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Detection methods for non-Gaussian gravitational wave stochastic backgrounds
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A gravitational wave stochastic background can be produced by a collection of independent gravitational
wave events. There are two classes of such backgrounds, one for which the ratio of the average time between
events to the average duration of an event is sifi&ll, many events are on at oncand one for which the
ratio is large. In the first case the signal is continuous, sounds something like a cdrista@ind has a
Gaussian probability distribution. In the second case, the discontinuous or intermittent signal sounds something
like popcorn popping, and is described by a non-Gaussian probability distribution. In this paper we address the
issue of finding an optimal detection method for such a non-Gaussian background. As a first step, we examine
the idealized situation in which the event durations are short compared to the detector sampling time, so that
the time structure of the events cannot be resolved, and we assume white, Gaussian noise in two collocated,
aligned detectors. For this situation we derive an appropriate version of the maximum likelihood detection
statistic. We compare the performance of this statistic to that of the standard cross-correlation statistic both
analytically and with Monte Carlo simulations. In general the maximum likelihood statistic performs better
than the cross-correlation statistic when the stochastic background is sufficiently non-Gaussian, resulting in a
gain factor in the minimum gravitational-wave energy density necessary for detection. This gain factor ranges
roughly between 1 and 3, depending on the duty cycle of the background, for realistic observing times and
signal strengths for both ground and space based detectors. The computational cost of the statistic, although
significantly greater than that of the cross-correlation statistic, is not unreasonable. Before the statistic can be
used in practice with real detector data, further work is required to generalize our analysis to accommodate
separated, misaligned detectors with realistic, colored, non-Gaussian noise.
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I. INTRODUCTION AND SUMMARY see Ref[5]). These include high redshift superno#e7],
the first stars or so-called population Il obje¢8&, rapidly
Along with a new generation of gravitational wave detec-rotating young neutron star®,10], early universe phase

tors around the worl@i1—4], detection algorithms for a vari- transitions and cosmic stringd1,12, inflation [13], and
ety of sources are nearing completion. If the signals fronhigh redshift compact binarigd 4].
these sources are detected, physicists stand to harvest un-petecting a gravitational wave stochastic background pro-
precedented gquantities of observational information concerrqyced by any one of these candidate sources could provide
ing the nature of gravitation and the cosmos as a whole. Thgyformation on a variety of topics ranging from the evolution
fruit of this harvest will be the outputs of detection algo- u¢ the star formation ratgl5] to the numbers and sizes of
rithms. In this paper we introduce an algorithm designed forposited extra dimensiongl6]. Because of this, stochastic

nearly optimal detection of a class of gravitational wave Stobackgrounds have long been thought to be among the most
chastic backgrounds. The non-Gaussian nature of this cla ﬁteresting possible types of gravitational radiation.

of backgrounds causes the algorithm presented here to differ
from the well studied cross-correlation based algorithms _ _
which are nearly optimal for Gaussian backgrounds. B. Gaussian stochastic backgrounds
In order to develop detection methods, it is traditionally
assumed that the individual events making up a background
are uncorrelated and sufficiently frequent for the background
Consider a large collection of similar gravitational wave to be Gaussian. That is, it is assumed that the conditions for
sources. If we cannot resolve the individual signals producedpplicability of the central limit theorem are satisfied.
by these sources and know only their statistical properties, Unlike electromagnetic waves, gravitational waves cannot
the signals form a stochastic background. A wide variety obe screened from a detector. Using a single gravitational
candidate sources of gravitational wave stochastic backwave detector, there is no practical way to distinguish be-
grounds have been studi¢fbr an excellent general review tween detector noise and a stochastic background of gravita-
tional waves. As a consequence the sensitivity of a single
detector to gravitational backgrounds is severely limited. By
*Email address: sd68@cornell.edu comparing the outputs of multiple detectors, sensitivity lev-
"Email address: eef3@cornell.edu. Also at Radcliffe Institute forels can be enhanced. Michelsfi7] was the first to give a
Advanced Study, Putnam House, 10 Garden Street, Cambridge, Mdetailed description of such a detection method for a Gauss-
02138. ian stochastic background of gravitational waves in the pres-

A. Gravitational wave stochastic backgrounds
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ence of Gaussian detector noise. His detection strategy and C. Non-Gaussian stochastic backgrounds
its later refinement$18—20 are often referred to as the
cross-correlation methgd. Recently the cro'ss.—correlatio%round if, on average, at any given moment, many individual
vn\:k?;[:r? dtr?:rist:\?gs mr?:\'/feledséﬁrgee? (;?0L%r:_eg!it'szigﬁteﬁg?sevents are arriving at the detector. However, if the rat_io of
[21-23. dverage time between events to the average d_urat|on of
We now briefly review the cross-correlation method. Con-efventS 'S Iarge,_ then there are ang stretches of "silence” or
sider two gravitational wave detectors. The output of eactiMme during which no events arrive at the detector. The re-
detector is a collection of dimensionless strain measureSulting stochastic background is non-Gaussian as the condi-
ments. Suppose thal such measurements are made withiONS _for the applicability of the central limit theorem are not
each detector at regular time intervals. Denote these me&atisfied. Recent work has suggested that some candidate
surements by &/x 2 matrix h with components, where gravitational wave stochastic backgrounds, of both cosmo-
i =1,2 labels the detector, ahd=1,2, ... N is a time index.  logical and astrophysical origin, may be non-Gaussian
To determine whether or not the ddtaontains some desired [7:8,11. However, predictions concerning the properties of
signal, one usually compares the value of some detectioAost gravitational wave background sources rely heavily on
statistic I'(h) to a threshold valud”, . That is, if I'(h) theoretical arguments which extrapolate well beyond obser-
>T", one concludes that a signal is present and otherwisgational support. Such extrapolations are always in some
one concludes that no signal is present. A detection statistigense speculative. It is conceivable that backgrounds pre-
is said to be optimal if it yields the smallest probability of dicted to be Gaussian may in fact turn out to be non-
mistakenly concluding a signal is presdfglse alarm prob- Gaussian, or vice versa.
ability) after choosing a threshold which fixes the probability In Sec. Il C below, we apply a maximum likelihood
for mistakenly concluding a signal is abséf#lse dismissal framework to derive a detection statistic for a particular
probability). model of non-Gaussian stochastic background, which we

Assume that the two detectors are collocated and aligneghow describe. Leh! be the outputs of two collocated aligned
and that each detector has white Gaussian noise with Va”'SB'ravitational wave detectors with white. zero-mean. Gauss-

ing mean with no correlations between the two detectors
Then the standard cross-correlation detection statistig
for a Gaussian signal is

A particular class of events will produce a Gaussian back-

fan noise with no correlations between the two detectors. The
detector outputé consist of noisen® together with a com-
mon signals*:
~2
a k_ ko ok
Acdh)= ==, (1.2 hi=ni+s (1.6
0102

where h§:n|§+sk'

2T 2p 2
a’=a%f(a”), (1.2 We wish to detect a non-Gaussian sigsélcomposed of

long stretches of silence which separate short bursts whose
— 1 N KLk amplitudes are Gaussianly distributed, and whose durations
* =N 2 hih3, (1.3 are smaller than the detector resolution titeee Fig. 4. We

therefore assume that each signal sansblés statistically

independent with probability distributioref. Eq. (3.19 be-

1N low]
o=y 2, (7 (1.4
. . . : , 1 s?
for i=1,2, andé(x) is the Heaviside step function defined S)= —ex;{— — 4+ (1=8)8(s). 1.
1 if x=0, . -
A(x)= (1.55  The paramete€ is what we call theGaussianity parameter

0 if x<0. of the stochastic background; it is the probability that, at any
randomly chosen time, a burst is present in the detector. Thus
This statistic is nearly optimal and can be derived from¢ takes values in the interval9é<1, and if§=1 then the
a maximum likelihood frameworksee Sec. Il B. The sub- background is Gaussian. The parametercan also be
script CC inA ¢ denotes “cross correlation.” The generali- thought of as the duty cycle of the background. The param-
zation of this statistic to allow for colored noise and etera in Eq. (1.7) is the rms amplitude of the bursts.
non-collocated, non-aligned detectors is discussed in Refs. Our nearly-optimal detection statisticy for the signal
[17-20. model(1.7) is given by[cf. Eq. (3.22 below]
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2
hi hs
N —— -t ky2 Ky 2
NG 010§ g, 03 (h1) (h3)
ANS(h)= max max max max [ exp) - -
0<6=1 a>0 0120 020 k=1 | \Jo2o2+ g2a?+ oia? ( 1 1 1) 205 205
2| —+ —+ —
or o5 a?
0102 (hli)z (hg)z
+ (1-¢é)exp — S 5 (1.8
0107 201 205

Here the quantities_rl andgz are defined by Eq(1.4). The detection of a class of non-Gaussian gravitational wave sto-
values of¢, a?, o? and o which achieve the maximum in chastic backgroungis incident on a pgir of ide.alized detectprs.
Eqg. (1.9 are, respectively, estimators of the signal's Gaussi- The second main result, summarized in Figs. 1 and 2, is a
anity parameter, the variance of the signal events, and thg°mparison of the performances of the maximum likelihood
variances of the noise in the two detectors. If we calculate i _ i ,
the quantity(1.8) at £=1, instead of maximizing ovef, the 16 + 1
result is a statistic which is equivalent to the standard cross: 'F ;

correlation statistio\ o¢. tar

The subscript ML onANC stands for “maximum likeli-
hood,” while the superscript NG stands for “non-Gaussian
statistic.” The superscript NG doemt necessarily mean that
one is considering a non-Gaussian signal; both of the statis
tics Acc and ANC can be applied to data containing either a 0.8}
Gaussian signal or a non-Gaussian signal.

If the burst-amplitude parameter is sufficiently large
and the bursts are well separated in time, then the individua 3
bursts can be seen in the detector output. In this case ond 0.4
could use, for example, the simple burst statistic

(arbitrary units)
o

*1\*%”%*& $

061

tectable

0.2

_3
ABE max |hl;_| (19) 10 10 g 10 10
1<k=N

FIG. 1. This plot shows the minimum gravitational-wave energy
on the data from detector 1 to detect the signal. The burs{ensity Qeetecranienecessary for detection, for several different de-
statistic(1.9) and the cross-correlation statistig.c are used tection statistics, as a function of the background’s Gaussianity pa-
as references for comparison for the maximum likelihoodf@meteré. The Gaussianity parametéris the probability that, at
statistic below any randomly chosen time, the waves from an event are incident on

’ the detectors, and thus takes values in the intervaé€1. For a
Gaussian backgrourg=1. The circles are the results of our Monte
D. Main results Carlo simulations for the maximum likelihood statistkﬂe, and

Th t . Its in thi The first It the solid curve shows the approximate theoretical predictiib)
ere are two ’T“"F'”JSS“_ S In this paper. The Tirst resu ISand(C55) for this statistic(expected to be accurate only to within a
the detection statistid.y~ given by Eq.(1.8), which is de-  fa\ tens of perceit The crosses are the Monte Carlo results for the

rived in Sec. Ill C. This statistic is nearly optimal for the ¢ross-correlation statistid cc, and the dashed curve shows the
theoretical predictior4.21) for this statistic. Finally the squares are
the Monte Carlo results for the burst statistic9), and the dotted
Un reality the statistic(1.9) would be especially susceptible to curve shows the corresponding theoretical prediction given by Egs.
non-Gaussian noise bursts in the detector and so would not be usé4.9) and (4.10. For each statistic, the vertical error bars on the
in practice; instead one would need search for events witgfe Monte Carlo simulation results give the fluctuations computed from
and|hk| are simultaneously large. In this paper we restrict attentior4 different runs, each with 2000 trials. The number of data points is
for simplicity to Gaussian detector noise; it will be important for N=10% and the false alarm and false dismissal probabilities are
future more general analyses to allow f@uncorrelategl non- both 0.1. A detailed description of the simulations and the analytical
Gaussian noise components in the two detectors. predictions can be found in Sec. IV.
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1.2

effective bandwidth~10"2 Hz. However, for year-long ob-
servations with ground based detectors, the effective band-
width will be ~100 Hz and consequently the appropriate
value ofN is ~10°. We were unable to perform Monte Carlo
simulations for this large value dfl due to limitations in
available computing power. However, we show in Fig. 2 the
theoretical curves for the three different statistics as func-
tions of £ for N=10°. In this case, the maximum likelihood
statistic starts to outperform the cross-correlation statistic at
£~10"3, and the maximum gain factor in energy density is
of order~2.

We next discuss the computational cost of the maximum
likelihood statisticANC. As is well known, the computa-
0 — — 0 tional cost of trying to detect a stochastic background using

10 10 3 10 0" the cross-correlation statistitcc is negligible when com-
pared to, say, matched-filter-based inspiral waveform

FIG. 2. The minimum gravitational-wave energy density searches. However, because of the non-trivial maximization
QgetectanieNecessary for detection as a function of the background'sn Eq. (1.8), the maximum likelihood statistid s> is com-
Gaussianity parametgrfor N=10° data points, which is a realistic putationally intensive. In fact, every evaluation of the func-

number of data points for ground based detectors. The false alarty .
and false dismissal probabilities are both 0.01. The solid line is th(reEﬂOn to be maximized over the four parametérsy, oy, and

theoretical predictioiC46) and(C55 for the maximum likelihood 72 requires computing a' lengfi-sum or product, wherdl .
statistic, which is expected to be accurate to a few tens of percen't?‘ the number, of data p0|'nts, and takes longer than the entire
The dashed line is the theoretical predicti6h6) for the cross Cross-correlation detection method. Depending on the
correlation statistic, and the dotted line is the theoretical predictioinethod of calculation, the computational cost of computing
(4.9), (4.10 for the burst statistic; see caption to Fig. 1. This plot AN is larger than that of computing.cc by a factor any-
indicates a maximum gain factor ef2 in energy density for duty where from 168 to 10"
cycles in a narrow band negr-10"*. To summarize, under the idealized assumptions of this
paper, if one searches for a stochastic background using the
statistic Ay, the cross-correlation statistitcc, and the  standard cross-correlation statistic, then one might not detect
burst statisticAg. That comparison is quantified in terms of a signal that would have been detectable using our maximum
the minimum gravitational-wave energy densfyyeecianie  likelinood statistic. This conclusion probably generalizes to

necessary for detection. The values of this quantity for theealistic detector noise models and detector orientations.
three different statisticA ;°, AccandA g we will denote by

(arbitrary units)

Qdetectable

ML CcC B H
Qetectavle Ldetectate ANAQgerectanle F€SPECtively. Results for E. Outline of this paper
these three quantities obtained from Monte Carlo simulations , , )
are shown in Fig. 1, which giveQ g rouapdS a function of In Sec. Il we introduce notation, review the general theory

for N=10" data points. The Monte Carlo simulations are of signal detection and parameter measurement, and derive a
described in Sec. IV B below. The figure shows that in thegeneral form of the maximum likelihood detection statistic.
limit é—1 of Gaussian signals, the statistL&#}"G and A cc Then, in Sec. lll, we derive the maximum likelihood statis-

y L . .
perform approximately equivalentlythe cross-correlation tics for both a Gaussian backgrou(tec. Ill B) and for the

statistic is slightly better As the Gaussianity parametéiis model (1.7) of a non-Gaussian backgrouri@iec. ll O, as-
G . suming two idealized detectors. In Sec. IV we discuss ana-
decreased, the performance Af,\\',lL improves, until até

o5 . lytical calculations and Monte Carlo simulations comparing
- 25
LOIHIS DElerthan th.atoz\cc' by about a factor of 3in performance of the maximum likelihood and cross-
energy density. Finally, in the limi€—0, the individual

. o correlation detection statistics. Also in Sec. IV we show how
gg;?tztgteiggg]e visible and the burst statisticbecomes the the signal parametesand« can be estimated, with reason-
Figure 1 a'lso shows theoretical curves for the three quan{zlble aceuracy, for a.strong. non—Qaussuan background. We
" ML cC B conclude in Sec. V with a discussion of the results.
tities Qdetectable Qdetectable andeetectable These curves are

crose-corteltion Staisics, te theoretical curves ahouid bl GENERAL THEORY OF DETECTION STATISTICS AND
: PARAMETER ESTIMATION

a fractional accuracy-1/\/N. For the maximum likelihood

statistic, the theoretical prediction is expected to be accurate In this section we review various formal aspects of the

to a few tens of percent. These expected accuracies are cafreory of signal detection and measurement. We derive a

firmed by the Monte Carlo simulations, as seen in Fig. 1. form of the maximum likelihood detection statistic that is
The valueN = 10* of the number of data points is roughly more general than has been considered before in the context

appropriate for a space based detector like LISA, for whictof gravitational wave data analygi80,24—21. The material

the duration of a measurement might bel year and the in this section can be found in a variety of teXx28]; we
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include this section for completeness and to introduce nota-
tion. pA(n) = j@ %Py, (V)Y (V). (2.6)
n

A. Notational conventions Expanding probability densities in this way allows us to treat

We use calligraphic lettersl,3,C, . .. to denote random Parameters, such as the noise parametgnis Eq. (2.6), as

variables. As described in Sec. | B, givBrdetectors we can Unknowns. In fact, such a treatment of the noise parameters
assemble aiNx D detector output matrix{ with compo- IS the crucial difference between the derivations of this work

nents 4% where k=12 N is a time index, andi and those in previous studies of gravitational wave data
1 1 L 1

=1,2,...D labels the detector. We assume that the detectc?alysis techniquel20,24-217.

outputs are made up of noig€ and signalS with compo- We assume that the signal mOd?" contafu' iyparameters,

nents\’€ and S respectively, such that which we will treat as random variables like the noise pa-
i i '

rameters. We will denote by the random vector of length
H=N+S. (2.1) Qs containing the signal parameters, and@ythe space of
all possible values of.

Specific realizations of random variables will be denoted by We define the notions of “signal present” and “signal
lower case Roman symbols. For exampiiesn+s is a spe- absent” in terms of a partition of the spa&; of signal
ci:ic realization of Eq(2.1), where the components bfare  parameters into a disjoint union
hi‘.

Probability densities for random variables will always be 0,=05U04, 2.7
denoted by a lowercageand will carry a subscript to indi-

cate which random variable is being described. For examplé"’he“_a®SO corresponds to the sig_nal being absent, @}d
p,(n)d"Pn is the probability thatn<A’<n-+dn, where the signal being present. We define the random varidble
dNPn is the product taking values7=0 or 7=1, according to

[1 if VSEG)S]_, (2 8)

N D
d"on=1I1 11 dnf. (2.2 "o if Ve O
Thus7=1 corresponds to a signal being present, Zad to

We write the normalization requirement fpr{n) as no signal being present. We define

|f VSE ®Sl

1=f d"Pnp,(n). (2.3

0
pSVS,T(Slvsyo):{ END(S) if VSEGSQ’ (2.9

Unless otherwise specified, integrals are oR&FP whereR

is the set of real numbers. wheres\P(s) is theNx D dimensional Dirac delta function.
We assume a detector noise model w@h parameters. We denote bypTH(t,h)dNDh the probability that7=t and

Let V, be a vector of lengtl®,, whose components are the thath<*<h+dh, wheret=0 or 1. Similarly

parameters characterizing the noise in the detectors. We de-

note by®, the space of all possible values ¥3f. Here the Py, 7 (h,t)

subscriptn is not an index; it is merely short for “noise.” We Pr(t)

denote joint probabilities in the usual way. For example,

p/\/,vn(n,vn)dNDndann is the probability thatn<A'<n is the probability thah<H<h+dh given that7=t.

Py (h|)dNPh= dNPh (2.10

+dn andv,<V,<v,+dv,, whered®y , is defined by . We .denote probabilitie&s opposed to propability densi-
ties) with an uppercas®. For exampleP 1) is the prob-
Qn | ability that a signal is present, ar®l{0) is the probability
dQ"vn=|Hl dv,,, (2.4  that a signal is absent.

Before examining the detector outputs, we may have
some idea, say from previous experiments, of the probability
that a signal will be present. We denote this prior probability
by P(©. We denote byP*) the posterior probability that the
Py (V) d%m signal_ is present after exarr_linirw in t_h_e context of_all p_ri_or

'n NDp (2.5 experiments etc. All posterior quantities have an implicit de-
an(vn)dann pendence on the detector outputs. To simplify the notation

we will not explicitly show this dependence. For example,
is the probability than<AN<n+dn given thatv,<V,<v,  we write P rather than the more cumbersom€)(#) for
+dv,. the posterior probability that a signal is present.

We will often use the so-called total probability theorem  There are prior and posterior versions of all probability
[29] to write probability densities for a specific random vari- densities. When necessary we will append superscripi) of
able as an integral over the functional dependencies of thand (1) to distinguish priors and posteriors respectively. For
random variable. An example is examplep%}n)(vn)zpvn|H(vn|h) is the posterior probability

and dv'n is thelth component oflv,. We also use vertical
bars to denote conditional probabilities. For example

Py, (V) dNPn=
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TABLE I. A summary of conventions introduced in Sec. Il A.

Convention Example

Random variables are denoted by upper case calligraphic The detector output matrix is denoted B

letters

Specific realizations of random variables are denoted by A specific observation run may result in a specific detector

lower case Roman lettefsee next convention output matrixh or sayx. These results would be denoted
‘H=h and H=X respectively

A lower casep denotes a probability density function The PDF for the detector outpt as a function of, or say

(PDF) Its subscript determines the quantities with which X, is denoted byp;(h) andp;(X) respectively

it is associated

A comma in a PDF subscript and argument indicates a The joint PDF for A and V, as a function ofn and v,

joint PDF respectively is denoted by, (n,Vy)

A vertical bar in a PDF subscript and argument indicates The conditional PDF foV"andV, as a function oh andv,,

a conditional PDF respectively is denoted Qyj\/lvn(n|vn)

An upper casé® denotes a probability The probability that 1 is denoted byP,(1)

Prior and posterior quantities are denoted by superscripts The prior probability that a signal is present is denoted by

of (0) and (1) respectively P, while the posterior probability that a signal is present,
after an observation H=h, is denoted by P®
=Pri(1]h)

density forV, . The posterior distribution for the noise can be  Denote byPep(T',) the probability of false dismissal, that
expanded in terms qjgjl)(vn) as is, the probability that we fail to detect a signal which is
" actually present. Similarly, lePA(I",) be the probability
that we claim to have detected a signal which in fact is
pﬁ\})(n)zf dananvn(n|vn)p§})(vn). (2.1)  absent—the probability of false alarm. For given signal and
On ! noise models and for a given statislki¢ the false alarm and
The conventions and symbols which have been intro_false dismissal _probabilities generate a curve inRRg-Pgp
duced above are summarized in Tables | and Il respectivel)glalne parametrized by the threshdld . Such curves depend
’n the number of detectoi3, the number of data pointy,
_ . the signal parametens;, and the noise parameteys.
B. Detection statistics Suppose that the statistle is bounded in the sense that
To detect a signal one uses a detection statistic,Isay there exist numberE i, and I, such thatl’ i <I'<I'jax
=T'(H), that is some function of the detector outptts A  for all . Then it is clear thatPep(I'y)=0 and that
signal is said to have been detected wiieexceeds some Pga(I'min)=1. As the threshold”, increases toward’ ay,

threshold valud’, . Pep(T,) will increase whilePpa(T',) decreases, until fi-
nally at I'y, =T a, Prp=1, and Pga=0. Thus, false
TABLE Il. A summary of symbols introduced in Sec. Il A. dismissal-false alarm curves generally look something like
those sketched in Fig. 3.
Symbol Meaning Note that if one uses a different statisfid"), wheref is

any function, then the shape of tiRe,-Prp curve does not

b deFector Ou,tpm, matrix i change as long dsis monotonic in the sense that

Non noise contribution to detector output matrix

S,s signal contribution to detector output matrix r>r,=fI)>fT,). (2.12

N number of strain samples taken from one detector

D number of detectors _ _ Only the parametrization of the curve changes under such a
Qn number of parameters n the model noise PDF transformation. Statistics related by transformatibsatisfy-

Qs number of parameters in the model signal PDF 4 1 monotonicity property2.12) have identical false dis-

Vi Vi the parameters of the model noise PDF missal versus false alarm curves.

Vs.Vs the parameters of the model signal PDF In 1933 Neyman and Pearson considered a simple signal
0, the space of all possible values B detection scenario where the sés, ©, and O, each

0 the space of all possible values contain a single elemefi80]. They showed that for this sce-
O the subspace df for which a signal is absent nario the detection statistic which minimizé% for any

O the subspace dd for which a signal is present Pea is the so-calledikelihood ratio A, defined by

Tt 1 if a signal is presentW;e O4;), otherwise 0

PO prior probability that a signal is present

pM posterior probability that a signal is present _ Pra(hld) 2.13

B pH|7(h|0) '
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1 - - - - selected by this criteria is a function of the unknown param-
eters )V, and V,. Thus, as is well known, the Neyman-
Pearson criteria does not single out a unique statistic in such
0.81 1 cases.

In this paper we will obtain our detection statistics from
Bayesian considerations, but we will quantify their effective-
0.61 1 ness using the Neyman and Pearson criteria of comparing
false dismissal probabilities at fixed false alarm probabilities.

Prp

0.4r C. Likelihood ratio and likelihood function

From a Bayesian point of view, a natural criterion for
o2t 1 deciding that a signal is present is for the posterior probabil-
ity P to exceed some thresho82]. The posterior prob-
ability P is related to the prior probabilitp®) and to the

. ) . . likelihood ratioA defined by Eq(2.13 b
00 0.2 04 P 0.6 0.8 1 y q( 3) y
FA p(1) p()
FIG. 3. False dismissal versus false alarm curves for typical 1—pW =A 1—pO° (2.14

detection statistics.

See Appendix A for a derivation of E¢2.14) in the most
One notion of optimality for detection statistics is that thegeneral context where the sefs,, ®;, and O4 are all
statistic should minimize the false dismissal probability at anon-trivial. It follows from Eq.(2.14 that P() is a mono-
fixed value of the false alarm probability. For the simpletonic function ofA, so thresholding o®") is equivalent to
scenario above, this criteria, known as the Neyman-Pearsdhresholding onA. This makesA, or approximate versions
criteria, uniquely determines the likelihood ratio as the opti-of it, the natural choice for a detection statistic.
mal statistic[31]. However in general, when any &, We derive in Appendix A the following general formula
0, or O4 contains more than one element, the statisticfor the likelihood ratio as a function of the daké=h:

f@ dstSdeDs f@ d®w a1y, (h=8[Va) Py, (V) Pspy, 7SIV, D Py 7 Vel 1)
A= sl n . (213
f@ d®u g pagy, (h[vp)py, (Vh)

The various probability distributions that appear in Eq15 are(i) the prior distributiorpvs|7(vs| 1) for the signal parameters
Vs; (i) the distributionpsws,7(s|vs,1) for the signak given the signal parametevs; (iii) the prior distributionpvn(vn) for
the noise parametess,; and(iv) the distributionpN]Vn(h|vn) for the noisen given the noise parametevs.

We can interpret E2.15 as follows. In the simple signal detection scenario, we choose between a pair of simple claims:
(i) Vs=vg or (ii) Vs=Vvg. In general we choose between a pair of complicated, or composite, cl@imge 0, or (ii) Vs
e 04, where both®, and®; contain many elements. Equati¢2.15 says that the best way to chose between a pair of
complicated claims is to first break the complicated pair of claims into pairs of simple claims, then compute the likelihood ratio
for each pair of simple claims, and sum the results of each choice. That is, the likelihood ratio can be written as an integral over
the parameters of the composite claims

A=f dstsf d9m, A(vg,Vvy), (2.16
Og1 B

In

where the integrand (vs,Vv,), which we refer to as thékelihood function can be read off from Eq2.15:

f d“Pspyyy, (h=s|Vo) Py, 7 (Ve D Py, (Vo) Py 7 (V1)
A(VS rVn) =

(2.17
f@ d®w g gy, (h[vp)py, (Vh)
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The likelihood functiod A(vg,v,) can be used to com- mate version ofA. See Ref[28] for further discussion of
pute the posterior probability densip&,ls)‘vn|7(vs,vn|1) for Ay as an approximate version &f.*
the signal and noise parameters given that a signal is present, A Particular special case of the detection stati¢8d9),
via the formula which is widely used, is the following. Assume that the noise
parameters have some known valigs-v,,. Then the noise
priors and the®,, integrals in Eq.(2.19 are trivial, and one
obtains the detection statistic

p®) " p(0)
PV 7 (Vs Vnl 1) = A(Vs, V) —— . (2.18
—p@ ' — p(0)
=P o =P max f dNDSP/\/]vn(h_5|Vn)ps\vs,T(S|Vs,1)
~ Vge O gy
M- van(h|Vn)
A derivation of Eq.(2.18 can be found in Appendix A. (2.20
See Ref[26] for an exploration of the statisti@.20 in the
D. Maximum likelihood detection statistics and parameter context of stochastic backgrounds. We will show below that
estimators for a Gaussian stochastic backgroumd,, reduces to the

In many applications, it is impractical to compute the de-Standard cross-correlation statistic while the more specialized

tection statistiq2.15 because of the multi-dimensional inte- statistic Ay, does not. Thus for stochastic backgrounds,
grals involved[33]. However, approximate versions of the treating the noise parameters as unknowns is cr{iz&|
statistic are often easier to compute and useful. If a signal is When the noise and signal parametgssand); can take
present with sufficiently large amplitude, then the integrancon many values, one naturally would like to know which
in the numerator of Eq(2.15 will be sharply peaked. The values are realized. Equati¢®.18 suggests using the values
integrand in the denominator of Eq2.15 will also be \‘,n and\7$ defined by

sharply peaked when there is sufficient data that the noise is
well characterized. Under these circumstances, the integrals
can be written as the values of the corresponding integrands
at the peaks multiplied by “width factors,” where the width
factors depend only weakly on the deftaand can be ne- g estimators,, andv, are known as maximum likelihood
glected without affecting much the performance of the sta- . T A - -
tistic. (The width factors from the integrals over the noiseesUmators.. Note that;=vs and Vn=Vn also maximize the
parameters will tend to cancel between the numerator anal_Jmerator n Eq(_2.19. For the remainder of th's. paper we
denominatol. Also, frequently the prior distributions fow, W'll use A, Qeflned.by Eq(2.19, as our detection stat|§—
andV, are slowly varying, and neglecting those distributionstic: andvs andv,,, defined by Eq(2.21), as parameter esti-
has a negligible effect on the performance of the statisticMators.

Under these conditions the maximum likelihood detection
statisticA,,_ defined by lll. APPLICATION TO STOCHASTIC BACKGROUND

SEARCHES

A(Vs,Vy)= max max A(Vg,Vp). (2.2
VseB®gq VReB®,

b In this section we derive the maximum likelihood detec-
max max f d"Pspyy (h=s|Va)pspy, 7(S[Vs, D) tion statistic(2.19 for a simplified model of the detection

_Vs€Os1 Vn€On problem for stochastic gravitational waves, and for a specific
ML max pN]vn(h|Vr,1) simple model of a non-Gaussian stochastic background.
vie®,
(2.19 A. Assumptions

We assume two detectors with outputs’, where i

=1,2 labels the detector arkd=1,2, ... N is a time index.

is a natural approximate version of.> The subscript ML  We assume that the noise in detector one is uncorrelated with

denotes that Eq2.19 is the maximum likelihood approxi- the noise in detector two. We will require the noise in both
detectors to have vanishing mean and to be both Gaussian
and white, so that

2There are two different conventions for the definition of the like-
lihood function. Some authors include the probability distributions

for V, andV, in the definition ofA (vs,Vv,,) as we have in Eq2.17), “Note thatA,,_is an approximate version df only in the sense
while others leave these out df(vs,v,) and would show these that the false dismissal versus false alarm curves of the two statis-
distributions explicitly in Eq(2.16). tics will be close to one another. The numerical valuea gf and

3In the event that the priors faf, andV), restrict these parameters A will in general differ significantly, due to the width factors and
to regions®,C B¢ and ©,CO,,, the bounds of the maximiza- priors. Therefore the statistit,, cannot be used in Eq2.14 to
tions in Eg. (2.19 should be changed t®y,—0/, and 0, compute Bayesian thresholds for detection given a desired value of
—0]. P,
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()2 (nk)2

- 2 2
2017 205

N
1
pa[nl(o1,02)1=11 MEXF{

k=1
(3.2

The parameters; andao, in Eq. (3.1) are the square roots of

the variances of the noise in the two detectors. For thi

model v,=(o1,0,) and O,={(o,,0,) | 01=0 ando,
=0}.

We assume that the detectors are collocated and aligne

so that the same signal is present in both detectors

Sk=s5k=5k, (3.2

Lastly we assume that the individual signal samples are un-
correlated and identically distributed, i.e., the signal is white,

so that

N
|o$<s>=klj1 psk(sY). (3.3

Our assumption$3.1)—(3.3) are unrealistic for both ground-

PHYSICAL REVIEW B7, 082003 (2003

analysis is therefore just a first step, and will need to be
generalized. However, we expect that our central
conclusion—the existence of statistics which outperform the
standard cross-correlation statistic for non-Gaussian
signals—is robust, and will not be altered when these com-

é)lications are taken into account.

We now derive a general formula for the maximum like-
lihood statistic(2.19, which we apply in both the Gaussian
nd non-Gaussian cases in the following two subsections.
he denominator in Eq2.19 can be written, from Eq3.1),

as
2 2
{(2770'10'2)Nexp{ — g(a—;—l— 0'_2) ] ] )

max max

01=0 0,=0

(3.9
wheres? and o3 are defined by
1 N
ot=y &, (H? (35

based and space-based detectors: we expect the noise to be ) . ) )
colored with significant non-Gaussian components, and ifor i=1.2. Itis easily shown that the maximum in E§.4)

general detectors will not be collocated and aligned. Ouis achieved atr;=o;. From Eq.(2.19 this yields

max max
VseB®gq VheB®,

f d"Pspyy, (h=Ss|Va) Py, 7 (8|Vs, D)

(3.6

ML (277;1;2)7NGXF(_N)
Combining this with Eq(3.3) yields the following final general expression for the maximum likelihood statistic:
N —— k ky 2 k ky 2
0105 [ (h{—=s9°  (h5—5s
Ay.= max max max |[] — zf ds*psky. 7 (S vs, Dexp — : — 2 —+1]. (3.7)
Vse®g 0120 0p=0 k=10102J-= s 207 205
|
B. Gaussian signal
We now consider the case where the signal is Gaussian g — max max max 710,
and has a vamshmgl mean. We_ denoteaSythe variance of ML 050 0150 0p20 \/a§a§+a§a2+o§a2
the signal, so the prior fof is given by
1 (s%)? ;i ;% 2a? §
Psky. 7(sKa,1)= exg — ——|. (3.9 iz
R R A
X exp — 511 ;
) 1 1 1| 20 205
For this modelvg=(«) has only one component, artdl; af a% a?

Substituting the signal probability distributiai3.8) into
the general expressidB.7) for A, yields a Gaussian inte-
gral which is straightforward to evaluate. The result is

where
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1 N e will be much larger than those im; o».° For the purpose of
% N Z hih3, (3.10 defining the signal-to-noise ratio, we assume tkas large
enough thato; and o, in Eq. (3.14 can be taken to be

and we have appended a superscript GA(ﬁl to indicate  independent oh, so thatACC and a? are equivalent detec-
the maximum likelihood detection statistic for a Gaussianton statistics. We also use? instead ofa? in the computa-

signal. _ _ . _ tions that follow, as is conventional when defining signal-to-
One can show that the maximum in E§.9) is achieved noise ratios. If a signal is present, then the expected value of
ata=a, o1=0,, ando,= 03, Where a? is, from Egs.(2.2), (3.1)—(3.3), (3.8) and(3.10),
2&’2:;2 6(;2), (31]) <ZZ>:CY2. (316)
o?=(0%-a®) 0(c?—a?), (3.12  If no signal is present, so thaf=0, then the fluctuations in

_ _ a? are given by
fori=1,2, ando; ando, are given by Eq(3.5. Here 6(x)
is the step functionil.5). The quantitie$3.11) and(3.12 are o0,
the maximum likelihood estimators for the varianeé of A(a®)=
the signal and the variance€ and o3 of the noise in the WN
two detectors. The step functions in E¢3.11) and (3.12
arise as a result of the bounds of the maximization in Eq,

(3.1

The signal-to-noise ratip is defined to be the ratio of these

3.7). two quantities:
The corresponding detection statistic is, from E2}9),° 2
el (3.18
. o4 —N/2 p o0y :
A =|1-=5= (3.13
0103

C. Non-Gaussian signal

The cross-correlation statistid cc can be obtained from — Ag mentioned in the Introduction, the traditional assump-
AL via a monotonic transformation which preserves falsajon that a gravitational wave stochastic background will be
dismissal versus false alarm cunjes$. Eq.(2.12 above: Gaussian requires the individual events to be sufficiently fre-
quent and uncorrelated. Our model for a non-Gaussian signal
assumes instead that the events are infrequent.

Consider a collection of similar events generating a sto-
chastic background. Let & be the probability that, at any

Note that if we had assumed the noise parametgrs randomly chosen time, the waves from an event are arriving
=(oy,0,) were known, and derived a statistic from Eq. at the detectors. We assume that the time structure of indi-
(2.20 rather than Eq(2.19, we would have found instead Vidual events cannot be resolved by the detectors. That is, we
the detection statistiAGLzAGL 0(/\:\340: where assume that Fhe ever_1ts occur over time scal_es s.maller than

the detectors’ resolution time, as illustrated in Fig. 4. We

Acc= V1= (Ay) N===

01072

(3.19

1] e2? o2 assume that the distribution of the amplitudes of the events is
AC =2+ =| 2 (02— o)+ _1(33_03)1, (3.15  Gaussian with variance®. The probability distribution for
2 af a§ the signal given the signal parametei§ d) is therefore
given by
which is different from the standard cross-correlation statis-
tic. This non-standard result is obtained because of the unre- £ (s92
alistic assumption that the noise parameters (oy,0,) are  Psky,A48((£,0),1]= 2n expg — —— | +(1-£)8(sY),
known. Different derivations of the resulB.15 can be Ta

found in Refs[22,26]. (3.19

It is often useful to characterize the “strength” of a sto- {logether with Eq(3.3). Thus the signal model parameters are

::r?astlc backgrolutr)d 'nttet.rr?sé cif thehs_n%nal-to—nmsg ;gno OV,=(&,@), which give respectively the “event probability”
e cross-correlation statisti@.14, which we now define. and “event variance” characterizing the stochastic back-

First note that for largeN, the fractional fluctuations i ground. The parameter spa@e for this model is
={(&a) | 0<é<1 and a=0}, (3.20

*To simplify the formula forAS, we assume that?— a?>0. and the subset corresponding to a signal being present is
This will be true for any realistic value df sinces?— a?= oﬁtme
+O(1/4YN), where O wue 1S the true value ofo; and the second

term describes the statistical fluctuations. 5This is true at fixed signal-to-noise ratjo
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O4={(£a) | 0<é<1 and a>0}. (3.21) expected to have time scalesl0 ms[34,35. It will be im-
Note that our assumption that the time structure of eventgortant for future studies to relax this assumption.
is not resolved by the detector is unrealistic. Detector reso- We now compute the maximum likelihood detection sta-
lution times can be as small as 0.1 ms in the case of groundistic A ¢ for our simple non-Gaussian signal model by sub-
based detectors like LIGOand even supernova bursts are stituting Eq.(3.19 into Eq. (3.7). This yields

- 2 —-
" " 0107¢ o o} (h5)2  (h§)?
ANC= max max max max [] exp| - - +1
0<¢<1l a>0 0,20 0,20 k=1 \/05034—05(124—0%(12 1 1 1 202 203
2 _ _ _
ol of o _
710, (h})?  (hy)?
+ (1-&expg — - +11 ;. (3.22
0102 20’% 20'%

The values of¢, a?, o2, and o3 which achieve the maxi- N
mum in Eq.(3.22 are, respectively, estimators of the signal's PRGHEIGHE (3.29
Gaussianity parameter, the variance of the signal events, and k=1
the noise variances in the two detectdrisiote that if we
evaluate Eq(3.22 at {=1, rather than maximizing ove,  for the required values dfandm, and subsequently numeri-
we recover Eq(3.9) and the statistio\ 3, . cally maximize over the parametefs a, o;, ando,. Thus

We mention in passing an approximate version of the stathe lengthN sums need only be performed once, rather than
tistic (3.22 which is significantly easier to compute. Ex- each time one tries a new set of valuesfow, o, ando.
panding the Iogarithm_of thezquantity to be maximizezd in EQ.-Therefore the computational cost Af&f is only about an
(3.22) as a power series in” to fourth order aboutr™=0  4rger of magnitude greater than that of the cross correlation
yields the approximate statistity; given by statisticA cc, and this statistic may be useful to explore.

We now derive the signal-to-noise ratiofor the cross-
correlation statistic and for the non-Gaussian sig8al9. If

m]\klﬂf: max max max max i g g the signal is present, then from Eqﬁz..l), (3.3, (3.10,
0<é<l a>0 0,20 g,=0 N=01=0m=0 (3.11) and(3.19 the expected value af? is
2 \n N o
X 0102) Cmm(f.(fl,ffz)gl(hli)'(hlé)m. (a®)y=¢&a?. (3.25
(3.23

If no signal is present then the fluctuationsaifare given by

where the coefficient€,m(¢,02,03) vanish unles$+m is
even and + m=<8. In evaluating the statisti@8.23, one can
first evaluate the 24 sums

01072

i

Ala?)=

(3.2

"For ground-based detectors, the effective resolution time in él'_herefore, t_aking _thg ratio of Eq¢3.29 and (3.26, the
cross-correlation between two detectors can be considerably long&ignal-to-noise rati is
than 0.1 mg20], which may help with this issue.

8See Ref[36] for a derivation of a statistic similar ta ) and ca? N
designed for the same non-Gaussian signals which is based on Eq. p= . (3.2
(2.20 rather than Eq(2.19. 0102
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Peo=Pro(Pra.&.p.N). (4.3

1. Cross correlation statistic

The false dismissal versus false alarm curves for the

cross-correlation statistic can be computed analytically in the
~ T largeN limit, as we now describe. Our derivation generalizes
Yo © © © © © the analysis of Ref.20] from Gaussian to non-Gaussian sig-

nals. For any detection statistic, we can expres®g, and
Prp in terms of the detection threshold, as

Pea(l'x ,Ul.Uz,N)ZL dxpri7 (x[0), (4.4

1 2 3 4 5 6 7 8

k

FIG. 4. Sketched segment of the signal produced by a model Peo(Ty 'g,p,o'lya'z,N):l—f prF|T(X|1)-
non-Gaussian stochastic background of events unresolved by the Iy

detectors. Here we show two events. The solid curve is the exact (4.5
signal. This exact signal’s contributions to the detector outputs,
shown as stemmed’s, are averages of the exact signal over the

detector resolution time scale. Here the definition of the random variabifeis such that if
7=0 then no signal is presenf€ p=0), and if7=1 then a
IV. PERFORMANCE COMPARISON signal is present{+#0 andp+0); cf. Sec. Il A above. Note

In this section we compare the performances of the crosdhat by eliminatingl’, between Eqsi4.4) and (4.5), we re-

correlation statistia3.14), the burst statistid1.9), and the cover Eq.(4.1). L o .
maximum likelihood statistic(3.22 for our model non- In the largeN limit, the distribution p, 47 (X|t) is a
Gaussian signal described in Sec. Il C. The comparison i§aussian by the central limit theorem, and the integral
quantified in terms of the false alarm versus false dismissednd (4.5 can be evaluated analyticaligee Appendix Bto
curves, as discussed in Sec. Il above. In Sec. IV Awe discusgive

analytic predictions for these curves for the three different

statistics. Section IV B describes our Monte Carlo simulation

algorithm, and Secs. IV C and IV D describe the results. B p T
erfc Y(2Pga) — T
A. Analytic computation of asymptotic behavior of statistics Peo(Pea,&,p,N)=1— Eerfc 2
We start by discussing the set of parameters on which the p?(3 2p
false dismissal versus false alarm curves can depend. As be- N E_ 1j+—=+1
fore, we assume two detectors with noise characterized by \/N

Eqg.(3.1) with V,=(01,0,), and a non-Gaussian signal char-
acterized by Egs(3.3 and (3.19 with V,=(&,a). The

e . 4 4.6
curves for each statistic are given by some function 4.6

Peo=Pep(Pra.é,@,01,0,,N) 4.1

Here the function erfo() (known as the compliment of the

of the false alarm probabiliti?s , the Gaussianity parameter error function is defined by

¢, the rms amplituder of events, the noise variance$ and
o3, and the number of data poinké We can simplify Eq.
(4.2) by replacinga with the signal-to-noise ratip using the
definition (3.27), and noting from dimensional analysis that erfa(x) = ifmdye‘yz, @7
Prs depends onr; and o, at fixedp only through the ratio Jtx

oq/0,. This gives

Prp=Prp(Pra.é.p,01/05,N). (4.20  and erfc }(x) is the inverse of erfo(). The formula(4.6) is
valid only for Ppa<1/2; Pgp is undefined for 1/ZPga

For simplicity, we specialize to-y= o, for the remainder of ~<1. In deriving Eq(4.6), we assumed that the statistitgc
this paper. This implies that and o? are equivalent, and that the distribution faf is
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Ay Ay
PN=¢erf] ———|+(1—¢) erf| —|,
/ 2p \/E
0.8 1 24 —
eN
(4.10
0.6
e ) where A, is the value of the threshold.
Q.‘0'4_ o 3. Maximum likelihood statistic
: We start by discussing the different regimes present in the
° space of signal paramete&s p and N, treating the false
0.2r 0 alarm probabilityPg, as fixed. There are several different
constraints on the three parametérsp, andN that define
the regime in parameter space where we expect our maxi-
% 02 04 06 08 - mum likelihood statistic to work well. First, it is clear that

Pra the total number of events éN in the data set must be large

compared to one:
FIG. 5. Sample false dismissal versus false alarm curves for the P

cross correlation statistid ¢ in the largeN limit, as prescribed by 1

Eq. (4.8). For these curves the signal-to-noise ratidas equally &> —. (4.11
spaced values from 0.01 to 1. Note that hBgg, is undefined for N

1/2<Pp<1.

Second, if the signal-to-noise rati@?/(o,0,) of indi-
vidual burst events is large compared to one, then one can
Gaussian. Those assumptions are only valid up to fractionaletect the individual events using the burst statigti€) and
correction terms of order {N; hence the indicated correc- the method of this paper is not needed. From Bql8 we
tion term in Eq.(4.6). can write the constraink?/(o,0,)<1 as

In the regime where?<N¢ in addition toN>1, the

result(4.6) simplifies to
(4.6) simp =2 4.12
N
1 p A more precise version of this requirement can be obtained
_Z ~1 _
Peo(Pra. 6. N)=1 erfc[ erfc (2Pra) \/‘ by noting that the detection threshold for the signal-to-noise
ratio a?/(o107,) is ~ 2 InN, since there ar&l independent
1 p pz) trials. This yields the constraint
+0| —=|+0| —=|+0| —|.
W) N ,
= 4.1
(4.8 = aNinN 413

The regimeé~p/\2N InN is where the burst statistid g
is independent of bottN and £. Sample curves from Eq starts becoming as sensiti\./e' as the cross correlation statistic,
(4.8) are shown in Fig. 5. The d.iscontinuitiesl%gt =1/2 are - ascan be_ seen by combining qu'B)’- (4'-9) and (4.10

' T ) TEOTRA - above. This behavior can also be seen in Figs. 1 and 2 above.
a result of the step functions in the definitié®12) of a”. A third constraint on the space of signal parameters is
derived as follows. Consider the statistic

Note that the false dismissal versus false alarm reld#éid)

2. Burst statistic

By combining the definition(1.9) of the burst statistic
together with the decompositiail.6), the noise and signal
distributions (3.1) and (3.19, and the change of variables ) L i L
(3.27) it is straightforward to derive the exact false alarm We can use this statistic to estimate the Gaussianity param-

versus false dismissal relation. The result is given by eter ¢ in the following way. The mean value of when a
signal is present is given by

N
=N 2, (h)*(h3)%. (4.14

Z||—\

(n)y= 3éat+ §a2(01+ 0'2)+0'1(72, (4.15

(4.9 and the variance when a signal is absent is

g

A
(1- P,:A)l’N=erf(—*

8
2_ 4 47
and (An)?*=oiody. (416
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It follows from Egs. (4.15, (4.16, and the relation(a?)  (3) Forr=12,... Ng/2:

= £a? that the estimatog of ¢ defined by (a) Generate a data traim(o;,0,,N) of noise only.
(b) Computel” and store result ak, .
A 354 (c) Generate a data traim(¢,«,01,0,,N) which has a
&= T TR NS (4.17 signal present.
n—a’(o1+03) =010 (d) Computel’ and store result aE, ;.

(4) Choose a discretizatioli, ; of the set of thresholds,

has a fractional accuracy of order wherej=12, ... M.

Ae £NN % ?etPFAgl“z*j):IJD\IFD/(ZF*j):O, for each.
— (4.18) orr=1,Z,... Ng/lZ:
3 p? (@ For eachj, if I'o>I",;, incrementPp(I',;) by
2/Ng .
Now in the re_glmeA§/§_<1, we expect our maxtmgm like- (b) For eachj, if T';;<T,;, incrementPe(T;) by
lihood detection statistic to work well, since one’s first guess 2INg.

for a npnl!near statisti(>4.14) can be used to detect the non- (7) Repeat step3)—(6) above several times to estimate the
Gaussianity of the signal to high accuracy. In the regime g ctuations iNPeA(T, ;) and Pep(Ty ;)
* * .

Aélé>1, it is not obvious how the maximum likelihood
detection statistic will perform, since it could have a perfor-
mance much better than that of the statisticHowever, our

Monte Carlo simulationgSec. IV B below and analytic Aﬂf The analytical expressior(@.6) and (4.9), (4.10 for

ﬁﬁg:)%m;g%gg?%poeensd'; (?e;ndd'citﬁoﬂ?t tggrlm?;m:#énrgke";]ethe cross-correlation and burst statistics are used as a check
P p y 9 of the numerical method.

A¢/é>1. Thus, our third constraint 8¢/ ¢<1, which from
Eqg. (4.18 can be written as

We use the above algorithm to simulate false dismissal
versus false alarm curves for the three statistigs, Ag and

C. Simulation results
2

_P A family of simulated false dismissal versus false alarm
gw\/_ﬁ' (4.19 curves for the cross correlation statisfig.c and the maxi-
mum likelihood statistic\ )\ is shown in Fig. 6. We see that
NG

Our Monte Carlo simulations show that fpf/\N<¢=<1,  atfixedp, as the Gaussianity of the signal decreases,’
the maximum likelihood and cross-correlation statistics perperforms increasingly better thabec. The curves forA cc
form roughly equivalently, and that onéebecomes smaller are almost indistinguishable from each other becguse
than p?/ N, the maximum likelihood statistic starts to per- fixed, and the curves depend only prand not oné for this
form significantly better than the cross-correlation statistic;detection statistic in the larg limit [cf. Eq. (4.8) abovd.
see Figs. 1 and 2 above. If we maintain the same value f@ras in Fig. 6, but take

In Appendix C we derive analytically the approximate £=0.03, the curves forAcc and A} cannot be distin-
expression(C46) for the false dismissal probability for the guished from each other. We find in general that &oy
maximum likelihood statistic, which we expect to be accu-values ofN, o1, 0,, andp, asé—1, the false dismissal
rate up to corrections of order’ or a few tens of percent. versus false alarm curves fdrec andAhN,,f‘ cannot be distin-
We also derive the expressi¢855) for the false alarm prob- guished from each other. Thus, the two statistics are nearly
ability using a combination of analytical and numerical tech-equivalent for Gaussian signals, as expected. However, for
niques. Combining these results gives the curves which aré<1, Fig. 6 demonstrates thmm’ performs noticeably bet-
associated with the maximum likelihood statisfig)> and  ter thanA cc.

labeled “analytic” in Figs. 1, 2, 9, and 10. We now discuss a comparison of the two statistics in
terms of the minimum gravitational wave energy density
B. Description of the Monte Carlo simulation algorithm necessary for detection, instead of in terms of the false dis-

missal versus false alarm curves. For a stochastic back-
round with rms strain amplitude,,s, we haveQ «h? .[5],

here ) is the gravitational wave energy density. For our
2

Next we describe our Monte Carlo simulations of the per-
formances of the various statistics. We numerically estimat

the false dismissal and false alarm probabiliftes, and Py model signal(3.19 we haveh? o £a?, and comparing this

by conducting an ensemble ®fc simulated experiments. . 2
For each experiment we simulate a detector output matrixWlth the formulape: £a from Eq. (3.27) shows that we can

half of which have a signal present, and half of which do not_lhterpret the signal to noise ratjpas the energy density in

Since we know in advance whether or not a signal is presenwev\jéoggﬁsnjt:?ﬁlég:ﬁiﬁ?g'u?%’%nefgétzggC;?]Lé‘:'s'aré;%?talSc')r
we can easily estimateg, and Prp. More specifically, our P gy y

algorithm for simulating false dismissal versus false alarnfﬁggsﬂ]';?égg'se ;?]t('qud"‘tec}ag're?hsefg:glvzl;:gsznvgefaﬂg%siz
curves, for an arbitrary statistic, is as follows: FA* FD*

missal probabilities. We refer to the palPfs« ,Prp+) as the
(1) Choose values foé, «, oq, o, andN. detection pointFor any statistid’, the choice of detection
(2) Choose the total number of trialé: . point determines the detection threshdlg, and inverting
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0.3

p<p detectable

0.2r

p= pdetectable

g
A
0.1f
p> pdetectable
00 0.1 012 0.3
Pra
FIG. 6. Plots of false dismissal probabilitPfs) versus false FIG. 7. Afamily of false dismissal versus false alarm curves for
alarm probability Pra) for the standard cross-correlation statistic fl)'(tehd 3 l-lere the detection point, &pp« = Ppax =0.1, is marked

with an *.

Acc and our maximum likelihood statistid |°. Each of these
curves is characterized by a total number of trillls=2x10%
number of data pointl=5x 10", noise variances; =o,=1, and  alarm curve which is itself a computationally intensive task.
by the signal-to-noise ratip=1. The values of Fhe Gaussianity Moreover, it is only feasible for us to solve E(.23 for
parameterg are 0.02, 0.012, and 0.01. The solid curves are the 5 a5 of N<10* while a realistic detection scenario for
results forAy, ; these curves are bunched together becau ground based detectors would involve a year's worth of data
fixed. The dashed curves are the results £Qf° . For the dashed - —10°. Theref

curves, the lowest curve is f@=0.01, while the highest curve is sam_pled at-100 Hz for WhIChN 10°. Therefore our con-

for £=0.02. We estimate error bars for each of these curves b lusions about the applicability of the mgthod to groundl
separating the 2 10° runs into 10 bins of X 10°, and generating ased dgtectors are b_ased on our analytic results, as dis-
10 separate plots; the resulting fluctuations =E0 3. The curves Cuss_ed in the Introduction. ) .

for the cross correlation statistit$, agree with the analytic pre- Figure 9 shows the results obtained from numerically
diction (4.6) to within ~10~2. This plot shows thatN® can per- ~ SOIVINg EQ.(4.23 for peecianiefor the parameter values
form significantly better thar cc. =0.02, Pgax =Pgpx=0.1, and Fig. 10 shows the corre-

sponding results foé=4.3x10 3. For the cross-correlation
Eq. (4.3 gives the minimum detectable signal-to-noise ratiostatistic, the results are in good agreement with the analytic

prediction(4.21).
P= PdetectablePrax , Prox ,&,N), (4.20 Figure 1 shows the minimum detectable energy density as
as illustrated in Fig. 7. For the cross-correlation statidtig
the result is, from Eq(4.6), 6r
e :2J27[1+ yV2IN] o 1 42 s
Pdetectablé \/N .
1+2y2(1—)/N 2
f g 4r
2
y %3 4
=2\2y+0| —=|+0| —], (4.22)
TN m) g}
k4 ol
where y=erfc }(2Pgax) and we have assumed thBa«
=Pgp+ . This relation is plotted in Fig. 8.
From the results of our simulations, we determine
PdetectablkPea* » Pepr , €, N) by numerically solving the equa-
. 0 . .
tion 10° 102 P 107 05 10°
FA
PFD(PFA* 1§1p1N)_PFD*:O (423) *

) _ FIG. 8. The minimum detectable signal-to-noise ratffieciaie
for p. Unfortunately, evaluating the function on the left handfor the cross-correlation statistit cc as a function of the false

side of Eq.(4.23 is computationally expensive. Each evalu- alarm probability thresholdPra« . Note that we assume the false
ation involves simulating the false dismissal versus falsalismissal probability thresholB g« = Peas .
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28k % Acc 0.45f
. . s
24r 0.35}
o 22f
) o . 0.3f
g 2 °
]
& 18- J 0.25f >t
1.6r 0.2 S
o]
5] = g § © " ® ¢ @8 2
14 --- 0.15
ANG ————————————— :
1.2} ML e - g
L w777 0.1, s . s s s s :
4,000 5000 6,000 7,000 8000 9,000 10,000 01 015 02 025 03 035 04 045
FIG. 9. The minimum detectable signal strengtfiectabiedS @ FIG. 11. Representative contours of)\ltf,az,azl,aé). Here p
function of the number of data pointé, for the false alarm prob- =20 andN=1.6x1C°. The simulated signal is characterized &y

ability thresholdPga«=0.1, false dismissal probability threshold =0.2 anda?=0.25, marked with arx. The noise is characterized
Peox=0.1, and Gaussianity parametgr 0.02. The circles are the by (rf:a%:l. The maximum, marked with a-, is found at
simulation results, and the error bars are estimated from ten diffetn A(0.207,0.251,0.993,0.993)229,  while  InA(0.2,0.25,1,1)

ent runs. The solid curve is the analytical predictidr21) for A, =227.
and the dotted line is the— < limit (4.22. The dashed line is the
analytic prediction forA - given by Eqs(C46) and (C55). detectors Here we useéPpax = Prpx =0.01. The results are

] o similar to those in Fig. 1, except that here the gain in sensi-
a function of the Gaussianity parametefor N=10 (cor- tiyity occurs in the band 10°< £<10~2. This band corre-
responding to space based detegtorfor the cross- sponds to 1H-1CF events per year.
correlation and maximum likelihood statistics and also for
the burst statistic(1.9. We again use the valueBpax
=Pgp+ =0.1. The figure shows that the maximum likelihood
statistic performs better than the other statistics by a factor The computation of the maximum likelihood statistic also
which is roughly 3 foré of order 1%. For smaller values of serves to measure the parameters of the signal. The statistic
£, the maximum likelihood performs increasingly better thanA ¢, from Eq.(3.22, can be written as
the cross-correlation statistic, but is eventually comparable to

D. Parameter estimation

- . N o1e NG_ 2 2
the burst statistic. Thus the maximum likelihood statistic Apc= max max max max \(¢,a%,07,0%).

gives an improvement in sensitivity to backgrounds com- 0<¢=<1 a?>0 o0 o3=0

posed of roughly 10 to f0events per year. (4.24

Figure 2 is a similar plot, without the Monte Carlo simu-
lation results, forN=10° (corresponding to ground based The point ¢ a2 %,03) where this maximum is achieved is
the maximum likelihood estimator fo&(a?,0%,03). In Fig.
11 we show contours of the function Anfor a strong p
=20) signal. This figure shows that bothand & can be
measured with good accuracy.

Note that the main benefit of using)y is that it allows
us to detect signals that are too weak to be seen usiRg
Using ANS also allows one to test if a detected signal is

4

=2 . . - . .
s Gaussian, as obtained above, but this is not the main benefit
% ol of the method, as there are other, simpler, methods to test for
s non-Gaussianity.

1.5¢ 1

ANS V. CONCLUSIONS
s 5 o t & w & & o & | The use of our maximum likelihood statistic in searches
A iy for a non-Gaussian background gives a gain in sensitivity

over the standard cross-correlation statistic. Figures 1 and 2
show that the gain factor can be significant for sufficiently
non-Gaussian signals. However, computing the maximum
FIG. 10. Same as Fig. 9 but with=4.3x 1073 likelihood statistic requires significantly more computational

4,000 5,000 6,000 7,000 8,000 9,000 10,000
N
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power than the cross-correlation statistic. First expandpy,(h) just in terms of the random variable
The analysis presented here must be generalized in se¢:

eral ways before being usable in gravitational wave detec-

tors. These generalizations, listed in order of importance, are: P#(h)=P7(1)pyyr (h[1)+P7(0)psy7(h|0). (A1)
(1) Our signal model3.19 assumes a Gaussian distribu- ) ]

tion of amplitudes of the burst events. This assumption simExpandingp,(h) in terms of all the degrees of freedom

plified our analysis and resulted in a statistic with the usefulields

property of being nearly equivalent to the cross-correlation 1

statistic in the Gaussian signal limit. In practice however, the (h)zz f d9s f dNDg

distribution of the events should instead be based on the Pr = Us

candidate sources. For example, a popcorn-like stochastic

background produced by a spatially uniform distribution of 0

standard-candle sources out to some maximum redshift e A0 Py 7y v, (Mt Vs, 8,v)
would have a signal distribution of the for(8.19 with the "

Gaussian term replaced by a term proportionalstd6(s XPry, sy (1,Vs,S,Vp). (A2)
—Smin), Where 6 is the step function and,, is a cutoff s

signal strength. The ratio of the coefficients oP(1) and P, (0) in Eq.

(2) One should allow the burst durations to be longer thanA2) will give the general expression for the likelihood ratio
the detector resolution time. For this situation one possibilitypy Eq. (2.13.
would be to preprocess the data with a lowpass filter, and The conditional distribution forH in Eq. (A2) can be

then apply the techniques developed here. Another possibitransiated into a conditional distribution fov. From Eg.
ity would be to try to combine the analysis of this paper with (2.1) it follows that

the excess power detection method of R2b].
(3) Real detector noise always contains non-Gaussian pH|S(h|S): p/\/+s|s(h|3): pMs(h_S|S): (A3)

components, so one needs to generalize the analysis to allow

for this. Such a generalization for a Gaussian stochastiand sinceS and \ are statistically independent we obtain

background can be found in Ref&1,22.

(4) It would be useful to consider a more general signal PHIS(h|S): Prh=s). (A4)
model which consists of a superposition of a Gaussian bac‘t—)eneralizing this argument gives
ground and a non-Gaussian background, since the true gravi-
tational wave background might consist of such a superposi- Pr|7v, .5v,(NtVs,S, V) = Papy, (h=8[vy),  (A5)

tion.

(5) The analysis needs to be generalized to allow for colsincea priori 7, Vs, andS are statistically independent &f
ored detector noise, and separated, misaligned detectors. Thkind ), . For the same reason we can write the joint distribu-
generalization should be fairly straightforward. tion that appears in EqA2) as

ACKNOWLEDGMENTS Py, 50, ( Vs, Vn) =Pry s(t.Vs,8)Py, (V). (AB)

We thank Wolfgang Tichy, Tom Loredo, Teviet Creighton, Substituting Eqs(A5) and (A6) into Eq. (A2) yields
and Bernard Whiting for helpful discussions. The analytic L
computations in Appendix C were carried out using the soft- _ 9 ND Q
ware packagevATHEMATICA. This work was supported in PH(h)—t:EO o d v fd S f@ d*no,
part by National Science Foundation awards PHY-9722189 ° "

and PHY-0140209, the Alfred P. Sloan Foundation, the Rad- X pN]Vn(h—s|vn)p7,vs,5(t,vs,s)pvn(vn). (A7)
cliffe Institute for Advanced Study, and the NASA/New York
Space Grant Consortium. We can also rewrite the distributiqmwsy s(t,vs,8) as
APPENDIX A: GENERAL FORM OF THE LIKELIHOOD Py, s(t.Vs,S) =Psiy, 7 (8|Vs, 1) Py 7(Vs, ) P (1),
RATIO (A8)

In this appendix we give two derivations of the generalpy Eq.(2.5). Substituting Eq(A8) into Eq. (A7) and explic-
formula (2.19 for the likelihood ratio. The first derivation is jtly evaluating the sum overyields

based on Eq(2.13 while the second is based on Eg.14).

We also derive the formulé2.18 for the posterior probabil- _ j 0, f ND j o,
ity density !y, 7 (Vs vi[1). px(h)=P7(1) @Sld vs | d"Ps @nd vn

1. First derivation X p/\/]l}n(h_s| Vn) Py, (Vn) pSlVS,T(S|Vs,1)
We can derive Eq(2.15 by using the total probability
theorem to expand the distributions in the numerator and vas|7(Vs|1)+P7(0)f dQ”UnpN]VS(h|Vn)-
denominator of Eq(2.13. Note that all distributions in this n
derivation are priors. (A9)
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After putting Eq.(A18) into Eq. (A17), substitute the result
into Eq. (A16). Using A(vs,v,) given by Eq.(2.17 then

Here we have used the following relations:

Psiv,. 7 (SIVse B51,0)=""(s) (A10)  yields
pVS‘T(VSE SOll):O (All) A(V \V, P(O)
P(l)pgzls),vnw(vs,vn|1)=%- (A19)
Py7 (Vs€ ©10)=0 (A12) APTI+1-P
On the left hand side of EqA19) we have used
j dQSvspVSIT(Vslo) =1 (A13) (1) 1).(1)
050 pT,VS,Vn(l’VS'Vn):P( )pvs,vn|T(stVn|1)' (A20)

By comparing Eqs(Al) and (A9) we can read off the dis- )
tributions py7 (h|t) and construct Eq(2.15 from Eq. Integrate Eq(A19) over®, and® using Eq.(2.16) and

(2.13. Note that the expressio2.13 is independent of the the normalization requirement
spacel o of signal parameters corresponding to “no signal

present.”

2. Second derivation
Here we derive Eq(2.15), and also Eq(2.18), from Eq.
(2.14). Consider the distribution
pT,VS,Vn ,H(lvvs WVn ’h)
px(h)

Py, v, n(1Vs,Vol) =
(A14)

We will justify Eq. (2.15 by the defining relation Eq2.14),

which explicitly refers to priors and posteriors. Therefore we

J' dQSUsf dQnUn pg;ls),vn\T(Vs,Vn|1)=1 (A21)
®sl ®n

to get

AP©

=
APO4+1-pO

(A22)

Use Eq.(A22) and Eq.(A19) to form the ratio on the left
hand side of Eq(2.18. This justifies Eq(2.18.

Integrate Eq(2.18 over®,, and®; using Eq.(2.16) and
Eq. (A21) to see that the defining relation E@.14) is sat-

now append the appropriate superscripts as bookkeeping d%i‘ied and thus Eq(2.15 is justified.

vices. Equatior(Al14) then reads

1) (1 ) p’(f(,)l)}S,Vn,H(lrvsuvn!h)
PZv, v, (1 Vs:Vn) =
s e pi(h)

Using the expansion opy(h) given by Eq.(A9), and

(A15)

what we will justify is the likelihood ratioA given by Eq.

(2.15, we have

p’(f(,)l)}S,Vn ,H(lrvs 1Vn !h)

[ dows o, (lvp@va)

n

(1) —

pT'Vs’Vn(l'vs vVn) AP(O)+ 1— P(o)

(A16)

Expanding the uppermost numerator in E416) overS by
the total probability theorem gives

p(T?‘)’ern'H(l'VS’V”’h):J dNDSp(T(,)\)JS,Vn,H,8(17V31Vnahas)y
(A17)
and rewriting this gives
P, v, 3.s(1Vs,Vn,h,S)
=P (h=slvo P (v) P&, 1 (s|ve D)

X pP)r (v, PO, (A18)

APPENDIX B: ANALYTICAL EXPRESSIONS FOR FALSE
DISMISSAL VERSUS FALSE ALARM CURVES FOR
CROSS-CORRELATION STATISTIC

This appendix derives the analytical ford.6) of the
false dismissal versus false alarm curves for the cross-
correlation statistic\ o¢ in the largeN limit, for both Gauss-
ian and non-Gaussian signals. A derivation for Gaussian sig-
nals can be found in Sec. IV of RdR0].

As noted in Sec. Il B, the statisticAc and a? are
equivalent in the largd&\ limit. Thus, in this limit, the false
dismissal versus false alarm curves can be found by evaluat-

ing Egs.(4.4) and (4.5 with I' replaced bya?. The relation

(3.11) between the statistias? and a2 implies the following
relation between their probability distributiormz‘f[(xh)
and p 27 (x|t):

0
P2 (X[t) = 0(X) Pz 7 (X|t) + &(X) fﬁxdyp;zw(ylt).

(B1)
Inserting this formula into Eqg4.4) and (4.5 gives
f,zdxmz\T(XIO) if a2>0,
Pea(@2)={ ~ ™ ) (B2)
. 2
1 if a;=<0,

082003-18



DETECTION METHODS FOR NON-GAUSSIAN . .. PHYSICAL REVIEW B7, 082003 (2003

—JAZdXﬁaz‘T(XH) it &2>0, A(aR)= 1122 (B5)
Peo(a2)={ N
0 if a2<0.
(B3) (af)=¢a® (B6)
In the largeN limit, the distribution pa7|7(x|t) must be
. .. S . . 4 2, 2 2 2 2
Gaussian by the central limit theorem, and therefore this dis- A(@?)= §a”(3— &) +&a (01+02)+0102_ (B7)
tribution is characterized entirely by its meé&m?) and vari- ' N
ance[A(a?)]%. From Egs.(2.), (3.3, (3.10, (3.11) and
(3.19, these are given by Substituting Gaussian distributions, with means and vari-
— ances determined by Eq&84)—(B7), into Egs.(B2) and
(ap)=0 (B4)  (B3) yields
( ~2
Eerfc< Ox \/E) if a2>0,
Pea(ab ,oq,05,N) =1 2 7102 ¥ 2 (B8)

rl_} id a2 2\/ N it &2>0
Zer (@~ ¢a?) 2[§a4(3—§)+§a2(0'§+05)+0'§0'§] “x ’

PFD(&JZC lglalo-]_lO-Z,N): < (Bg)
0 if a2<0
\
I
If we now eIiminatlei between Eqs(B8) and(B9), change hli h‘; 2
variables froma to p using Eq.(3.27), and seto;= 05, we ; ? (hk)2 (hk)z
obtain Eq.(4.6). Aa)=ex 7 o5 GG

APPENDIX C: ASYMPTOTIC BEHAVIOR OF MAXIMUM
LIKELIHOOD STATISTIC

In this appendix we derive the large¢-behavior of the _ (C5)
maximum likelihood statistic\ N> . From Eq.(3.22, we can \/0102+ oia’+ o5a?
write the statistic in the form
ME(h)y=exd NL(h)] (C1)  We denote byr;, o,, £ anda the “true” parameters gov-
. erning the distribution of the quantitié& andh’ according
with to Egs.(2.1), (3.1), (3.3), and(3.19, with untilded quantities
replaced by the corresponding tilded quantiti@hese “true
L(h)= max g(oy,02,§a,h) (C2)  parameters” were denoted oy, o, £ anda in the body of
128 the papel. We definep to be the signal-to-noise rati®.27
where with untilded quantities replaced by tilded quantities:
1 N
T2
: — ~ a
N Z k(0'1,0'2,§,a), (C3) PE g \/— (C6)
0'1(72

and the functiorg,=gy(o1,02,¢, ) is given by

For simplicity, in this appendix we restrict attention to the
caseo,=0,. Then, without loss of generality, we can take
with o1=0,=1 by rescaling our units of strain amplitude.

e%= A (a) + (1~ §AL(0) (C4
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We discuss separately the computation of the false alarfyhere the distribution of* is given by Eq.(3.19 with &
and false dismissal probabilities, as different techniques ar?eplaced byE anda replaced bye. In particular, the distri-

required to compute each. -
q P bution ofs* is independent ol. In computing the maximum
over (¢,a,04,05,) in EQ. (C2), it is useful change variables

1. False dismissal probability from a to « defined by
The false dismissal probability for the statistic2) will NE
be some function K= pN~ V= Sa (C10
- o103
Pep=Pep(Ly \N, €, p) (c7

which we expect to be independentéfto leading order in
the largeN limit. The value of the variable that character-

of the thresholdC, on £, the number of data points, the izes the signal is

Gaussianity parametgf and signal-to-noise ratip of the
signal. For applications to ground based detectors, we will ol

havep~ (a few), in order that the signal be detectabié¢, k=pN ==, (C1)
~10°, and 10 3<é<1. Therefore it would be useful to find
approximate analytic expressions for the false alarm probef, Eqgs.(C8) and (C10).

ability in the limit of large N. There are actually several e now consider fixed realizations of the infinite se-

different, largeN regimes in the three dimensional parameterquences of random variableé, n‘é and s, and 1<k<,

space N,&,p) that one might explore: and examine the limiting behavior af(h) as N—o. We
(1) The limit N—o with « and ¢ held fixed. This corre- compute this limiting behavior by substituting into the right
sponds to fixing the stochastic background signal and goingand side of Eq(C1) the relations
to a limit of long observation times. In this limit we haye C VK ok K Uk
«\/N which diverges. This is not a very realistic limit to hi=ni+N"*5% h;=n;+N""%s (C12
explore. N . . o
(2) The limit N— with 7 andZ held fixed. In this limit, ~Mting e in terms of« using Eq.(C10), and expanding in
the signal-to-noise ratio is held fixed, and correspondingl;,pOWerS OfN™" The result is an expression which can be

the amplitudex of the stochastic background signal goes towrltten in terms of the SUMap defined by
zero, from Eq/(C6). This would be the most natural limit to 1 N
explore. However, in this limit the statistical errAEf in our Qabc:N E (§k)a(n'{)b(n§)°, (C13
measurement of the Gaussianity parameter would diverge, k=1
from Eqg.(4.18, and therefore in this limit we do not expect
to be able to compute analytically the value of the paramet
¢ which achieves the maximum in EC2). The analytic
approximation methods which we discuss below do not work
in this regime.(In addition our Monte Carlo simulations
show that the maximum likelihood statistic itself does not
perform any better than the cross-correlation statistic in this
regime, as discussed in the Introductjon. where u,p.=(Qapo) are computable functions af and «,
(3) The limit we actually explore is the limN—o with’¢  and where the random variables {4, Ag1o, - . . ) CONverge
fixed andp scalingxN'4, corresponding taxN~Y8, The in distributior? asN—c to a multivariate Gaussian of zero
reason for our choosing to explore this particular limit is Mean whose variance-covariance matrix is independeNt of
simply that it is amenable to analytic computations. Frac-Thus, in particular the joint distribution of ald,p's is
tional corrections to our analytic results should scale lik¢ 1/ N-independent in limit thaN— .
or as 15, Sincep~ (a few at the threshold for detection, ~ Ve define the vector
the approximation should be good to 10—-20 % or so.
We now turn to a discussion of the computational tech-
nique. We write

e\évherea, b, andc are non-negative integers. From the central
limit theorem we can write

1
Qabc™ Mabc™ \/_NAava (C14

v=(v5020%0h=(¢,k,0%,0). (C15

We denote the value of that achieves the maximum in Eq.
- o~ (C2 by v
a=ayN"8 (C8)
g(v)=maxg(v), (C16
where a, is independent ofN. Correspondingly, from Eq. Y
(3.19 we can write

9See Chap. 8 of Ref29] for definitions of different notions of
sk= N_l/agk, (C9 convergence for sequences of random variables.
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wherev=(¢,k,02,03). These estimators satisfy a system of X=Ao11 (C2H
four equation¥’
and
J
a_g| =0. (€17 1
Uilv=y Y= %[4(A031+A013)_ 12(A o2t Ag20 — 248011+ Aggo
We solve Eq(C17) perturbatively. First assume that the es-
timators can be expanded in the form + 2004 6022 (C26)
~ * ~ Using Egs.(3.1), (3.19, (C13) and(C14) one can show that
v'=2, v'lle, (C18  the random variableX andY are independent Gaussian ran-
1=0 dom variables of zero mean and unit variance.
where for ease of notation we have definedN~8 We In deriving Egs.(C21)—(C24) we assumed that the value

define the expansion coefficientd!! analogously by an ex- ©f v which achieves the maximum in Eq:2) corresponds a
pansion of the form(C18 but without the hats. Now using '0¢a&l maximum. However, if the right hand side of EG21)
Eq. (C14) the functiong can be expanded as a power series'S negative, the maximum  will m;tead be achieved on the
in e whose coefficients are functions of(¥l, w..., and boundary of the parameter spacexat0, since the variable
Agpe: x must be non-negative. Similarly, if the right hand side of
Eqg. (C22 is less than 1, the maximum will be achieved at
. - £=1, since 1f must lie in the interva] 1,©).
g(V):;O 9w, pape, Aanclel. (C19 Substituting the result$C2])—(C24)[ (tog);ether with the
higher order corrections to those results which we have not
Substituting the expansiot€18) and (C19) into the condi-  shown into the expansion for the statistit; and taking into
tion (C17) for a local extremum gives an infinite set of equa- account the various special cases discussed in the last para-
tions which must collectively be satisfied by the coefficientsgraph, gives
il
) L= %(Y+ J6qk2)2e (Y + Jéq}z)+%(7<+eZX)2e4

PRITY - =0. (C20 _ - 3 ) )
v — K38+ ZK468+ kUe +kVed|0(k+ e®X)+0(e).

We solve these equations order by order to determine the
coefficientsv'll!, and thereby justifya posteriorithe ansatz (C27)

(C18. , .
We find that in order to compute the leading order expres!—Iere 6(x) is the step function and

sion for £, we must obtain the expansion fgrto zeroth

- 1
order ine, the expansion fok to fourth order ine, and the qg==-—-1, (C28
expansions ofr2 and o5 to sixth order ine. The leading ¢
order results are
U=A101+A110, (C29
K=K+ €eX+0(ed), (C21)
1. ~
11 vy V=2200~ 5&(A002t Aoz0 ~ 2K A p11.- (C30
==+ —7=+0(e), (C22
P Ve )

We note that the corresponding expression for the statistic
> (In AﬁL)/N [which is equivalent to the cross-correlation sta-

2
71=1+0(e?), €23 gistic by Eq.(3.13] is given by Eq.(C27) with the first term
—~ in the square brackets dropped.
o5=1+0(€?), (C249 Next we drop all the terms in the square bracket in Eq.
(C27 other than the first two terms. The reason is that these
where terms will give corrections that are smaller than the terms
retained(both in expected value and in fluctuatiorisy a
factor of
Here we are assuming that the maximum is achieved as a local
maximum in the interior of the 4 dimensional parameter space. ~
Cases when the maximum is achieved on the boundary are dis- ',}EZZL, (C3)
cussed below. \/N
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which will be small compared to unity for all cases we areThe integral over the regiofC36) can be written as
interested in. This gives for the false dismissal probability

the expression

dxdy (X=X0)?  (Y—Yo)?
Pro=P(L<L,)= J'R? ex;{ S T |
(C32
where
Xo= K €2 (C33
Yo=6qx? (C34)
ro=v2NL,. (C39

Here the regiorR in the x,y plane is the union of the two
regions

x=0
y=0
x2+y?<r? (C36)
and
y<O0
O<Xx<ry. (C37

The integral over the regiofC37) is
PES=P(—Yo)[P(fro—X)) ~P(—%o)],  (C39
where

P(x)zl—;erfc(x/\/f)=fx dtiexq—ﬁlz].
o T

e 2w
(C39

pe ™4y [ ! 0—xo)?
=27 ), . re ex E(rcos Xo)

) (C40

1 5
- z(r sinf—yg)

The integrand in Eq(C40 peaks at cosf=Xg, I Sinf=y.

In order for Py to be small, its necessary that this peak
occurs outside the domain of integration,ratr,. So we
must have

X3+y3=r3. (C4))

The criterionxy=r is, in order of magnitude, just the usual
criterion for detectability with the cross-correlation statistic.
The criterionyy=r, reduces to, in order of magnitude,

2
55\/—N

which is what we claimed earlier to be the regime where the
maximum likelihood statistic starts to work well, cf. Sec.
IV A 3 above.

Evaluating the integralC40) using the Laplace approxi-
mation gives

(C42

P(z)z;ex;{ - 1r2(>\—1)2 1+0 i”
(N =1) 27N 2°° ro/ |’
(C43
where we define the variablasand y by
(Xg,Yo) =Troh(COSY,SinYy). (C49

However, the resultC43) is not very accurate for smail,.
Alternatively we can integrate overin Eq. (C40) to obtain

/2 1 ok ro Acogy—o0
PR)— f dol —e's (1+>\2)/2[er8/2_ o\ cos(y— 0]+ 0% a(rorr)[cos(2{y~ MM-1cog y— 0)| erf 0 $y—6
0 2@ 2 \/E
roil—Acogy—46
terfl 2 { §y— 0]} , (C45)
V2
|

where Peo=P{3+ P, (C47

erf(x) = ifxdyeyz. (C406)
Jmto

The integral(C45 can be evaluated numerically. The false

dismissal probability is then given by

with P& given by Eq.(C38 and P{) given by Eq.(C45).

2. False alarm probability

The false alarm probability is some function

Pea=Pra(Ly ,N) (C49
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of the thresholdZ, value of the detection statisti€2) and Cumulative distribution function
of the number of data pointd. It does not depend on the

signal parameterp and¢ because no signal is present. We Y
would like to evaluate this quantity in the larg&limit.
We start by rewriting the statisti€C2) in the form

1 N 1 N
/jzmax{N > INA0)+ = D In[1+ED(a)]},
v k=1 N =1
(C49

where

~1. (C50

Consider first the first term in EGC49). Using the definition
(CH5 of A (a) and the definition(1.4) of o, and o, we can -2 ‘
write this term as 13 2

0'% AO’% FIG. 12. The cumulative distribution function for the leading

N
1 A
—— 3 3
N 2 InA(0)= T2 2 +0(A0y,A07), order expressioriC53) for the statistic when no signal is present,
' 2 (C51) obtained numerically. The solid line is fof=1000, and the dashed
line for N=5000.

where Aoy=01- 0y, Aop=0,— ‘72 Therefore the first pytion of N£ becomes independent o, and is approxi-
term is maximized ato;=o0,, 0,=0,. Below we shall mately given by
show that the second term in E(C49) is of orderO(e?),

= 7.8 g
where in this subsection we defire= 1/\/N. Therefore the P(NL>£)=aqe™" (C59
values ofo; ando, that achieve the maximum are for £>0, whereay~0.42 andB,~1.08. Therefore the false
o ) alarm probability is approximately given by
=041+0
=i ole)] Pea= 08Xt — BoNL, | (c56
&2=;Z[l+0(ez)]. (C52 Finally, we remark why it is plausible to expect the dis-

tribution of N£ to be independent dfl in the largeN limit.
Moreover, in analyzing the second term it suffices to takeThe numerical maximizations ovef and « in Eq. (C53
o1=071, 0= 0, Iin order to obtain the statistic to the leading show that the maximum is nearly always achievedvatl
O(€?) order. Lastly, since we have assumed that=0, ©Of £<1. In both these regimes, one can obtain some infor-
~1 and no signal is present, we ha\a_a_ ~=1+0(e). mation about theN dependence of the statistic.

Hence, in analyzing the second term, it is sufficient to take Consider first the regimg<1. In this regime we can
o= 0p=1. expand the expreSS|c(ﬁ253) as a power series i& to obtain

The statistic(C49) therefore reduces to 1 1
L=max 2 ED(@) — 5 ED(@)?+0(&) | +0(e).
@& k=1 2

L= ma>N 2 In[1+ ¢Dy(a)]+O0(e),  (C53 ' (C57)
The generalized central limit theorgimeviewed in Appendix
where from Eqs(C5) and (C50 D) implies that
1 w2 1 Ny s
Dia)= ex L (C54) N kzl D(a)=NE""(InN)1LF(a), (C58
V1i+2«a oy =
@ where for each fixedr, the distribution of the random vari-

able (@) becomes independent dFin the largeN limit.
Here wk—(n1+ n2)/\/§ 1<k=N, are independent Gauss- Here

ian random variables of zero mean and unit variance.

It is straightforward to numerically compute the distribu- 2 0<a=1/2,
tion of the statisticqC53), by generating the Gaussian vari- B (C59
ablesw, and numerically maximizing ove¢ and a. The Y1i= 1+ 12<a

result is shown in Fig. 12. We find that at larjethe distri-
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and

0
-«

1+ 2«

0<a=<1/2,

01= 12<a. (C60

The limiting distribution is a Levy distribution with param-
etersp=1 andy=vy;. Similarly we have

1

N
gl Di(@)?=NE=7272(InN)%2Gy(a), (C6I)

2

where asN— at each fixedw the distribution of the ran-
dom variableGy(«) tends to a Levy distribution with param-
etersp=1 andy=vy,, with

2 0<a<1/6,
vo={ 112 ey (C62
4o
and
0 o< a<1/6,
5= 2% Jjp<a, (C63)
1+ 2«

We now substitute the result€58 and (C61) into the
expression(C57) for the statistic, and maximize analytically
over the quadratic dependence &nFor a=1/2, the value
of & which achieves the maximum goes to zeroNas>,
consistent with the assumptigi<1, and the result {3

1 Fe)?
NL=-ma n(a)

M X—QN(a) +0(e).

(C64

In the regimea<<1, if we expand the expressig@53) to

quadratic order inv, the result is an expression which is a

linear function of 1£ at fixed a«é. Hence, when one maxi-
mizes over values of in the range 6<¢<1, the maximum
is always achieved either @=0 or £&=1. One can show
that the maximum to this order is always achievedatl,
and the resulting expression is

1
NL= Zg2+0(e), (C65H

where

oo N

(C66)

3 v

1For @< 1/2 this argument fails, which is why we must numeri-
cally verify that the distribution oNL is asymptotically indepen-
dent of N.
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has a distribution that is independent Mfin the largeN
limit.

APPENDIX D: GENERALIZED CENTRAL LIMIT
THEOREM

In this appendix we review the generalized central limit
theorem that can be found on p. 574 of R&7]. First we
define a particular distribution function called the Levy dis-
tribution. It depends on 3 real parameters, a positive constant
C, a parametey in the range &< y=<2, and constarp in the
range 0<p=<1.1?> We say a random variabl¥ has a Levy
distribution with parameter€, y andp if the characteristic
function of X is given by

Cri—-vy

Y1) ———F—[cog myl/2)

(%)= exp[ <1

+isgn{)(p—aq)sin(7y/2)];, (D1)

whereq=1—p. The corresponding probability distribution
function is obtained by taking a Fourier transform and de-
cays likex”(*™" at largex for y<2 (y=2 is the Gaussian
case.

Consider now a random variabk with probability dis-
tribution functionf(x) whose variance is infinite. Let

X
F(x)= J_ dyf(y) (D2)
be the cumulative distribution function and define
X
wo= [ ayyty. (03)
—X

Suppose that the distribution satisfies the following condi-
tions: (i) As x—o we haveu(x)~x2""L(x), where 0<y
<2, andL(x) varies slowly in the sense that(tx)/L(t)
—1 ast—oo for all x>0. (ii) We have

1-F(x)
F(—0+1-Fx) P F(=

F(—X)
X)+1—-F(x)

—q (D4)

asx—o, where O<p=<1, 0=sq=<1 andp+q=1. (iii) For
1<y=<2, we assume that the expected valaxx f(x) van-
ishes; this can be enforced by making a transformation of the
form X— X+ constant.

2The parametey is conventionally denoted by. We usey here
to avoid confusion with the variable defined in Eq.(1.7).

082003-24



DETECTION METHODS FOR NON-GAUSSIAN . .. PHYSICAL REVIEW B7, 082003 (2003

We define the sequence of random variables Nu(ay)
| ————C (D6)
1 AN
Sv=gm 2 Xi (D5)
N i=1

asN—oa, whereC is a positive constant. Then, the distribu-
tion functions of the random variabl&g converge to a Levy
distribution with parameter€, y andp asN—o.

where theX; are independent, identically distributed random
variables with distribution functiofi, and the constantay
are chosen to satisfy
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