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Causal perturbation theory in general FRW cosmologies:
Energy-momentum conservation and matching conditions
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We describe energy-momentum conservation in relativistic perturbation theory in general Friedmann-
Robertson-WalkefFRW) backgrounds with causal source terms, such as the presence of cosmic defect net-
works. A prescription for a linear energy-momentum pseudotensor in a curved FRW universe is provided, and
it is decomposed using eigenfunctions of the Helmholtz equation. Conserved vector densities are constructed
from the conformal geometry of these spacetimes and related to our pseudotensor, demonstrating the equiva-
lence of these two approaches. We also relate these techniques to the role played by residual gauge freedom in
establishing matching conditions at early phase transitions, which we can express in terms of components of
our pseudotensor. This formalism is concise and geometrically sound on both sub- and superhorizon scales,
thus extending existing work to a physicallgnd numerically useful context.
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[. INTRODUCTION that the confrontation with observation remains indecisive,

not only because of the significant experimental

Considerable challenges are presented by the study of thacertainties—for example, even Microwave Anisotropy

causal generation of perturbations seeding large-scale struerobe(MAP) data will be insufficient to simultaneously con-
ture formation and anisotropies in the cosmic microwavestrain both the adiabatic and isocurvature inflationary modes,

background CMB) [1]. Not only is the analytic treatment of and cosmological parametef$2]—but also because good
the resulting inhomogeneous evolution equations extremel§luantitative accuracy has not yet been achieved for the full
complicated, but their numerical implementation must alsd@nge of cosmic defect theories. For example, even for flat

circumvent a number of subtle pitfalls before facing up to theUNiverses, a subsidiary role for defect networks complement-

severe dynamic range limitations of even supercomputeilng the inflationary power spectrum cannot be excluded. In-

simulations. To date the only quantitative numerical Stume%ﬁ:ﬁi;ﬁ?;g 'n”(;'torg:fdngfﬁ n r;zg::dtgsfzg(t{r'gﬂggorergsdo}
with realistic causal sources, such as cosmic stri@gsf] or ' P 99 9

. freedom available.
other global defect networK$—7], have been performed in . .
flat Friedmann-Robertson-WalkefFRW) (K=0) back- There are a number of mechanisms by which defects can

: O be produced at the end of inflation with the appropriate en-
grounds. Despite positive indications ab_out the Iarge—s_calgrgy scale: Hybrid inflation typically ends through symmetry
structure power spectrum for models with a Cosm°|°9'cabreaking which generates defed5]. Phenomenological
constant include@4], these defect networks in flat cosmolo- grand unified theory(GUT) models have been proposed
gies appear to be unable to replicate the observed position Qfhich can produce superheavy strings after inflafi6].
the first acoustic peak in the CMB angular power spectruntpreheating” as inflation ends is also capable of creating
[3,6—9—indeed the best results for defects are K00  superheavy defects even for low energy inflation scil@
cosmologieg10]. Given the foundational uncertainties that remain concerning
This situation contrasts markedly with the standard infla-inflation[18] and the lack of a widely accepted realistic phe-
tionary paradigm in which reliable predictions about thenomenology, it is only reasonable to continue to explore al-
CMB acoustic peaks are relatively straightforward to maketernative paradigms such as late-time “causal” generation
and for which there appears to be remarkable accord witmechanisms—which are not exhausted by defect networks in
recent CMB experimentgll]. So the question arises as to any case, e.g. “explosion”19], and other source mod€]g].
the relevance and utility of complicated theoretical studies oMoreover, in order to have confidence in cosmological pa-
causal perturbation generation when the simple primordiatameter estimation, it will be necessary to constrain these
inflationary models appear to suffice. The first motivation isalternative models, including the effects of vector and tensor
modes, anK # 0 backgrounds. Here the combination of in-
trinsic curvature and defect sources is particularly interest-
*Electronic address: g.amery@damtp.cam.ac.uk ing.
"Electronic address: e.p.s.shellard@damtp.cam.ac.uk Cosmic defects would typically be expected to contribute
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to the nonGaussianity of CMB anisotropies on smallFRW cosmologies has not been given.
scales—e.g. for cosmic strings, on arcminute scp2&$— In Sec. Il we shall provide a prescription for the construc-
with effects on larger scales being swamped by the centrdlon of such a linear energy-momentum pseudotensor in the
limit theorem. This nonGaussianity ultimately derives fromK#0 FRW universe. The pseudotensor so obtained agrees in
the nonlinearity of the defect sources, which is in markedhe flatspace limit K—0) with the Landau-Lifshitz stress-
contrast with the linear quantum effects which imply that theenergy pseudotensart,, obtained in Ref[23], and with the
simplest inflationary scenarios are typically Gaussian. Al-superhorizon pseudo-energy of Rgf7]. We also discuss the
though there do exist inflationary modefsuch as nonva- _ph|!osophy underlying the notion of a pseudotensor gnd how
cuum initial state, and multifield inflationthat can yield its inherently global nature appears to be at odds with theo-
non-Gaussian statisti¢s.g. ), the detection of a different €S of local causal objects. In Sec. Ill we define energy anc_J
distribution would imply that inflation was not the only sig- momentum with respect to a general FRW background mani-
nificant source of perturbations in the early universe. Thdold. This allows us to calculate conserveq vector densities
presence or absence of such distinct signatures may therefd the conformal geometry of these spacetimes, and to relate
provide observational tests with which to confront inflation them to our pseudotensor, giving it a local geometrical mean-
and causal paradigmf0]. Another particularly exciting N9 that is valid on all spales and demonstrating the equiva-
prospect is the detection of a CMB polarization signal for'ence of the two formalisms. In Sec. IV we apply the match-
which the competing models give very different predictionsind condition formalism[24,27) to a curved universe, and
and, indeed, some causal effects can be differentigaaH discuss how the reS|_duaI gauge freedom in the synchron.ous
Of course, topological defects are strongly motivated in higrldauge may be exploited to make the pseudo-energy continu-
energy physics and their discovery—from observations oPUS across the phase transition in which the defextsther
such effects in the CMB, or from the study of high energysource}z appear. We also show that we may _match the vector
cosmic rays and gravitational lensing—would have profound@rt of the pseudotensor across this transition. We conclude
implications for our understanding of the early universe.  (Sec. V) with a discussion of the implications of this work.

Finally, we note that there is now a significant body of
work about causal mechanisms for structure formation and Il. A GENERALIZED ENERGY-MOMENTUM
this has raised a number of interesting issues within general PSEUDOTENSOR
relativistic perturbation theory. However, even with most . : : .
work underFt)aken in a flat FR\)//V background, the number of We wish to cor_15|der metric perturbationg, about a gen-

eral FRW spacetime

approaches to the problem almost equals the number of pa-
pers. A key aim of the present paper, then, is to demonstrate ds?=a?(y,,+h,,)dx*dx’, (1)
the equivalence of the most important of these approaches
and to generalize this work to all FRW cosmologies, layingwhere the comoving background Iline element in
the foundations for quantitative studies in curved back-‘conformal-polar” coordinates £, x, ¢, 6) is given by
grounds in particular. We shall work in the synchronous .
gauge because of its ubiquity in numerical simulations and v 2 2 > 2
the physical transparency offered by this gauge choice. Y dXEdXT= —d 7o W[dx +SmﬁX(d0 +sitod¢?)],

As well as being of interest in its own right, energy- 2
momentum conservation is both the physical constraint on . . ) ]
the spuriouggauge modes resulting from the residual free- with the function sipy depending on the spatial curvatufe
dom in the synchronous gauge, and a common techniqu@s
used to ensure that numerical simulations are free from their

. i <
effects. In the literature, treatments of the energy-momentum sinhy,  K<0,
conservation of individual modes in the combined system of Singx=14 X K=0, 3
gravitational and matter fields have been variously phrased siny, K>0.

in terms of “compensation”7,23], “integral constraints”

[24,25, and the construction of “pseudotensors” to describeHere,a=a(7) is the scalefactor, for which we can define the
the energy and momentum densities and their conservatioghnformal Hubble factot{=a/a, with dots denoting deriva-
laws[5,23,24,2, as well as the use of matching conditions tjyes with respect to conformal time As emphasized ear-

relationship between these notions and the initial conditiongngice

has been discussed to some extent in the case of a flat FRW

background. For general FRW cosmologies, however, the ho#=0, (4)
situation is less clear and deeper conceptual issues have to be _

resolved. In Ref[27] a definition of the pseudo-energy was Where the trace is given bii=h'; (with the convention
motivated by a consideration of matching conditions at arthroughout that Greek indices run from 0 to 3 and Latin from
instantaneous phase transition, which was related to “geot to 3.

metrically” obtained conservation laws in the superhorizon The Einstein equations are given B, ,= Rﬂy—égMR
limit. However, to date, a systematic geometric definition=«T,, (with k=87G), and we will separate the energy-
(valid on all scalepof the complete pseudotensor for curved momentum tensor ,, into three parts:
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T =T, +0T,+0,,. (5) Hh
a a a . Too=(5Too+®00)_7, 70i = 0Tt Oy,

The background tensdr ,, includes the dark energy of the H . .

universe(or cosmologicafl constantwhile the first order part 7ij = OTij + Oy = - (hj =hy). ©)

oT,, incorporates the stress energy of the radiation fluid, _ - ) ]

baryonic matter, and cold dark matter. The final contributionHere the components®, 7, and+' defined in Eq(6) can

v Tepresents the stress tensor of an evolving defect nebe identified as the pseudo-energy denéflythe pseudo-
work or some other causal sources. This is assumed to beomentum densitys, and the pseudo-stress tenggy, re-
small (of order 8T,,) and “stiff,” that is, its energy and spectively. Using the stress-energy conservation equations
momenta are conserved independently of the rest of the magthe Bianchi identities

ter and radiation in the universe and to lowest order its evo-

lution is unaffected by the metric perturbatiams, . In prin- ™" ,=0, (7)

ciple, we should include also backreaction effects &iod . . . . .
P various suitable choices of evolution variables have then

example the decay products from string loops, modeled as, . .
. : been made: for exampl5,23]. This flat space result can be
another fluid component. These are, however, refatively be btained from a straightforward manipulation of the field

nign cosmologically, and are usually neglected in numerical

studies. A scalar potential may similarly be included in theSquations forh,,, which involves moving any background-

formalism—see, for example, Hu, Seljak, White, and Zaldar-dependem terms to the right hand sj8¢ However, for the

riaga[32]. Except in situations in which first order theory generalization to curved spacetime backgrounds we need a

breaks down, the conservation laws discussed in this papgpore rigorous  prescription fqr_ _the e_nergy-momentqm
should still hold in these cases. pseudotensor, as well as the definition of its components in a

coordinate system appropriate for practical applications—
this is the subject of this section. We are also called upon to
come to terms with the nonlocal nature of these objects.
The Landau-Lifshitz construction aof,, proceeds by ap-
pealing to the principle of equivalence, which allows one to
It is interesting also to consider the notion of the energy-choose a normal coordinate system so that the connection
momentum tensor of the geometry or gravitational field,coefficients vanish in the neighborhood of a point. In a gen-
which we shall denote at,, . If it were possible to define eral spacetime, the interacting part of the geomegrycan-
then we could reexpress the perturbed Einstein equationsot be made to vanish by this coordinate choice, although it
simply as a wave equation fdr,, with a source term con- then resides only in the second and higher order derivatives
structed from the “complete” energy-momentum tensor, thatof the metric. Nevertheless it becomes significant over ex-
is, the sumr,,=T,,+t,,. As we shall explain, the linear- tended portions of the spacetime and so the energy-
ized Bianchi identities would imply that the sum, is (to  momentum of the geometry must be understood as global in
linear ordey locally conserved*” ,=0, since itincludes all nature[29]. This fact forbids the existence of a tensor density
the flux densities of matter and gravitynlike the covariant for the gravitational energy and momenta, so that the best
conservation lawT#".,=0 which represents an exchange that we can actually hope for in terms of local quantities is a
between matter and gravjtySuch motivations for incorpo-  «pseydotensorial® object which, suitably integrated over a
rating the geometry in a “complete” energy-momentum ten-j5yqe region of spacetime, would lead to a quantity that is
sor 7, are discussed at considerable length in R@8] 5 fficiently gauge invariant for practical purposes.
using the example of metric perturbations about Minkowski  However, in causal perturbation theory, we are particu-
space. o larly interested in a distribution of small perturbations each
Einstein, as well as Landau and Lifshitz, have presenteg¢ yhich has associated energy and momentum. These ob-
procedures whereby one may rewrite the Bianchi identitie§ects (such as topological defects, and their associated per-
to obtain quantities that they call energy-momentumy,rhationg are not well modeled, even as a distribution, by
“pseudotensors.” These have some of the above propertiegyantities that have no meaning except over large portions of
and allow for the calculation of various conserved quantitiegpe spacetime, and one has a ratagrocbalance between
[26]. Here botht,,, and 7, are quadratic in the connection he requirement that one consider a sufficiently large volume,

coefficients, so that they are “linear tensors,” behaving like ang the understanding that effect of the distribution of causal
tensors under linear transformations.

For a Minkowski space, witly,,,= 7,,, a=1 in EqQ.(1),
linearizing reveals this procedure to be essentially trivial be- 11050 objects are commonly known as “pseudotensors” for his-
causet,,, vanishes to first order. However, for the flat space;yrical reasons, e.g. Einstein’s antisymmetric construction. Here, the
(K=0) expanding universe, the time dependence of th@omenclature refers to the fact that they require additional

scalefactor in Eq. (1) introduces additional terms at linear structure—such as a preferred coordinate system/background
order. This has been used by Veeraraghavan and StebbifRganifold—on the spacetime for their definitig80], rather than

[23] to define an energy-momentum pseudotensor in thigheir transformation properties under reflections. They are not true
case: tensors, but linear tensors.

A. Conceptual discussion and pseudotensors in flgtk =0)
FRW spacetimes
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objects should average to zero. This is also a major concefpe further written as a sum of a background contribution
tual difficulty facing integral constraints for localized pertur- from the unperturbed spacetime, and a perturbed(palike
bations as discussed by Traschenal. [25]. Fortunately, the K=0 case for which the background term vanighes
there exists a formalisif31] in which one can avoid these Thus, 7, = 7*,+ 87*,, with the components given by
difficulties by defining energy and momentum with respect

to a background manifold, so that one obtains conservation 0 = 3K, «k§7°,=a256G?,+Hh,

laws and conserved vector densities. We shall apply this for-

malism to the general FRW spacetime in Sec. lll, thereby w0 =0 k6. =a2s8GP.

T . . . . I ’ I 1
providing the results of this section with a local geometrical
interpretation on all scales. K?j: _ Kﬁ} ko ]:aza‘G‘ J——H[hi J_ —h&‘j].

12
B. General FRW (K#0) spacetimes and curvilinear (12

coordinates Since ther* , are precisely the Einstein tens@fivided

Consider two spacetimes related via a conformaby «) in the conformally related stationary Spacetiﬁl,ﬁu,
transformation—also known as a metric rescaling—of thethey must satisfy the Bianchi identities there. Hence, we
metric tensor so that know that

9,,=Q0,,, g=Q ‘g, (8) Dor®o+D;r =0, Dor%+D;7 =0, (13

where() is a scalar function of the coordinatés(x“). A whereD , denotes covariant differentiation with respect to

. . Y22
general FRW universe may be so rescal_ed_to_a Statlonart¥]e stationary 4-metrig,,, . Now, using the connections and
(a=1) FRW universe. Since the nonzero intrinsic curvatur

. (12), and working to first order, we may rewrite
of a general FRW spacetime manifests itself in the nonvanég (12, working fo irst order, w y rewrite B3

ishing property of the background Einstein ten&aren in a
stationary spacetimewe shall have to separate out the back- ‘ K.
ground from the perturbed parts. Moreover, since we wish to 87° 00t 07 oi— —h=0,
express perturbations in terms of the Helmholtz decomposi- K
tion in polar coordinates, we shall write all spatial deriva-
tives in terms of the covariant derivative with respectytp,
rather than the partial derivatives as previously for ke
=0 case in Cartesian coordinates.

Under Eq.(8) the Einstein tensor transforms as

87% o+ 87 |;=0, (14)

where the bar denotes the covariant derivative with respect to
the 3-metricy;; , and the—(K/K)h term is implicit in the
covariant derivativeD; 7 .
G =G +t This manner of rewriting the Einstein equations clearly
promer Ry reduces to that of23l—see Eq.(6)—for K=0, wherer*
1 1 =67 ,. However, Eqs(14) obeyed by theSt* , are more
ty=—¢u,t Ezp#(/;ﬁ— Zgww"%+ 9 (9 complicated than Eq(7) because the nonzero intrinsic cur-
vature manifests as a nonvanishing background Einstein ten-
where ¢, =(InQ) ,. Now letg,,=a%(y,,+h,,) as in Eq.  SOF which appears in the Bianchi identities for the full space-

: ~ : . time.
(1) with Q=1/a2, so thatg,,=v,,+h,, is the metric for . S
observers comoving with the expansion of the universe. If I we exploit the Lact that the V?Ct.OPO_IK'”'_ng n
we raise the first index, we can make the identificatign =~ 9—With componentss”, may be multiplied with itself to

=—2H, l/’izo' Hence, the components of a stress energ)torm the (redUCible Kllllng tensor — 5#0501/, then we may

“pseudotensor” defined by add + Kh/« times this tensor tér# , without disturbing the
_ tensorial properties of the perturbed part of tie,. This
™ =G" Ik, (100  amounts to a redefinition of the 00-component only. Hence-
) forth we shall consideb7* , to be redefined in this fashion
may be written as so that
k7 o= —3K+(a?5G’ o+ Hh), k8710 g k610 o — Kh=2a26G ,+ Hh—Kh.  (15)
k%=a?6GY%;, The news7# , will then satisfy the concise equations
KTij:—K5ij+(az5Gij—H[hij_hgij]). 57’00’0"‘5’#0“:0, (16)
(12) .
87° o+ 87 4;=0. (17)

We note that, since metric rescalin@ preserve its tensorial
properties, ther* , defined in Eq.(10) are true tensors in We may justify this redefinition by noting that the
both the stationary and the expanding spacetimes. These ma@-component so obtained is precisely the definition of en-
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ergy (up to a factoma?\/y) obtained from the conformal Kill-  “radial” coordinate 3, there is an implicit sum over indices
ing vectorP, in the following section. Furthermore, since the Im which label the spherical harmonics encoding the angular

volume element W= dV+dV e, where &/=a*\/ydydgdg, ~ dependence. .
dVpe=(h/2)dV and y is the determinant of the spatial Decomposing the energy-momentum pseudote(igdrin

3-metric, we may interpret the Kh term as representing the this fashion, we have
alteration to the flat space energy due to the effect of intrinsic
curvature on the volume element. 0_ (0)
Expressing the conservation properties of a general FRW 070= | du(B)7sQ ",
cosmology in this fashion is particularly useful, as it pro-
duces equations phrased in terms of the spatial covariant de-
rivative, which is precisely the language used to express the 5T?=J’ du(B)[ 7y QP+ APQV+ 7 V1],
properties of the Helmholtz eigenfunctio@™, commonly
used to describe perturbations in such cosmologies.

o7 = f du(B[2(r QO+ Q) + 7P Q)
C. The Helmholtz decomposed pseudotensor

: (1) (-1ji (2)(2)i (=2)(—2)i
For perturbations over a curved FRW background, we can +rir QU+ QPN+ 7 QU ], (2D

no longer make use of standard Fourier expansions. Instead,
it is usual to employ the Helmholtz decomposition using thewhere ther,, and r;;* terms are the “induced-vector” and
linearly independent eigenfunctions of the Laplacian in polarinduced-tensor” modes associated wi@® and Q{"")
qqord.inates{see Ref[32]). We e>§pand all pgrturbation quan- 4uxiliary modes. The quantitiess Ts/t Of 7, 7 and T(Gt 2)
tities in terms of the eigenfunctior®™, which are the sca- are defined as

lar (m=0), vector m==*=1) and tensori= +2) solutions

to the Helmholtz equation

1 K
V2QM= /i Q\(irjn) = —Kk2QM, (18) kTs=—2k?| h_ + 3” P) th
where the generalized wave numlgrand its normalized =—Kaz[pf5f+p5]+6HhL—6Kh,_,
equivalent3 are related tok via g>=k?+(|m|+1)K, B
=q/\|K| and the eigentensor hdm| suppressed indices 1 oK
(equal to the rank of the perturbatijoriThe divergenceless k7 D=—Zkh{" Y| 1- —
and transverse-traceless conditions for the vector and tensor 2 k?

modes are expressed v@g{“ V=0 andy) Q¥ =Q{*?!

_ a2 (£1),  (+1)
=0. Auxiliary vector and tensor modes may be constructed ka<(ps+ppvy tog ],

as follows:

(K kz)h h k2(1 K)h

KTL= T ot TSl ST
QV=-k"Qf”, QP=k"?QfP+ %'}’ijQ(O)- ® 318K
1 .
= 5 xa’Lop{”+p ]~ Hhy
Q= (20 [Qf "+ Qf V1. (19 2 S
2

The spectra for flat and open univers&<(0) are continu- r :1 Ao k_h —k2h }
ous and complete fg8=0. For theK >0 case, the spectrum 2T 37 L

is discrete because of the existence of periodic boundary 1

conditions. For scalar perturbations, we then hagge — _az[pme)JrH(O)]_HhT,

=3,4,5... since the=1,2 modes are pure gauga3]. 2 s

Using this decomposition the metric perturbation may be de-

composed as k7S D=[(2K+kA)hE D +h§ 2]
a2 (£2) | 77(£2)7 _ 92/ (£2)
= ka pfl}~“+11 2Hhg “’. 22

hij=2 J du(B)[hLy Q'+ h QP +h{PQP+h{ Dl eertpidly Tl TmEnhe 2

In the second equality for each of the above equations we

have made use of decompositions similar to &4) for the

o fluid 6T# , (subscriptf) and sourc@®* , (subscripts) terms,

whereh, and hy represent two “longitudinal” and *trans-  so as to write the pseudotensor in terms of these variables

verse” scalar degrees of freedohy, * two vector modes and  [32]. Equations(16), (17) yield four equations for the re-

hg? two tensor modes. As well as the transform over themaining four variables:

+hgQi+he Q. (20
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-Ts ' K 1 D. Relation to the superhorizon growing modes
VT k= 2k? TL+2(E_ §) T T Tss The pseudo-energyr®, (or 7s) obtained in this section
may be simply related to the coefficient of the superhorizon
growing modes for the cold dark matt€€DM) density per-
. h(1 turbation &, in the radiation- and matter-dominated eras, as
Y= —2k[k?—2K] 17" V= VK , (23)  well as in the curvature-dominated epoch. Assuming adia-

batic perturbations and ignoring the source terms in a two
fluid radiation plus CDM model, it is well known that the
where we have used the first equation to obtain the finaCDM density perturbation obeys the equations:
equality in the second. We observe that we have six indepen- . , 5
dent quantitieszs and one ofr_, 71 for the scalarsg{"") SctHo—A[H"+K]5=0, ;=10.=0,
for the vectors, and§"? for the tensors(Note thatr is
defined as the spatial tracer, @)= ?-'i ) S+ HS— E[H2+ K]6,=0, Q.,=1,0,=0.

Finally, we comment on the relation of our pseudotensor 2
(22) to an alternative definition given by Uza al. in Ref.
[27]. For perturbations over a curvell ¢0) FRW universe, In both the radiation and matter eras, there exists a superho-
there exist several possiblad hod generalizations of the fizon growing mode proportional tor?, while in the
Landau-Lifshitz pseudotensor, depending upon the manner igurvature-dominated regime, this becomes a constant term. If
which one removes the residual spatial gauge freedorwe let the coefficient of this mode b& then we find that
present in the synchronous gau@ee later in Sec. I/ In  k7g~—8A in the radiation eraxrs~—20A in the matter
Ref. [27] matching conditions were usdds an interesting era, and«7s~2KA in the curvature regime. Thus, our gen-
aside to define thero, components of the pseudotensor as eralized pseudo-energy essentially tracks the growing mode
of the density perturbation. This is a useful property for nu-
merical simulationgas discussed for example [if]), since
we can replaceS, with 75, thus avoiding the possibility of

spurious growing modes sourced by numerical errors. We
shall further investigate the inclusion of the pseudotensor in

KTBJODTE \/;/[KgToo"‘ K®00+ Kh™— Hh],

UDT_ _ :
k1o =\ kTo— 2KHE], (24 humerical evolution schemes elsewhgsd].
wheredo1oo= dx 7ok, @andh, E, h™ correspond to the formal- |1l FRW CONFORMAL GEOMETRY AND CONSERVED
ism of this paper as:h=6u(B8)h Q®, -—AE CURRENTS

=[uw(B)htQ®, andh~=h—2AE, A=D'D,. . .

Apart from providing a prescription for all the compo- The energy, momentum and the|r conservation laws for.
nents of the energy-momentum pseudoterfaad in a more "€ spacetime may be defined with respect to another mani-
elegant decompositionour definition(22) extends and im- fold in an inherently local mann€i31]. In the context of
proves upon that proposed in RE27] on two counts. First, perturbauo_n theory, we al_ready have a backgrour.nd,. and it
Eq. (24) was only given a geometrical interpretation on su-S€e€Mms logical to employ this approach. However, this is nota
perhorizon scales. THeh term in the(redefined 57° , com- very compact fprm of expressing the desired ponserva_t|on
ponent in Eq.(15) replaces &h~ term in their definition laws which, unhkg the pseudotensor c_)f the previous sgctlpn,
(24), where their variableh-=h—h® is the sum 6f, &€ not phrased in terms of the spatial covariant derivative

¢ With respect toy;; , making it incompatible with the decom-

" position of perturbation quantities with respect to eigenfunc-
tions of the Laplacian. Here we shall calculate the conserved
yector densities for the conformal geometry of a general
FRW spacetime, and relate these to our pseudotensor, giving
gra geometrical meaning that is valid on all scales and dem-
onstrating the equivalence of the two formalisms.

+h+/3). The two definitions agree in the superhorizon limi
in which casen~h™, but our definition(22) and its physical
interpretation are also valid on subhorizon scales.
Second, there are the limitations inherent in the manner i
which the pseudotensor is defined in RgZ7]: Unlike Eqg.
(12) the perturbed and background parts of the pseudotens
are not distinguished. Moreover, their quantty is defined
via a conservation equation, so that the pure divergenceless
part 7;"Y), removed by the derivative in Eq16) is not A. Conserved currents with respect to a FRW background

recovered as a vector quantity to be rzn%tched across the tragnd angular momentum for general relativistic perturbations
sition. Finally, the definition ofoo=—a“7" ¢ in Eq.(24) and  pas peen considered by Kaizal.[31]. They provide a gen-
Ref.[27] differs by a factory—g=a*\/y from our°,, so  eral formalism by which one can define, for an arbitrary
that it is related(on superhorizon scales onlyo the one  spacetime 1,g,,) containing perturbations and any vector
conserved currenﬁ,é‘o, whereas all components of our ¢, conserved vector densitiéé(g) with respect to a back-
pseudotensofl2) can be related to the four conserved cur-ground M,g,,) and a mapping betweel and M. Here,
rents|# defined in the next sectiofSec. Il). and hereafter, a caret shall denote multiplication by g
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=a*\/y where g=detg,, and y=dety,,. Although one where, we have used the subscipto denote that the con-

may use any vecta, it is useful to choosé as the confor- served vector so labeled is generated by the vegtor
mal Killing vectors of the background spacetime, so as to
exploit its symmetry properties. B. Relations between thes+* , and the I *

In general, the choice of a particular background is free.

. . ; Any conformally flat spacetime will admit a maximal
However, it makes sense to either choose simple bac

d ) imal h Ksonformal Lie algebra spanned by 15 linearly independent
grounds possessing maximal symmetry or t0 ChoOSe as @ toympg| Killing vectors. For the general FRW metric, these

backgromrjlnd one that is altr)ezdzr\c’;\(/)vmmonly.in usg in Cosmoll\'/vere obtained in Ref.35] in the coordinates4,x,y,z). In
ogy such as an unperturbe spacetime. Conceptua Sjrinciple, each of the 15 vectors will generate a conserved

one might desire a backgro_und possessing a ma>§|r_nal Killin ector with four components, and one conservation equation,
geometry(spanned by 10 linearly independent Killing vec- ielding at least 45 components. Given that the symmetric

tp_rs), S0 as to immediately generate Noether cor_lserved qualiseudotensor has only 10 linearly independent components,
tities and currents. Of the general FRW spacetimes, only d

. . ) L R f which 4 are removed by the Bianchi equatiqi$) and
Sitter spacetime has this property. The implications of the d? 7), there is clearly a consyiderable redunc?ancy in the infor-

Sitter Killing geometry have been investigated by Severah&ation contained in the set of all the vector densities ob-
_authors[24] and _it allows for a clear relation to Traschen’s tained using the FRW conformal geometry. Since we wish to
mtegral constraints{25]. We _shall demon;trate that the relate these conserved currents to our pseudotensor, our
chp|ce ofa FRV.V bfackground is not only quite tractafale- hoice of vectors is guided by the desire to kéegmple(so

spite the complications introduced by the use of a conform hat5G* & may be simply related to thér, ), and for the
rather than pure Killing geometrybut also allows for a clear vectors tvo pick out different componen%,. We shall

relation between the conserved vectéfsand ouré7,,,  therefore be particularly concerned with: the conformal Kill-

which is valid on both sub- and superhorizon scales. ing vector Py normal to constant time hypersurfaces with
The details of the construction of the conserved vectotgnformal factoryp, = H; the angular Killing vectorsvl .,
0 t

densities|* associated with a conformal Killing vect&  ang M,,; and the generalized isotropic conformal Killing
shall be omitted. The general formalism is giveri31], and  \octor H which has the conformal factor "
the details of the construction of a relation between the:co&X[Hn(r)Jrn’(r)]. In the coordinates «(x, 6, ),
00-component of a pseudo-energy momentum tensor and thgese vectors have components:

conserved vector density associated with just the conformal

Killing vector normal to a constant time hypersurface may be P4=(1,0,0,0, M%,=(0,0,0,9,
found in[27]. We shall simply quote those results required
for the current analysis: for each conformal Killing vector M%5=(0,0,—sin ¢, —cotf cose),
we may define a vector density(&) =/~ gl*(£) by
H*=[cosyx n(7),sinkxy n’(7),0,0]. (29
kl#(&)=6GH E"+ A "+ k{* (25

Here, sipy is defined in Eg. (3), while coxy

and ={coshy,1,cosy}; and n(7)={coshr,r,cos7} for K<0, K

=0 andK>0, respectively.
1 _ These conformal vectors reduce to Killing vectors under
AR = E(R“ v07 p—R7 ;6% )N ;€ special conditions on the scale factor: for a #at0 FRW
spacetime, the vectd?, is Killing if a(t)=C whereC is
h . some constant so that we have the stationary Einstein space-
= [H-H?-K]&%6*, (26)  time; andH is Killing if a(t)=C exp(-t/C) so that we have
a a de Sitter background. In the case of & 0 spacetimes,
_ _ Py is Kiling if a(t)=C; and H is Killing if a(t)
8ka’{#=(hg*"—h**)Z ,—ZD,(hg** —h#?) =C/h(7), whereh(7)={cosr,coshs} for K={—1,1}, re-
(27)  spectively.

) _ Using Eqgs(29) in (25) we obtain the following conserved
where we have substituted for the background terms in Eqyector densities which relate directly to our pseudotensor
(26), Z=9*’Z,,, andZ,,=L9,,=249,,. Here,L de-  §7* given in Eq.(12):
notes the Lie derivative, angl is the conformal factor fog A
with respect tag,,,, so that{#=0 for ¢ Killing. The vector r<l20=a2 y k67°%,
density so constructed will satisfy:

.y o . Kl =a?yl k8™ o+ H(hK ) —hl], (30)
18 =018, =% otz t4HI;=0 (29
10 _ .2 0
where we have used the result ., = (\—gV*) ,/\/—g for wlwg,=aNy ko™ 3,
an arbitrary vectoW in the first equality of Eq(28), and the A - .
FRW connection coefficients in the last. Here, and else- KIMlz:az‘/;[K&kﬁH(hkr5k3h)]’ (3D
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Ky =as Jy[—sing k87° ,— cotf cosg k67° 5],

kit =a2\y[ —sing k57, —coth cosg k87 3—sin pH(h* ,— 5 ;) —cotd cosp(h¥ 3~ 8 3h) ], (32)
valid for all FRW spacetimes, as well as

a?\/y[ k(87° o+ Kh)coshr coshy + x57° ;sinhr sinhy + h sinh7coshy], K<O0,

KlAE‘I az\/;[K5TOOT+ 57-01r+h], K=0,
aZ\/y[ k(87° o+ Kh)cosrcosy — k57° ;sinrsiny —h sinr cosy], K>0,
( a2\[ k87, coshy coshr+ k57, sinhy sinh7+ A sinhy sinh7(hk,— 6%, h)
+((hy* = hsinhy+ (W9, — %) coshy) (H coshr+ sinh7)], K<O0,
Kil=1 a2yl koror+ rdryr +Hr (h — 8%.h) + (1+ Hr) (hk) — hl9], K=0, (33
a?\[y[ k575, cosy cosT— k87X, siny sinT—H siny sin7(h*;— §*;h)
L + (= (hy* = siny + (¥, — h% cosx)(H cosT—sin7)], K>0,
|
where we have used E@l5) in Eq. (25) for each ofPy, Approaching thest , from this point of view also lends
M1z, Mp3, andH. weight to the(apparently ad hocinclusion of theKh/ « term
into the perturbed pseudo-energy’ , as defined in Eq(15)
C. Alternative derivation of &7+, from the T because it is this redefined quantity that appears in the con-

served(energy vector density associated with the conformal
Killing vector Py. This is not surprising, as the isometry

8&scribed by the Killing vectd®, in the spacetimeN!,g) is
not entirely lost as we go to the spacetini,g), whereP,
is a conformal Killing vector. It is preserved in the evolution
spaceR X TM—whereR accounts for the affine parametri-
—SiNG(57° 5,0+ 57 o) — COLA COS( 57° 5 5+ 57 aj) =0, zation of the geodesics, arfidM is the tangent bundle—by

' ' the appearance of an irreducible Killing tensét*

— 2 2 H HIH
while for &=H we obtain Eqs(16) and(17) fori=1, inthe 2 §8°, +a’",, related to the reducible Killing ten-
combination sorL# ,=—¢8*,8°,+&*, in the (M,g) spacetimg36]. As
this last tensor is reducibl@ sum of products of the Killing
vector P, and the metric, with constant coefficient# en-
codes the same information as the Killing vector itself. Thus,
o we may expect there to be an “energy isometry” associated
for the K<0 case, and similarly fok>0. with the tensors“,8°,, which we used in Sec. Il B.

Note that sincd* ,=0<1#.,=0, the identification of The vector densities of this section provide a consistent
the components of the perturbed part of the pseudotensor @gfinition of energy and momentum with respect to a FRW
being proportional to the componerits leads one to expect background and, as we have just shown, the identification of
a conservation law of the form given in Eq46) and(17).  the quantitiess7*, (including the curvature term in the
The presence of terms in Eq80)—(33) other than theS7* ,  00-componentleads naturally to a concise and algebraically

accounts for the difference between the general covarianiseful conservation law, phrased as a differential equation.
derivative on the FRW spacetime, on the one hand, and the

spatial covariant derivative and temporal partial derivative,
on the other. Hence, we see that given Itfidor the confor- IV. ENERGY-MOMENTUM PSEUDOTENSORS
mal geometry{¢} of the background FRW spacetime, we AND MATCHING CONDITIONS

could construct the perturbed pseudotensor directly using e wish to consider the emergence of a topological defect
Egs. (30)—(33) and the final equation of Eq28): the two  network (or other causal sourcest some stage in cosmic
formalisms are equivalent. The results of this section alscp]istory, that is, the time when defects “switch on” and are
demonstrate that the use of a FRW Spacetime as the baCbarved out of the background energy density during a phase
ground manifold has the effect of removing the backgroundransition. This process sets the initial conditions for all the
energy and momentum: there do not appear any contribyserturbation variables prior to their sourced evolution, a state
tions from ther* , in the vector densities; . we must specify if we are to perform realistic numerical

The constraint equation€l6) and (17) satisfied by the
energy-momentum pseudotensor are encoded in the vect
density equation§28). For £=P,, Eq.(28) yields Eq.(16);
for é=M, it yields Eq.(17) with i =3; for £é=M it yields
Eq. (17) for i=2,3 in the following linear combination:

v

coshr coshy[ 7° o o+ 7 o] + sinh7 sinh[ 7° 1 o+ 7 1] =0,
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simulations. It is common to assume that any phase transcomoving, as this would require thaét=0, and we need this
tion at which defects will appear will take less than onefreedom to force the constant time and constant energy den-
Hubble time, so it will be effectively “instantaneous” for all sity surfaces to coincide.

modes larger than the horizon at the time of the transition.

Matching conditions have then been found to relate the re- B. Matching the scalar modes
sulting perturbation variables on superhorizon scales to their _ )
prior unperturbed state in a “sourceless” univerg4]. In the gauge described above—denoted by a tilde—the

While this approach will apply in many physical situations, metric is given by.g,,=a*(7)[ y,,+h,,] where we shall
there are circumstances in which it may not, such as hybrigiewrite the spatial metric perturbation as

scenarios with mixed perturbation mechanisms or late-time

phase transitions in which subhorizon modes might be im- R =2T1y-- 42
portant. Here, we have already defined a generalized energy- . !
momentum pseudotensor applying to both sub- and superho-

rizon scales which should prove useful for this wider class ofvhere h(7,x)=[du(B)h.(7.8)Q(7,x,8) and simi-
scenarios. We shall therefore ignore these difficulties so as t@ly for hr(7.x¥). These spatially dependent variables are
demonstrate consistency with existing analyses, and demoksed as the physical interpretation of the transformation is
strate, in an appropriate synchronous gauge, that its comp#ore transparent, and they facilitate comparisons to existing
nents can be used to specify the matching conditions valitvork [24,27. We shall obtain results for thg dependent

for all length scales in a defect-forming transition. quantities later. N .
The gauge transformed quantities are given by

1 ~
DiDj—g’)’ijA)hTy (36)

A. Matching conditions on a constant energy density surface - . - .
. . . h00:h00+_2(T+HT), hOi:hOi+L\i_T|ii
If the phase transition appears instantaneous for a given

mode, we need only to match the geometric and matter vari-

ables on the spacelike hypersurface surfacelescribed by h =h +HT+ EAL, Tr=h+L. (37)
the equation 3
p(X*)=po+ dp=const, (34 Preservation of synchronicityhgo=0="hy;) thus provides

) the form of T andL:
where, up to a small perturbation, we have assumed homo-

geneity on either side & [24]. Prior to the phase transition, f(xk) dr

the perfectly homogeneous and isotropic “perturbation” may T= 3 L=g(xk)+f(x")f - (39
always be absorbed into a redefinition of tt@@ntinuoug

scale factor. In a simple model without surface lay4]
(i.e. ignoring the internal structure of the phase transjtion
the standard procedure used to match the geometric and may
ter variables is to insist that the induced 3-metrig, and the
extrinsic curvatureK ,, must be continuous oveX. This

wheref, g are functions of the spatial coordinates only. As
oted previouslyf is completely determined by the process
f establishing a time-slicing that also has constant energy
density (at the phase transitipnHowever,g is completely
task is simplified if, on either side of the phase transition, one];rgjéti)nnds[%?v\t;ee scr?eﬂlsggrm)rls:t(r:gteatr:g?rmgf?ese:j%rilrpnrggy
uses the residual gauge freedom in the time coordimate be more profitably used to specify gaugésr both K =0

—>;: T+ T, with T a nontrivial first order scalar function of and K;&O) in which the energy_momentum pseudotensor of
the coordinates, to transform to a coordinate system in whiclec. || must be continuous across the phase transition.

S is defined by the equation=const {p=const), anddp The vector orthonormal to the constant time hypersurface
=8p+poT=0. Using the Friedman equations the appropri-iS given byn,=(-a,0,0,0), so that the perturbed parts of
ate transformation is therefore specified by the induced metrid. ,, and extrinsic curvatur&*, are
T— 5p_ Kaz[p5+ps] (35) 5J_”=azﬁ” y 5J_ﬂO:0,
po  IH(H?*+K)(1+w)’ L
4 —(— SKO i KR
which may be interpretetht each point in 3-spag@s mov- OKFg=0=0KT,,, oK, 2a i (39

ing the time-slicing forward/backward so that the surface

is a constant time hypersurface. Hgre wp is the equation  where we usa(7)~a(7)[1+HT], obtained by Taylor ex-
of state for the total fluid, but for the purposes of this paperpanding aboutr. Assuming that the background is continu-
we may assume that we are in the radiation dominated eus across the phase transition, we need only match the per-
och. _ _ _ . turbed parts; i.e. we insist thgtdl;j].=0=[6K' ],

In setting up this gauge, no use is made of the residuajhere[F]. denotes the limit linpo+[F(7p+€)—F(7p7
scalar freedomx*—x*=x¥+ DKL, in the spatial coordinates. —€)].
Here DXL =L becausd is another first order scalar func-  Substituting Eq.(36), transforming back to the original
tion of the coordinates. Note that this new gauge cannot bgauge and using E¢38) we find that
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ALY 1Affd7- ~0, (40
R al, 7o (40)
; f[—3(H?*+K)(1+ w) < 1 Af] 0
a 2 IRy M
(41
1 dr\ ]
D,D;— 574 hT+g+ff;_+=o, 42
1 )]

Taking the linear combinatior 6 HX (41) +6K X (40) we
have

e+ 2K =0, (44

dr Af
Ag-i—Aff —) —2H—
a a

*

where we have used Eg®5) and(38).

Decomposing with respect to the Helmholtz equation, an

PHYSICAL REVIEW D67, 083502 (2003

merely note that, for practical purposes in which we wish to
describe the onset of defect induced perturbations carved out
of the backgroundor inflationary fluid, compensation be-
tween the fluid and the source densities implies that we can
usually takef to be continuous across the transition. In the
absence of primordial density perturbations, it will moreover
initially vanish—see Eq(35). In this physical context, we
may then completely specify the gauge by choodigd.

=0 so that we obtain:

[h(B)]+=0, [7s(B)]+=0,

[h(B)].=0, [h(B)].=0. (49)

C. Matching the vector and tensor modes
The residual gauge freedom in the vector modes may be
expressed as invariance under the infinitesimal coordinate
transformationx' =X =x' +L', where L(7,x¥) is a diver-
genceless 3-vectoD;L'=0. Writing h; = 2(h§,1()im+ h{,l()im)
Jor the spatial metric perturbation, where/ W (,x¥)

noting that the eigenfunctions separate and are time indeper?—fd:“(B)hS/i D(r.B)Q"(B.X"), the gauge transformed

dent, we obtain

HE k2 k2 d
[MBH ;ﬁ)—ggw)—gf(ﬁ)fg -0,
)
dr f
rs(ﬁ)+2K(—kzg(B)—k2f(,8)fg +2Hk25} =0,
" @
dr
hT(ﬂ>+g(ﬁ>+f<ﬂ>f;} -0, 47)
: f
h+(B)+ g} =0, (49)

where we have replaced E@ll) by Eq. (44).

vector quantities are

hoi=hoi+Li, hyi=hy;+L;. (50)
Preservation of synchronicity implies tHat=0 everywhere,
so thatL is a function of the spatial coordinates only. Pro-
ceeding as for the scalar perturbations we match the induced
metric and extrinsic curvature.

After transforming back to the original gauge, and ex-
ploiting the fact that_;=0 everywhere so thdd(L;,=0 is
certainly true on the hypersurface, we obtain

[D(th/:l]))—'—D(|h£/_1;-)+D(|L])]t:O! (51)

[DORG), + DR P]. =0. (52)

Helmholtz decomposing and assuming tiamodes sepa-
rate, Eq.(52) is equivalent to

There exists an entire class of objects related by gauge

transformations to the “pseudo-energy’° , corresponding

to different choices foig(x*) in Eq. (44). Uzanet al. [27]
make use of this freedom to specify

dr
g=—hr—f a

which eliminates the matching conditio@2) and yields

[h{"Y(B)]1.=0,

as them= =1 contributions are linearly independent. Hence,
we find that

(53

[ Y(B)].=0. (54)

This is precisely the divergenceless pariaf ; which is not

[7507].=0, refer to Eq.(24). On superhorizon scales this obtainable by integrating the conservation equat28), un-

reduces to a matching on our pseudo-enelgs]-=0.

like the induced vector modgY (constructed from scalars

However, one is not using the gauge freedom to relate th&sing Eq.(22) we see that the matching conditi¢s4) im-
matching condition to well-defined geometrical objects. Itplies a “compensation” between the source and fluid vortici-
would be both more aesthetically appealing and more usefules. We shall investigate this phenomenon further in the con-
if one could employ this freedom to mal&® , continuous  text of establishing consistent initial conditions in R7].
across the transition. This is a subtle issue that shall be morEhe remaining equation(51) may be written as
fully explored elsewherg37], where we discuss initial con- [h@il)(ﬁ)]tzo by means of an appropriate specification
ditions and their consistency with causality. For now, we(L;=0) of the residual gauge freedom in the vector mode.
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For the gauge invariant tensors, we find that (Helm-  in hybrid models, the matching analysis will have to be
holtz decomposedensor metric quantities are constrained tomodified to incorporate preexisting perturbatidagich we
be continuous across the transition: shall discuss elsewhereWe have phrased our results in
] terms of the commonly employed Helmholtz decomposition
[h$ 27, =0=[h§2]. . (55  with respect to the eigenfunctions of the Laplacian.

. ] ] We considered an instantaneous phase transition early in
There is, however, no residual freedom in the tensor modesgphe universe as a first approximation to a model for the de-
so these matching conditions cannot completely constrain thcts “switching on,” and employed a gauge in which con-
continuity properties of the pure tensor contributigfi”). It stant energy and constant time surfaces coincide. Matching

may also be permissible to insist thaf 2=0 initially, al-  conditions then imply that there exists an entire class of ob-
though this is not mandated by our results. jects which are continuous across the transition and are re-
lated by gauge transformation to our pseudotensor compo-

V. DISCUSSION nents. The notion of compensation together with a particular

hi h idered definiti q gauge specification removes this redundancy such thatsthe
In this paper we have considered definitions an Conserpseudo-energyand Ts/il) (divergenceless vectocompo-

vation laws for quantities that may be used to define ENer%% ents of our generalized pseudotensor have this property. For

o o - ; Wuniverse which was unperturbé&hd hence homogeneous
the |n|t_|al co_ndltlor_15 for and/(_)r constraining the evolution of and isotropig prior to the transition, we may then take
numerical simulations. To this end, we have constructed an (1) . . . .

=7y,  as natural initial conditions. This result is true on

energy-momentum pseudotensor for FRW cosmologies with® : -
nonzero curvature and have generated conserved vector defl Scales. In a subsequent pap@T], we shall establish with
sities using the conformal geometry of a general FRW backMore rigor the effect of causality on the superhorizon behav-
ground manifold. We showed that these two formalisms ard0" Of the energy and momentum in general FRW cosmolo-
equivalent so that the pseudotensor components are ge®leS; as well as the implications for setting the initial condi-
metrically well-defined objects on all scales. These resultdOns-
hold in the presence of a nonzero cosmological constant, as

all the quantities discussed here are purely geometrical con-
structs, describing the symmetry properties of the FRW
spacetime. This pseudotensor is likely to be a useful tool for We are grateful for useful discussions with Martin Lan-
detailed investigations of causal models in curved FRW unidriau, Neil Turok, and Proty Wu. G.A. acknowledges the
verses, and also for hybrid models in which one has nonsupport of the Cambridge Commonwealth Trust; ORS; Trin-
trivial contributions from both defects and inflation, with ity Hall; Cecil Renaud Educational and Charitable Trust.
both phenomena coexisting. However, while the conservafhis work was supported by PPARC grant no. PPA/G/O/
tion laws encoded in the pseudotenstr, will remain valid ~ 1999/00603.
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