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Causal perturbation theory in general FRW cosmologies:
Energy-momentum conservation and matching conditions
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We describe energy-momentum conservation in relativistic perturbation theory in general Friedmann-
Robertson-Walker~FRW! backgrounds with causal source terms, such as the presence of cosmic defect net-
works. A prescription for a linear energy-momentum pseudotensor in a curved FRW universe is provided, and
it is decomposed using eigenfunctions of the Helmholtz equation. Conserved vector densities are constructed
from the conformal geometry of these spacetimes and related to our pseudotensor, demonstrating the equiva-
lence of these two approaches. We also relate these techniques to the role played by residual gauge freedom in
establishing matching conditions at early phase transitions, which we can express in terms of components of
our pseudotensor. This formalism is concise and geometrically sound on both sub- and superhorizon scales,
thus extending existing work to a physically~and numerically! useful context.

DOI: 10.1103/PhysRevD.67.083502 PACS number~s!: 98.80.Jk, 04.20.Cv, 95.30.Sf, 98.80.Es
f t
tr
v
f
e

ls
th
ut
ie

a
ca
o-
n
um

fla
he
k
i

to
o

di
i

ve,
tal
py
-
es,

d
full
flat
nt-
In-
d-
of

can
en-
try
l
d

ng

ing
e-
al-
ion
s in

a-
ese
sor
n-
st-

te
I. INTRODUCTION

Considerable challenges are presented by the study o
causal generation of perturbations seeding large-scale s
ture formation and anisotropies in the cosmic microwa
background~CMB! @1#. Not only is the analytic treatment o
the resulting inhomogeneous evolution equations extrem
complicated, but their numerical implementation must a
circumvent a number of subtle pitfalls before facing up to
severe dynamic range limitations of even supercomp
simulations. To date the only quantitative numerical stud
with realistic causal sources, such as cosmic strings@2–4# or
other global defect networks@5–7#, have been performed in
flat Friedmann-Robertson-Walker~FRW! (K50) back-
grounds. Despite positive indications about the large-sc
structure power spectrum for models with a cosmologi
constant included@4#, these defect networks in flat cosmol
gies appear to be unable to replicate the observed positio
the first acoustic peak in the CMB angular power spectr
@3,6–9#—indeed the best results for defects are forKÞ0
cosmologies@10#.

This situation contrasts markedly with the standard in
tionary paradigm in which reliable predictions about t
CMB acoustic peaks are relatively straightforward to ma
and for which there appears to be remarkable accord w
recent CMB experiments@11#. So the question arises as
the relevance and utility of complicated theoretical studies
causal perturbation generation when the simple primor
inflationary models appear to suffice. The first motivation
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that the confrontation with observation remains indecisi
not only because of the significant experimen
uncertainties—for example, even Microwave Anisotro
Probe~MAP! data will be insufficient to simultaneously con
strain both the adiabatic and isocurvature inflationary mod
and cosmological parameters@12#—but also because goo
quantitative accuracy has not yet been achieved for the
range of cosmic defect theories. For example, even for
universes, a subsidiary role for defect networks compleme
ing the inflationary power spectrum cannot be excluded.
deed, claims of improved fits in hybrid defect-inflation mo
els @13,14# are not surprising given the extra degrees
freedom available.

There are a number of mechanisms by which defects
be produced at the end of inflation with the appropriate
ergy scale: Hybrid inflation typically ends through symme
breaking which generates defects@15#. Phenomenologica
grand unified theory~GUT! models have been propose
which can produce superheavy strings after inflation@16#.
‘‘Preheating’’ as inflation ends is also capable of creati
superheavy defects even for low energy inflation scales@17#.
Given the foundational uncertainties that remain concern
inflation @18# and the lack of a widely accepted realistic ph
nomenology, it is only reasonable to continue to explore
ternative paradigms such as late-time ‘‘causal’’ generat
mechanisms—which are not exhausted by defect network
any case, e.g. ‘‘explosion’’@19#, and other source models@7#.
Moreover, in order to have confidence in cosmological p
rameter estimation, it will be necessary to constrain th
alternative models, including the effects of vector and ten
modes, andKÞ0 backgrounds. Here the combination of i
trinsic curvature and defect sources is particularly intere
ing.

Cosmic defects would typically be expected to contribu
©2003 The American Physical Society02-1
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to the nonGaussianity of CMB anisotropies on sm
scales—e.g. for cosmic strings, on arcminute scales@22#—
with effects on larger scales being swamped by the cen
limit theorem. This nonGaussianity ultimately derives fro
the nonlinearity of the defect sources, which is in mark
contrast with the linear quantum effects which imply that t
simplest inflationary scenarios are typically Gaussian.
though there do exist inflationary models~such as nonva-
cuum initial state, and multifield inflation! that can yield
non-Gaussian statistics~e.g.x2), the detection of a differen
distribution would imply that inflation was not the only sig
nificant source of perturbations in the early universe. T
presence or absence of such distinct signatures may ther
provide observational tests with which to confront inflati
and causal paradigms@20#. Another particularly exciting
prospect is the detection of a CMB polarization signal
which the competing models give very different predictio
and, indeed, some causal effects can be differentiated@21#.
Of course, topological defects are strongly motivated in h
energy physics and their discovery—from observations
such effects in the CMB, or from the study of high ener
cosmic rays and gravitational lensing—would have profou
implications for our understanding of the early universe.

Finally, we note that there is now a significant body
work about causal mechanisms for structure formation
this has raised a number of interesting issues within gen
relativistic perturbation theory. However, even with mo
work undertaken in a flat FRW background, the number
approaches to the problem almost equals the number o
pers. A key aim of the present paper, then, is to demonst
the equivalence of the most important of these approac
and to generalize this work to all FRW cosmologies, layi
the foundations for quantitative studies in curved ba
grounds in particular. We shall work in the synchrono
gauge because of its ubiquity in numerical simulations a
the physical transparency offered by this gauge choice.

As well as being of interest in its own right, energ
momentum conservation is both the physical constraint
the spurious~gauge! modes resulting from the residual fre
dom in the synchronous gauge, and a common techn
used to ensure that numerical simulations are free from t
effects. In the literature, treatments of the energy-momen
conservation of individual modes in the combined system
gravitational and matter fields have been variously phra
in terms of ‘‘compensation’’@7,23#, ‘‘integral constraints’’
@24,25#, and the construction of ‘‘pseudotensors’’ to descri
the energy and momentum densities and their conserva
laws @5,23,24,26#, as well as the use of matching conditio
across a phase transition to set initial conditions@24#. The
relationship between these notions and the initial conditi
has been discussed to some extent in the case of a flat
background. For general FRW cosmologies, however,
situation is less clear and deeper conceptual issues have
resolved. In Ref.@27# a definition of the pseudo-energy wa
motivated by a consideration of matching conditions at
instantaneous phase transition, which was related to ‘‘g
metrically’’ obtained conservation laws in the superhoriz
limit. However, to date, a systematic geometric definiti
~valid on all scales! of the complete pseudotensor for curv
08350
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FRW cosmologies has not been given.
In Sec. II we shall provide a prescription for the constru

tion of such a linear energy-momentum pseudotensor in
KÞ0 FRW universe. The pseudotensor so obtained agree
the flatspace limit (K→0) with the Landau-Lifshitz stress
energy pseudotensortmn obtained in Ref.@23#, and with the
superhorizon pseudo-energy of Ref.@27#. We also discuss the
philosophy underlying the notion of a pseudotensor and h
its inherently global nature appears to be at odds with th
ries of local causal objects. In Sec. III we define energy a
momentum with respect to a general FRW background m
fold. This allows us to calculate conserved vector densi
for the conformal geometry of these spacetimes, and to re
them to our pseudotensor, giving it a local geometrical me
ing that is valid on all scales and demonstrating the equ
lence of the two formalisms. In Sec. IV we apply the matc
ing condition formalism@24,27# to a curved universe, and
discuss how the residual gauge freedom in the synchron
gauge may be exploited to make the pseudo-energy con
ous across the phase transition in which the defects~or other
sources! appear. We also show that we may match the vec
part of the pseudotensor across this transition. We conc
~Sec. V! with a discussion of the implications of this work

II. A GENERALIZED ENERGY-MOMENTUM
PSEUDOTENSOR

We wish to consider metric perturbationshmn about a gen-
eral FRW spacetime

ds25a2~gmn1hmn!dxmdxn, ~1!

where the comoving background line element
‘‘conformal-polar’’ coordinates (t,x,f,u) is given by

gmndxmdxn52dt21
1

uKu @dx21sinK
2 x~du21sin2udf2!#,

~2!

with the function sinKx depending on the spatial curvatureK
as

sinKx5H sinhx, K,0,

x, K50,

sinx, K.0.

~3!

Here,a[a(t) is the scalefactor, for which we can define th
conformal Hubble factorH5ȧ/a, with dots denoting deriva-
tives with respect to conformal timet. As emphasized ear
lier, we shall adopt the synchronous gauge defined by
choice

h0m50, ~4!

where the trace is given byh[h i
i ~with the convention

throughout that Greek indices run from 0 to 3 and Latin fro
1 to 3!.

The Einstein equations are given byGmn[Rmn2 1
2 gmnR

5kTmn ~with k58pG), and we will separate the energy
momentum tensorTmn into three parts:
2-2
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Tmn5T̄mn1dTmn1Qmn . ~5!

The background tensorT̄mn includes the dark energy of th
universe~or cosmological constant!, while the first order part
dTmn incorporates the stress energy of the radiation flu
baryonic matter, and cold dark matter. The final contribut
Qmn represents the stress tensor of an evolving defect
work or some other causal sources. This is assumed t
small ~of order dTmn) and ‘‘stiff,’’ that is, its energy and
momenta are conserved independently of the rest of the
ter and radiation in the universe and to lowest order its e
lution is unaffected by the metric perturbationshmn . In prin-
ciple, we should include also backreaction effects and~for
example! the decay products from string loops, modeled
another fluid component. These are, however, relatively
nign cosmologically, and are usually neglected in numer
studies. A scalar potential may similarly be included in t
formalism—see, for example, Hu, Seljak, White, and Zald
riaga @32#. Except in situations in which first order theor
breaks down, the conservation laws discussed in this p
should still hold in these cases.

A. Conceptual discussion and pseudotensors in flat„KÄ0…
FRW spacetimes

It is interesting also to consider the notion of the ener
momentum tensor of the geometry or gravitational fie
which we shall denote astmn . If it were possible to define
then we could reexpress the perturbed Einstein equat
simply as a wave equation forhmn with a source term con
structed from the ‘‘complete’’ energy-momentum tensor, th
is, the sumtmn5Tmn1tmn . As we shall explain, the linear
ized Bianchi identities would imply that the sumtmn is ~to
linear order! locally conservedtmn

,n50, since it includes all
the flux densities of matter and gravity~unlike the covariant
conservation lawTmn

;n50 which represents an exchang
between matter and gravity!. Such motivations for incorpo
rating the geometry in a ‘‘complete’’ energy-momentum te
sor tmn are discussed at considerable length in Ref.@28#
using the example of metric perturbations about Minkow
space.

Einstein, as well as Landau and Lifshitz, have presen
procedures whereby one may rewrite the Bianchi identi
to obtain quantities that they call energy-momentu
‘‘pseudotensors.’’ These have some of the above proper
and allow for the calculation of various conserved quantit
@26#. Here bothtmn andtmn are quadratic in the connectio
coefficients, so that they are ‘‘linear tensors,’’ behaving li
tensors under linear transformations.

For a Minkowski space, withgmn5hmn , a51 in Eq.~1!,
linearizing reveals this procedure to be essentially trivial
causetmn vanishes to first order. However, for the flat spa
(K50) expanding universe, the time dependence of
scalefactora in Eq. ~1! introduces additional terms at linea
order. This has been used by Veeraraghavan and Steb
@23# to define an energy-momentum pseudotensor in
case:
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t005~dT001Q00!2
Hḣ

k
, t0i5dT0k1Q0k ,

t i j 5dTi j 1Q i j 2
H
k

~ ḣi j 2ḣd i j !. ~6!

Here the componentst00, t0i , andt i j defined in Eq.~6! can
be identified as the pseudo-energy densityU, the pseudo-
momentum densitySW , and the pseudo-stress tensorPi j , re-
spectively. Using the stress-energy conservation equat
~the Bianchi identities!

tmn
,n50, ~7!

various suitable choices of evolution variables have th
been made: for example,@5,23#. This flat space result can b
obtained from a straightforward manipulation of the fie
equations forhmn which involves moving any background
dependent terms to the right hand side@5#. However, for the
generalization to curved spacetime backgrounds we ne
more rigorous prescription for the energy-momentu
pseudotensor, as well as the definition of its components
coordinate system appropriate for practical application
this is the subject of this section. We are also called upon
come to terms with the nonlocal nature of these objects.

The Landau-Lifshitz construction oftmn proceeds by ap-
pealing to the principle of equivalence, which allows one
choose a normal coordinate system so that the connec
coefficients vanish in the neighborhood of a point. In a ge
eral spacetime, the interacting part of the geometrytmn can-
not be made to vanish by this coordinate choice, althoug
then resides only in the second and higher order derivat
of the metric. Nevertheless it becomes significant over
tended portions of the spacetime and so the ene
momentum of the geometry must be understood as globa
nature@29#. This fact forbids the existence of a tensor dens
for the gravitational energy and momenta, so that the b
that we can actually hope for in terms of local quantities i
‘‘pseudotensorial’’1 object which, suitably integrated over
large region of spacetime, would lead to a quantity tha
sufficiently gauge invariant for practical purposes.

However, in causal perturbation theory, we are parti
larly interested in a distribution of small perturbations ea
of which has associated energy and momentum. These
jects ~such as topological defects, and their associated
turbations! are not well modeled, even as a distribution,
quantities that have no meaning except over large portion
the spacetime, and one has a ratherad hocbalance between
the requirement that one consider a sufficiently large volum
and the understanding that effect of the distribution of cau

1These objects are commonly known as ‘‘pseudotensors’’ for h
torical reasons, e.g. Einstein’s antisymmetric construction. Here
nomenclature refers to the fact that they require additio
structure—such as a preferred coordinate system/backgro
manifold—on the spacetime for their definition@30#, rather than
their transformation properties under reflections. They are not
tensors, but linear tensors.
2-3
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objects should average to zero. This is also a major con
tual difficulty facing integral constraints for localized pertu
bations as discussed by Traschenet al. @25#. Fortunately,
there exists a formalism@31# in which one can avoid thes
difficulties by defining energy and momentum with resp
to a background manifold, so that one obtains conserva
laws and conserved vector densities. We shall apply this
malism to the general FRW spacetime in Sec. III, there
providing the results of this section with a local geometri
interpretation on all scales.

B. General FRW „KÅ0… spacetimes and curvilinear
coordinates

Consider two spacetimes related via a conform
transformation—also known as a metric rescaling—of
metric tensor so that

g̃mn5Vgmn , g̃mn5V21gmn, ~8!

whereV is a scalar function of the coordinatesV(xm). A
general FRW universe may be so rescaled to a statio
(a51) FRW universe. Since the nonzero intrinsic curvatu
of a general FRW spacetime manifests itself in the nonv
ishing property of the background Einstein tensor~even in a
stationary spacetime!, we shall have to separate out the bac
ground from the perturbed parts. Moreover, since we wish
express perturbations in terms of the Helmholtz decomp
tion in polar coordinates, we shall write all spatial deriv
tives in terms of the covariant derivative with respect tog i j ,
rather than the partial derivatives as previously for theK
50 case in Cartesian coordinates.

Under Eq.~8! the Einstein tensor transforms as

G̃mn5Gmn1tmn ,

tmn52cm;n1
1

2
cmcn1

1

4
gmncscs1gmncs

;s , ~9!

wherecm[(lnV),m . Now let gmn5a2(gmn1hmn) as in Eq.
~1! with V51/a2, so thatg̃mn5gmn1hmn is the metric for
observers comoving with the expansion of the universe
we raise the first index, we can make the identificationc0
522H, c i50. Hence, the components of a stress ene
‘‘pseudotensor’’ defined by

t n
m [G̃ n

m /k, ~10!

may be written as

kt0
0523K1~a2dG0

01Hḣ!,

kt0
i5a2dG0

i ,

kt i
j52Kd j

i 1~a2dGi
j2H@ ḣi

j2ḣd i
j # !.

~11!

We note that, since metric rescalings~8! preserve its tensoria
properties, thetm

n defined in Eq.~10! are true tensors in
both the stationary and the expanding spacetimes. These
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be further written as a sum of a background contribut
from the unperturbed spacetime, and a perturbed part~unlike
the K50 case for which the background term vanishe!.
Thus,t n

m 5 t̄ n
m 1dt n

m , with the components given by

kt̄0
0523K, kdt0

05a2dG0
01Hḣ,

kt̄0
i50, kdt0

i5a2dG0
i ,

kt̄ i
j52Kd j

i , kdt i
j5a2dGi

j2H@ ḣi
j2ḣd j

i #.
~12!

Since thetm
n are precisely the Einstein tensor~divided

by k) in the conformally related stationary spacetimeg̃mn ,
they must satisfy the Bianchi identities there. Hence,
know that

D̃0t0
01D̃ jt

j
050, D̃0t0

i1D̃ jt
j

i50, ~13!

where D̃m denotes covariant differentiation with respect
the stationary 4-metricg̃mn . Now, using the connections an
Eq. ~12!, and working to first order, we may rewrite Eq.~13!
as

dt0
0,01dt i

0u i2
K

k
ḣ50,

dt0
i ,01dt j

i u j50, ~14!

where the bar denotes the covariant derivative with respec
the 3-metricg i j , and the2(K/k)ḣ term is implicit in the
covariant derivativeD̃ jt

j
0.

This manner of rewriting the Einstein equations clea
reduces to that of@23#—see Eq.~6!—for K50, wheretm

n

5dtm
n . However, Eqs.~14! obeyed by thedtm

n are more
complicated than Eq.~7! because the nonzero intrinsic cu
vature manifests as a nonvanishing background Einstein
sor, which appears in the Bianchi identities for the full spa
time.

If we exploit the fact that the vectorP0—Killing in
g̃—with componentsd 0

m may be multiplied with itself to
form the ~reducible! Killing tensor 2d 0

m d n
0 , then we may

add1Kḣ/k times this tensor todtm
n without disturbing the

tensorial properties of the perturbed part of thetm
n . This

amounts to a redefinition of the 00-component only. Hen
forth we shall considerdtm

n to be redefined in this fashion
so that

kdt0
0→kdt0

02Kh5a2dG0
01Hḣ2Kh. ~15!

The newdtm
n will then satisfy the concise equations

dt0
0,01dt i

0u i50, ~16!

dt0
i ,01dt j

i u j50. ~17!

We may justify this redefinition by noting that th
00-component so obtained is precisely the definition of
2-4
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ergy~up to a factora2Ag) obtained from the conformal Kill-
ing vectorP0 in the following section. Furthermore, since th
volume element dV5dV̄1dVpert where dV̄5a4Agdydudf,
dVpert5(h/2)dV̄ and g is the determinant of the spatia
3-metric, we may interpret the2Kh term as representing th
alteration to the flat space energy due to the effect of intrin
curvature on the volume element.

Expressing the conservation properties of a general F
cosmology in this fashion is particularly useful, as it pr
duces equations phrased in terms of the spatial covarian
rivative, which is precisely the language used to express
properties of the Helmholtz eigenfunctionsQ(m), commonly
used to describe perturbations in such cosmologies.

C. The Helmholtz decomposed pseudotensor

For perturbations over a curved FRW background, we
no longer make use of standard Fourier expansions. Inst
it is usual to employ the Helmholtz decomposition using
linearly independent eigenfunctions of the Laplacian in po
coordinates~see Ref.@32#!. We expand all perturbation quan
tities in terms of the eigenfunctionsQ(m), which are the sca-
lar (m50), vector (m561) and tensor (m562) solutions
to the Helmholtz equation

¹2Q(m)[g i j Qu i j
(m)52k2Q(m), ~18!

where the generalized wave numberq and its normalized
equivalentb are related tok via q25k21(umu11)K, b
5q/AuKu and the eigentensor hasumu suppressed indice
~equal to the rank of the perturbation!. The divergenceless
and transverse-traceless conditions for the vector and te
modes are expressed viaQi

(61)u i50 andg i j Qi j
(62)5Qi j

(62)u i

50. Auxiliary vector and tensor modes may be construc
as follows:

Qi
(0)52k21Qu i

(0) , Qi j
(0)5k22Qu i j

(0)1
1

3
g i j Q

(0),

Qi j
(61)52~2k!21@Qi u j

(61)1Qj u i
(61)#. ~19!

The spectra for flat and open universes (K<0) are continu-
ous and complete forb>0. For theK.0 case, the spectrum
is discrete because of the existence of periodic bound
conditions. For scalar perturbations, we then haveb
53,4,5, . . . since theb51,2 modes are pure gauge@33#.
Using this decomposition the metric perturbation may be
composed as

hi j 52E dm~b!@hLg i j Q
(0)1hTQi j

(0)1hV
(1)Qi j

(1)1hV
(21)Qi j

(21)

1hG
(2)Qi j

(2)1hG
(22)Qi j

(22)#, ~20!

wherehL and hT represent two ‘‘longitudinal’’ and ‘‘trans-
verse’’ scalar degrees of freedom,hV

61 two vector modes and
hG

62 two tensor modes. As well as the transform over
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‘‘radial’’ coordinate b, there is an implicit sum over indice
lm which label the spherical harmonics encoding the angu
dependence.

Decomposing the energy-momentum pseudotensor~15! in
this fashion, we have

dt0
05E dm~b!tSQ(0),

dt i
05E dm~b!@t IVQi

(0)1tV
(1)Qi

(1)1tV
(21)Qi

(21)#,

dt j
i 5E dm~b!@2~tLg j

i Q(0)1tTQ(0)i
j !1t IT

(1)Q(1)i
j

1t IT
(21)Q(21)i

j1tG
(2)Q(2)i

j1tG
(22)Q(22)i

j #, ~21!

where thet IV and t IT
61 terms are the ‘‘induced-vector’’ and

‘‘induced-tensor’’ modes associated withQi
(0) and Qi j

(61)

auxiliary modes. The quantitiestS , tV
(61) , tL , tT andtG

(62)

are defined as

ktS522k2FhL1S 1

3
2

K

k2D hTG
52ka2@r fd f1rs#16HḣL26KhL ,

ktV
(61)52

1

2
kḣV

(61)S 12
2K

k2 D
5ka2@~r f1pf !v f

(61)1vs
(61)#,

ktL5F S K2
k2

3 DhL2ḧL2
k2

3 S 1

3
2

K

k2D hTG
5

1

2
ka2@dpf

(0)1ps
(0)#2HḣL ,

ktT5
1

2 F ḧT2
k2

3
hT2k2hLG

5
1

2
a2@pfP f

(0)1Ps
(0)#2HḣT ,

ktG
(62)5@~2K1k2!hG

(62)1ḧG
(62)#

5ka2@pfP f
(62)1Ps

(62)#22HḣG
(62) . ~22!

In the second equality for each of the above equations
have made use of decompositions similar to Eq.~21! for the
fluid dTm

n ~subscriptf ) and sourceQm
n ~subscripts) terms,

so as to write the pseudotensor in terms of these varia
@32#. Equations~16!, ~17! yield four equations for the re
maining four variables:
2-5
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t IV5
ṫS

k
, kṫ IV52k2F tL12S K

k2
2

1

3D tTG5 ẗS ,

t IT
(61)522k@k222K#21ṫV

(61)5
ḧV

(61)

k
, ~23!

where we have used the first equation to obtain the fi
equality in the second. We observe that we have six indep

dent quantities:tS and one oftL , tT for the scalars,tV
(61)

for the vectors, andtG
(62) for the tensors.~Note thattL is

defined as the spatial trace: 6tLQ(0)5t i
i .!

Finally, we comment on the relation of our pseudoten
~22! to an alternative definition given by Uzanet al. in Ref.
@27#. For perturbations over a curved (KÞ0) FRW universe,
there exist several possible~ad hoc! generalizations of the
Landau-Lifshitz pseudotensor, depending upon the mann
which one removes the residual spatial gauge freed
present in the synchronous gauge~see later in Sec. IV!. In
Ref. @27# matching conditions were used~as an interesting
aside! to define thet0m components of the pseudotensor a

kt00
UDT[Ag@kdT001kQ001Kh22Hḣ#,

kt0k
UDT[Ag@kdT0k22K]kĖ#, ~24!

where]0t005]kt0k , andh, E, h2 correspond to the formal
ism of this paper as: h56*m(b)hLQ(0), 2DE
5*m(b)hTQ(0), andh25h22DE, D5DiDi .

Apart from providing a prescription for all the compo
nents of the energy-momentum pseudotensor~and in a more
elegant decomposition!, our definition~22! extends and im-
proves upon that proposed in Ref.@27# on two counts. First,
Eq. ~24! was only given a geometrical interpretation on s
perhorizon scales. TheKh term in the~redefined! dt0

0 com-
ponent in Eq.~15! replaces aKh2 term in their definition
~24!, where their variableh25h2hs is the sum 6(hL
1hT/3). The two definitions agree in the superhorizon lim
in which caseh;h2, but our definition~22! and its physical
interpretation are also valid on subhorizon scales.

Second, there are the limitations inherent in the manne
which the pseudotensor is defined in Ref.@27#: Unlike Eq.
~12! the perturbed and background parts of the pseudote
are not distinguished. Moreover, their quantityt0i is defined
via a conservation equation, so that the pure divergence
part tV

(61) , removed by the derivative in Eq.~16! is not
specified. We shall show~in Sec. IV! that this part can be
recovered as a vector quantity to be matched across the
sition. Finally, the definition oft0052a2t0

0 in Eq. ~24! and

Ref. @27# differs by a factorA2g5a4Ag from our t0
0, so

that it is related~on superhorizon scales only! to the one
conserved currentÎ P0

m , whereas all components of ou

pseudotensor~12! can be related to the four conserved cu
rentsI j

m defined in the next section~Sec. III!.
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D. Relation to the superhorizon growing modes

The pseudo-energydt 0
0 ~or tS) obtained in this section

may be simply related to the coefficient of the superhoriz
growing modes for the cold dark matter~CDM! density per-
turbationdc in the radiation- and matter-dominated eras,
well as in the curvature-dominated epoch. Assuming ad
batic perturbations and ignoring the source terms in a
fluid radiation plus CDM model, it is well known that th
CDM density perturbation obeys the equations:

d̈c1Hḋc24@H 21K#dc50, V r51,Vc50,

d̈c1Hḋc2
3

2
@H 21K#dc50, Vc51,V r50.

In both the radiation and matter eras, there exists a supe
rizon growing mode proportional tot2, while in the
curvature-dominated regime, this becomes a constant term
we let the coefficient of this mode beA, then we find that
ktS'28A in the radiation era,ktS'220A in the matter
era, andktS'2KA in the curvature regime. Thus, our ge
eralized pseudo-energy essentially tracks the growing m
of the density perturbation. This is a useful property for n
merical simulations~as discussed for example in@5#!, since
we can replaceḋc with tS , thus avoiding the possibility of
spurious growing modes sourced by numerical errors.
shall further investigate the inclusion of the pseudotenso
numerical evolution schemes elsewhere@34#.

III. FRW CONFORMAL GEOMETRY AND CONSERVED
CURRENTS

The energy, momentum and their conservation laws
one spacetime may be defined with respect to another m
fold in an inherently local manner@31#. In the context of
perturbation theory, we already have a background, an
seems logical to employ this approach. However, this is n
very compact form of expressing the desired conserva
laws which, unlike the pseudotensor of the previous sect
are not phrased in terms of the spatial covariant deriva
with respect tog i j , making it incompatible with the decom
position of perturbation quantities with respect to eigenfu
tions of the Laplacian. Here we shall calculate the conser
vector densities for the conformal geometry of a gene
FRW spacetime, and relate these to our pseudotensor, g
it a geometrical meaning that is valid on all scales and de
onstrating the equivalence of the two formalisms.

A. Conserved currents with respect to a FRW background

The longstanding problem of defining energy, moment
and angular momentum for general relativistic perturbatio
has been considered by Katzet al. @31#. They provide a gen-
eral formalism by which one can define, for an arbitra
spacetime (M ,gmn) containing perturbations and any vect
j, conserved vector densitiesÎ m(j) with respect to a back-
ground (M̄ ,ḡmn) and a mapping betweenM and M̄ . Here,
and hereafter, a caret shall denote multiplication byA2g
2-6
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5a4Ag where g5detgmn and g5detgmn . Although one
may use any vectorj, it is useful to choosej as the confor-
mal Killing vectors of the background spacetime, so as
exploit its symmetry properties.

In general, the choice of a particular background is fr
However, it makes sense to either choose simple ba
grounds possessing maximal symmetry or to choose a
background one that is already commonly in use in cosm
ogy such as an unperturbed FRW spacetime. Conceptu
one might desire a background possessing a maximal Kil
geometry~spanned by 10 linearly independent Killing ve
tors!, so as to immediately generate Noether conserved q
tities and currents. Of the general FRW spacetimes, only
Sitter spacetime has this property. The implications of the
Sitter Killing geometry have been investigated by seve
authors@24# and it allows for a clear relation to Traschen
integral constraints@25#. We shall demonstrate that th
choice of a FRW background is not only quite tractable~de-
spite the complications introduced by the use of a confor
rather than pure Killing geometry!, but also allows for a clea
relation between the conserved vectorsÎ m and our dtmn ,
which is valid on both sub- and superhorizon scales.

The details of the construction of the conserved vec
densitiesÎ m associated with a conformal Killing vectorj
shall be omitted. The general formalism is given in@31#, and
the details of the construction of a relation between
00-component of a pseudo-energy momentum tensor and
conserved vector density associated with just the confor
Killing vector normal to a constant time hypersurface may
found in @27#. We shall simply quote those results requir
for the current analysis: for each conformal Killing vectorj

we may define a vector densityÎ m(j)5A2gIm(j) by

kI m~j!5dGm
njn1Am

njn1kzm ~25!

and

Am
njn5

1

2
~R̄m

nds
r2R̄s

rdm
n!hr

sjn

5
h

a2
@Ḣ2H 22K#j0dm

0 ~26!

8ka2zm5~hḡmr2hmr!Z,r2ZDr~hḡmr2hmr!
~27!

where we have substituted for the background terms in
~26!, Z5ḡmnZmn , and Zmn5Ljḡmn52cḡmn . Here, L de-
notes the Lie derivative, andc is the conformal factor forj
with respect toḡmn , so thatzm50 for j Killing. The vector
density so constructed will satisfy:

Î j
m

,m50⇔I j
m

;m5I j
0

,01I j
k

uk14HI j
050 ~28!

where we have used the resultVm
;m5(A2gVm) ,m /A2g for

an arbitrary vectorV in the first equality of Eq.~28!, and the
FRW connection coefficients in the last. Here, and el
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where, we have used the subscriptj to denote that the con
served vector so labeled is generated by the vectorj.

B. Relations between thedtµ
n and the Î µ

Any conformally flat spacetime will admit a maxima
conformal Lie algebra spanned by 15 linearly independ
conformal Killing vectors. For the general FRW metric, the
were obtained in Ref.@35# in the coordinates (t,x,y,z). In
principle, each of the 15 vectors will generate a conser
vector with four components, and one conservation equat
yielding at least 45 components. Given that the symme
pseudotensor has only 10 linearly independent compone
of which 4 are removed by the Bianchi equations~16! and
~17!, there is clearly a considerable redundancy in the inf
mation contained in the set of all the vector densities
tained using the FRW conformal geometry. Since we wish
relate these conserved currents to our pseudotensor,
choice of vectors is guided by the desire to keepj simple~so
thatdGm

njn may be simply related to thedtmn), and for the
vectors to pick out different componentstmn . We shall
therefore be particularly concerned with: the conformal K
ing vector P0 normal to constant time hypersurfaces wi
conformal factorcP0

5H; the angular Killing vectorsM12

and M23; and the generalized isotropic conformal Killin
vector H which has the conformal factor cH
5cosKx@Hn(t)1n8(t)#. In the coordinates (t,x,u,f),
these vectors have components:

P0
m5~1,0,0,0!, M12

m 5~0,0,0,1!,

M23
m 5~0,0,2sinf,2cotu cosf!,

Hm5@cosKx n~t!,sinKx n8~t!,0,0#. ~29!

Here, sinKx is defined in Eq. ~3!, while cosKx
5$coshx,1,cosx%; and n(t)5$cosht,t,cost% for K,0, K
50 andK.0, respectively.

These conformal vectors reduce to Killing vectors und
special conditions on the scale factor: for a flatK50 FRW
spacetime, the vectorP0 is Killing if a(t)5C where C is
some constant so that we have the stationary Einstein sp
time; andH is Killing if a(t)5C exp(2t/C) so that we have
a de Sitter background. In the case of theKÞ0 spacetimes,
P0 is Killing if a(t)5C; and H is Killing if a(t)
5C/h(t), whereh(t)5$cost,cosht% for K5$21,1%, re-
spectively.

Using Eqs.~29! in ~25! we obtain the following conserved
vector densities which relate directly to our pseudoten
dt n

m given in Eq.~12!:

k Î P0

0 5a2Ag kdt0
0 ,

k Î P0

k 5a2Ag@kdtk
01H~hkl

u l2huk!#, ~30!

k Î M12

0 5a2Ag kdt0
3 ,

k Î M12

k 5a2Ag@kdtk
31H~ ḣk

32dk
3ḣ!#, ~31!
2-7
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k Î M23

0 5a2Ag@2sinf kdt0
22cotu cosf kdt0

3#,

k Î M23

k 5a2Ag@2sinf kdtk
22cotu cosf kdtk

32sinfH~ ḣk
22dk

2ḣ!2cotu cosf~ ḣk
32dk

3ḣ!#, ~32!

valid for all FRW spacetimes, as well as

k Î H
0 5H a2Ag@k~dt0

01Kh!cosht coshx1kdt0
1sinht sinhx1ḣ sinht coshx#, K,0,

a2Ag@kdt0
0t1dt0

1r 1ḣ#, K50,

a2Ag@k~dt0
01Kh!cost cosx2kdt0

1sint sinx2ḣ sint cosx#, K.0,

k Î H
k 55

a2Ag[kdtk
0 coshx cosht1kdtk

1 sinhx sinht1H sinhx sinht(ḣk
12dk

1ḣ)

1„(hgk12hk1)sinhx1(hkl
u l2huk)coshx…(H cosht1sinht)], K,0,

a2Ag[kdtk
0t1kdtk

1r 1Hr (ḣk
12dk

1ḣ)1(11Ht)(hk j
u j2huk)], K50,

a2Ag[kdtk
0 cosx cost2kdtk

1 sinx sint2H sinx sint(ḣk
12dk

1ḣ)

1„2(hgk12hk1)sinx1(hkl
u l2huk)cosx…(H cost2sint)], K.0,

~33!
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where we have used Eq.~15! in Eq. ~25! for each ofP0 ,
M12, M23, andH.

C. Alternative derivation of dtµ
n from the Î j’s

The constraint equations~16! and ~17! satisfied by the
energy-momentum pseudotensor are encoded in the ve
density equations~28!. For j5P0, Eq. ~28! yields Eq.~16!;
for j5M12 it yields Eq.~17! with i 53; for j5M23 it yields
Eq. ~17! for i 52,3 in the following linear combination:

2sinf~dt0
2,01dtk

2uk!2cotu cosf~dt0
3,01dtk

3uk!50,

while for j5H we obtain Eqs.~16! and~17! for i 51, in the
combination

cosht coshx@t0
0,01tk

0uk#1sinht sinhx@t0
1,01tk

1uk#50,

for the K,0 case, and similarly forK.0.
Note that sinceÎ m

,m50⇔I m
;m50, the identification of

the components of the perturbed part of the pseudotenso
being proportional to the componentsI m leads one to expec
a conservation law of the form given in Eqs.~16! and ~17!.
The presence of terms in Eqs.~30!–~33! other than thedtm

n

accounts for the difference between the general covar
derivative on the FRW spacetime, on the one hand, and
spatial covariant derivative and temporal partial derivati
on the other. Hence, we see that given theI j

m for the confor-
mal geometry$j% of the background FRW spacetime, w
could construct the perturbed pseudotensor directly us
Eqs. ~30!–~33! and the final equation of Eq.~28!: the two
formalisms are equivalent. The results of this section a
demonstrate that the use of a FRW spacetime as the b
ground manifold has the effect of removing the backgrou
energy and momentum: there do not appear any contr
tions from thet̄m

n in the vector densitiesÎ j
m .
08350
tor

as

nt
he
,

g

o
ck-
d
u-

Approaching thedtm
n from this point of view also lends

weight to the~apparently! ad hocinclusion of theKḣ/k term
into the perturbed pseudo-energydt0

0 as defined in Eq.~15!
because it is this redefined quantity that appears in the c
served~energy! vector density associated with the conform
Killing vector P0. This is not surprising, as the isometr
described by the Killing vectorP0 in the spacetime (M ,g̃) is
not entirely lost as we go to the spacetime (M ,g), whereP0
is a conformal Killing vector. It is preserved in the evolutio
spaceR3TM—whereR accounts for the affine parametr
zation of the geodesics, andTM is the tangent bundle—by
the appearance of an irreducible Killing tensorKm

n

52a2d 0
m d n

0 1a2d n
m , related to the reducible Killing ten

sor Lm
n52d 0

m d n
0 1d n

m in the (M ,g̃) spacetime@36#. As
this last tensor is reducible~a sum of products of the Killing
vector P0 and the metric, with constant coefficients!, it en-
codes the same information as the Killing vector itself. Th
we may expect there to be an ‘‘energy isometry’’ associa
with the tensord 0

m d n
0 , which we used in Sec. II B.

The vector densities of this section provide a consist
definition of energy and momentum with respect to a FR
background and, as we have just shown, the identificatio
the quantitiesdtm

n ~including the curvature term in the
00-component! leads naturally to a concise and algebraica
useful conservation law, phrased as a differential equatio

IV. ENERGY-MOMENTUM PSEUDOTENSORS
AND MATCHING CONDITIONS

We wish to consider the emergence of a topological de
network ~or other causal sources! at some stage in cosmi
history, that is, the time when defects ‘‘switch on’’ and a
carved out of the background energy density during a ph
transition. This process sets the initial conditions for all t
perturbation variables prior to their sourced evolution, a st
we must specify if we are to perform realistic numeric
2-8
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simulations. It is common to assume that any phase tra
tion at which defects will appear will take less than o
Hubble time, so it will be effectively ‘‘instantaneous’’ for a
modes larger than the horizon at the time of the transiti
Matching conditions have then been found to relate the
sulting perturbation variables on superhorizon scales to t
prior unperturbed state in a ‘‘sourceless’’ universe@24#.
While this approach will apply in many physical situation
there are circumstances in which it may not, such as hy
scenarios with mixed perturbation mechanisms or late-t
phase transitions in which subhorizon modes might be
portant. Here, we have already defined a generalized ene
momentum pseudotensor applying to both sub- and supe
rizon scales which should prove useful for this wider class
scenarios. We shall therefore ignore these difficulties so a
demonstrate consistency with existing analyses, and dem
strate, in an appropriate synchronous gauge, that its com
nents can be used to specify the matching conditions v
for all length scales in a defect-forming transition.

A. Matching conditions on a constant energy density surface

If the phase transition appears instantaneous for a g
mode, we need only to match the geometric and matter v
ables on the spacelike hypersurface surfaceS, described by
the equation

r~xm!5r01dr5const, ~34!

where, up to a small perturbation, we have assumed ho
geneity on either side ofS @24#. Prior to the phase transition
the perfectly homogeneous and isotropic ‘‘perturbation’’ m
always be absorbed into a redefinition of the~continuous!
scale factor. In a simple model without surface layers@24#
~i.e. ignoring the internal structure of the phase transitio!,
the standard procedure used to match the geometric and
ter variables is to insist that the induced 3-metric'mn and the
extrinsic curvatureKmn must be continuous overS. This
task is simplified if, on either side of the phase transition, o
uses the residual gauge freedom in the time coordinat

→ t̃5t1T, with T a nontrivial first order scalar function o
the coordinates, to transform to a coordinate system in wh
S is defined by the equationt̃5const (r̃5const), andd̃r

5dr1 ṙ0T50. Using the Friedman equations the approp
ate transformation is therefore specified by

T52
dr

ṙ0

5
ka2@rd1rs#

9H~H 21K !~11v!
, ~35!

which may be interpreted~at each point in 3-space! as mov-
ing the time-slicing forward/backward so that the surfaceS
is a constant time hypersurface. Herep5vr is the equation
of state for the total fluid, but for the purposes of this pap
we may assume that we are in the radiation dominated
och.

In setting up this gauge, no use is made of the resid
scalar freedom,xk→ x̃k5xk1DkL, in the spatial coordinates
HereDkL5]kL becauseL is another first order scalar func
tion of the coordinates. Note that this new gauge canno
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comoving, as this would require thatT50, and we need this
freedom to force the constant time and constant energy d
sity surfaces to coincide.

B. Matching the scalar modes

In the gauge described above—denoted by a tilde—
metric is given by:g̃mn5a2( t̃)@gmn1h̃mn# where we shall
rewrite the spatial metric perturbation as

h̃i j 52h̃Lg i j 12S DiD j2
1

3
g i j D D h̃T , ~36!

where hL(t,xk)5*dm(b)hL(t,b)Q(0)(t,xk,b) and simi-
larly for hT(t,xk). These spatially dependent variables a
used as the physical interpretation of the transformation
more transparent, and they facilitate comparisons to exis
work @24,27#. We shall obtain results for theb dependent
quantities later.

The gauge transformed quantities are given by

h̃005h00122~ Ṫ1HT!, h̃0i5h0i1L̇ u i2Tu i ,

h̃L5hL1HT1
1

3
DL, h̃T5hT1L. ~37!

Preservation of synchronicity (h̃00505h̃0i) thus provides
the form ofT andL:

T5
f ~xk!

a
, L5g~xk!1 f ~xk!E dt

a
. ~38!

where f, g are functions of the spatial coordinates only. A
noted previously,f is completely determined by the proce
of establishing a time-slicing that also has constant ene
density ~at the phase transition!. However,g is completely
free, and may be chosen in such a manner as to simp
equations@27#. We shall demonstrate that this freedom m
be more profitably used to specify gauges~for both K50
andKÞ0) in which the energy-momentum pseudotensor
Sec. II must be continuous across the phase transition.

The vector orthonormal to the constant time hypersurf
is given bynm5(2a,0,0,0), so that the perturbed parts
the induced metric'mn and extrinsic curvatureKm

n are

d' i j 5a2h̃i j , d'm050,

dKm
0505dK0

m , dKi
j52

1

2a
g̃ ikḣ̃k j , ~39!

where we usea( t̃)'a(t)@11HT#, obtained by Taylor ex-
panding aboutt. Assuming that the background is contin
ous across the phase transition, we need only match the
turbed parts; i.e. we insist that@d' i j #6505@dKi

j #6 ,
where @F#6 denotes the limit lime→01@F(tPT1e)2F(tPT
2e)#.

Substituting Eq.~36!, transforming back to the origina
gauge and using Eq.~38! we find that
2-9
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FhL1
Hf

a
1

1

3
Dg1

1

3
D f E dt

a G
6

50, ~40!

F ḣL1
f

a S 23~H 21K !~11v!

2
1K D1

1

3

D f

a G
6

50,

~41!

F S DiD j2
1

3
g i j D D S hT1g1 f E dt

a D G
6

50, ~42!

F S DiD j2
1

3
g i j D D S ḣT1

f

aD G
6

50. ~43!

Taking the linear combination26H3 ~41! 16K3 ~40! we
have

FtS12KS Dg1D f E dt

a D22HD f

a G
6

50, ~44!

where we have used Eqs.~35! and ~38!.
Decomposing with respect to the Helmholtz equation, a

noting that the eigenfunctions separate and are time inde
dent, we obtain

FhL~b!1
Hf ~b!

a
2

k2

3
g~b!2

k2

3
f ~b!E dt

a G
6

50,

~45!

FtS~b!12KS 2k2g~b!2k2f ~b!E dt

a D12Hk2
f

aG
6

50,

~46!

FhT~b!1g~b!1 f ~b!E dt

a G
6

50, ~47!

F ḣT~b!1
f ~b!

a G
6

50, ~48!

where we have replaced Eq.~41! by Eq. ~44!.
There exists an entire class of objects related by ga

transformations to the ‘‘pseudo-energy’’dt0
0 corresponding

to different choices forg(xk) in Eq. ~44!. Uzan et al. @27#
make use of this freedom to specify

g52hT2 f E dt

a

which eliminates the matching condition~42! and yields
@t00

UDT#650, refer to Eq.~24!. On superhorizon scales th
reduces to a matching on our pseudo-energy:@tS#650.
However, one is not using the gauge freedom to relate
matching condition to well-defined geometrical objects.
would be both more aesthetically appealing and more us
if one could employ this freedom to makedt0

0 continuous
across the transition. This is a subtle issue that shall be m
fully explored elsewhere@37#, where we discuss initial con
ditions and their consistency with causality. For now,
08350
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merely note that, for practical purposes in which we wish
describe the onset of defect induced perturbations carved
of the background~or inflationary! fluid, compensation be-
tween the fluid and the source densities implies that we
usually takef to be continuous across the transition. In t
absence of primordial density perturbations, it will moreov
initially vanish—see Eq.~35!. In this physical context, we
may then completely specify the gauge by choosing@g#6

50 so that we obtain:

@hL~b!#650, @tS~b!#650,

@hT~b!#650, @ ḣT~b!#650. ~49!

C. Matching the vector and tensor modes

The residual gauge freedom in the vector modes may
expressed as invariance under the infinitesimal coordin
transformationxi→ x̃i5xi1Li , where L (t,xk) is a diver-

genceless 3-vector:DiL
i50. Writing h̃i j 52(hV ( i u j )

(1) 1hV ( i u j )

(1) )

for the spatial metric perturbation, where hV i
(61)(t,xk)

5*dm(b)hV
(61)(t,b)Qi

(61)(b,xk), the gauge transformed
vector quantities are

h̃0i5h0i1L̇ i , h̃V i5hV i1Li . ~50!

Preservation of synchronicity implies thatL̇ i50 everywhere,
so thatL is a function of the spatial coordinates only. Pr
ceeding as for the scalar perturbations we match the indu
metric and extrinsic curvature.

After transforming back to the original gauge, and e
ploiting the fact thatL̇ j50 everywhere so thatD ( i L̇ j )50 is
certainly true on the hypersurface, we obtain

@D ( ihV j)
(1) 1D ( ihV j)

(21)1D ( iL j )#650, ~51!

@D ( i ḣV j)
(1) 1D ( i ḣV j)

(21)#650. ~52!

Helmholtz decomposing and assuming thatb modes sepa-
rate, Eq.~52! is equivalent to

@ ḣV
(61)~b!#650, ~53!

as them561 contributions are linearly independent. Henc
we find that

@tV
(61)~b!#650. ~54!

This is precisely the divergenceless part ofdt0
i which is not

obtainable by integrating the conservation equation~23!, un-
like the induced vector modet IV

(0) ~constructed from scalars!.
Using Eq.~22! we see that the matching condition~54! im-
plies a ‘‘compensation’’ between the source and fluid vorti
ties. We shall investigate this phenomenon further in the c
text of establishing consistent initial conditions in Ref.@37#.
The remaining equation ~51! may be written as
@hV

(61)(b)#650 by means of an appropriate specificati
(Li50) of the residual gauge freedom in the vector mod
2-10
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For the gauge invariant tensors, we find that the~Helm-
holtz decomposed! tensor metric quantities are constrained
be continuous across the transition:

@hG
(62)#6505@ ḣG

(62)#6 . ~55!

There is, however, no residual freedom in the tensor mo
so these matching conditions cannot completely constrain
continuity properties of the pure tensor contributiontG

(62) . It
may also be permissible to insist thattG

(62)50 initially, al-
though this is not mandated by our results.

V. DISCUSSION

In this paper we have considered definitions and con
vation laws for quantities that may be used to define ene
momentum and the stresses, which are of relevance to se
the initial conditions for and/or constraining the evolution
numerical simulations. To this end, we have constructed
energy-momentum pseudotensor for FRW cosmologies w
nonzero curvature and have generated conserved vector
sities using the conformal geometry of a general FRW ba
ground manifold. We showed that these two formalisms
equivalent so that the pseudotensor components are
metrically well-defined objects on all scales. These res
hold in the presence of a nonzero cosmological constan
all the quantities discussed here are purely geometrical
structs, describing the symmetry properties of the FR
spacetime. This pseudotensor is likely to be a useful tool
detailed investigations of causal models in curved FRW u
verses, and also for hybrid models in which one has n
trivial contributions from both defects and inflation, wit
both phenomena coexisting. However, while the conse
tion laws encoded in the pseudotensortm

n will remain valid
-
e,

S

l-

ys

u,

tt
D
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in hybrid models, the matching analysis will have to
modified to incorporate preexisting perturbations~which we
shall discuss elsewhere!. We have phrased our results
terms of the commonly employed Helmholtz decomposit
with respect to the eigenfunctions of the Laplacian.

We considered an instantaneous phase transition ear
the universe as a first approximation to a model for the
fects ‘‘switching on,’’ and employed a gauge in which co
stant energy and constant time surfaces coincide. Match
conditions then imply that there exists an entire class of
jects which are continuous across the transition and are
lated by gauge transformation to our pseudotensor com
nents. The notion of compensation together with a particu
gauge specification removes this redundancy such that thtS

~pseudo-energy! and tV
(61) ~divergenceless vector! compo-

nents of our generalized pseudotensor have this property
a universe which was unperturbed~and hence homogeneou
and isotropic! prior to the transition, we may then taketS

505tV
(61) as natural initial conditions. This result is true o

all scales. In a subsequent paper@37#, we shall establish with
more rigor the effect of causality on the superhorizon beh
ior of the energy and momentum in general FRW cosmo
gies, as well as the implications for setting the initial con
tions.
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