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Detection methods for non-Gaussian gravitational wave stochastic backgrounds

Steve Drasco* and Éanna É. Flanagan†
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A gravitational wave stochastic background can be produced by a collection of independent gravitational
wave events. There are two classes of such backgrounds, one for which the ratio of the average time between
events to the average duration of an event is small~i.e., many events are on at once!, and one for which the
ratio is large. In the first case the signal is continuous, sounds something like a constanthiss, and has a
Gaussian probability distribution. In the second case, the discontinuous or intermittent signal sounds something
like popcorn popping, and is described by a non-Gaussian probability distribution. In this paper we address the
issue of finding an optimal detection method for such a non-Gaussian background. As a first step, we examine
the idealized situation in which the event durations are short compared to the detector sampling time, so that
the time structure of the events cannot be resolved, and we assume white, Gaussian noise in two collocated,
aligned detectors. For this situation we derive an appropriate version of the maximum likelihood detection
statistic. We compare the performance of this statistic to that of the standard cross-correlation statistic both
analytically and with Monte Carlo simulations. In general the maximum likelihood statistic performs better
than the cross-correlation statistic when the stochastic background is sufficiently non-Gaussian, resulting in a
gain factor in the minimum gravitational-wave energy density necessary for detection. This gain factor ranges
roughly between 1 and 3, depending on the duty cycle of the background, for realistic observing times and
signal strengths for both ground and space based detectors. The computational cost of the statistic, although
significantly greater than that of the cross-correlation statistic, is not unreasonable. Before the statistic can be
used in practice with real detector data, further work is required to generalize our analysis to accommodate
separated, misaligned detectors with realistic, colored, non-Gaussian noise.

DOI: 10.1103/PhysRevD.67.082003 PACS number~s!: 04.80.Nn, 04.30.Db, 07.05.Kf, 95.55.Ym
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I. INTRODUCTION AND SUMMARY

Along with a new generation of gravitational wave dete
tors around the world@1–4#, detection algorithms for a vari
ety of sources are nearing completion. If the signals fr
these sources are detected, physicists stand to harves
precedented quantities of observational information conc
ing the nature of gravitation and the cosmos as a whole.
fruit of this harvest will be the outputs of detection alg
rithms. In this paper we introduce an algorithm designed
nearly optimal detection of a class of gravitational wave s
chastic backgrounds. The non-Gaussian nature of this c
of backgrounds causes the algorithm presented here to d
from the well studied cross-correlation based algorith
which are nearly optimal for Gaussian backgrounds.

A. Gravitational wave stochastic backgrounds

Consider a large collection of similar gravitational wa
sources. If we cannot resolve the individual signals produ
by these sources and know only their statistical propert
the signals form a stochastic background. A wide variety
candidate sources of gravitational wave stochastic ba
grounds have been studied~for an excellent general review
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see Ref.@5#!. These include high redshift supernovae@6,7#,
the first stars or so-called population III objects@8#, rapidly
rotating young neutron stars@9,10#, early universe phase
transitions and cosmic strings@11,12#, inflation @13#, and
high redshift compact binaries@14#.

Detecting a gravitational wave stochastic background p
duced by any one of these candidate sources could pro
information on a variety of topics ranging from the evolutio
of the star formation rate@15# to the numbers and sizes o
posited extra dimensions@16#. Because of this, stochasti
backgrounds have long been thought to be among the m
interesting possible types of gravitational radiation.

B. Gaussian stochastic backgrounds

In order to develop detection methods, it is traditiona
assumed that the individual events making up a backgro
are uncorrelated and sufficiently frequent for the backgrou
to be Gaussian. That is, it is assumed that the conditions
applicability of the central limit theorem are satisfied.

Unlike electromagnetic waves, gravitational waves can
be screened from a detector. Using a single gravitatio
wave detector, there is no practical way to distinguish
tween detector noise and a stochastic background of gra
tional waves. As a consequence the sensitivity of a sin
detector to gravitational backgrounds is severely limited.
comparing the outputs of multiple detectors, sensitivity le
els can be enhanced. Michelson@17# was the first to give a
detailed description of such a detection method for a Gau
ian stochastic background of gravitational waves in the pr
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ence of Gaussian detector noise. His detection strategy
its later refinements@18–20# are often referred to as th
cross-correlation method. Recently the cross-correla
method has been modified to treat more realistic detec
which themselves have sources of non-Gaussian n
@21–23#.

We now briefly review the cross-correlation method. Co
sider two gravitational wave detectors. The output of ea
detector is a collection of dimensionless strain measu
ments. Suppose thatN such measurements are made w
each detector at regular time intervals. Denote these m
surements by aN32 matrix h with componentshi

k , where
i 51,2 labels the detector, andk51,2, . . . ,N is a time index.
To determine whether or not the datah contains some desire
signal, one usually compares the value of some detec
statistic G(h) to a threshold valueG* . That is, if G(h)
.G* one concludes that a signal is present and otherw
one concludes that no signal is present. A detection stat
is said to be optimal if it yields the smallest probability
mistakenly concluding a signal is present~false alarm prob-
ability! after choosing a threshold which fixes the probabil
for mistakenly concluding a signal is absent~false dismissal
probability!.

Assume that the two detectors are collocated and align
and that each detector has white Gaussian noise with van
ing mean with no correlations between the two detecto
Then the standard cross-correlation detection statisticLCC
for a Gaussian signal is

LCC~h!5
â2

s̄1s̄2

, ~1.1!

where

â25ā2u~ā2!, ~1.2!

ā25
1

N (
k51

N

h1
kh2

k , ~1.3!

s̄ i
25

1

N (
k51

N

~hi
k!2, ~1.4!

for i 51,2, andu(x) is the Heaviside step function define
by

u~x!5H 1 if x>0,

0 if x,0.
~1.5!

This statistic is nearly optimal and can be derived fro
a maximum likelihood framework~see Sec. III B!. The sub-
script CC inLCC denotes ‘‘cross correlation.’’ The general
zation of this statistic to allow for colored noise an
non-collocated, non-aligned detectors is discussed in R
@17–20#.
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C. Non-Gaussian stochastic backgrounds

A particular class of events will produce a Gaussian ba
ground if, on average, at any given moment, many individ
events are arriving at the detector. However, if the ratio
average time between events to the average duration
events is large, then there are long stretches of ‘‘silence’
time during which no events arrive at the detector. The
sulting stochastic background is non-Gaussian as the co
tions for the applicability of the central limit theorem are n
satisfied. Recent work has suggested that some cand
gravitational wave stochastic backgrounds, of both cosm
logical and astrophysical origin, may be non-Gauss
@7,8,11#. However, predictions concerning the properties
most gravitational wave background sources rely heavily
theoretical arguments which extrapolate well beyond obs
vational support. Such extrapolations are always in so
sense speculative. It is conceivable that backgrounds
dicted to be Gaussian may in fact turn out to be no
Gaussian, or vice versa.

In Sec. III C below, we apply a maximum likelihoo
framework to derive a detection statistic for a particu
model of non-Gaussian stochastic background, which
now describe. Lethi

k be the outputs of two collocated aligne
gravitational wave detectors with white, zero-mean, Gau
ian noise with no correlations between the two detectors.
detector outputshi

k consist of noiseni
k together with a com-

mon signalsk:

h1
k5n1

k1sk ~1.6!

h2
k5n2

k1sk.

We wish to detect a non-Gaussian signalsk composed of
long stretches of silence which separate short bursts wh
amplitudes are Gaussianly distributed, and whose durat
are smaller than the detector resolution time~see Fig. 4!. We
therefore assume that each signal samplesk is statistically
independent with probability distribution@cf. Eq. ~3.19! be-
low#

p~s!5j
1

A2pa
expF2

s2

2a2G1~12j!d~s!. ~1.7!

The parameterj is what we call theGaussianity parameter
of the stochastic background; it is the probability that, at a
randomly chosen time, a burst is present in the detector. T
j takes values in the interval 0<j<1, and ifj51 then the
background is Gaussian. The parameterj can also be
thought of as the duty cycle of the background. The para
etera in Eq. ~1.7! is the rms amplitude of the bursts.

Our nearly-optimal detection statisticLML
NG for the signal

model ~1.7! is given by@cf. Eq. ~3.22! below#
3-2



LML
NG~h!5 max

0,j<1

max
a.0

max
s1>0

max
s2>0

)
k51

N s̄1s̄2j

As1
2s2

21s1
2a21s2

2a2
expF S h1

k

s1
2

1
h2

k

s2
2D 2

1 1 1
2

~h1
k!2

2s1
2

2
~h2

k!2

2s2
2

11G
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5 2S
s1

2
1

s2
2

1
a2D

1
s̄1s̄2

s1s2
~12j!expF2

~h1
k!2

2s1
2

2
~h2

k!2

2s2
2

11G 6 . ~1.8!
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Here the quantitiess̄1 and s̄2 are defined by Eq.~1.4!. The
values ofj, a2, s1

2 ands2
2 which achieve the maximum in

Eq. ~1.8! are, respectively, estimators of the signal’s Gaus
anity parameter, the variance of the signal events, and
variances of the noise in the two detectors. If we calcul
the quantity~1.8! at j51, instead of maximizing overj, the
result is a statistic which is equivalent to the standard cro
correlation statisticLCC.

The subscript ML onLML
NG stands for ‘‘maximum likeli-

hood,’’ while the superscript NG stands for ‘‘non-Gaussi
statistic.’’ The superscript NG doesnot necessarily mean tha
one is considering a non-Gaussian signal; both of the st
tics LCC andLML

NG can be applied to data containing either
Gaussian signal or a non-Gaussian signal.

If the burst-amplitude parametera is sufficiently large
and the bursts are well separated in time, then the individ
bursts can be seen in the detector output. In this case
could use, for example, the simple burst statistic1

LB[ max
1<k<N

uh1
ku ~1.9!

on the data from detector 1 to detect the signal. The b
statistic~1.9! and the cross-correlation statisticLCC are used
as references for comparison for the maximum likeliho
statistic below.

D. Main results

There are two main results in this paper. The first resu
the detection statisticLML

NG given by Eq.~1.8!, which is de-
rived in Sec. III C. This statistic is nearly optimal for th

1In reality the statistic~1.9! would be especially susceptible t
non-Gaussian noise bursts in the detector and so would not be
in practice; instead one would need search for events whereuh1

ku
anduh2

ku are simultaneously large. In this paper we restrict attent
for simplicity to Gaussian detector noise; it will be important f
future more general analyses to allow for~uncorrelated! non-
Gaussian noise components in the two detectors.
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detection of a class of non-Gaussian gravitational wave
chastic backgrounds incident on a pair of idealized detect

The second main result, summarized in Figs. 1 and 2,
comparison of the performances of the maximum likeliho

ed

n

FIG. 1. This plot shows the minimum gravitational-wave ener
densityVdetectablenecessary for detection, for several different d
tection statistics, as a function of the background’s Gaussianity
rameterj. The Gaussianity parameterj is the probability that, at
any randomly chosen time, the waves from an event are inciden
the detectors, and thus takes values in the interval 0<j<1. For a
Gaussian backgroundj51. The circles are the results of our Mon
Carlo simulations for the maximum likelihood statisticLML

NG , and
the solid curve shows the approximate theoretical prediction~C46!
and~C55! for this statistic~expected to be accurate only to within
few tens of percent!. The crosses are the Monte Carlo results for t
cross-correlation statisticLCC, and the dashed curve shows th
theoretical prediction~4.21! for this statistic. Finally the squares ar
the Monte Carlo results for the burst statistic~1.9!, and the dotted
curve shows the corresponding theoretical prediction given by E
~4.9! and ~4.10!. For each statistic, the vertical error bars on t
Monte Carlo simulation results give the fluctuations computed fr
4 different runs, each with 2000 trials. The number of data point
N5104, and the false alarm and false dismissal probabilities
both 0.1. A detailed description of the simulations and the analyt
predictions can be found in Sec. IV.
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S. DRASCO AND É. É. FLANAGAN PHYSICAL REVIEW D 67, 082003 ~2003!
statistic LML
NG , the cross-correlation statisticLCC, and the

burst statisticLB . That comparison is quantified in terms
the minimum gravitational-wave energy densityVdetectable
necessary for detection. The values of this quantity for
three different statisticsLML

NG , LCC andLB we will denote by
Vdetectable

ML , Vdetectable
CC , andVdetectable

B , respectively. Results fo
these three quantities obtained from Monte Carlo simulati
are shown in Fig. 1, which givesVdetectableas a function ofj
for N5104 data points. The Monte Carlo simulations a
described in Sec. IV B below. The figure shows that in
limit j→1 of Gaussian signals, the statisticsLML

NG and LCC

perform approximately equivalently~the cross-correlation
statistic is slightly better!. As the Gaussianity parameterj is
decreased, the performance ofLML

NG improves, until atj
;1022.5 it is better than that ofLCC by about a factor of 3 in
energy density. Finally, in the limitj→0, the individual
bursts become visible and the burst statisticLB becomes the
best statistic.

Figure 1 also shows theoretical curves for the three qu
tities Vdetectable

ML , Vdetectable
CC , andVdetectable

B . These curves are
derived and discussed in Sec. IV below. For the burst
cross-correlation statistics, the theoretical curves should h
a fractional accuracy;1/AN. For the maximum likelihood
statistic, the theoretical prediction is expected to be accu
to a few tens of percent. These expected accuracies are
firmed by the Monte Carlo simulations, as seen in Fig. 1

The valueN5104 of the number of data points is rough
appropriate for a space based detector like LISA, for wh
the duration of a measurement might be;1 year and the

FIG. 2. The minimum gravitational-wave energy dens
Vdetectablenecessary for detection as a function of the backgroun
Gaussianity parameterj for N5109 data points, which is a realistic
number of data points for ground based detectors. The false a
and false dismissal probabilities are both 0.01. The solid line is
theoretical prediction~C46! and~C55! for the maximum likelihood
statistic, which is expected to be accurate to a few tens of perc
The dashed line is the theoretical prediction~4.6! for the cross
correlation statistic, and the dotted line is the theoretical predic
~4.9!, ~4.10! for the burst statistic; see caption to Fig. 1. This p
indicates a maximum gain factor of;2 in energy density for duty
cycles in a narrow band nearj;1024.
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effective bandwidth;1023 Hz. However, for year-long ob-
servations with ground based detectors, the effective ba
width will be ;100 Hz and consequently the appropria
value ofN is ;109. We were unable to perform Monte Carl
simulations for this large value ofN due to limitations in
available computing power. However, we show in Fig. 2 t
theoretical curves for the three different statistics as fu
tions of j for N5109. In this case, the maximum likelihoo
statistic starts to outperform the cross-correlation statistic
j;1023, and the maximum gain factor in energy density
of order;2.

We next discuss the computational cost of the maxim
likelihood statisticLML

NG . As is well known, the computa
tional cost of trying to detect a stochastic background us
the cross-correlation statisticLCC is negligible when com-
pared to, say, matched-filter-based inspiral wavefo
searches. However, because of the non-trivial maximiza
in Eq. ~1.8!, the maximum likelihood statisticLML

NG is com-
putationally intensive. In fact, every evaluation of the fun
tion to be maximized over the four parametersj, a, s1, and
s2 requires computing a length-N sum or product, whereN
is the number of data points, and takes longer than the en
cross-correlation detection method. Depending on
method of calculation, the computational cost of comput
LML

NG is larger than that of computingLCC by a factor any-
where from 102 to 104.

To summarize, under the idealized assumptions of
paper, if one searches for a stochastic background using
standard cross-correlation statistic, then one might not de
a signal that would have been detectable using our maxim
likelihood statistic. This conclusion probably generalizes
realistic detector noise models and detector orientations.

E. Outline of this paper

In Sec. II we introduce notation, review the general theo
of signal detection and parameter measurement, and der
general form of the maximum likelihood detection statist
Then, in Sec. III, we derive the maximum likelihood stati
tics for both a Gaussian background~Sec. III B! and for the
model ~1.7! of a non-Gaussian background~Sec. III C!, as-
suming two idealized detectors. In Sec. IV we discuss a
lytical calculations and Monte Carlo simulations compari
the performance of the maximum likelihood and cros
correlation detection statistics. Also in Sec. IV we show h
the signal parametersj anda can be estimated, with reason
able accuracy, for a strong non-Gaussian background.
conclude in Sec. V with a discussion of the results.

II. GENERAL THEORY OF DETECTION STATISTICS AND
PARAMETER ESTIMATION

In this section we review various formal aspects of t
theory of signal detection and measurement. We deriv
form of the maximum likelihood detection statistic that
more general than has been considered before in the co
of gravitational wave data analysis@20,24–27#. The material
in this section can be found in a variety of texts@28#; we
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DETECTION METHODS FOR NON-GAUSSIAN . . . PHYSICAL REVIEW D67, 082003 ~2003!
include this section for completeness and to introduce n
tion.

A. Notational conventions

We use calligraphic lettersA,B,C, . . . to denote random
variables. As described in Sec. I B, givenD detectors we can
assemble anN3D detector output matrixH with compo-
nents H i

k where k51,2, . . . ,N is a time index, andi
51,2, . . . ,D labels the detector. We assume that the dete
outputs are made up of noiseN and signalS with compo-
nentsN i

k andS i
k respectively, such that

H5N1S. ~2.1!

Specific realizations of random variables will be denoted
lower case Roman symbols. For example,h5n1s is a spe-
cific realization of Eq.~2.1!, where the components ofh are
hi

k .
Probability densities for random variables will always

denoted by a lowercasep and will carry a subscript to indi-
cate which random variable is being described. For exam
pN(n)dNDn is the probability thatn,N,n1dn, where
dNDn is the product

dNDn5)
k51

N

)
i 51

D

dni
k . ~2.2!

We write the normalization requirement forpN(n) as

15E dNDnpN~n!. ~2.3!

Unless otherwise specified, integrals are overRND whereR
is the set of real numbers.

We assume a detector noise model withQn parameters.
Let Vn be a vector of lengthQn whose components are th
parameters characterizing the noise in the detectors. We
note byQn the space of all possible values ofVn . Here the
subscriptn is not an index; it is merely short for ‘‘noise.’’ We
denote joint probabilities in the usual way. For examp
pN,Vn

(n,vn)dNDndQnvn is the probability thatn,N,n

1dn andvn,Vn,vn1dvn , wheredQnvn is defined by

dQnvn5)
l 51

Qn

dvn
l , ~2.4!

and dvn
l is the l th component ofdvn . We also use vertica

bars to denote conditional probabilities. For example

pNuVn
~nuvn!dNDn5

pN,Vn
~n,vn!dQnvn

pVn
~vn!dQnvn

dNDn ~2.5!

is the probability thatn,N,n1dn given thatvn,Vn,vn
1dvn .

We will often use the so-called total probability theore
@29# to write probability densities for a specific random va
able as an integral over the functional dependencies of
random variable. An example is
08200
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or
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pN~n!5E
Qn

dQnvnpNuVn
~nuvn!pVn

~vn!. ~2.6!

Expanding probability densities in this way allows us to tre
parameters, such as the noise parametersVn in Eq. ~2.6!, as
unknowns. In fact, such a treatment of the noise parame
is the crucial difference between the derivations of this wo
and those in previous studies of gravitational wave d
analysis techniques@20,24–27#.

We assume that the signal model containsQs parameters,
which we will treat as random variables like the noise p
rameters. We will denote byVs the random vector of length
Qs containing the signal parameters, and byQs the space of
all possible values ofVs .

We define the notions of ‘‘signal present’’ and ‘‘signa
absent’’ in terms of a partition of the spaceQs of signal
parameters into a disjoint union

Qs5Qs0øQs1 , ~2.7!

whereQs0 corresponds to the signal being absent, andQs1
the signal being present. We define the random variableT,
taking valuesT50 or T51, according to

T5H 1 if VsPQs1 ,

0 if VsPQs0 .
~2.8!

ThusT51 corresponds to a signal being present, andT50 to
no signal being present. We define

pSuVs ,T ~suvs,0!5H 0 if vsPQs1

dND~s! if vsPQs0
, ~2.9!

wheredND(s) is theN3D dimensional Dirac delta function
We denote bypT,H(t,h)dNDh the probability thatT5t and
that h,H,h1dh, wheret50 or 1. Similarly

pHuT ~hut !dNDh5
pH,T ~h,t !

PT ~ t !
dNDh ~2.10!

is the probability thath,H,h1dh given thatT5t.
We denote probabilities~as opposed to probability dens

ties! with an uppercaseP. For examplePT(1) is the prob-
ability that a signal is present, andPT(0) is the probability
that a signal is absent.

Before examining the detector outputs, we may ha
some idea, say from previous experiments, of the probab
that a signal will be present. We denote this prior probabi
by P(0). We denote byP(1) the posterior probability that the
signal is present after examiningH in the context of all prior
experiments etc. All posterior quantities have an implicit d
pendence on the detector outputs. To simplify the notat
we will not explicitly show this dependence. For examp
we write P(1) rather than the more cumbersomeP(1)(H) for
the posterior probability that a signal is present.

There are prior and posterior versions of all probabil
densities. When necessary we will append superscripts o~0!
and ~1! to distinguish priors and posteriors respectively. F
examplepVn

(1)(vn)5pVnuH(vnuh) is the posterior probability
3-5
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TABLE I. A summary of conventions introduced in Sec. II A.

Convention Example

Random variables are denoted by upper case calligraphic
letters

The detector output matrix is denoted byH

Specific realizations of random variables are denoted by
lower case Roman letters~see next convention!

A specific observation run may result in a specific detec
output matrixh or sayx. These results would be denote
H5h andH5x respectively

A lower casep denotes a probability density function
~PDF! Its subscript determines the quantities with which
it is associated

The PDF for the detector outputH as a function ofh, or say
x, is denoted bypH(h) andpH(x) respectively

A comma in a PDF subscript and argument indicates a
joint PDF

The joint PDF forN and Vn as a function ofn and vn

respectively is denoted bypN,Vn
(n,vn)

A vertical bar in a PDF subscript and argument indicates
a conditional PDF

The conditional PDF forN andVn as a function ofn andvn

respectively is denoted bypNuVn
(nuvn)

An upper caseP denotes a probability The probability thatT51 is denoted byPT(1)
Prior and posterior quantities are denoted by superscripts
of ~0! and ~1! respectively

The prior probability that a signal is present is denoted
P(0), while the posterior probability that a signal is prese
after an observation H5h, is denoted by P(1)

5PT uH(1uh)
e

tro
e

y

t
is

is
nd

t

ike

h a

gnal

-

r

density forVn . The posterior distribution for the noise can b
expanded in terms ofpVn

(1)(vn) as

pN
(1)~n!5E

Qn

dQnvnpNuVn
~nuvn!pVn

(1)~vn!. ~2.11!

The conventions and symbols which have been in
duced above are summarized in Tables I and II respectiv

B. Detection statistics

To detect a signal one uses a detection statistic, saG
5G(H), that is some function of the detector outputsH. A
signal is said to have been detected whenG exceeds some
threshold valueG* .

TABLE II. A summary of symbols introduced in Sec. II A.

Symbol Meaning

H,h detector output matrix
N,n noise contribution to detector output matrix
S,s signal contribution to detector output matrix
N number of strain samples taken from one detecto
D number of detectors
Qn number of parameters in the model noise PDF
Qs number of parameters in the model signal PDF
Vn ,vn the parameters of the model noise PDF
Vs ,vs the parameters of the model signal PDF
Qn the space of all possible values ofVn

Qs the space of all possible values ofVs

Qs0 the subspace ofQs for which a signal is absent
Qs1 the subspace ofQs for which a signal is present
T,t 1 if a signal is present (VsPQs1), otherwise 0
P(0) prior probability that a signal is present
P(1) posterior probability that a signal is present
08200
-
ly.

Denote byPFD(G* ) the probability of false dismissal, tha
is, the probability that we fail to detect a signal which
actually present. Similarly, letPFA(G* ) be the probability
that we claim to have detected a signal which in fact
absent—the probability of false alarm. For given signal a
noise models and for a given statisticG, the false alarm and
false dismissal probabilities generate a curve in thePFA-PFD
plane parametrized by the thresholdG* . Such curves depend
on the number of detectorsD, the number of data pointsN,
the signal parametersVs , and the noise parametersVn .

Suppose that the statisticG is bounded in the sense tha
there exist numbersGmin and Gmax such thatGmin,G,Gmax
for all H. Then it is clear thatPFD(Gmin)50 and that
PFA(Gmin)51. As the thresholdG* increases towardGmax,
PFD(G* ) will increase whilePFA(G* ) decreases, until fi-
nally at G* 5Gmax, PFD51, and PFA50. Thus, false
dismissal-false alarm curves generally look something l
those sketched in Fig. 3.

Note that if one uses a different statisticf (G), wheref is
any function, then the shape of thePFA-PFD curve does not
change as long asf is monotonic in the sense that

G.G* ⇒ f ~G!. f ~G* !. ~2.12!

Only the parametrization of the curve changes under suc
transformation. Statistics related by transformationsf satisfy-
ing the monotonicity property~2.12! have identical false dis-
missal versus false alarm curves.

In 1933 Neyman and Pearson considered a simple si
detection scenario where the setsQn , Qs1, and Qs0 each
contain a single element@30#. They showed that for this sce
nario the detection statistic which minimizesPFD for any
PFA is the so-calledlikelihood ratio L, defined by

L5
pHuT~hu1!

pHuT~hu0!
. ~2.13!
3-6
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One notion of optimality for detection statistics is that t
statistic should minimize the false dismissal probability a
fixed value of the false alarm probability. For the simp
scenario above, this criteria, known as the Neyman-Pea
criteria, uniquely determines the likelihood ratio as the op
mal statistic@31#. However in general, when any ofQn ,
Qs1, or Qs0 contains more than one element, the statis

FIG. 3. False dismissal versus false alarm curves for typ
detection statistics.
a

on
-

c

selected by this criteria is a function of the unknown para
eters Vs and Vn . Thus, as is well known, the Neyman
Pearson criteria does not single out a unique statistic in s
cases.

In this paper we will obtain our detection statistics fro
Bayesian considerations, but we will quantify their effectiv
ness using the Neyman and Pearson criteria of compa
false dismissal probabilities at fixed false alarm probabiliti

C. Likelihood ratio and likelihood function

From a Bayesian point of view, a natural criterion f
deciding that a signal is present is for the posterior proba
ity P(1) to exceed some threshold@32#. The posterior prob-
ability P(1) is related to the prior probabilityP(0) and to the
likelihood ratioL defined by Eq.~2.13! by

P(1)

12P(1)
5L

P(0)

12P(0)
. ~2.14!

See Appendix A for a derivation of Eq.~2.14! in the most
general context where the setsQn , Qs1, and Qs0 are all
non-trivial. It follows from Eq.~2.14! that P(1) is a mono-
tonic function ofL, so thresholding onP(1) is equivalent to
thresholding onL. This makesL, or approximate versions
of it, the natural choice for a detection statistic.

We derive in Appendix A the following general formul
for the likelihood ratio as a function of the dataH5h:

l

s

laims:

r of
d ratio

gral over
L5

E
Qs1

dQsvs E dNDs E
Qn

dQnvnpNuVn
~h2suvn!pVn

~vn!pSuVs ,T~suvs,1!pVsuT~vsu1!

E
Qn

dQnvn8 pNuVn
~huvn8!pVn

~vn8!

. ~2.15!

The various probability distributions that appear in Eq.~2.15! are~i! the prior distributionpVsuT (vsu1) for the signal parameter

vs ; ~ii ! the distributionpSuVs ,T (suvs,1) for the signals given the signal parametersvs ; ~iii ! the prior distributionpVn
(vn) for

the noise parametersvn ; and ~iv! the distributionpNuVn
(huvn) for the noisen given the noise parametersvn .

We can interpret Eq.~2.15! as follows. In the simple signal detection scenario, we choose between a pair of simple c
~i! Vs5vs0 or ~ii ! Vs5vs1. In general we choose between a pair of complicated, or composite, claims:~i! VsPQs0 or ~ii ! Vs
PQs1, where bothQs0 andQs1 contain many elements. Equation~2.15! says that the best way to chose between a pai
complicated claims is to first break the complicated pair of claims into pairs of simple claims, then compute the likelihoo
for each pair of simple claims, and sum the results of each choice. That is, the likelihood ratio can be written as an inte
the parameters of the composite claims

L5E
Qs1

dQsvs E
Qn

dQnvn L~vs ,vn!, ~2.16!

where the integrandL(vs ,vn), which we refer to as thelikelihood function, can be read off from Eq.~2.15!:

L~vs ,vn!5

E dNDspNuVn
~h2suvn!pSuVs ,T ~suvs,1!pVn

~vn!pVsuT ~vs,1!

E
Qn

dQnvn8 pNuVn
~huvn8!pVn

~vn8!

. ~2.17!

082003-7
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S. DRASCO AND É. É. FLANAGAN PHYSICAL REVIEW D 67, 082003 ~2003!
The likelihood function2 L(vs ,vn) can be used to com
pute the posterior probability densitypVs ,VnuT

(1) (vs ,vnu1) for

the signal and noise parameters given that a signal is pre
via the formula

P(1)

12P(1)
pVs ,VnuT

(1) ~vs ,vnu1!5L~vs ,vn!
P(0)

12P(0)
. ~2.18!

A derivation of Eq.~2.18! can be found in Appendix A.

D. Maximum likelihood detection statistics and parameter
estimators

In many applications, it is impractical to compute the d
tection statistic~2.15! because of the multi-dimensional inte
grals involved@33#. However, approximate versions of th
statistic are often easier to compute and useful. If a signa
present with sufficiently large amplitude, then the integra
in the numerator of Eq.~2.15! will be sharply peaked. The
integrand in the denominator of Eq.~2.15! will also be
sharply peaked when there is sufficient data that the nois
well characterized. Under these circumstances, the integ
can be written as the values of the corresponding integra
at the peaks multiplied by ‘‘width factors,’’ where the widt
factors depend only weakly on the datah and can be ne-
glected without affecting much the performance of the s
tistic. ~The width factors from the integrals over the noi
parameters will tend to cancel between the numerator
denominator.! Also, frequently the prior distributions forVs
andVn are slowly varying, and neglecting those distributio
has a negligible effect on the performance of the statis
Under these conditions the maximum likelihood detect
statisticLML defined by

LML5

max
vsPQs1

max
vnPQn

E dNDspNuVn
~h2suvn!pSuVs ,T ~suvs,1!

max
v8PQn

pNuVn
~huvn8!

~2.19!

is a natural approximate version ofL.3 The subscript ML
denotes that Eq.~2.19! is the maximum likelihood approxi

2There are two different conventions for the definition of the lik
lihood function. Some authors include the probability distributio
for Vs andVn in the definition ofL(vs ,vn) as we have in Eq.~2.17!,
while others leave these out ofL(vs ,vn) and would show these
distributions explicitly in Eq.~2.16!.

3In the event that the priors forVs andVn restrict these parameter
to regionsQs18 ,Qs1 and Qn8,Qn , the bounds of the maximiza
tions in Eq. ~2.19! should be changed toQs1→Qs18 and Qn

→Qn8 .
08200
nt,
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mate version ofL. See Ref.@28# for further discussion of
LML as an approximate version ofL.4

A particular special case of the detection statistic~2.19!,
which is widely used, is the following. Assume that the no
parameters have some known valuesVn5vn . Then the noise
priors and theQn integrals in Eq.~2.15! are trivial, and one
obtains the detection statistic

L̃ML5

max
vsPQs1

E dNDspNuVn
~h2suvn!pSuVs ,T ~suvs,1!

pNuVn
~huvn!

.

~2.20!

See Ref.@26# for an exploration of the statistic~2.20! in the
context of stochastic backgrounds. We will show below th
for a Gaussian stochastic background,LML reduces to the
standard cross-correlation statistic while the more special
statistic L̃ML does not. Thus for stochastic background
treating the noise parameters as unknowns is crucial@22#.

When the noise and signal parametersVn andVs can take
on many values, one naturally would like to know whic
values are realized. Equation~2.18! suggests using the value
v̂n and v̂s defined by

L~ v̂s ,v̂n!5 max
vsPQs1

max
vnPQn

L~vs ,vn!. ~2.21!

The estimatorsv̂n and v̂s are known as maximum likelihood
estimators. Note thatvs5 v̂s and vn5 v̂n also maximize the
numerator in Eq.~2.19!. For the remainder of this paper w
will use LML , defined by Eq.~2.19!, as our detection statis
tic, and v̂s and v̂n , defined by Eq.~2.21!, as parameter esti
mators.

III. APPLICATION TO STOCHASTIC BACKGROUND
SEARCHES

In this section we derive the maximum likelihood dete
tion statistic~2.19! for a simplified model of the detection
problem for stochastic gravitational waves, and for a spec
simple model of a non-Gaussian stochastic background.

A. Assumptions

We assume two detectors with outputsH i
k , where i

51,2 labels the detector andk51,2, . . . ,N is a time index.
We assume that the noise in detector one is uncorrelated
the noise in detector two. We will require the noise in bo
detectors to have vanishing mean and to be both Gaus
and white, so that

4Note thatLML is an approximate version ofL only in the sense
that the false dismissal versus false alarm curves of the two st
tics will be close to one another. The numerical values ofLML and
L will in general differ significantly, due to the width factors an
priors. Therefore the statisticLML cannot be used in Eq.~2.14! to
compute Bayesian thresholds for detection given a desired valu
P(1).
3-8
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pNuVn
@nu~s1 ,s2!#5)

k51

N
1

2ps1s2
expF2

~n1
k!2

2s1
2

2
~n2

k!2

2s2
2 G .

~3.1!

The parameterss1 ands2 in Eq. ~3.1! are the square roots o
the variances of the noise in the two detectors. For
model vn5(s1 ,s2) and Qn5$(s1 ,s2) u s1>0 ands2
>0%.

We assume that the detectors are collocated and alig
so that the same signal is present in both detectors

S 1
k5S 2

k5S k. ~3.2!

Lastly we assume that the individual signal samples are
correlated and identically distributed, i.e., the signal is wh
so that

pS~s!5)
k51

N

pS k~sk!. ~3.3!

Our assumptions~3.1!–~3.3! are unrealistic for both ground
based and space-based detectors: we expect the noise
colored with significant non-Gaussian components, and
general detectors will not be collocated and aligned. O
si

-

08200
is

d,

n-
,

be
in
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analysis is therefore just a first step, and will need to
generalized. However, we expect that our cent
conclusion—the existence of statistics which outperform
standard cross-correlation statistic for non-Gauss
signals—is robust, and will not be altered when these co
plications are taken into account.

We now derive a general formula for the maximum lik
lihood statistic~2.19!, which we apply in both the Gaussia
and non-Gaussian cases in the following two subsectio
The denominator in Eq.~2.19! can be written, from Eq.~3.1!,
as

max
s1>0

max
s2>0

H ~2ps1s2!2NexpF2
N

2 S s̄1
2

s1
2

1
s̄2

2

s2
2D G J ,

~3.4!

wheres̄1
2 and s̄2

2 are defined by

s̄ i
25

1

N (
k51

N

~hi
k!2 ~3.5!

for i 51,2. It is easily shown that the maximum in Eq.~3.4!
is achieved ats i5s̄ i . From Eq.~2.19! this yields
LML5

max
vsPQs1

max
vnPQn

E dNDspNuVn
~h2suvn!pSuVs ,T ~suvs,1!

~2ps̄1s̄2!2Nexp~2N!
. ~3.6!

Combining this with Eq.~3.3! yields the following final general expression for the maximum likelihood statistic:

LML5 max
vsPQs1

max
s1>0

max
s2>0

)
k51

N
s̄1s̄2

s1s2
E

2`

`

dskpS kuVs ,T ~skuvs,1!expF2
~h1

k2sk!2

2s1
2

2
~h2

k2sk!2

2s2
2

11G . ~3.7!
B. Gaussian signal

We now consider the case where the signal is Gaus
and has a vanishing mean. We denote bya2 the variance of
the signal, so the prior forS is given by

pS kuVs ,T ~skua,1!5
1

A2pa
expF2

~sk!2

2a2 G . ~3.8!

For this modelvs5(a) has only one component, andQs1

5$a u a.0%.
Substituting the signal probability distribution~3.8! into

the general expression~3.7! for LML yields a Gaussian inte
gral which is straightforward to evaluate. The result is
an
LML

G 5max
a.0

max
s1>0

max
s2>05 s̄1s̄2

As1
2s2

21s1
2a21s2

2a2

3expF s̄1
2

s1
4

1
s̄2

2

s2
4

1
2ā2

s1
2s2

2

2S 1

s1
2

1
1

s2
2

1
1

a2D 2
s̄1

2

2s1
2

2
s̄2

2

2s2
2

11G 6
N

,

~3.9!

where
3-9



ia

Eq

ls

q.
d

tis
nr

o-
o

-

to-
e of

e

p-
be
fre-
gnal

to-

ing
ndi-
, we
than
e

ts is

re
’’
ck-

s
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ā25
1

N (
k51

N

h1
kh2

k , ~3.10!

and we have appended a superscript G onLML
G to indicate

the maximum likelihood detection statistic for a Gauss
signal.

One can show that the maximum in Eq.~3.9! is achieved
at a5â, s15ŝ1, ands25ŝ2, where

â25ā2 u~ā2!, ~3.11!

ŝ i
25~ s̄ i

22â2!u~s̄ i
22â2!, ~3.12!

for i 51,2, ands̄1 ands̄2 are given by Eq.~3.5!. Hereu(x)
is the step function~1.5!. The quantities~3.11! and~3.12! are
the maximum likelihood estimators for the variancea2 of
the signal and the variancess1

2 and s2
2 of the noise in the

two detectors. The step functions in Eqs.~3.11! and ~3.12!
arise as a result of the bounds of the maximization in
~3.7!.

The corresponding detection statistic is, from Eq.~3.9!,5

LML
G 5F12

â4

s̄1
2s̄2

2G2N/2

. ~3.13!

The cross-correlation statisticLCC can be obtained from
LML

G via a monotonic transformation which preserves fa
dismissal versus false alarm curves@cf. Eq. ~2.12! above#:

LCC5A12~LML
G !22/N5

â2

s̄1s̄2

. ~3.14!

Note that if we had assumed the noise parametersvn
5(s1 ,s2) were known, and derived a statistic from E
~2.20! rather than Eq.~2.19!, we would have found instea
the detection statisticL̃ML

G 5L̄ML
G u(L̄ML

G ), where

L̄ML
G 5ā21

1

2 Fs2
2

s1
2 ~ s̄1

22s1
2!1

s1
2

s2
2 ~ s̄2

22s2
2!G , ~3.15!

which is different from the standard cross-correlation sta
tic. This non-standard result is obtained because of the u
alistic assumption that the noise parametersvn5(s1 ,s2) are
known. Different derivations of the result~3.15! can be
found in Refs.@22,26#.

It is often useful to characterize the ‘‘strength’’ of a st
chastic background in terms of the signal-to-noise ratio
the cross-correlation statistic~3.14!, which we now define.
First note that for largeN, the fractional fluctuations inâ2

5To simplify the formula forLML
G we assume thats̄ i

22ā2.0.

This will be true for any realistic value ofN sinces̄ i
22ā25s i ,true

2

1O(1/AN), wheres i ,true is the true value ofs i and the second
term describes the statistical fluctuations.
08200
n
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will be much larger than those ins̄1s̄2.6 For the purpose of
defining the signal-to-noise ratio, we assume thatN is large
enough thats̄1 and s̄2 in Eq. ~3.14! can be taken to be
independent ofh, so thatLCC and â2 are equivalent detec
tion statistics. We also useā2 instead ofâ2 in the computa-
tions that follow, as is conventional when defining signal-
noise ratios. If a signal is present, then the expected valu
ā2 is, from Eqs.~2.1!, ~3.1!–~3.3!, ~3.8! and ~3.10!,

^ā2&5a2. ~3.16!

If no signal is present, so thata250, then the fluctuations in
ā2 are given by

D~ā2!5
s1s2

AN
. ~3.17!

The signal-to-noise ratior is defined to be the ratio of thes
two quantities:

r5
a2AN

s1s2
. ~3.18!

C. Non-Gaussian signal

As mentioned in the Introduction, the traditional assum
tion that a gravitational wave stochastic background will
Gaussian requires the individual events to be sufficiently
quent and uncorrelated. Our model for a non-Gaussian si
assumes instead that the events are infrequent.

Consider a collection of similar events generating a s
chastic backgroundS. Let j be the probability that, at any
randomly chosen time, the waves from an event are arriv
at the detectors. We assume that the time structure of i
vidual events cannot be resolved by the detectors. That is
assume that the events occur over time scales smaller
the detectors’ resolution time, as illustrated in Fig. 4. W
assume that the distribution of the amplitudes of the even
Gaussian with variancea2. The probability distribution for
the signal given the signal parameters (j,a) is therefore
given by

pS kuVs ,T@sku~j,a!,1#5
j

A2pa
expF2

~sk!2

2a2 G1~12j!d~sk!,

~3.19!

together with Eq.~3.3!. Thus the signal model parameters a
vs5(j,a), which give respectively the ‘‘event probability
and ‘‘event variance’’ characterizing the stochastic ba
ground. The parameter spaceQs for this model is

Qs5$~j,a! u 0<j<1 and a>0%, ~3.20!

and the subset corresponding to a signal being present i

6This is true at fixed signal-to-noise ratior.
3-10
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Qs15$~j,a! u 0,j<1 and a.0%. ~3.21!
Note that our assumption that the time structure of eve

is not resolved by the detector is unrealistic. Detector re
lution times can be as small as 0.1 ms in the case of grou
based detectors like LIGO,7 and even supernova bursts a
l’s
a

sta
-
q

n
ng

n
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expected to have time scales*10 ms@34,35#. It will be im-
portant for future studies to relax this assumption.

We now compute the maximum likelihood detection s
tistic LML

NG for our simple non-Gaussian signal model by su
stituting Eq.~3.19! into Eq. ~3.7!. This yields
LML
NG5 max

0,j<1

max
a.0

max
s1>0

max
s2>0

)
k51

N 5 s̄1s̄2j

As1
2s2

21s1
2a21s2

2a2
expF S h1

k

s1
2

1
h2

k

s2
2D 2

2S 1

s1
2

1
1

s2
2

1
1

a2D
2

~h1
k!2

2s1
2

2
~h2

k!2

2s2
2

11G
1

s̄1s̄2

s1s2
~12j!expF2

~h1
k!2

2s1
2

2
~h2

k!2

2s2
2

11G 6 . ~3.22!
i-

an

tion
The values ofj, a2, s1
2, and s2

2 which achieve the maxi-
mum in Eq.~3.22! are, respectively, estimators of the signa
Gaussianity parameter, the variance of the signal events,
the noise variances in the two detectors.8 Note that if we
evaluate Eq.~3.22! at j51, rather than maximizing overj,
we recover Eq.~3.9! and the statisticLML

G .
We mention in passing an approximate version of the

tistic ~3.22! which is significantly easier to compute. Ex
panding the logarithm of the quantity to be maximized in E
~3.22! as a power series ina2 to fourth order abouta250
yields the approximate statisticL̂ML

NG given by

ln L̂ML
NG5 max

0,j<1
max
a.0

max
s1>0

max
s2>0

(
n50

4

(
l 50

8

(
m50

8

3S a2

s1s2
D n

Cnlm~j,s1 ,s2!(
k51

N

~h1
k! l~h2

k!m,

~3.23!

where the coefficientsCnlm(j,s1
2 ,s2

2) vanish unlessl 1m is
even andl 1m<8. In evaluating the statistic~3.23!, one can
first evaluate the 24 sums

7For ground-based detectors, the effective resolution time i
cross-correlation between two detectors can be considerably lo
than 0.1 ms@20#, which may help with this issue.

8See Ref.@36# for a derivation of a statistic similar toLML
NG and

designed for the same non-Gaussian signals which is based o
~2.20! rather than Eq.~2.19!.
nd

-

.

(
k51

N

~h1
k! l~h2

k!m ~3.24!

for the required values ofl andm, and subsequently numer
cally maximize over the parametersj, a, s1, ands2. Thus
the length-N sums need only be performed once, rather th
each time one tries a new set of values forj, a, s1, ands2.
Therefore the computational cost ofL̂ML

NG is only about an
order of magnitude greater than that of the cross correla
statisticLCC, and this statistic may be useful to explore.

We now derive the signal-to-noise ratior for the cross-
correlation statistic and for the non-Gaussian signal~3.19!. If
the signal is present, then from Eqs.~2.1!, ~3.3!, ~3.10!,
~3.11! and ~3.19! the expected value ofā2 is

^ā2&5ja2. ~3.25!

If no signal is present then the fluctuations inā2 are given by

D~ā2!5
s1s2

AN
. ~3.26!

Therefore, taking the ratio of Eqs.~3.25! and ~3.26!, the
signal-to-noise ratior is

r5
ja2AN

s1s2
. ~3.27!

a
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IV. PERFORMANCE COMPARISON

In this section we compare the performances of the cro
correlation statistic~3.14!, the burst statistic~1.9!, and the
maximum likelihood statistic~3.22! for our model non-
Gaussian signal described in Sec. III C. The compariso
quantified in terms of the false alarm versus false dismis
curves, as discussed in Sec. II above. In Sec. IV A we disc
analytic predictions for these curves for the three differ
statistics. Section IV B describes our Monte Carlo simulat
algorithm, and Secs. IV C and IV D describe the results.

A. Analytic computation of asymptotic behavior of statistics

We start by discussing the set of parameters on which
false dismissal versus false alarm curves can depend. As
fore, we assume two detectors with noise characterized
Eq. ~3.1! with Vn5(s1 ,s2), and a non-Gaussian signal cha
acterized by Eqs.~3.3! and ~3.19! with Vs5(j,a). The
curves for each statistic are given by some function

PFD5PFD~PFA ,j,a,s1 ,s2 ,N! ~4.1!

of the false alarm probabilityPFA , the Gaussianity paramete
j, the rms amplitudea of events, the noise variancess1

2 and
s2

2, and the number of data pointsN. We can simplify Eq.
~4.1! by replacinga with the signal-to-noise ratior using the
definition ~3.27!, and noting from dimensional analysis th
PFA depends ons1 ands2 at fixedr only through the ratio
s1 /s2. This gives

PFD5PFD~PFA ,j,r,s1 /s2 ,N!. ~4.2!

For simplicity, we specialize tos15s2 for the remainder of
this paper. This implies that

FIG. 4. Sketched segment of the signal produced by a mo
non-Gaussian stochastic background of events unresolved by
detectors. Here we show two events. The solid curve is the e
signal. This exact signal’s contributions to the detector outp
shown as stemmedo’s, are averages of the exact signal over t
detector resolution time scale.
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PFD5PFD~PFA ,j,r,N!. ~4.3!

1. Cross correlation statistic

The false dismissal versus false alarm curves for
cross-correlation statistic can be computed analytically in
largeN limit, as we now describe. Our derivation generaliz
the analysis of Ref.@20# from Gaussian to non-Gaussian si
nals. For any detection statisticG, we can expressPFA and
PFD in terms of the detection thresholdG* as

PFA~G* ,s1 ,s2 ,N!5E
G
*

`

dxpGuT ~xu0!, ~4.4!

PFD~G* ,j,r,s1 ,s2 ,N!512E
G
*

`

dxpGuT ~xu1!.

~4.5!

Here the definition of the random variableT is such that if
T50 then no signal is present (j5r50), and ifT51 then a
signal is present (jÞ0 andrÞ0); cf. Sec. II A above. Note
that by eliminatingG* between Eqs.~4.4! and ~4.5!, we re-
cover Eq.~4.1!.

In the largeN limit, the distribution pLCCuT (xut) is a
Gaussian by the central limit theorem, and the integrals~4.4!
and ~4.5! can be evaluated analytically~see Appendix B! to
give

PFD~PFA ,j,r,N!512
1

2
erfcF erfc21~2PFA!2

r

A2

Ar2

N
S 3

j
21D 1

2r

AN
11
G

1OS 1

AN
D . ~4.6!

Here the function erfc(x) ~known as the compliment of the
error function! is defined by

erfc~x!5
2

Ap
E

x

`

dye2y2
, ~4.7!

and erfc21(x) is the inverse of erfc(x). The formula~4.6! is
valid only for PFA,1/2; PFD is undefined for 1/2<PFA
,1. In deriving Eq.~4.6!, we assumed that the statisticsLCC

and â2 are equivalent, and that the distribution forā2 is

el
the
ct

s,
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Gaussian. Those assumptions are only valid up to fractio
correction terms of order 1/AN; hence the indicated correc
tion term in Eq.~4.6!.

In the regime wherer2!Nj in addition to N@1, the
result ~4.6! simplifies to

PFD~PFA ,j,r,N!512
1

2
erfcFerfc21~2PFA!2

r

A2
G

1OS 1

AN
D 1OS r

AN
D 1OS r2

Nj D .

~4.8!

Note that the false dismissal versus false alarm relation~4.8!
is independent of bothN and j. Sample curves from Eq
~4.8! are shown in Fig. 5. The discontinuities atPFA51/2 are
a result of the step functions in the definition~3.11! of â2.

2. Burst statistic

By combining the definition~1.9! of the burst statistic
together with the decomposition~1.6!, the noise and signa
distributions ~3.1! and ~3.19!, and the change of variable
~3.27! it is straightforward to derive the exact false alar
versus false dismissal relation. The result is given by

~12PFA!1/N5erfS L*
A2

D ~4.9!

and

FIG. 5. Sample false dismissal versus false alarm curves for
cross correlation statisticLCC in the largeN limit, as prescribed by
Eq. ~4.8!. For these curves the signal-to-noise ratior has equally
spaced values from 0.01 to 1. Note that herePFD is undefined for
1/2<PFA,1.
08200
al

PFD
1/N5j erfF L*

A21
2r

jAN

G1~12j! erfS L*
A2

D ,

~4.10!

whereL* is the value of the threshold.

3. Maximum likelihood statistic

We start by discussing the different regimes present in
space of signal parametersj, r and N, treating the false
alarm probabilityPFA as fixed. There are several differe
constraints on the three parametersj, r, andN that define
the regime in parameter space where we expect our m
mum likelihood statistic to work well. First, it is clear tha
the total number of events;jN in the data set must be larg
compared to one:

j@
1

N
. ~4.11!

Second, if the signal-to-noise ratioa2/(s1s2) of indi-
vidual burst events is large compared to one, then one
detect the individual events using the burst statistic~1.9! and
the method of this paper is not needed. From Eq.~3.18! we
can write the constrainta2/(s1s2)&1 as

j*
r

AN
. ~4.12!

A more precise version of this requirement can be obtai
by noting that the detection threshold for the signal-to-no
ratio a2/(s1s2) is ;A2 lnN, since there areN independent
trials. This yields the constraint

j*
r

A2N ln N
. ~4.13!

The regimej;r/A2N ln N is where the burst statisticLB
starts becoming as sensitive as the cross correlation stat
as can be seen by combining Eqs.~4.8!, ~4.9! and ~4.10!
above. This behavior can also be seen in Figs. 1 and 2 ab

A third constraint on the space of signal parameters
derived as follows. Consider the statistic

h5
1

N (
k51

N

~h1
k!2~h2

k!2. ~4.14!

We can use this statistic to estimate the Gaussianity par
eter j in the following way. The mean value ofh when a
signal is present is given by

^h&53ja41ja2~s1
21s2

2!1s1
2s2

2 , ~4.15!

and the variance when a signal is absent is

~Dh!25s1
4s2

4 8

N
. ~4.16!

e
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It follows from Eqs. ~4.15!, ~4.16!, and the relation̂ â2&
5ja2 that the estimatorĵ of j defined by

ĵ5
3â4

h2â2~ ŝ1
21ŝ2

2!2ŝ1
2ŝ2

2
~4.17!

has a fractional accuracy of order

Dj

j
;

jAN

r2
. ~4.18!

Now in the regimeDj/j!1, we expect our maximum like
lihood detection statistic to work well, since one’s first gue
for a nonlinear statistic~4.14! can be used to detect the no
Gaussianity of the signal to high accuracy. In the regi
Dj/j@1, it is not obvious how the maximum likelihoo
detection statistic will perform, since it could have a perf
mance much better than that of the statistich. However, our
Monte Carlo simulations~Sec. IV B below! and analytic
computations~Appendix C! indicate that the maximum like
lihood statistic does indeed perform poorly in the regim
Dj/j@1. Thus, our third constraint isDj/j&1, which from
Eq. ~4.18! can be written as

j&
r2

AN
. ~4.19!

Our Monte Carlo simulations show that forr2/AN&j&1,
the maximum likelihood and cross-correlation statistics p
form roughly equivalently, and that oncej becomes smalle
than r2/AN, the maximum likelihood statistic starts to pe
form significantly better than the cross-correlation statis
see Figs. 1 and 2 above.

In Appendix C we derive analytically the approxima
expression~C46! for the false dismissal probability for th
maximum likelihood statistic, which we expect to be acc
rate up to corrections of order 1/r4 or a few tens of percent
We also derive the expression~C55! for the false alarm prob-
ability using a combination of analytical and numerical tec
niques. Combining these results gives the curves which
associated with the maximum likelihood statisticLML

NG and
labeled ‘‘analytic’’ in Figs. 1, 2, 9, and 10.

B. Description of the Monte Carlo simulation algorithm

Next we describe our Monte Carlo simulations of the p
formances of the various statistics. We numerically estim
the false dismissal and false alarm probabilitiesPFD andPFA
by conducting an ensemble ofNE simulated experiments
For each experiment we simulate a detector output ma
half of which have a signal present, and half of which do n
Since we know in advance whether or not a signal is pres
we can easily estimatePFA and PFD. More specifically, our
algorithm for simulating false dismissal versus false ala
curves, for an arbitrary statisticG, is as follows:

~1! Choose values forj, a, s1 , s2, andN.
~2! Choose the total number of trialsNE .
08200
s

e
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r-
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-
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-
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~3! For r 51,2, . . . ,NE/2:
~a! Generate a data trainh(s1 ,s2 ,N) of noise only.
~b! ComputeG and store result asG r0.
~c! Generate a data trainh(j,a,s1 ,s2 ,N) which has a

signal present.
~d! ComputeG and store result asG r1.

~4! Choose a discretizationG* j of the set of thresholds
where j 51,2, . . . ,M .

~5! SetPFA(G* j )5PFD(G* j )50, for eachj.
~6! For r 51,2, . . . ,NE/2:

~a! For each j, if G r0.G* j , incrementPFA(G* j ) by
2/NE .

~b! For eachj, if G r1<G* j , incrementPFD(G* j ) by
2/NE .

~7! Repeat steps~3!–~6! above several times to estimate th
fluctuations inPFA(G* j ) andPFD(G* j ).

We use the above algorithm to simulate false dismis
versus false alarm curves for the three statisticsLCC, LB and
LML

NG . The analytical expressions~4.6! and ~4.9!, ~4.10! for
the cross-correlation and burst statistics are used as a c
of the numerical method.

C. Simulation results

A family of simulated false dismissal versus false ala
curves for the cross correlation statisticLCC and the maxi-
mum likelihood statisticLML

NG is shown in Fig. 6. We see tha
at fixedr, as the Gaussianityj of the signal decreases,LML

NG

performs increasingly better thanLCC. The curves forLCC
are almost indistinguishable from each other becauser is
fixed, and the curves depend only onr and not onj for this
detection statistic in the largeN limit @cf. Eq. ~4.8! above#.

If we maintain the same value forr as in Fig. 6, but take
j*0.03, the curves forLCC and LML

NG cannot be distin-
guished from each other. We find in general that forany
values ofN, s1 , s2, and r, as j→1, the false dismissa
versus false alarm curves forLCC andLML

NG cannot be distin-
guished from each other. Thus, the two statistics are ne
equivalent for Gaussian signals, as expected. However,
j!1, Fig. 6 demonstrates thatLML

NG performs noticeably bet-
ter thanLCC.

We now discuss a comparison of the two statistics
terms of the minimum gravitational wave energy dens
necessary for detection, instead of in terms of the false
missal versus false alarm curves. For a stochastic ba
ground with rms strain amplitudehrms, we haveV}hrms

2 @5#,
whereV is the gravitational wave energy density. For o
model signal~3.19! we havehrms

2 }ja2, and comparing this
with the formular}ja2 from Eq. ~3.27! shows that we can
interpret the signal to noise ratior as the energy density in
the stochastic background, even for non-Gaussian signa

We compute the minimum detectable energy density
signal-to-noise ratiordetectableas follows. First, we choose
thresholdsPFA* and PFD* for the false alarm and false dis
missal probabilities. We refer to the pair (PFA* ,PFD* ) as the
detection point. For any statisticG, the choice of detection
point determines the detection thresholdG* , and inverting
3-14
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Eq. ~4.3! gives the minimum detectable signal-to-noise ra

r5rdetectable~PFA* ,PFD* ,j,N!, ~4.20!

as illustrated in Fig. 7. For the cross-correlation statisticLCC
the result is, from Eq.~4.6!,

rdetectable
CC 5

2A2g@11gA2/N#

112g2S 12
3

j D /N
F11OS 1

AN
D G ~4.21!

52A2g1OS 1

AN
D 1OS g

AN
D , ~4.22!

where g5erfc21(2PFA* ) and we have assumed thatPFA*
5PFD* . This relation is plotted in Fig. 8.

From the results of our simulations, we determi
rdetectable(PFA* ,PFD* ,j,N) by numerically solving the equa
tion

PFD~PFA* ,j,r,N!2PFD* 50 ~4.23!

for r. Unfortunately, evaluating the function on the left ha
side of Eq.~4.23! is computationally expensive. Each eval
ation involves simulating the false dismissal versus fa

FIG. 6. Plots of false dismissal probability (PFD) versus false
alarm probability (PFA) for the standard cross-correlation statis
LCC and our maximum likelihood statisticLML

NG . Each of these
curves is characterized by a total number of trialsNE523104,
number of data pointsN553104, noise variancess15s251, and
by the signal-to-noise ratior51. The values of the Gaussianit
parameterj are 0.02, 0.012, and 0.01. The solid curves are
results forLML

G ; these curves are bunched together becauser is
fixed. The dashed curves are the results forLML

NG . For the dashed
curves, the lowest curve is forj50.01, while the highest curve i
for j50.02. We estimate error bars for each of these curves
separating the 23104 runs into 10 bins of 23103, and generating
10 separate plots; the resulting fluctuations are&1023. The curves
for the cross correlation statisticLML

G agree with the analytic pre
diction ~4.6! to within ;1023. This plot shows thatLML

NG can per-
form significantly better thanLCC.
08200
e

alarm curve which is itself a computationally intensive tas
Moreover, it is only feasible for us to solve Eq.~4.23! for
values of N&104 while a realistic detection scenario fo
ground based detectors would involve a year’s worth of d
sampled at;100 Hz for whichN;109. Therefore our con-
clusions about the applicability of the method to grou
based detectors are based on our analytic results, as
cussed in the Introduction.

Figure 9 shows the results obtained from numerica
solving Eq. ~4.23! for rdetectablefor the parameter valuesj
50.02, PFA* 5PFD* 50.1, and Fig. 10 shows the corre
sponding results forj54.331023. For the cross-correlation
statistic, the results are in good agreement with the anal
prediction~4.21!.

Figure 1 shows the minimum detectable energy density

e

y

FIG. 7. A family of false dismissal versus false alarm curves
fixed j. Here the detection point, atPFD* 5PFA* 50.1, is marked
with an *.

FIG. 8. The minimum detectable signal-to-noise ratiordetectable
CC

for the cross-correlation statisticLCC as a function of the false
alarm probability thresholdPFA* . Note that we assume the fals
dismissal probability thresholdPFD* 5PFA* .
3-15
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a function of the Gaussianity parameterj for N5104 ~cor-
responding to space based detectors!, for the cross-
correlation and maximum likelihood statistics and also
the burst statistic~1.9!. We again use the valuesPFA*
5PFD* 50.1. The figure shows that the maximum likelihoo
statistic performs better than the other statistics by a fa
which is roughly 3 forj of order 1%. For smaller values o
j, the maximum likelihood performs increasingly better th
the cross-correlation statistic, but is eventually comparabl
the burst statistic. Thus the maximum likelihood statis
gives an improvement in sensitivity to backgrounds co
posed of roughly 10 to 103 events per year.

Figure 2 is a similar plot, without the Monte Carlo sim
lation results, forN5109 ~corresponding to ground base

FIG. 9. The minimum detectable signal strengthrdetectableas a
function of the number of data pointsN, for the false alarm prob-
ability thresholdPFA* 50.1, false dismissal probability thresho
PFD* 50.1, and Gaussianity parameterj50.02. The circles are the
simulation results, and the error bars are estimated from ten di
ent runs. The solid curve is the analytical prediction~4.21! for LCC,
and the dotted line is theN→` limit ~4.22!. The dashed line is the
analytic prediction forLML

NG given by Eqs.~C46! and ~C55!.

FIG. 10. Same as Fig. 9 but withj54.331023.
08200
r

or

to

-

detectors!. Here we usePFA* 5PFD* 50.01. The results are
similar to those in Fig. 1, except that here the gain in sen
tivity occurs in the band 1025,j,1023. This band corre-
sponds to 104–106 events per year.

D. Parameter estimation

The computation of the maximum likelihood statistic al
serves to measure the parameters of the signal. The sta
LML

NG , from Eq. ~3.22!, can be written as

LML
NG5 max

0,j<1
max
a2.0

max
s1

2>0

max
s2

2>0

l~j,a2,s1
2 ,s2

2!.

~4.24!

The point (ĵ,â2,ŝ1
2 ,ŝ2

2) where this maximum is achieved i
the maximum likelihood estimator for (j,a2,s1

2 ,s2
2). In Fig.

11 we show contours of the function lnl for a strong (r
520) signal. This figure shows that bothj and a2 can be
measured with good accuracy.

Note that the main benefit of usingLML
NG is that it allows

us to detect signals that are too weak to be seen usingLCC.
Using LML

NG also allows one to test if a detected signal
Gaussian, as obtained above, but this is not the main be
of the method, as there are other, simpler, methods to tes
non-Gaussianity.

V. CONCLUSIONS

The use of our maximum likelihood statistic in search
for a non-Gaussian background gives a gain in sensiti
over the standard cross-correlation statistic. Figures 1 an
show that the gain factor can be significant for sufficien
non-Gaussian signals. However, computing the maxim
likelihood statistic requires significantly more computation

r-

FIG. 11. Representative contours of lnl(j,a2,ŝ1
2,ŝ2

2). Here r
520 andN51.63105. The simulated signal is characterized byj
50.2 anda250.25, marked with an3. The noise is characterize
by s1

25s2
251. The maximum, marked with a1, is found at

ln l(0.207,0.251,0.993,0.993)5229, while lnl(0.2,0.25,1,1)
5227.
3-16
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power than the cross-correlation statistic.
The analysis presented here must be generalized in

eral ways before being usable in gravitational wave de
tors. These generalizations, listed in order of importance,

~1! Our signal model~3.19! assumes a Gaussian distrib
tion of amplitudes of the burst events. This assumption s
plified our analysis and resulted in a statistic with the use
property of being nearly equivalent to the cross-correlat
statistic in the Gaussian signal limit. In practice however,
distribution of the events should instead be based on
candidate sources. For example, a popcorn-like stocha
background produced by a spatially uniform distribution
standard-candle sources out to some maximum red
would have a signal distribution of the form~3.19! with the
Gaussian term replaced by a term proportional tos24u(s
2smin), where u is the step function andsmin is a cutoff
signal strength.

~2! One should allow the burst durations to be longer th
the detector resolution time. For this situation one possibi
would be to preprocess the data with a lowpass filter,
then apply the techniques developed here. Another poss
ity would be to try to combine the analysis of this paper w
the excess power detection method of Ref.@25#.

~3! Real detector noise always contains non-Gauss
components, so one needs to generalize the analysis to a
for this. Such a generalization for a Gaussian stocha
background can be found in Refs.@21,22#.

~4! It would be useful to consider a more general sig
model which consists of a superposition of a Gaussian ba
ground and a non-Gaussian background, since the true g
tational wave background might consist of such a superp
tion.

~5! The analysis needs to be generalized to allow for c
ored detector noise, and separated, misaligned detectors.
generalization should be fairly straightforward.
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APPENDIX A: GENERAL FORM OF THE LIKELIHOOD
RATIO

In this appendix we give two derivations of the gene
formula ~2.15! for the likelihood ratio. The first derivation is
based on Eq.~2.13! while the second is based on Eq.~2.14!.
We also derive the formula~2.18! for the posterior probabil-
ity densitypVs ,VnuT

(1) (vs ,vnu1).

1. First derivation

We can derive Eq.~2.15! by using the total probability
theorem to expand the distributions in the numerator
denominator of Eq.~2.13!. Note that all distributions in this
derivation are priors.
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First expandpH(h) just in terms of the random variabl
T:

pH~h!5PT ~1!pHuT ~hu1!1PT ~0!pHuT ~hu0!. ~A1!

ExpandingpH(h) in terms of all the degrees of freedom
yields

pH~h!5(
t50

1 E
Qs

dQsvs E dNDs

3E
Qn

dQnvnpHuT,Vs ,S,Vn
~hut,vs ,s,vn!

3pT,Vs ,S,Vn
~ t,vs ,s,vn!. ~A2!

The ratio of the coefficients ofPT (1) and PT (0) in Eq.
~A2! will give the general expression for the likelihood rat
by Eq. ~2.13!.

The conditional distribution forH in Eq. ~A2! can be
translated into a conditional distribution forN. From Eq.
~2.1! it follows that

pHuS~hus!5pN1SuS~hus!5pNuS~h2sus!, ~A3!

and sinceS andN are statistically independent we obtain

PHuS~hus!5PN~h2s!. ~A4!

Generalizing this argument gives

pHuT,Vs ,S,Vn
~hut,vs ,s,vn!5pNuVn

~h2suvn!, ~A5!

sincea priori T, Vs , andS are statistically independent ofN
andVn . For the same reason we can write the joint distrib
tion that appears in Eq.~A2! as

pT,Vs ,S,Vn
~ t,vs ,s,vn!5pT,Vs ,S~ t,vs ,s!pVn

~vn!. ~A6!

Substituting Eqs.~A5! and ~A6! into Eq. ~A2! yields

pH~h!5(
t50

1 E
Qs

dQsvs E dNDs E
Qn

dQnvn

3pNuVn
~h2suvn!pT,Vs ,S~ t,vs ,s!pVn

~vn!. ~A7!

We can also rewrite the distributionpT,Vs ,S(t,vs ,s) as

pT,Vs ,S~ t,vs ,s!5pSuVs ,T ~suvs ,t !pVsuT~vs ,t !PT ~ t !,
~A8!

by Eq. ~2.5!. Substituting Eq.~A8! into Eq. ~A7! and explic-
itly evaluating the sum overt yields

pH~h!5PT ~1!E
Qs1

dQsvs E dNDs E
Qn

dQnvn

3pNuVn
~h2suvn!pVn

~vn!pSuVs ,T ~suvs,1!

3pVsuT ~vsu1!1PT ~0!E
Qn

dQnvnpNuVs
~huvn!.

~A9!
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Here we have used the following relations:

pSuVs ,T ~suvsPQs1,0!5dND~s! ~A10!

pVsuT ~vsPQs0u1!50 ~A11!

pVsuT ~vsPQs1u0!50 ~A12!

E
Qs0

dQsvspVsuT ~vsu0!51. ~A13!

By comparing Eqs.~A1! and ~A9! we can read off the dis
tributions pHuT (hut) and construct Eq.~2.15! from Eq.
~2.13!. Note that the expression~2.13! is independent of the
spaceQs0 of signal parameters corresponding to ‘‘no sign
present.’’

2. Second derivation

Here we derive Eq.~2.15!, and also Eq.~2.18!, from Eq.
~2.14!. Consider the distribution

pT,Vs ,VnuH~1,vs ,vnuh!5
pT,Vs ,Vn ,H~1,vs ,vn ,h!

pH~h!
.

~A14!

We will justify Eq. ~2.15! by the defining relation Eq.~2.14!,
which explicitly refers to priors and posteriors. Therefore
now append the appropriate superscripts as bookkeeping
vices. Equation~A14! then reads

pT,Vs ,Vn

(1) ~1,vs ,vn!5
pT,Vs ,Vn ,H

(0) ~1,vs ,vn ,h!

pH
(0)~h!

. ~A15!

Using the expansion ofpH(h) given by Eq.~A9!, and
what we will justify is the likelihood ratioL given by Eq.
~2.15!, we have

pT,Vs ,Vn

(1) ~1,vs ,vn!5

F pT,Vs ,Vn ,H
(0) ~1,vs ,vn ,h!

E
Qn

dQnvn8 pHuVn

(0) ~huvn!pVn

(0)~vn!G
LP(0)112P(0)

.

~A16!

Expanding the uppermost numerator in Eq.~A16! overS by
the total probability theorem gives

pT,Vs ,Vn ,H
(0) ~1,vs ,vn ,h!5E dNDspT,Vs ,Vn ,H,S

(0) ~1,vs ,vn,h,s!,

~A17!

and rewriting this gives

pT,Vs ,Vn ,H,S
(0) ~1,vs ,vn,h,s!

5pNuVs

(0) ~h2suvs!pVn

(0)~vn!pSuVs ,T
(0) ~suvs,1!

3pVsuT
(0) ~vs,1!P(0). ~A18!
08200
l

e-

After putting Eq.~A18! into Eq. ~A17!, substitute the resul
into Eq. ~A16!. Using L(vs ,vn) given by Eq.~2.17! then
yields

P(1)pVs ,VnuT
(1) ~vs ,vnu1!5

L~vs ,vn!P(0)

LP(0)112P(0)
. ~A19!

On the left hand side of Eq.~A19! we have used

pT,Vs ,Vn

(1) ~1,vs ,vn!5P(1)pVs ,VnuT
(1) ~vs ,vnu1!. ~A20!

Integrate Eq.~A19! overQn andQs1 using Eq.~2.16! and
the normalization requirement

E
Qs1

dQsvsE
Qn

dQnvn pVs ,VnuT
(1) ~vs ,vnu1!51 ~A21!

to get

P(1)5
LP(0)

LP(0)112P(0)
. ~A22!

Use Eq.~A22! and Eq.~A19! to form the ratio on the left
hand side of Eq.~2.18!. This justifies Eq.~2.18!.

Integrate Eq.~2.18! overQn andQs1 using Eq.~2.16! and
Eq. ~A21! to see that the defining relation Eq.~2.14! is sat-
isfied and thus Eq.~2.15! is justified.

APPENDIX B: ANALYTICAL EXPRESSIONS FOR FALSE
DISMISSAL VERSUS FALSE ALARM CURVES FOR

CROSS-CORRELATION STATISTIC

This appendix derives the analytical form~4.6! of the
false dismissal versus false alarm curves for the cro
correlation statisticLCC in the largeN limit, for both Gauss-
ian and non-Gaussian signals. A derivation for Gaussian
nals can be found in Sec. IV of Ref.@20#.

As noted in Sec. III B, the statisticsLCC and â2 are
equivalent in the largeN limit. Thus, in this limit, the false
dismissal versus false alarm curves can be found by eva
ing Eqs.~4.4! and~4.5! with G replaced byâ2. The relation
~3.11! between the statisticsā2 andâ2 implies the following
relation between their probability distributionspâ2uT (xut)
andpā2uT (xut):

pâ2uT ~xut !5u~x!pā2uT ~xut !1d~x! E
2`

0

dypā2uT ~yut !.

~B1!

Inserting this formula into Eqs.~4.4! and ~4.5! gives

PFA~ â
*
2 !5H E

â
*
2

`

dxpā2uT ~xu0! if â
*
2 .0,

1 if â
*
2 <0,

~B2!
3-18
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PFD~ â
*
2 !5H 12E

â
*
2

`

dxpā2uT ~xu1! if â
*
2 .0,

0 if â
*
2 <0.

~B3!

In the largeN limit, the distributionpā
s
2uT (xut) must be

Gaussian by the central limit theorem, and therefore this
tribution is characterized entirely by its mean^ā t

2& and vari-

ance @D(ā t
2)#2. From Eqs.~2.1!, ~3.3!, ~3.10!, ~3.11! and

~3.19!, these are given by

^ā0
2&50 ~B4!
08200
s-

D~ā0
2!5

s1s2

AN
~B5!

^ā1
2&5ja2 ~B6!

D~ā1
2!5Aja4~32j!1ja2~s1

21s2
2!1s1

2s2
2

N
. ~B7!

Substituting Gaussian distributions, with means and v
ances determined by Eqs.~B4!–~B7!, into Eqs. ~B2! and
~B3! yields
PFA~ â
*
2 ,s1 ,s2 ,N!5H 1

2
erfcS â

*
2

s1s2
AN

2
D if â

*
2 .0,

1 if â
*
2 <0,

~B8!

PFD~ â
*
2 ,j,a,s1 ,s2 ,N!5H 12

1

2
erfcF ~ â

*
2 2ja2!A N

2@ja4~32j!1ja2~s1
21s2

2!1s1
2s2

2#
G if â

*
2 .0,

0 if â
*
2 <0.

~B9!
e
e

If we now eliminateâ
*
2 between Eqs.~B8! and~B9!, change

variables froma to r using Eq.~3.27!, and sets15s2, we
obtain Eq.~4.6!.

APPENDIX C: ASYMPTOTIC BEHAVIOR OF MAXIMUM
LIKELIHOOD STATISTIC

In this appendix we derive the large-N behavior of the
maximum likelihood statisticLML

NG . From Eq.~3.22!, we can
write the statistic in the form

LML
NG~h!5exp@NL~h!# ~C1!

with

L~h!5 max
s1 ,s2 ,j,a

g~s1 ,s2 ,j,a,h! ~C2!

where

g5
1

N (
k51

N

gk~s1 ,s2 ,j,a!, ~C3!

and the functiongk5gk(s1 ,s2 ,j,a) is given by

egk5jAk~a!1~12j!Ak~0! ~C4!

with
Ak~a!5expF S h1
k

s1
2

1
h2

k

s2
2D 2

2S 1

s1
2

1
1

s2
2

1
1

a2D 2
~h1

k!2

2s1
2

2
~h2

k!2

2s2
2

11G
3

s̄1s̄2

As1
2s2

21s1
2a21s2

2a2
. ~C5!

We denote bys̃1 , s̃2 , j̃ and ã the ‘‘true’’ parameters gov-
erning the distribution of the quantitiesh1

k andh2
k according

to Eqs.~2.1!, ~3.1!, ~3.3!, and~3.19!, with untilded quantities
replaced by the corresponding tilded quantities.~These ‘‘true
parameters’’ were denoted bys1 , s2 , j anda in the body of
the paper.! We definer̃ to be the signal-to-noise ratio~3.27!
with untilded quantities replaced by tilded quantities:

r̃[
j̃ã2AN

s̃1s̃2

. ~C6!

For simplicity, in this appendix we restrict attention to th
cases̃15s̃2. Then, without loss of generality, we can tak
s̃15s̃251 by rescaling our units of strain amplitude.
3-19
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We discuss separately the computation of the false al
and false dismissal probabilities, as different techniques
required to compute each.

1. False dismissal probability

The false dismissal probability for the statistic~C2! will
be some function

PFD5PFD~L* ,N,j̃,r̃ ! ~C7!

of the thresholdL* on L, the number of data pointsN, the
Gaussianity parameterj̃ and signal-to-noise ratior̃ of the
signal. For applications to ground based detectors, we
have r̃; ~a few!, in order that the signal be detectable,N

;109, and 1023& j̃<1. Therefore it would be useful to find
approximate analytic expressions for the false alarm pr
ability in the limit of large N. There are actually severa
different, largeN regimes in the three dimensional parame
space (N,j̃,r̃) that one might explore:

~1! The limit N→` with ã and j̃ held fixed. This corre-
sponds to fixing the stochastic background signal and go
to a limit of long observation times. In this limit we haver̃
}AN which diverges. This is not a very realistic limit t
explore.

~2! The limit N→` with r̃ and j̃ held fixed. In this limit,
the signal-to-noise ratio is held fixed, and correspondin
the amplitudeã of the stochastic background signal goes
zero, from Eq.~C6!. This would be the most natural limit to
explore. However, in this limit the statistical errorDj̃ in our
measurement of the Gaussianity parameter would dive
from Eq. ~4.18!, and therefore in this limit we do not expe
to be able to compute analytically the value of the param
j which achieves the maximum in Eq.~C2!. The analytic
approximation methods which we discuss below do not w
in this regime.~In addition our Monte Carlo simulation
show that the maximum likelihood statistic itself does n
perform any better than the cross-correlation statistic in
regime, as discussed in the Introduction.!

~3! The limit we actually explore is the limitN→` with j̃

fixed andr̃ scaling}N1/4, corresponding toã}N21/8. The
reason for our choosing to explore this particular limit
simply that it is amenable to analytic computations. Fr
tional corrections to our analytic results should scale like 1N

or as 1/r̃4. Sincer̃; ~a few! at the threshold for detection
the approximation should be good to 10–20 % or so.

We now turn to a discussion of the computational te
nique. We write

ã5ã0N21/8, ~C8!

where ã0 is independent ofN. Correspondingly, from Eq
~3.19! we can write

sk5N21/8ŝk, ~C9!
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where the distribution ofŝk is given by Eq.~3.19! with j

replaced byj̃ anda replaced byã0. In particular, the distri-
bution of ŝk is independent ofN. In computing the maximum
over (j,a,s1 ,s2) in Eq. ~C2!, it is useful change variable
from a to k defined by

k5rN21/45
ja2N1/4

s1s2
, ~C10!

which we expect to be independent ofN to leading order in
the largeN limit. The value of the variablek that character-
izes the signal is

k̃5 r̃N21/45
j̃ ã0

2

s̃1s̃2

, ~C11!

cf. Eqs.~C8! and ~C10!.
We now consider fixed realizations of the infinite s

quences of random variablesn1
k , n2

k and ŝk, and 1<k,`,
and examine the limiting behavior ofL(h) as N→`. We
compute this limiting behavior by substituting into the rig
hand side of Eq.~C1! the relations

h1
k5n1

k1N21/8ŝk, h2
k5n2

k1N21/8ŝk, ~C12!

writing a in terms ofk using Eq.~C10!, and expanding in
powers ofN21/8. The result is an expression which can
written in terms of the sumsQabc defined by

Qabc5
1

N (
k51

N

~ ŝk!a~n1
k!b~n2

k!c, ~C13!

wherea, b, andc are non-negative integers. From the cent
limit theorem we can write

Qabc5mabc1
1

AN
Dabc, ~C14!

wheremabc5^Qabc& are computable functions ofj̃ and ã,
and where the random variables (D100,D010, . . . ) converge
in distribution9 asN→` to a multivariate Gaussian of zer
mean whose variance-covariance matrix is independent oN.
Thus, in particular the joint distribution of allDabc’s is
N-independent in limit thatN→`.

We define the vector

v5~v1,v2,v3,v4!5~j,k,s1
2 ,s2

2!. ~C15!

We denote the value ofv that achieves the maximum in Eq
~C2! by v̂:

g~ v̂!5max
v

g~v!, ~C16!

9See Chap. 8 of Ref.@29# for definitions of different notions of
convergence for sequences of random variables.
3-20
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wherev̂5( ĵ,k̂,s1
2̂,s2

2̂). These estimators satisfy a system
four equations10

]g

]v l U
v5 v̂

50. ~C17!

We solve Eq.~C17! perturbatively. First assume that the e
timators can be expanded in the form

v l̂5(
j 50

`

v l̂ [ j ]e j , ~C18!

where for ease of notation we have definede5N21/8. We
define the expansion coefficientsv l [ j ] analogously by an ex
pansion of the form~C18! but without the hats. Now using
Eq. ~C14! the functiong can be expanded as a power ser
in e whose coefficients are functions ofv l [k] , mabc , and
Dabc :

g~v!5(
j 50

`

g[ j ]@v l [k] ,mabc ,Dabc#e
j . ~C19!

Substituting the expansions~C18! and ~C19! into the condi-
tion ~C17! for a local extremum gives an infinite set of equ
tions which must collectively be satisfied by the coefficie

v l̂ [ j ]

]g[ j ]

]v l [k] U
vm[n]5vm̂[n]

50. ~C20!

We solve these equations order by order to determine

coefficientsv l̂ [ j ] , and thereby justifya posteriori the ansatz
~C18!.

We find that in order to compute the leading order expr
sion for L, we must obtain the expansion forĵ to zeroth
order ine, the expansion fork̂ to fourth order ine, and the
expansions ofŝ1

2 and ŝ2
2 to sixth order ine. The leading

order results are

k̂5k̃1e2X1O~e3!, ~C21!

1

ĵ
5

1

j̃
1

Y

A6k̃2
1O~e!, ~C22!

s1
2̂511O~e2!, ~C23!

s2
2̂511O~e2!, ~C24!

where

10Here we are assuming that the maximum is achieved as a
maximum in the interior of the 4 dimensional parameter spa
Cases when the maximum is achieved on the boundary are
cussed below.
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X5D011 ~C25!

and

Y5
1

8A6
@4~D0311D013!212~D0021D020!224D0111D040

1D00416D022#. ~C26!

Using Eqs.~3.1!, ~3.19!, ~C13! and~C14! one can show tha
the random variablesX andY are independent Gaussian ra
dom variables of zero mean and unit variance.

In deriving Eqs.~C21!–~C24! we assumed that the valu
of v which achieves the maximum in Eq.~C2! corresponds a
local maximum. However, if the right hand side of Eq.~C21!
is negative, the maximum will instead be achieved on
boundary of the parameter space atk̂50, since the variable
k must be non-negative. Similarly, if the right hand side
Eq. ~C22! is less than 1, the maximum will be achieved
ĵ51, since 1/j must lie in the interval@1,̀ ).

Substituting the results~C21!–~C24! ~together with the
higher order corrections to those results which we have
shown! into the expansion for the statisticL, and taking into
account the various special cases discussed in the last
graph, gives

L5F1

2
~Y1A6qk̃2!2e8 u~Y1A6qk̃2!1

1

2
~ k̃1e2X!2e4

2k̃3e61
7

4
k̃4e81k̃Ue71k̃Ve8Gu~k̃1e2X!1O~e9!.

~C27!

Hereu(x) is the step function and

q5
1

j̃
21, ~C28!

U5D1011D110, ~C29!

V5D2002
1

2
k̃~D0021D020!22k̃D011. ~C30!

We note that the corresponding expression for the stat
(ln LML

G )/N @which is equivalent to the cross-correlation st
tistic by Eq.~3.13!# is given by Eq.~C27! with the first term
in the square brackets dropped.

Next we drop all the terms in the square bracket in E
~C27! other than the first two terms. The reason is that th
terms will give corrections that are smaller than the ter
retained~both in expected value and in fluctuations! by a
factor of

k̃e25
r̃

AN
, ~C31!

al
.
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which will be small compared to unity for all cases we a
interested in. This gives for the false dismissal probabi
the expression

PFD5P~L,L* !5E
R

dxdy

2p
expF2

~x2x0!2

2
2

~y2y0!2

2 G ,
~C32!

where

x05k̃/e2 ~C33!

y05A6qk̃2 ~C34!

r 05A2NL* . ~C35!

Here the regionR in the x,y plane is the union of the two
regions

x>0

y>0

x21y2<r 0
2 ~C36!

and

y<0

0<x<r 0 . ~C37!

The integral over the region~C37! is

PFD
(1)5P~2y0!@P~r 02x0!2P~2x0!#, ~C38!

where

P~x![12
1

2
erfc~x/A2!5E

2`

x

dt
1

A2p
exp@2t2/2#.

~C39!
se

08200
y
The integral over the region~C36! can be written as

PFD
(2)5

1

2pE0

p/2

du E
0

r 0
drr expF2

1

2
~r cosu2x0!2

2
1

2
~r sinu2y0!2G . ~C40!

The integrand in Eq.~C40! peaks atr cosu5x0, r sinu5y0.
In order for PFD to be small, its necessary that this pe
occurs outside the domain of integration, atr .r 0. So we
must have

x0
21y0

2>r 0
2 . ~C41!

The criterionx0>r 0 is, in order of magnitude, just the usu
criterion for detectability with the cross-correlation statist
The criteriony0*r 0 reduces to, in order of magnitude,

j&
r2

AN
~C42!

which is what we claimed earlier to be the regime where
maximum likelihood statistic starts to work well, cf. Se
IV A 3 above.

Evaluating the integral~C40! using the Laplace approxi
mation gives

PFD
(2)5

1

r 0~l21!A2pl
expF2

1

2
r 0

2~l21!2GF11OS 1

r 0
D G ,

~C43!

where we define the variablesl andg by

~x0 ,y0!5r 0l~cosg,sing!. ~C44!

However, the result~C43! is not very accurate for smallr 0.
Alternatively we can integrate overr in Eq. ~C40! to obtain
PFD
(2)5E

0

p/2

duH 1

2p
er 0

2 (11l2)/2@er 0
2/22er 0

2 l cos(g2u)#1
r 0l

2A2p
e(r 0

2l2/4)[cos(2 $g2u%)21]cos~g2u!FerfS r 0 l cos$g2u%

A2
D

1erfS r 0 $12l cos@g2u#%

A2
D G J , ~C45!
where

erf~x!5
2

Ap
E

0

x

dye2y2
. ~C46!

The integral~C45! can be evaluated numerically. The fal
dismissal probability is then given by
PFD5PFD
(1)1PFD

(2) , ~C47!

with PFD
(1) given by Eq.~C38! andPFD

(2) given by Eq.~C45!.

2. False alarm probability

The false alarm probability is some function

PFA5PFA~L* ,N! ~C48!
3-22
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of the thresholdL* value of the detection statistic~C2! and
of the number of data pointsN. It does not depend on th
signal parametersr̃ and j̃ because no signal is present. W
would like to evaluate this quantity in the largeN limit.

We start by rewriting the statistic~C2! in the form

L5max
v

H 1

N (
k51

N

ln Ak~0!1
1

N (
k51

N

ln@11jDk~a!#J ,

~C49!

where

Dk~a!5
Ak~a!

Ak~0!
21. ~C50!

Consider first the first term in Eq.~C49!. Using the definition
~C5! of Ak(a) and the definition~1.4! of s̄1 and s̄2 we can
write this term as

1

N (
k51

N

ln Ak~0!52
Ds1

2

s̄1
2

2
Ds2

2

s̄2
2

1O~Ds1
3 ,Ds2

3!,

~C51!

where Ds15s12s̄1 , Ds25s22s̄2. Therefore the first
term is maximized ats15s̄1 , s25s̄2. Below we shall
show that the second term in Eq.~C49! is of orderO(e2),
where in this subsection we definee51/AN. Therefore the
values ofs1 ands2 that achieve the maximum are

ŝ15s̄1@11O~e2!#

ŝ25s̄2@11O~e2!#. ~C52!

Moreover, in analyzing the second term it suffices to ta
s15s̄1 , s25s̄2 in order to obtain the statistic to the leadin
O(e2) order. Lastly, since we have assumed thats̃15s̃2

51 and no signal is present, we haves̄1,2511O(e).
Hence, in analyzing the second term, it is sufficient to ta
s15s251.

The statistic~C49! therefore reduces to

L5max
a,j

1

N (
k51

N

ln@11jDk~a!#1O~e!, ~C53!

where from Eqs.~C5! and ~C50!

Dk~a!5
1

A112a
expF wk

2

21
1

a
G21. ~C54!

Here wk5(n1
k1n2

k)/A2, 1<k<N, are independent Gauss
ian random variables of zero mean and unit variance.

It is straightforward to numerically compute the distrib
tion of the statistic~C53!, by generating the Gaussian var
ableswk and numerically maximizing overj and a. The
result is shown in Fig. 12. We find that at largeN, the distri-
08200
e

e

bution of NL becomes independent ofN, and is approxi-
mately given by

P~NL.j!5a0e2b0j ~C55!

for j.0, wherea0'0.42 andb0'1.08. Therefore the false
alarm probability is approximately given by

PFA5a0exp@2b0NL* #. ~C56!

Finally, we remark why it is plausible to expect the di
tribution of NL to be independent ofN in the largeN limit.
The numerical maximizations overj and a in Eq. ~C53!
show that the maximum is nearly always achieved ata!1
or j!1. In both these regimes, one can obtain some in
mation about theN dependence of the statistic.

Consider first the regimej!1. In this regime we can
expand the expression~C53! as a power series inj to obtain

L5max
a,j

1

N (
k51

N FjDk~a!2
1

2
j2Dk~a!21O~j3!G1O~e!.

~C57!

The generalized central limit theorem~reviewed in Appendix
D! implies that

1

N (
k51

N

Dk~a!5N(12g1)/g1~ ln N!d1FN~a!, ~C58!

where for each fixeda, the distribution of the random vari
ableFN(a) becomes independent ofN in the largeN limit.
Here

g15H 2 0,a<1/2,

11
1

2a
1/2<a ~C59!

FIG. 12. The cumulative distribution function for the leadin
order expression~C53! for the statistic when no signal is presen
obtained numerically. The solid line is forN51000, and the dashed
line for N55000.
3-23
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and

d15H 0 0,a<1/2,

2a

112a
1/2<a. ~C60!

The limiting distribution is a Levy distribution with param
etersp51 andg5g1. Similarly we have

1

N (
k51

N

Dk~a!25N(12g2)/g2~ ln N!d2GN~a!, ~C61!

where asN→` at each fixeda the distribution of the ran-
dom variableGN(a) tends to a Levy distribution with param
etersp51 andg5g2, with

g25H 2 0,a<1/6,

112a

4a
1/6<a ~C62!

and

d25H 0 0,a<1/6,

22a

112a
1/6<a. ~C63!

We now substitute the results~C58! and ~C61! into the
expression~C57! for the statistic, and maximize analyticall
over the quadratic dependence onj. For a>1/2, the value
of j which achieves the maximum goes to zero asN→`,
consistent with the assumptionj!1, and the result is11

NL5
1

2
max

a

FN~a!2

GN~a!
1O~e!. ~C64!

In the regimea!1, if we expand the expression~C53! to
quadratic order ina, the result is an expression which is
linear function of 1/j at fixed aj. Hence, when one maxi
mizes over values ofj in the range 0<j<1, the maximum
is always achieved either atj50 or j51. One can show
that the maximum to this order is always achieved atj51,
and the resulting expression is

NL5
1

4
G 21O~e!, ~C65!

where

G5ANF 1

N (
k51

N

wk
221G ~C66!

11For a,1/2 this argument fails, which is why we must nume
cally verify that the distribution ofNL is asymptotically indepen-
dent ofN.
08200
has a distribution that is independent ofN in the largeN
limit.

APPENDIX D: GENERALIZED CENTRAL LIMIT
THEOREM

In this appendix we review the generalized central lim
theorem that can be found on p. 574 of Ref.@37#. First we
define a particular distribution function called the Levy d
tribution. It depends on 3 real parameters, a positive cons
C, a parameterg in the range 0,g<2, and constantp in the
range 0<p<1.12 We say a random variableX has a Levy
distribution with parametersC, g andp if the characteristic
function of X is given by

^ei zX&5expH uzug
CG~32g!

g~g21!
@cos~pg/2!

1 i sgn~z!~p2q!sin~pg/2!#J , ~D1!

whereq512p. The corresponding probability distributio
function is obtained by taking a Fourier transform and d
cays likex2(11g) at largex for g,2 (g52 is the Gaussian
case!.

Consider now a random variableX with probability dis-
tribution function f (x) whose variance is infinite. Let

F~x!5E
2`

x

dy f~y! ~D2!

be the cumulative distribution function and define

m~x!5E
2x

x

dyy2f ~y!. ~D3!

Suppose that the distribution satisfies the following con
tions: ~i! As x→` we havem(x);x22gL(x), where 0,g
<2, and L(x) varies slowly in the sense thatL(tx)/L(t)
→1 ast→` for all x.0. ~ii ! We have

12F~x!

F~2x!112F~x!
→p,

F~2x!

F~2x!112F~x!
→q ~D4!

as x→`, where 0<p<1, 0<q<1 andp1q51. ~iii ! For
1,g<2, we assume that the expected value*dxx f(x) van-
ishes; this can be enforced by making a transformation of
form X→X1constant.

12The parameterg is conventionally denoted bya. We useg here
to avoid confusion with the variablea defined in Eq.~1.7!.
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We define the sequence of random variables

SN5
1

aN
(
i 51

N

Xi , ~D5!

where theXi are independent, identically distributed rando
variables with distribution functionf, and the constantsaN
are chosen to satisfy
ch

-
Le

s

s

60

v.

gie

.

la

ia

08200
Nm~aN!

aN
2 →C ~D6!

asN→`, whereC is a positive constant. Then, the distrib
tion functions of the random variablesSN converge to a Levy
distribution with parametersC, g andp asN→`.
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