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Noncommutative inflation

Stephon Alexander
Theoretical Physics, The Blackett Laboratory, Imperial College, Prince Consort Road, London, SW7 2BZ, United Kingdom

Robert Brandenberger
Physics Department, Brown University, Providence, Rhode Island 02912

João Magueijo
Theoretical Physics, The Blackett Laboratory, Imperial College, Prince Consort Road, London, SW7 2BZ, United Kingdom

~Received 7 January 2003; published 17 April 2003!

We show how a radiation dominated universe subject to space-time quantization may give rise to inflation as
the radiation temperature exceeds the Planck temperature. We consider dispersion relations with a maximal
momentum~i.e., a minimum Compton wavelength, or quantum of space!, noting that some of these lead to a
trans-Planckian branch where energy increases withdecreasingmomenta. This feature translates into negative
radiation pressure and, in well-defined circumstances, into an inflationary equation of state. We thus realize the
inflationary scenario without the aid of an inflaton field. As the radiation cools down below the Planck
temperature, inflation gracefully exits into a standard big bang universe, dispensing with a period of reheating.
Thermal fluctuations in the radiation bath will in this case generate curvature fluctuations on cosmological
scales whose amplitude and spectrum can be tuned to agree with observations.
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I. INTRODUCTION

In spite of the success of the inflationary universe s
nario @1# in solving some of the mysteries of standard co
mology and of providing a mechanism which explains t
origin of density fluctuations on cosmological scales,
mechanism which to date has passed all of the observati
challenges, we still do not have a convincing realization
inflation based on fundamental physics. Moreover, the us
realizations of inflation based on weakly coupled scalar m
ter fields ~see e.g.@2,3# for comprehensive reviews! are
plagued by important conceptual problems@4#. Thus, it is of
great interest to explore possible realizations of inflat
based on new fundamental physics. In particular, since in
tion may occur at energy scales close to the Planck scale,
of interest to consider the implications of the recent dev
opments in our understanding of physics at the Planck s
for inflation.

Space-time noncommutativity is one of the key new ide
which follows from recent developments in string and mat
theory @5#. It is thus of great interest to explore the comp
ibility of noncommutative space-time structure with inflatio
~see@6,7# for ideas on how to solve some of the problems
standard cosmology without inflation in noncommutative g
ometry!. Noncommutativity, and space-time quantization,
general lead to deformed dispersion relations~see e.g.@8#!. It
has been shown@9–11# ~see also@12,13#! that this can have
important consequences for the predictions of inflati
These authors demonstrated that the short distance c
given by modifying the usual commutation relations

@x,p#5 i\~11bp2! ~1!

changes the perturbation spectrum due to quantum fluc
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tions. Implicit in this approach is the necessity of an inflat
field generating a de Sitter phase.

In this Rapid Communication, we go one step further a
identify dispersion relations for ordinary radiation whic
lead to inflation, without the need to introduce a new fund
mental scalar field. Thermal fluctuations then replace qu
tum fluctuations as the seeds of cosmic structure, simila
what happens in thewarm inflationscenario@14#.

The dispersion relations derived from the noncommu
tive structure of space-time have the property that there
maximum momentum~corresponding to a minimum Comp
ton wavelength or quantum of space!. Typically all trans-
Planckian energies get mapped into this maximal mom
tum. However it is also possible to write down deformatio
for which trans-Planckian energies get mapped into all m
menta smaller than this maximal momentum. In the lat
case for a given momentum there are two energy levels,
sub-Planckian the other trans-Planckian. Along the tra
Planckian branch as one decreases the momentum of a
ticle its energy increases.

This unusual feature implies that as we expand a box w
radiation thermally excited into the trans-Planckian bran
and thereby stretch the wavelength of all particles and
crease their momenta, their energies actually increase.
creased bulk energy as a result of expansion is the hallm
of negative pressure. We follow the thermodynamical cal
lation in detail, with a mixture of analytical~as developed in
@7#! and numerical methods, to show that it is possible
generate an inflationary high energy equation of state
thermalized radiation subject to space-time noncommuta
ity. We identify a class of dispersion relations for which th
occurs. We also find dispersion relations for which the eq
tion of state corresponds to ‘‘phantom’’ matter@15#.
©2003 The American Physical Society01-1
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II. MODIFIED DISPERSION RELATIONS,
THERMODYNAMICS AND INFLATION

We start by recalling that noncommutativity leads to d
formed dispersion relations, but whereas space-space
commutativity must introduce anisotropic deformation
space-time noncommutativity preserves isotropy. Hence
the latter case, for massless particles, the dispersion rela
may be written

E22p2c2f 250 ~2!

where c is a constant reference speed, identified with
low-energy speed of light. We explore dispersion relations
the form

f 511~lE!a. ~3!

The casea51 was proposed in@16# and its implications
considered in@7#, and leads to a density dependent equat
of statew5p/r (p andr denoting pressure and energy de
sity, respectively! which diverges like log(lr). We also recall
that for this model the color temperature~i.e., the peak of the
thermal spectrum! saturates atTc'1/l. In the caseaÞ1,
the high energy equation of statew(r→`) turns out to be a
constant, and this leads to much simpler cosmological s
narios. Depending ona we obtain a realization of varying
speed of light~VSL: @17,18#!, inflation, or phantom matte
@15#. We prove this feature by following the thermodynam
cal derivations described in@7#.

As shown in@7# the deformed thermal spectrum is give
by

r~E!5
1

p2\3c3

E3

ebE21

1

f 3 U12
f 8E

f U ~4!

~note the modulus in the last factor, to be taken whenever
Jacobian of the transformationdE/dp is not positive defi-
nite!. This leads to

r~E!5
1

p2\3c3

E3

ebE21

u11~12a!~lE!au

„11~lE!a
…

4
. ~5!

We see that the peak ofr(E) scales likeT for a,2/3, as
illustrated in Fig. 1. Fora.2/3 the peak saturates atE
51/l, but there is a wide tail up toE5T for values in the
range 2/3,a,1 ~see Fig. 1!. For a.1 the spectrum be
comes double peaked, with peaks located atlE;1 for lT
@1. The shape of the spectrum becomes temperature i
pendent sincer(E) acquires the form of a temperature ind
pendent function of energy multiplied byT ~see Fig. 1!.
Since the ambient speed of light is given byc5dE/dp
5c(E)5c(Tpeak) we see that only models witha,1 can be
implemented as VSL models. Fora.1 hotter radiation
means more photons with the same maximal energy,
hence with the same speed. Only fora,1 does hotter radia
tion mean more energetic and faster photons, opening d
to VSL.

Next we examine whether or not denser radiation me
hotter radiation. To answer this question we integrater(E)
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to obtain a high-temperature Stephan-Boltzmann law rela
r and T. We find a power-law of the formr}Tg, with an
asymptotic value forg which varies from 4~for a50) to 1
~for all a>1). The transition from low to high temperatur
behavior for different values ofa is plotted in Fig. 2. The
conclusion is that in all cases denser radiation correspond
hotter radiation.

Finally the equation of state follows from~see@7#!

p5
1

3E r~E!dE

12
f 8E

f

. ~6!

Given that the denominator of the integrand is a constan
low and high energies, we may expect that the high ene
equation of state is a constant approximated by

w~r→`!'
1

3~12a!
. ~7!

Of course, this formula assumes that the peak ofr(E) is
located at super Planckian energies, where the denomin
assumes its high energy constant value. This does not alw
happen~e.g. fora>1), so a numerical integration of Eq.~6!
is necessary. We present the result in Fig. 3, where we
plot the approximation~7!.

We see that in the regime where VSL may be realiz
(a,1) we do not have inflation, but fora.1 we have

FIG. 1. The thermal spectrum for different temperatures fora
50.5,0.7,4. Fora50.5, the peak of the spectrum scales like t
temperature. Fora50.7, although the peak does not vary mu
with the temperature, the tail of the spectrum extends to regi
which scale with the temperature. Fora54 we obtain a double
peaked spectrum whose amplitude scales likeT ~we have divided
all amplitudes byT for convenience!, so that the shape does no
depend on temperature.
1-2
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negative pressures. Numbers 1,a1,a2 can be found such
that for 1,a,a1 noncommutative radiation atT@1/l be-
haves like phantom matter (w,21). For a1,a,a2 we
have standard inflationary expansion, with21,w,21/3,
for temperaturesT@1/l.

FIG. 2. The high-energy Stephan-Boltzmann lawr}Tg, for dif-
ferent values ofa and different temperatures. The thick line deno
the casea51 studied in a previous work. We see that in all cas
hotter radiation translates into denser radiation, although in gen
1,g,4.

FIG. 3. The high energy equation of state for different values
a. We also plotted~dashed line! the approximation mentioned in
the text. The shaded region delimits the values ofa for which one
may have inflationary expansion.
08130
Hence whena1,a,a2, we have a scenario in which th
Universe is always filled with radiation, but in the Planc
epoch ~or more precisely whenT@1/l) radiation drives
power-law inflation. As a result of expansion this inflationa
radiation cools down, sincew,21 implies thatr drops
with expansion, andr}T implies thatT decreases too. Whe
the radiation temperature drops below the Planck temp
ture its equation of state reverts to that of normal radiati
Then, the Universe enters a standard radiation domina
epoch. Our inflationary scenario does not have a grac
exit problem, and we have no need of a reheating period1

The critical casea5a1, however, does not benefit from
graceful exit. It drives exponential inflation, but the radiati
equation of state is that of a cosmological constant (w5
21). As a resultr and T stay constant, and the Univers
never exits the de Sitter phase to enter a radiation domin
phase.

The cases 1,a,a1 are more complex and will be ex
amined further elsewhere. For these models there is a cri
rc such thatw(rc)521; for r,rc we havew.21 and
for r.rc we have w,21. If the Universe starts off
trans-Planckian (r.rc) and expanding, we have
a}(2t)2/3(11w), that is hyperinflation. However as th
Universe expands it gets denser and hotter~sincew,21,
andr}T), eventually reaching infinite density att50: per-
haps this possibility may be used to realize the pre-big-b
scenario@19#. The only regular universe within this case h
an infinite de Sitter past withr5rc . However in this model
de Sitter space is unstable. Any small nudge and it eit
plunges into an eternal Planck epoch withr.rc ~with a
possible pre-big-bang exit! or it decays into a standard radia
tion epoch.

To obtain a heuristic explanation for the origin of negati
pressures fora.1, note that the pressure may be inferr
from the change in the energy inside a box when its size
increased:

p5(
s

ns S 2]Es

]V D ~8!

where s labels states,ns their occupation numbers, andV
5L3 the volume of a box of sideL. The momenta are given
by p5(2p\/L)n, wheren is a triplet of quantum number
indexing the states. Hence as the volume increases the m
menta of all states decreases, since their Compton w
lengths are stretched proportionally toL. Usually this trans-
lates into a decrease in the energy: hence the pos
pressure of a gas. However for a high temperature gas liv
in noncommutative space witha.1 the energy of the domi-
nant branch of the dispersion relation~the higher energy
branch! is a decreasing function of the momentum. Henc
larger box is reflected in longer Compton wavelengths

1The viability of our scenario demands that the mode interacti
in the expanding phase are sufficiently strong to maintain ther
equilibrium. In the absence of a fundamental theory which giv
rise to our modified dispersion relation, a quantitative analysis
this issue is outside of the realm of this paper.
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these states, and consequently smaller momenta, but
this implies a larger energy. Thus, by expanding a box
noncommutative radiation, the system gains energy, wh
corresponds to negative pressure.

What is the meaning of the parametersa and l? Using
Eqs.~2! and ~3! we can derive

p5
E

c„11~lE!a
…

~9!

from which we see that fora51 there is a maximum al
lowed momentumpmax51/(cl). Its corresponding Comp
ton wavelength is therefore the minimum length that can
physically probed, corresponding to the quantum of spa
Hencel is the parameter determining the size of the qu
tum of space. Asp→pmax, the energiesE(p) span all pos-
sible super Planckian energies all the way up to infinity
a51. This changes dramatically ifa.1: then Eq.~9! also
shows that there is a maximum momentum; however in
case super Planckian energies do not all get mapped into
momentum—rather we find that for all allowed momentap
,pmax there are two energy levels, one sub-Planckian
other super-Planckian. The functionp(E) acquires two
branches, along one of whichp decreases withE. Finally the
casea,1 does not contain a sharp maximum momentum
merely a suppression of variation in momenta with ene
for momenta above a given threshold.

III. COSMOLOGICAL FLUCTUATIONS

In our inflationary Universe scenario, it is thermal flu
tuations which are responsible for generating the curva
fluctuations which develop into the observed perturbati
on cosmological scales. A simple way to estimate the res
ing spectrum~see@20# for a detailed analysis! is to assume
fractional thermal density fluctuations of order unity on t
thermal wavelength scaleT21. Random superposition o
these fluctuations leads to fractional mass fluctuations
Hubble radius scaleH21 measured at the timet i(k) that a
particular wave numberk crosses the Hubble scale durin
inflation

dM

M
„t i~k!…5AS H

T D 3/2

~10!

whereA is a positive constant smaller than 1. It is convenie
to express this result in terms of the physical scalesl
and mpl , and the numberN(k) of Hubble times between
t i(k) and the end of inflation~which roughly occurs
when T5l21). Application of the Friedmann equation
yields

dM

M
„t i~k!…5A~lmpl!

23/2e23N/(2p), ~11!

where p is the power with which the scale factora(t) in-
creases during the period of power law inflation.
08130
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In order to relate~10! with the fractional mass fluctuation
when the scale re-enters the Hubble radius at timet f(k), we
make use of the fact that fractional density fluctuations
crease betweent i(k) andt f(k) by a factor given by the ratio
of 11w at the respective times@21–24#. This factor is 2p.
In order to obtain a spectral slope consistent with the CO
data, the powerp has to be sufficiently large. In this cas
requiring that the amplitude of the fluctuations agree with
data requiresl21 to be a couple of orders of magnitud
smaller thanmpl , which from the point of view of string
theory is not unreasonable.

IV. DISCUSSION AND CONCLUSIONS

In summary, noncommutative space-time geometry le
to modified dispersion relations. We have identified a clas
dispersion relations which change the high-temperat
equation of state of thermal relativistic matter into that
inflationary matter. In this scenario inflation does not requ
a different type of matter—standard radiation suitably hea
up will behave like the proverbial inflaton field. As inflation
ary expansion proceeds, the radiation cools down until
equation of state reverts to that of ordinary radiation a
consequently the Universe enters the standard hot-big-b
phase.

In the proposed scenario, thermal fluctuations in
radiation bath will generate the necessary density fluct
tions to explain the structure of the universe. As discusse
detail in @20#, the predicted spectrum is not exactly sca
invariant, as in power-law inflation. Given the improvin
limits on the deviation of the spectral slope from exact sca
invariance~see e.g.@25#!, this more tightly constrains the
parameter space of our scenario. Note, however, that
spectral amplitude can quite easily be tuned to agree w
observations.

Note that the energy scale at which the modificatio
to the dispersion relation become important will most like
be comparable to the Planck scale of the underlying fun
mental theory. Thus, inflation may well occur at ener
scales higher than that of conventional grand unified mod
Thus, there is the danger that in our scenario unwanted
pological defects such as monopoles and domain walls
be produced. However, in the context of string theory mo
vated effective field theories at the unification scale, it is n
required to have a unified gauge group~separateU(1) fac-
tors are rather common!. Thus, in this context one may we
have models which do not yield any unwanted topologi
defects.
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