologi
principle, having a preferred time att50. As discussed
above, we also might conjecture that the quantum state
responding to null boundary conditions is simpler. In ge
eral, however, there seems to be no strong argument ag
such a boundary condition surface as compared to a
surface.

VII. SUMMARY AND CONCLUSIONS

We have investigated the possibility of making ‘‘future
eternal’’ inflation eternal also to the past. Starting with a
Sitter spacetime background dominated by the false-vacu
energy in which true-vacuum bubbles can form, we spec
that the bubble distribution at any time is in exactly t
steady-state configuration asymptotically approached
semi-eternal inflation. All bubbles are then equivalent, a
the statistical distribution of bubbles admits both a tim
translation and space-translation invariance in the ba
ground inflating space.

The described region~‘‘region I’’ ! has no initial time, but
has a null boundaryJ 2 that is the limiting surface ast→
2` of the flat spatial sections. The steady-state configu
tion at t.2` corresponds to the inflaton field being in th
false vacuum state everywhere onJ 2 , with no incoming
radiation fromJ 2 . This surface can be reached by a pa
5-12
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INFLATION WITHOUT A BEGINNING: A NUL L . . . PHYSICAL REVIEW D 67, 083515 ~2003!
directed geodesic of finite proper length from any point
the space, so region I is geodesically incomplete; this is
‘‘singularity’’ pointed to by theorems purporting that pas
eternal inflation is impossible@3,4#. But the space can~and
should! be extended, as the state onJ 2 also constitutes
boundary conditions for the region pastJ 2 if the manifold is
extended. These boundary conditions imply that a duplic
copy of region I exists on the other side ofJ 2 . Together
region I and the new ‘‘region II’’ constitute a geodesical
complete~i.e. nonsingular! inflating cosmology that admits
a coordinatization in which the background space a
bubble distribution are time-translation and space-transla
invariant.

The null surfaceJ 2 constitutes a cosmological bounda
condition surface on which the universe is classically in
particularly simple and symmetric state. AlthoughJ 2 is an
infinite null surface, some of its points are in causal conta
and one might attribute a finite invariant volume ofO(H23)
to it. Therefore specifying boundary conditions on it isnot
like specifying them on an infinite spacelike hypersurfa
~which would lead to a severe ‘‘horizon problem’’!.

It might be possible to construct a quantum state co
sponding to our classical boundary conditions onJ 2 by tak-
ing a null-limit of spacelike sections on which the wa
functional describing the fields is centered on the des
classical state. But an explicitly null quantum formulation
our null boundary proposal has not been provided and wo
constitute an interesting future study.

It is widely thought that the ‘‘arrow of time’’ is connecte
with cosmological boundary conditions. In our model, tim
flows away fromJ 2 , and the AOT is consistent among a
physical observers that can compare it. The AOT is not, h
ever, defined globally, and in our model the statistical
scription of the universe admits a global symmetry that
cludes time reversal.

This symmetry, along with the presence of two duplica
noncommunicating universes, motivates—though does
require—formally identifying antipodal points on the man
fold. We, and others, have studied this identification on
Sitter space classically and quantum-mechanically. Antip
ally identified ~or ‘‘elliptic’’ ! dS has the virtues that it i
causally stable and observers have no event horizons. It
the disadvantage that its non-time-orientability makes de
ing a reasonable quantum field theory difficult. With antip
dal identification our model is more economical as the t
duplicate universes are identified; however not all of the
tractive features of ‘‘pure’’ edS remain.

Our model can be generalized to other inflaton potent
~such as for chaotic inflation!, and therefore allows one t
partially understand the global structure of the eternally
flating spaces that result. One may also use an analo
construction to specify a semieternally inflating but nons
gular universe by placing boundary conditions on a space
section.

Our primary conclusion is that it is possible, using on
‘‘standard’’ ingredients underlying popular models for infl
tion, to specify simple cosmological boundary conditions
an infinite null surface that lead to past- and future-eter
inflation. Such a universe would obey the same perfect c
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mological principle that governs a semieternally inflati
universe long after its beginning. If our construction surviv
scrutiny, and can be specified at the fully quantum~or
quantum-gravitational! level within a theory of fundamenta
physics, it could serve as the basis for a realistic cosmol
that avoids a cosmological singularity, a beginning of tim
or a creation of the universe ‘‘from nothing.’’
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APPENDIX

Here we review Green functions and the initial val
problem in some detail, focusing for simplicity on the inh
mogeneous scalar wave equation in fixed background sp
times. We are interested in how much information must
specified, and where, in order to fix the field througho
spacetime.

1. Defining Green functions

Imagine that our scalar fieldf satisfies

~h2m2!f5q~xm!, ~A1!

whereq is an arbitrary source term, and we wish to det
minef at some pointP with coordinatesxP . This is possible
given f and its time derivative on some complete spacel
slice through the past light cone~PLC! of P. Let us see why
this is so, and whether this is the only suitable set of init
data for the problem.

First introduce another functionG, which depends onP
and is assumed to satisfy

~h2m2!G5s~xm!, ~A2!

wheres is to be chosen. TakingG times Eq.~A1! minusf
times Eq.~A2! and integrating through some four dime
sional volumeV yields

E d4x]m~GA2ggmn]nf2fA2ggmn]nG!

5E A2g~qG2sf!d4x. ~A3!

This allows determination off(P) in terms of its values
elsewhere by a suitable choice ofs, G, andV.

To effect this, we must isolatef(P), either on the left- or
right- hand side of Eq.~A3!. Let us first use the right-hand
side~RHS!. Takes to be ad function atP ~or, more carefully,
a function peaked nearP that can be taken to ad-function
limit !. Then choosingV to encloseP gives f(P) for the
second term on the RHS of Eq.~A3!. Using Gauss’s law, this
equation can now be used to expressf(P) as a surface in-
5-13
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A. AGUIRRE AND S. GRATTON PHYSICAL REVIEW D67, 083515 ~2003!
tegral overf and its derivative over the boundary]V of V,
plus a volume integral overV of the source alone.

To fix G(x), we must choose boundary conditions sp
cific to our choice ofs. Two conventional choices are t
requireG to vanish either to the future or to the past ofP. In
the first caseG is known as the ‘‘retarded’’ Green functio
and may be denotedGR ; in the second case it is ‘‘advanced
(GA).

We must now chooseV ~see Fig. 5!. It turns out~see, e.g.
@15#! that GAÞ0 only on and within the FLC ofP, and that
GRÞ0 only on and within the PLC ofP. Hence only a seg-
mentS of ]V contributes to Eq.~A3!, enabling us to deduce
f(P) using only data on some connected surface makin
complete span through either the FLC or the PLC ofP. The
usual choice, consistent with our standard ideas about
sality, is to pick a spacelike surface of constant time~see left
side of Fig. 5!. Then evaluation of Eq.~A3! requiresf andḟ
on S. For a more general]V, we requiref and its normal
derivative onS. ~Note that this surface need not be eve
where spacelike, but if not then the data must be s
consistent.! The case of present interest is that of a null s
face, for which the normal lies everywhere within the surfa
itself ~this is made possible by the Lorentzian signature
the spacetime.! Then specifyingf on the surface also spec
fies the normal derivative off on it. A suitable null surface
is, for example, the forward light coneL of a pointQ to the
past ofP; now we need only knowf on the surfaceS where
this FLC of Q is within the PLC ofP ~see right side of Fig.
5!. ~If the data nearQ is suitably regular, the nonsmoot
nature of the surface atQ is unimportant.! In the same spirit,
one might consider a ‘‘wedge’’ such as the boundary of
future of the segment of a line in the past ofP.

Let us now consider the second way of isolatingf(P),
using the LHS of Eq.~A3!. Sets50, and choose some piec
of ]V to be spacelike and run throughP. Then chooseG to
vanish everywhere on this surface. Further, choose it to h
a d function atP in its normal derivative; the integral the
picks up a contribution proportional tof(P). This choice
comprises boundary conditions forG, and the function they
determine, which we denoteGC , now vanishes outside th
~full ! light cone ofP and satisfies the homogeneous vers
of Eq. ~A2!. Choosing now the remainder of]V to close off

FIG. 5. Possible choices ofV for different Green functions. The
solid lines indicate the regionsS of ]V which contribute to the
integral. On the left, we have volumes suitable for the retarded
advanced Green functionsGR and GA , and on the right we have
volumes suitable for the commutator functionGC .
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to the future or to the past ofP, we again may determine
f(P) once data is given on a complete sliceS through one
of the light cones.GC may be called the commutator func
tion, because it turns out to be equal to2 i times the com-
mutator of a free quantum field~at least in a globally hyper-
bolic spacetime!. Note also thatGC5GA2GR : subtracting
the ~inhomogeneous! equations governingGR andGA leaves
a homogeneous equation for the difference. Then the dif
ence must vanish outside the light cone ofP, just as forGC .

In all cases,G depends on the pointP, and so may be
considered as a function of two variables,x andxP . Because
f satisfies Eq.~A1!, it turns out that theG also satisfies Eq.
~A1! with respect toxP , at least away fromxP5x.

2. Green functions for Minkowski and dS spacetimes

Let us now outline a procedure to obtain some Gre
functions for massive scalar fields in certain spacetimes,
ing a slightly unconventional but perhaps more intuiti
method not relying on the usual Fourier techniques ori e
prescriptions. We start with the commutator function for
massless field in~311!D Minkowski space,

GC
M05sgn~ t !d~ t22r 2!/2p, ~A4!

with coordinates such thatP is at the origin. That this solves
hf50 can be seen by expanding out thed function and
comparing to a general superposition of incoming and o
going spherically symmetric waves.~A nice discussion of
this function is found in@48#.! Note that this is only nonzero
on the light-cone itself, vanishing even inside the cone. T
is a special property of massless fields in even-dimensio
spacetimes~see@15# for more details!.

To obtain the solution for the massive field in Minkows
space, we start by considering

G1[ f ~ t22r 2!sgn~ t !Q~ t22r 2!.

The sgn andQ functions enforce the gross features of t
behavior that we require. Writingh using spherical polar
coordinates, we find

~h2m2!G15sgn~ t !Q~ t22r 2!~h2m2! f

24 f ~0!sgn~ t !d~ t22r 2!. ~A5!

Let us choosef (t2) ~where heret25t22r 2) such that
(h2m2) f 50 inside the light cones; a general solution
f (t2)5AJ1(mt)/t1BY1(mt)/t where J1 and Y1 are
Bessel functions as in Ref.@49#. The first term of Eq.~A5! is
then zero. For the second term, we notice that it is basic
the solution to the massless problem that we have alre
found. So let us simply add the massless solutionGC

M0 from

Eq. ~A4! to our ansatzG1. SincehGC
M050, we have left

2m2GC
M0 on the RHS. By choosingA52m/4p and B

50, we obtain a complete cancellation, leaving us with o
desired solution. Thus the full Green function is

GC
M5

sgn~ t !

2p S d~t2!2
mQ~t2!J1~mt!

2t D . ~A6!

d
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We may now consider generalizing Eq.~A6! to other
spacetimes such as dS. First, let us note that we tookf above
to be a function of the proper timet from the origin, within
the light cone. Thus the commutator function was invari
under Lorentz boosts. This suggests that in dS, for exam
we make our commutator inside the forward light-cone
variant under isometries which leaveP fixed. This is the
same as saying that it should be a function of the proper t
from the origin alone. One can define this quantity in ter
of an ‘‘angle’’ in the 5D embedding space@11# ~see footnote
to Sec. IV D 2!, but perhaps a more intuitive way to proce
is as follows. A patch of dS can be covered by coordinate
which the metric is the same as that for an open expand
FRW universe, with scale factorH21sinhHt. The proper
time along the geodesics representing comoving observe
just given by the coordinate timet. These geodesics all in
tersect at a point ast→0, which we choose to beP, and they
cover all of the interior of the FLC ofP. We therefore need
only find an appropriate spatially homogeneous solution
the massive wave equation in the coordinate patch of
open slicing of dS. The equation reads

1

sinh3Ht
] t~sinh3Ht] tf!1m2f50. ~A7!

To solve this@50#, write f5Hx/sinhHt and setz5coshHt
to obtain

~12z2!x ,zz22zx ,z1S 22
m2

H2 2
1

12z2D x50, ~A8!

which is Legendre’s equation@49# with n521/2
1A9/42m2/H2 and m521. The solution to this equation
which is regular asz→1 is Pn

m(z). In terms oft, this tends to
Ht/2 ast→0 independent ofm2, hencef tends toH/2.

We can now use this result to deduce the form of
commutator over all of dS space. Extend the meaning ot2

to be the signed geodesic distance squared betweenP and the
point in question. Note that we do not consider the point
be in the light cone of the antipode ofP, since no geodesic
exists which connects it toP. In this case we rather defin
GC to be zero~but see our discussion of the antipodal qua
tum commutator above.! Near P the space is locally
Minkowskian, so we can compare to our Minkowksi result
obtain

GC
dS5

sgn~ t !

2p Fd~t2!2
m2Q~H2t2!

2 sinhHt
Pn

21~coshHt!G .
~A9!

Here by t is meant some suitable generalization
Minkowski time, with sgn(t) thus serving to makeGC

dS be of
opposite sign in the future and past light cones, andt5
1At2. The sgn(t)d(t2) should be interpreted as the gene
alization of the equivalent term in the Minkowski result.
08351
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3. Domains of dependence

Given our Green functions, we would like to investiga
to what extent fixing the fields on a null-coneL of a pointQ
determines the field values within that cone. We are parti
larly interested in the importance of the field nearQ, as our
cosmological boundary surfaceJ 2 can be considered th
light cone withQ ‘‘at’’ past-timelike infinity.

Take, as a first example, the Green functionGR for a
massless field such as the scalar field in 4D Minkowski sp
with GR from Eq.~A4!. BecauseGR has support only on the
PLC of P, the field atP depends only on the intersection o
P’s PLC andL. This indicates two things. First, specifyin
data onL explicitly determines the field everywhere insideL
~i.e. everywhere in the future ofQ). Second, the field at any
point P inside L does not depend onf(Q); we might thus
considerQ to be irrelevant in terms of what occurs withinL.
This, however, hides a subtlety: whileGr andf on L always
allow the construction of a valid solution of the field equ
tions, there is no guarantee that the field so obtained is c
tinuous with the field specified onL unless some assump
tions of field regularity at the vertex (Q) are made: if we
wish to evaluatef on L to check that we have a genuin
solution to our boundary value problem, then we must eit
know f(Q), or assume that the field is regular asQ is ap-
proached alongL, so that we can extend the field toQ by
continuity.

For a massive field the strict ‘‘Huygen’s principle’’ doe
not hold; while much of the contribution to the integral
Eq. ~A3! comes from the PLC ofP whereGR is singular~see
@15# for some discussion of this ‘‘generalized Huygen’s pri
ciple’’ !, there is also a contribution from insideP’s PLC
becauseGR is everywhere nonzero there.

In the dS case,GR as given by Eq.~A9! falls off expo-
nentially ast→`; thus we may expect that whenL is taken
to beJ 2 , where the vertex lies ‘‘at’’t5`, the field values
insideJ 2 will not depend on the field at the vertex~where
by ‘‘at the vertex’’ we mean withinJ 2 in the limit t
→`). More explicitly, we may consider a boundary surfa
comprised ofJ 2 at t̃ . t̃ 0 for somet̃ 0, closed by the space
like surfacet̃ 5 t̃ 0, where t̃ and t̃ 0 are in the global closed
coordinates. Then the field integral~A3! consists of an inte-
gral alongJ 2 , and an integral over thet̃ 5 t̃ 0 hypersurface,
which has a finite physical volume of orderH23. But then as
t̃ 0→2`, t→`, so this second contribution will vanish un
less either the average of the field or itst̃ derivative blow up
faster thanGR

21 . Hence we expect that the field at any poi
in the space will dependonly on the values onJ 2 , and not
on the field behavior at past infinity, as long as the fields
assumed to be suitably finite and regular.

This argument might also be applicable to gravity; t
equations governing the Weyl conformal tensor can be c
at the linear level, as wave equations for a spin-2 field, a
boundary conditions can be specified on a null surface s
as J 2 @24#. We therefore expect that our boundary con
tions onJ 2 determine the Weyl tensor uniquely, and ther
fore determine the spacetime to be pure dS when bub
nucleations are neglected.
5-15
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