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Classical inflaton field induced creation of superheavy dark matter
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We calculate analytically and numerically the production of superheavy dark rniedtgar fieldX) when it

is coupled to the inflaton fielgp within the context of a slow-rolmi(bzlz inflationary model with coupling
9°X2¢%/2. We find thatX particles with a mass as large as 1800 whereH; is the value of the Hubble
expansion rate at the end of inflation, can be produced in sufficient abundance to be cosmologically significant
today. This means that superheavy dark matter may have a mass of up*d 40 We also derive a simple
formula that can be used to estimate particle production as a result of a quantum field’s interaction with a
general class of homogeneous classical fields. Finally, we note that the combined effect of the inflaton field and
the gravitational field on th¥ field causes the production to be a nonmonotonic functiog®of
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[. INTRODUCTION However, nonthermal relics can have masses many orders
of magnitude larger than the electroweak scale and can evade
The rotation curves deduced from observing luminoughe unitarity bound of Refl6]. These nonthermal DM par-
matter(see, for exampld,1]) indicate dark matte(DM) ex-  ticles have been called superheavy dark mat8&PM) in
ists around galaxies. Furthermore, a comparison of the pecirRef. [8]. (The suggestion that such superheavy relics can be
liar velocities of many galaxies with the detailed maps ofdark matter particles can be first found [i9].) SDM sce-
density contrast sugge$®] that >0.3. However, these narios have been discussed in conjunction with various pro-
cannot be all in the form of baryons according to the standuction mechanismsésee, for example,10] and references
dard scenarios of big bang nucleosynthdg8igl. Structure therein, with the gravitational production mechanism being
formation studies indicate that relativistic dark matter is un-arguably the least fine tung8,11,13. In this paper we will
likely to make up most of the DM5]. This evidence sug- explore the idea of13], which is to produce SDM by the
gests the existence of a cosmologically significant abundancgame mechanism that is at work in what has been called
of nonbaryonic dark matter, which we shall assume to be irfpreheating” scenarios.
the form of a popular or plausible dark matter mojdich as The main ingredient of the preheating scenarios, intro-
weakly interacting massive particl@d/IMPs)]. Since super- duced in the early 1990s, is the nonperturbative resonant
symmetric(SUSY) models(including string inspired ongs transfer of energy to particles induced by the coherently os-
generically predict new stable weakly interacting particlescillating inflaton fields. It was realized that this nonperturba-
the existence of WIMPs is even more likely. tive mechanism can be much more efficient than the usual
Despite the fact that the nature of the DM is still un- perturbative mechanism for certain parameter ranges of the
known, it is usually thought that DM particles cannot be tootheory [14—-17. The basic picture can be seen as follows.
heavy. If the WIMP is a thermal relic, then it was once in Suppose we have a scalar fieddwith a couplingg?¢$?X?,
local thermodynamic equilibriun{LTE) in the early uni- whereg is a homogeneous classical inflaton field. The mode
verse, and its present abundance is determined by its sekquation forX field then can be written in terms of a rede-
annihilation cross section. As argued by Griest and Kamionfined variabley,=X,a%? as
kowski [6], the self-annihilation cross section has an upper
bound of~1/MZ% from considerations of unitarity, while the k(D) +[A+2q cog2t) ] x(t)=0 (1)
temperature at which freezeout occurs increases as the cross
section is decreased. Hence, the assumption of LTE gives amhereA depends on the energy of the particle andepends
upper bound of about 500 TeV to the mass of the dark matteon the inflaton field oscillation amplitude. Whénandq are
The present abundance of non-thermal relittsose that constants, this equation is usually referred to as the Mathieu
never attained LTE is not determined by their self- equation which exhibits resonant mode instability for certain
annihilation cross section because their final abundance imalues ofA andg. In an expanding universéy and q will
not simply determined by the usual freeze out scenario. Avary in time, but if they vary slowly compared to the fre-
example of a non-thermal relic is the axion, and the presenjuency of oscillations, the effects of resonance will remain.
axion abundance is determined by the dynamics of the phadéthe mode occupation number for theparticles is large,
transition associated with symmetry breaking. Non-thermathe number density per mode of teparticles will be pro-
relics are typically very light, e.g., the axion mass is ex-portional to|x,/2. If A andg have the appropriate values for
pected to be in the range 19to 10 2 eV [7]. resonancey, will grow exponentially in time, and hence the
number density will attain an exponential enhancement
above the usual perturbative decay. This period of enhanced
*Electronic mail: djchung@feynman.physics.lsa.umich.edu rate of energy transfer has been called preheating primarily
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because the particles that are produced during this period This paper is organized as follows. In Sec. Il we will
have yet to achieve thermal equilibrium. specify the model and the inflationary scenario in which our
This resonant amplification leads to an efficient transfer ofestimations are carried out. In Sec. lll we derive a general
energy from inflations to other particles which may haveformula to estimate particle production when a quantum field
stronger coupling to other particles than the inflaton, therebynteracts weakly with a general class of homogeneous clas-
speeding up the reheating process and leading to a highéical fields. We then compare our approximations to two ex-
reheating temperature than in the usual scenario. Anothéct solutions. Section IV follows where we apply the estima-
interesting feature is that particles of mass larger than th&ion to our model described in Sec. Il. We then present
inflaton mass can be produced through this coherent resonafgmerical results for comparison and a better estimation of
effect. Such a process is negligible in a conventional scenarithe maximum cosmologically interesting SDM mass in our
of reheating[18]. This has been exploited to construct a model. Finally, we conclude with a summary in Sec. V.
baryogenesis scenarft3] in which the baryon number vio-
lating bosons with masses larger than the inflaton mass are Il. MODEL
created through the resonance mechanism. A natural varia-
tion on this idea is to produce SDM by the same resonance Two conditions are necessary for the viability of the SDM
mechanisni13]. scenario[8]: (a) their interaction rate must be sufficiently
Interestingly enough, what we find in our work is that in Weak such that local thermodynamic equilibridbTE) was
the context of a slow-roll inflation with the potentis(¢) ~ never obtained andb) the X particles must be cosmologi-
:m(2b¢2/2 with the inflaton coupling o§2$2X?/2, the reso- cally .stable. As we will see, because LTE necessitates the
nance phenomenon is mostly irrelevant to the production oféaction rate to be larger than the Hubble expansion rate
SDM because too many particles are produced when thwhile the reactlon rate |r_1volves at least an inverse mass
resonance is effective. For the tiny amount of energy conversduared suppression coming from the cross section involved,
sion needed for SDM productidtiny means~10~17 of the large mass particles can naturally evadg LTE.
total energy, the couplingg? must be small enougtfor a L€t us denotepy as the energy density of the SDM par-
fixed M) such that the motion of the inflaton field only at ficles andnx(te) as the number density of the SDM at time
the transition out of the inflationary phase generates juste When inflation ends. As shown {i8], toda;z/’s SDM den-
enough nonadiabaticity in the mode frequency to producéity Qx=px(to)/pc(to) [Where pc(to) =3HiMp/8m and
SDM. The rest of the oscillations, damped by the expansiofio=2100h km sec* Mpc™] can be expressed as
of the universe, will not contribute significantly to particle
production as in the resonant case. In other words, the quasi- 5 » [ Tru| 87 My
periodicity necessary for a true resonance phenomenon is Qxh*~QOgh T 3\ Ma
hardly existent for the case when only an extremely tiny 0 P
fraction of the energy density is converted into SDM. Of

course, if the energy scales are lowered such that a fair frac=" " . .
o is the temperature today,zy is the reheating tempera-

tion of the energy density can be converted to DM without 2 s . .
overclosing the universe, this argument may not apply. How%jure' .andi])Rh. 74'31d>.< 1.0 |s(;he f_rra;]cnon r?f cnt;}qal energy
ever, in this paper, we will be mostly interested in producing?€nSIty that is in radiation today. Throughout this paper, we

SDM with masses larger than the inflaton mass within thé"””_g've our results in terms of)xh?/S, where we have
context of a large-field inflationary scenario, where this ar-d€fined
gument will apply. For the study of cases in which the reso-
nance starts to become efficient, we refer the reader to Refs.
[19,16,14,13 and references therein. ] ) )
The main findings of this work are the following: We find FOr a typical reheating temperature of’18eV, Eq.(2) im-
that superheavy dark matter with a mass as large 34,10 Plies that the SDM energy density today will H@xh?
whereH, is the value of the Hubble expansion rate at the end™ 10" Tpx(te)/p(te)], wherep(te) is the total energy density
of inflation, can be produced in sufficient abundance to bet the end of inflation. It is indeed a very small fraction of the
cosmologically significant today. Typicallyd; can be as total energy density that needs to be extracted to saturate the
large as 18 GeV, which means that the dark matter mayUpper bound on the cosmological mass density. Hence, the
have masses of the order of the grand unified théayT)  difficulty of our scenario lies in creating very few particles, if
scale. In the process of finding this estimate, we derive dhese are to be the SDM.

nX(te)
MpH?

2

vhereH; is the Hubble expansion rate at the end of inflation,

S=[Trn/(10° GeV)][H, /(10" °Mp)]?. ()

simple formula(in the spirit of Ref.[20]), Eq. (41), that can Now, consider the nonthermalization condition
be used to estimate particle production resulting from a gen-
eral class of interactions with a time varying homogeneous nx{oalv[)=H 4

classical field(including the gravitational field Finally, we

observe that coupling( to the inflaton field can actually which allows the evasion of the unitarity upper bound on the
decrease the amount of SDM produced as a consequence fss of DM. Using Eq(2) with Qxh?<1 and the fact that
the inflaton field variation canceling some of the nonadiabafor WIMPs, the averaged annihilation cross sectfon|v|)
ticity of the expansion rate responsible for the gravitationalis less tharMy ? (unitarity bound, we can obtain the esti-
production of SDM. mate
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Ny(oalv]) 7% 10" 19 (H,/Mp) neglectmg. other fields which the .|nflaton field needs to
w 3 (5)  couple to in order to reheat the universe. We have numeri-
i (Tri/10° GeV) (My/Mp) cally verified that as long as the reheating or preheating oc-

§urs on a time scale that is greater thamlﬁ, our main
conclusions are insensitive to this assumption since the par-
ticle production that is mainly of interest to us occurs during

which is the quantity that must be less than one at the end
inflation to avoid thermalization. IH;~10 ®Mp, and

M T 13 this time (as we will later see, nonresonant, nonperturbative
<_X) R S102 (6)  production is of interest for superheavy dark matter produc-
Hi /\10° GeVv tion).

_ _ o . We will consider a metric of the formds’=dt?
there is no LTE, apd the particles density will e\glve trlv!ally —a?(t)dx2. The resulting equations of motion for the homo-
as was asfsumed in EQ®). Thus, bgcause of tr_fdx generi-  geneous classical fields are
cally coming from the cross section, SDM will generally fail
to achieve LTE irrespective of the exact value of the weak a2 4

a .
coupling constant. Note that this is a rather conservative es- = ?(¢2+ m§5¢2)=0 (10
timate since the reheating temperature is likely to be larger a
and the cross section is likely to be smaller. We also remark )
that because the reheating temperature is usually much L, 2.,
smaller than theX mass in SDM scenarios, the thermal pro- ¢+3a¢+m¢¢_0 (1)

duction of theX particles is usually negligible.

For the X particles to serve as DM, they must have awhere we have neglected the dark matter contribution to the
lifetime that is longer than the age of the universe and bé&nergy density. This is a good approximation during the time
extremely massive. One possible source of SDM is the sePeriod of dynamical interest.
cluded and the messenger sectors of the gauge mediated Of course, we do not expect any of our results to be
SUSY breaking models, where SUSY can be broken at &ensitive to the initial conditions, since our results depend
large scalg(giving rise to large massgswhile the secluded Uupon what happens towards the end of inflation and after-
and the messenger sectors can have accidental symmetriggrds. Our results will mainly depend upon the functional
analogous to the baryon number giving the particles stabilitform of the potential for the inflaton field. In this paper we
[21—24. Other natural possibilities include theories with dis- Will not study this model dependence but will study what we
crete gauge symmetri¢&5] and string or M theory26]. consider to be the typical dynamics of such systems. For the

To exp|0re the dynamics which we believe is typica| to- sake of Completeness, we discuss in the Appendix the initial
wards the end of inflation, we primarily focus on two conditions that we use for our study.
coupled scalar fields in an expanding universe. The action Now let us consider th¥ sector. With the canonical con-
can be written as jugate toX asa®X and canonically quantizing this action, the

Heisenberg equation of motion is

. .1
where X+3HX— = V2X+(M%+g?¢*)X=0 (12)
a
Sy= _j d*xV—g 167 ®  whereH=a/a is the Hubble expansion rate. We introduce

the Fourier convention

1
Sy=| d* —{‘ B ueh,— MG ’
' f x=9| 31046~ My”] X= J T a0+l (0] (13

1
v _ 2
+ E[gM X,uXp= (My+¢R where we have defineld,= X,a and defined the normaliza-

tion for the annihilation operator agagl,agz]zﬁw)(lzl

2 12\y?2 - . . . L.
+9°¢7)X ]]- (9  —k,). Imposing the canonical commutation condition, we
obtain the normalization condition

We will take £€=1/6 corresponding to conformal coupling to ,
gravity although our main results will be insensitive to this hoh* — h*h _! (14)

) . : KNk =Nk ==
assumption. Neglecting the small effects coming from the a
quantum fluctuations, we take the gravitational field and the . o .
inflaton field to be purely classical fields. Note that we areThe mode equation satisfied by is

2

. : a
he+Hh+ —H2—5+

N _ N . | +(MX+%¢?) [h=0.
Since for times larger thaty, the interaction rate continues to be a
smaller tharH; the particles will not thermalize later either. (15
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In conformal coordinates defined byls?>=a?(7)(d»? By in an adiabatic serigén powers of derivatives and using

—dx?), this mode equation becomes the boundary conditiom(7,) =1 andB(7,) =0 (equiva-
, ) lent to an infinite adiabatic order boundary condition in the
hi(7) + wihy=0 (1) limit 7,— —c for our restricted class of spacetiinae ob-

. tain
where = k?>+[M+g2¢?(n)]a’(y) and the prime de-
rivative is with respect to conformal time. oy, .
Now we need to fix the boundary conditions. Because the Bka' dr;z—exp< —2if w(n')dn'
particle number can be constant only for time translationally “k

invariant systems, the no-particle stdthe vacuum staje to leading order. Note that this approximation should be

existing towards the end of inflation can be specified only ) _ ,
approximately in an expanding univerggee, for example, good as long agym/(2w)<1 even whenw, /(2w >1.

[28] and[29]). One method of systematically classifying the This is cert_ainly true for th? cases to which we wish to apply
various inequivalent approximate vacuum states is througH"Is analy§|§. Our next objectlye is to obtain an approxima-
the adiabatic vacuurf28] definition. As will be seen later, tion for this integral. Let us write

we will use effectively infinite adiabatic order vacuum 5 >

boundary conditions by considering the boundary conditions o= Vk“+M5C(7) (22)
placed arbitrarily in the far past and future for the nonsingu-

(21

lar spacetime that we will consider. where all then dependence is contained @(#7) and the
7 : . radicand is positive definite for all rea}. For example, in
If we denoteh,* as the mode solution with boundary our model. p 3 P

conditions defined at a future ting; and hl’ZO as the mode

solution with the boundary conditions defined at a time in the 9242(7)

past 5, we can define the Bogoliubov transformation as C(np)=| 1+ —2) a’(n) (23
h{ (%)= axh°(n) + B¢hy (7). The number density then M

is given by

which can be thought of as the square of an “effective” scale
" d factor. We will also assume th&t(#) is C* for real » and
nx(t):J T|<2|3k|2_ (17)  analytically continuew, to the complex plane. Because of
27 a(t) the square root in the exponent, the poles of the integrand in
Eq. (21) will also be branch points in the complexplane?
Ill. STEEPEST DESCENT METHOD We will choose the branch cuts such that they go from the
i i o . . branch points to infinity along a path such that the branch
This section presents a derivation of the analytic estimapoints on the lower half plane have the cut going towards
tion [Eq. (41)] that will be used in conjunction with the nu- _;. and the branch points on the upper half plane have the
merical work. A reader interested only in its application - going towardsi. Furthermore, the cut will be taken
should skip to the next section. Its direct application to OUralong the curve where the exponential function has an equal

physical system of main interegiresented in Sec.)lwillbe  qyjus. Transverse to the cut, the exponential will fall off
given in Sec. IV. The following analysis is in the spirit of rapidly.

Ref. [20]' _ The integral over the real axis can be repladeding
With the definition Cauchy’s theoreiwith the integral over an appropriately
deformed contour in the lower or upper half plafwes will

he= Xk e odn g B el foxdn (18) soon see that our phase convention is such that we are really
Vo V2w, concerned with the poles on the lower half plane as shown in
Fig. ). The main contribution from the integral over the
the differential equation deformed contour will come from near the branch points and
P possibly the end points. The branch points will be distributed
hi+ wih=0 (19 symmetrically with respect to reflection across the real axes

because of the Schwartz reflection principle. The end point
contribution will be of the order oby,/w, . However, in our
ol restricted class of spacetimes which admits an infinite adia-
a,= _exr<2if w,d 77),8k batic order vacua, we can make this contribution arbitrarily
2wy small by taking the end points further ouVe comment
, (200 further on this effect laterHence in general, Eq21) can be
Br= zw—u:(exp< —2i f wdy

approximated as a coherent sum of steepest descent integrals
Becausaw,/(2w,) vanishes aty= = (the adiabatic in-out

around each of the branch points.
region assumption «, and 8, become constants there, as- ?we assume that the integral of the square root in the exponent
suming no singular behavior occurs there. Expandipgnd  will introduce no other branch points.

is equivalent to

Ay .
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FIG. 1. A schematic sketch of the analytic structure of &4)
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Let us determine the steepest descent path peaf we

denoted,=ard C’(7)] and denotel to be the argument of
6 along the steepest descent contour, the restrictiol sn

o= 7T(4n_1)_62

3 (28)

wheren is an integer. Now, if we let the branch cut go along
arg(6) = a such that argf) e[ @,a+27) on the lower half
plane and argf) e («— 2, «] on the upper half plane, upon
choosing JC’(7)>0 when 7 is real (consistent with the
positive frequency mode definitignwe can place the restric-
tion 6,e[—a,2r—a) in the upper half plane and,
e(—27—a,—«a] in the lower half plane. As mentioned
above, we choose the branch cuts to go towatds by
restricting @« e (0,7) on the upper half plane ande
(=m,0) on the lower half plane. Finally, restricting the
branch cut to be on an equal modulus curve, we obtain the
relationship

- azi 2
QZT (29)

where the positive sign corresponds to the upper half plane
and the negative sign corresponds to the lower half plane.
Combining Egs(28) and (29), we find two possible inte-

on the complexn plane is shown. The crosses represent branctgersn=_0,1 for the lower half plane, while we find only one
points and the lines emanating from them represent branch cutpossible integem=0 for the upper half plane. Since the
Shown also is a schematic sketch of the appropriately deformedteepest descent approximation requires an incoming direc-
contour for the steepest descent approximation on the lower hation and an outgoing direction for each of our branch points,

plane.

Let us look at the contribution from thigh branch point

denoted as?yj. Near this branch point, the integral in the
exponent of Eq(21) can be expanded as

7 7 2M X ~
|7 ontman= [ Mantman+ ZENC G 7
7 7,
p p (24)
where 6= 77—771 and we kept the leading term in thieex-
pansion ofC (we will assume tha€’ does not vanish here

Expanding in a similar waw,/w, in Eq.(21), we can write
the contribution tgB, from this branch point as

ujzvjexp< —2i f’“wk(n)dn) (25)
p
where we defined; as
11 dé —4i =
WEZ(;Eem{?rMXVC%méw) (26)

]

andU; was introduced to rewrit@, as

m~$up 27)

Here the contouC; near77j is the steepest descent contour.

we can only use the lower half plane branch points. To sum-
marize, the necessity of making branch cuts with the appro-
priate shape and the information regarding the derivative of
C at the branch point determines the usable steepest descent
paths, which are restricted to the lower half plalwsver and
not upper because of the sign convention on the squarg root
This, as we will see below, corresponds to an exponentially
damped result.

Let us return to the evaluation of in Eq. (26). From Eq.
(28) and Eq.(29), we see that the branch cut bisects the angle
made by the steepest descent contour which makes a fixed
(acute angle of 27/3 (or 47/3 in coordinate ang)e and
hence the steepest descent path is well defined independently
of 6,. Hence, we can easily evaluate the integral after mak-
ing a change of variables=6%% —4im+/C’(7;)/3]. The
result is

Uj = ? . (30)
Now we need to evaluate
fmwdnwn (31

p

to complete our evaluation df;. Since we do not, in gen-
eral, know the functionC(#) on the complex plane but
know it and its derivatives on the real axisumerically for

the model presented in Sec),llet us find an estimation
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utilizing that w, is analytic around the real axis. L?q'al;:r
+ w, wherer is purely real ang is purely imaginary. Now,
we split the integral into

J’”wk(n)dn:@juj (32
p
where
r
2= [ oy @3
p
3= fr’”wk< mdy (34)

and whered; is purely real. To evaluatg;, we expand in
Taylor series,

Jj= o () p+ og(r) p?l2+ og(r) e+ (39

PHYSICAL REVIEW D67, 083514 (2003

|,3k|2’wvexﬁ< —4
M

! VHZ(r) + Rer(1)/6

[k/aeu(r)]?
My VHZ4(r) + Reg(1)/6

(41)

where we have dropped the factor af/@)?, we have de-
fined the effective scale factor

aef‘f: \/6!

andHgx(r) andRg¢(r) correspond to the Hubble expansion
rate and the Ricci scaldrespectively for the metricds?
=aZy(7)(d7?—dx?). All time dependent quantities in Eq.
(41) are evaluated ay=r given by Eq.(37). Explicitly, the
radicand of the exponent in Ed41) is simply HZ(r)

+ Reg(r)/6=C"(r)/[2C3(r)] since &gﬁ/agﬁ=Reﬂ(r) and
aéﬁ/af_,ﬁ=Heﬁ(r). Rewriting the condition Eq(36) in this
new notation agin the k—0 limit)

(42)

where one should note that all the even terms are real. Be-

cause we will mainly be interested in one pole domination

case, we will only calculate the imaginary valueJof Thus,
as long as

| wil ] <|6/u?| (36)

we can truncate théj after the first term. We shall check the
self-consistency later.

To approximate77,- , we Taylor expand the left hand side
of C=—(k/My)? aboutr to obtain

2

%C”’(r)+C’(r)=0 37)
2 2 r)
Lcrn=- wk(i (39)

whereC”(r)>0 sinceu is purely imaginary. The truncation
of the Taylor expansion should be justified as long as

cO®)r Wi
( )‘ ‘ k 1 (39)
C"(r) | 10MZC" (1)
cHO(n)| wf
[CH(N)] i < 40)

C"(r)?> 6M%

for Egs. (37) and (38), respectively, where the superscript

indicates the order of the derivative.

Assuming that the contribution from one of the poles

dominates in Eq(27), we can approximatés,|?~|U,|2.

6HZH(r) + Rer(1)> Ren(1)/6 (43)
we see that this condition is almost always satisfied as long
as the Eq(40) is satisfied

The exponentially suppressed behavior is not exact for
arbitrarily large masses since the end point contribution will
eventually become larger. An asymptotic analysis of the
problem in the Appendix off8] gives the general power law
mass dependence of the end point contribution. As discussed
there, this contribution can become particularly significant
whenC is not analytic. The present analysis, however, shows
that owing to the fact the end points lie far away from the
branch pointgwhich have stationary phagem the case that
C is analytic, the contribution from the end points can be
made arbitrarily small as long as the spacetime admits infi-
nite adiabatic order in-out regions.

Let us restate the main point of this somewhat technical
section. Given a homogeneous classical field coupling that
gives rise to mode equations of the form E#9) with wy
given by Eq.(22) and given an in-out infinite adiabatic order
vacua, the Bogoliubov coefficient giving the particle density
per mode is given by Eqgi4l) and the number density is

given by
X%

M
4 VHZ(1) + Re(1)/6

ad(r) o
8773/28.3(t)

Nx(t)~ M )

VHZ(r) + Rer(1)16

3/2

X (44

Using Eq.(38) and choosing the solution on the lower half “Equation(40) must be satisfied since we are using B§) to get

plane(as we have justified aboyewe obtain

3Note that even if Eq(39) is not satisfied, all the equations de-
rived may still be valid as long ascan be estimated another way.

the value ofu.

SAlthoughr in general depends dn[for an explicit example, see
Eq. (58)], because most of the contribution to the number density
comes from k/My)?<1 where thek dependence can be neglected,
we shall negleck when doing the momentum integral.
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where a.(r), Re(r), and Heg(r) are the effective scale whose exponent we see matches the exact result ofd&Zy.
factor, the Ricci scalar, and the Hubble expansion rate de- Now, let us apply Eq(41). Equation(37) givesr=0.
fined by Eq.(42) and the statement following it. The “effec- Hence, we find

tive” quantities are all evaluated at a value okatisfying

Egs.(37) and(38). As will be discussed towards the end of

the next sectionr is roughly the point at whictC varies |ﬁk|2“eXP( -4
nonadiabatically, or a bit more precisely, wh&¥(r)/C2(r)
is a maximum. For couplings of the forn®(¢)X?/2
+ éRX?/2 whereQ is analytic ancR is the Ricci scalar of the
spacetime, we can write

k2 Myc?

Mxc, Cz

) (51)

which gives only an approximately correct exponent. How-
ever, note that the functional form of the mass dependence of
the exponent is exact. Hence, although the steepest descent
approximation seems to give accurate results for the expo-
nent, as exemplified by Eq50), the Taylor expansion
method used to estimate the integral E2{l) leads to a nu-
merical value of the exponent that is only roughly correct as
seen in Eq(51). Still we see that the functional behavior of
IV. COMPARISON WITH EXACT RESULTS the mass dependence is accurate.

Let us first apply Eq(41) to a couple of exactly soluble Let us qqn3|der another exactly soluble cg&H (see also

cases. Consider the case given by R86] when there is no  [29) specified by

inflaton coupling to theX field and the spacetime is given by
ds?=C(#)(d7?—dx?) where C(n)=A+Btanhpn) (52)

C(n)=a%(n)[1+Q($)/Mi+ (£~ LIORIML]  (45)

in a spacetime with the metrigs?>=a?( ) (d»*—dx?).

C(n)=c2+ciqy? (46) whereA, B, andp are positive constants with>B. This
results in particle density per mode of
wherec, andc, are real constants. The exact number density
per mode is

sinhz[zl[\/kznt MZ(A+B)— Jk2+ MZ(A— B)]]

|Bl?= .
) (47) sinr{%\/k% MZ(A—B) sim{%\/kz—k MZ(A+B)

which has been notef80] as the spectrum of a nonrelativ- (53
istic gas of particles with momentuki \/C having a chemi-
cal potential of — MXCE/(ZC) and a temperature of
c,/(27C).

In deriving Eq.(41), we have made two separate approxi- 27My
mations. One is the usage of the steepest descent method and |Bk|2%exp< - A— B) (54
the other is the estimation of the integral E81). To test the P
goodness of each of these approximations, since we Khow . L
exactly here, we will first consider the steepest descen here we have effectively skt=0. Let us compare this with

method with the exact branch point. Let us start from Eqst e steepest descent approximation. In this example, it is

(25) and(27). One branch point is on the lower half plane at easier to find the branch point exactly. However, since we are

interested in using the Taylor expansion estimation, let us

k2 Myc?
J’_
Mxc, C2

|ﬁk|2=exl{ -7

When the exponential cutoff starts to become effective for
large masses, the behavior is

2 12 M2 solve EQs.(37) and (38) which are valid if the conditions
77:7754 » /Cl 2 (48) Egs. (39 and (40) can be satisfied. These conditions are,
c respectively,

and another, its complex conjugate, is on the upper half  |4,2(2—17%+30t*~ 15%)| —20Bp2(1—1t2)t,
plane. The quantity; has been already evaluated in general, > > < 5
corresponding to a contour integral around the branch point (1-t)(1-3t7) (k/Mx)“+A+Bt,

on the lower half plane, and is given by E0). The inte- (55)

gral Eq.(31) can be easily calculated with;=" to give

4pt,(2—5t%+ 3t} s 12Bp?(1—td)t,

7 2
f”'wk( n)dn=(—im/2+real phasg (49) (1=t (KIMx)?+A+Bt;
T (56)
Setting this in Eq(25), we have where we have definegj=tanhfr). Here, we know that,
<0 because
2 w 2 k2 chi 0
Bd*= 3| &xm 7ot (50 C'(r)=—2Bp(1—t2}t, (57)
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must be positive as we explained before. Hence, we onlyng the Mathieu instability band plot to estimate the “aver-

need to considet, e (—1,0] and find that our conditions
imply A~B. Solving Egs.(37) and(38) for t,, we find

—_R— 2 272
(- B— VB?+3[A+(kIMy)?] 59
3[A+ (kIMy)?]

which then implies

C"(r)_ 4p2 p2
2C%4r) 9(A-B) 2B

+O(A—B) (59

where we have expanded in powersfof B and setk=0.
Therefore, in the large mass limit, again using EL), we
have

|ﬂk|2~exp( - Bhﬁx (60)

which is in reasonable agreement with E§4). The lesson

S

that we have learned here is that as long as one accounts for
the regime in which the approximations are valid, the param-

age” exponent of the mode growtkRecall that in an ex-
panding universe, the mode equation is not exactly the
Mathieu equation, since the parameters of what would be the
Mathieu equation is time dependent in an expanding uni-
verse) This method gives a good idea of when the particle
production will be efficient through the resonance phenom-
enon.

Let us start with the number density per mode written as

O

1
2:_
| Byl >

. a
IXl*+ 5 [ Xk— 55 Xk
Qk

2
) —1/2 (64

where y, is the solution to the conformally coupled mode
equation(15) with .= ah, satisfying the Oth order adia-
batic vacuum boundary condition in the past aflj
=\(k/la)®+ M+ g?4>. Approximate the relevant solution

as
ex%j,um(ﬁdt—ifwkdt)

Y, 2Wk

Xk~ (65)

eter dependence of the damping exponent is accurately cal-

culated by our method.

Finally, we note that an intuitive meaning can be attache

to the value ofr. The quantityHZ(7)+Rer(7)/6 has a
maximum at anp= 7, , satisfying the equation

c'c’'+cc”=3c’'c” (61)
which® is very similar to the equation determinimg
(k/My)?C"+CC"=3C'C". (62)

Since k/My)2C"”~C’'C" [as can be seen by looking at Egs.

(61) and(41)] for important values ok and sincey, is a
stationary point, we expectto be very close top, . There-

fore,r in general will roughly correspond to the most “nona-

diabatic” point, i.e., the point at whichl gﬁ( 1)+ Rex(7)/6 is
a maximum.

For example, let us consider the model specified by Eq. A~
(52). If one takes the branch point determining equation to be
Eq. (61), then the resulting value of the number density per

mode is

|ﬂk|2~exp( - MMXM)

p

(63
which is in reasonable agreement with EG@)) and (54).

V. ANALYTIC ESTIMATION

Let us first consider the work of R€f19] to see what part
of the parameter space we are interested in. Refergitije

here w,= Q2+ (1/4)H?— (1/2)H and u is the Mathieu

haracteristic exponent when the mode equation is written in
the form of Eq.(1) (see below The form of the approxima-
tion is roughly equal to the lowest order adiabatic approxi-
mation and taking only the growing mode is justified by the
fact that the decaying solution will be small in comparison.
Now, approximatingw,~ (), and assuming;(m(ﬁ)zl(ZQﬁ)
<1, we obtain the approximation

o o

which is the starting point ifi19].”

The mode equatiofil5) with y,= \ah,, when written in
the form of the Mathieu equation E¢L), gives
k 2 2

- 2
am, + +2q+2/(3m,t)

(66)

1
2
| Bul >

Mx

_ g% (tg)? (©7

- 4mi(myt)?

where we have chosen the initial time to betatt,=1/m,,

and ®(ty) represents the amplitude of the inflaton field os-
cillations at the initial time when the inflaton field oscillation
amplitude starts to decay liketlih a pressureless universe.
Referencd 19] then considers the trajectory of these param-
eters as a function of time and estimates the exponent inte-
gral in Eq.(66). They find that the efficient preheating ceases
at aroundM x=100m,, for g<<1. After that, the incoherent

estimated the particle production in our type of system bydecay process dominates the energy release of the inflaton.
neglecting any contribution from the decaying mode and us-

"They had used minimal coupling to gravity, but as we can see

6Taking into account the validity condition for the Taylor expan- that is of little importance as far as the approximation Ef) is

sion, it is easy to see thaf, indeed corresponds to a maximum.

concerned.
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q FIG. 3. Here we plot the number density suppressing exponent

T=4bI[H2((t) + Re(t)/6]*2 as a function oft [in units of

FIG. 2. Shown is the Mathieu |nStab|l|ty chart. For the values 0f~1/(122—||)] near the values Corresponding to the conformal time
A andq that fall in the shaded region, the solution to the Mathieuy which solves Eqs(37) and (38). The solid curve corresponds to
equation is unstable. The line connecting the origin to the Uppethe casé=1080 andyMp/H;=10P. The dotted curve corresponds
right corner of the plot isA=2q. All A andq trajectories must lie  to h=30 andg=10®. The actual values af solving Eqs.(37) and
above this line by their definition in Eq67). The three short line  (3g) with these parameters lie very close to the minimum of these
segments nearg(A) = (0,11) represent three representative trajec-cyryves there exists only one solution per curve shown Exact
tories, each having different values kf(for thosek values that  numerical value examples are given in the text. T(® near 109
dominate the number density integrdbr gMp/H;=45 andb  and near 126 give the smallest twovalues for each parameter set.
=7. Although none of the trajectories cross any of the instabilityClearly the pole having a real partwith t(r) near 109 dominates.
bands, there is an enhancement by a factor 100 in the particle den-
sity production. expect. However, only one of these solutions will be relevant

In our case, we are more interested in the regime in whicfi?" the one pole domination approximation. To see which

the resonance phenomenon is extremely ineffective, or virtuSClution will be relevant, we plotin Fig. 3 the absolute value
ally non-existent, because only an extremely tiny density off the exponent in Eq44), which we will denote as;, as a

very massive particles is allowed for the dark matter Sce1‘unct|on of time values that are near the actual solution to

nario. Define the parametbr= M /H; whereH; is the value Egs. (37) and (38). For definiteness, we will fixb at 1080

of the Hubble parameter at the end of inflation. Consider thé/though the one pole domination approximation will be rea-
case whetb=7 andg=0, for whichQ2xh?S=0.128. When so_nable for all other masses within the range_of our interest.
the interaction is turned on to sgp,/H, =45, we find that It is clear from these plof[s that.the p_ole having a real part
there is a factor of 100 increase in the particle density proSOresponding ta~109 will dominate in the sum Eq27),
duced toQxh?%S=12. As illustrated in Fig. 2, we see that thereby Justlfylng the one pole approximation reflected in
for this value ofgMp,/H;, b, and values ok that dominate Eq. (41). In Fig. 3 we ha.ve. also plotted the case of
the integral for the mode sum, the Mathieu parameter trajeogMP'/Hi: 10° and_b=_30 to indicate the generic nature of
tories never cross any of the instability bands. Thus, théhIS one pole domination. .
analysis of Ref[19] is only partially applicable to our case, The solutions to .E_q(37) and Eq.(38) that are of interest
mostly because we are only requiring a very small fraction of® US &ré not sensitive to the value o=My/H; as long
the inflaton energy density to turn ints particles. This 9Mei/Hi/b>1, which turns out to be within our range of
means that theX particle masses that can be produced ininterest mainly becaus¢<Mp and| ¢/H;|<Mp, at the end
interesting quantities should be significantly greater tharPf inflation as can be seen by looking at the exponent of Eq.
100m,, for coupling constants still less than 1. Furthermore,(41). For example, wittk=0, the value oft(r) that will be
since significant dark matter production occurred without theof interest to us is 108.90in units of 1/(12.24;)] for both
trajectories ever crossing any of the instability bands, we cal =900 andb=1800. Only for values ob as large as 10
expect sufficient dark matter to be generated without anywhich will not be of much interest to usloes the value of
resonance effects. t(r) deviate to 108.89. The dependencekpnvhich can be
Now let us apply the estimation of EG41) to the system seen directly in Eqs(37) and (38), will also be negligible
presented in Sec. Il. Let us consider the largest possible pebecause most of the SDM that is produced will be nonrela-
turbative coupling of aroungMp,/H;=10° which is what tivistic.
would give the largest possible mass for the dark matter Hence, witht(r)=108.9 we use Eq(41) to find that
produced® We first look for the solutions to Eq¢37) and  Qxh%S=1 at b~1450 andQyh?%S=0.01 at b~1550.
(38). There are many solutions to these equations, as wklence, takingH;~m,/2, the maximum possible mass of
SDM for which its abundance will be cosmologically signifi-
cant is an order of magnitude above the maximum mass that
8e are assuming here that something like SUSY is protecting théan accommodate efficient preheating. In the next section we
inflaton potential from large radiative corrections that can spoil in-will give a bit better estimate by taking into account the
flation. numerical calculation of the particle production.

083514-9



DANIEL J. H. CHUNG PHYSICAL REVIEW D67, 083514 (2003
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10-5 0.0 ot 0‘01800 900 1000 1100 1200 1300 1400 1500 1600 1700
900 1200 1500 : 25 30 b 35 40 M,/H,
] N FIG. 5. The solid curve in this plot of2xh#S versusb for
FIG. 4. We plot as a function di=My/H; the quantities that ¢\, /H,=10°F shows the numerical results. The correction factor
must be less than unity for the Taylor series truncation to be Va“d(explained in the textused for the dotted curve is 0.932 and for the
The solid curves correspond to the left hand side of @), and  gashed curve is 0.903. Hence unles>10"%Mp, or Try
the dotted curves correspond to the left hand side of(@9). The - 1¢® Gev, cosmologically significant dark matter production in

lower of the given curve type corresponds ki(aiH;)=0. The  this scenario does not occur for masses above about; 7ahich
upper of the given curve type correspondski¢a;H;)=1000 for  .an be in the GUT scale.

the gMp/H;=10° case andk/(a;H;)=30 for the gMp/H;=10°
case. Thes& values indicate the momentum range over which theyhat the Taylor expansion approximation used gets the expo-
particles are produced. The expansion truncation is clearly Justmegilent correct only up to a constant multiplicative factor close

in the gMp/H;=10° case while it is marginally adequate in the "1 "\va introduce a correction factbin the exponent of Eq.
gMp/H;=1C case. '

(41) as
Now, let us check the validity of truncating the Taylor [k/a 2
e N . 2 eff(1) ]
expansion in approximating the location of the poles. The |B/?~exg —4 >
quantities on the left hand side of E@O0) and Eq.(39) are MxVHZ¢(1) + Rex(1)/6
plotted in Fig. 4. From the figure it is clear that for the
gMp,/H;= 1P the approximation is well justified. However, n My 69)
the right hand panel of the figure shows that the approxima- \/Hgﬁ(r)+ Rer(r)/6

tion is only marginally adequate fayMp/H;=10>.
and integrate this with respect toto get Qyh?/S that is

VI. NUMERICAL ESTIMATION plotted with the solid curve in Figs. 5 and 6. It is clear from
the fact thatf is about 1 in both thegyMp/H;=1C° and

2 H 2 H . . . .
Becausd 8y/” required to have)xh®/S~1 is extremely g, /H,=1C° cases that our analytic approximation is a
small and one must in general compare oscillatory functions

to obtain it, it is difficult to calculate it numerically. For g M,/H=1000
1 — . T 1 — 1

Q4h?/S~1, one requires an accurate calculation of - TR
# 100
2. 10°° 68 ;i-:- 10‘:' N ':
B @ P ©9 3 1oob 3
wherek/(ajH;), the average momentum component, is typi- E 1025’ ""’~>.§ E
cally around 0.B. Hence, forb~ 10°, even with appropriate s 10 Q"’-%\ -
scaling, the calculation is numerically delicate. Furthermore,Z _E T 3
since many momentum components must be calculated 1‘05E 1%’ ay T
the integration of the spectrum to obtain the number densitys 0.1 Cal
an accurate calculation is time consuming, at least within ad o1 N
straightforward framework of calculation. The results pre- 25 30 M, /H 35 40
sented in this section come from a Runge-Kutta solution to a ¥
system of equations including EqeL5), (10), and(11), all FIG. 6. The solid curve in this plot 0f2xh?/S versusb for
appropriately scaled both in the independent and the depegwm,/H;=10° shows the numerical results. The correction factor
dent variables. (explained in the textused for the dotted curve is 0.98 and for the

A sample of the numerical results are presented in Figs. dashed curve is 0.963, both of which are quite close to the values
and 6. Motivated by our experience with the comparisorused in Fig. 5. Hence, we see that our analytic approximation seems
with exactly soluble cases in Sec. IV, where we have seem be in agreement with the numerical results.
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FIG. 7. For the parametergMp,/H=1° and b=1080, the FIG. 8. The plot shows the nonmonotonic behavior of the par-

particle density per mode s plotted as a function of the wave VeCtO[icle density produced with the variation of the coupling constant
scaled by the scale factar and the Hubble expansion ratg at the The value ofb=M, /H. is set to 1 here.

end of inflation. The solid curve corresponds to the brute force

numerical results. The dashed curve corresponds to the spectrum ) ) )
obtained using the analytic approximation E69) with f=0.932.  Shuts off is the number density small enough to be consistent

with the constrainf),h?< 1. For the superheavy particles to
reasonable one. Furthermore, as exemplified in Fig. 7, the fR€ cosmologically significant today~1), its mass can
to any particular spectrum by adjusting ofilgives nearly an  P€ as large as about 1380~1000m,, as indicated by Fig. 5.
exact fit with f between 0.9 and 1.0. From Fig. By Taking into account the Cosmic Background Explorer
~170(H;~10°m,, is the maximum possible value of super- (COBBE) normalization of the curvature perturbation power
heavy dark matter that can be produced in cosmologicallgPectrum, i.e. Bx7/5~1.91x10"° at a scale ok~7.5H,
significant abundance in this inflationary scenario untdss (see, for example[32]), and using the approximation
>10 ®Mp, or T;,>10° GeV.

Before concluding, we would like to note a phenomenon 2, 8%%r v
that occurs when the nonadiabaticity of the mode frequency 5 R =_\/7—5M3 7 (72)
PI

change caused by the inflaton coupling is comparable to the
nonadiabaticity caused by the gravitational coupling. If we

crudely approximate the exponent of E41) as where the inflaton potential is evaluated at the time of hori-

zon exit(about 50 e-folds before the end of inflatjpwe can

[Kag(]2 M estimatem,~ 10" GeV. This means that the mass of the
- ef X (70)  dark matter particles can be of the order of the GUT scale.
MxHer(r) — Hen(r) In the process of making the superheavy dark matter mass

o o ) ) range estimate, we have derived a simple general formula,
wh|ch is qughtaﬂvely rea;onable In our scenario, the;n W& q. (41), giving an estimate of the particle production due to
can find, using crude estimates made in the Appefid®  jneractions with classical fields in the limit that there is only
Hi~m,/3, ¢~Mp/\127, and ¢~—Mpm,/(2\/37)],  one dominant nonadiabatic time period during which particle
that Qxh?/S vanishes agMp/H;~4b. Of course, in reality production *occurs.” The time dependent quantities in Eq.
the nonadiabaticity is not perfectly canceled, and we expeqid1) can be approximately evaluated at the point at which
only a dip in the particle density agMp/H; is increased C”"(r)/C?(r) (the primes refer to conformal time derivatiyes
from 0. Indeed, this cancellation of nonadiabaticity has beefs a maximum where, for example, for couplings of the form
observed numerically as illustrated by Fig. 8. Hence, in genQ($)X?/2+ ¢RX?/2, C is given by Eq.(45). This result is
eral, for small positiveg? couplings to the inflaton field, the applicable to almost any case of time varying homogeneous
particle production is not a monotonic function of the cou-classical scalar field interacting with a quantum field as long
pling constant because of the presence of the classical gravas the number of particles produced is small.
tational field. Finally, we pointed out a phenomenon in which the num-

ber of X particles produced actually decreases as the cou-
VIl. SUMMARY pling to the inflaton field¢ increases(Fig. 8). This is a
simple consequence of the fact that the nonadiabatic varia-

In this paper we have considered the production of supetion of the inflaton field is canceled out by the gravitational
heavy particles< that are coupled to a homogeneous classieffect of nonadiabatic change in the scale factor.
cal inflaton field¢. We have found that within the context of  As far as the observability of SDM is concerned, the pros-
a reasonable/(cﬁ):mfbcpzlz slow-roll inflationary scenario pects seem no better than in the case of electroweak scale
with the couplingg®X2¢?/2, the parametric resonance phe- WIMPs, unless the WIMPs are strongly interacting or
nomenon tends to overproduce the number of dark mattesharged. Previously, charg¢d3,34 or strongly interacting
particles. Only when the resonance phenomenon completelyark matter{35] has been ruled out with a combination of

083514-11



DANIEL J. H. CHUNG PHYSICAL REVIEW D67, 083514 (2003

arguments coming from the unitarity boup@l] and experi- those particles with masses that are less than about 100 TeV,

mental observations. Since the SDM evades the usual unitathe observational consequences for SDM have been rela-

ity bound, charged or strongly interacting dark matter maytively unexplored. Since as shown in Rdf8,10] and in this

still be viable in this scenario. paper, production mechanisms exist for such particles, and
If the SDM decays via an electromagnetic or a hadronicsince Refs[22,25,26 have shown such particles exist in

decay, its decay products may change the spectrum of thextensions to the standard model, a more careful study of

diffuse gamma ray backgrounfB6]. Hence, the diffuse observational consequences of SDM scenarios may be

background photon measurements of Energetic Gamma Rayorthwhile.

Experiment TelescopEGRET) and COMPTEL give strong Between the time of submission of the paper for publica-

constraints to such decaying particles for a fairly large rangé¢ion and the time of publication, there have been numerous

of lifetimes. Note that Refd11,37,3§ also suggest that if publications of particle production during and after inflation,

the SDM decays, its decay products may manifest in thearticularly for the production of fermions. Please see, for

form of ultrahigh energy cosmic raysNote that in these example, Refs[42—53 and the references therein.

decay scenarios, the lifetime must be, in general, much

longer than the age of the universe. For example, according ACKNOWLEDGMENTS

to Ref. [38], if the cosmic ray energy spectrum above

10" GeV is produced by the decay of SDM, the lifetime of | thank Rocky Kolb for suggesting the problem and com-

the SDM must be around 1%, in units of the age of the Menting insightfully regarding the manuscript. | also thank

universe, wherg, is the fraction of the cold dark matter in Michael Turner, Simon Swordy, and Emil Martinec for their

SDM. comments on this work. This research was supported by the
In general, we do not expect the direct WIMP detectionDOE and NASA under Grant NAG5-7092.

experiments to be sensitive to SDM because of their low

abundance. The detection rate is similar t& APPENDIX

~poovl/(Mymy), wherepg is the matter density of the halo, . . .

o is the elastic scattering cross sections the virial speed, In.t_h|s appendix we rem!nd .the reader of the boundary
and my is the mass of the nucleon. Hence, unless the par(-mr.]d't'c.mS for the cIass[caI fieldse. Eq.(10)_ and Eq.(l;)]
ticles are strongly interacting, in which case-10 mb[40], which is solved numerically. As we mentioned earlier, we

the WIMP detectors will not have sufficient event rates to}':r” gz%olg?n:!lzig'r']ﬁl cgor:)c(i:lﬁogftﬁg er](;%fsath:“::ﬁ’] ?hzlovz\;'[i?:lllé
measure these particles. 9 y epoch, p

The indrec method of dak mater cetctcetecing S0 il occu To gen on for e needed il
the energetic neutrinos produced by annihilation of dark matz ' P

ter captured through elastic collisiof41]) will also have [27]. From the Friedmann equation,

difficulty in the SDM scenario. The neutrino detection rate in TS
general depends upon the SDM’s capture rate in the Sun H~/ 8 WV(¢) (A1)
through elastic collisions, its annihilation rate, and the neu- 3Mp; Mp

trino cross section for the production of leptons in the rock or )

the detector. Since SDM mass will be much greater than thavhere$?<V(¢) has been assuméslow-roll scenarip and
of the elastic scatterer, it will lose very little of its momen- V(¢) is the inflaton potential. Since in generak<3H ¢ is
tum per elastic collisior(fractionally my/My wheremy is  required for sufficient inflation to occur, we can write
the mass of the nuclepnHence, in addition to the small

number density (0.4 GeV/cttMy) to begin with, the cap- 3H ¢% —V() 4. (A2)
ture probability through elastic collisions will be negligible.

The annihilation rate will also be suppresdaditarity bound  Combining this with Eq(A1) gives
~1/M%) even if one assumes the maximal branching frac-

tion to the neutrino producing channels. However, the cross —8m (4() V(o)
section for the production of leptons in the rock or the de- a= a(tp)exp( M2 f V ()
tector will be significantly enhanced. Still, because the cross pI /)T e
section will only grow like My for My much greater than
the mass ofW= (assuming that the neutrinos will have en-

ergies that scale likM,), the enhancement will not be SUf' number of e-folds of inflation is determined solely by the
ficient to overcome the suppressions. Indeed, even if ONg itial and the final values ob

n_egl_e.cts the neutrino absorppon rate in the Sun, if thgre ISNO " The end of the slow-roll scenario is obtained by determin-
significant accretion of SDM in the Sun, one can easily shomk
n

d ¢> (A3)

wheret, (p stands for pagtis the time at the beginning of
inflation. Hence, for potentials of the form constant", the

. : hen th tential f the inflaton b -
that the detection rate will be much smaller than the curre nsr;’;;l; rt10 tr?eplgneer;i::aerfgggyE(()quat?o(I;ﬂz)i 2rr:d (itgnggrsnf:om
detector sensitivitf41] of 1072 m 2yr 1. _ bine to give[in addition to EqQ.(A3)]

Because the dark matter searches have focused mainly on

- MpV 4
. _ p=——— (Ad)
For related work on topological defects, 488)]. V24m\ V(@)

083514-12



CLASSICAL INFLATON FIELD INDUCED CREATION . . . PHYSICAL REVIEW D67, 083514 (2003

which when combined with the approximate condition for d(te)~Mp /127 (A6)
the end of inflatiorlnamely, $2/2~V/( )], we have q
an
V(g(te))  Mpy
V(6(t) " Vagn (A9 M N 176
¢ e 48 (Z)(tp)% E Ne+ 1/6 (A?)

wheret, is the time at the end of inflation.

Therefore, for potentials of the form constanp”, fixing
the number of e-folds fixes the initial value. For thi¢¢)
=mj$?/2 potential, we thus have

whereN, is the number of inflationary e-folds. For our typi-
cal runs, we usdN,~64. Then Eq.(A4) (equivalent to as-

suming $=0) gives the initial condition for(;&.
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