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Stability of a Fermi ball against deformation from spherical shape
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The stability of a Fermi ballE ball), which is a kind of nontopological soliton accompanying the break-
down of the approximat&, symmetry, is investigated in three situations: when it is electrically neutral, when
it is electrically charged and unscreened, and when it is electrically charged and screened. We argue only that
the third case is physically meaningful since the neufrdall is unstable and the case of an unscreened
chargedr ball is observationally excluded when it has a sizable contribution to CDM. We find that the energy
scale of the breakdown of the approxima@iesymmetryv should satisfyy <3x 10° GeV if the F ball is the
main component of CDM.
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[. INTRODUCTION the cross section per unit mass for thdall o/M; is not as
large as the one which was recently propoged] for the
An F ball, a kind of nontopological soliton, was intro- Self-interacting dark matter. We do not go into details since

duced as a candidate for cold dark matt€DM) [1,2]. A  the above issue is still controversigee the discussions in

similar object is also suggested to play an important role imec. V).] ! ) . o
baryogenesié3]. In the present paper we first examine the instability of the

The simplest type of the= ball is a bubble of false neutral F ball against the deformation from the spherical

vacuum surrounded by a thin domain wall on which manySha.pe' It is knovyr[l] that the sphgrlcal shape is unstqblg
ainst deformation due to the finite volume energy within

zero-mode fermions are attached. The surface tension of t : S } .
e thin-wall approximation. We investigate the next-to-

wall is balanced with the Fermi pressure due to the ZeroI_eadin order approximation, the curvature effect of the wall
mode fermions in the wall. Th& ball may be stabilized 9 PP ’ ’

owing to this balance between the surface energy and traince it has a shape-dependent contribution to the total en-

Fermi energy. Though thE ball is stable against the varia- ergyf’ir?g?rgt”t?]%oszgttr\g:‘:hgglms \Jﬂlsljt?;eegs;gnyif ;/r?ery ?21;_1"‘
tion of the radius in case it keeps a spherical shape, it may b\ér/me of the curvature effect P
unstable against deformation from the sphere. Macpherso We next examine whether the ball is stable when it is

and Campbell pointed out in their pioneering w¢dy that . ;
such F bglls ar:e unstable againsFt) deformgtiogﬂérom theelectrlcally charged and unscreened. Since the total energy of
uch anF ball is higher than the sum of the energies of the

spherical shape, and that they should finally fragment into 7 : AR
number of tinyF balls[4] (see Fig. 1 for an illustration of a ragmenteq: palls,. It fragments into smalldt balls in finite
time. lIts lifetime is, however, longer than the age of the

fragmentingF ball). Suppose there are a large number Ofuniverse if there is an energy barrier high enough between

such tinyF balls in the present universe contributing sizably
to CDM. The cosmic flux of these objects should be Iargethe state of arr ball and that of fragment_eﬂ _balls. We see
at the Coulomb force does make the lifetime of Ehball

proportional to the inverse of the mass, and they should hav
Qng enough.

been observed contrary to the experimental results unless t We thirdly examine whether tHe ball has a lifetime long

scattering cross section with ordinary matter is very small.enou h to survive until present if it is screened due to the
Here, we are not interested in such a new kind of weakly 9 ; ' P :
lectrons or positrons in the thermal bath of the early uni-

interacting particles since we need too many assumptions if

introducing new tiny particles and have only an indirect : '
means to detect such particles. ’ J
Morris then introduced the idea of an electrically charged
F ball [5] which is considered to be stabilized due to the \ ‘ ‘ '
repulsive long-range Coulomb forg2]. Since the charged ‘
(@) (b) (© (d)

balls can be large and heavy in this case, they can sizably

contribute to CDM without contradicting the present obser-

vations of the cosmic flux. Thede balls with a large cross FIG. 1. A deformation and a fragmentation of tReball. (a)
section of interaction with ordinary matter are interesting be-Sphere(b) Cigarlike deformation(c) Shape narrow in the middle.
cause of their future detectabilityWe nevertheless note that (d) Fragmented ballls.
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verse. Though the long-ranged Coulomb force becomes shol

ranged in the thermal bath, the lifetime of tAeall is found
long enough in the proper region of the parameters.

We finally examine which kind ofF balls satisfy the con-
ditions for a main component of CDM. We find that only the

screenedF ball meets the conditions after taking into account

the stability of theF ball, observational constraints, and cos-
mological considerations.

We focus on the Fermi ball in which the fermions are =

tightly bound in the domain wall and distribute only two

dimensionally in the present paper. The effect of the distri-
bution normal to the domain wall must be included in the
case where they distribute with the thickness comparable tc
that of the domain wall. This effect is investigated elsewhere

[8].

The above contents are organized as follows: We first

consider electrically neutrd balls and discuss their stability
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FIG. 2. The biased potential for=1. Two almost degenerate

in Sec. Il. SmallF balls which are electrically charged and yacua with the energy difference efexist: the true vacuum with
not screened by electrons are considered in Sec. Ill. Screenggl-, and the false vacuum witth= —v.

ones are considered in Sec. IV; this is the main theme in the

present paper. In Sec. V we discuss certain constraints on thiyngs. If the volume energy becomes larger than the surface
parameters obtained from various conditions. We have sumsnergy during the expansion, the true vacuum is energetically
maries and discussions in Sec. VI. The detailed calculationg,,ored and enlarges its volume. At the same time, the region

are given in the Appendixes.

II. STABILITY OF AN ELECTRICALLY NEUTRAL
F BALL

We briefly introduce the electrically neutr&l ball pro-
posed by Macpherson and CampHdl] to make clear the
notations and technical terms. The Lagrangian density
given by

L=5(0,0) %+ di(iv*0,—Gd)—U(¢), (1)

N

where¢ andi; are a scalar and a fermion field, respectively,
and G is a Yukawa coupling constant. Herb,(¢) is an
approximate double-well potentifd],

A
U(¢)=§(¢2—UZ)Z+U5(¢)- )

The first term has th&, symmetry undekp«— — ¢, and the

second term violates the symmetry, though we assume it is

much smaller than the first onsee Fig. 2 Thus, the La-
grangian density has an approximatesymmetry, which we
call “biasedZ, symmetry”[1] hereafter. Since we consider

the case where the fermions are tightly bound in the domain

of false vacuum gets diminished, and becomes a small con-
fined region surrounded by the domain wall. Such a region of
false vacuum would continue to shrink due to the surface
tension and the volume effect proportionaldpand finally
disappear if we neglect the Fermi pressure caused by the
zero-mode fermions trapped in the wall. In our case, how-

.ever, the Fermi pressure is not negligible and stops the
I§hrinkage of the region, when it gets balanced with the sur-

face tension. Such a bubble of the false vacuum with zero-
mode fermions trapped in the surrounding wall is called
ball [1]. We take the temperature for tRkeball production as
T=T;. BecauseT; is somewhat lower thait,,, T is as-
sumed to bel;=<0.1v in the present paper.

We consider a thin-walledr ball, the size of which is
much larger than the thickness of the domain wall. For sim-
plicity, we neglect the small energy differeneand take the
exactZ, symmetry until Sec. V. Then the Lagrangian density
is

1

£=2

2. Noa o0
(0.0)°+ r(i9"3,= G = g (#*—v). (3
The total energy of alr ball is expressed as

Etot=EstE¢, (4)

wall, we assume that the coupling constants satisfy the con-

dition G> \.

whereEg andE; are a contribution from the domain wall and

After the phase transition breaks spontaneously the biasdtiat from the zero-mode fermions, respectively. In the thin

Z, symmetry aff =T,,~v, there arise two almost degener-
ate vacua with the energy density differenceeofThey are
the true vacuum withp=v and the false one witkb=—v.

wall case, Fermi gas in the wall distributes two dimension-
ally on the surface of thé ball [11]. Taking thew axis
normal to the surface, which is positiveegative for the

Then a domain wall is produced between two vacua, and theutside(inside) of the F ball, we express the fermion number

fermions are captured as zero modes in the domain[&@jl
Though the effect of should be negligible soon after the

phase transition, it gets more important as the universe ex-

density as

®)

ng=oo(W),

083506-2
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FIG. 3. The local orthogonal coordinateas,¢,w), the origin of
which is on the surface of thE ball. We takeu andv along the
lines of curvature on the surface, awdormal to the surface. Here,
R; (R,) is a radius of principal curvature with respectue0 (v
=0) at the origin.
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the direction parallel to th&-ball surface is much smaller
than that in the directiow, we get the Euler-Lagrange equa-
tion for ¢,

¢=%¢<¢2—v2>,

d+ + (11)

Ri+w Ry+w
with the overdot symbol inp or ¢ standing for the deriva-
tive with respect ton. Here, ¢ fulfills the boundary condi-
tion,

+v  (W>6,),
$p=10 (w=0), (12)
v (W<—6p),

with &, the width of the wall. We take the leading contribu-
tion, ¢q, in the thin-wall expansion witlR; ,R,— . It sat-
isfies

with o the surface density of the fermion number, and the

Fermi energy

4N
Ef=—i—f ds o7

(6)
We obtain the surface energy
e~ [asow |1+ 1] 1+ 1
X ;(V¢)Z+%(¢2—v2)2}, (7

whereR; andR, are the radii of principal curvature of the

F-ball surface(see Fig. 3 and Appendix)A
If the fermion-scalar couplings is not too small, the~
ball is stable against releasing a fermion with masSv

from the wall to the vacuum. The number of the fermions of

the F ball,

N, = f ds o, (8

is then conserved. Thus, the energy of Ehball is obtained
by minimizing

Etot;u:Etot+/~L( Nf‘f ds U'f): 9

with u the Lagrange multiplier. We first minimize it with
respect tao;. Noting thatEg is independent of;, we ob-
tain the uniform distribution of the fermions,

Ny
o=

5 10

with Sthe area of thé=-ball surface. We next minimize the
energy with respect t¢. Assuming that the variation af in

. A
$o= 5 do(b5—0?), (13
with
+v  (W>5,),
$o=10 (w=0), (14)
—v (W<—6,).
The solution fore,,
w
¢0:U tanha—, (15)

with 8,=2/(\Av), minimizes the energy under the condi-
tion, Eq.(10), to be

4[mN32

3Js '

with 3 =2/Av®/3 the surface tension in the wall. We finally
minimize E{2} with respect toS, and obtain

EQ)=35+ (16)

(17

with the area of the surfac&=(2\/#/33)%°N;. An F ball
can deform with this surface area being kept consfaae
Figs. Aa)-1(c)]. Moreover, it has the same energy even if it
splits into some smalleF balls [see Fig. 1d)] sinceE(") is
proportional to the number of fermions. Thus, we cannot tell
whether theF ball is stable or not against deformation and
fragmentation into pieces, within the thin-wall approxima-
tion which corresponds to the leading order in the thin-wall
expansion. This is the same result as what Macpherson and
Campbell derived in their papét]. They concluded further
that the neutraF ball is unstable, taking into account the
volume effect proportional te. We here consider the next-
to-leading order contribution in the thin-wall expansion, i.e.,

EQ)=(1273)Y°N;,
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FIG. 4. The perturbative solutions for the domain wall fieid
Here, ¢, is the leading term angh, the next-to-leading term in the
thin-wall expansion. Note thap, is rescaled aghy/v with v the
symmetry breaking scale, andp;, as JA¢; with &,
=2R;Ry¢1/(R1+Ry) (R; andR, are the radii of principal curva-
ture of theF-ball surface.
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Co= f dw (W?¢o?— o)

~_0.25) 23
-2,
1 Do~
D=~ o bty
028 24
-2

W|th ’(}1: 2R1R2¢1/(R1+ Rz) .

First, we examine the stability of the spheridalball
against the perturbative deformation from the spherical shape
[see Fig. 1b)]. For this purpose, we take the curvature radius
on theF-ball surface positive. In this case, the first term in
Eq. (22) is constant according to the Gauss-Bonnet theorem
[15]. Thus, the shape-dependent sectoEjg; comes from
the second term in Eq22). Because it is semi-negative defi-
nite, and zero only for the spherical shape, the spheFcal

the curvature effect, since such an effect becomes importaf@!! IS unstable against the perturbative deformation.

when it is comparable to the volume energy effect.
We keep the terms up to the next-to-leading orderdor

b= o+ b1, (18

with ¢, smaller than¢, by the order ofs,/R [12]. From
Egs.(11) and(12), ¢, satisfies

b > (36202 o= =y 19
$1 E( Po—v)P1= R_1+R_2 b0, (19
and the boundary condition
1= (w=0).

The analytic solutiof13] for ¢ is given in Appendix Bsee
Fig. 4 for the illustration of¢py and ¢4). Substituting the
solution for ¢»; and that for¢, into E;,; and keeping the
terms up to the order o®((8,/R)?E(®)) [14], we get(see
Appendix B

Eiot= Eggg*’ E&f? ) (21)

where

E@Q=C fds 1 D fds 1 L)IRR
ot " |R1R2| " Rl RZ RZLRZ .
(22)

Here,C,, andD,, are given by

We next consider the stability of the F-ball against frag-
mentation into smaller ongsee Fig. 1d)). In this case, the
fragmentation does not changé)) because it only depends
on the fermion number. Here, we compare the energy of the
sphericalF ball with that of the fragmented spheridalballs
for simplicity. We see that the second term in E22) van-
ishes. Thus, only the first term in E€R2) changes in the
fragmentation. Since it is proportional to the numberFof
balls due to the Gauss-Bonnet theorem, its negative sign
shows that the fragmentation is energetically promoted.
Therefore, we find that thE ball is unstable against not only
the deformation from the spherical shape but also the frag-
mentation into smaller ones.

As pointed out by Macpherson and Campbell, the frag-
mentation will continue until the thin-wall expansion gets
invalid. If the fragmented tinyF balls sizably contribute to
CDM, there should be a large number of them and a large
cosmic flux of them as well. The present observations for the
dark matter search tell that they can interact with ordinary
matter only very weakly. Suck balls are not considered
here since their detectability was discussed in REf.

Ill. STABILITY OF ELECTRICALLY CHARGED F BALL
IN THE UNSCREENED CASE

In the present section we consider the electrically charged
F ball proposed by Morri§2], in which the fermions trapped
on the surface have electric charge. Assigning the electric
charge of+ e to the fermion for simplicity, we consider d@n
ball carrying the electric charge eN; . The energy of thé&
ball is expressed as

Eiot=Est+Ef+E¢, (25

with E. the Coulomb potential energy. Since the Coulomb
energy is proportional to the fermion number squaked

083506-4
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«NZ, the total energy per unit fermion numbigy,,/N; is an  and the Coulomb potential energy

increasing function oN;. Thus, when thd ball fragments e? ool e N2 % h(')
into smaller ones, the total energy apparently decreases. Weg = — f f dsds’ —f, ( 2
therefore cannot conclude that the electric force stabilizes the 87 X = Xi| 87R S 21+1
F ball from fragmentation only by comparing the energies of (33
the two states. Morris, however, suggesitthat the inclu-  \yhere

sion of the long ranged repulsive force helps Ehball to be

stabilized. Since it is not so clear whether the electric repul- ()~ ( 1+ I+ 1)) 2 (34)
sive force stabilizes thE ball or not, we here verify it using s 2 b
the perturbative method. 1 1+ 1) 3
For this purpose we investigate whether the energy barrier h{V=—~ —b2 , (35)
exists between th€& ball before the fragmentation and that 2 2
after it. Let us consider a spheridalball and its perturbative 124+ 3] — 2(1-1) 1
deformation from the spherical shape. Assuming the rota- h{)=— a’— ajb,+ bZ, (36)
tional invariance around theaxis for simplicity, we express 21+1 21+1 21+1
the surface of thé& ball in the polar coordinates as with b,=c,— 2a, . Using the effective radius
Xf(ﬂ,(,o):r(ﬁ)e, (26) _ / S _R(l 1 i h(|) (37)
with e a unit vector, ¢ Varx 25 21+1
e=(sin 6 cose,sindsine,coso). 27 we express the total energy as
3/2 (|)
We expand (6) as Eior= 4772R2+ 1+Z 2I )
- 2\2 o 0]
r(6)=R| 1+, a,P|(cosa)) e°Nf ¢
= | 1 24T (38)
=R(1+or), 28 \here
wherea,’s are small coefficients of the perturbative expan- 0 3,
sion, andP(cos#) is the Legendre polynomial. We write the 9i' = gbi (39
surface element as
, (1 3 I\, 2(0-1) bf
dS=R(1+6S(a))d0, 29 9 =U=D{=onny /a3 e AP o
(40)

with dQ)=sin#dfde. We also expand the surface density of
the fermion as Minimizing E,; with respect toR,, we have

S Eior=(1273) 3Ny 1 362\@) - 1 2
)= ——— c,P,(cosé =(lem i\ 1+t — t
oi(0)= R2(1+5S) Z 1Pi( ) tot 167 3e2\/N—f
3| 1+
16
= N 1160y (30)
S=ls=————— ag y o0
47RY(1+ 69) ! 1 362N, 0
x> g+ ——a?| |, (42)
. - i-121+1 167
where c¢/’s are small expansion coefficients. Note that the
above expression satisfies the condition for the fermion num-
ber N; to be conservefisee Eq(8)]. . . .
Keeping the terms up to the second powerapfand c, with the effective radius
(see Appendix ¢ we estimate, within the thin-wall approxi- N 3e? N, | 2 1
mation, the surface ener Re= + I+ ——
» (1273)3 16m o4 3e2\N¢
= h" +
E,=3S=473R? 1, (3D o
+1 .
o+ 3N
the Fermi energy 2 ‘1 21+1 167 °° (42
3/2 % |
4\/— 3/2 f hl(° )
14> 50—, (32 _ _ _ o
3R =12l+1 Since the last term in the brackédts in Eq. (41) is semi-
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positive definite and zero only fdr;=0 anda,=h,=0 for 2T

| =2, E,,, takes the local minimum when tiieball is spheri- Fo=-— 3f d®p {log(1+e~ E-VeIT)
cal (we note that the parametay corresponds to the small (27)
parallel displacement and not to the deformation of Ehe +log(1+e  (E+VoIT)y (45)

ball). Thus, the sphericdf ball is stable against the pertur-
bative deformation from the spherical shape. It leads to the

existence of the energy barrier and should suppress the fragiere, the kinetic energl is given byE = /pZ+ mg with m,
mentation of the sphericat ball. If the suppression of the the glectron mass, and the density of the heavy fermids
fragmentation rate is strong, tifeballs would be effectively given by n;=o;5(w). [Note that the negative sign of the
s_,tal:_)le in the unlvers_éfor the detailed dlscussmn_ on their first term in{ } in Eq. (44) gives the correct electric energy
lifetime, see Appendix Dand could be the candidates for gensity, +E2/2, after the free energy is extremized with re-
CDM. However, ifNy is very large, the ball should have  gpect tov,.] Taking into account the conservation of the
such a strong electric field that should be quantumeayy fermion number, we obtain the free energy by extrem-
mechanically screened by electrons or positrons with th‘?zing Fiort (Ni— [dS o) with respect top, o, andV,.
screening length much shorter than téall radius, as we e procedure of extremization with respectgcand o is
see in the next section. Therefore, the argument of this se¢re same as in Sec. Il. and we refer to the discussions and
tion cannot be applied for thé ball with very largeNs . results there. ’

The grgument of this- section is applicgble only for the Now let us extremize the free energy with respecvto
balls with smallNy, which have the radius much smaller asqyming that the variation 7, in the direction parallel to
than the screening length. Suktballs should give too large  1he F_pall surface is much smaller than that in the normal
cosmic flux to be compatible with the present observations ifjirection. we get the Thomas-Fermi equation
the F balls contribute sizably to CDMthe more details are '
given in Sec. V and Refl16]). We therefore find that the
unscreened chargde ball cannot be a main component of 1. 1

CDM. —Vet
e

1
+
Ri+w Ry+w

g )Ve= ns (W) —ng(w), (46)
IV. STABILITY OF AN ELECTRICALLY CHARGED F
BALL IN THE SCREENED CASE where the overdot symbol stands for the partial derivative

with respect tow. Herefe(w)za}"e/ave is the expectation

In th|s. section we examine the stability of such a laFge value of the difference between the electron density and the
ball that is electrically charged and screened due to the elec-

trons produced quantum mechanically or thermally. We cal ositron density. The second term in the left-hand ¢lblg
pre q y “ Y- v . In Eq. (46) comes from the curvature effect, which was not
the fermion trapped on the-ball surface a “heavy fermion

in order to distinguish it from the electron; the heavy fermiontaken Into account in the previous works. We here impose the

. . . . ... boundary condition
is almost massless in the two-dimensional surface while it is y

as heavy asGv in the true vacuum. The property of the
screened- ball is quite different from that of an unscreened V,—0 for |w|> 6, 47
one, because the long ranged electric force becomes short

ranged as a result of the screening. Let us investigate the

screening effect by introducing the Coulomb potential energyvith &s. the typical screening length. For the ca$e;m,,
V, for electron ( V, for positron with V.= —eA,. We use the electron number density is expressed as

the Thomas-Fermi methdd 7,18 to deal with this problem
[19]. The Helmholtz free energy is expressed as

(48)
Fiot=FnTFsc, (43

whereF, is the non-Coulombic term that is the same as the — o _ _
energy for the neutraF ball (see Sec. )l The second term Note thatn, is positive since we tak¥, negative, assuming

Fsc is the contribution from the screening electrons, the F ball Carrying the pOSitiVE electric charge. In the first
place, let us obtain the leading contribution in the thin-wall

expansion by takingr, ,R,—~. We get

W
14—

1+ R,

Fsczf dSdw

w
Ry
— \/E’JTT

0)____ =7
Ve T Wt oy
Sin )\—T

L (49

1
><| — — (Vo) ?+ Fe—niV,
2e

with F, the free energy density of electron and positron in
the Coulomb potentidl20], where

083506-6
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\/§ 04 r r r — r
e_T ’ (5 O) oz} /’/ -\\_\_

)\T:

V27 T2+\272T*+ 36?02
\/EeUf ,

2\/677 -
=/ 3 (v>T). (51) oo™ Vo/2mT
eO'f

A Vi/@Bmse) s

Substitutingv(?) into F. and keeping the terms of the lead- sz}
ing order, we get the leading order Bf as

FO- | as J

Ssc=ANtcosh'!

1y TV w / At

Vo 6

FIG. 5. The perturbative solutions for the electron potential en-
ergy V.. Here,V, is the leading term an¥/; the next-to-leading
_ ofVoﬁ(W)} term in the thin-wall expansion. Note thdg is rescaled a¥ /27T

with T temperature, an¥; aseV, /\6x with V;=2R;R,V; /(R;
8m?T? Sse) 3 )
= f ds (cotf?(—sc> - = cot?-(—Sc
J3e A 2 A7

+R,) (R; and R, are the radii of the principal curvature of the
1. T2 (V)2 1(1 1).
5 i w725 € PR I A R ¢ M i AV ()
2 2’7Te 3/2 2Ve ( 3 + 2 Ve 2\ R + R Ve '
= —— | dSoy (v>T). (52 € ™ € 1 2
3V3

1
"2

F-ball surface.

(57)
From the above equation, we see that the heavy fermion&ith the boundary condition
distribute uniformly over the surface, as is the case with Eq. w_, S
(10). Then, ) in Eq. (15) and V(Y in Eq. (49) extremize Ve =0 for |w|> o (58)
the free energy, The solution to Eq(57) is given by
©_ am 2\2me | N3? cos |w|+ 85
Flot=2S+ 3 T = (53 V6w [ 1 A
3J3 /s vh— _ Snlpell PR SO N O
¢ 2ew |R; R2 _ h?_( T
Minimizing the free energy with respect & we obtain sin N7
2i3 |W|+ bgc ( 5sc) ]
3e X{fl ———— || —]|t, 59
Figt=(12m3)" 1+ \/—( Nio (54 [ A A 9
4.2

where

with the surface area 1 ) 1
f(x)=% sinhx coshx+ 2 tanhx— 3 sint? x—x (60)

_(ﬁ) 213 . /E ZBN g5 (see Fig. 5 for the illustration 07" andVv{Y). Substituting

13 2 - ®9 e solutionsV{? andV{", into F, and keeping the terms
up to the next-to-leading order, we get, in a manner similar to

Thus, we cannot tell, within the leading order of the thin-the derivation of Eq(21),

wall expansion, whether the ball is stable against the clas-

(0) (2)
sical deformation and fragmentation into smaller ones. Fse=Fsc T Fsc (61)
We then keep the terms up to the next-to-leading order i in, Where[22]
the thin-wall expansion to have
1 1 1)\2|RRy
ERVONRYIEY (2) - — |
Ve=Vg/+Vg", (56) Fee CSCJ ds RiR,| DSCJ ds (Rl R2> RiR, '
ith (1) (0) (62
with V¢’ smaller tharvg ™’ by the order of5s./R [21]. From
Egs.(46) and (47), V! satisfies Here C,. and D, are given by
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1 _ o with g, is the effective degree of freedof5] and M, is
Coc=— —zf dw {w?(V(9)2—v Oy (1) the Planck mass. The ratio will be of the order of unity when
e H~Heq=2/M};.
The small violation of theZ, symmetry gives an energy
~—50\ "%, (63)  of the false vacuum bubble proportional to its volume. This
volume energy increases with the universe expansion and
1 o gets comparable to the surface energHatH:=¢€/>. The
Dee=—— | dw VOV M domain walls then stop to expand getting round to prodtice
4e balls. From the cosmological viewpoirf, balls should be
produced before the domain walls dominate the total energy
=26\, (64)  density in the universe, since otherwise the energy of the
universe would be dominated by blackholes made with the
with V{9 =2R,R,V/(R; +R,). Note thatD,, is positive ~domain walls[24]. This condition isH;>Heg, which is re-
in contrast to the case with the neutfaball whereD,, in Eq. ~ Written in terms ofe,
(24) is negative. This feature is very important for the dis- er—2
cussion on the stability below. From Eq&2) and (62), we €>0.A0°M " (68)
obtain
Let us consider the case where théalls are metastable

0.25 1 and may contribute sizably to CDM in the present universe.
v dS ——
( ) J |R1Ry|

F@~

15 As mentioned in Sec. Il, we are not interested in the neutral

F ball, which is very tiny after the fragmentations, since we
) need too many new assumptions in introducing such an ob-
25) V6_ %) Uf (i_ i) [RiRy| _ ject and have only indirect means to detect it. We thus con-
R R,/ RiR, sider the chargeé balls. Since they interact with ordinary
matter through the electric force, they would be easily ob-

) (65), served in various experiments for the dark matter search if
~ Letus take the curvature radius of theball surface posi-  thare exists enough cosmic flux. If tiieball has a consid-
tive, and consider the fragmentation of the spherfeddall  graple contribution to CDM, the number density and its cos-
into smallerF balls. The negative sign of the first term in Ed. ¢ flux should be inversely proportional to its massyi1/

(65) shows that the fragmentation is energetically promotedgijnce such events have not been observed so far, we should

which is the same as the neutialball in'Sec. !I: On the pave M,>10?° GeV [16]. This constraint is rewritten in
other hand, the sign of the second term is positive for terms ofN;

5005+ —
VA

+

—3
A>1.2X1073, (66) Gev

5
N;> 107 N

. (69

and there should be the energy barrier to suppress the frag-
mentation of theF ball. In this sense, electrically chargéd
balls which are screened by electrons are metasi@Bleat  If the size of theF ball is smaller than the typical screening
T=<0.Iv (see the discussion in Appendix.E length, its electric charge is not screened at the close neigh-
The lifetime of the screendd ball is estimated in Appen- borhood of theF ball but screened far outside of it. In this
dix E and is found extremely long, which makes fhdall ~ case, the discussion on the stability made in Sec. Il is valid.
effectively stable. Thus, the screened charGeshlls can be  From Eqs.(42) and(51), we have the size of the unscreened
the candidates for CDM. In order for them to be a mainF ball R~0.5/N¢(1+4/3a\N¢)Y¥\"% and the screening
component of CDM, they should satisfy the constraints to bdength 8;.~30A%, which gives a very small number of

discussed in the next section. the fermion on the unscreendd ball, N;<<1000, fromR
< 8. This is incompatible with Eq(69), and we see that
V. CONSTRAINTS ON THE PARAMETERS OF F-BALL gghl/lmscreeneﬁ ball cannot give a sizable contribution to

We consider the phase transition of the universe where the If the size of theF ball is much larger than the screening
biasedZ, symmetry is spontaneously broken and the netdength(i.e., R> &), its electric charge is strongly screened
work of domain walls is forme@24]. The number density of as was discussed in the previous section. In this case, Egs.
domain walls is soon diluted by annihilation to become(51) and(55) give N¢>7000, which is compatible with Eq.
~1/H3, whereH is the Hubble constant. Using the energy (69). This allows screened chargé&dballs to be candidates
density of the domain wallsy,,,;~2H, we get the ratio of for the main component of CDM in the present universe.

pwal to the total energy density in the universg;, In the previous section we found that the second term in
Eq. (65) is crucial to enhancing the stability and suppressing
o SH s the fragmentation of the screened chargelall for the pa-
wall = , (67) rameter satisfying Eq(66). If we add the volume energy
Pt g, T* HMZ E,~ €V which has the destabilizing effef@6], we still have
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the metastablé ball as far as the second term in EG5) Recently the dark matter distributions of galaxies and
overwhelmsE, . Using Eq.(64), we express this condition clusters were observed and compared with the dark matter
as simulations. Some find consistency of the collisionless CDM
simulation with the observation7,28, while others find
e<10\?3p*N; 32, (70 inconsistency and propo§8] the self-interacting dark matter

) ) ) ~ (SIDM) with the ratio of the cross section to the mass as
Equations(68)—(70) and Eq.(66) give the following condi-  |arge as 1023~ 10724 cn? GeV L. In the case of a screened
tion for the symmetry breaking scale: chargedF ball, the geometrical cross section per unit mass is

not so large,
v<3x1CF GeV. (71 J

o GeV\?3
S -05\ Y2x10 28 (—) cnéGeV'l, (72
VI. SUMMARY AND DISCUSSION Mf v

We have considered thE balls produced in the early and, 2mor2eove_r, the typical momentum transfer squared
~1/R°~v“/N; is too small to give a large angle scattering

universe due to the spontaneous breakdown of the biased which appears to be necessarv for smoothing the Halo cen-
symmetry. We have investigated the stability of the electri-,[r ld npi? rofile. Thus. th ¥ nt model gf ball i
cally neutralF balls and the charge& balls in order to al density profie. 1nus, tne prese odel o al 1s

examine whether they can sizably contribute to CDM or not ot adequate for SIDM. We, however, do not discuss this

In the case of neutrdt balls, we have taken into account Isstﬁlugcfrl:trrtg\%rlsr,]iatlrfs g;ezsgnt paper since the above problem is
the correction to the thin-wall approximation up to the next- Al through the, réseﬁt aer. we have dealt with the
to-leading order, and found this correction plays an importanF1e g P Paper,

role to enhance deformation and fragmentation ofRHeall thea\ész{ rrs]:?r?jcgs abrﬁj'nr?ed:zgite)gtfgetvsvorgggiinsgng:Iey fzrrl-
into tiny thick-wall F balls. If these tinyF balls are a main ' 9 P g

component of CDM, the dark matter search experiments al_r_mon in the direction normal to the surface. We discuss this

low the F ball to have only a weak interaction with the or- issue elsewhers].

dinary matter. We are not interested in such a new kind of

weakly interacting particles since we need too many new

assumptions in introducing new tiny particles and have only \We are grateful to Makoto Sakamoto, Masahiro Ka-

indirect means to detect such particlés. wasaki, Shigeki Matsumoto, Masahide Yamaguchi, and
In the case of chargel balls, two cases are considered: Masamune Oguri for useful comments. We would like to
Case (1) The size of a chargel ball being smaller than  thank Kojin Takeda and Hisaki Hatanaka for helpful conver-

the typical screening length. Suéhballs are found to have sations. One of the authof.0.) acknowledges financial

rather light masses, and they have a large number density Kupport from Japan Society for Promotion of Scieliie.

the universe if they are a main component of CDM. How-4834).

ever, since the cosmic flux and the number density of the
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chargedF balls are observed to be very small, it is difficult APPENDIX A: VOLUME ELEMENT IN NEW

for them to be a main component of CDMn this case, the COORDINATES

electric charge of thé& balls is effectively unscreened. We ) ]

have found that they decay into smallemalls through the We introduce three local orthogonal coordinatasv(w)

tunneling effect though they are classically stable. Since thi€or the F ball, the origin of which is on the surface of &

balls, it merely decreases the possibility for them to be ghis frame. The coordinates, and v, represent thé=-ball
main component of CDM. surface x=x;(u,v), and are taken along the lines of curva-

Case (2) The size of a chargeB ball being larger than ture [30] on the surface. We define the first and the second

the typical screening length. In this case, the electric chargiindamental forms

of the F ball is screened in the vicinity of its surface. Even _ 2 2

though the long-range character of the Coulomb force is lost, |=E(u,v)du”+2F(u,v)dudv +G(u,0)dv", (A1)
the F balls can still k_)e _classically stable in certain region of_ J=L(u,v)du?+2M (u,v)dudo + N(u,0)dv?, (A2)
the parameters. This is due to the curvature effect that is

obtained from the next-to-leading order correction to thewith the coefficients

thin-wall approximation. Suck balls can be candidates for

a main part of CDM in the present universe. In such a case, E(u,0)=X; Xtus  L(U,0) =Xy,

we have obtained constraints on the physical parameters: B _

>1.2X10_3, 0.4}\UGM;|2<6<100\2/3U4N;3/2 and v<3 F(uuv)_xf,uxf,va M(uiv)_xf,uvn’ (A3)
X 10° GeV. ltis mtgrestlng to npte that the symmetry break- G(UL)=Xp o Xros  N(UD) =X 4N,

ing scalev constrained above is not too far from the elec-

troweak or supersymmetrySUSY) breaking scale. These where the subscripts andv stand for the partial derivative
above constraints help us to make a realistic model ofthe with respect to them, and(u,v) is a unit vector normal to
ball. the surface defined as
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Xt X Xt o Taking R; and R, as the radii of principal curvature of the
n(u,v)= X o1 o] (Ad)  surface, we obtain the Gaussian curvature
,u U
Since we takal=const andv =const as the lines of curva- K= 1 _ ﬂ (A17)
ture, we obtain R;R, EG'’
F(u,v)=M(u,v)=0. (A5)  the mean curvature
We define the third coordinate [31] by y 1( 1 1 ) EN+GL a8
=—|—4 —|=— —_—,
x(u,v,W)=x¢(u,v)+wn(u,v), (AB) 2\R; Ry 2EG
taking w positive (negative for the outsidg(inside of theF  and the volume element
ball. We takew=0 at the place in the wall where the scalar
. ; w w
field ¢> vanishes. _ Bx=|| 1+ —]| 1+ — || dSdw. (A19)
Using the orthogonal relations R4 R,
Xt.uXe,0 = X1,uN =X ,N=NAN=0, (A7) APPENDIX B: CURVATURE EFFECT
we express the line element squared, IN THE NEUTRAL CASE

We here derive Eqgs(21)—(24) in Sec. IlI, assuming
R;, R,>0. Noting that higher order effects i, arise only
=Edu?+ Gdv?+ 2w(x; ydndu+x; ,dndv) from Eg, we estimatde keeping the terms up to the order of
(8,/R)2. Substituting Eq(18) into Eq. (7), we obtain

o?x= (X; ,du+X; ,dv + ndw+wdn)?

+w?dn?+ dw?. (A8)
E=EQ+EM+ED, B1
From Eq.(A7) andM(u,v)=0 in Eq.(A5), we obtain s s s BD
L where
nu:_EXf,U! (A9) o 1 N
E<°>:fdsf dw [—;/) 2+—(¢2—02)2] (B2)
s o 270 "8 "0 ’
N
ny=— g% (A10)
E(1)=fdsf+wdw { B {£¢oz+§(¢2—v2)2)
Thus, we obtain s o Ri Ry/|(2 g "0
X ydn=x; ,(n,du+n,dv)=—Ldu, All oA
£ =X+, ) (ALY ' ¢0¢’1+§¢0(¢3_02)¢1H, ®3)
X¢ ,dn=X¢ ,(n,du+n,dv)=—Ndv, (A12)
L2 N2 E§2)=fdsf+md\m { : b E(d%—vz)z]
dn?= (n,du+n,dv)%= Edu2+ Edv% (A13) e RiRz (2 8
W owl|. . A 2
Substituting Eqs(A11) to (A13) into Eq. (A8), we get + R—l+ R, bod1t 5 do(Po—v7) 1
wlL\? wN)? 1 N
2y — o 2 o 2 2 .
d X—E(l E ) duc+G|1 G ) dv <+ dw-. + §¢12+Z(3¢§_02)¢§]} (B4)

(A14)

Calculating a determinant of the line element squared, weSUbStItUtIng Eq(15) into Eq. (B2), we get

obtain the volume element

EQ=3 f ds, (B5)
wL\? wN)?
d3X= EG 1_F 1—3 dudv dw
with 3 =2Av3/3. The integration of Eq(B3) vanishes:
wL wN 1
=/{1- —||1— —||dSdw, (A15) EM=0, (B6)
E G
where we use the relation because_the integrand is an odd functionwofUsing the
relation, ¢o?=\(¢3—v?)?/4 derived from Eq(13), we ex-
dS= VEGdudv. (A16) press the first line in the right-hand side of EB4) as
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2

+oo we .
(1stline fdsﬁxdw R R2¢° . (B7)
The second line is rewritten as
2nd li —strxd W ot
(2nd ling = aw R_1+R —¢o+§

, 1 1.
X o(Po—v7) [ h1— R_1+R_2 boh1

+ o
——fdsf dw

From Eq.(19), we get for the third line,

(B8)

1.
+R_2 hoh1-

+o 1. A
(3rd Iine)=f de_xdw :—Eqﬁﬁ Z(3¢S—v2)¢1] b1

1 f ds f T L, B9
=3 _Ow _+R_2 o1 (B9)
From Egs.(B7) to (B9), we obtain
) +oo w2 . 1).
ES =def_wdw [R R RTR, ¢o¢1]-
(B10)
Using the dimensionless quantity
~ 2R4R,
b= R tR, 71 (B11)

we expres€? as
E(2)—deJ+wdw w21 1,1 2.
s 0 R1R2¢)0 4 R]_ R2 ¢)0¢1

—Cfdsl DJdS1 Ly’ B12
=Cy @Jrn R, Ry (B12)

with

- [Tow wipe-gody. 613

(B14)

1(+> . -
Dnz_Zf_ ‘dW¢o¢1-

From Eq.(19) with Eqg. (20), we get

PHYSICAL REVIEW D 67, 083506 (2003

~ 1 H(W) 1 H(W)
¢1(W)—Ksec 5—n—ﬁcos gn

(Wt I I H(W>

— — |tantf| — sech| —

\/_ ) én 12\/X o
4w 8 2W 12w B15
? +8sin 5 + Pl (B15)

with 8,=2/\\v. Substituting Eqs(15) and (B15) into Egs.
(B13) and (B14), we obtain

® ~ ~ ~ 2 ~
Ch= Lf dw {4W2 sect w—2 sec w+2— = tanf w
" Jo 3

1 - - - -
— — sech w(sinh 4w+ 8 sinh v+ 12\N)]

6
v ( ”dvv 42 ‘e 10) 0.2% (816
=— w? sech w— —|=— ——,
W Jo ° N
v [ ~ 1 ~ 1 1 ~
Dn:ﬁ 0dW {—Esecl‘fw-ki—gtanﬁ‘w
1 -
~ %4 secht w(sinh 4w+ 8 sinh 2v+ 12\N)]
_ 5v (B17)
18\

APPENDIX C: ENERGY OF AN UNSCREENED F BALL

We derive the thin-wall representations for the energy of

an unscreened chargé&dball, Egs.(31), (32), and(33). We
first consider the surface energy

E=3 f ds. (C1)
Using Eq.(26), we get the metric of the surface,
X?=(r2+r?)dg?+r? sinf6de?, (C2)

with the overdot symbol standing for the derivative with re-
spect tod. From Eq.(C2), we obtain

dQ. (C3

r
dS=r?\/1+| -

Substituting & in Eq. (C3) into Eq.(C1), with r expressed in
Eq. (28), and using the following orthogonality relations:

dQ 1
J' EP|Pm 2|+15Im1 (C4)
j a0, 10+

E I m— 21+1 Im>» (C5)
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we obtain Eq.(31) with Eq. (34).
We next consider the Fermi energy,

4
Ef:%; J ds o32. (C6)

Using EQq.(30) and Eq.(C3), we rewrite Eq.(C6) as

- N3lzf dQ (1+ d0¢)¥2

" 3R ) 2n (1+ 6S)12
_ ZNEIZJ = (14 6F) 7
3R | 47 ’
where
3 3 2 2 1 2
OF = 5 8o+ g bof— or +or2— 2 or’— doar. (C8)

This gives Eq(32) with Eq. (35).
We finally consider the Coulomb energy,

Ufa'f,

e2
EC:§I deds' il (C9)

Using the expression

1 &k
:f ik(x—x ), (ClO)
4m|x—x'| (27)3k?
we rewrite Eq.(C9) as
2N2 ko ) 2
f f 1+ 50’f)elkx .
(C1y
Using the following expansion relation:
e*="> ilj,(kr)(21 + 1)P|(cosO )
—2 2, 4ty (kn)Yim( Q0 Yin( Q) (C12

[here j,(kr) and Y,,(Q) are the spherical Bessel function
and the spherical harmonics, respectively, &g, is the

angle betweek andx], and the orthogonality relation

f ALY im( Q)Y () = St Sy (C13
we obtain
e’N2 2 D
T g2 S 20+1 (C149
where

PHYSICAL REVIEW D67, 083506 (2003

% d(cosé
Dg'>=(2|+1)2|imf dke—fkf (2 )af

e—07J0
d(cose’) . ) , )
XJTam(kr)h(kr )P (cosh)P,(cosh’).

(C19

Here, we have introduced the procedure,liry, in order to
safely expand the spherical Bessel function in the integrand,

ji(kr)=];(kR)+ 6rkRj/ (kR)+ = ! 5r2(kR)2 /(KR).
(C16

Keeping the terms up to the second order, we obtain

® d(cosé
D(C')=(2I+1)2Iimf dke’fkf ( )P|(cose)
e—0J0 2
d(cosd’) ) ,
X TP,(COSG )3’(6,6"), (C17

where
|D=(1+ 8o+ 8o} + So160) || (KR)2+ (1+ dorg+ Sa})
X(8r+ or' )kRji(KR)j{ (KR)+ r or' (kR) [ j{ (kR)]?
+oror' (kR)Z[j{ (kR) ]+ %(5r2+ or'?)
X (kR)?};(kR)j/(kR). (C18

Integrating Eq.(C17) with respect to the angular variables,
we get

Dg'):nmf dke k1), (C19
e—0
where
1D =(80+cH[j (KR T2+ 2 % Bl o
2 10T CL |on:1 n+1 1Ci
xth(kR)J'(kR)+af<kR>2[j(<kR>]2
+5.02 2n+1<kR) Jo(kR)jG(kR). (C20

Using the following integration formulas:

fdke “j (kR ]?= m O(e), (C2))

+0(e),
(C22

- a
— ek i il e —
fo dke “kRI(KR)II(KRI= = 25 DR
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e ml(1+1) 1 #p
| ke R kRIP= 5 = S (v, (D6)

+0O(e, or € loge), i i
(€ € loge) to give the solution

(C23
(r—Ry)
o . 1w ¢=vtan?-{® 5 ] (D7)
fo dke” ““(kR)*jo(kR)jo(kR)= ¢ ToR n
with 8,=2/\Av and
+0O(e, or € loge),
(C24 1
. , 0= (D8)
we obtain Eq.(33) with Eqg. (36). 1 (aRf)z
APPENDIX D: DECAY RATE OF AN UNSCREENED R? 6
F BALL
cos#?+ 7°sin 6°
Unscreened chargefel balls are metastable and fragment = . (D9)
through the quantum tunnelingee Sec. Ill for the detajls \Jcos#?+ nsin 62

Here, we roughly estimate the rate of fragmentation, assum-
ing a very simplified model of fragmentation after the ellip- We regard the deformation parameter as the time-

soidal deformation from the spherical shdpe]. dependent dynamical variable. Substitutiginto the La-
We express the surface of the ellipsoitraball as grangian density of Eq3) with the Fermi, the Coulomb, and
the volume effect added to it, and integrating it over the
x2 y2 2 whole space, we get the Lagrangian
=+ =1, (D1)
R2 R2 R27]2

1 :
L= >h(n) n*—=W(7), D10
with 7 being a constant which we call “deformation param- 2 ()7 () (b10

eter.” Note thatR depends ony since it is determined as to _ _
minimize the energy of th& ball. The surface is also ex- whereh(») andW(#7) are estimated as follows. First(7)

pressed in the polar coordinates as is expressed as
2
7R d (r=Ry)
r:Rf(e): > . (DZ) [?_:(':")5—
Vcos 0+ 7” s’ h(77)=27rv2f f drder? sing| — G nR ]
— Rt
The scalar fieldé(r,8) should satisfy the Euler-Lagrange cosﬁ{@ 5
equation to be derived from EQ3), (D11)
2 1. 1 . ) 4 2 3
2 ="+ — '+ —bt —— b= — b b2 — 2 n*(dR 7° [ IR
Vig=4¢ +r¢ +r2¢+ r2 tan6¢ 2¢(¢ v%), 24W2R4[——2(a—) N1+ZK(E>N2_772N3],
(D3) (D12)
with the prime and overdots, standing fefor and o/96, h
respectively. Here, the boundary conditions are imposed, where
d(r—o)=+up, N, = Jldxxz(k’l){(nz—l)xz— 72k
0
r=R;)=0, D4
a ) (b4 x{*—(p*—1)x® Y2 (k=1,2,3. (D13
d(r—0)~—v.

Since 1/cosH{ O (r —R¢)/8,} in the integrand in Eq(D11) is
(The last one becomes exact whptends to infinity[see  Negligibly small except at around~R¢, we approximate

Eq. (D7)].) Using the following variable: the quantities which are smooth at-R; to those atr
=R;. Now let us estimateN(7)=E,+Es+E;+E.. We
T=r—R((9), (D5)  easily obtain the volume energy
and keeping the terms of the leading order Ry—o, we £ :47TR3776 (D14
can rewrite Eq(D3) as v 3 '
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In order to estimateEg, E;, and E., we introduce new
variablesé and ¢ defined by

x=Rsin 6 coseg,
y=Rsinf#sing, (D15)
z=7yR cosd.

The surface element is expressed as

dS=R2\/cogd+ 72 sir? 0sin§dddo
=R?\k(u)dude,

whereu= cos andk(u) = u?+ %(1—u?). From Eq.(D16),
we obtain the surface energy

1
Eszzf ds:4w2R2f du vk(u).
0

(D16)

(D17)

We express the fermion number density,

_L(l_Fi P ) D18
Uf(u>_47TR2\/W “ nP(u) |, (D1g

whereP,(u) is thelth order Legendre polynomial. It is easy
to see that the above expression satisfies the condition for the

fermion numbeiN; to be conservefisee Eq(8)]. From Eq.
(D16) and Eq.(D18), we obtain the Fermi energy,

© 3/2
1+ 2, niPy(u)
\/f s N?’zJ'l =
S
It 3R Jo

k(u)l/4

(D19

Let us estimate the Coulomb energy,
Z—J JdeS’ ﬁ (DZO)

X—X
Using the relation
3
! :f A aexx)
47| x—X'| (2m)3%g?
34 s

:f dA—qeiq(H’), (D21)

(2m)%g?k(ug)

with

1 N “ N ~ A
X= ( X1 Xy s ;xz) =R(sinf cose,sind sing,cosb),
(D22)
q=(0y.y, 70,), (D23)

anduz=0,/q, we get

PHYSICAL REVIEW D67, 083506 (2003

V() [1/]

-0.2
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0.8 1 12 14 16 18 2 22

FIG. 6. The potential is displayed as a functionspin case the
F ball is not screened for the parameters shown in the graph. There
is an energy barrier, which is comparablevtoThe distribution of
the fermion is shown in Fig. 7.

47Tk(uq)
dQ; i e
xf 1+ mP,(u))e'qX (D24)
4 =1
With the aid of
Fd' R (qR) = =5, for I-I"
. aji(aR)ji-(q )—m e for
=even integer, (D25)

the integration in Eq(D24) can be carried out in the same
way as in Appendix C, to give

o 2 2
niPy(u)
Ec= szfd k(u( 1+ 2 g

We then minimizeW(») with respect toR andn,. As
expected from the perturbative analysis in Sec. Ill, we verify
numerically thatW(») takes the local minimum valué/,;,
at =1 in a certain range of the parametésse Fig. 6 for
the caseg=0, A=1, andN;=1000). In the following, we
consider such af ball which has the local minimum value
of Wat »=1, that is, is stable against the deformation from
the spherical shape.

We finally proceed to estimate the decay rate of the meta-
stableF ball, using the Euclidean action method in R&3].

We express the Euclidean action as

(D26)

_ 1 12
A—fdt Sh(m ™+ V), (D27)

where V(7)) =W(7%) =W, [we noteV(1)=0].
the following variable:

Defining
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£&—0 for t— *oo, (D32
0635 (N _ 1006 n=1 o o . .
f= N=08 ------- From Eq.(D31), we geté~=2V(¢) for the classical solution
— 063 \}\, = 1 ) N = 1.7 e and obtain the classical Euclidean action
(o] kY i
kv Jogim—o[” T YAy
S 0625} . Aozzfo Cdg 2V(§):2fl Cdy; 2h(n)V(7n),
— ez Vi . (D33
) .
0615| e TN ~ 1 where 7¢(n.>1) and (&:>0) are defined asv(7c)
o, SN =V(&.)=0. The constarK is defined as
061} " . E
v e ’ ™ - vz
0.60‘-1 _(;5 ..... 69 015 1 .~ \/TO de _ E_er/(o) .
COS N2 P , (D34
FIG. 7. The number density of the heavy fermion as a function det| — ? +V(§)

of 6 for =0.8,1,1.7. The density is constant fpr=1. It gets large
at the equator forp=0.8 and at poles fopy=1.7. They are graphi-

) T where the symbol “dét’ means the determinant in which
cally displayed in Fig. 8.

the zero-mode contribution is removggB]. In our caseK is
calculated as

7
= | "an Vi), (028 _ _

l K= \/;Wons/“sc exp| “az WO V2

we express the action as 0 eN2v(g)
1. w(V"(1) 341 e e
A=Jdt 552+V(§)], (D29) z\/%(w) Ul dwh(n))exr)fl dnh(z)

where the potentiaV(¢£)=V(7(¢)) has a local minimum ( V(1) )1/2_ 1 035
V=0 at £=0. According to Ref[33], the decay ratd’ is 2h(1)V(7) n L
estimated semiclassically, L dz’vh(z")

I=7i|Kle A", (D30) Taking parameters= 10> GeV, N;=1000, and\ =1 for
. ] ] ] example, we obtaindy=550. Thus, the lifetime of the un-
where A, is the classical action of the bounce solution &d screened chargel ball is much longer than the age of the
is the prefactor, both of which are evaluated below. Thenjverse in this casélf the production temperature of the
bounce solution fog should satisfy the following equation: g T, is as high asTi~T,,~v, the F ball would decay
5A through the thermal fluctuation. We here consider the tem-
— = —{+V(§)=0, (D31)  PeratureT;=0.lv<Ty, where the lifetime of thé~ ball is
29 found to be long enough to let it survive till presént.

with the boundary condition, APPENDIX E: DECAY RATE OF A SCREENED F BALL

A Here, we roughly estimate the decay rate of the screened
F ball, assuming the very simplified model, in which the
surface has the following shape:

o
e Ri=Rg[1+a,P,(cosh)], (ED)
v where P, is the second order Legendre polynomial dRg
(b) anda, are arbitrary constants. This allows tReall to have
(a) (C) a concave shape. In the following we consider Ehéall

energy as the function of the ar&and the parametea,.
Then, the parametd®, is a function ofSanda,. We use the
and the fermions gather at poles due to the repulsive electric forcéamg technique as that in Appendl?( D. We here rgggrds
(b) The F ball is a sphere for=1 and the distribution is constant. the time-dependent dynamical variable insteadydh Ap-
(c) TheF ball has the pancakelike shape fp 1, and the fermions ~ pendix D. All we need to obtain af®(a,) andV(a,) in the
gather at the equator due to the repulsive force. Lagrangian,

FIG. 8. The distribution of the heavy fermions in case fheall
is not screened.a The F ball becomes cigarlike shape faor>1
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= 2 2
L=]§'F\(a2)é122—Y/(a2). €2 | =E(0,)d6%+2F(0,$)dodd+G( 0, p)dd?,  (EB)

J=L(0,$)d6?+2M(6,p)dodep+ N( 6, p)dep?,

We can easily obtaih(a,) by replacingR; in Egs.(D8) and ED
(D11) with that defined by Eq(E1). with
The potentialV(a,) can be obtained from E65) since £(0. &)= R2+R!2
F(9) depends only or§ and not on the shape of theball. (6,4)=Ri+R¢",
We calculate the following quantities using the method intro- 1
duced in Appendix A: L(0,¢)= ———— rZ(R;JZR?_ 2R}2—R?),
VR +R;
XCEJ % RiRy" €9 F(6,4)=0, M(6,¢)=0, (E9)
( 1 1 )2|R1R2| G(0,¢>)=R? Sinzg,
Xp= f s (= - = : E4
° R R RiR, (B4 R,
N( 8, )= ——— sinf(—R; sinf+R; cosh),
The surface is expressed as VR?+R/?
x=X;(0,¢)=R;(0)(sinf cose,sind sine,coss) where the prime denotes the derivative with respect.to

(E5)  From these, the Gaussian curvature in E4L7) and the
mean curvature in EqA18) are expressed in terms & .
in the polar coordinates. The first and the second forms aré\Ve then obtain

1 (Rf sind—R; cosh)(—Rj?R+2R;?+R?)
=K= ; 2 12y2 ! (E9)
RiR; R¢sin (R + R{?)
1 1)\> (EN-GL)?
Ri R  E2G?
{(R*+R{?)(— R} sin+R; cos) + (— R{’R?+ 2R;?+ R?)R; sin )2 (E10
Rfsin 6(Rf +R{?)* '
From these expression¥.: andXp are written as
=2 |(R} sin@— Ry cosh)(— R{2R?+ 2R} %+ R?)
Xc=47'rf d0| f f ! 2f/2f f f | (E1D
0 (Rf+Rf?)*
w2 {(R*+R{?)(—R} sin+R; cosh) + (— R{*’R¥*+ 2R; 2+ R?)R; sin6}? |K|
xD=4wf de : ST —. (E12
0 R sing(Rf+R{%)% K
|
We note that these quantities do not explicitly depend on the V(ay)= Fggt)(az)_ F§§2(0). (E14)
parameterR, or S and only depend om,. Using the free
energy, We show the potential as a function a$ in Fig. 9 for the

@) caseT=0.v. The cusp in Fig. 9 arises because of the
Fiot(a2) =(Cq+Cso)Xc+(Dy+Dsd)Xp,  (E13)  nonanalytic feature ok andXp . At the top of the cusp, the
Gaussian curvature becomes zero at equator and turns to be
we evaluate the potential negative for largen,. This is illustrated in Fig. 10. One can
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150

100}
_
i 50
—
el
0
> a,=0 ;=028 2,=032  a,-04
50} ]
T — O 1 Y4 FIG. 10. The shapes of thE ball for various values of the
| : parametera,. A geometrical cross section containirmaxis is
shown. The shape is a sphere &r= 0. One of the principal radii is
divergent at the equator fa,=2/7~0.28 in which the potential
'150_0'3 02 _6'1 0 0'_1 [;_2 ‘;-332 0.4 has the crest. The shape becomes s_lightly nonconvex at the equator
¢ for a,=a,.~0.32 and more narrow in the middle fap=0.4.
a.
FIG. 9. The potential _of the scre_ancbaII asa functiqn of,. 740=2Jazcda2 /ZE(aZ)V(aZ). (E15
The curvature at the origin is positive and the potential becomes 0

negative fora, larger thana,, at T=0.1v. These facts mean that

the sphericaF ball (a,=0) is metastable. The energy barrier is We can apply Eq(D11) to obtainh(a,) and see its magni-
much larger than the temperature. This tells us that the decay due tgde isO(3R*). We find that the barrier height ©(10Q)
the thermal fluctuation can be neglected. anda,. is O(1) from Fig. 9. From these, the classical Eu-

clidean action is roughly estimated a=N;. Since the
observe that the curvature at the origin is positive and theumber of the heavy fermion is larghl;>10'°, from Eqgs.
potential becomes negative fer, larger thana,.. These (69) and (71), the classical Euclidean action is extremely
facts mean that the spheridaball is metastable as discussed large and the screendelball is effectively stable. Although
in Sec. V. Because the energy barrier is much larger than theve use the very simple deformation model and take the spe-
temperature, the decay of tiieball due to thermal fluctua- cial case ofT=0.1v, we think that the result of a very long
tion can be neglected. We next consider the decay due to tHigetime is rather general for the temperature smaller than

tunneling effect. since the result is only due to the macroscopic property of
We consider the classical Euclidean action, the F ball.
[1] A.L. Macpherson and B.A. Campbell, Phys. Lett.3B7, 205 lidity of this thin-wall expansion collapses for the smilball,
(1995. Ni~ 16723\ 25,
[2] J.R. Morris, Phys. Rev. B39, 023513(1999. [13] The solution for¢, is not smooth atv=0. This is caused by
[3] R. Brandenberger, . Halperin, and A. Zhitnitsky, the Yukawa term— Gy which is implicit in Eq.(7). Be-
hep-ph/9903318. cause of the curvature of the surfaggy/; does not vanish and
[4] This fragmentation is due to a small volume energy, which is approximately proportional té(w), which is also implicit
exists when the symmetry is biasgd. in the rhs of Eq.(19), giving the discontinuity ofg; at the
[5] When the fermions of th& ball have an electric (1) charge, F-ball surface in the case where the fermions are tightly bound
hereafter we call such arball a(electrically chargedF ball. in the domain wallG> \\. If the spreading thickness of the
In the same manner, we define the terminology of the nekbtral fermions is comparable to the that of the domain wall, the
ball for that Macpherson and Campbell originally introduced. expectation value of the fermions is not likéw). We inves-
[6] D.N. Spergel and P.J. Steinhardt, Phys. Rev. L&df. 3760 tigate this case elsewhef8].
(2000. [14] In order to get the order of&, /R)?E{?) in E,,,, we need only
[7] J.A. Tyson, G.P. Kochanski, and I.P. Dell'antonio, Astrophys. to keep the order of&,/R) ¢q in ¢, as is well known in the
J. Lett.498 L107 (1998. perturbation theory.
[8] K. Ogure, T. Yoshida, and J. Arafune, KOBE-TH-02-03, [15] The integration of the Gaussian curvature on the closed surface
hep-ph/0212332. takes the topological value, which equals 4 this case.
[9] Note that the qualitative discussions in the following do not[16] J. Arafune, T. Yoshida, S. Nakamura, and K. Ogure, Phys. Rev.
depend on the explicit form dfl (). D 62, 105013(2000.
[10] Such zero-mode solutions fa@t; can also exist in other cases, [17] A.B. Migdal, V.S. Popov, and D.N. Voskresenskii, Zh. Eksp.
such as in the context of supersymmeidg,35. Teor. Fiz.72, 834(1977).
[11] In our context, we call the plane where the expectation valug18] J.R.S. Nascimento, |. Cho, and A. Vilenkin, Phys. Rev6@
of ¢ vanishes the “surface of thE ball.” 083505(1999.

[12] Here R is the order of the curvature radius. Note that the va-[19] The Thomas-Fermi approximation is adequate for

083506-17



YOSHIDA, OGURE, AND ARAFUNE PHYSICAL REVIEW D67, 083506 (2003

|[d/dw(1/V,)|<1 [18]. We see from Eq(49) that this condi- [26] It is easy to understand within the leading order discussion in
tion is satisfied in the region near the surface where most of the  the thin-wall expansiofi1,2].

electric charge is screened. [27] A.V. Kravtsov et al,, Astrophys. J502 48 (1998.
[20] J. I. Kapusta,Finite Temperature Field TheoryCambridge [28] M. Oguri, A. Taruya, and Y. Suto, Astrophys. 359, 572
University Press, Cambridge, England, 1989 (2002.

[21] Note that the validity of the thin-wall expansion collapses for [29] R. Daveet al, Astrophys. J547, 574 (2001).
the smallF ball, N;~7000.

[22] In general, we cannot fact@;. andD out of the integration
because they are dependentogf. We see, however, that;
= const minimizesF{%) and that the deviation from the uni-
form distribution causes the contributions of the order higher
than (5s./R)? in the thin-wall expansion. Thus, we also take

o¢=const in order to estimaﬂégzc). since the region is far from the surface

[23] We define theF ball as being metastable when it is classically g. . S
stable owing to the energy barrier but decays quantum me[32] The geometrical assumption of an ellipsoidal shape enables us
chanically with a finite lifetime to estimate the upper bound on the lifetime of théall.

[24] A. Vilenkin and E. P. S. Shellardzosmic String and Other [33] S. Coleman, Aspects of SymmetryCambridge University

[30] Two lines,u=const and = const, are called “lines of curva-
ture” if their tangent vectors are parallel to the principal direc-
tions.

[31] The coordinates can be defined uniquely as far as two or more
normal lines do not intersect. We can neglect the contribution
in the energy integration over such a region of intersection,

Topological Defect$Cambridge University Press, Cambridge, Press, Cambridge, 1985

1994). [34] J.R. Morris and D. Bazeia, Phys. Rev.54, 5217(1996.
[25] See, e.g., the textbook E. Kolb and M. S. TurriEng Early  [35] G. Dvali and M. Shifman, Nucl. Phy8504, 127 (1997; M.

Universe(Addison-Wesley, Redwood City, CA, 1990 Sakamoto and M. Tachibana, Phys. Lett483 231(1999.

083506-18



