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We show that a suitable interaction between a scalar field and a matter fluid in a spatially homogeneous and
isotropic spacetime can drive the transition from a matter dominated era to an accelerated expansion phase and
simultaneously solve the coincidence problem of our present Universe. For this purpose we study the evolution
of the energy density ratio of these two components. We demonstrate that a stationary attractor solution is
compatible with an accelerated expansion of the Universe. We extend this study to account for dissipation
effects due to interactions in the dark matter fluid. Finally, type la supernovae and primordial nucleosynthesis
data are used to constrain the parameters of the model.
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[. INTRODUCTION obtained as the result of a dynamical evolution. In the
present paper we clarify this point and establish an exactly
Nowadays there is a wide consensus among observationablvable model for a smooth transition from a matter domi-
cosmologists that our Universe is accelerating itsnated phase to a subsequent period of accelerated expansion.
expansion—for a pedagogical short update [ddesee also  This model implies the evolution of the density ratio towards
[2—8]—which implies that the Einstein—de Sitter scenarioa finite, stable, asymptotic value. Thus it may represent a
has to be abandoned, at least to describe the present era. Tdwution to the coincidence problem.
nature of the dark energy behind this acceleration is un- As shown in another previous paper, a very suitable in-
known. Two main proposals, namely the cold dark matteigredient of quintessence models is a dissipative, negative,
(CDM) models with a cosmological constank CDM) and  scalar pressure of the matter component. Such a quantity
quintessencéQCDM) have been advanced. The former as-may simultaneously help to drive acceleration and solve the
sumes a cosmological constant arising from the energy deRsincidence problenil2]. A negative pressure arises natu-
sity of the zero point fluctuations of the quantum vacuumy,y from bulk viscous dissipation, quantum particle produc-
and cold dark matter in the form of pressureless dust. Whilgjo o self-interaction in the matter compondag]. Here
it fits rather well all the observational constraing it has we combine the advantages of quintessence models interact-

serious difficulties with the low observed value of this ing with matter(QIM) with those relying on a dissipative
vacuum energythat by all accounts should be many orders -
pressure within the latter.

of magnitude highgrand fails to address the so-called “co- The aim of this paper is to show that on this basis a

incidence problem,” namely, why the energy density of both luti £ th incid bl . lerati .
components happens to be of the same order today? TiR@lution of the coincidence problem in an accelerating uni-

second group of models assume an evolving scalar field po¥€rSe can be realized in a comparatively simple manner
sessing a negative pressure and cold dark matter. It also fit§thin the framework of general relativity. _
well the observational constraints, and seems rather natural The paper is organized as follows. Section Il introduces
but it is not clear whether it really solves the coincidencethe basic equations of the model. Section Ill explores the
problem(for a recent review sefgt]). dynamics of the energy density ratio, including the stability
Most of the QCDM models assume that the dark matteproperties of the stationary solutions. Furthermore, it derives
and the scalar field components evolve independently. Howthe corresponding scalar field potential. Section IV investi-
ever, given that the physical nature of the quintessence fieldates the role of a dissipative pressure within the dark matter
is still unknown and also that the dark matter may well be acomponent and discusses the behavior of the deceleration
substratum not as simple as a pressureless perfect fluid, thgparameter. In Sec. V the available magnitude-redshift data of
seem to be na priori reasons to exclude a coupling betweensupernovae type 1&SNe 13 are used in combination with
both components. Interacting quintessence models have beprimordial nucleosynthesis data to restrict the parameters of
shown to provide qualitatively new features which may bethe model. Section VI presents our conclusions and final
relevant to the coincidence problgh0,11]. In particular, it comments. Lastly, the Appendix discusses briefly the con-
has been demonstrated that a suitable coupling may give riseections of the matter-quintessence coupling with cosmo-
to a stable constant ratio of the energy densities of both comegical inhomogeneities, the issue of possible anomalous ac-
ponents which is compatible with an accelerated expansioneleration of baryonic matter and some consequences of this
of the Universg 11]. On the other hand, this model could not interaction on the early universe. Units have been chosen so
answer the question of how such a stationary solution can bimatc=87G=1.
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II. INTERACTING COSMOLOGY 2H
N ( — 4+ =
Let us assume a Friedmann-LemeiRobertson-Walker Q34 3H2+7¢ 2,=0, (D

(FLRW) spacetime with matter and a minimally coupled sca-
lar field. The Friedmann equation and the overall conservagespectively, where we have introduced the effective baryo-

K 1l 1l
3H2+3—=p,+ k=1,0-1), 1 (&) el ©@_. _
a2 Pmt Py ( ) (1) Ym = Ymt o Yo Yo Py (12)
and From Egs.(10) and (11) it follows that the energy density
. - ratior=p,/ps=Qn/Q, obeys the equation
pmt Pt 3H(Ympmt Y4p ) =0 ©) Pmipy==Emlity ODEY q
respectively, where have assumed the equations of ggate r=—3Hr[y{— 1. (13

=(¥Ym=1)pm, Py=(7v4—1)py With 1<y, <2 and Osy, _ _ _
<2. We also introduce an overall effective baryotropic index!t describes the dynamics of the parametém terms of the
by equations of state and the mutual interaction of the compo-

nents. Formally it looks as if we were dealing with a nonin-
YP=Ym Pmt Yo Py (3)  teracting dissipative matter fluigtf. [12,14)).
. . _ We look for a dynamical solution to the coincidence prob-
wherep=ppn+p, is the total energy density, is assumed o gych that the Universe approaches a stationary stage in

to include both baryonic and nonbaryonic matter; see thehich r hecomes a constant. A nonvanishing constant solu-
Appendix for a discussion of this pojntThen Eqs(1) and s 1o Eq.(13) occurs when the stationary condition
(2) can be written as

" Y= (14)
3| H2+ s (4) . P
a holds. By virtue of Eq(14) the overall baryotropic index on
and a stationary solutiorisubindexs) is given by
p+3yHp=0. s Lo n_r ey
) ) So3H2 TP py 1Hr[17? prpy ¢
respectively. In terms of the density parametets, (15)
=pm/(3H?), Q,=p,/(3H?) andQ=—k/(aH)?, the last
two equations become Indeed, the simplest solution to the cosmic coincidence
_ problem occurs whef),,=Q s and Q ,=Q 5, with Q.
Ot Q4+ =1, ©®) and () 4 constants. We call this case q?‘stroﬁg coincidence.”
and Then, using Eqs(10) and(11), the stationary conditions be-
come
Q=0(Q-1)(3y—2)H, 7) _
whereQ=0Q,,+Q,,. This scheme is compatible with an in- Y=y =— 2—H2 (16)
teraction between the scalar field and the matter, described 3H

by a coupling term$ according to L .
Combining Egs(4), (5) and(15) it follows that on the sta-

Pt 3H Ympm= 5, (8)  tionary solution
and k H

—=-k .
(9) a’ (Ha)?

: 17)

The coupling is left unspecified at this stage. It represents amhis last equation becomes an identity o= 0 while for k
additional degree of freedom which will be used below to+0 it leads toa(t)=t. This second possibility implies a
guarantee the existence of solutions with a stationary energyonaccelerating universe. This means that under the strong
density ratio. After introducing a generalized dissipativecoincidence condition an accelerated expansion is only pos-
pressure through= —311H, the last two equations take the sible in a flat FLRW universe. Then Friedmann’s equation
form reduces to Bi?=p, thus, Q=1 and Q,=—Q,. Further,
assumingy=2/(3a), with «>1 a constant, it follows from
=0, (10 Ea. (15) thata(t) ot andgsoctfz. Of course, this does not
indicate how such a solution is approached.

2H
Qm+3H ﬁ‘l"ym Q
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IIl. DYNAMICS AND STABILITY

The purpose of this section is a detailed study of the gen-

eral dynamics of the density ratioas given by Eq(13). At

first we look for constant solutions=rg, representing a
stationary stage of the Universe. We will assume that all the
quantities in'= ¥ — ! can be expressed in terms of the
ratio r. Then, according to Eq(14), stationarity requires
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Furthermore, from EQq(20) it is possible to obtainv
=V(r) and from Eq(22) one findsa=a(t). In addition, the
relation between the kinetic energy of the scalar field and its
potential

HP= V, (23

I'(rg)=0. Let us look at the stability of these constant solu-.5n pe integrated to givé= ¢(t) and this function inverted

tions. Expanding the general solution of Efj3) aboutrg in
powers ofe=r—rg, we get, up to first order i,

dr

e=—3Hrg ar

€. (18

S

Equation(18) shows that a roat, of I'(rg) =0 is asymptoti-
cally stable solution whenevédl“/dr]r:,s>0. Identifying

the energy-momentum tensor of the scalar figlavith that
of a perfect fluid

1., 1.,
Po=5*TV(P), Ps=58"-V(d), (19
and using Eq(9), we get
I1 1 dyy, 1dV
p—¢—y¢—rF 2_7¢W VW (20)
Likewise, using the relation
2V (21
the Friedmann equation can be recast as
2(1+r)V k
3H2=¥— —. (22)
2— Yo a?

Equations(13), (20) and(22) provide the following solu-
tion procedure. In a first step we specify the indiggsand
v¢ and the ratid1/p , as functions of. With Egs.(14) and
(18) we may calculate the constant solutiansas the roots

of I'(rs) =0 and check their stability properties. In the sec-

ond step we integrate E¢L3) to obtainr =r(a). This pro-

vides us with the dynamics of the density ratio that is re
the solution of the coincidence problem.
Constraints from nucleosynthesis, CMB anisotropy and cos-
mic structure formation preclude an early quintessence dom

evant for

to yield the potential by (¢)=V(a(t(¢))).

We shall apply the indicated procedure to an interaction
characterized byll=—c?p with ¢? a constant ank=0
which has already been discussed 14]. (A more detailed
discussion of the corresponding couplifig 3c2pH is given
in the Appendix. When y,,, and y,, are assumed to be con-
stants, the stationary solutions of Ed.3) are obtained by
solvingr I'(rs)=0. The roots of this quadratic equation are

rr=—1+ 1 Yo R, (24)
2c
where the discriminant
Ym™ Y¢| Ym— Vo
A= -1 (25
c? 4c? l

must be non-negative to obtain real solutiogs The quan-
tity A determines the difference between the stationary val-
uesr; —r_=24/A, and the relationship.r; =1 holds, im-
plyingrd=1=r_ . Itis expedient to write Eq(13) in terms
of ry andry

r=—3c?H[(r—r )(rf—n)]. (26)
WhenA >0, the stability of these solutions is determined by
the sign of

ar

ar| +
r

=+3c2H(r{-ry).

(27)

While rJ is unstable, the solutiom  is asymptotically
stable. This means that a solution of E6) starting atr

and decreasing towards fits in the above picture regarding
.the evolution of the density ratio. In this picturg stands for

the density ratio at the onset of the quintessence-matter in-
eraction. On the other hand, whén=0, corresponding to
the quadratic roat; =rg =1, the density ratio is growing so

nance stagél,4]. We will also assume that the current den- that we will not consider it any further.

sity ratio ry=0,56+0.07 [15-17 is close to a constant

The family of regular monotonic decreasing solutions of

attractor solution. As the coincidence problem may beEd- (26) in the rangery>r>rg is given by

phrased in terms of the “why now” question, the dynamical
solution to this problem arises because the variation of the
density ratior is quite small so that there is nothing very

peculiar about the present time and the valgeHence, we

shall seek to describe the transition from a matter dominancehere x=(a/a*)*,

with r>1 to a stable stationary era withs1 (coincidence

era.

- +
g +er

1+x (28)

r(x)=
A=6c%JA and r*=r(1)=(r
+r4)/2. In the following we will denote by an asterisk mag-
nitudes at the epoch of mean density ratier*, or equiva-
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lently x=1. Fora<a*, corresponding tx>1, we haver
~rJ, while in the opposite case<1 the stable solution
= rs_
(26) exist forr<rg andr>r. As they are singular and
exhibit a growing ratio, they will not be considered here.
Rewriting Eq.(20) in terms of the variable, we have
'y¢+C (1+r)

__f (r=rg )(r—r )

Integrating Eq.(29), we obtain the history of the quintes-

dr. (29

sence potential after some algebra and using
=4¢XA/(1+x)?
1 _
V(x)= Ev*[1+x]x37¢’*, (30)

wherey; = y,+c?(1+rS). The expressioné28) for r and
(30) for V determine the Hubble rate according to E2Q).
In terms of the redshifz=a,/a—1 the latter becomedor a
spatially flat universe

is approached. Two other families of solutions of Eq.
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and used the transformation

1+z
1+2z*

X= (33

This parametews is a measure of the closeness of the present
Universe to the asymptotic attract(stationary stage, asr
=0 corresponds to the constant solutioar ¢

With the help of Eq.(28), the equations for the energy
densities of the mattdB) and the field9) can be integrated,
which results in

B 1 ~
3v/N . p= zp*(rs’+xr;)x3‘/¢’*

(34)

1
p¢>=§p*(1+X)X

where the constants are related by*2=p* (2—y,). Using
Egs.(22), (28) and (30) we integratex/x= —\H to obtain
the scale factora(t) in an implicit form in terms of the
hypergeometric function

1+ o(1+2)M]*2 3y 12 0
T 2| 27 | opp(L_ D _D_ . X
t=— v+l X P55 -5+l g
Here we have introduced the quantity Yo (rs+1) @5
(R O B T O R g O ~ N _ .
o= = = —— , (32 whereB=(rg +1)/(rg +1) andD=3y,/\. Similarly we
I+rg V142 1+rg rg—ro can integrate Eq(23) to obtain the scalar field
|
) 3y, | B+3+2\2(B+1) )+ L ZB+xB+x+2\/§x/x+1\/x+B) .
X)— p* =— n —In
Mri+a B+1+2x+2x+1x+B/ B X(3B+1+2\2B{VB+1)
|
and combined with Eq(30) it yields the potentiaM(¢) in oV [a*) 37
parametric form. As bothV(x) and ¢(x) are monotonic py= — . Pm=Ts Py,
functions, we find tha¥/( ¢) is also monotonic. Finally, com- 2= 74
bining Eq. (36) with Eq. (35 we obtain ¢(t) in implicit
form. —
In the near attractor regime simple, explicit expressions b= /27’¢V t Ini+¢>* (39)
arise. Forr~r the history of the potential30) can be ap- 2=y t* ’
proximated byV=(1/2)V*(a/a*) 3¢ and Eq.(22) be-
comes where ¢* = ¢(t*) and the consistency relation
2(1+r)V* [a*\ 3%
S e @7 32— yyH*?
’ ve=2 YO (40)
Hence the evolution in this regime is near power law: 1+rs

t * ! e V 1V* ) 38
a(t)=a o , =V T - (39

We also have the approximate expressions

holds with H*=2/(3y,t*). We note that this asymptotic
regime satisfies the strong coincidence condition Wit
=1/(1+rg) and Q,=rg/(1+rg). To leading order the
potentialV(¢) becomes
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3(2— y,)H*2 3(1+ro) viscosity pressure obeying-=—b?p, whereb? is a con-
V(¢):—¢_ex - —Sy;(qs—qs*) . stant. Accordingly, the roots of the quadratic equation
2(1+1s) Yo rl'(ro)=0 become
(41) ,
. b ym— s
This reproduces the results of Rgf1]. re=-1- PYCRERSYCI VA, (43)

where now
IV. DISSIPATIVE EFFECTS

The model investigated in the preceding section, where A
the quintessence field interacts with matter that behaves as a 4ch
perfect fluid, exhibits a number of interesting features. How-
ever, because of the constraitr; =1, its domain of ap-  Thus we find that the constraint between the stationary den-
plicability is limited to the evolution of the density ratio sity ratios becomes
within the interval I¥_=r=r_ . Assuming thatrg =rg
=0.5, it implies the upper limit<2. The effect of a scaling . b2
field on cosmic microwave backgrout@MB) anisotropies rers =1+ g (45)
has been estimated in R¢1.8] using data from Boomerang
and DASI, providing the constraif?,<0.39 at Zr during  \yg see that the startup density ratio increases with the ratio
the radiation dominated era. It implies>1.6 atz=10° so of viscous to interaction pressures.
thatr =2 cannot have occurred earlier than 10°. We note, Now we consider the question whether the transition from

however, thar ;" corresponds to infinite redshift for perfect matter dominance to the coincidence era is compatible with a
fluid matter. We will see in this section that a sufficiently transition from decelerated to accelerated expansion. This
large bulk dissipative pressure in the dark matter fluid allowsyansition impliesg>0 for r>1 andq<0 on the late attrac-

us to shift the startup redshift at much higher values. tor stage. With the help of Eq€13), (20) and (22) with k

Another line of evidence pointing to Q|SS|pat|ve effects iN _ 0 the deceleration parametgs — aa/a’ can be written as
dark matter comes from the discrepancies between numerical

simulations of non-interactive CDM halo models with obser- 3
vations at the galactic scal&9,20. The main discrepancies g==
are the substructure problem, related to excess clustering on
subgalactic scales, and the cusp problem, characterized

excessively concentrated corg®1-24. Confirmation of translate intog. =q(r$)>0>q(r;)=qs for the accelera-

these problems would imply that structure forma_mon IS ton parameter in the asymptotic regime where
somehow suppressed on small scales. To deal with them,

some kind of self-interaction has been proposed either in 3 (r—ro)(ri—r)
CDM models[25-34, or in warm dark mattefWVDM) mod- q(r)=~ 22 ' s7vs 7
els[35-41]. It is quite reasonable to expect that dark matter 2 1+r
is out of thermodynamical equilibrium and these same inter- (47)
actions are at the origin of a cosmolo_gical_ dissipative PreSpe qerivative
sure or thermal effects. A simple estimation shows that a
cross section of the order of magnitude proposed in these 2
halo formation scenarios, corresponding to a mean free path q'(r)=
in the range 1 kpc to 1 Mpc, yields at cosmological densities 2(1+r)?
a mean free path a bit lower than the Hubble distance. Hence
a description for interacting dark matter as a dissipative fluids Positive-definite so that the deceleration parameter de-
at cosmological scales seems appropria®. creases monotonically as the Universe expasds Fig. L

We may account for the effect of a bulk dissipative pres-Then we find that
sure 7 in the matter fluid by the replacemepf,— p,,+ 7,
hence ypm— Ympm* 7 in EQs. (2), (3) and (8). So, the qi=§f—1 (49)
effective baryotropic index of matter becomes s 27 ™

2c?

(Ym— V4)? b? \ ym—vs b*
_Im Tl |14 +— (44
c? 4¢* (44

~1. (46)

W the present model these acceleration transition constraints

yetci(1+r)+c

(1+r)(1+ry) (48)

and we may write these constraints aig<2/3< 7;, or

Yﬁ?: Yt 7l (42) equivalently
Pm
2/3—yy 2 213— 1y, (50
c :
This means that an ansatz fa/p,, as a function ofr is 1+rs 1+rg

needed to calculate the evolution. Here we complete the
model of the previous section with the inclusion of a bulk Using Eq.(43) we get
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FIG. 1. Selected curves of the deceleration paramgtes the
density ratior between the late time ratiny =0.5 and the early
time ratior Z =6. From top to bottom, the curves correspond to the
quintessence baryotropic index,=0.65, 0.5, and 0.4.

Yot (LHrd)(L+rg)c?=yy, (512)
which combined with Eq(49) yields
3Ym—2—2q5
2:%—%>0_ (52)

3ri(1+ry)

Inserting (52) into (50) and using(45), we find that an ac-
celerating transition implies an upper boundrgn

b2\ 12
r;<§ 4+3?) —1=rgnax (53
and a lower bound on;
3(1+b?%c?)
;— = r:min' (54)

(4+3b%/c?)Y2-1

We note that both bounds grow with the raltit/c? and their
values for a perfect fluidi.e., b>=0) are 1/3 and 3, respec-
tively (see Fig. 2 The upper bound53) holds up to the
critical ratio (b%/c?)=3r3+ 2r,— 1 wherer g,,,=r,. In the
high viscosity regime, abovebf/c?)., the upper bound be-
comesr,. We also note that the parameterhas the lower
bound A min=3C%(r dgnin—"sma) fOr b2/c?<(b?/c?)., that
grows with b?/c? and has a perfect fluid value o8 On
the other hand in=3¢2(r 2,i,— o) for b%/c?>(b?%/c?)..

Further, using Eqs43) and(49), the requirement of late
time acceleratiorg <0 becomes

<1 6ym—4—9¢%y,,— 6b?
797373, —2-3c2_3p?

(59
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6] g

5 i

4]

3 p

2

I

—

1 P -

//4 rs
2 4 6 10
b/c?

FIG. 2. Feasible regions for the late time density rafioand
the early time ratia ! for a transition from decelerated to acceler-
ated expansion to occur, as a function of the ratio of viscous to
interaction pressures?/c?.

The density ratio at the beginning of the accelerated ex-
pansionr .. is given as the root ofi(r ,) =0. Using Eq.(46)
we find

Ym—b%=2/3

r ac—

(56)

We see thatr,. also grows with the increase of the bulk
dissipative pressure, so thaf=(2/3—vy,)/(ym—2/3) (>2
-3, for CDM) with the constrainb?< y,,— 2/3 (< 1/3 for
CDM).

Likewise, the inequalities J >r,>ry>r; must hold.
The corresponding redshift is given by

‘| 1IN

where we have used E(B3). We note that the value of the
acceleration redshift is model dependent. KR@DM models

it has been shown to be close to uriyg], while it has been
argued that coupling between dark energy and dark matter
allows for z,=5 [44]. We have found that this model leads
either to z,c<1 or much larger values, depending on the
sector of the parameter spa@ee Figs. 3 and)4

(rac_rs_)(r;—_ro)

1+z " —
(rs _raa(ro_rs )

(57)

ac—

V. OBSERVATIONAL CONSTRAINTS

It seems that supernovae of type(&Nelg may be used
as standard candles. Properly corrected, the difference in
their apparent magnitudes is related to the cosmological pa-
rameters. Confrontation of cosmological models to recent
observations of high redshift supernovaes(l) have shown

Then, the positive-definite character of the quintessence p@ good fit in regions of the parameter space compatible with

tential, hence ofy,,, implies that the feasible region in pa-
rameter space bf,c?) has the upper bound?=2/3
—4/(9y,,) — 2b%/(3y,,). For CDM it readsc?<2/9 andb?
<1/3.

an accelerated expansi¢t—3,5,6,4% We note, however,
that models likeACDM and QCDM usually require fine
tuning to account for the observed ratio between dark energy
and clustered matter, while QIM models simultaneously pro-
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z,.12 reconstructed from the magnitude-redshift data of SNela
— alone. Further, using the conservation equation of the field,
10 \\\\\ the historyV(z) of the quintessence potential could also be
o reconstructed. For this reason, many authors have dealt with
8 the recent evolution of,, .
When quintessence interacts with matter, however, the
6 quintessence baryotropic index looses this preeminent role.
To see why it is necessary to plug the expansionkHt® in
4 Eq. (59). We first note that Eq(13) can be written as
dInr/dIn(1+2)=3I". Then integrating Eq.20) and inserting
2 in Eq. (22) (for k=0) we find
0002 003 004 005 006 007 008 009 0.1 H(z) [1+r(2]¥? |3z dZ 75;?)(2')
c2 = exg = f , (60
Ho 1+ry 2Jo 1+27' T'(2)

FIG. 3. Selected curves of the redshift at the beginning of the ) o o
accelerated expansian, vs the interaction parametef. They cor- ~ Where the density ratio in terms of the redshift is given by

respond to the current density ratig=0.56 the late time ratiog
z dZ
r(z)=rqex BJ Iz
01+27

=0.5, the early time ratioJ =6, and the viscous to interaction
pressure rati®?/c?>=2. From top to bottom, the curves correspond

vide a late accelerated expansion and solve the coinciden 0, D, besides being a functional of the quintessence baryo-
P ?Fopic index also becomes a functional of the interaction and

to the quintessence baryotropic indgy=0.55, 0.6, and 0.7.

problem.. o . . dissipative pressures through the effective baryotropic indi-
: Ignoring graV|_tat|onaI Iens[ng eﬁects,_the predicted MaG-ces. As the historiebl(z) and 7(z) cannot be disentangled

nitude for an object at redshiftin a spatially flat homoge- ’

neous and isotropic universe is given [#] from y4(z) in Eqg. (60), the magnitude-redshift data alone
P 9 cannot reconstrucy,,(z) even in principle when interactions

occur.
By virtue of Egs.(31) and(32) we obtain

. (61

m(z)=M+51logD,(2), (58

where M is its Hubble radius free absolute magnitude and
. N . . . , -
D, is the luminosity distance in units of the Hubble radius, D,_=(1+z)(1+(r)1’2f (142) " 1+ o(142)\] 22
0

Ho
H(z')

D =(1+2) fozdz’ (59

(62

This integral can be expressed in terms of the hypergeomet-

For noninteracting QCDM model®, can be expressed "¢ function

functionally in terms ofy,, (assuming thay,, is a constant
so that the history of this index,(z) could in principle be

(1+0)?
'DL=(1+Z)—)\(R+1)

1
(1+z)R+12F1(§,R+1,R+2;

Z..5

ac

—o(1+2)* , (63

1
_2F1(E,R+1,R+2,_0')

whereR=(1-A—3y,/2)/\. We have used the sample of

3 38 high redshift (0.182z=<0.83) supernovae of Ref2],

supplemented with 16 low redshifz€0.1) supernovae from

the Cala/Tololo Supernova Survey7]. This is described as

the “primary fit” or fit C in Ref. [2], where, for each super-

_—— nova, its redshif; , the corrected magnitude; and its dis-
persiono; were computed. We have determined the optimum
fit of the QIM model by minimizing ay? function

.| PR
_—

0.02 0.03 0.04 0.05 0.06
m; — m(Zi ;)\,R,U,M)]z

2 N [
c

=2 5 :
FIG. 4. Selected curves of the redshift at the beginning of the =1 g

I
accelerated expansiag, vs the interaction parametef. They cor- . .
respond to the current density ratig="0.56, the late time ratio WhereN=>54 for this data set. This fit yields=0 as the

ry =0.5, the early time ratio; =12, and the viscous to interaction MOSt probable value. We note that=0 means that the Uni-
pressure ratid?/c?=5. From top to bottom, the curves correspond Verse is settled at the asymptotic stater g , with a constant
to the quintessence baryotropic indgy=0.4, 0.5, and 0.6. deceleration parameter given by Eg9).

(64)
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In other words, due to the limitations of the magnitude- p()
redshift method(see Ref.[48] and references thergirthe
currently available set of supernovae locateaatl is un- 35 |
able to provide a clear signature of the turnover from matter
dominated decelerated phase to the current accelerated one. 8
Hopefully future observations of type la supernovae, such as 25
expected from the proposed SNAP satel[id®], combined
with other cosmological observations, will provide much se-
vere constraints on the parameters and produce a reliable 45 |
reconstruction of the evolution of the density ratio. So, for
the purpose of fitting to this set of observations, we may use 1

2

the attractor solutiong . Then Eq.(63) simplifies to[14,50 05 1
(1+2)[(1+2)P-1] 0
Di(2)= B , (65 0 02 0.4 06 0.8 1

B

FIG. 5. The estimated probability density distributiorormal-
ized likelihood for the acceleration parametge= —q, of the as-
ymptotically stable stationary solutian=r .

wheref=\(R+1)=—q; =1— 1/a is minus the asymptotic
deceleration parameter. 8 increases withe, and I<a
<o corresponds to € 8<1. On the attractor we have

yszi ==(1-5). (66)  microwave background open new windows on the evolution
Sa 3 of the quintessence compondii8,53,54. Excluding quin-
tessence inflation modelg.g.[55]), primordial nucleosyn-
thesis is probably the earliest epoch from where we can get
some information about the density ratio. Hence we approxi-

The optimum fit of this attractor model is given by minimiz-
ing the 2 function

N o - 2 mate the initial density ratio; as the ratio at the start up of
2 [ml m(ZI!ﬁIM)] . . . S .
X =E > . (67) primordial nucleosynthesis, (see the Appendix for further
=1 7 discussioh The quintessence component, evolving under an

. approximately exponential potential, appears in the early
The most likely values of these parameters are found to bgjjyerse as a form of radiation affecting nucleosynthesis
(B,M)=(0.395,23.96), yielding Xn%in/NDF: 112 (Nor  abundance yields and the heights of the acoustic peaks in the
=52), and a goodness of R(x*= xp,) =0.253. We esti- cosmic microwave background radiation. When decoupled
mate the probability density distribution of the parameters byfrom matter it behaves like a collisionless, isotropic, and

evaluation of the normalized likelihod&1] nearly non-clustering componer{63,5¢. Such a non-
) standard component alters the cooling rate and the upper
0B, M) = exp(— x“/2) 68) bound on the change of relativistic energy density is param-
' . etrized in terms of the maximum variation in the effective
f dﬁf dMexp(— x°/2) number of neutrino species &g, (Ty) <7ANp./4, where

0, (Ty)=10.75 in the standard model with three massless
Then we obtain the probability density distribution f8r  neutrinos. Then, assuming that the quintessence-matter inter-
marginalizing p(8,M) over M. This probability density action switches on after nucleosynthesis, we get the bound
distribution p(B) is plotted in Fig. 5 and it yieldsB
=0.398+0.104 (1o). Hence it can be established that . 49, (Tn)
0.085< 8<0.711 with a confidence level of 0.997; an accel- fs =In= 7AN oy =
erated superattractor QIM universe is strongly supported by
this data set, in agreement with a similar analysis@DM Combining it with Eg.(52) and taking into account that
and QCDM model$2,3,6,53. ANpa=1 [57] we get for pressureless matter the upper

Stronger bounds on the parameters, b2 andc? than  bound on the interaction coefficient

those obtained in the previous section may be obtained from
¥m and estimates af; andq . The equations to be used are 5 1(1—200)ANpax

(49), (45) and S T21719)9. (Tw)

6.14. (70)

~0.063. (72)

re 2
c2+ b2=1+sr_[ym— 300+ 1)

S

Then, inserting this value in Eq49) it follows that vy,
>0.3. In other words, a cosmological constant is excluded in
this model. Similarly, from Eq(69) we get

(69

obtained by combining Eq$43) and(49). For the estimates
we take as before, =rg, g5 = — . Besides, big bang nu- c2+ 2= Mo (1—2qy)=0.215. (72)
cleosynthesis and the fluctuations imprinted on the cosmic 3(1+ry)
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Besides, assuming a postnucleosynthesis switch on of the APPENDIX

interaction, we find from Eq45) Here we collect some complementary considerations re-

) garding our model. We begin by noting that we consider a
b—~r _1-243 73 universal coupling of the quintessence field to all sorts of
c2 NFo T (73 matter, either baryonic or not. As our main concern is the
investigation of the late universe and a dynamical solution to
the coincidence problem, we consider along this stage a
simple two-component model: mattéxcluding radiatioh
and quintessenclan additional radiatiorirelativistic com-
ponent would be dynamically irrelevdnt

The coupling between matter and quintessence manifests
itself as the nonconservation of their partial stress-energy
VI. CONCLUDING REMARKS tensorsV, Tim 4=—V,T(44#0. For the investigation of

We have presented a spatially homogeneous and isotropﬂ?e Qynamlcs .Of our homogeneous model, It su_fﬁces to
interacting quintessence model that evolves towards a phaﬁgec'fy th_e projection of this nonc_onser\{ann equation along
of accelerated expansion and simultaneously solves the ¢ _efvetl?(lm%l .Of the whole(comoving fluid u”, that for a
incidence problem. It provides a reasonable explanation tgerect fiuid is
the embarrassing question, “why the contributions of dark v _ _

AT ; v, Tim4=—u*V,pm—0O(pm+pPm)=—6 (Al
matter and dark energyvhich in principle scale at different M)y Pm= O (pm* Pm) (AL)

rates with expansiarto the overall energy density are of the \yhere, for the specific model we have investigated in Secs.
same order precisely today?” Rather than postulating a poy to v, the coupling is6=c2p® with ®=V,u® the expan-
tential for the quintessence field and specifying its interacsjon scalar anp=u*u’T,,, whereT denotes the total
tion with the dark matter component, we derived these quansiress energy tensor. -
tities from the strong coincidence conditigne., that the On the other hand, for the investigation of inhomoge-
density parameters of these two components tend to constagboys perturbations of this model, it will be necessary to take
values at late time This requirement led us to the stationary into account that the velocity of the componen, and
condition[Eq. (16)], first obtained in Refl12], as well as to UM¢ are different, in general, from the velocity of tht)a overall

%I)uid. Also, these fluids may experience acceleration due to
L + ressure gradients or due to their couplipgomalous accel-
from an |p|t|al uns_table valyeS up to the lower and stap!e eration). Perhaps the simplest generalization of EAfL) to
asymptotic value ¢ at late time. In terms of these quantities ihis wider framework is the “longitudinal coupling”

we have introduced the parametethat assess how negr

far away from the asymptotic state of constant VMT(m)’J:U(m)ﬁ- (A2)
acceleration—see E@32)—our Universe lies. The available
data seem to suggest that our Universe is close to the statiott-involves energy transfer between matter and quintessence
ary era. On the other hand, they are not sufficient to discrimiwith no momentum transfer to matter, so that no anomalous
nate our model from theACDM model. Hopefully, the acceleration arises. Hence this choice is not affected by ob-
SNAP satellite will provide us with a wealth of high redshift servational bounds to a “fifth” force exerted on the baryons.
data likely enough to break the degeneracy and infer th€learly other generalizations of EGALl) could be consid-
redshift at which the Universe began accelerating its exparered that do involve an anomalous acceleration in matter due
sion. its coupling to quintessence. In this regard we note that be-

We note that the quintessence-matter interaction and theause of the universal nature of this coupling, it could not be
dissipative pressure terms imply that the magnitude-redshifietected by differential acceleration experiments. We also
relationship is not enough, even in principle, to reconstruchote that the coupling we have proposed is purely phenom-
the evolution of these quantities together with the quintesenological and the validity of the expression féris re-
sence baryotropic index history. Further independent obsestricted to cosmological scaléas it depends on magnitudes
vational tests are needed for this reconstruction program. Fthat are only well defined in that setting his means that the
nally, the evolution of cosmological perturbations predictedform of the coupling at smaller scales remains unspecified,
by this model remains to be studied. This will be consideredand the requirements for the different couplings that could
elsewhere. have a manifestation at these scales are that they give the
same(averagegicoupling § at cosmological scales and meet
the observational bounds from the “local” experimef&s§].

The longitudinal coupling is also a very attractive choice

D.P. and W.Z. acknowledge partial support by the NATOto extend our model to the radiation era, when the dominat-
grant PST:CLG.977973. This work was also partially sup-ing matter component is relativistic, as it does not involve
ported by the University of Buenos Aires under Project X223deviation of relativistic particles from their geodesics. Indeed
and the Spanish Ministry of Science and Technology undethe exact solutioti28) (valid only for constanty,,,), holds for
grant BFM 2000-C-03-01 and 2000-1322. the matter-quintessence domination era, with=1 in the

Henceb? must lie in the range (0.152,0.215) anlin the
interval (0,0.063). Note that the lower boufitB) is above
the critical value p?/c?).=1.07+0.38, suggesting that vis-
cous effects are important.
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case of CDM—as well as for the radiation domination era—problem. And the results of our model hold for this class of
with y,,=4/3. In the usual approximation that, drops in- models in an approximated, asymptotic sense.
stantaneously at equality tinte, all we need to extend our  In our model we are assuming that the coupling was neg-
model to the radiation era is to match both solutions of Eqligible during the primordial nucleosynthesis. A simple “gen-
(13) at tg (or equivalently atxg). Clearly H, r, the energy eralized” coupling with this property is

densities,= and Il are continuous through this transition,
and we can also assume the samgfor both eras. Hence

there is a jump in the slopie attg given by

) H
Ogen=3C"Hp ex _H_l , (A4)
where the parametell; may be chosen at will, so that
dgen=0 for H<H; and §y¢,~=0 for H>H,. So, by choos-
o ing H, as the Hubble parameter at some suitable time after
wherer - (r.) is the limit from the right —t; (from the left  nucleosynthesise.g.H,~10 % s 1), all our results for the
t—tg). Thatis,r falls more steeply in the radiation era than late universe stand while the coupling essentially vanishes
in the matter era. For the combined solution the initial statdor times prior to nucleosynthesis end.
is the radiation era stationary solutiogi that is larger than ~ Another reason to assume an onset of the interaction at
ther! of the matter era solution extrapolated to the radiatiorS0me epoch of the early universe is the high mass of the
era. Then, a lower bound for the mattef is also a lower ~duintessence field that grows as
bound for the radiatiom_ , and no bound obtained for the ) VA2
parameters is spoiled. In fact better bounds could be obtained mi= 5
using the combined solution.

The extension back in time of the couplinfjinvolves  for t—0. This means that the mass, becomes arbitrary
another nonuniqueness, and there is no reason to assume thate for early enough times. However, because of the cou-
it had the same form also during the early universe. In parpling with matter, this very heavy particle could decay into
ticular, all couplings containing terms that become negligible‘dangerous” particles like gravitinos, whose decay products
in comparison withs at late times(e.g. terms likeH" with  would change the baryon-to-photon ratio required by a suc-

i‘>_i‘<:HErE (A3)

to)?

n (A5)

n>3) hold the same property of solving the coincidencecessful nucleosynthesisee, e.g[59]).
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