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Kerr black-hole quasinormal frequencies
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Black-hole quasinormal modes~QNM! have been the subject of much recent attention, with the hope that
these oscillation frequencies may shed some light on the elusive theory of quantum gravity. We compare
numerical results for the QNM spectrum of the~rotating! Kerr black hole with anexact formula Rev
→TBHln 31Vm, which is based on Bohr’s correspondence principle. We find a close agreement between the
two. The possible implications of this result to the area spectrum of quantum black holes are discussed.
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Gravitational waves emitted by a perturbed black hole
dominated by ‘‘quasinormal ringing,’’ damped oscillation
with a discretespectrum@1#. At late times, all perturbations
are radiated away in a manner reminiscent of the last p
dying tones of a ringing bell@2–5#. The quasinormal mode
frequencies ~ringing frequencies! are the characteristic
‘‘sound’’ of the black hole itself, depending on its paramete
~mass, charge, and angular momentum!.

The free oscillations of a black hole are governed by
well-known Regge-Wheeler equation@6# in the case of a
Schwarzschild black hole, and by the Teukolsky equation@7#
for the ~rotating! Kerr black hole. The black hole QNM cor
responds to solutions of the wave equations with the phys
boundary conditions of purely outgoing waves at spatial
finity and purely ingoing waves crossing the event horiz
@8#. Such boundary conditions single outdiscretesolutionsv
~assuming a time dependence of the formeivt).

The ringing frequencies are located in the complex f
quency plane characterized by Imv.0. It turns out that for
a given angular harmonic indexl there exists an infinite
number of quasinormal modes, forn50,1,2, . . . , character-
izing oscillations with decreasing relaxation times~increas-
ing imaginary part! @9,10#. On the other hand, the real part
the frequencies approaches an asymptoticconstantvalue.

The QNM frequencies, being a signature of the black-h
spacetime are of great importance from the astrophys
point of view. They allow a direct way of identifying th
spacetime parameters~especially, the mass and angular m
mentum of the central black hole!. This has motivated a
flurry of activity with the aim of computing the spectrum o
oscillations~see e.g.@1# for a detailed review!.

Recently, the quasinormal frequencies of black holes h
acquired a different importance@11–17# in the context of
loop quantum gravity, a viable approach to the quantizat
of general relativity~see e.g.@18,19# and references therein!.
These recent studies are motivated by an earlier work of H
@20#. A few years ago I proposed to useBohr’s correspon-
dence principlein order to determine the value of the fund
mental area unit in a quantum theory of gravity.

To understand the original argument it is useful to rec
that in the early development of quantum mechanics, B
suggested a correspondence between classical and qua
properties of the hydrogen atom, namely that ‘‘transition f
quencies at large quantum numbers should equal clas
oscillation frequencies.’’ The black hole is in many sens
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the ‘‘hydrogen atom’’ of general relativity. I therefore sug
gested@20# a similar usage of the discrete set of black-ho
frequencies in order to shed some light on thequantumprop-
erties of a black hole. However, there is one important d
ference between the hydrogen atom and a black hole: wh
~classical! atom emits radiation spontaneously according
the~classical! laws of electrodynamics, aclassicalblack hole
does not emit radiation. This crucial difference hints that o
should look for the highly damped black-hole free oscil
tions @let v5Rev1 i Im v, thent[(Im v)21 is the effec-
tive relaxation time for the black hole to return to a quiesc
state after emitting gravitational radiation. Hence, the rel
ation timet→0 as Imv→`, implying no radiation emis-
sion, as should be the case for a classical black hole#.

Leaver @9# was the first to address the problem of com
puting the black hole highly damped ringing frequencie
Nollert @21# found numerically that the asymptotic behavi
of the ringing frequencies of a Schwarzschild black hole
given by ~we normalizeG5c52M51)

vn50.08742471
i

2 S n1
1

2D , ~1!

as n→` @22#. The asymptotic behavior Eq.~1! was later
verified by Andersson@23# using an independent analysis.
Ref. @20# I realized that the asymptotic real part of the fr
quencies equals (ln 3)/(4p), and proposed a heuristic pictur
~based on thermodynamic and statistical physics argume!
trying to explain this fact. Most recently, Motl@13# has given
an analytical proof for this conjecture.

Using the relationA516pM2 for the surface area of a
Schwarzschild black hole, andDM5E5\v one findsDA
54,P

2 ln 3 with the emission or absorption of a quantum
where,P is the Planck length. Thus, we concluded that t
area spectrum of the quantum Schwarzschild black hol
given by

An54,P
2 ln 3•n, n51,2, . . . . ~2!

This result is remarkable from a statistical physics po
of view. It does not relay in any way on the well know
thermodynamic relation between black-hole surface area
entropySBH5 1

4 A @24#. In the spirit of Boltzmann-Einstein
formula in statistical physics, Mukhanov and Bekenste
@25–27# relategn[exp@SBH(n)# to the number of microstate
©2003 The American Physical Society01-1
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of the black hole that correspond to a particular exter
macrostate. In other words,gn is the degeneracy of thenth
area eigenvalue. The accepted thermodynamic relation
tween black-hole surface area and entropy@24#, combined
with the requirement thatgn has to be an integer for everyn,
actually enforce a factor of the form 4 lnk ~with k
52,3, . . . ) in Eq.~2!. We have shown that the valuek53 is
the only one compatible both with the area-entropy therm
dynamic relation for black hole, and with Bohr’s correspo
dence principle as well.

Bekenstein@24,27,28# ~see also@20,29# and references
therein! has given evidence for the existence of a univer
~i.e., independent of the black-hole parameters: mass, ch
and angular momentum! area spacing for quantum blac
holes. This, combined with the universality of the black-ho
entropy~i.e., its direct thermodynamic relation to the blac
hole surface area! suggest that the area spectrum Eq.~2!
should be valid for rotating black holes as well. In fact, o
analysis leads to a natural conjecture for the asymptotic
havior of the highly damped quasinormal frequencies o
generic~rotating! Kerr black hole. First, we use the first la
of black-hole thermodynamics

DM5TBHDS1VDJ, ~3!

where TBH5(r 12r 2)/A is the Bekenstein-Hawking tem
perature, andV54pa/A is the angular velocity of the
black-hole horizon@r 65M6(M22a2)1/2 are the black hole
~event and inner! horizons, anda5J/M is the black hole
angular momentum per unit mass#. Taking cognizance of
Eqs.~2! and~3! @together with the relationS5 1

4 A], one finds

Rev→TBH ln 31Vm, ~4!

FIG. 1. Real part of the Kerr black hole QNM frequencies a
function of the black hole rotation parametera. The numerical re-
sults are for gravitational quasinormal modes withl 5m52. The
predictedvalues~solid line! agree with thenumericallycomputed
ones~dashed line! to within ;5%.
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wherem is the azimuthal eigenvalue of the oscillation. Th
corresponding problem of the hydrogen atom in quant
mechanics hints that the formula should be valid in thel
5m case.

It should be emphasized that the asymptotic behavio
the black hole ringing frequencies is known only for th
simplest case of a Schwarzschild black hole. Less is kno
about the corresponding QNM spectrum of the~rotating!
Kerr black hole@9,30,31#. This is a direct consequence of th
numerical complexity of the problem. Onozawa@31# com-
puted the first nine frequencies of the Kerr black hole. It is
great interest to compare the conjectured asymptotic be
ior given by Eq.~4! with the results of direct numerical com
putations.

Figure 1 displays Rev for the Kerr black hole, as com
puted numerically in@31# ~we use then59 overtone!, and
compare it with the analytically conjectured formula Eq.~4!
@32#. We find that the predicted results agree with the n
merically computed ones to within;5%.

Note that the imaginary parts of the asymptotic QN
frequencies areequally spaced in the Schwarzschild ca
@see Eq.~1!#, with a spacing of 1/4M52pTBH . In order to
check if this relation holds true for~generic! Kerr black holes
as well, we display in Fig. 2 the spacingD(Im v) using the
numerical data of@31#, and compare it with a predicted valu
of 2pTBH . For a.0.1, we find that the numerically com
puted values agree with the predicted ones to within;7%.

In summary, based on Bohr’s correspondence princ
we have conjectured a simple formula for the asympto
QNM frequencies of a generic~rotating! Kerr black hole. We
find a good agreement between the theoretically predic
frequencies and the numerically computed ones. This ag
ment lends support for the validity of the area spectr
Eq. ~2!.

I acknowledge support by the Dr. Robert G. Picard fu
in physics. This research was supported by grant 159/9
from the Israel Science Foundation.

a FIG. 2. Spacing of Imv as a function of the black hole rotatio
parametera. Fora.0.1, thepredictedvalues~solid line! agree with
the numericallycomputed ones~dashed line! to within ;7%.
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