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Radiative falloff in the background of rotating black holes
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We study numerically the late-time tails of linearized fields with any spins in the background of a spinning
black hole. Our code is based on the ingoing Kerr coordinates, which allow us to penetrate through the event
horizon. The late time tails are dominated by the mode with the least multipole moment, which is consistent
with the equatorial symmetry of the initial data and is equal to or greater than the least radiative mode withs
and the azimuthal numberm.
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The late-time dynamics of black hole perturbations h
been studied for over three decades. A complete underst
ing of the late-time dynamics is available for a Schwar
child background: Generic perturbation fields of either s
lar, electromagnetic, or gravitational fields decay at l
times along anr 5const curve as an inverse power of tim
Specifically, linearized fields~the scalar field itself, or the
Teukolsky functionc in the gravitational case! decay as
t2(2,13) ~assuming that the initial data have compact supp
and are not time symmetric!, where, is the multipole mo-
ment of the perturbation field@1–3#. This behavior was con
firmed also for fully nonlinear collapse of spherical sca
fields @4,5#. The mechanism which is responsible for th
behavior is the scattering of the field off the curvature
spacetime asymptotically far from the black hole.

Because it is only the asymptotically far geometry whi
determines the behavior of the late-time tails, it is natura
expect similar behavior also when the black hole is rotat
@6#. Because spacetime is not spherically symmetric, h
ever, spherical-harmonic modes do not evolve independe
Specifically, by taking the initial data of the perturbation fie
to be a pureY,m mode, other modes are excited. Intuitive
all the modes which are not disallowed@by symmetry re-
quirements~such as the equatorial symmetry of the init
data! or dynamical considerations~such as that only mode
with 2,<m<, are allowed!# will be excited. In particular,
modes with, values smaller than the original, will be
excited, and will dominate at late times.~Notice that because
the background is axially symmetric, modes with differe
values of m are not excited whenlinearized perturbation
theory is applied.! Accordingly, the late-time dynamics i
dominated by the mode with the least, which is excited,
namely the smallest, which is not disallowed. That is, al
modes, which are not smaller thanumu and usu, wheres is
the spin weight of the field, and which respect the equato
symmetry of the initial data, will be excited. The falloff ra
is then t2(2,min13), where,min is the smallest mode which
can be excited.

Despite the simplicity of this intuitive picture, recent p
pers report conflicting results. An analytical analysis
Hod—in which the author attempted to find theasymptotic
behavior of the fields in the spacetime of a Kerr black hole
0556-2821/2003/67~8!/081502~5!/$20.00 67 0815
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yielded results which are more complicated: The decay

for a scalar field is predicted by Hod to be@7# t2(2,* 13) if

,* 5m or ,* 5m11, t2(,* 1m11) if ,* 2m>2 is even, and

t2(,* 1m12) if ,* 2m>2 is odd, where,* is the initial
value of,. For gravitational perturbations Hod’s formula

@8# t2(,* 1,0132q) ~for axisymmetric perturbations!, where
,0 is the radiative mode with the least value of,, and q
5min(,* 2,0,2). @Different, apparently conflicting result
were reported by Barack and Ori@9#. Those authors assume
that the mode,,m50 is present in the initial data~for s
50); and as a result, it is not straightforward to confro
their predictions with Hod’s.#

Although Hod’s results could be relevant for aninterme-
diateregime for carefully chosen parameters, they make o
a little sense for describing the intended asymptotic late-t
behavior. These eerie conclusions imply that some sort
‘‘memory effect’’ takes place: the field somehow ‘‘remem
bers’’ its initial configuration, despite being a linearized fie
We do not believe that such a memory effect is reasona
Take the initial data at the timet0 to be those of the pure
mode,* , such that,* is significantly larger than,min . At
the time t1.t0 the field also includes, in addition to th
mode,* , contributions from modes,,,* because of the
excitation of other, modes. Now the fields att5t1 can be
construed as the initial data of a new evolutionary proble
In the new problem the initial data are a mixture of mod
such that modes, smaller than,* are present@6#. Because
the mode with the smallest existing, value dominates at late
times and determines the decay rate of the tail, we can se
way in which the,* mode can determine the asymptot
late-time tail, unless,* determines which modes can an
which modes cannot be excited. As in the spacetime o
Kerr black hole it is hard to see how a scenario in whi
modes that are not disallowed can still be excluded, we c
clude that memory effects are not to be expected. Hod’s
sults, if correct, suggest to us that a hitherto unsuspe
mechanism of selection rules inhibits the excitation of oth
wise allowed modes. Such counter-intuitive theoretical r
soning must have strong numerical support in order not to
discarded.
©2003 The American Physical Society02-1
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Conclusions which apparently are similar to Hod’s we
obtained more recently by Poisson@6#, who analyzed the
scalar-field tails in a general weakly curved, stationary,
ymptotically flat spacetime. We emphasize that unlike Ho
analysis—which is an attempt to find the asymptotic la
time behavior in the spacetime of a spinning black hole
Poisson’s analysis aims at finding the behavior in a spa
time in which curvature is weak everywhere. Whi
Poisson’s analysis and results are correct for the space
he studies, one should use caution when inferring from P
son’s results on the asymptotic late-time behavior in a K
geometry: Although the asymptotically-far geometries
similar, the near-field geometries are very different. As
discuss below, that is a crucial element in understanding
late-time behavior.

Hod’s surprising predictions agree with some repor
numerical simulations. In particular, for the cases50,
,* 50, m50 Hod’s formula predicts a decay rate oft23,
which is indeed found@10#. For the cases50, ,* 54,
m50, however, Hod’s formula predicts a decay rate oft25,
whereas the intuitive picture predicts a decay rate oft23.
This case was simulated numerically by Krivan@11#, who
found a decay rate with a non-integral index close to25.5.
Like Hod, Krivan also tried to find the asymptotic late-tim
behavior in the Kerr spacetime. Some view this as a lo
confirmation of Hod’s prediction@6#, with numerical accu-
racy of 10%, and as an invalidation of the intuitive pictur

In this Rapid Communication we present results from
dependent numerical simulations for linearized perturba
fields over a Kerr background. Our simulations show a cl
falloff rate of t23 for the initial data ofs50, ,* 54, m
50. The quality of our results invalidates Hod’s predictio
for the asymptotic decay rate, and points at difficulties w
Krivan’s simulations or their interpretation. In all the cas
we have checked, for either a scalar or a gravitational fi
we find that the intuitive picture is correct: the late tim
behavior is dominated by the mode with the lowest value
, which can be excited. In particular, no spooky memo
effects occur.

We used the penetrating Teukolsky code~PTC! @12#,
which solves the Teukolsky equation for linearized pertur
tions over a Kerr background in the ingoing Kerr coordina
( t̃ ,r ,u,w̃). The Kerr metric is given by

ds25S 12
2Mr

S Dd t̃ 22S 11
2Mr

S Ddr22S du2

2sin2uS r 21a21
2Ma2r

S
sin2u Ddw̃22

4Mr

S
d t̃ dr

1
4Mra

S
sin2u d t̃ dw̃12a sin2uS 11

2Mr

S Ddrdw̃,

~1!

whereS5r 21a2cos2u, andM ,a are the mass and the sp
cific angular momentum, respectively. These coordinates
related to the Boyer-Lindquist coordinates (t,r ,u,w) through
w̃5w1*aD21 dr and t̃ 5t2r 1r * , where D5r 21a2
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22Mr andr * 5*(r 21a2)D21 dr. Notice thatt̃ is linear in
t, so that alongr 5const,]/ ] t̃ 5]/ ]t.

The Teukolsky equation for the functionc in the ingoing
Kerr coordinates can be obtained by implementing bla
hole perturbation theory~with a minor rescaling of the Kin-
nersley tetrad@12#!. It is given by

~S12Mr !
]2c

] t̃ 2
2D

]2c

]r 2 12~s21!~r 2M !
]c

]r

2
1

sinu

]

]uS sinu
]c

]u D2
1

sin2u

]2c

]w̃2
24Mr

]2c

] t̃ ]r

22a
]2c

]r ]w̃
2 i

2s cotu

sinu

]c

]w̃
1~s2cot2u1s!c

12@sr1 ias cosu1~s21!M #
]c

] t̃
50. ~2!

Equation~2! has no singularities at the event horizon, a
therefore is capable of evolving data across it. The P
implements the numerical integration of Eq.~2! by decom-
posing it into azimuthal angular modes and evolving ea
such mode using a reduced 211 dimensional linear partia
differential equation. The results obtained from this code
independent of the choice of boundary conditions, beca
the inner boundary is typically placed inside the horizo
whereas the outer boundary is placed far enough that it
no effect on the evolution.

The PTC has been tested in various different situatio
First, it yields the correct complex frequencies for the qua
normal modes of a Kerr black hole for a wide range of valu
of a/M . Second, it has also been shown to yield equival
results in the context of the close limit collision of two equ
mass, non-spinning, non-boosted black holes~to ones ob-
tained from the Zerilli formalism! @13#. It is stable, and ex-
hibits second-order convergence.

We next seta/M50.9, s50, and ,* 54, m50. The
initial Gaussian perturbation is taken to be a mixture of
going and outgoing waves, and centered aboutr 520M with
a width of 4M . As discussed above, our expectations are t
all the even, modes are excited~respecting the equatoria
symmetry of the initial data!. The least, mode which is
excited is the,50 mode, so that the decay rate we expec
t23. In contrast, the prediction of Hod is for a decay rate
t25. Figure 1 shows the Teukolsky functionc for these ini-
tial data foru5p/2 ~the equatorial plane! for three different
resolutions. The data clearly indicate stability and seco
order convergence.

A decay rate of aboutt23 is already clear from Fig. 1
Evaluating the decay rate from the slope of the field is v
inaccurate: The slope then depends on the interval
chooses, and also on the presence of subdominant mo
The first difficulty can be handled by considering thelocal

power index n@5#, which we define asn[2( t̃ /c) ] t̃c. The
second difficulty can be handled by extrapolatingn to time-
like infinity. Figure 2A showsn as a function ofM / t̃ . Time-
like infinity is at zero, and both the regime where the field
2-2
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dominated by the quasi-normal ringing and the regime wh
the field is dominated by the power-law tails are shown. T
local power indexn52.9846 att̃ 51500M . Figure 2B shows
the behavior of 32n as a function ofM / t̃ . Clearly, n gets
closer with time to the expected value of 3. In fact, extrap
lating n to t̃→` using Richardson’s deferred approach to t
limit, we find the asymptotic value ofn to be n`53.0003
60.0011. Our results suggest that the late-time field is do
nated by the,50 mode. We checked this by plottingc as a
function of u in Fig. 3 for different values oft̃ . We indeed
find thatc quickly loses any dependence onu, such that at

FIG. 1. The Teukolsky functionc as a function oft̃ for three
different grid resolutions, fors50, a/M50.9, ,* 54, andm50.
Dotted line: 8000 steps inr and 40 steps inu. Dashed line: 10000
steps inr and 50 steps inu. Solid line: 12000 steps inr and 60 steps
in u. The time step is always taken to be half the step inr. The data
are shown alongr 520M on the equatorial plane.

FIG. 2. The local power index for the same data as in Fig

Upper panel~A!: n as a function ofM / t̃ . Lower panel ~B!:

log10u32nu as a function ofM / t̃ . The data are shown for an equ
torial curve atr 520M .
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late times it is indeed described by the,50 mode. Any
dependence ofc on u is smaller than 3 parts in 106 at t̃
51000M .

Next, we present results for the behavior of fields w
higher spins. We set the parameters tos52, a/M50.3, and
initial l * 56, m50. The pulse is again centered aboutr
520M with a width of 4M . The prediction of Hod’s formula
for this case is a decay rate oft29. In this case our expecta
tions are that the least, mode to be excited is the,52
mode. Consequently, we expect the decay rate to bet27.
This is indeed confirmed in Fig. 4A, which shows the loc

.

FIG. 3. The normalized Teukolsky functionc/c(u50) as a
function ofu at r 525M , for the same data as in Fig. 1, for variou

values of t̃ . Upper panel: Att̃ 5150M ~dotted line!, 200M ~dash-

dotted!, 250M ~dashed!, and 300M ~solid line!. Lower panel: Att̃
5400M (h), 500M (*), 600M (s), 700M (1), 800M ~dotted
line!, 900M ~dash-dotted!, 1000M ~dashed!, and 1500M ~solid
line!.

FIG. 4. The local power index fors52, a/M50.3, l * 56, and

m50. Upper panel~A!: n as a function oft̃ /M . Lower panel~B!:

log10(72n) as a function ofM / t̃ . The data are taken for an equa
torial curve atr 520M .
2-3



d
as
ry
a

-

in
ry

ol

ld
he
th
t
n
th
ith
h

ul
tia
ed

ve
vi
h

as
e

ho

e

f
ys
a

d
ce
as
is

as
ie
e
t

va
m
u

su
ha

-

, in
ur-
that
the

hen
the

we

to

d
-

e a
’s

nu-
l

re-
ds
rs
to

, it
uch
ain
ky
ery
c-

r-

-
i-
,
the
nd
e
at

r-

in
hat
to
s:
e
r.
,

re
re
Be-

RAPID COMMUNICATIONS

L. M. BURKO AND G. KHANNA PHYSICAL REVIEW D 67, 081502~R! ~2003!
power indexn as a function oft̃ /M , and in Fig. 4B which

displays 72n as a function ofM / t̃ . At t̃ 51500M , we find
that n56.8646. Extrapolatingn to timelike infinity, we find
that n`57.0160.03, in agreement with our expectations.

Our results clearly show that starting with a pure mo
,* ,m, the late-time decay rate is dominated by the le
mode,min , which is consistent with the equatorial symmet
of the initial data and is equal to or greater than the le
radiative mode,05max(usu,umu). The late-time decay rate
is given by t2(2,min13). Our conclusions are in sharp dis
agreement with the recent predictions by Hod@7,8#. Hod’s
analysis is in the frequency domain, and carried to lead
order in v, the angular frequency. That approach is ve
successful in the background of a Schwarzschild black h
where it reproduces the known results@14#. The understand-
ing that the power-law tails result from scattering of the fie
at asymptotically large distances implies that it is only t
smallv which are responsible for the tails. That is indeed
case with a Schwarzschild black hole. We conjecture tha
would also be the case for a Kerr black hole, if there were
excitations of dominating modes which are not present in
initial data. For example, in the case of a scalar field w
,* 5m50, the dominating mode is already present in t
initial data. Considering only the smallv contributions in-
deed produces a result in agreement with numerical sim
tions. When the dominating mode is not present in the ini
data, however, it needs first to be excited. If it is excit
~with any nonzero amplitude!, the smallv approximation
may produce the correct result for the decay rate. Howe
mode excitation is an effect which is nonlinear in the gra
tational potentials, and is strongest in the near zone. T
suggests to us that a leading order~in v) analysis will not, in
general, get all the excited modes right. It might be the c
that higher orders inv are necessary in order to get all th
modes which are excited. Our numerical results indeed s
that when the least mode which can be excited,,min, is
‘‘far’’ from the initial ,* , that technique does not produc
the former. For example, for initial,* 54 and m50, the
leading order in thev analysis was able to get the,51
mode excited~as is manifested by Hod’s decay rate oft25),
but not the,5,min50 mode~which implies a decay rate o
t23). We suggest that although a frequency-domain anal
is capable of getting the decay rate right, it should include
expansion to higher orders inv. Such an expansion woul
be a formidable endeavor. In a similar way, by taking spa
time to be weakly curved everywhere, Poisson tacitly
sumed that it is just the far-zone part of the field which
important. ~In Poisson’s case, we emphasize that this
sumption is well justified, because in the spacetime stud
by Poisson spacetime is nowhere strongly curved. Incid
tally, Poisson suggests a selection-rule mechanism in
spacetime he studied, which is related to the remarkable
ishing of terms in the initial data in the transformation fro
spheroidal to spherical coordinates. The mechanism s
gested by Poisson demonstrates how indeed Hod’s re
could be correct in that context. However, no such mec
nism is offered for a Kerr spacetime.! That assumption is
equivalent to taking the large-r approximation, or the small
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v approximation. Consequently, Poisson and Hod make
fact, the same kind of approximation, such that it is not s
prising that they obtain the same results. We emphasize
Poisson acknowledges that effects which are nonlinear in
gravitational potentials may produce modes with, values
which are smaller than those obtained by him. Poisson t
remarks that no such effects have been reported on in
literature. Evidence for such an effect is precisely what
find here. Although the late-time expansion method@9# does
not seem to suffer from similar weaknesses, it is hard
apply for the problem of interest. Starting with an initial,*
which is ‘‘far’’ from the least mode,min to be excited, the
method of Ref.@9# requires many iterations in order to fin
the excited mode,min . Specifically, three iterations are re
quired in order to find the,50 mode starting with,* 54,
m50. Carrying this iterative scheme in practice seems lik
daunting task. We would like to repeat that while Hod
method fails to obtain the correctasymptoticdecay rate, it
may still be useful in determining anintermediatebehavior
for carefully chosen parameters.

Lastly, our results are in disagreement also with the
merical results of Krivan@11#, who reported on a fractiona
power-law index which is about25.5 for the case of initial
s50, ,* 54 and m50. While we cannot point with cer-
tainty to the reason why Krivan’s simulations produce a
sult for the asymptotic late-time behavior which is at od
with ours, we would like to mention some of the facto
which may be responsible: Krivan takes the black hole
spin exceedingly fast. In fact, Krivan takesa/M50.9999.
The high spin of the black hole may act in two ways: First
slows down the decay rate of the quasi-normal ringing, s
that longer integration times are required in order to obt
the tails. Second, the numerical solution of the Teukols
equation is more sensitive and harder when the spin is v
high. Another factor is related to the location and the dire
tion of Krivan’s initial perturbation. Krivan takes the pertu
bation to be centered aroundr * /M5100, and to have a very
large width~of 100M ). Also, the perturbation is purely out
going on the initial slice. We thus conjecture that the dom
nating,50 mode is excited only with a very low amplitude
because most of the perturbation field does not probe
strong-field region. This, in addition to the great distance a
width of the initial perturbation, may combine into late-tim
tails whose asymptotic behavior becomes evident only
very late times, to which Krivan’s simulations have not a
rived.

The picture which arises for linearized perturbations
the background of a spinning black hole is simpler than t
which is implied by Hod. However, we expect the picture
be even simpler than that for fully nonlinear perturbation
When the initial perturbation is not axially symmetric, th
evolving spacetime will not be axially symmetric eithe
Consequently, them value of the field will not be conserved
and different values ofm will also be excited, preserving
only the equatorial symmetry of the initial data. We therefo
expect a fully nonlinear evolution to yield results which a
simpler than those obtained from a linearized analysis:
cause m is no longer fixed, the restriction of,0 is
2-4
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no longer so strict:,05usu, and the dominating mode i
simply the least, mode which is consistent with the equ
torial symmetry which is equal to or greater than,0. We thus
expect generic tails to always have a decay rate oft2(2usu13).
The more complicated results of this Rapid Communicat
then are an artifact of the linearization: the full theory
simpler.
08150
n

We thank Eric Poisson and Richard Price for discussio
This research was supported by NSF grants PHY-9734
and PHY-0140236. Initial work on this research was do
while L.M.B. was at the California Institute of Technolog
where it was supported by NSF grant PHY-0099568.
thank the Center for Gravitational Physics and Geometry
Penn State for computational facilities.
@1# R.H. Price, Phys. Rev. D5, 2419~1972!.
@2# C. Gundlach, R.H. Price, and J. Pullin, Phys. Rev. D49, 883

~1994!.
@3# L. Barack, Phys. Rev. D59, 044017~1999!.
@4# C. Gundlach, R.H. Price, and J. Pullin, Phys. Rev. D49, 890

~1994!.
@5# L.M. Burko and A. Ori, Phys. Rev. D56, 7820~1997!.
@6# E. Poisson, Phys. Rev. D66, 044008~2002!.
@7# S. Hod, Phys. Rev. D61, 024033~2000!; 61, 064018~2000!.
@8# S. Hod, Phys. Rev. Lett.84, 10 ~2000!.
@9# L. Barack and A. Ori, Phys. Rev. Lett.82, 4388~1999!.

@10# W. Krivan et al., Phys. Rev. D54, 4728~1996!.
@11# W. Krivan, Phys. Rev. D60, 101501~1999!.
@12# M. Campanelliet al., Class. Quantum Grav.18, 1543~2001!.
@13# G. Khanna, Phys. Rev. D65, 124018~2002!.
@14# N. Andersson, Phys. Rev. D55, 468 ~1997!.
2-5


