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Interacting quintessence solution to the coincidence problem
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We show that a suitable interaction between a scalar field and a matter fluid in a spatially homogeneous and
isotropic spacetime can drive the transition from a matter dominated era to an accelerated expansion phase and
simultaneously solve the coincidence problem of our present Universe. For this purpose we study the evolution
of the energy density ratio of these two components. We demonstrate that a stationary attractor solution is
compatible with an accelerated expansion of the Universe. We extend this study to account for dissipation
effects due to interactions in the dark matter fluid. Finally, type Ia supernovae and primordial nucleosynthesis
data are used to constrain the parameters of the model.
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I. INTRODUCTION

Nowadays there is a wide consensus among observat
cosmologists that our Universe is accelerating
expansion—for a pedagogical short update see@1#, see also
@2–8#—which implies that the Einstein–de Sitter scena
has to be abandoned, at least to describe the present era
nature of the dark energy behind this acceleration is
known. Two main proposals, namely the cold dark ma
~CDM! models with a cosmological constant (LCDM) and
quintessence~QCDM! have been advanced. The former a
sumes a cosmological constant arising from the energy d
sity of the zero point fluctuations of the quantum vacuu
and cold dark matter in the form of pressureless dust. W
it fits rather well all the observational constraints@9# it has
serious difficulties with the low observed value of th
vacuum energy~that by all accounts should be many orde
of magnitude higher! and fails to address the so-called ‘‘co
incidence problem,’’ namely, why the energy density of bo
components happens to be of the same order today?
second group of models assume an evolving scalar field
sessing a negative pressure and cold dark matter. It also
well the observational constraints, and seems rather na
but it is not clear whether it really solves the coinciden
problem~for a recent review see@4#!.

Most of the QCDM models assume that the dark ma
and the scalar field components evolve independently. H
ever, given that the physical nature of the quintessence
is still unknown and also that the dark matter may well b
substratum not as simple as a pressureless perfect fluid,
seem to be noa priori reasons to exclude a coupling betwe
both components. Interacting quintessence models have
shown to provide qualitatively new features which may
relevant to the coincidence problem@10,11#. In particular, it
has been demonstrated that a suitable coupling may give
to a stable constant ratio of the energy densities of both c
ponents which is compatible with an accelerated expan
of the Universe@11#. On the other hand, this model could n
answer the question of how such a stationary solution ca
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obtained as the result of a dynamical evolution. In t
present paper we clarify this point and establish an exa
solvable model for a smooth transition from a matter dom
nated phase to a subsequent period of accelerated expan
This model implies the evolution of the density ratio towar
a finite, stable, asymptotic value. Thus it may represen
solution to the coincidence problem.

As shown in another previous paper, a very suitable
gredient of quintessence models is a dissipative, nega
scalar pressure of the matter component. Such a qua
may simultaneously help to drive acceleration and solve
coincidence problem@12#. A negative pressure arises nat
rally from bulk viscous dissipation, quantum particle produ
tion or self-interaction in the matter component@13#. Here
we combine the advantages of quintessence models inte
ing with matter ~QIM! with those relying on a dissipative
pressure within the latter.

The aim of this paper is to show that on this basis
solution of the coincidence problem in an accelerating u
verse can be realized in a comparatively simple man
within the framework of general relativity.

The paper is organized as follows. Section II introduc
the basic equations of the model. Section III explores
dynamics of the energy density ratio, including the stabil
properties of the stationary solutions. Furthermore, it deri
the corresponding scalar field potential. Section IV inves
gates the role of a dissipative pressure within the dark ma
component and discusses the behavior of the decelera
parameter. In Sec. V the available magnitude-redshift dat
supernovae type Ia~SNe Ia! are used in combination with
primordial nucleosynthesis data to restrict the parameter
the model. Section VI presents our conclusions and fi
comments. Lastly, the Appendix discusses briefly the c
nections of the matter-quintessence coupling with cosm
logical inhomogeneities, the issue of possible anomalous
celeration of baryonic matter and some consequences of
interaction on the early universe. Units have been chose
that c58pG51.
©2003 The American Physical Society13-1
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II. INTERACTING COSMOLOGY

Let us assume a Friedmann-Lemaıˆtre-Robertson-Walker
~FLRW! spacetime with matter and a minimally coupled sc
lar field. The Friedmann equation and the overall conser
tion equation read

3H213
k

a2
5rm1rf ~k51,0,21!, ~1!

and

ṙm1 ṙf13H~gmrm1gfrf!50 ~2!

respectively, where have assumed the equations of statpm
5(gm21)rm , pf5(gf21)rf with 1<gm<2 and 0<gf
<2. We also introduce an overall effective baryotropic ind
by

gr5gm rm1gf rf , ~3!

wherer5rm1rf is the total energy density (rm is assumed
to include both baryonic and nonbaryonic matter; see
Appendix for a discussion of this point!. Then Eqs.~1! and
~2! can be written as

3S H21
k

a2D 5r, ~4!

and

ṙ13gHr50. ~5!

respectively. In terms of the density parametersVm
[rm /(3H2), Vf[rf /(3H2) andVk52k/(aH)2, the last
two equations become

Vm1Vf1Vk51, ~6!

and

V̇5V~V21!~3g22!H, ~7!

whereV[Vm1Vf . This scheme is compatible with an in
teraction between the scalar field and the matter, descr
by a coupling termd according to

ṙm13Hgmrm5d, ~8!

and

ṙf13Hgfrf52d. ~9!

The coupling is left unspecified at this stage. It represents
additional degree of freedom which will be used below
guarantee the existence of solutions with a stationary en
density ratio. After introducing a generalized dissipati
pressure throughd[23PH, the last two equations take th
form

V̇m13HS 2Ḣ

3H2
1gm

(e)D Vm50, ~10!
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V̇f13HS 2Ḣ

3H2
1gf

(e)D Vf50, ~11!

respectively, where we have introduced the effective bar
tropic indices

gm
(e)5gm1

P

rm
, gf

(e)5gf2
P

rf
. ~12!

From Eqs.~10! and ~11! it follows that the energy density
ratio r[rm /rf5Vm /Vf obeys the equation

ṙ 523Hr @gm
(e)2gf

(e)#. ~13!

It describes the dynamics of the parameterr in terms of the
equations of state and the mutual interaction of the com
nents. Formally it looks as if we were dealing with a noni
teracting dissipative matter fluid~cf. @12,14#!.

We look for a dynamical solution to the coincidence pro
lem such that the Universe approaches a stationary stag
which r becomes a constant. A nonvanishing constant so
tion to Eq.~13! occurs when the stationary condition

gm
(e)5gf

(e) ~14!

holds. By virtue of Eq.~14! the overall baryotropic index on
a stationary solution~subindexs) is given by

gs52
2Ḣ

3H2
5gf2

P

rf
5

1

11r F S gf2
Pr

rmrf
D r 1gfG .

~15!

Indeed, the simplest solution to the cosmic coinciden
problem occurs whenVm5Vms and Vf5Vfs , with Vms
and Vfs constants. We call this case ‘‘strong coincidence
Then, using Eqs.~10! and~11!, the stationary conditions be
come

gm
(e)5gf

(e)52
2Ḣ

3H2
. ~16!

Combining Eqs.~4!, ~5! and ~15! it follows that on the sta-
tionary solution

k

a2
52k

Ḣ

~Ha!2
. ~17!

This last equation becomes an identity fork50 while for k
Þ0 it leads toa(t)}t. This second possibility implies a
nonaccelerating universe. This means that under the st
coincidence condition an accelerated expansion is only p
sible in a flat FLRW universe. Then Friedmann’s equati
reduces to 3H25r, thus, V51 and V̇m52V̇f . Further,
assuminggs.2/(3a), with a.1 a constant, it follows from
Eq. ~15! that a(t)}ta andrs}t22. Of course, this does no
indicate how such a solution is approached.
3-2
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III. DYNAMICS AND STABILITY

The purpose of this section is a detailed study of the g
eral dynamics of the density ratior as given by Eq.~13!. At
first we look for constant solutionsr 5r s , representing a
stationary stage of the Universe. We will assume that all
quantities inG[gm

(e)2gf
(e) can be expressed in terms of th

ratio r. Then, according to Eq.~14!, stationarity requires
G(r s)50. Let us look at the stability of these constant so
tions. Expanding the general solution of Eq.~13! aboutr s in
powers ofe[r 2r s , we get, up to first order ine,

ė523Hr sFdG

dr G
r 5r s

e. ~18!

Equation~18! shows that a rootr s of G(r s)50 is asymptoti-
cally stable solution whenever@dG/dr# r 5r s

.0. Identifying

the energy-momentum tensor of the scalar fieldf with that
of a perfect fluid

rf5
1

2
ḟ21V~f!, pf5

1

2
ḟ22V~f!, ~19!

and using Eq.~9!, we get

P

rf
5gf2rGF 1

22gf

dgf

dr
1

1

V

dV

dr G . ~20!

Likewise, using the relation

rf5
2V

22gf
, ~21!

the Friedmann equation can be recast as

3H25
2~11r !V

22gf
23

k

a2
. ~22!

Equations~13!, ~20! and~22! provide the following solu-
tion procedure. In a first step we specify the indicesgm and
gf and the ratioP/rf as functions ofr. With Eqs.~14! and
~18! we may calculate the constant solutionsr s as the roots
of G(r s)50 and check their stability properties. In the se
ond step we integrate Eq.~13! to obtainr 5r (a). This pro-
vides us with the dynamics of the density ratio that is r
evant for the solution of the coincidence proble
Constraints from nucleosynthesis, CMB anisotropy and c
mic structure formation preclude an early quintessence do
nance stage@1,4#. We will also assume that the current de
sity ratio r 0.0,5660.07 @15–17# is close to a constan
attractor solution. As the coincidence problem may
phrased in terms of the ‘‘why now’’ question, the dynamic
solution to this problem arises because the variation of
density ratior is quite small so that there is nothing ve
peculiar about the present time and the valuer 0. Hence, we
shall seek to describe the transition from a matter domina
with r @1 to a stable stationary era withr &1 ~coincidence
era!.
08351
-

e

-

-

-
.
s-
i-

e
l
e

ce

Furthermore, from Eq.~20! it is possible to obtainV
5V(r ) and from Eq.~22! one findsa5a(t). In addition, the
relation between the kinetic energy of the scalar field and
potential

ḟ25
2gf

22gf
V, ~23!

can be integrated to givef5f(t) and this function inverted
to yield the potential byV(f)5V(a„t(f)…).

We shall apply the indicated procedure to an interact
characterized byP52c2r with c2 a constant andk50
which has already been discussed in@11#. ~A more detailed
discussion of the corresponding couplingd53c2rH is given
in the Appendix.! Whengm andgf are assumed to be con
stants, the stationary solutions of Eq.~13! are obtained by
solving r sG(r s)50. The roots of this quadratic equation a

r s
65211

gm2gf

2c2
6AD, ~24!

where the discriminant

D[
gm2gf

c2 Fgm2gf

4c2
21G ~25!

must be non-negative to obtain real solutionsr s
6 . The quan-

tity D determines the difference between the stationary v
uesr s

12r s
252AD, and the relationshipr s

1r s
251 holds, im-

plying r s
1>1>r s

2 . It is expedient to write Eq.~13! in terms
of r s

2 and r s
1

ṙ 523c2H@~r 2r s
2!~r s

12r !#. ~26!

WhenD.0, the stability of these solutions is determined
the sign of

] ṙ

]r
U

r
s
6

563c2H~r s
12r s

2!. ~27!

While r s
1 is unstable, the solutionr s

2 is asymptotically
stable. This means that a solution of Eq.~26! starting atr s

1

and decreasing towardsr s
2 fits in the above picture regardin

the evolution of the density ratio. In this picturer s
1 stands for

the density ratio at the onset of the quintessence-matte
teraction. On the other hand, whenD50, corresponding to
the quadratic rootr s

15r s
251, the density ratio is growing so

that we will not consider it any further.
The family of regular monotonic decreasing solutions

Eq. ~26! in the ranger s
1.r .r s

2 is given by

r ~x!5
r s

21xrs
1

11x
, ~28!

where x5(a/a* )2l, l[6c2AD and r * [r (1)5(r s
1

1r s
2)/2. In the following we will denote by an asterisk mag

nitudes at the epoch of mean density ratior 5r * , or equiva-
3-3
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lently x51. For a!a* , corresponding tox@1, we haver
'r s

1 , while in the opposite casex!1 the stable solutionr
5r s

2 is approached. Two other families of solutions of E
~26! exist for r ,r s

2 and r .r s
1 . As they are singular and

exhibit a growing ratio, they will not be considered here.
Rewriting Eq.~20! in terms of the variabler, we have

E dV

V
52

1

c2E gf1c2~11r !

~r 2r s
2!~r 2r s

1!
dr. ~29!

Integrating Eq.~29!, we obtain the history of the quintes
sence potential after some algebra and usingrG
54c2xD/(11x)2

V~x!5
1

2
V* @11x#x3gf

2/l, ~30!

wheregf
65gf1c2(11r s

6). The expressions~28! for r and
~30! for V determine the Hubble rate according to Eq.~22!.
In terms of the redshiftz5a0 /a21 the latter becomes~for a
spatially flat universe!

H5H0F11s~11z!l

11s G1/2

~11z!3gf
2/2. ~31!

Here we have introduced the quantity

s[
11r s

1

11r s
2 S 1

11z*
D l

5
11r s

1

11r s
2

r 02r s
2

r s
12r 0

, ~32!
-

n

08351
.

and used the transformation

x5S 11z

11z*
D l

. ~33!

This parameters is a measure of the closeness of the pres
Universe to the asymptotic attractor~stationary! stage, ass
50 corresponds to the constant solutionr 5r s

2 .
With the help of Eq.~28!, the equations for the energ

densities of the matter~8! and the field~9! can be integrated
which results in

rf5
1

2
r* ~11x!x3gf

2/l, rm5
1

2
r* ~r s

21xrs
1!x3gf

2/l

~34!

where the constants are related by 2V* 5r* (22gf). Using
Eqs. ~22!, ~28! and ~30! we integrateẋ/x52lH to obtain
the scale factora(t) in an implicit form in terms of the
hypergeometric function

t5
2

gf
2 F 22gf

3V* ~r s
211!

G 1/2

x2D/2
2F1S 1

2
,2

D

2
,2

D

2
11;2

x

BD
~35!

where B5(r s
211)/(r s

111) and D53gf
2/l. Similarly we

can integrate Eq.~23! to obtain the scalar field
f~x!2f* 5
1

l S 3gf

r s
111

D 1/2F lnS B1312A2~B11!

B1112x12Ax11Ax1B
D 1

1

AB
lnS 2B1xB1x12ABAx11Ax1B

x~3B1112A2BAB11!
D G ~36!
and combined with Eq.~30! it yields the potentialV(f) in
parametric form. As bothV(x) and f(x) are monotonic
functions, we find thatV(f) is also monotonic. Finally, com
bining Eq. ~36! with Eq. ~35! we obtainf(t) in implicit
form.

In the near attractor regime simple, explicit expressio
arise. Forr'r s

2 the history of the potential~30! can be ap-

proximated byV.(1/2)V* (a/a* )23gf
2

and Eq. ~22! be-
comes

3H2.
2~11r s

2!V*

22gf
S a*

a D 3gf
2

. ~37!

Hence the evolution in this regime is near power law:

a~ t !.a* S t

t*
D 2/3gf

2

, V.
1

2
V* S t*

t D 2

. ~38!

We also have the approximate expressions
s

rf.
2V*

22gf
S a*

a D 23gf
2

, rm.r s
2rf ,

f.A2gfV* t* 2

22gf
ln

t

t*
1f* , ~39!

wheref* 5f(t* ) and the consistency relation

V* 5
3~22gf!H* 2

11r s
2

~40!

holds with H* [2/(3gf
2t* ). We note that this asymptotic

regime satisfies the strong coincidence condition withVfs

51/(11r s
2) and Vms5r s

2/(11r s
2). To leading order the

potentialV(f) becomes
3-4
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V~f!.
3~22gf!H* 2

2~11r s
2!

expF2A3~11r s
2!

gf
gf

2~f2f* !G .

~41!

This reproduces the results of Ref.@11#.

IV. DISSIPATIVE EFFECTS

The model investigated in the preceding section, wh
the quintessence field interacts with matter that behaves
perfect fluid, exhibits a number of interesting features. Ho
ever, because of the constraintr s

1r s
251, its domain of ap-

plicability is limited to the evolution of the density rati
within the interval 1/r s

2>r>r s
2 . Assuming thatr s

2.r 0

.0.5, it implies the upper limitr &2. The effect of a scaling
field on cosmic microwave background~CMB! anisotropies
has been estimated in Ref.@18# using data from Boomeran
and DASI, providing the constraintVf<0.39 at 2s during
the radiation dominated era. It impliesr .1.6 at z.103 so
that r .2 cannot have occurred earlier thanz.104. We note,
however, thatr s

1 corresponds to infinite redshift for perfe
fluid matter. We will see in this section that a sufficient
large bulk dissipative pressure in the dark matter fluid allo
us to shift the startup redshift at much higher values.

Another line of evidence pointing to dissipative effects
dark matter comes from the discrepancies between nume
simulations of non-interactive CDM halo models with obs
vations at the galactic scale@19,20#. The main discrepancie
are the substructure problem, related to excess clusterin
subgalactic scales, and the cusp problem, characterize
excessively concentrated cores@21–24#. Confirmation of
these problems would imply that structure formation
somehow suppressed on small scales. To deal with th
some kind of self-interaction has been proposed eithe
CDM models@25–34#, or in warm dark matter~WDM! mod-
els @35–41#. It is quite reasonable to expect that dark mat
is out of thermodynamical equilibrium and these same in
actions are at the origin of a cosmological dissipative pr
sure or thermal effects. A simple estimation shows tha
cross section of the order of magnitude proposed in th
halo formation scenarios, corresponding to a mean free
in the range 1 kpc to 1 Mpc, yields at cosmological densit
a mean free path a bit lower than the Hubble distance. He
a description for interacting dark matter as a dissipative fl
at cosmological scales seems appropriate@42#.

We may account for the effect of a bulk dissipative pre
surep in the matter fluid by the replacementpm→pm1p,
hencegmrm→gmrm1p in Eqs. ~2!, ~3! and ~8!. So, the
effective baryotropic index of matter becomes

gm
(e)5gm1

p1P

rm
. ~42!

This means that an ansatz forp/rm as a function ofr is
needed to calculate the evolution. Here we complete
model of the previous section with the inclusion of a bu
08351
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viscosity pressure obeyingp52b2r, where b2 is a con-
stant. Accordingly, the roots of the quadratic equati
r sG(r s)50 become

r s
65212

b2

2c2
1

gm2gf

2c2
6AD, ~43!

where now

D5
~gm2gf!2

4c4
2S 11

b2

2c2D gm2gf

c2
1

b4

4c4
. ~44!

Thus we find that the constraint between the stationary d
sity ratios becomes

r s
1r s

2511
b2

c2
. ~45!

We see that the startup density ratio increases with the r
of viscous to interaction pressures.

Now we consider the question whether the transition fr
matter dominance to the coincidence era is compatible wi
transition from decelerated to accelerated expansion. T
transition impliesq.0 for r @1 andq,0 on the late attrac-
tor stage. With the help of Eqs.~13!, ~20! and ~22! with k

50 the deceleration parameterq52äa/ȧ2 can be written as

q5
3

2 S gf
(e)1

rG

11r D21. ~46!

In the present model these acceleration transition constra
translate intoqs

1[q(r s
1).0.q(r s

2)[qs
2 for the accelera-

tion parameter in the asymptotic regime where

q~r !5
3

2 Fgf1c2~11r !1c2
~r 2r s

2!~r s
12r !

11r G21.

~47!

Its derivative

q8~r !5
3c2

2~11r !2
~11r s

1!~11r s
2! ~48!

is positive-definite so that the deceleration parameter
creases monotonically as the Universe expands~see Fig. 1!.
Then we find that

qs
65

3

2
gf

621, ~49!

and we may write these constraints asgf
2,2/3,gf

1 , or
equivalently

2/32gf

11r s
1

,c2,
2/32gf

11r s
2

. ~50!

Using Eq.~43! we get
3-5
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gf1~11r s
1!~11r s

2!c25gm , ~51!

which combined with Eq.~49! yields

c25
3gm2222qs

2

3r s
1~11r s

2!
.0. ~52!

Inserting ~52! into ~50! and using~45!, we find that an ac-
celerating transition implies an upper bound onr s

2

r s
2,

1

3 F S 413
b2

c2D 1/2

21G[r smax
2 ~53!

and a lower bound onr s
1

r s
1.

3~11b2/c2!

~413b2/c2!1/221
[r smin

1 . ~54!

We note that both bounds grow with the ratiob2/c2 and their
values for a perfect fluid~i.e., b250) are 1/3 and 3, respec
tively ~see Fig. 2!. The upper bound~53! holds up to the
critical ratio (b2/c2)c53r 0

212r 021 wherer smax
2 5r 0. In the

high viscosity regime, above (b2/c2)c , the upper bound be
comesr 0. We also note that the parameterl has the lower
bound lmin53c2(r smin

1 2r smax
2 ) for b2/c2<(b2/c2)c , that

grows with b2/c2 and has a perfect fluid value of 8c2. On
the other hand,lmin53c2(r smin

1 2r 0) for b2/c2.(b2/c2)c .
Further, using Eqs.~43! and ~49!, the requirement of late

time accelerationqs
2,0 becomes

gf,
1

3

6gm2429c2gm26b2

3gm2223c223b2
. ~55!

Then, the positive-definite character of the quintessence
tential, hence ofgf , implies that the feasible region in pa
rameter space (b2,c2) has the upper boundc252/3
24/(9gm)22b2/(3gm). For CDM it readsc2,2/9 andb2

,1/3.

FIG. 1. Selected curves of the deceleration parameterq vs the
density ratior between the late time ratior s

250.5 and the early
time ratior s

156. From top to bottom, the curves correspond to
quintessence baryotropic indexgf50.65, 0.5, and 0.4.
08351
o-

The density ratio at the beginning of the accelerated
pansionr ac is given as the root ofq(r ac)50. Using Eq.~46!
we find

r ac52
gf2b222/3

gm2b222/3
. ~56!

We see thatr ac also grows with the increase of the bu
dissipative pressure, so thatr ac>(2/32gf)/(gm22/3) (.2
23gf for CDM! with the constraintb2,gm22/3 (,1/3 for
CDM!.

Likewise, the inequalitiesr s
1.r ac.r 0.r s

2 must hold.
The corresponding redshiftzac is given by

11zac5F ~r ac2r s
2!~r s

12r 0!

~r s
12r ac!~r 02r s

2!
G 1/l

, ~57!

where we have used Eq.~33!. We note that the value of the
acceleration redshift is model dependent. ForLCDM models
it has been shown to be close to unity@43#, while it has been
argued that coupling between dark energy and dark ma
allows for zac.5 @44#. We have found that this model lead
either to zac&1 or much larger values, depending on t
sector of the parameter space~see Figs. 3 and 4!.

V. OBSERVATIONAL CONSTRAINTS

It seems that supernovae of type Ia~SNeIa! may be used
as standard candles. Properly corrected, the differenc
their apparent magnitudes is related to the cosmological
rameters. Confrontation of cosmological models to rec
observations of high redshift supernovae (z&1) have shown
a good fit in regions of the parameter space compatible w
an accelerated expansion@1–3,5,6,45#. We note, however,
that models likeLCDM and QCDM usually require fine
tuning to account for the observed ratio between dark ene
and clustered matter, while QIM models simultaneously p

FIG. 2. Feasible regions for the late time density ratior s
2 and

the early time ratior s
1 for a transition from decelerated to accele

ated expansion to occur, as a function of the ratio of viscous
interaction pressuresb2/c2.
3-6
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vide a late accelerated expansion and solve the coincid
problem.

Ignoring gravitational lensing effects, the predicted ma
nitude for an object at redshiftz in a spatially flat homoge-
neous and isotropic universe is given by@46#

m~z!5M15 logDL~z!, ~58!

whereM is its Hubble radius free absolute magnitude a
DL is the luminosity distance in units of the Hubble radiu

DL5~11z!E
0

z

dz8
H0

H~z8!
. ~59!

For noninteracting QCDM modelsDL can be expresse
functionally in terms ofgf ~assuming thatgm is a constant!,
so that the history of this indexgf(z) could in principle be

FIG. 3. Selected curves of the redshift at the beginning of
accelerated expansionzac vs the interaction parameterc2. They cor-
respond to the current density ratior 050.56 the late time ratior s

2

50.5, the early time ratior s
156, and the viscous to interactio

pressure ratiob2/c252. From top to bottom, the curves correspo
to the quintessence baryotropic indexgf50.55, 0.6, and 0.7.

FIG. 4. Selected curves of the redshift at the beginning of
accelerated expansionzac vs the interaction parameterc2. They cor-
respond to the current density ratior 050.56, the late time ratio
r s

250.5, the early time ratior s
1512, and the viscous to interactio

pressure ratiob2/c255. From top to bottom, the curves correspo
to the quintessence baryotropic indexgf50.4, 0.5, and 0.6.
08351
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reconstructed from the magnitude-redshift data of SN
alone. Further, using the conservation equation of the fi
the historyV(z) of the quintessence potential could also
reconstructed. For this reason, many authors have dealt
the recent evolution ofgf .

When quintessence interacts with matter, however,
quintessence baryotropic index looses this preeminent r
To see why it is necessary to plug the expansion rateH(z) in
Eq. ~59!. We first note that Eq.~13! can be written as
d ln r/d ln(11z)53G. Then integrating Eq.~20! and inserting
in Eq. ~22! ~for k50) we find

H~z!

H0
5F11r ~z!

11r 0
G1/2

expF3

2E0

z dz8

11z8

gf
(e)~z8!

G~z8!
G , ~60!

where the density ratio in terms of the redshift is given b

r ~z!5r 0expF3E
0

z dz8

11z8
G~z8!G . ~61!

So,DL besides being a functional of the quintessence bar
tropic index also becomes a functional of the interaction a
dissipative pressures through the effective baryotropic in
ces. As the historiesP(z) andp(z) cannot be disentangle
from gf(z) in Eq. ~60!, the magnitude-redshift data alon
cannot reconstructgf(z) even in principle when interaction
occur.

By virtue of Eqs.~31! and ~32! we obtain

DL5~11z!~11s!1/2E
0

z

~11z8!23gf
2/2@11s~11z8!l#21/2.

~62!

This integral can be expressed in terms of the hypergeom
ric function

DL5~11z!
~11s!1/2

l~R11! F ~11z!R11
2F1S 1

2
,R11,R12;

2s~11z!lD22F1S 1

2
,R11,R12;2s D G , ~63!

whereR5(12l23gf
2/2)/l. We have used the sample o

38 high redshift (0.18<z<0.83) supernovae of Ref.@2#,
supplemented with 16 low redshift (z,0.1) supernovae from
the Calán/Tololo Supernova Survey@47#. This is described as
the ‘‘primary fit’’ or fit C in Ref. @2#, where, for each super
nova, its redshiftzi , the corrected magnitudemi and its dis-
persions i were computed. We have determined the optim
fit of the QIM model by minimizing ax2 function

x25(
i 51

N
@mi2m~zi ;l,R,s,M!#2

s i
2

, ~64!

where N554 for this data set. This fit yieldss.0 as the
most probable value. We note thats50 means that the Uni-
verse is settled at the asymptotic stater 5r s

2 , with a constant
deceleration parameter given by Eq.~49!.

e

e
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In other words, due to the limitations of the magnitud
redshift method~see Ref.@48# and references therein! the
currently available set of supernovae located atz,1 is un-
able to provide a clear signature of the turnover from ma
dominated decelerated phase to the current accelerated
Hopefully future observations of type Ia supernovae, such
expected from the proposed SNAP satellite@49#, combined
with other cosmological observations, will provide much s
vere constraints on the parameters and produce a rel
reconstruction of the evolution of the density ratio. So,
the purpose of fitting to this set of observations, we may
the attractor solutionr s

2 . Then Eq.~63! simplifies to@14,50#

DL~z!5
~11z!@~11z!b21#

b
, ~65!

whereb5l(R11)52qs
25121/a is minus the asymptotic

deceleration parameter. Sob increases witha, and 1,a
,` corresponds to 0,b,1. On the attractor we have

gs5
2

3a
5

2

3
~12b!. ~66!

The optimum fit of this attractor model is given by minimi
ing thex2 function

x25(
i 51

N
@mi2m~zi ;b,M!#2

s i
2

. ~67!

The most likely values of these parameters are found to
(b,M)5(0.395,23.96), yielding xmin

2 /NDF51.12 (NDF

552), and a goodness of fitP(x2>xmin
2 )50.253. We esti-

mate the probability density distribution of the parameters
evaluation of the normalized likelihood@51#

p~b,M!5
exp~2x2/2!

E dbE dM exp~2x2/2!

. ~68!

Then we obtain the probability density distribution forb
marginalizing p(b,M) over M. This probability density
distribution p(b) is plotted in Fig. 5 and it yieldsb
50.39860.104 (1s). Hence it can be established th
0.085,b,0.711 with a confidence level of 0.997; an acc
erated superattractor QIM universe is strongly supported
this data set, in agreement with a similar analysis ofLCDM
and QCDM models@2,3,6,52#.

Stronger bounds on the parametersgf , b2 and c2 than
those obtained in the previous section may be obtained f
gm and estimates ofr s

6 andqs
2 . The equations to be used a

~49!, ~45! and

c21b25
r s

2

11r s
2 Fgm2

2

3
~qs

211!G ~69!

obtained by combining Eqs.~43! and~49!. For the estimates
we take as beforer s

2.r 0 , qs
2.2b. Besides, big bang nu

cleosynthesis and the fluctuations imprinted on the cos
08351
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microwave background open new windows on the evolut
of the quintessence component@18,53,54#. Excluding quin-
tessence inflation models~e.g. @55#!, primordial nucleosyn-
thesis is probably the earliest epoch from where we can
some information about the density ratio. Hence we appro
mate the initial density ratior s

1 as the ratio at the start up o
primordial nucleosynthesisr N ~see the Appendix for furthe
discussion!. The quintessence component, evolving under
approximately exponential potential, appears in the ea
Universe as a form of radiation affecting nucleosynthe
abundance yields and the heights of the acoustic peaks in
cosmic microwave background radiation. When decoup
from matter it behaves like a collisionless, isotropic, a
nearly non-clustering component@53,56#. Such a non-
standard component alters the cooling rate and the up
bound on the change of relativistic energy density is para
etrized in terms of the maximum variation in the effecti
number of neutrino species asDg* (TN),7DNmax/4, where
g* (TN)510.75 in the standard model with three massle
neutrinos. Then, assuming that the quintessence-matter i
action switches on after nucleosynthesis, we get the bou

r s
1.r N.

4g* ~TN!

7DNmax
.6.14. ~70!

Combining it with Eq.~52! and taking into account tha
DNmax.1 @57# we get for pressureless matter the upp
bound on the interaction coefficient

c2,
7~122q0!DNmax

12~11r 0!g* ~TN!
.0.063. ~71!

Then, inserting this value in Eq.~49! it follows that gf
.0.3. In other words, a cosmological constant is excluded
this model. Similarly, from Eq.~69! we get

c21b2.
r 0

3~11r 0!
~122q0!.0.215. ~72!

FIG. 5. The estimated probability density distribution~normal-
ized likelihood! for the acceleration parameterb52qs

2 of the as-
ymptotically stable stationary solutionr 5r s

2 .
3-8
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Besides, assuming a postnucleosynthesis switch on of
interaction, we find from Eq.~45!

b2

c2
.r Nr 021.2.43. ~73!

Henceb2 must lie in the range (0.152,0.215) andc2 in the
interval (0,0.063). Note that the lower bound~73! is above
the critical value (b2/c2)c51.0760.38, suggesting that vis
cous effects are important.

VI. CONCLUDING REMARKS

We have presented a spatially homogeneous and isotr
interacting quintessence model that evolves towards a p
of accelerated expansion and simultaneously solves the
incidence problem. It provides a reasonable explanation
the embarrassing question, ‘‘why the contributions of da
matter and dark energy~which in principle scale at differen
rates with expansion! to the overall energy density are of th
same order precisely today?’’ Rather than postulating a
tential for the quintessence field and specifying its inter
tion with the dark matter component, we derived these qu
tities from the strong coincidence condition~i.e., that the
density parameters of these two components tend to con
values at late time!. This requirement led us to the stationa
condition@Eq. ~16!#, first obtained in Ref.@12#, as well as to
conclude that the FLRW metric must be spatially flat.

The ratior between the energy densities is seen to evo
from an initial unstable valuer s

1 up to the lower and stable
asymptotic valuer s

2 at late time. In terms of these quantitie
we have introduced the parameters that assess how near~or
far away! from the asymptotic state of consta
acceleration—see Eq.~32!—our Universe lies. The availabl
data seem to suggest that our Universe is close to the sta
ary era. On the other hand, they are not sufficient to discri
nate our model from theLCDM model. Hopefully, the
SNAP satellite will provide us with a wealth of high redsh
data likely enough to break the degeneracy and infer
redshift at which the Universe began accelerating its exp
sion.

We note that the quintessence-matter interaction and
dissipative pressure terms imply that the magnitude-reds
relationship is not enough, even in principle, to reconstr
the evolution of these quantities together with the quint
sence baryotropic index history. Further independent ob
vational tests are needed for this reconstruction program
nally, the evolution of cosmological perturbations predict
by this model remains to be studied. This will be conside
elsewhere.
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APPENDIX

Here we collect some complementary considerations
garding our model. We begin by noting that we conside
universal coupling of the quintessence field to all sorts
matter, either baryonic or not. As our main concern is
investigation of the late universe and a dynamical solution
the coincidence problem, we consider along this stag
simple two-component model: matter~excluding radiation!
and quintessence@an additional radiation~relativistic! com-
ponent would be dynamically irrelevant#.

The coupling between matter and quintessence manif
itself as the nonconservation of their partial stress-ene
tensors¹mT(m) n

m52¹mT(f) n
mÞ0. For the investigation of

the dynamics of our homogeneous model, it suffices
specify the projection of this nonconservation equation alo
the velocity of the whole~comoving! fluid un, that for a
perfect fluid is

un¹mT(m) n
m52um¹mrm2Q~rm1pm!52d ~A1!

where, for the specific model we have investigated in Se
III to V, the coupling isd5c2rQ with Q5¹aua the expan-
sion scalar andr5umunTmn , whereTmn denotes the tota
stress energy tensor.

On the other hand, for the investigation of inhomog
neous perturbations of this model, it will be necessary to t
into account that the velocity of the componentsu(m)

m and
u(f)

m are different, in general, from the velocity of the overa
fluid. Also, these fluids may experience acceleration due
pressure gradients or due to their coupling~anomalous accel-
eration!. Perhaps the simplest generalization of Eq.~A1! to
this wider framework is the ‘‘longitudinal coupling’’

¹mT(m) n
m5u(m)nd. ~A2!

It involves energy transfer between matter and quintesse
with no momentum transfer to matter, so that no anomal
acceleration arises. Hence this choice is not affected by
servational bounds to a ‘‘fifth’’ force exerted on the baryon
Clearly other generalizations of Eq.~A1! could be consid-
ered that do involve an anomalous acceleration in matter
its coupling to quintessence. In this regard we note that
cause of the universal nature of this coupling, it could not
detected by differential acceleration experiments. We a
note that the coupling we have proposed is purely phen
enological and the validity of the expression ford is re-
stricted to cosmological scales~as it depends on magnitude
that are only well defined in that setting!. This means that the
form of the coupling at smaller scales remains unspecifi
and the requirements for the different couplings that co
have a manifestation at these scales are that they give
same~averaged! couplingd at cosmological scales and me
the observational bounds from the ‘‘local’’ experiments@58#.

The longitudinal coupling is also a very attractive choi
to extend our model to the radiation era, when the domin
ing matter component is relativistic, as it does not invol
deviation of relativistic particles from their geodesics. Inde
the exact solution~28! ~valid only for constantgm), holds for
the matter-quintessence domination era, withgm51 in the
3-9
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case of CDM—as well as for the radiation domination era
with gm54/3. In the usual approximation thatgm drops in-
stantaneously at equality timetE , all we need to extend ou
model to the radiation era is to match both solutions of E
~13! at tE ~or equivalently atxE). Clearly H, r, the energy
densities,p and P are continuous through this transitio
and we can also assume the samegf for both eras. Hence
there is a jump in the slopeṙ at tE given by

ṙ .2 ṙ ,5HEr E ~A3!

whereṙ . ( ṙ ,) is the limit from the rightt→tE
1 ~from the left

t→tE
2). That is,r falls more steeply in the radiation era tha

in the matter era. For the combined solution the initial st
is the radiation era stationary solutionr s

1 that is larger than
the r s

1 of the matter era solution extrapolated to the radiat
era. Then, a lower bound for the matterr s

1 is also a lower
bound for the radiationr s

1 , and no bound obtained for th
parameters is spoiled. In fact better bounds could be obta
using the combined solution.

The extension back in time of the couplingd involves
another nonuniqueness, and there is no reason to assum
it had the same form also during the early universe. In p
ticular, all couplings containing terms that become negligi
in comparison withd at late times~e.g. terms likeHn with
n.3) hold the same property of solving the coinciden
nd

08351
.
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problem. And the results of our model hold for this class
models in an approximated, asymptotic sense.

In our model we are assuming that the coupling was n
ligible during the primordial nucleosynthesis. A simple ‘‘ge
eralized’’ coupling with this property is

dgen53c2Hr expS 2
H

H1
D , ~A4!

where the parameterH1 may be chosen at will, so tha
dgen.d for H!H1 anddgen.0 for H@H1. So, by choos-
ing H1 as the Hubble parameter at some suitable time a
nucleosynthesis~e.g.H1;1024 s21), all our results for the
late universe stand while the coupling essentially vanis
for times prior to nucleosynthesis end.

Another reason to assume an onset of the interactio
some epoch of the early universe is the high mass of
quintessence field that grows as

mf
2 .

V0A2

2 S t0

t D 2

~A5!

for t→0. This means that the massmf becomes arbitrary
large for early enough times. However, because of the c
pling with matter, this very heavy particle could decay in
‘‘dangerous’’ particles like gravitinos, whose decay produ
would change the baryon-to-photon ratio required by a s
cessful nucleosynthesis~see, e.g.@59#!.
is
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