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Classical inflaton field induced creation of superheavy dark matter
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We calculate analytically and numerically the production of superheavy dark matter~scalar fieldX) when it
is coupled to the inflaton fieldf within the context of a slow-rollmf

2 f2/2 inflationary model with coupling
g2X2f2/2. We find thatX particles with a mass as large as 1000Hi , whereHi is the value of the Hubble
expansion rate at the end of inflation, can be produced in sufficient abundance to be cosmologically significant
today. This means that superheavy dark matter may have a mass of up to 1023MPl . We also derive a simple
formula that can be used to estimate particle production as a result of a quantum field’s interaction with a
general class of homogeneous classical fields. Finally, we note that the combined effect of the inflaton field and
the gravitational field on theX field causes the production to be a nonmonotonic function ofg2.
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I. INTRODUCTION

The rotation curves deduced from observing lumino
matter~see, for example,@1#! indicate dark matter~DM! ex-
ists around galaxies. Furthermore, a comparison of the p
liar velocities of many galaxies with the detailed maps
density contrast suggest@2# that V.0.3. However, these
cannot be all in the form of baryons according to the st
dard scenarios of big bang nucleosynthesis@3,4#. Structure
formation studies indicate that relativistic dark matter is u
likely to make up most of the DM@5#. This evidence sug-
gests the existence of a cosmologically significant abunda
of nonbaryonic dark matter, which we shall assume to be
the form of a popular or plausible dark matter model@such as
weakly interacting massive particles~WIMPs!#. Since super-
symmetric~SUSY! models~including string inspired ones!
generically predict new stable weakly interacting particl
the existence of WIMPs is even more likely.

Despite the fact that the nature of the DM is still u
known, it is usually thought that DM particles cannot be t
heavy. If the WIMP is a thermal relic, then it was once
local thermodynamic equilibrium~LTE! in the early uni-
verse, and its present abundance is determined by its
annihilation cross section. As argued by Griest and Kami
kowski @6#, the self-annihilation cross section has an up
bound of;1/MX

2 from considerations of unitarity, while th
temperature at which freezeout occurs increases as the
section is decreased. Hence, the assumption of LTE give
upper bound of about 500 TeV to the mass of the dark ma
The present abundance of non-thermal relics~those that
never attained LTE! is not determined by their self
annihilation cross section because their final abundanc
not simply determined by the usual freeze out scenario.
example of a non-thermal relic is the axion, and the pres
axion abundance is determined by the dynamics of the ph
transition associated with symmetry breaking. Non-therm
relics are typically very light, e.g., the axion mass is e
pected to be in the range 1025 to 1022 eV @7#.

*Electronic mail: djchung@feynman.physics.lsa.umich.edu
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However, nonthermal relics can have masses many or
of magnitude larger than the electroweak scale and can e
the unitarity bound of Ref.@6#. These nonthermal DM par
ticles have been called superheavy dark matter~SDM! in
Ref. @8#. ~The suggestion that such superheavy relics can
dark matter particles can be first found in@9#.! SDM sce-
narios have been discussed in conjunction with various p
duction mechanisms~see, for example,@10# and references
therein!, with the gravitational production mechanism bein
arguably the least fine tuned@8,11,12#. In this paper we will
explore the idea of@13#, which is to produce SDM by the
same mechanism that is at work in what has been ca
‘‘preheating’’ scenarios.

The main ingredient of the preheating scenarios, int
duced in the early 1990s, is the nonperturbative reson
transfer of energy to particles induced by the coherently
cillating inflaton fields. It was realized that this nonperturb
tive mechanism can be much more efficient than the us
perturbative mechanism for certain parameter ranges of
theory @14–17#. The basic picture can be seen as follow
Suppose we have a scalar fieldX with a couplingg2f2X2,
wheref is a homogeneous classical inflaton field. The mo
equation forX field then can be written in terms of a red
fined variablexk[Xka

3/2 as

ẍk~ t !1@A12q cos~2t !#xk~ t !50 ~1!

whereA depends on the energy of the particle andq depends
on the inflaton field oscillation amplitude. WhenA andq are
constants, this equation is usually referred to as the Math
equation which exhibits resonant mode instability for cert
values ofA and q. In an expanding universe,A and q will
vary in time, but if they vary slowly compared to the fre
quency of oscillations, the effects of resonance will rema
If the mode occupation number for theX particles is large,
the number density per mode of theX particles will be pro-
portional touxku2. If A andq have the appropriate values fo
resonance,xk will grow exponentially in time, and hence th
number density will attain an exponential enhancem
above the usual perturbative decay. This period of enhan
rate of energy transfer has been called preheating prima
©2003 The American Physical Society14-1
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because the particles that are produced during this pe
have yet to achieve thermal equilibrium.

This resonant amplification leads to an efficient transfe
energy from inflations to other particles which may ha
stronger coupling to other particles than the inflaton, ther
speeding up the reheating process and leading to a hi
reheating temperature than in the usual scenario. Ano
interesting feature is that particles of mass larger than
inflaton mass can be produced through this coherent reso
effect. Such a process is negligible in a conventional scen
of reheating@18#. This has been exploited to construct
baryogenesis scenario@13# in which the baryon number vio
lating bosons with masses larger than the inflaton mass
created through the resonance mechanism. A natural v
tion on this idea is to produce SDM by the same resona
mechanism@13#.

Interestingly enough, what we find in our work is that
the context of a slow-roll inflation with the potentialV(f)
5mf

2 f2/2 with the inflaton coupling ofg2f2X2/2, the reso-
nance phenomenon is mostly irrelevant to the production
SDM because too many particles are produced when
resonance is effective. For the tiny amount of energy con
sion needed for SDM production~tiny means;10217 of the
total energy!, the couplingg2 must be small enough~for a
fixed MX) such that the motion of the inflaton field only
the transition out of the inflationary phase generates
enough nonadiabaticity in the mode frequency to prod
SDM. The rest of the oscillations, damped by the expans
of the universe, will not contribute significantly to partic
production as in the resonant case. In other words, the qu
periodicity necessary for a true resonance phenomeno
hardly existent for the case when only an extremely t
fraction of the energy density is converted into SDM.
course, if the energy scales are lowered such that a fair f
tion of the energy density can be converted to DM witho
overclosing the universe, this argument may not apply. Ho
ever, in this paper, we will be mostly interested in produc
SDM with masses larger than the inflaton mass within
context of a large-field inflationary scenario, where this
gument will apply. For the study of cases in which the re
nance starts to become efficient, we refer the reader to R
@19,16,14,13# and references therein.

The main findings of this work are the following: We fin
that superheavy dark matter with a mass as large as 103Hi ,
whereHi is the value of the Hubble expansion rate at the e
of inflation, can be produced in sufficient abundance to
cosmologically significant today. Typically,Hi can be as
large as 1013 GeV, which means that the dark matter m
have masses of the order of the grand unified theory~GUT!
scale. In the process of finding this estimate, we deriv
simple formula~in the spirit of Ref.@20#!, Eq. ~41!, that can
be used to estimate particle production resulting from a g
eral class of interactions with a time varying homogene
classical field~including the gravitational field!. Finally, we
observe that couplingX to the inflaton field can actually
decrease the amount of SDM produced as a consequen
the inflaton field variation canceling some of the nonadia
ticity of the expansion rate responsible for the gravitatio
production of SDM.
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This paper is organized as follows. In Sec. II we w
specify the model and the inflationary scenario in which o
estimations are carried out. In Sec. III we derive a gene
formula to estimate particle production when a quantum fi
interacts weakly with a general class of homogeneous c
sical fields. We then compare our approximations to two
act solutions. Section IV follows where we apply the estim
tion to our model described in Sec. II. We then pres
numerical results for comparison and a better estimation
the maximum cosmologically interesting SDM mass in o
model. Finally, we conclude with a summary in Sec. V.

II. MODEL

Two conditions are necessary for the viability of the SD
scenario@8#: ~a! their interaction rate must be sufficientl
weak such that local thermodynamic equilibrium~LTE! was
never obtained and~b! the X particles must be cosmologi
cally stable. As we will see, because LTE necessitates
reaction rate to be larger than the Hubble expansion
while the reaction rate involves at least an inverse m
squared suppression coming from the cross section invol
large mass particles can naturally evade LTE.

Let us denoterX as the energy density of the SDM pa
ticles andnX(te) as the number density of the SDM at tim
te when inflation ends. As shown in@8#, today’s SDM den-
sity VX[rX(t0)/rC(t0) @where rC(t0)53H0

2MPl
2 /8p and

H05100 h km sec21 Mpc21] can be expressed as

VXh2'VRh2 S TRH

T0
D 8p

3 S MX

MPl
D nX~ te!

MPlHi
2

~2!

whereHi is the Hubble expansion rate at the end of inflatio
T0 is the temperature today,TRH is the reheating tempera
ture, andVRh2'4.3131025 is the fraction of critical energy
density that is in radiation today. Throughout this paper,
will give our results in terms ofVXh2/S, where we have
defined

S[@TRH/~109 GeV!#@Hi /~1026MPl!#
2. ~3!

For a typical reheating temperature of 109 GeV, Eq.~2! im-
plies that the SDM energy density today will beVXh2

;1017@rX(te)/r(te)#, wherer(te) is the total energy density
at the end of inflation. It is indeed a very small fraction of t
total energy density that needs to be extracted to saturate
upper bound on the cosmological mass density. Hence,
difficulty of our scenario lies in creating very few particles,
these are to be the SDM.

Now, consider the nonthermalization condition

nX^sAuvu&&H ~4!

which allows the evasion of the unitarity upper bound on
mass of DM. Using Eq.~2! with VXh2,1 and the fact that
for WIMPs, the averaged annihilation cross section^sAuvu&
is less thanMX

22 ~unitarity bound!, we can obtain the esti
mate
4-2
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nX^sAuvu&
Hi

,
7310219

~TRH/109 GeV!

~Hi /MPl!

~MX /MPl!
3

~5!

which is the quantity that must be less than one at the en
inflation to avoid thermalization. IfHi'1026MPl and

S MX

Hi
D S TRH

109 GeV
D 1/3

.1022, ~6!

there is no LTE, and the particles density will evolve trivial
as was assumed in Eq.~2!. Thus, because of theMX

22 generi-
cally coming from the cross section, SDM will generally fa
to achieve LTE irrespective of the exact value of the we
coupling constant. Note that this is a rather conservative
timate since the reheating temperature is likely to be lar
and the cross section is likely to be smaller. We also rem
that because the reheating temperature is usually m
smaller than theX mass in SDM scenarios, the thermal pr
duction of theX particles is usually negligible.1

For the X particles to serve as DM, they must have
lifetime that is longer than the age of the universe and
extremely massive. One possible source of SDM is the
cluded and the messenger sectors of the gauge med
SUSY breaking models, where SUSY can be broken a
large scale~giving rise to large masses!, while the secluded
and the messenger sectors can have accidental symm
analogous to the baryon number giving the particles stab
@21–24#. Other natural possibilities include theories with d
crete gauge symmetries@25# and string or M theory@26#.

To explore the dynamics which we believe is typical t
wards the end of inflation, we primarily focus on tw
coupled scalar fields in an expanding universe. The ac
can be written as

S5Sg1SM ~7!

where

Sg52E d4xA2g
MPl

2 R

16p
~8!

SM5E d4xA2gH 1

2
@gmnf ,mf ,n2mf

2 f2#

1
1

2
@gmnX,mX,n2~mX

21jR

1g2f2!X2#J . ~9!

We will take j51/6 corresponding to conformal coupling
gravity although our main results will be insensitive to th
assumption. Neglecting the small effects coming from
quantum fluctuations, we take the gravitational field and
inflaton field to be purely classical fields. Note that we a

1Since for times larger thante , the interaction rate continues to b
smaller thanH; the particles will not thermalize later either.
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neglecting other fields which the inflaton field needs
couple to in order to reheat the universe. We have num
cally verified that as long as the reheating or preheating
curs on a time scale that is greater than 5mf

21 , our main
conclusions are insensitive to this assumption since the
ticle production that is mainly of interest to us occurs duri
this time ~as we will later see, nonresonant, nonperturbat
production is of interest for superheavy dark matter prod
tion!.

We will consider a metric of the formds25dt2

2a2(t)dx2. The resulting equations of motion for the hom
geneous classical fields are

ȧ2

a2
2

4p

3
~ḟ21mf

2 f2!50 ~10!

f̈13
ȧ

a
ḟ1mf

2 f50 ~11!

where we have neglected the dark matter contribution to
energy density. This is a good approximation during the ti
period of dynamical interest.

Of course, we do not expect any of our results to
sensitive to the initial conditions, since our results depe
upon what happens towards the end of inflation and af
wards. Our results will mainly depend upon the function
form of the potential for the inflaton field. In this paper w
will not study this model dependence but will study what w
consider to be the typical dynamics of such systems. For
sake of completeness, we discuss in the Appendix the in
conditions that we use for our study.

Now let us consider theX sector. With the canonical con
jugate toX asa3Ẋ and canonically quantizing this action, th
Heisenberg equation of motion is

Ẍ13HẊ2
1

a2
¹2X1~MX

21g2f2!X50 ~12!

whereH5ȧ/a is the Hubble expansion rate. We introdu
the Fourier convention

X5E d3k

~2p!3/2a
@ake

ikW•xWhk~ t !1ak
†e2 ikW•xWhk* ~ t !# ~13!

where we have definedhk5Xka and defined the normaliza
tion for the annihilation operator as@akW1

,akW2

†
#5d (3)(kW1

2kW2). Imposing the canonical commutation condition, w
obtain the normalization condition

hkḣk* 2hk* ḣk5
i

a
. ~14!

The mode equation satisfied byhk is

ḧk1Hḣk1F2H22
ä

a
1S k

aD 2

1~MX
21g2f2!Ghk50.

~15!
4-3



th
ll

nl
,
e

ug
,
m
on
u

y

th
as

a
-
n
u

f

s-

he

be

ply
a-

ale

f
d in

the
ch

ds
the

n
ual

off

y

eally
n in
e
nd

ted
xes
int

dia-
rily

grals

nent

DANIEL J. H. CHUNG PHYSICAL REVIEW D67, 083514 ~2003!
In conformal coordinates defined byds25a2(h)(dh2

2dx2), this mode equation becomes

hk9~h!1vk
2hk50 ~16!

wherevk5Ak21@MX
21g2f2(h)#a2(h) and the prime de-

rivative is with respect to conformal time.
Now we need to fix the boundary conditions. Because

particle number can be constant only for time translationa
invariant systems, the no-particle state~the vacuum state!
existing towards the end of inflation can be specified o
approximately in an expanding universe~see, for example
@28# and@29#!. One method of systematically classifying th
various inequivalent approximate vacuum states is thro
the adiabatic vacuum@28# definition. As will be seen later
we will use effectively infinite adiabatic order vacuu
boundary conditions by considering the boundary conditi
placed arbitrarily in the far past and future for the nonsing
lar spacetime that we will consider.

If we denotehk
h1 as the mode solution with boundar

conditions defined at a future timeh1 andhk
h0 as the mode

solution with the boundary conditions defined at a time in
past h0, we can define the Bogoliubov transformation
hk

h1(h)5akhk
h0(h)1bkhk

* h0(h). The number density then
is given by

nX~ t !5E
0

` dk

2p2a3~ t !
k2ubku2. ~17!

III. STEEPEST DESCENT METHOD

This section presents a derivation of the analytic estim
tion @Eq. ~41!# that will be used in conjunction with the nu
merical work. A reader interested only in its applicatio
should skip to the next section. Its direct application to o
physical system of main interest~presented in Sec. II! will be
given in Sec. IV. The following analysis is in the spirit o
Ref. @20#.

With the definition

hk5
ak

A2vk

e2 i *vkdh1
bk

A2vk

ei *vkdh ~18!

the differential equation

hk91vk
2hk50 ~19!

is equivalent to

ak85
vk8

2vk
expS 2i E vkdh Dbk

~20!

bk85
vk8

2vk
expS 22i E vkdh Dak .

Becausevk8/(2vk) vanishes ath56` ~the adiabatic in-out
region assumption!, ak and bk become constants there, a
suming no singular behavior occurs there. Expandingak and
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bk in an adiabatic series~in powers of derivatives!, and using
the boundary conditionak(hp)51 andbk(hp)50 ~equiva-
lent to an infinite adiabatic order boundary condition in t
limit hp→2` for our restricted class of spacetime! we ob-
tain

bk'E dh
vk8

2vk
expS 22i Eh

vk~h8!dh8 D ~21!

to leading order. Note that this approximation should
good as long asbkvk8/(2vk)!1 even whenvk8/(2vk).1.
This is certainly true for the cases to which we wish to ap
this analysis. Our next objective is to obtain an approxim
tion for this integral. Let us write

vk5Ak21MX
2C~h! ~22!

where all theh dependence is contained inC(h) and the
radicand is positive definite for all realh. For example, in
our model,

C~h!5S 11
g2f2~h!

MX
2 D a2~h! ~23!

which can be thought of as the square of an ‘‘effective’’ sc
factor. We will also assume thatC(h) is C` for real h and
analytically continuevk to the complex plane. Because o
the square root in the exponent, the poles of the integran
Eq. ~21! will also be branch points in the complexh plane.2

We will choose the branch cuts such that they go from
branch points to infinity along a path such that the bran
points on the lower half plane have the cut going towar
2 i` and the branch points on the upper half plane have
cut going towardsi`. Furthermore, the cut will be take
along the curve where the exponential function has an eq
modulus. Transverse to the cut, the exponential will fall
rapidly.

The integral over the real axis can be replaced~using
Cauchy’s theorem! with the integral over an appropriatel
deformed contour in the lower or upper half plane~we will
soon see that our phase convention is such that we are r
concerned with the poles on the lower half plane as show
Fig. 1!. The main contribution from the integral over th
deformed contour will come from near the branch points a
possibly the end points. The branch points will be distribu
symmetrically with respect to reflection across the real a
because of the Schwartz reflection principle. The end po
contribution will be of the order ofvk8/vk . However, in our
restricted class of spacetimes which admits an infinite a
batic order vacua, we can make this contribution arbitra
small by taking the end points further out.~We comment
further on this effect later.! Hence in general, Eq.~21! can be
approximated as a coherent sum of steepest descent inte
around each of the branch points.

2We assume that the integral of the square root in the expo
will introduce no other branch points.
4-4
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Let us look at the contribution from thej th branch point
denoted ash̃ j . Near this branch point, the integral in th
exponent of Eq.~21! can be expanded as

E
hp

h
vk~h!dh5E

hp

h̃ j
vk~h!dh1

2MX

3
AC8~ h̃ j !d

3/21•••

~24!

whered[h2h̃ j and we kept the leading term in thed ex-
pansion ofC ~we will assume thatC8 does not vanish here!.
Expanding in a similar wayvk8/vk in Eq. ~21!, we can write
the contribution tobk from this branch point as

U j[v jexpS 22i E
hp

h̃ j
vk~h!dh D ~25!

where we definedv j as

v j[
1

4ECj

dd

d
expS 24i

3
MXAC8~ h̃ !d3/2D ~26!

andU j was introduced to rewritebk as

bk'(
j

U j . ~27!

Here the contourCj nearh̃ j is the steepest descent conto

FIG. 1. A schematic sketch of the analytic structure of Eq.~21!
on the complexh plane is shown. The crosses represent bra
points and the lines emanating from them represent branch
Shown also is a schematic sketch of the appropriately defor
contour for the steepest descent approximation on the lower
plane.
08351
.

Let us determine the steepest descent path nearh̃. If we
denoteu2[arg@C8(h̃)# and denoteu to be the argument o
d along the steepest descent contour, the restriction onu is

u5
p~4n21!2u2

3
~28!

wheren is an integer. Now, if we let the branch cut go alon
arg(d)5a such that arg(d)P@a,a12p) on the lower half
plane and arg(d)P(a22p,a# on the upper half plane, upo
choosingAC8(h).0 when h is real ~consistent with the
positive frequency mode definition!, we can place the restric
tion u2P@2a,2p2a) in the upper half plane andu2
P(22p2a,2a# in the lower half plane. As mentione
above, we choose the branch cuts to go towards6 i` by
restricting aP(0,p) on the upper half plane andaP
(2p,0) on the lower half plane. Finally, restricting th
branch cut to be on an equal modulus curve, we obtain
relationship

a5
2u262p

3
~29!

where the positive sign corresponds to the upper half pl
and the negative sign corresponds to the lower half plan

Combining Eqs.~28! and~29!, we find two possible inte-
gersn50,1 for the lower half plane, while we find only on
possible integern50 for the upper half plane. Since th
steepest descent approximation requires an incoming d
tion and an outgoing direction for each of our branch poin
we can only use the lower half plane branch points. To su
marize, the necessity of making branch cuts with the app
priate shape and the information regarding the derivative
C at the branch point determines the usable steepest de
paths, which are restricted to the lower half plane~lower and
not upper because of the sign convention on the square r!.
This, as we will see below, corresponds to an exponenti
damped result.

Let us return to the evaluation ofv j in Eq. ~26!. From Eq.
~28! and Eq.~29!, we see that the branch cut bisects the an
made by the steepest descent contour which makes a
~acute! angle of 2p/3 ~or 4p/3 in coordinate angle!, and
hence the steepest descent path is well defined independ
of u2. Hence, we can easily evaluate the integral after m

ing a change of variablesu5d3/2@24imAC8(h̃ j )/3#. The
result is

v j5
ip

3
. ~30!

Now we need to evaluate

E
hp

h̃ j
vk~h!dh ~31!

to complete our evaluation ofU j . Since we do not, in gen
eral, know the functionC(h) on the complex plane bu
know it and its derivatives on the real axis~numerically for
the model presented in Sec. II!, let us find an estimation

h
ts.
d
lf
4-5
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DANIEL J. H. CHUNG PHYSICAL REVIEW D67, 083514 ~2003!
utilizing that vk is analytic around the real axis. Leth̃ j5r
1m, wherer is purely real andm is purely imaginary. Now,
we split the integral into

E
hp

h̃ j
vk~h!dh5F j1Jj ~32!

where

F j5E
hp

r

vk~h!dh ~33!

Jj5E
r

h̃ j
vk~h!dh ~34!

and whereF j is purely real. To evaluateJj , we expand in
Taylor series,

Jj'vk~r !m1vk8~r !m2/21vk9~r !m3/61••• ~35!

where one should note that all the even terms are real.
cause we will mainly be interested in one pole dominat
case, we will only calculate the imaginary value ofJj . Thus,
as long as

uvk9/vku!u6/m2u ~36!

we can truncate theJj after the first term. We shall check th
self-consistency later.

To approximateh̃ j , we Taylor expand the left hand sid
of C52(k/MX)2 aboutr to obtain

m2

6
C-~r !1C8~r !50 ~37!

m2

2
C9~r !52

vk
2~r !

MX
2

~38!

whereC9(r ).0 sincem is purely imaginary. The truncation
of the Taylor expansion should be justified as long as

UC(5)~r !

C-~r !
U vk

2

10MX
2C9~r !

!1 ~39!

uC(4)~r !u

C9~r !2

vk
2

6MX
2
!1 ~40!

for Eqs. ~37! and ~38!, respectively, where the superscri
indicates the order of the derivative.3

Assuming that the contribution from one of the pol
dominates in Eq.~27!, we can approximateubku2'uU1u2.
Using Eq.~38! and choosing the solution on the lower ha
plane~as we have justified above!, we obtain

3Note that even if Eq.~39! is not satisfied, all the equations de
rived may still be valid as long asr can be estimated another wa
08351
e-
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ubku2'expS 24F @k/aeff~r !#2

MXAHeff
2 ~r !1Reff~r !/6

1
MX

AHeff
2 ~r !1Reff~r !/6

G D ~41!

where we have dropped the factor of (p/3)2, we have de-
fined the effective scale factor

aeff5AC, ~42!

andHeff(r ) andReff(r ) correspond to the Hubble expansio
rate and the Ricci scalar~respectively! for the metricds2

5aeff
2 (h)(dh22dx2). All time dependent quantities in Eq

~41! are evaluated ath5r given by Eq.~37!. Explicitly, the
radicand of the exponent in Eq.~41! is simply Heff

2 (r )
1Reff(r )/65C9(r )/@2C2(r )# since 6aeff9 /aeff

3 5Reff(r ) and
aeff8 /aeff

2 5Heff(r ). Rewriting the condition Eq.~36! in this
new notation as~in the k→0 limit!

6Heff
2 ~r !1Reff~r !@Reff~r !/6 ~43!

we see that this condition is almost always satisfied as l
as the Eq.~40! is satisfied.4

The exponentially suppressed behavior is not exact
arbitrarily large masses since the end point contribution w
eventually become larger. An asymptotic analysis of
problem in the Appendix of@8# gives the general power law
mass dependence of the end point contribution. As discus
there, this contribution can become particularly significa
whenC is not analytic. The present analysis, however, sho
that owing to the fact the end points lie far away from t
branch points~which have stationary phases!, in the case that
C is analytic, the contribution from the end points can
made arbitrarily small as long as the spacetime admits i
nite adiabatic order in-out regions.

Let us restate the main point of this somewhat techn
section. Given a homogeneous classical field coupling
gives rise to mode equations of the form Eq.~19! with vk
given by Eq.~22! and given an in-out infinite adiabatic orde
vacua, the Bogoliubov coefficient giving the particle dens
per mode is given by Eq.~41! and the number density i
given by5

nX~ t !'
aeff

3 ~r !

8p3/2a3~ t !
expS 24MX

AHeff
2 ~r !1Reff~r !/6

D
3FMX

4
AHeff

2 ~r !1Reff~r !/6G3/2

~44!

4Equation~40! must be satisfied since we are using Eq.~38! to get
the value ofm.

5Although r in general depends onk @for an explicit example, see
Eq. ~58!#, because most of the contribution to the number den
comes from (k/MX)2!1 where thek dependence can be neglecte
we shall neglectk when doing the momentum integral.
4-6
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where aeff(r ), Reff(r ), and Heff(r ) are the effective scale
factor, the Ricci scalar, and the Hubble expansion rate
fined by Eq.~42! and the statement following it. The ‘‘effec
tive’’ quantities are all evaluated at a value ofr satisfying
Eqs.~37! and ~38!. As will be discussed towards the end
the next section,r is roughly the point at whichC varies
nonadiabatically, or a bit more precisely, whereC9(r )/C2(r )
is a maximum. For couplings of the formQ(f)X2/2
1jRX2/2 whereQ is analytic andR is the Ricci scalar of the
spacetime, we can write

C~h!5a2~h!@11Q~f!/MX
21~j21/6!R/MX

2 # ~45!

in a spacetime with the metricds25a2(h)(dh22dx2).

IV. COMPARISON WITH EXACT RESULTS

Let us first apply Eq.~41! to a couple of exactly soluble
cases. Consider the case given by Ref.@30# when there is no
inflaton coupling to theX field and the spacetime is given b
ds25C(h)(dh22dx2) where

C~h!5c1
21c2

2h2 ~46!

wherec1 andc2 are real constants. The exact number den
per mode is

ubku25expS 2pF k2

MXc2
1

MXc1
2

c2
G D ~47!

which has been noted@30# as the spectrum of a nonrelativ
istic gas of particles with momentumk/AC having a chemi-
cal potential of 2MXc1

2/(2C) and a temperature o
c2 /(2pC).

In deriving Eq.~41!, we have made two separate appro
mations. One is the usage of the steepest descent metho
the other is the estimation of the integral Eq.~31!. To test the
goodness of each of these approximations, since we knoC
exactly here, we will first consider the steepest desc
method with the exact branch point. Let us start from E
~25! and~27!. One branch point is on the lower half plane

h5h̃[2 iAc1
21k2/MX

2

c2
2

~48!

and another, its complex conjugate, is on the upper
plane. The quantityv j has been already evaluated in gener
corresponding to a contour integral around the branch p
on the lower half plane, and is given by Eq.~30!. The inte-
gral Eq.~31! can be easily calculated withh̃ j5h̃ to give

E
hp

h̃ j
vk~h!dh5~2 ip/21real phase!. ~49!

Setting this in Eq.~25!, we have

ubku2'S p

3 D 2

expS 2pF k2

MXc2
1

MXc1
2

c2
G D ~50!
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whose exponent we see matches the exact result of Eq.~47!.
Now, let us apply Eq.~41!. Equation ~37! gives r 50.

Hence, we find

ubku2'expS 24F k2

MXc2
1

MXc1
2

c2
G D ~51!

which gives only an approximately correct exponent. Ho
ever, note that the functional form of the mass dependenc
the exponent is exact. Hence, although the steepest de
approximation seems to give accurate results for the ex
nent, as exemplified by Eq.~50!, the Taylor expansion
method used to estimate the integral Eq.~31! leads to a nu-
merical value of the exponent that is only roughly correct
seen in Eq.~51!. Still we see that the functional behavior o
the mass dependence is accurate.

Let us consider another exactly soluble case@31# ~see also
@29#! specified by

C~h!5A1B tanh~rh! ~52!

whereA, B, and r are positive constants withA.B. This
results in particle density per mode of

ubku25

sinh2H p

2r
@Ak21MX

2~A1B!2Ak21MX
2~A2B!#J

sinhFprAk21MX
2~A2B!GsinhFprAk21MX

2~A1B!G .

~53!

When the exponential cutoff starts to become effective
large masses, the behavior is

ubku2'expS 2
2pMX

r
AA2BD ~54!

where we have effectively setk50. Let us compare this with
the steepest descent approximation. In this example,
easier to find the branch point exactly. However, since we
interested in using the Taylor expansion estimation, let
solve Eqs.~37! and ~38! which are valid if the conditions
Eqs. ~39! and ~40! can be satisfied. These conditions a
respectively,

U4r2~2217t r
2130t r

4215t r
6!

~12t r
2!~123t r

2!
U!

220Br2~12t r
2!t r

~k/MX!21A1Btr
~55!

U4r2t r~225t r
213t r

4!

~12t r
2!t r

U!
212Br2~12t r

2!t r

~k/MX!21A1Btr
~56!

where we have definedt r[tanh(rr). Here, we know thatt r
,0 because

C9~r !522Br2~12t r
2!t r ~57!
4-7
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must be positive as we explained before. Hence, we o
need to considert rP(21,0# and find that our conditions
imply A'B. Solving Eqs.~37! and ~38! for t r , we find

t r5
2B2AB213@A1~k/MX!2#2

3@A1~k/MX!2#
~58!

which then implies

C9~r !

2C2~r !
5

4r2

9~A2B!
2

r2

2B
1O~A2B! ~59!

where we have expanded in powers ofA2B and setk50.
Therefore, in the large mass limit, again using Eq.~41!, we
have

ubku2'expS 2
6MX

r
AA2BD ~60!

which is in reasonable agreement with Eq.~54!. The lesson
that we have learned here is that as long as one account
the regime in which the approximations are valid, the para
eter dependence of the damping exponent is accurately
culated by our method.

Finally, we note that an intuitive meaning can be attach
to the value ofr. The quantityHeff

2 (h)1Reff(h)/6 has a
maximum at anh5h* , satisfying the equation

C8C91CC-53C8C9 ~61!

which6 is very similar to the equation determiningr

~k/MX!2C-1CC-53C8C9. ~62!

Since (k/MX)2C-;C8C9 @as can be seen by looking at Eq
~61! and ~41!# for important values ofk and sinceh* is a
stationary point, we expectr to be very close toh* . There-
fore, r in general will roughly correspond to the most ‘‘non
diabatic’’ point, i.e., the point at whichHeff

2 (h)1Reff(h)/6 is
a maximum.

For example, let us consider the model specified by
~52!. If one takes the branch point determining equation to
Eq. ~61!, then the resulting value of the number density p
mode is

ubku2'expS 2
4A2MX

r
AA2BD ~63!

which is in reasonable agreement with Eqs.~60! and ~54!.

V. ANALYTIC ESTIMATION

Let us first consider the work of Ref.@19# to see what part
of the parameter space we are interested in. Reference@19#
estimated the particle production in our type of system
neglecting any contribution from the decaying mode and

6Taking into account the validity condition for the Taylor expa
sion, it is easy to see thath* indeed corresponds to a maximum
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ing the Mathieu instability band plot to estimate the ‘‘ave
age’’ exponent of the mode growth.~Recall that in an ex-
panding universe, the mode equation is not exactly
Mathieu equation, since the parameters of what would be
Mathieu equation is time dependent in an expanding u
verse.! This method gives a good idea of when the parti
production will be efficient through the resonance pheno
enon.

Let us start with the number density per mode written

ubku25
Vk

2 S uxku21
1

Vk
2Uẋk2

ȧ

2a
xkU2D 21/2 ~64!

wherexk is the solution to the conformally coupled mod
equation~15! with xk5Aahk satisfying the 0th order adia
batic vacuum boundary condition in the past andVk

5A(k/a)21MX
21g2f2. Approximate the relevant solution

as

xk;

expS E mmfdt2 i E wkdtD
A2wk

~65!

where wk5AVk
21(1/4)H22(1/2)Ḣ and m is the Mathieu

characteristic exponent when the mode equation is writte
the form of Eq.~1! ~see below!. The form of the approxima-
tion is roughly equal to the lowest order adiabatic appro
mation and taking only the growing mode is justified by t
fact that the decaying solution will be small in compariso
Now, approximatingwk'Vk and assuming (mmf)2/(2Vk

2)
!1, we obtain the approximation

ubku2;
1

2 FexpS 2E mmfdtD21G ~66!

which is the starting point in@19#.7

The mode equation~15! with xk5Aahk , when written in
the form of the Mathieu equation Eq.~1!, gives

A'S k

amf
D 2

1S MX

mf
D 2

12q12/~3mft !2

~67!

q'
g2F~ t0!2

4mf
2 ~mft !2

where we have chosen the initial time to be att5t051/mf
and F(t0) represents the amplitude of the inflaton field o
cillations at the initial time when the inflaton field oscillatio
amplitude starts to decay like 1/t in a pressureless universe
Reference@19# then considers the trajectory of these para
eters as a function of time and estimates the exponent i
gral in Eq.~66!. They find that the efficient preheating ceas
at aroundMX5100mf for g,1. After that, the incoheren
decay process dominates the energy release of the infla

7They had used minimal coupling to gravity, but as we can
that is of little importance as far as the approximation Eq.~66! is
concerned.
4-8
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In our case, we are more interested in the regime in wh
the resonance phenomenon is extremely ineffective, or vi
ally non-existent, because only an extremely tiny density
very massive particles is allowed for the dark matter s
nario. Define the parameterb5MX /Hi whereHi is the value
of the Hubble parameter at the end of inflation. Consider
case whenb57 andg50, for whichVXh2/S50.128. When
the interaction is turned on to saygMPl /Hi545, we find that
there is a factor of 100 increase in the particle density p
duced toVXh2/S512. As illustrated in Fig. 2, we see tha
for this value ofgMPl /Hi , b, and values ofk that dominate
the integral for the mode sum, the Mathieu parameter tra
tories never cross any of the instability bands. Thus,
analysis of Ref.@19# is only partially applicable to our case
mostly because we are only requiring a very small fraction
the inflaton energy density to turn intoX particles. This
means that theX particle masses that can be produced
interesting quantities should be significantly greater th
100mf for coupling constants still less than 1. Furthermo
since significant dark matter production occurred without
trajectories ever crossing any of the instability bands, we
expect sufficient dark matter to be generated without
resonance effects.

Now let us apply the estimation of Eq.~41! to the system
presented in Sec. II. Let us consider the largest possible
turbative coupling of aroundgMPl /Hi5106 which is what
would give the largest possible mass for the dark ma
produced.8 We first look for the solutions to Eqs.~37! and
~38!. There are many solutions to these equations, as

8We are assuming here that something like SUSY is protecting
inflaton potential from large radiative corrections that can spoil
flation.

FIG. 2. Shown is the Mathieu instability chart. For the values
A andq that fall in the shaded region, the solution to the Mathi
equation is unstable. The line connecting the origin to the up
right corner of the plot isA52q. All A andq trajectories must lie
above this line by their definition in Eq.~67!. The three short line
segments near (q,A)5(0,11) represent three representative traj
tories, each having different values ofk ~for thosek values that
dominate the number density integral! for gMPl /Hi545 and b
57. Although none of the trajectories cross any of the instabi
bands, there is an enhancement by a factor 100 in the particle
sity production.
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expect. However, only one of these solutions will be relev
for the one pole domination approximation. To see wh
solution will be relevant, we plot in Fig. 3 the absolute val
of the exponent in Eq.~44!, which we will denote ast, as a
function of time values that are near the actual solution
Eqs. ~37! and ~38!. For definiteness, we will fixb at 1080
although the one pole domination approximation will be re
sonable for all other masses within the range of our inter
It is clear from these plots that the pole having a real p
corresponding tot'109 will dominate in the sum Eq.~27!,
thereby justifying the one pole approximation reflected
Eq. ~41!. In Fig. 3 we have also plotted the case
gMPl /Hi5103 and b530 to indicate the generic nature o
this one pole domination.

The solutions to Eq.~37! and Eq.~38! that are of interest
to us are not sensitive to the value ofb[MX /Hi as long
gMPl /Hi /b@1, which turns out to be within our range o
interest mainly becausef,MPl anduḟ/Hi u,MPl at the end
of inflation as can be seen by looking at the exponent of
~41!. For example, withk50, the value oft(r ) that will be
of interest to us is 108.90@in units of 1/(12.2Hi)] for both
b5900 andb51800. Only for values ofb as large as 104

~which will not be of much interest to us! does the value of
t(r ) deviate to 108.89. The dependence onk, which can be
seen directly in Eqs.~37! and ~38!, will also be negligible
because most of the SDM that is produced will be nonre
tivistic.

Hence, with t(r )5108.9 we use Eq.~41! to find that
VXh2/S51 at b'1450 and VXh2/S50.01 at b'1550.
Hence, takingHi'mf/2, the maximum possible mass o
SDM for which its abundance will be cosmologically signifi
cant is an order of magnitude above the maximum mass
can accommodate efficient preheating. In the next section
will give a bit better estimate by taking into account th
numerical calculation of the particle production.

e
-

f

r

-

n-

FIG. 3. Here we plot the number density suppressing expon
t[4b/@Heff

2 (t)1Reff(t)/6#1/2 as a function of t @in units of
;1/(12.2Hi)] near the values corresponding to the conformal tim
r which solves Eqs.~37! and ~38!. The solid curve corresponds t
the caseb51080 andgMPl /Hi5106. The dotted curve correspond
to b530 andg5103. The actual values ofr solving Eqs.~37! and
~38! with these parameters lie very close to the minimum of th
curves~there exists only one solutionr per curve shown!. Exact
numerical value examples are given in the text. Thet(r ) near 109
and near 126 give the smallest twot values for each parameter se
Clearly the pole having a real partr with t(r ) near 109 dominates
4-9
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DANIEL J. H. CHUNG PHYSICAL REVIEW D67, 083514 ~2003!
Now, let us check the validity of truncating the Taylo
expansion in approximating the location of the poles. T
quantities on the left hand side of Eq.~40! and Eq.~39! are
plotted in Fig. 4. From the figure it is clear that for th
gMPl /Hi5106 the approximation is well justified. Howeve
the right hand panel of the figure shows that the approxim
tion is only marginally adequate forgMPl /Hi5103.

VI. NUMERICAL ESTIMATION

Becauseubku2 required to haveVXh2/S;1 is extremely
small and one must in general compare oscillatory functi
to obtain it, it is difficult to calculate it numerically. Fo
VXh2/S;1, one requires an accurate calculation of

ub k̄u2;
1025

b3@ k̄/~aiHi !#
3

~68!

wherek̄/(aiHi), the average momentum component, is ty
cally around 0.3b. Hence, forb;106, even with appropriate
scaling, the calculation is numerically delicate. Furthermo
since many momentum components must be calculated
the integration of the spectrum to obtain the number den
an accurate calculation is time consuming, at least withi
straightforward framework of calculation. The results p
sented in this section come from a Runge-Kutta solution
system of equations including Eqs.~15!, ~10!, and ~11!, all
appropriately scaled both in the independent and the de
dent variables.

A sample of the numerical results are presented in Fig
and 6. Motivated by our experience with the comparis
with exactly soluble cases in Sec. IV, where we have s

FIG. 4. We plot as a function ofb[MX /Hi the quantities that
must be less than unity for the Taylor series truncation to be va
The solid curves correspond to the left hand side of Eq.~40!, and
the dotted curves correspond to the left hand side of Eq.~39!. The
lower of the given curve type corresponds tok/(aiHi)50. The
upper of the given curve type corresponds tok/(aiHi)51000 for
the gMPl /Hi5106 case andk/(aiHi)530 for the gMPl /Hi5103

case. Thesek values indicate the momentum range over which
particles are produced. The expansion truncation is clearly just
in the gMPl /Hi5106 case while it is marginally adequate in th
gMPl /Hi5103 case.
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that the Taylor expansion approximation used gets the ex
nent correct only up to a constant multiplicative factor clo
to 1, we introduce a correction factorf in the exponent of Eq.
~41! as

ubku2'expS 24 f F @k/aeff~r !#2

MXAHeff
2 ~r !1Reff~r !/6

1
MX

AHeff
2 ~r !1Reff~r !/6

G D ~69!

and integrate this with respect tok to get VXh2/S that is
plotted with the solid curve in Figs. 5 and 6. It is clear fro
the fact thatf is about 1 in both thegMPl /Hi5106 and
gMPl /Hi5103 cases that our analytic approximation is

.

e
d

FIG. 5. The solid curve in this plot ofVXh2/S versusb for
gMPl /Hi5106 shows the numerical results. The correction fac
~explained in the text! used for the dotted curve is 0.932 and for th
dashed curve is 0.903. Hence, unlessHi.1026MPl or TRH

.109 GeV, cosmologically significant dark matter production
this scenario does not occur for masses above about 1700Hi , which
can be in the GUT scale.

FIG. 6. The solid curve in this plot ofVXh2/S versusb for
gMPl /Hi5103 shows the numerical results. The correction fac
~explained in the text! used for the dotted curve is 0.98 and for th
dashed curve is 0.963, both of which are quite close to the va
used in Fig. 5. Hence, we see that our analytic approximation se
to be in agreement with the numerical results.
4-10
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reasonable one. Furthermore, as exemplified in Fig. 7, th
to any particular spectrum by adjusting onlyf gives nearly an
exact fit with f between 0.9 and 1.0. From Fig. 5,MX
;1700Hi;103mf is the maximum possible value of supe
heavy dark matter that can be produced in cosmologic
significant abundance in this inflationary scenario unlessHi
@1026MPl or Trh@109 GeV.

Before concluding, we would like to note a phenomen
that occurs when the nonadiabaticity of the mode freque
change caused by the inflaton coupling is comparable to
nonadiabaticity caused by the gravitational coupling. If
crudely approximate the exponent of Eq.~41! as

24F @k/aeff~r !#2

MXHeff~r !
1

MX

Heff~r !G ~70!

which is qualitatively reasonable in our scenario, then
can find, using crude estimates made in the Appendix@i.e.
Hi'mf/3, f'MPl /A12p, and ḟ'2MPlmf /(2A3p)],
thatVXh2/S vanishes atgMPl /Hi'4b. Of course, in reality
the nonadiabaticity is not perfectly canceled, and we exp
only a dip in the particle density asgMPl /Hi is increased
from 0. Indeed, this cancellation of nonadiabaticity has b
observed numerically as illustrated by Fig. 8. Hence, in g
eral, for small positiveg2 couplings to the inflaton field, the
particle production is not a monotonic function of the co
pling constant because of the presence of the classical g
tational field.

VII. SUMMARY

In this paper we have considered the production of sup
heavy particlesX that are coupled to a homogeneous clas
cal inflaton fieldf. We have found that within the context o
a reasonableV(f)5mf

2 f2/2 slow-roll inflationary scenario
with the couplingg2X2f2/2, the parametric resonance ph
nomenon tends to overproduce the number of dark ma
particles. Only when the resonance phenomenon comple

FIG. 7. For the parametersgMPl /Hi5106 and b51080, the
particle density per mode is plotted as a function of the wave ve
scaled by the scale factorai and the Hubble expansion rateHi at the
end of inflation. The solid curve corresponds to the brute fo
numerical results. The dashed curve corresponds to the spec
obtained using the analytic approximation Eq.~69! with f 50.932.
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shuts off is the number density small enough to be consis
with the constraintVXh2,1. For the superheavy particles t
be cosmologically significant today (VX;1), its mass can
be as large as about 1000Hi;1000mf as indicated by Fig. 5.
Taking into account the Cosmic Background Explor
~COBE! normalization of the curvature perturbation pow
spectrum, i.e. 2PR

1/2/5'1.9131025 at a scale ofk'7.5H0

~see, for example,@32#!, and using the approximation

2

5
PR

1/25
83/2Ap

A75MPl
3

V3/2

V8
~71!

where the inflaton potential is evaluated at the time of ho
zon exit~about 50 e-folds before the end of inflation!, we can
estimatemf;1013 GeV. This means that the mass of th
dark matter particles can be of the order of the GUT sca

In the process of making the superheavy dark matter m
range estimate, we have derived a simple general form
Eq. ~41!, giving an estimate of the particle production due
interactions with classical fields in the limit that there is on
one dominant nonadiabatic time period during which parti
production ‘‘occurs.’’ The time dependent quantities in E
~41! can be approximately evaluated at the point at wh
C9(r )/C2(r ) ~the primes refer to conformal time derivative!
is a maximum where, for example, for couplings of the fo
Q(f)X2/21jRX2/2, C is given by Eq.~45!. This result is
applicable to almost any case of time varying homogene
classical scalar field interacting with a quantum field as lo
as the number of particles produced is small.

Finally, we pointed out a phenomenon in which the nu
ber of X particles produced actually decreases as the c
pling to the inflaton fieldf increases~Fig. 8!. This is a
simple consequence of the fact that the nonadiabatic va
tion of the inflaton field is canceled out by the gravitation
effect of nonadiabatic change in the scale factor.

As far as the observability of SDM is concerned, the pro
pects seem no better than in the case of electroweak s
WIMPs, unless the WIMPs are strongly interacting
charged. Previously, charged@33,34# or strongly interacting
dark matter@35# has been ruled out with a combination

or

e
um

FIG. 8. The plot shows the nonmonotonic behavior of the p
ticle density produced with the variation of the coupling consta
The value ofb[MX /Hi is set to 1 here.
4-11



it
a

ni
t

R

ng
f
th

uc
din
ve
of

n

on
low

,

a

to

a

in
Su
eu
o

th
n-

ll

e.

ac
os
e

os

n-
f-
on
n

o
en

ly

TeV,
ela-

and
in

of
be

a-
ous
n,
for

m-
nk
ir
the

ary

e
ll,

cle
l
in

f

e

in-
m-

DANIEL J. H. CHUNG PHYSICAL REVIEW D67, 083514 ~2003!
arguments coming from the unitarity bound@6# and experi-
mental observations. Since the SDM evades the usual un
ity bound, charged or strongly interacting dark matter m
still be viable in this scenario.

If the SDM decays via an electromagnetic or a hadro
decay, its decay products may change the spectrum of
diffuse gamma ray background@36#. Hence, the diffuse
background photon measurements of Energetic Gamma
Experiment Telescope~EGRET! and COMPTEL give strong
constraints to such decaying particles for a fairly large ra
of lifetimes. Note that Refs.@11,37,38# also suggest that i
the SDM decays, its decay products may manifest in
form of ultrahigh energy cosmic rays.9 Note that in these
decay scenarios, the lifetime must be, in general, m
longer than the age of the universe. For example, accor
to Ref. @38#, if the cosmic ray energy spectrum abo
1011 GeV is produced by the decay of SDM, the lifetime
the SDM must be around 1012jX in units of the age of the
universe, wherejX is the fraction of the cold dark matter i
SDM.

In general, we do not expect the direct WIMP detecti
experiments to be sensitive to SDM because of their
abundance. The detection rate is similar toR
;r0sv/(MXmN), wherer0 is the matter density of the halo
s is the elastic scattering cross section,v is the virial speed,
and mN is the mass of the nucleon. Hence, unless the p
ticles are strongly interacting, in which cases;10 mb@40#,
the WIMP detectors will not have sufficient event rates
measure these particles.

The indirect method of dark matter detection~detecting
the energetic neutrinos produced by annihilation of dark m
ter captured through elastic collisions@41#! will also have
difficulty in the SDM scenario. The neutrino detection rate
general depends upon the SDM’s capture rate in the
through elastic collisions, its annihilation rate, and the n
trino cross section for the production of leptons in the rock
the detector. Since SDM mass will be much greater than
of the elastic scatterer, it will lose very little of its mome
tum per elastic collision~fractionally mN /MX wheremN is
the mass of the nucleon!. Hence, in addition to the sma
number density (0.4 GeV/cm3/MX) to begin with, the cap-
ture probability through elastic collisions will be negligibl
The annihilation rate will also be suppressed~unitarity bound
;1/MX

2) even if one assumes the maximal branching fr
tion to the neutrino producing channels. However, the cr
section for the production of leptons in the rock or the d
tector will be significantly enhanced. Still, because the cr
section will only grow likeAMX for MX much greater than
the mass ofW6 ~assuming that the neutrinos will have e
ergies that scale likeMX), the enhancement will not be su
ficient to overcome the suppressions. Indeed, even if
neglects the neutrino absorption rate in the Sun, if there is
significant accretion of SDM in the Sun, one can easily sh
that the detection rate will be much smaller than the curr
detector sensitivity@41# of 1022 m22 yr21.

Because the dark matter searches have focused main

9For related work on topological defects, see@39#.
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those particles with masses that are less than about 100
the observational consequences for SDM have been r
tively unexplored. Since as shown in Refs.@8,10# and in this
paper, production mechanisms exist for such particles,
since Refs.@22,25,26# have shown such particles exist
extensions to the standard model, a more careful study
observational consequences of SDM scenarios may
worthwhile.

Between the time of submission of the paper for public
tion and the time of publication, there have been numer
publications of particle production during and after inflatio
particularly for the production of fermions. Please see,
example, Refs.@42–53# and the references therein.
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APPENDIX

In this appendix we remind the reader of the bound
conditions for the classical fields@i.e. Eq.~10! and Eq.~11!#
which is solved numerically. As we mentioned earlier, w
will choose the initial conditions so as to set up a slow-ro
large-field inflationary epoch, at the end of which the parti
creation will occur. To gain intuition for the needed initia
conditions, consider the slow-roll scenario as presented
@27#. From the Friedmann equation,

H'A 8p

3MPl

AV~f!

MPl
~A1!

whereḟ2!V(f) has been assumed~slow-roll scenario! and
V(f) is the inflaton potential. Since in generalf̈!3Hḟ is
required for sufficient inflation to occur, we can write

3Hḟ'2V~f! ,f . ~A2!

Combining this with Eq.~A1! gives

a'a~ tp!expS 28p

MPl
2 E

f(tp)

f(t) V~f!

V,f~f!
df D ~A3!

wheretp (p stands for past! is the time at the beginning o
inflation. Hence, for potentials of the form constant3fn, the
number of e-folds of inflation is determined solely by th
initial and the final values off.

The end of the slow-roll scenario is obtained by determ
ing when the potential energy of the inflaton becomes co
parable to the kinetic energy. Equations~A1! and~A2! com-
bine to give@in addition to Eq.~A3!#

ḟ52
MPlV,f

A24pAV~f!
~A4!
4-12
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which when combined with the approximate condition f
the end of inflation@namely,ḟ2/2'V(f)], we have

V„f~ te!…

V,f„f~ te!…
'

MPl

A48p
~A5!

wherete is the time at the end of inflation.
Therefore, for potentials of the form constant3fn, fixing

the number of e-folds fixes the initial value. For theV(f)
5mf

2 f2/2 potential, we thus have
R

H

97
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s

08351
f~ te!'MPl /A12p ~A6!

and

f~ tp!'
MPl

A2p
ANe11/6 ~A7!

whereNe is the number of inflationary e-folds. For our typ
cal runs, we useNe'64. Then Eq.~A4! ~equivalent to as-
sumingf̈50) gives the initial condition forḟ.
-
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