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Radiative falloff in the background of rotating black holes
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We study numerically the late-time tails of linearized fields with any spimthe background of a spinning
black hole. Our code is based on the ingoing Kerr coordinates, which allow us to penetrate through the event
horizon. The late time tails are dominated by the mode with the least multipole m@nvemth is consistent
with the equatorial symmetry of the initial data and is equal to or greater than the least radiative mosle with
and the azimuthal numben.
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The late-time dynamics of black hole perturbations hasyielded results which are more complicated: The decay rate
been studied for over three decades. A complete understanfhy a scalar field is predicted by Hod to Bg] t~2¢**3) jf
ing of the late-time dyna_m|cs is ava_ulabl_e for a S_chwarzs— *—mor¢*=m+1,t M jf ¢* —m=2 is even, and
child background: Generic perturbation fields of either SCA-_ (px ymi2) . px , . o
lar, electromagnetic, or gravitational fields decay at lat if {*—m=>2is odd, where(* is the initial
times along arr = const curve as an inverse power of time. value of €. For gravitational perturbations Hod’s formula is
Specifically, linearized fieldgthe scalar field itself, or the [8] t~(" 0379 (for axisymmetric perturbationswhere
Teukolsky functiony in the gravitational casedecay as ¢, is the radiative mode with the least value ©f and q
t~(2¢+3) (assuming that the initial data have compact support= min(¢* — €,,2). [Different, apparently conflicting results
and are not time symmetjicwhere{ is the multipole mo-  were reported by Barack and Q8]. Those authors assumed
ment of the perturbation fieldl—3]. This behavior was con- that the modef,m=0 is present in the initial datéor s
firmed also for fully nonlinear collapse of spherical scalar=0); and as a result, it is not straightforward to confront
fields [4,5]. The mechanism which is responsible for this their predictions with Hod's.
behavior is the scattering of the field off the curvature of  Ajthough Hod’s results could be relevant for amerme-
spacetime asymptotically far from the black hole. . diateregime for carefully chosen parameters, they make only

Because it is only the asymptotically far geometry which jiwje sense for describing the intended asymptotic late-time
determln_es. the behaylor of the late-time tails, it |s.natural. Yehavior. These eerie conclusions imply that some sort of a
expect similar behav.|or a_Iso when thg black hole is .mtat'ng‘memory effect” takes place: the field somehow “remem-
[6]. Because spacetime is not spherically symmetric, howb e e X . : . : . )

. . . ers” its initial configuration, despite being a linearized field.

ever, spherical-harmonic modes do not evolve independent! d t beli that h foct | ble:
Specifically, by taking the initial data of the perturbation field € do not believe that such a memory efiect 1S reasonable:
to be a pureY‘™ mode, other modes are excited. Intuitively, Take th*e initial data*at_ th? “.”?‘% to be those of the pure
all the modes which are not disallowdty symmetry re- modet™, such thatt* is significantly larger thary,,. At
quirements(such as the equatorial symmetry of the initial the timet,;>tg 'the'ﬂeld also includes, in addition to the
data or dynamical considerationsuch as that only modes Mode{*, contributions from mode¢<{* because of the
with —é<m<¢ are a”owed] will be excited. In particu|ar, excitation of otherf modes. Now the fields dt=t, can be
modes with¢ values smaller than the original¢ will be ~ construed as the initial data of a new evolutionary problem.
excited, and will dominate at late time@lotice that because In the new problem the initial data are a mixture of modes,
the background is axially symmetric, modes with differentsuch that mode$ smaller than¢* are presenf6]. Because
values of m are not excited wheiiinearized perturbation the mode with the smallest existifgvalue dominates at late
theory is applied. Accordingly, the late-time dynamics is times and determines the decay rate of the tail, we can see no
dominated by the mode with the lea&twhich is excited, way in which the¢* mode can determine the asymptotic
namely the smallest which is not disallowed. That is, all late-time tail, unles* determines which modes can and
modes¢ which are not smaller thajm| and|s|, wheresis  which modes cannot be excited. As in the spacetime of a
the spin weight of the field, and which respect the equatoriaKerr black hole it is hard to see how a scenario in which
symmetry of the initial data, will be excited. The falloff rate modes that are not disallowed can still be excluded, we con-
is thent~(¢min™3) where ¢, is the smallest mode which clude that memory effects are not to be expected. Hod’s re-
can be excited. sults, if correct, suggest to us that a hitherto unsuspected

Despite the simplicity of this intuitive picture, recent pa- mechanism of selection rules inhibits the excitation of other-
pers report conflicting results. An analytical analysis bywise allowed modes. Such counter-intuitive theoretical rea-
Hod—in which the author attempted to find tasymptotic  soning must have strong numerical support in order not to be
behavior of the fields in the spacetime of a Kerr black hole—discarded.
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Conclusions which apparently are similar to Hod’s were _opy andr, =[(r?+a%A ! dr. Notice thatt is linear in
obtained more recently by Poiss$@], who analyzed the t, so that along = const, a/ dt=al at.

scalar-field tails in a general weakly curved, stationary, as- The Teukolsky equation for the functiahin the ingoing

ymptot.ically ﬂ.at spacetime. We emp_hasize that unIikg HOd'SKerr coordinates can be obtained by implementing black
?”a'ys's—wh'c_h IS an attempt to find the asymptotic Iate'hoIe perturbation theorgwith a minor rescaling of the Kin-
time behavior in the spacetime of a spinning black hole—nersley tetrad12)). It is given by
Poisson’s analysis aims at finding the behavior in a space-
time in which curvature is weak everywhere. While P P P
Poisson’s analysis and results are correct for the spacetime (2+2MF)TZ—AW+2(S— 1)(f—'\/|)§
he studies, one should use caution when inferring from Pois- Jt

son’s results on the asymptotic late-time behavior in a Kerr 1 9 ( 07‘#) 1 2y Py

geometry: Although the asymptotically-far geometries are ——— —|sinf— “oite 2 r—
similar, the near-field geometries are very different. As we sing 3¢ d0) sl 5 dtar
discu'ss below, t_hat is a crucial element in understanding the 2y 2scotl oy
late-time behavior. —2a——— —j— — +(s%colo+s)y

Hod’s surprising predictions agree with some reported rde Sinb ge
numerical simulations. In particular, for the case0, o
¢*=0, m=0 Hod's formula predicts a decay rate of, +2[sr+iascosf+(s—1)M]— =0. 2)
which is indeed found10]. For the cases=0, ¢*=4, ot
m=0, however, Hod’s formula predicts a decay rate of, , . . .
whereas the intuitive picture predicts a decay rate of Equation(2) has no singularities at the event horizon, and

This case was simulated numerically by Krivetl], who therefore is capable of evolving data across it. The PTC
found a decay rate with a non-integral index close-t6.5.  Implements the numerical integration of ) by decom-
Like Hod, Krivan also tried to find the asymptotic late-time POSINg it into azimuthal angular modes and evolving each

behavior in the Kerr spacetime. Some view this as a loos§YCh mode using a reduced-2 dimensional linear partial
confirmation of Hod's predictiori6], with numerical accu- differential equation. The results obtained from this code are

racy of 10%, and as an invalidation of the intuitive picture. iNdependent of the choice of boundary conditions, because
In this Rapid Communication we present results from in-the inner boundary is typically placed inside the horizon,
dependent numerical simulations for linearized perturbatiofn€réas the outer boundary is placed far enough that it has

fields over a Kerr background. Our simulations show a cleaP© &ffect on the evolution. _ , L
falloff rate of t=3 for the initial data ofs=0, ¢*=4. m The PTC has been tested in various different situations.

—0. The quality of our results invalidates Hod's prediction First, it yields the correct complex frequel_wcies for the quasi-

for the asymptotic decay rate, and points at difficulties with?°rmal modes of a Kerr black hole for a wide range of values

Krivan's simulations or their interpretation. In all the cases®f &M ; Second, it has also been.shlown ,to, yield equivalent

we have checked, for either a scalar or a gravitational ﬁe|dfesults in the context of the close limit collision of two equal

we find that the intuitive picture is correct: the late time Mass, non-spinning, non-boosted black haltes ones ob-

behavior is dominated by the mode with the lowest value of@ined from the Zerilli formalism[13]. It is stable, and ex-

¢ which can be excited. In particular, no spooky memoryhlblts second-order convergence.

effects oceur. We next seta/M=0.9, s=0, and¢*=4, m=0. The
We used the penetrating Teukolsky cotRTC) [12], |n|t_|al Gaussian _perturbaﬂon is taken to be a mlxture_ of in-

which solves the Teukolsky equation for linearized perturba90ing and outgoing waves, and centered abeu2OM with

tions over a Kerr background in the ingoing Kerr coordinates? Width of 4M. As discussed above, our expectations are that
~ ~ L all the evenf modes are excite(respecting the equatorial
(t,r,0,¢). The Kerr metric is given by

symmetry of the initial data The leastf{ mode which is
oM excited is thef =0 mode, so that the decay rate we expect is
1+ —)drz—E de? t~3. In contrast, the prediction of Hod is for a decay rate of
3 t~°. Figure 1 shows the Teukolsky functianfor these ini-
tial data for6= /2 (the equatorial plangor three different

2Mr\ -
_|1_ 2_
dsz—(l 5 )dt

2
—sirtol r2+ a2+ a rsinze)d}z— M dt dr resolutions. The data clearly indicate stability and second-
D order convergence.
AMra o IMr B A decay rate of about™2 is already clear from Fig. 1.
+ sirfg dt deo+ 2asirfe 1+—)drd¢, Evaluating the decay rate from the slope of the field is very
z z inaccurate: The slope then depends on the interval one

(1) chooses, and also on the presence of subdominant modes.
The first difficulty can be handled by considering tloeal

where3 =r2+a%cog6, andM,a are the mass and the spe- power index r{5], which we define as= —(t/) ;. The
cific angular momentum, respectively. These coordinates argecond difficulty can be handled by extrapolatmtp time-

related to the Boyer-Lindquist coordinatesr( ¢, ¢) through ke infinity. Figure 2A shows as a function oM/t. Time-
o=¢+faA"tdr and t=t—r+r,, where A=r?+a? like infinity is at zero, and both the regime where the field is
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FIG. 1. The Teukolsky functions as a function oft for three
different grid resolutions, fos=0, a/M=0.9, {* =4, andm=0.
Dotted line: 8000 steps inand 40 steps i. Dashed line: 10000
steps inr and 50 steps iM. Solid line: 12000 steps inand 60 steps
in #. The time step is always taken to be half the step ifhe data
are shown along=20M on the equatorial plane.
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FIG. 3. The normalized Teukolsky functiog/(6=0) as a
function of # atr =25M, for the same data as in Fig. 1, for various
values oft. Upper panel: Ait =150M (dotted ling, 200M (dash-
dotted, 250M (dashed, and 300/ (solid line). Lower panel: Aft
=400M(0), 500M(*), 600M(O), 70M(+), 800M (dotted
line), 900M (dash-dotte 1000M (dashegl and 15001 (solid
line).

dominated by the quasi-normal ringing and the regime where ) o )
the field is dominated by the power-law tails are shown. Thdate times it is indeed described by tife=0 mode. Any

local power indexn=2.9846 att = 1500M . Figure 2B shows

the behavior of 3-n as a function ofM/t. Clearly, n gets
closer with time to the expected value of 3. In fact, extrapo

lating n to t— using Richardson’s deferred approach to the

limit, we find the asymptotic value afi to be n,=3.0003

dependence ofy on 6 is smaller than 3 parts in $0att
=100QM.

Next, we present results for the behavior of fields with
higher spins. We set the parameterste2, a/M =0.3, and
initial 1* =6, m=0. The pulse is again centered abaut

.=20M with a width of 4M. The prediction of Hod’s formula

*=0.0011. Our results suggest that the late-time field is domiz, ihis case is a decay rate bf°. In this case our expecta-

nated by the =0 mode. We checked this by plottingas a

function of @ in Fig. 3 for different values of. We indeed
find that ¢ quickly loses any dependence énsuch that at
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FIG. 2. The local power index for the same data as in Fig. 1.
Upper panel(A): n as a function ofM/t. Lower panel(B):

tions are that the least mode to be excited is thé=2
mode. Consequently, we expect the decay rate td He
This is indeed confirmed in Fig. 4A, which shows the local
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FIG. 4. The local power index f@=2, a/M=0.3,1* =6, and

m=0. Upper pane(A): n as a function oft/M. Lower panel(B):

l0g1g|3—n| as a function oM/t. The data are shown for an equa- log;o(7—n) as a function oM/t. The data are taken for an equa-

torial curve atr =20M.

torial curve atr =20M.
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power indexn as a function oft/M, and in Fig. 4B which @ approximation. Consequently, Poisson and Hod make, in
displays 7-n as a function oM/T. At T=1500M, we find fact, the same kind of approximation, such that it is not sur-

that n=6.8646. Extrapolating to timelike infinity, we find prising that they obtain the same results. We emphasize that
thatn..=7.01+0.03, in agreement with our expectations Poisson acknowledges that effects which are nonlinear in the

Our results clearly show that starting with a pure modegr":l_\”t""t'on""I potentials may produ_ce mode_s \Mfth/_alues
¢*,m, the late-time decay rate is dominated by the IeasYVh'Ch are smaller than those obtained by him. Poisson then

mode{ ,i,, which is consistent with the equatorial symmetry r.emarks that. no such effects have be(_an repc_>rted on in the
of the initial data and is equal to or greater than the Ieasrterature. Evidence for such an effect is precisely what we
radiative modef,=max(s|,|m|). The late-time decay rate

is given byt~ (?min™3)  Our conclusions are in sharp dis-

agreement with the recent predictions by Haq8]. Hod’s

vsis is in the f . i leadi
analysis s in the frequency domain, and carried to eaqun:ethod of Ref[9] requires many iterations in order to find

order in w, the angular frequency. That approach is very . - ; :
successful in the background of a Schwarzschild black hold!€ €XCited mode ;. Specifically, three iterations are re-

where it reproduces the known resyligf]. The understand- quired in Om_'er to_f|r_1d thgfzo mode_startmg withe™ :4’.

ing that the power-law tails result from scattering of the field™=0- Carrying this iterative scheme in practice seems like a
at asymptotically large distances implies that it is only thedaunting task. We would like to repeat that while Hod's
smallw which are responsible for the tails. That is indeed theMethod fails to obtain the correesymptoticdecay rate, it
case with a Schwarzschild black hole. We conjecture that i@y still be useful in determining antermediatebehavior
would also be the case for a Kerr black hole, if there were ndor carefully chosen parameters.

excitations of dominating modes which are not present in the Lastly, our results are in disagreement also with the nu-
initial data. For example, in the case of a scalar field withmerical results of Krivarj11], who reported on a fractional
€*=m=0, the dominating mode is already present in thepower-law index which is about 5.5 for the case of initial
initial data. Considering only the smadl contributions in- s=0, ¢*=4 andm=0. While we cannot point with cer-
deed produces a result in agreement with numerical simulaainty to the reason why Krivan’s simulations produce a re-
tions. When the dominating mode is not present in the initialsult for the asymptotic late-time behavior which is at odds
data, however, it needs first to be excited. If it is excitedwith ours, we would like to mention some of the factors
(with any nonzero amplitude the smallw approximation which may be responsible: Krivan takes the black hole to
may produce the correct result for the decay rate. Howevegpin exceedingly fast. In fact, Krivan takeg¢M =0.99909.
mode excitation is an effect which is nonlinear in the gravi-The high spin of the black hole may act in two ways: First, it
tational potentials, and is strongest in the near zone. Thislows down the decay rate of the quasi-normal ringing, such
suggests to us that a leading ordierw) analysis will not, in  that longer integration times are required in order to obtain
general, get all the excited modes right. It might be the casehe tails. Second, the numerical solution of the Teukolsky
that higher orders i are necessary in order to get all the equation is more sensitive and harder when the spin is very
modes which are excited. Our numerical results indeed showigh. Another factor is related to the location and the direc-
that when the least mode which can be excitégl,, is  tion of Krivan's initial perturbation. Krivan takes the pertur-
“far” from the initial €*, that technique does not produce bation to be centered aroung /M =100, and to have a very
the former. For example, for initiaf* =4 andm=0, the large width(of 100M). Also, the perturbation is purely out-
leading order in thew analysis was able to get the=1  going on the initial slice. We thus conjecture that the domi-
mode excitedas is manifested by Hod’s decay ratetof), nating€ =0 mode is excited only with a very low amplitude,
but not thet¢ = ¢ ;=0 mode(which implies a decay rate of because most of the perturbation field does not probe the
t~3). We suggest that although a frequency-domain analysistrong-field region. This, in addition to the great distance and
is capable of getting the decay rate right, it should include anvidth of the initial perturbation, may combine into late-time
expansion to higher orders in. Such an expansion would tails whose asymptotic behavior becomes evident only at
be a formidable endeavor. In a similar way, by taking spacevery late times, to which Krivan's simulations have not ar-
time to be weakly curved everywhere, Poisson tacitly astived.

sumed that it is just the far-zone part of the field which is  The picture which arises for linearized perturbations in
important. (In Poisson’s case, we emphasize that this asthe background of a spinning black hole is simpler than that
sumption is well justified, because in the spacetime studieavhich is implied by Hod. However, we expect the picture to
by Poisson spacetime is nowhere strongly curved. Incidenbe even simpler than that for fully nonlinear perturbations:
tally, Poisson suggests a selection-rule mechanism in thé&/hen the initial perturbation is not axially symmetric, the
spacetime he studied, which is related to the remarkable vamvolving spacetime will not be axially symmetric either.
ishing of terms in the initial data in the transformation from Consequently, then value of the field will not be conserved,
spheroidal to spherical coordinates. The mechanism sugnd different values om will also be excited, preserving
gested by Poisson demonstrates how indeed Hod’s resultsly the equatorial symmetry of the initial data. We therefore
could be correct in that context. However, no such mechaexpect a fully nonlinear evolution to yield results which are
nism is offered for a Kerr spacetimeThat assumption is simpler than those obtained from a linearized analysis: Be-
equivalent to taking the largeapproximation, or the small- cause m is no longer fixed, the restriction of, is

ind here. Although the late-time expansion meth®tdoes
not seem to suffer from similar weaknesses, it is hard to
apply for the problem of interest. Starting with an inittai
hich is “far” from the least modef ,,;, to be excited, the
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