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Stability of a Fermi ball against deformation from spherical shape
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The stability of a Fermi ball (F ball!, which is a kind of nontopological soliton accompanying the break-
down of the approximateZ2 symmetry, is investigated in three situations: when it is electrically neutral, when
it is electrically charged and unscreened, and when it is electrically charged and screened. We argue only that
the third case is physically meaningful since the neutralF ball is unstable and the case of an unscreened
chargedF ball is observationally excluded when it has a sizable contribution to CDM. We find that the energy
scale of the breakdown of the approximateZ2 symmetryv should satisfyv,33106 GeV if the F ball is the
main component of CDM.
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I. INTRODUCTION

An F ball, a kind of nontopological soliton, was intro
duced as a candidate for cold dark matter~CDM! @1,2#. A
similar object is also suggested to play an important role
baryogenesis@3#.

The simplest type of theF ball is a bubble of false
vacuum surrounded by a thin domain wall on which ma
zero-mode fermions are attached. The surface tension o
wall is balanced with the Fermi pressure due to the ze
mode fermions in the wall. TheF ball may be stabilized
owing to this balance between the surface energy and
Fermi energy. Though theF ball is stable against the varia
tion of the radius in case it keeps a spherical shape, it ma
unstable against deformation from the sphere. Macphe
and Campbell pointed out in their pioneering work@1# that
such F balls are unstable against deformation from t
spherical shape, and that they should finally fragment int
number of tinyF balls @4# ~see Fig. 1 for an illustration of a
fragmentingF ball!. Suppose there are a large number
such tinyF balls in the present universe contributing sizab
to CDM. The cosmic flux of these objects should be lar
proportional to the inverse of the mass, and they should h
been observed contrary to the experimental results unles
scattering cross section with ordinary matter is very sm
Here, we are not interested in such a new kind of wea
interacting particles since we need too many assumption
introducing new tiny particles and have only an indire
means to detect such particles@1#.

Morris then introduced the idea of an electrically charg
F ball @5# which is considered to be stabilized due to t
repulsive long-range Coulomb force@2#. Since the chargedF
balls can be large and heavy in this case, they can siz
contribute to CDM without contradicting the present obs
vations of the cosmic flux. TheseF balls with a large cross
section of interaction with ordinary matter are interesting
cause of their future detectability.@We nevertheless note tha
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the cross section per unit mass for theF ball s/M f is not as
large as the one which was recently proposed@6,7# for the
self-interacting dark matter. We do not go into details sin
the above issue is still controversial~see the discussions i
Sec. VI!.#

In the present paper we first examine the instability of
neutral F ball against the deformation from the spheric
shape. It is known@1# that the spherical shape is unstab
against deformation due to the finite volume energy with
the thin-wall approximation. We investigate the next-t
leading order approximation, the curvature effect of the w
since it has a shape-dependent contribution to the total
ergy, and is important when the volume energy is very sm
We find that the neutralF ball is unstable even in the pres
ence of the curvature effect.

We next examine whether theF ball is stable when it is
electrically charged and unscreened. Since the total energ
such anF ball is higher than the sum of the energies of t
fragmentedF balls, it fragments into smallerF balls in finite
time. Its lifetime is, however, longer than the age of t
universe if there is an energy barrier high enough betw
the state of anF ball and that of fragmentedF balls. We see
that the Coulomb force does make the lifetime of theF ball
long enough.

We thirdly examine whether theF ball has a lifetime long
enough to survive until present if it is screened due to
electrons or positrons in the thermal bath of the early u

FIG. 1. A deformation and a fragmentation of theF ball. ~a!
Sphere.~b! Cigarlike deformation.~c! Shape narrow in the middle
~d! FragmentedF balls.
©2003 The American Physical Society06-1
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verse. Though the long-ranged Coulomb force becomes s
ranged in the thermal bath, the lifetime of theF ball is found
long enough in the proper region of the parameters.

We finally examine which kind ofF balls satisfy the con-
ditions for a main component of CDM. We find that only th
screenedF ball meets the conditions after taking into accou
the stability of theF ball, observational constraints, and co
mological considerations.

We focus on the Fermi ball in which the fermions a
tightly bound in the domain wall and distribute only tw
dimensionally in the present paper. The effect of the dis
bution normal to the domain wall must be included in t
case where they distribute with the thickness comparabl
that of the domain wall. This effect is investigated elsewh
@8#.

The above contents are organized as follows: We fi
consider electrically neutralF balls and discuss their stabilit
in Sec. II. SmallF balls which are electrically charged an
not screened by electrons are considered in Sec. III. Scre
ones are considered in Sec. IV; this is the main theme in
present paper. In Sec. V we discuss certain constraints on
parameters obtained from various conditions. We have s
maries and discussions in Sec. VI. The detailed calculat
are given in the Appendixes.

II. STABILITY OF AN ELECTRICALLY NEUTRAL
F BALL

We briefly introduce the electrically neutralF ball pro-
posed by Macpherson and Campbell@1# to make clear the
notations and technical terms. The Lagrangian density
given by

L5
1

2
~]mf!21c̄ f~ igm]m2Gf!c f2U~f!, ~1!

wheref andc f are a scalar and a fermion field, respective
and G is a Yukawa coupling constant. Here,U(f) is an
approximate double-well potential@9#,

U~f!5
l

8
~f22v2!21Ue~f!. ~2!

The first term has theZ2 symmetry underf↔2f, and the
second term violates the symmetry, though we assume
much smaller than the first one~see Fig. 2!. Thus, the La-
grangian density has an approximateZ2 symmetry, which we
call ‘‘biasedZ2 symmetry’’ @1# hereafter. Since we conside
the case where the fermions are tightly bound in the dom
wall, we assume that the coupling constants satisfy the c
dition G@Al.

After the phase transition breaks spontaneously the bia
Z2 symmetry atT5Tph;v, there arise two almost degene
ate vacua with the energy density difference ofe. They are
the true vacuum withf5v and the false one withf52v.
Then a domain wall is produced between two vacua, and
fermions are captured as zero modes in the domain wall@10#.
Though the effect ofe should be negligible soon after th
phase transition, it gets more important as the universe
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pands. If the volume energy becomes larger than the sur
energy during the expansion, the true vacuum is energetic
favored and enlarges its volume. At the same time, the reg
of false vacuum gets diminished, and becomes a small c
fined region surrounded by the domain wall. Such a region
false vacuum would continue to shrink due to the surfa
tension and the volume effect proportional toe, and finally
disappear if we neglect the Fermi pressure caused by
zero-mode fermions trapped in the wall. In our case, ho
ever, the Fermi pressure is not negligible and stops
shrinkage of the region, when it gets balanced with the s
face tension. Such a bubble of the false vacuum with ze
mode fermions trapped in the surrounding wall is calledF
ball @1#. We take the temperature for theF ball production as
T5Tf . BecauseTf is somewhat lower thanTph , Tf is as-
sumed to beTf&0.1v in the present paper.

We consider a thin-walledF ball, the size of which is
much larger than the thickness of the domain wall. For s
plicity, we neglect the small energy differencee and take the
exactZ2 symmetry until Sec. V. Then the Lagrangian dens
is

L5
1

2
~]mf!21c̄ f~ igm]m2Gf!c f2

l

8
~f22v2!2. ~3!

The total energy of anF ball is expressed as

Etot5Es1Ef , ~4!

whereEs andEf are a contribution from the domain wall an
that from the zero-mode fermions, respectively. In the t
wall case, Fermi gas in the wall distributes two dimensio
ally on the surface of theF ball @11#. Taking thew axis
normal to the surface, which is positive~negative! for the
outside~inside! of theF ball, we express the fermion numbe
density as

nf5s fd~w!, ~5!

FIG. 2. The biased potential forl51. Two almost degenerate
vacua with the energy difference ofe exist: the true vacuum with
f5v and the false vacuum withf52v.
6-2
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STABILITY OF A FERMI BALL AGAINS T . . . PHYSICAL REVIEW D 67, 083506 ~2003!
with s f the surface density of the fermion number, and
Fermi energy

Ef5
4Ap

3 E dS s f
3/2. ~6!

We obtain the surface energy

Es5E dSdw US 11
w

R1
D S 11

w

R2
D U

3H 1

2
~¹f!21

l

8
~f22v2!2J , ~7!

whereR1 and R2 are the radii of principal curvature of th
F-ball surface~see Fig. 3 and Appendix A!.

If the fermion-scalar couplingG is not too small, theF
ball is stable against releasing a fermion with mass;Gv
from the wall to the vacuum. The number of the fermions
the F ball,

Nf5E dS s f , ~8!

is then conserved. Thus, the energy of theF ball is obtained
by minimizing

Etot;m5Etot1mS Nf2E dS s f D , ~9!

with m the Lagrange multiplier. We first minimize it with
respect tos f . Noting thatEs is independent ofs f , we ob-
tain the uniform distribution of the fermions,

s f5
Nf

S
, ~10!

with S the area of theF-ball surface. We next minimize th
energy with respect tof. Assuming that the variation off in

FIG. 3. The local orthogonal coordinates (u,v,w), the origin of
which is on the surface of theF ball. We takeu and v along the
lines of curvature on the surface, andw normal to the surface. Here
R1 (R2) is a radius of principal curvature with respect tou50 (v
50) at the origin.
08350
e
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the direction parallel to theF-ball surface is much smalle
than that in the directionw, we get the Euler-Lagrange equa
tion for f,

f̈1S 1

R11w
1

1

R21wD ḟ5
l

2
f~f22v2!, ~11!

with the overdot symbol inḟ or f̈ standing for the deriva-
tive with respect tow. Here,f fulfills the boundary condi-
tion,

f5H 1v ~w@dn!,

0 ~w50!,

2v ~w!2dn!,

~12!

with dn the width of the wall. We take the leading contribu
tion, f0 , in the thin-wall expansion withR1 ,R2→`. It sat-
isfies

f̈05
l

2
f0~f0

22v2!, ~13!

with

f05H 1v ~w@dn!,

0 ~w50!,

2v ~w!2dn!.

~14!

The solution forf0 ,

f05v tanh
w

dn
, ~15!

with dn52/(Alv), minimizes the energy under the cond
tion, Eq. ~10!, to be

Etot
(0)5SS1

4ApNf
3/2

3AS
, ~16!

with S52Alv3/3 the surface tension in the wall. We finall
minimize Etot

(0) with respect toS, and obtain

Etot
(0)5~12pS!1/3Nf , ~17!

with the area of the surface,S5(2Ap/3S)2/3Nf . An F ball
can deform with this surface area being kept constant@see
Figs. 1~a!–1~c!#. Moreover, it has the same energy even if
splits into some smallerF balls @see Fig. 1~d!# sinceEtot

(0) is
proportional to the number of fermions. Thus, we cannot
whether theF ball is stable or not against deformation an
fragmentation into pieces, within the thin-wall approxim
tion which corresponds to the leading order in the thin-w
expansion. This is the same result as what Macpherson
Campbell derived in their paper@1#. They concluded further
that the neutralF ball is unstable, taking into account th
volume effect proportional toe. We here consider the next
to-leading order contribution in the thin-wall expansion, i.
6-3
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the curvature effect, since such an effect becomes impor
when it is comparable to the volume energy effect.

We keep the terms up to the next-to-leading order forf,

f5f01f1 , ~18!

with f1 smaller thanf0 by the order ofdn /R @12#. From
Eqs.~11! and ~12!, f1 satisfies

f̈12
l

2
~3f0

22v2!f152S 1

R1
1

1

R2
D ḟ0 , ~19!

and the boundary condition

f15H 0 ~ uwu@dn!,

0 ~w50!.
~20!

The analytic solution@13# for f1 is given in Appendix B~see
Fig. 4 for the illustration off0 and f1). Substituting the
solution for f1 and that forf0 into Etot and keeping the
terms up to the order ofO„(dn /R)2Etot

(0)
… @14#, we get~see

Appendix B!

Etot5Etot
(0)1Etot

(2) , ~21!

where

Etot
(2)5CnE dS

1

uR1R2u
1DnE dS S 1

R1
2

1

R2
D 2 uR1R2u

R1R2
.

~22!

Here,Cn andDn are given by

FIG. 4. The perturbative solutions for the domain wall fieldf.
Here,f0 is the leading term andf1 the next-to-leading term in the
thin-wall expansion. Note thatf0 is rescaled asf0 /v with v the

symmetry breaking scale, andf1 as Alf̃1 with f̃1

52R1R2f1 /(R11R2) (R1 andR2 are the radii of principal curva-
ture of theF-ball surface!.
08350
nt

Cn5E dw ~w2ḟ0
22ḟ0f̃1!

.2
0.25v

Al
, ~23!

Dn52
1

4E dw ḟ0f̃1

.2
0.28v

Al
, ~24!

with f̃152R1R2f1 /(R11R2).
First, we examine the stability of the sphericalF ball

against the perturbative deformation from the spherical sh
@see Fig. 1~b!#. For this purpose, we take the curvature rad
on theF-ball surface positive. In this case, the first term
Eq. ~22! is constant according to the Gauss-Bonnet theor
@15#. Thus, the shape-dependent sector inEtot comes from
the second term in Eq.~22!. Because it is semi-negative defi
nite, and zero only for the spherical shape, the sphericaF
ball is unstable against the perturbative deformation.

We next consider the stability of the F-ball against fra
mentation into smaller ones~see Fig. 1~d!!. In this case, the
fragmentation does not changeEtot

(0) because it only depend
on the fermion number. Here, we compare the energy of
sphericalF ball with that of the fragmented sphericalF balls
for simplicity. We see that the second term in Eq.~22! van-
ishes. Thus, only the first term in Eq.~22! changes in the
fragmentation. Since it is proportional to the number ofF
balls due to the Gauss-Bonnet theorem, its negative s
shows that the fragmentation is energetically promot
Therefore, we find that theF ball is unstable against not onl
the deformation from the spherical shape but also the fr
mentation into smaller ones.

As pointed out by Macpherson and Campbell, the fra
mentation will continue until the thin-wall expansion ge
invalid. If the fragmented tinyF balls sizably contribute to
CDM, there should be a large number of them and a la
cosmic flux of them as well. The present observations for
dark matter search tell that they can interact with ordin
matter only very weakly. SuchF balls are not considered
here since their detectability was discussed in Ref.@1#.

III. STABILITY OF ELECTRICALLY CHARGED F BALL
IN THE UNSCREENED CASE

In the present section we consider the electrically char
F ball proposed by Morris@2#, in which the fermions trapped
on the surface have electric charge. Assigning the elec
charge of1e to the fermion for simplicity, we consider anF
ball carrying the electric charge1eNf . The energy of theF
ball is expressed as

Etot5Es1Ef1Ec , ~25!

with Ec the Coulomb potential energy. Since the Coulom
energy is proportional to the fermion number squaredEc
6-4
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}Nf
2 , the total energy per unit fermion numberEtot /Nf is an

increasing function ofNf . Thus, when theF ball fragments
into smaller ones, the total energy apparently decreases
therefore cannot conclude that the electric force stabilizes
F ball from fragmentation only by comparing the energies
the two states. Morris, however, suggested@2# that the inclu-
sion of the long ranged repulsive force helps theF ball to be
stabilized. Since it is not so clear whether the electric rep
sive force stabilizes theF ball or not, we here verify it using
the perturbative method.

For this purpose we investigate whether the energy ba
exists between theF ball before the fragmentation and th
after it. Let us consider a sphericalF ball and its perturbative
deformation from the spherical shape. Assuming the ro
tional invariance around thez axis for simplicity, we express
the surface of theF ball in the polar coordinates as

xf~u,w!5r ~u!e, ~26!

with e a unit vector,

e5~sinu cosw,sinu sinw,cosu!. ~27!

We expandr (u) as

r ~u!5RS 11(
l 51

`

al Pl~cosu!D
[R~11dr !, ~28!

whereal ’s are small coefficients of the perturbative expa
sion, andPl(cosu) is the Legendre polynomial. We write th
surface element as

dS5R2~11dS~al !!dV, ~29!

with dV5sinu dudw. We also expand the surface density
the fermion as

s f~u!5
Nf

4pR2~11dS!
S 11(

l 51

`

cl Pl~cosu!D
[

Nf

4pR2~11dS!
~11ds f !, ~30!

where cl ’s are small expansion coefficients. Note that t
above expression satisfies the condition for the fermion n
ber Nf to be conserved@see Eq.~8!#.

Keeping the terms up to the second power ofal and cl
~see Appendix C!, we estimate, within the thin-wall approx
mation, the surface energy

Es5SS54pSR2S 11(
l 51

` hs
( l )

2l 11D , ~31!

the Fermi energy

Ef5
4Ap

3 E dS s f
3/25

2Nf
3/2

3R S 11(
l 51

` hf
( l )

2l 11D , ~32!
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and the Coulomb potential energy

Ec5
e2

8pE E dSdS8
s fs f8

uxf2xf8u
5

e2Nf
2

8pR S 11(
l 51

` hc
( l )

2l 11D ,

~33!

where

hs
( l )5S 11

l ~ l 11!

2 Dal
2 , ~34!

hf
( l )52

1

2 S 11
l ~ l 11!

2 Dal
21

3

8
bl

2 , ~35!

hc
( l )52

l 213l 21

2l 11
al

22
2~ l 21!

2l 11
albl1

1

2l 11
bl

2 , ~36!

with bl5cl22al . Using the effective radius

Re[A S

4p
5RS 11

1

2 (
l 51

` hs
( l )

2l 11D , ~37!

we express the total energy as

Etot54pSRe
21

2Nf
3/2

3Re
S 11(

l 51

` gf
( l )

2l 11D
1

e2Nf
2

8pRe
S 11(

l 51

` gc
( l )

2l 11D , ~38!

where

gf
( l )5

3

8
bl

2 , ~39!

gc
( l )5~ l 21!S 2

3

2~2l 11!
1

l

4Dal
22

2~ l 21!

2l 11
albl1

bl
2

2l 11
.

~40!

Minimizing Etot with respect toRe , we have

Etot5~12pS!1/3NfS 11
3e2ANf

16p
D 2/3H 11

2

3S 11
3e2ANf

16p
D

3(
l 51

` 1

2l 11
S gf

( l )1
3e2ANf

16p
gc

( l )D J , ~41!

with the effective radius

Re5
ANf

~12pS!1/3
S 11

3e2ANf

16p
D 1/3H 11

1

3S 11
3e2ANf

16p
D

3(
l 51

` 1

2l 11
S gf

( l )1
3e2ANf

16p
gc

( l )D J . ~42!

Since the last term in the brackets$ % in Eq. ~41! is semi-
6-5
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positive definite and zero only forb150 andal5bl50 for
l>2, Etot takes the local minimum when theF ball is spheri-
cal ~we note that the parametera1 corresponds to the sma
parallel displacement and not to the deformation of theF
ball!. Thus, the sphericalF ball is stable against the pertu
bative deformation from the spherical shape. It leads to
existence of the energy barrier and should suppress the
mentation of the sphericalF ball. If the suppression of the
fragmentation rate is strong, theF balls would be effectively
stable in the universe~for the detailed discussion on the
lifetime, see Appendix D! and could be the candidates fo
CDM. However, ifNf is very large, theF ball should have
such a strong electric field that should be quantu
mechanically screened by electrons or positrons with
screening length much shorter than theF-ball radius, as we
see in the next section. Therefore, the argument of this
tion cannot be applied for theF ball with very largeNf .

The argument of this section is applicable only for theF
balls with smallNf , which have the radius much smalle
than the screening length. SuchF balls should give too large
cosmic flux to be compatible with the present observation
the F balls contribute sizably to CDM~the more details are
given in Sec. V and Ref.@16#!. We therefore find that the
unscreened chargedF ball cannot be a main component
CDM.

IV. STABILITY OF AN ELECTRICALLY CHARGED F
BALL IN THE SCREENED CASE

In this section we examine the stability of such a largeF
ball that is electrically charged and screened due to the e
trons produced quantum mechanically or thermally. We c
the fermion trapped on theF-ball surface a ‘‘heavy fermion’’
in order to distinguish it from the electron; the heavy fermi
is almost massless in the two-dimensional surface while
as heavy asGv in the true vacuum. The property of th
screenedF ball is quite different from that of an unscreene
one, because the long ranged electric force becomes s
ranged as a result of the screening. Let us investigate
screening effect by introducing the Coulomb potential ene
Ve for electron (2Ve for positron! with Ve52eA0 . We use
the Thomas-Fermi method@17,18# to deal with this problem
@19#. The Helmholtz free energy is expressed as

Ftot5Fn1Fsc , ~43!

whereFn is the non-Coulombic term that is the same as
energy for the neutralF ball ~see Sec. II!. The second term
Fsc is the contribution from the screening electrons,

Fsc5E dSdw US 11
w

R1
D S 11

w

R2
D U

3H 2
1

2e2
~¹Ve!

21Fe2nfVeJ , ~44!

with Fe the free energy density of electron and positron
the Coulomb potential@20#,
08350
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Fe52
2T

~2p!3E d3p $ log~11e2(E2Ve)/T!

1 log~11e2(E1Ve)/T!%. ~45!

Here, the kinetic energyE is given byE5Ap21me
2 with me

the electron mass, and the density of the heavy fermionnf is
given by nf5s fd(w). @Note that the negative sign of th
first term in $ % in Eq. ~44! gives the correct electric energ
density,1E2/2, after the free energy is extremized with r
spect toVe .] Taking into account the conservation of th
heavy fermion number, we obtain the free energy by extre
izing Ftot1m(Nf2*dS s f) with respect tof, s f , andVe .
The procedure of extremization with respect tof ands f is
the same as in Sec. II, and we refer to the discussions
results there.

Now let us extremize the free energy with respect toVe .
Assuming that the variation ofVe in the direction parallel to
the F-ball surface is much smaller than that in the norm
direction, we get the Thomas-Fermi equation

1

e2
V̈e1

1

e2 S 1

R11w
1

1

R21wD V̇e5nf~w!2n̄e~w!, ~46!

where the overdot symbol stands for the partial derivat
with respect tow. Here,n̄e(w)5]Fe /]Ve is the expectation
value of the difference between the electron density and
positron density. The second term in the left-hand side~lhs!
in Eq. ~46! comes from the curvature effect, which was n
taken into account in the previous works. We here impose
boundary condition

Ve→0 for uwu@dsc , ~47!

with dsc the typical screening length. For the case,T@me ,
the electron number density is expressed as

n̄e.2
T2Ve

6
2

Ve
3

3p2
. ~48!

Note thatn̄e is positive since we takeVe negative, assuming
the F ball carrying the positive electric charge. In the fir
place, let us obtain the leading contribution in the thin-w
expansion by takingR1 ,R2→`. We get

Ve
(0)5

2A2pT

sinhS uwu1dsc

lT
D , ~49!

where
6-6
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lT5
A3

eT
, ~50!

dsc5lTcosh21
A2pT21A2p2T413e2s f

2

A3es f

,

.A2A6p

e3s f

~v@T!. ~51!

SubstitutingVe
(0) into Fsc and keeping the terms of the lea

ing order, we get the leading order ofFsc as

Fsc
(0)5E dSE dw H 2

1

2e2
V̇0

22
T2V0

2

6

2
V0

4

12p2
2s fV0d~w!J

5
8p2T3

A3e
E dS H coth3S dsc

lT
D2

3

2
cothS dsc

lT
D1

1

2J
.A2A2pe

3A3
E dSs f

3/2 ~v@T!. ~52!

From the above equation, we see that the heavy ferm
distribute uniformly over the surface, as is the case with
~10!. Then,f (0) in Eq. ~15! andVe

(0) in Eq. ~49! extremize
the free energy,

Ftot
(0)5SS1S 4Ap

3
1A2A2pe

3A3
D Nf

3/2

AS
. ~53!

Minimizing the free energy with respect toS, we obtain

Ftot
(0)5~12pS!1/3S 11AA3e

4A2
D 2/3

Nf , ~54!

with the surface area

S5S 2Ap

3S D 2/3S 11AA3e

4A2
D 2/3

Nf . ~55!

Thus, we cannot tell, within the leading order of the th
wall expansion, whether theF ball is stable against the clas
sical deformation and fragmentation into smaller ones.

We then keep the terms up to the next-to-leading orde
the thin-wall expansion to have

Ve5Ve
(0)1Ve

(1) , ~56!

with Ve
(1) smaller thanVe

(0) by the order ofdsc /R @21#. From
Eqs.~46! and ~47!, Ve

(1) satisfies
08350
ns
.

in

1

e2
V̈e

(1)2S T2

3
1

~Ve
(0)!2

p2 D Ve
(1)52

1

e2 S 1

R1
1

1

R2
D V̇e

(0),

~57!

with the boundary condition

Ve
(1)→0 for uwu@dsc . ~58!

The solution to Eq.~57! is given by

Ve
(1)52

A6puwu
2ew S 1

R1
1

1

R2
D coshS uwu1dsc

lT
D

sinh2S uwu1dsc

lT
D

3H f S uwu1dsc

lT
D2 f S dsc

lT
D J , ~59!

where

f ~x![ 1
3 sinhx coshx1 2

3 tanhx2 1
3 sinh2 x2x ~60!

~see Fig. 5 for the illustration ofVe
(0) andVe

(1)). Substituting
the solutions,Ve

(0) andVe
(1) , into Fsc and keeping the terms

up to the next-to-leading order, we get, in a manner simila
the derivation of Eq.~21!,

Fsc5Fsc
(0)1Fsc

(2) , ~61!

where@22#

Fsc
(2)5CscE dS

1

uR1R2u
1DscE dS S 1

R1
2

1

R2
D 2 uR1R2u

R1R2
.

~62!

HereCsc andDsc are given by

FIG. 5. The perturbative solutions for the electron potential
ergy Ve . Here,V0 is the leading term andV1 the next-to-leading
term in the thin-wall expansion. Note thatV0 is rescaled asV0/2pT

with T temperature, andV1 aseṼ1 /A6p with Ṽ152R1R2V1 /(R1

1R2) (R1 and R2 are the radii of the principal curvature of th
F-ball surface!.
6-7
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Csc52
1

e2E dw $w2~V̇e
(0)!22V̇e

(0)Ṽe
(1)%

.250l1/6v, ~63!

Dsc5
1

4e2E dw V̇e
(0)Ṽe

(1)

.25l1/6v, ~64!

with Ṽe
(1)52R1R2Ve

(1)/(R11R2). Note thatDsc is positive
in contrast to the case with the neutralF ball whereDn in Eq.
~24! is negative. This feature is very important for the d
cussion on the stability below. From Eqs.~22! and ~62!, we
obtain

Ftot
(2).2S 50l1/61

0.25

Al
D vE dS

1

uR1R2u

1S 25l1/62
0.28

Al
D vE dS S 1

R1
2

1

R2
D 2 uR1R2u

R1R2
.

~65!
Let us take the curvature radius of theF-ball surface posi-

tive, and consider the fragmentation of the sphericalF ball
into smallerF balls. The negative sign of the first term in E
~65! shows that the fragmentation is energetically promot
which is the same as the neutralF ball in Sec. II. On the
other hand, the sign of the second term is positive for

l.1.231023, ~66!

and there should be the energy barrier to suppress the
mentation of theF ball. In this sense, electrically chargedF
balls which are screened by electrons are metastable@23# at
T&0.1v ~see the discussion in Appendix E!.

The lifetime of the screenedF ball is estimated in Appen
dix E and is found extremely long, which makes theF ball
effectively stable. Thus, the screened chargedF balls can be
the candidates for CDM. In order for them to be a ma
component of CDM, they should satisfy the constraints to
discussed in the next section.

V. CONSTRAINTS ON THE PARAMETERS OF F-BALL

We consider the phase transition of the universe where
biasedZ2 symmetry is spontaneously broken and the n
work of domain walls is formed@24#. The number density o
domain walls is soon diluted by annihilation to becom
;1/H3, whereH is the Hubble constant. Using the ener
density of the domain walls,rwall;SH, we get the ratio of
rwall to the total energy density in the universer tot ,

rwall

r tot
.

SH

g* T4
.

S

HM pl
2

, ~67!
08350
-

,
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e
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with g* is the effective degree of freedom@25# and M pl is
the Planck mass. The ratio will be of the order of unity wh
H;Heq5S/M pl

2 .
The small violation of theZ2 symmetry gives an energ

of the false vacuum bubble proportional to its volume. Th
volume energy increases with the universe expansion
gets comparable to the surface energy atH;H f5e/S. The
domain walls then stop to expand getting round to producF
balls. From the cosmological viewpoint,F balls should be
produced before the domain walls dominate the total ene
density in the universe, since otherwise the energy of
universe would be dominated by blackholes made with
domain walls@24#. This condition isH f.Heq , which is re-
written in terms ofe,

e.0.4lv6M pl
22 . ~68!

Let us consider the case where theF balls are metastable
and may contribute sizably to CDM in the present univer
As mentioned in Sec. II, we are not interested in the neu
F ball, which is very tiny after the fragmentations, since w
need too many new assumptions in introducing such an
ject and have only indirect means to detect it. We thus c
sider the chargedF balls. Since they interact with ordinar
matter through the electric force, they would be easily o
served in various experiments for the dark matter searc
there exists enough cosmic flux. If theF ball has a consid-
erable contribution to CDM, the number density and its c
mic flux should be inversely proportional to its mass, 1/M f .
Since such events have not been observed so far, we sh
have M f.1025 GeV @16#. This constraint is rewritten in
terms ofNf ,

Nf.1025S GeV

l1/6v
D . ~69!

If the size of theF ball is smaller than the typical screenin
length, its electric charge is not screened at the close ne
borhood of theF ball but screened far outside of it. In thi
case, the discussion on the stability made in Sec. III is va
From Eqs.~42! and~51!, we have the size of the unscreen
F ball R;0.5ANf(114/3aANf)

1/3/l1/6v and the screening
length dsc;30/l1/6v, which gives a very small number o
the fermion on the unscreenedF ball, Nf,1000, from R
,dsc . This is incompatible with Eq.~69!, and we see tha
the unscreenedF ball cannot give a sizable contribution t
CDM.

If the size of theF ball is much larger than the screenin
length ~i.e., R@dsc), its electric charge is strongly screene
as was discussed in the previous section. In this case,
~51! and ~55! give Nf@7000, which is compatible with Eq
~69!. This allows screened chargedF balls to be candidates
for the main component of CDM in the present universe.

In the previous section we found that the second term
Eq. ~65! is crucial to enhancing the stability and suppress
the fragmentation of the screened chargedF ball for the pa-
rameter satisfying Eq.~66!. If we add the volume energy
Ev;eV which has the destabilizing effect@26#, we still have
6-8
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the metastableF ball as far as the second term in Eq.~65!
overwhelmsEv . Using Eq.~64!, we express this condition
as

e,100l2/3v4Nf
23/2. ~70!

Equations~68!–~70! and Eq.~66! give the following condi-
tion for the symmetry breaking scale:

v,33106 GeV. ~71!

VI. SUMMARY AND DISCUSSION

We have considered theF balls produced in the early
universe due to the spontaneous breakdown of the biaseZ2
symmetry. We have investigated the stability of the elec
cally neutral F balls and the chargedF balls in order to
examine whether they can sizably contribute to CDM or n

In the case of neutralF balls, we have taken into accoun
the correction to the thin-wall approximation up to the ne
to-leading order, and found this correction plays an import
role to enhance deformation and fragmentation of theF ball
into tiny thick-wall F balls. If these tinyF balls are a main
component of CDM, the dark matter search experiments
low the F ball to have only a weak interaction with the o
dinary matter. We are not interested in such a new kind
weakly interacting particles since we need too many n
assumptions in introducing new tiny particles and have o
indirect means to detect such particles@1#.

In the case of chargedF balls, two cases are considere
Case (1). The size of a chargedF ball being smaller than

the typical screening length. SuchF balls are found to have
rather light masses, and they have a large number densi
the universe if they are a main component of CDM. Ho
ever, since the cosmic flux and the number density of
chargedF balls are observed to be very small, it is difficu
for them to be a main component of CDM.~In this case, the
electric charge of theF balls is effectively unscreened. W
have found that they decay into smallerF balls through the
tunneling effect though they are classically stable. Since
decay further increases the large number density of thF
balls, it merely decreases the possibility for them to be
main component of CDM.!

Case (2). The size of a chargedF ball being larger than
the typical screening length. In this case, the electric cha
of the F ball is screened in the vicinity of its surface. Eve
though the long-range character of the Coulomb force is l
the F balls can still be classically stable in certain region
the parameters. This is due to the curvature effect tha
obtained from the next-to-leading order correction to
thin-wall approximation. SuchF balls can be candidates fo
a main part of CDM in the present universe. In such a ca
we have obtained constraints on the physical parameterl
.1.231023, 0.4lv6M pl

22,e,100l2/3v4Nf
23/2 and v,3

3106 GeV. It is interesting to note that the symmetry brea
ing scalev constrained above is not too far from the ele
troweak or supersymmetry~SUSY! breaking scale. Thes
above constraints help us to make a realistic model of thF
ball.
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Recently the dark matter distributions of galaxies a
clusters were observed and compared with the dark ma
simulations. Some find consistency of the collisionless CD
simulation with the observations@27,28#, while others find
inconsistency and propose@6# the self-interacting dark matte
~SIDM! with the ratio of the cross section to the mass
large as 10223210224 cm2 GeV21. In the case of a screene
chargedF ball, the geometrical cross section per unit mass
not so large,

sg

M f
.0.5l21/2310228 S GeV

v D 3

cm2 GeV21, ~72!

and, moreover, the typical momentum transfer squa
;1/R2;v2/Nf is too small to give a large angle scatterin
which appears to be necessary for smoothing the Halo c
tral density profile. Thus, the present model of theF ball is
not adequate for SIDM. We, however, do not discuss t
issue further in the present paper since the above proble
still controversial@7,27,29#.

All through the present paper, we have dealt with t
heavy fermions as being distributed two dimensionally
the F-ball surface, and neglected the spreading of the
mion in the direction normal to the surface. We discuss t
issue elsewhere@8#.
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APPENDIX A: VOLUME ELEMENT IN NEW
COORDINATES

We introduce three local orthogonal coordinates (u,v,w)
for the F ball, the origin of which is on the surface of anF
ball, and derive a representation for the volume elemen
this frame. The coordinates,u and v, represent theF-ball
surface,x5xf(u,v), and are taken along the lines of curv
ture @30# on the surface. We define the first and the seco
fundamental forms

I 5E~u,v !du212F~u,v !dudv1G~u,v !dv2, ~A1!

J5L~u,v !du212M ~u,v !dudv1N~u,v !dv2, ~A2!

with the coefficients

E~u,v !5xf ,uxf ,u , L~u,v !5xf ,uun,

F~u,v !5xf ,uxf ,v , M ~u,v !5xf ,uvn, ~A3!

G~u,v !5xf ,vxf ,v , N~u,v !5xf ,vvn,

where the subscriptsu andv stand for the partial derivative
with respect to them, andn(u,v) is a unit vector normal to
the surface defined as
6-9
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n~u,v !5
xf ,u3xf ,v

uxf ,u3xf ,vu
. ~A4!

Since we takeu5const andv5const as the lines of curva
ture, we obtain

F~u,v !5M ~u,v !50. ~A5!

We define the third coordinatew @31# by

x~u,v,w!5xf~u,v !1wn~u,v !, ~A6!

taking w positive~negative! for the outside~inside! of the F
ball. We takew50 at the place in the wall where the scal
field f vanishes.

Using the orthogonal relations

xf ,uxf ,v5xf ,un5xf ,vn5ndn50, ~A7!

we express the line element squared,

d2x5~xf ,udu1xf ,vdv1ndw1wdn!2

5Edu21Gdv212w~xf ,udndu1xf ,vdndv !

1w2dn21dw2. ~A8!

From Eq.~A7! andM (u,v)50 in Eq. ~A5!, we obtain

nu52
L

E
xf ,u , ~A9!

nv52
N

G
xf ,v . ~A10!

Thus, we obtain

xf ,udn5xf ,u~nudu1nvdv !52Ldu, ~A11!

xf ,vdn5xf ,v~nudu1nvdv !52Ndv, ~A12!

dn25~nudu1nvdv !25
L2

E
du21

N2

G
dv2. ~A13!

Substituting Eqs.~A11! to ~A13! into Eq. ~A8!, we get

d2x5ES 12
wL

E D 2

du21GS 12
wN

G D 2

dv21dw2.

~A14!

Calculating a determinant of the line element squared,
obtain the volume element

d3x5AEGS 12
wL

E D 2S 12
wN

G D 2

dudvdw

5US 12
wL

E D S 12
wN

G D UdSdw, ~A15!

where we use the relation

dS5AEGdudv. ~A16!
08350
e

Taking R1 and R2 as the radii of principal curvature of th
surface, we obtain the Gaussian curvature

K[
1

R1R2
5

LN

EG
, ~A17!

the mean curvature

H[
1

2 S 1

R1
1

1

R2
D52

EN1GL

2EG
, ~A18!

and the volume element

d3x5US 11
w

R1
D S 11

w

R2
D UdSdw. ~A19!

APPENDIX B: CURVATURE EFFECT
IN THE NEUTRAL CASE

We here derive Eqs.~21!–~24! in Sec. II, assuming
R1 , R2.0. Noting that higher order effects inEtot arise only
from Es , we estimateEs keeping the terms up to the order o
(dn /R)2. Substituting Eq.~18! into Eq. ~7!, we obtain

Es5Es
(0)1Es

(1)1Es
(2) , ~B1!

where

Es
(0)5E dSE

2`

1`

dw H 1

2
ḟ0

21
l

8
~f0

22v2!2J , ~B2!

Es
(1)5E dSE

2`

1`

dw F S w

R1
1

w

R2
D H 1

2
ḟ0

21
l

8
~f0

22v2!2J
1H ḟ0ḟ11

l

2
f0~f0

22v2!f1J G , ~B3!

Es
(2)5E dSE

2`

1`

dw F w2

R1R2
H 1

2
ḟ0

21
l

8
~f0

22v2!2J
1S w

R1
1

w

R2
D H ḟ0ḟ11

l

2
f0~f0

22v2!f1J
1H 1

2
ḟ1

21
l

4
~3f0

22v2!f1
2J G . ~B4!

Substituting Eq.~15! into Eq. ~B2!, we get

Es
(0)5SE dS, ~B5!

with S52Alv3/3. The integration of Eq.~B3! vanishes:

Es
(1)50, ~B6!

because the integrand is an odd function ofw. Using the
relation,ḟ0

25l(f0
22v2)2/4 derived from Eq.~13!, we ex-

press the first line in the right-hand side of Eq.~B4! as
6-10
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~1st line!5E dSE
2`

1`

dw
w2

R1R2
ḟ0

2. ~B7!

The second line is rewritten as

~2nd line!5E dSE
2`

1`

dw F S w

R1
1

w

R2
D H 2f̈01

l

2

3f0~f0
22v2!J f12S 1

R1
1

1

R2
D ḟ0f1G

52E dSE
2`

1`

dw S 1

R1
1

1

R2
D ḟ0f1 . ~B8!

From Eq.~19!, we get for the third line,

~3rd line!5E dSE
2`

1`

dw H 2
1

2
f̈11

l

4
~3f0

22v2!f1J f1

5
1

2E dSE
2`

1`

dw S 1

R1
1

1

R2
D ḟ0f1 . ~B9!

From Eqs.~B7! to ~B9!, we obtain

Es
(2)5E dSE

2`

1`

dw H w2

R1R2
ḟ0

22
1

2 S 1

R1
1

1

R2
D ḟ0f1J .

~B10!

Using the dimensionless quantity

f̃1[
2R1R2

R11R2
f1 , ~B11!

we expressEs
(2) as

Es
(2)5E dSE

2`

1`

dw H w2

R1R2
ḟ0

22
1

4 S 1

R1
1

1

R2
D 2

ḟ0f̃1J
5CnE dS

1

R1R2
1DnE dS S 1

R1
2

1

R2
D 2

, ~B12!

with

Cn5E
2`

1`

dw ~w2ḟ0
22ḟ0f̃1!, ~B13!

Dn52
1

4E2`

1`

dwḟ0f̃1 . ~B14!

From Eq.~19! with Eq. ~20!, we get
08350
f̃1~w!5
1

Al
sech2S w

dn
D2

1

Al
cosh2S w

dn
D

1
1

3Al
sinh2S w

dn
D tanh2S w

dn
D1

1

12Al
sech2S w

dn
D

3UsinhS 4w

dn
D18 sinhS 2w

dn
D1

12w

dn
U, ~B15!

with dn52/Alv. Substituting Eqs.~15! and ~B15! into Eqs.
~B13! and ~B14!, we obtain

Cn5
v

Al
E

0

`

dw̃ H 4w̃2 sech4 w̃22 sech4 w̃122
2

3
tanh4 w̃

2
1

6
sech4 w̃~sinh 4w̃18 sinh 2w̃112w̃!J

5
v

Al
S E

0

`

dw̃ 4w̃2 sech4 w̃2
10

9 D .2
0.25v

Al
, ~B16!

Dn5
v

Al
E

0

`

dw̃ H 2
1

2
sech4 w̃1

1

2
2

1

6
tanh4 w̃

2
1

24
sech4 w̃~sinh 4w̃18 sinh 2w̃112w̃!J

52
5v

18Al
. ~B17!

APPENDIX C: ENERGY OF AN UNSCREENED F BALL

We derive the thin-wall representations for the energy
an unscreened chargedF ball, Eqs.~31!, ~32!, and~33!. We
first consider the surface energy

Es5SE dS. ~C1!

Using Eq.~26!, we get the metric of the surface,

dx25~r 21 ṙ 2!du21r 2 sin2udw2, ~C2!

with the overdot symbol standing for the derivative with r
spect tou. From Eq.~C2!, we obtain

dS5r 2A11S ṙ

r
D 2

dV. ~C3!

Substituting dS in Eq. ~C3! into Eq.~C1!, with r expressed in
Eq. ~28!, and using the following orthogonality relations:

E dV

4p
Pl Pm5

1

2l 11
d lm , ~C4!

E dV

4p
Ṗl Ṗm5

l ~ l 11!

2l 11
d lm , ~C5!
6-11
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we obtain Eq.~31! with Eq. ~34!.
We next consider the Fermi energy,

Ef5
4Ap

3 E dS s f
3/2. ~C6!

Using Eq.~30! and Eq.~C3!, we rewrite Eq.~C6! as

Ef5
2Nf

3/2

3R E dV

4p

~11ds f !
3/2

~11dS!1/2

5
2NF

3/2

3R E dV

4p
~11dF !, ~C7!

where

dF5
3

2
ds f1

3

8
ds f

22dr 1dr 22
1

4
d ṙ 22ds fdr . ~C8!

This gives Eq.~32! with Eq. ~35!.
We finally consider the Coulomb energy,

Ec5
e2

8pE E dSdS8
s fs f8

ux2x8u
. ~C9!

Using the expression

1

4pux2x8u
5E d3k

~2p!3k2
eik(x2x8), ~C10!

we rewrite Eq.~C9! as

Ec5
e2NF

2

4p2 E0

`

dkE dVk

4p U E dVx

4p
~11ds f !e

ikxU2

.

~C11!

Using the following expansion relation:

eikx5(
l 50

`

i l j l~kr !~2l 11!Pl~cosQkx!

5(
l 50

`

(
m

4p i l j l~kr !Ylm~Vk!Ylm* ~Vx! ~C12!

@here j l(kr) and Ylm(V) are the spherical Bessel functio
and the spherical harmonics, respectively, andQkx is the
angle betweenk andx#, and the orthogonality relation

E dVkYlm~Vk!Yl 8m8
* ~Vk!5d l l 8dmm8 , ~C13!

we obtain

Ec5
e2NF

2

4p2 (
l 50

` Dc
( l )

2l 11
, ~C14!

where
08350
Dc
( l )5~2l 11!2 lim

e→0
E

0

`

dke2ekE d~cosu!

2
s f

3E d~cosu8!

2
s f8 j l~kr ! j l~kr8!Pl~cosu!Pl~cosu8!.

~C15!

Here, we have introduced the procedure, lime→0 , in order to
safely expand the spherical Bessel function in the integra

j l~kr !. j l~kR!1drkR jl8~kR!1
1

2
dr 2~kR!2 j l9~kR!.

~C16!

Keeping the terms up to the second order, we obtain

Dc
( l )5~2l 11!2 lim

e→0
E

0

`

dke2ekE d~cosu!

2
Pl~cosu!

3E d~cosu8!

2
Pl~cosu8!I 1

( l )~u,u8!, ~C17!

where

I 1
( l )5~11ds f1ds f81ds fds f8! j l~kR!21~11ds f1ds f8!

3~dr 1dr 8!kR jl~kR! j l8~kR!1drdr 8~kR!2@ j l8~kR!#2

1drdr 8~kR!2@ j l8~kR!#21
1

2
~dr 21dr 82!

3~kR!2 j l~kR! j l9~kR!. ~C18!

Integrating Eq.~C17! with respect to the angular variable
we get

Dc
( l )5 lim

e→0
E

0

`

dke2ekI 2
( l ) , ~C19!

where

I 2
( l )5~d l01cl

2!@ j l~kR!#21S 2d l0(
n51

`
ancn

2n11
12alcl D

3kR jl~kR!Jl8~kR!1al
2~kR!2@ j l8~kR!#2

1d l0(
n51

` an
2

2n11
~kR!2 j 0~kR! j 09~kR!. ~C20!

Using the following integration formulas:

E
0

`

dke2ek@ j l~kR!#25
p

2~2l 11!R
1O~e!, ~C21!

E
0

`

dke2ekkR jl~kR! j l8~kR!52
p

4~2l 11!R
1O~e!,

~C22!
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E
0

`

dke2ek~kR!2@ j l8~kR!#25
1

2e
2

p l ~ l 11!

2~2l 11!R

1O~e, or e loge!,

~C23!

E
0

`

dke2ek~kR!2 j 0~kR! j 09~kR!52
1

2e
1

p

2R

1O~e, or e loge!,
~C24!

we obtain Eq.~33! with Eq. ~36!.

APPENDIX D: DECAY RATE OF AN UNSCREENED
F BALL

Unscreened chargedF balls are metastable and fragme
through the quantum tunneling~see Sec. III for the details!.
Here, we roughly estimate the rate of fragmentation, ass
ing a very simplified model of fragmentation after the elli
soidal deformation from the spherical shape@32#.

We express the surface of the ellipsoidalF ball as

x2

R2
1

y2

R2
1

z2

R2h2
51, ~D1!

with h being a constant which we call ‘‘deformation param
eter.’’ Note thatR depends onh since it is determined as t
minimize the energy of theF ball. The surface is also ex
pressed in the polar coordinates as

r 5Rf~u!5
hR

Acos2u1h2 sin2u
. ~D2!

The scalar fieldf(r ,u) should satisfy the Euler-Lagrang
equation to be derived from Eq.~3!,

¹2f5f91
2

r
f81

1

r 2
f̈1

1

r 2 tanu
ḟ5

l

2
f~f22v2!,

~D3!

with the prime and overdots, standing for]/]r and ]/]u,
respectively. Here, the boundary conditions are imposed

f~r→`!51v,

f~r 5Rf !50, ~D4!

f~r→0!;2v.

„The last one becomes exact whenRf tends to infinity@see
Eq. ~D7!#.… Using the following variable:

r̃ 5r 2Rf~u!, ~D5!

and keeping the terms of the leading order forRf→`, we
can rewrite Eq.~D3! as
08350
-

1

Q2

]2f

] r̃ 2
5

l

2
f~f22v2!, ~D6!

to give the solution

f5v tanhH Q
~r 2Rf !

dn
J , ~D7!

with dn52/Alv and

Q5
1

A11
1

Rf
2 S ]Rf

]u
D 2

~D8!

5
cosu21h2sinu2

Acosu21h4sinu2
. ~D9!

We regard the deformation parameterh as the time-
dependent dynamical variable. Substitutingf into the La-
grangian density of Eq.~3! with the Fermi, the Coulomb, and
the volume effect added to it, and integrating it over t
whole space, we get the Lagrangian

L5
1

2
h~h!ḣ22W~h!, ~D10!

whereh(h) andW(h) are estimated as follows. First,h(h)
is expressed as

h~h!52pv2E E drdur 2 sinuS ]

]h H Q
~r 2Rf !

dn
J

cosh2H Q
~r 2Rf !

dn
J D

2

~D11!

.4pSR4H 2
h4

R2 S ]R

]h D 2

N112
h3

R S ]R

]h DN22h2N3J ,

~D12!

where

Nk5E
0

1

dxx2(k21)$~h221!x22h2%2k

3$h42~h421!x2%21/2 ~k51,2,3!. ~D13!

Since 1/cosh4$Q(r 2Rf)/dn% in the integrand in Eq.~D11! is
negligibly small except at aroundr;Rf , we approximate
the quantities which are smooth atr;Rf to those atr
5Rf . Now let us estimateW(h)5Ev1Es1Ef1Ec . We
easily obtain the volume energy

Ev5
4pR3h

3
e. ~D14!
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In order to estimateEs , Ef , and Ec , we introduce new
variablesû and ŵ defined by

x5R sinû cosŵ,

y5R sinû sinŵ, ~D15!

z5hR cosû.

The surface element is expressed as

dS5R2Acos2û1h2 sin2 û sinûdûdŵ

5R2Ak~u!dudŵ, ~D16!

whereu5cosû andk(u)5u21h2(12u2). From Eq.~D16!,
we obtain the surface energy

Es5SE dS54pSR2E
0

1

du Ak~u!. ~D17!

We express the fermion number density,

s f~u!5
Nf

4pR2Ak~u!
S 11(

l 51

`

nl Pl~u!D , ~D18!

wherePl(u) is the l th order Legendre polynomial. It is eas
to see that the above expression satisfies the condition fo
fermion numberNf to be conserved@see Eq.~8!#. From Eq.
~D16! and Eq.~D18!, we obtain the Fermi energy,

Ef5
4Ap

3 E dS s f
3/25

2Nf
3/2

3R E
0

1

du

S 11(
l 51

`

nl Pl~u!D 3/2

k~u!1/4
.

~D19!

Let us estimate the Coulomb energy,

Ec5
e2

8pE E dSdS8
s fs f8

ux2x8u
. ~D20!

Using the relation

1

4pux2x8u
5E d3q

~2p!3q2
eiq(x2x8)

5E d3q̂

~2p!3q̂2k~uq̂!
ei q̂( x̂2 x̂8), ~D21!

with

x̂5S xx ,xy ,
1

h
xzD5R~sinû cosŵ,sinû sinŵ,cosû !,

~D22!

q̂5~qx ,qy ,hqz!, ~D23!

anduq̂5q̂z /q̂, we get
08350
he

Ec5
e2Nf

2h

4p2 E
0

`

dq̂E dV q̂

4pk~uq!

3U E dV x̂

4p S 11(
l 51

`

nl Pl~u!D ei q̂x̂U2

. ~D24!

With the aid of

E
0

`

dq j l~qR! j l 8~qR!5
p

2~2l 11!R
d l l 8 for l 2 l 8

5even integer, ~D25!

the integration in Eq.~D24! can be carried out in the sam
way as in Appendix C, to give

Ec5
e2Nf

2

8pRE0

1

du
h

k~u! S 11(
l 51

` nl
2Pl~u!2

2l 11 D . ~D26!

We then minimizeW(h) with respect toR and nl . As
expected from the perturbative analysis in Sec. III, we ver
numerically thatW(h) takes the local minimum valueWmin
at h51 in a certain range of the parameters~see Fig. 6 for
the case,e50, l51, andNf51000). In the following, we
consider such anF ball which has the local minimum valu
of W at h51, that is, is stable against the deformation fro
the spherical shape.

We finally proceed to estimate the decay rate of the me
stableF ball, using the Euclidean action method in Ref.@33#.
We express the Euclidean action as

A5E dt H 1

2
h~h!ḣ21V~h!J , ~D27!

where V(h)5W(h)2Wmin @we note V(1)50]. Defining
the following variable:

FIG. 6. The potential is displayed as a function ofh in case the
F ball is not screened for the parameters shown in the graph. T
is an energy barrier, which is comparable tov. The distribution of
the fermion is shown in Fig. 7.
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j5E
1

h
dh8Ah~h8!, ~D28!

we express the action as

A5E dt H 1

2
j̇21V̄~j!J , ~D29!

where the potentialV̄(j)5V(h(j)) has a local minimum
V̄50 at j50. According to Ref.@33#, the decay rateG is
estimated semiclassically,

G5\uKue2A0 /\, ~D30!

whereA0 is the classical action of the bounce solution andK
is the prefactor, both of which are evaluated below. T
bounce solution forj should satisfy the following equation

dA
dj

52 j̈1V̄8~j!50, ~D31!

with the boundary condition,

FIG. 7. The number density of the heavy fermion as a funct
of u for h50.8,1,1.7. The density is constant forh51. It gets large
at the equator forh50.8 and at poles forh51.7. They are graphi-
cally displayed in Fig. 8.

FIG. 8. The distribution of the heavy fermions in case theF ball
is not screened.~a! The F ball becomes cigarlike shape forh.1
and the fermions gather at poles due to the repulsive electric fo
~b! TheF ball is a sphere forh51 and the distribution is constan
~c! TheF ball has the pancakelike shape forh,1, and the fermions
gather at the equator due to the repulsive force.
08350
e

j→0 for t→6`. ~D32!

From Eq.~D31!, we getj̇252V̄(j) for the classical solution
and obtain the classical Euclidean action

A052E
0

jc
dj A2V̄~j!52E

1

hc
dh A2h~h!V~h!,

~D33!

where hc(hc.1) and jc(jc.0) are defined asV(hc)
5V̄(jc)50. The constantK is defined as

K5A A0

2p\5 detS 2
]2

]t2
1V̄9~0!D

det8S 2
]2

]t2
1V̄9~j!D 6

1/2

, ~D34!

where the symbol ‘‘det8’’ means the determinant in which
the zero-mode contribution is removed@33#. In our case,K is
calculated as

K5Ap

\
~V̄9~0!!3/4jc expE

0

jc
dj

AV̄9~0!j2A2V̄~j!

jA2V̄~j!

5Ap

\ S V9~1!

h~1! D 3/4S E
1

hc
dhAh~h! D expE

1

hc
dhAh~h!

3H S V9~1!

2h~1!V~h! D
1/2

2
1

E
1

h
dh8Ah~h8!J . ~D35!

Taking parametersv5105 GeV, Nf51000, andl51 for
example, we obtainA0.550. Thus, the lifetime of the un
screened chargedF ball is much longer than the age of th
universe in this case.~If the production temperature of theF
ball Tf is as high asTf;Tph;v, the F ball would decay
through the thermal fluctuation. We here consider the te
peratureTf&0.1v!Tph where the lifetime of theF ball is
found to be long enough to let it survive till present.!

APPENDIX E: DECAY RATE OF A SCREENED F BALL

Here, we roughly estimate the decay rate of the scree
F ball, assuming the very simplified model, in which th
surface has the following shape:

Rf5R0@11a2P2~cosu!#, ~E1!

whereP2 is the second order Legendre polynomial andR0
anda2 are arbitrary constants. This allows theF ball to have
a concave shape. In the following we consider theF ball
energy as the function of the areaS and the parametera2 .
Then, the parameterR0 is a function ofSanda2 . We use the
same technique as that in Appendix D. We here regarda2 as
the time-dependent dynamical variable instead ofh in Ap-
pendix D. All we need to obtain areh̃(a2) andṼ(a2) in the
Lagrangian,

n

e.
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L5
1

2
h̃~a2!ȧ2

22Ṽ~a2!. ~E2!

We can easily obtainh̃(a2) by replacingRf in Eqs.~D8! and
~D11! with that defined by Eq.~E1!.

The potentialṼ(a2) can be obtained from Eq.~65! since
Ftot

(0) depends only onS and not on the shape of theF ball.
We calculate the following quantities using the method int
duced in Appendix A:

XC[E dS
1

uR1R2u
, ~E3!

XD[E dS S 1

R1
2

1

R2
D 2 uR1R2u

R1R2
. ~E4!

The surface is expressed as

x5xf~u,w!5Rf~u!~sinu cosw,sinu sinw,cosu!
~E5!

in the polar coordinates. The first and the second forms
th

08350
-

e

I 5E~u,f!du212F~u,f!dudf1G~u,f!df2, ~E6!

J5L~u,f!du212M ~u,f!dudf1N~u,f!df2,
~E7!

with

E~u,f!5Rf
21Rf8

2 ,

L~u,f!5
1

ARf
21Rf8

2
~Rf9

2Rf
222Rf8

22Rf
2!,

F~u,f!50, M ~u,f!50, ~E8!

G~u,f!5Rf
2 sin2u,

N~u,f!5
Rf

ARf
21Rf8

2
sinu~2Rf sinu1Rf cosu!,

where the prime denotes the derivative with respect tou.
From these, the Gaussian curvature in Eq.~A17! and the
mean curvature in Eq.~A18! are expressed in terms ofRf .
We then obtain
1

R1R2
5K5

~Rf8 sinu2Rf cosu!~2Rf9
2Rf

212Rf8
21Rf

2!

Rfsinu~Rf
21Rf8

2!2
, ~E9!

S 1

R1
2

1

R2
D 2

5
~EN2GL!2

E2G2

5
$~Rf

21Rf8
2!~2Rf8 sinu1Rf cosu!1~2Rf9

2Rf
212Rf8

21Rf
2!Rf sinu%2

Rf
2sin2u~Rf

21Rf8
2!3

. ~E10!

From these expressions,XC andXD are written as

XC54pE
0

p/2

du
u~Rf8 sinu2Rf cosu!~2Rf9

2Rf
212Rf8

21Rf
2!u

~Rf
21Rf8

2!3/2
, ~E11!

XD54pE
0

p/2

du
$~Rf

21Rf8
2!~2Rf8 sinu1Rf cosu!1~2Rf9

2Rf
212Rf8

21Rf
2!Rf sinu%2

Rf sinu~Rf
21Rf8

2!5/2

uKu
K

. ~E12!
he

to be
n

We note that these quantities do not explicitly depend on
parameterR0 or S and only depend ona2 . Using the free
energy,

Ftot
(2)~a2!5~Cn1Csc!XC1~Dn1Dsc!XD , ~E13!

we evaluate the potential
e Ṽ~a2!5Ftot
(2)~a2!2Ftot

(2)~0!. ~E14!

We show the potential as a function ofa2 in Fig. 9 for the
case T50.1v. The cusp in Fig. 9 arises because of t
nonanalytic feature ofXC andXD . At the top of the cusp, the
Gaussian curvature becomes zero at equator and turns
negative for largera2 . This is illustrated in Fig. 10. One ca
6-16
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observe that the curvature at the origin is positive and
potential becomes negative fora2 larger thana2c . These
facts mean that the sphericalF ball is metastable as discusse
in Sec. IV. Because the energy barrier is much larger than
temperature, the decay of theF ball due to thermal fluctua
tion can be neglected. We next consider the decay due to
tunneling effect.

We consider the classical Euclidean action,

FIG. 9. The potential of the screenedF ball as a function ofa2 .
The curvature at the origin is positive and the potential becom
negative fora2 larger thana2c at T50.1v. These facts mean tha
the sphericalF ball (a250) is metastable. The energy barrier
much larger than the temperature. This tells us that the decay d
the thermal fluctuation can be neglected.
y,

ich

al
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ys
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o
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lu
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08350
e

e

he

Ã052E
0

a2c
da2 A2h̃~a2!Ṽ~a2!. ~E15!

We can apply Eq.~D11! to obtainh̃(a2) and see its magni-
tude isO(SR4). We find that the barrier height isO(100v)
and a2c is O(1) from Fig. 9. From these, the classical E
clidean action is roughly estimated asÃ0*Nf . Since the
number of the heavy fermion is large,Nf.1019, from Eqs.
~69! and ~71!, the classical Euclidean action is extreme
large and the screenedF ball is effectively stable. Although
we use the very simple deformation model and take the s
cial case ofT50.1v, we think that the result of a very long
lifetime is rather general for the temperature smaller thav
since the result is only due to the macroscopic property
the F ball.

s

to

FIG. 10. The shapes of theF ball for various values of the
parametera2 . A geometrical cross section containingz axis is
shown. The shape is a sphere fora250. One of the principal radii is
divergent at the equator fora252/7;0.28 in which the potential
has the crest. The shape becomes slightly nonconvex at the eq
for a25a2c;0.32 and more narrow in the middle fora250.4.
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