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The sswave meson-baryon scattering is analyzed for the strange&wessl and isospin =0 sector in a
Bethe-Salpeter coupled channel formalism incorporating chiral symmetry. Four channels have been consid-
ered: 73, KN, nA, andKE. The required input to solve the Bethe-Salpeter equation is taken from lowest
order chiral perturbation theory in a relativistic formalism. There appear undetermined low energy constants, as
a consequence of the renormalization of the amplitudes, which are obtained from fits#& ther> mass
spectrum, to the elastiEN—KN and KN— 73 t matrices and to th& p— 7A cross section data. The
position and residues of the complex poles in the second Riemann sheet of the scattering amplitude determine
the masses, widths, and branching ratios of $ggresonances\ (1405 and —A (1670, in reasonable agree-
ment with experiment. A good overall description of the data, from #Rethreshold up to 1.75 GeV, is
achieved despite the fact that three-body channels have not been explicitly included.
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[. INTRODUCTION where the nucleork splitting is considered to be of the order
of the pion mass, pointing toward a better convergence for
Baryon resonances are outstanding features in elastic aride =N scattering data than in the case without expliXg.
inelastic meson-baryon scattering and signal the onset dflore recently, the work of Ref.11] has compared the HB-
nonperturbative physics. Constituent quark model apChPT scheme to the IR one in the presence of explcit
proaches describe them as excited baryonic bound states, adéelgrees of freedom forrN scattering, showing that HB-
the coupling to the continuum is obtained by evaluating tran<ChPT describes data up to much higher pion c.m. kinetic
sition matrix element§l], but comparison with data can be energies than the IR method.
done only once the scattering problem is solved. In such a A second limitation of any of the previous approaches,
scheme, the underlying quark constituent nature of hadronsoth in the HBChPT as well as in the IR frameworks and
is taken into account but implementation of chiral symmetrywith or without explicitA, is that they are based on a pertur-
(CS becomes difficult. In the region of low energies, it bative expansion of a finite number of Feynman diagrams.
seems appropriate to start considering the hadrons as the rdibis complies with unitarity order by order in the expansion,
evant degrees of freedom, where CS not only proves he|prhU'[ fails to satisfy exact unitarity of the scattering amplitude.
to restrict the type of interactions between mesons and baryrhus, some nonperturbative resummation should be supple-
ons, but also provides an indirect link to the underlyingmented to incorporate exact unitarity and, hopefully, to ac-
quantum chromodynamid§CD) [2]. For processes involv- commodate resonances. Regarding this second limitation,
ing baryons and mesons, heavy baryon chiral perturbatioeveral unitarization methods have been suggested in the lit-
theory (HBChPT) [3,4] incorporates CS at low energies in a erature and previously used to describe the meson-baryon
systematic way, and has provided a satisfactory descriptioflynamics: inverse amplitude methddM) [12], or a some-
of 7N scattering in the region around threshgB-7]. It ~ what modified IAM to account for the large baryon masses
suffers, however, from known limitations. First, the expan-[13], dispersion relationgl4-16, the Lippmann-Schwinger
sion is manifestly not relativistically invariant, and some equation(LSE), and the Bethe-Salpeter equati@BE) [17-
convergence problems, especially for the scalar form facto26].
have been pointed out and solved by defining a suitable regu- In this work, we will study thes-wave meson-baryon scat-
larization scheme, the so-called infrared regularizati®t) ~ tering for the strangenes=—1 and isospin =0 sector in
[8]. The IR scheme has also successfully been applietNo @ Bethe-Salpeter coupled channel formalism incorporating
elastic scatterin§9]. The previous remarks concern a theory CS. This reaction provides a good example of the need for
with only 7 andN present. The\ degrees of freedom have unitarization methods; the recent work of RE27] shows
been explicitly included10] within the HBChPT scheme, that HBChPT to one loop already fails completely at thresh-
old. TheKN scattering length turns out to have a real part
about the same size but with opposite sign and half the

*Email address: grecio@ugr.es imaginary part expected experimentall28], due to the
"Email address: jmnieves@ugr.es nearby subthreshold (1405 resonance. It is important to
*Email address: earriola@ugr.es realize from the very beginning that, for this particular reso-
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nance, the unitarization program implies considering at leasiescribing the data around the antikaon-nucleon threshold,

two channels, namelyzS and KN. Thus, one deals with a including the features of th&,; A(1409 resonance, its pre-
coupled channel problem. Unfortunately, there are no onedictions for higher energief22] do not work so well and
loop ChPT calculations incorporating this coupled channeflear discrepancies with data appear. Indeed, the limitations
physics. Much of the discussion below and in the rest of thef the model of Ref[21] already appeared in the strangeness
paper reflects this lack of knowledge on the general structur=0 and isospinl =1/2 meson-baryon sector, where the
of this scattering amplitude within ChPT, particularly on the model is able to describe data only in a more or less narrow
number of undetermined parameters. Of course, not all cournergy window around theN(1535) resonance?23,24.
terterms are independent, as demanded by crossing and chiowever, the model previously developed by two of us for
ral symmetries. Actually, the best practical way to imposethe latter channel in Ref25] describes data in a wider en-
these constraints on a unitarized partial wave amplitude is bgrgy region, ranging from therN threshold up to almost a
matching to a ChPT amplitude. The reason for this is that theenter of masgc.m) meson-baryon energy afs=2 GeV,
left-cut partial wave analytical structure implied by crossingincluding the features of a second resonapbk1650)].
would be automatically incorporated within a one-loop ChPTMotivated by these encouraging results we extend in this
calculation. This point of view has been used in several uniwork the model of Ref[25] to the strangenesS=—1 and
tarization approaches for the elastitN proces§15,12—-14. isospinl =0 meson-baryon channel. As in ti$=0 sector,
There, the ChPT amplitude is known up to one 1¢bp7,9,  taking into account the off-shellness of the BSE generates a
which in HBChPT corresponds to third and fourth order.rich structure of unknown constants which allow for a better
This is the lowest order approximation incorporating the perdescription of the amplitudes. Although the generation of
turbative unitarity correction which is required to match themore undetermined constants may appear a less predictive
perturbative amplitude to a unitarized one. As we have alapproach than using a cutdffne single parametgto regu-
ready mentioned, the coupled channel ChPT one-loop ampliarize the divergent integrals, it reflects the real state of the
tude for meson-baryon scattering is not known, and thus thart of our lack of knowledge on the underlying QCD dynam-
matching is not possible. ics. The number of adjustable low energy constdhisC’s)

The first study of the strangeneSs=—1 and isospinl should not be smaller than those allowed by the symmetry;
=0 meson-baryon channel incorporating CS and couplethis is the only way both to falsify all possible theories em-
channel unitarization was carried out in Ref$8,19, al-  bodying the same symmetry principles and to widen the en-
though some phenomenological form factors were employedergy interval that is being described. Limiting such a rich
More recently, this channel has been studied in Rgfg]  structure allowed by CS results in a poor description of ex-
and[22], where a three-momentum cutoff is used to renor-perimental data. However, a possible redundancy of param-
malize the LSE and the off-shell behavior is partially takeneters is obviously undesirable but may be detected through
into account. In principle, the minimal renormalization pro- statistical considerationsee below. The number of LEC’s
cedure used in Reff21,27 is acceptable but may turn out to is controlled to any order of the calculation by crossing sym-
be too restrictive in practice. If, instead, one takes advantag@etry. In a unitarized approach, the only way to avoid this
of the flexibility allowed by the renormalization of an effec- parameter redundancy is to match the unitarized amplitude to
tive field theory(EFT), there is a chance of improving the the one obtained from a Lagrangian formali$fhere is no
description from threshold up to higher energies. In practicastandard one-loop ChPT calculation for the meson-baryon
terms this means increasing the number of counterterms th&gaction with open channels to compare with. Some results
one has to add to make finite the amplitudes. Along the line€xist within the HBChPT scheme, up to order
of Ref. [25], we will adopt this viewpoint below by taking O(1/(M3f2),1/(Mf%))—M being a typical baryon mass—
fully into account the off-shellness suggested by the BSBbut only involving pions and nucleor§]. An indirect way
using the tree level amplitude as the lowest order approxito detect such a parameter redundancy might be through a fit
mation to the potential. In the approach of R@5] there are  to experimental data if the errors and correlations in some
three parameters for each channel. In the absence of a ongarameters turn out to be very large. We will adopt this point
loop ChPT coupled channel amplitude, we content ourselvesf view in this work, and will show that indeed correlations
with matching to the tree level orfeOne could also match take place, effectively reducing the total number of indepen-
the coupled channel unitarized amplitude to HBChPT, muchident parameters.
below the inelastic thresholds. This procedure was investi- In this paper four coupled channels have been consid-
gated in Ref[25] for the 7N system, but did not introduced ered: =73, KN, 7A, andKE, and we have taken into ac-
any powerful constraints. count SU3) symmetry breaking effects but neglected the

Despite the great success of the model of R2L] in  considerably smaller isospin violation effects. We also ne-

glected three-body channels, mainly for technical reasons.
According to Ref[33] the A(1670 resonance decays into a
This point was discussed at length in Ref9] in the context of ~ 3* 7zN three-body final state with a small (08®.06)
elastic 7 scattering; from there one easily realizes that the renorjranching ratio.
malization scheme pursued in R¢21] would lead to a scenario
where only one of the four S@) Gasser-Leutwylet,, 1,, |3, and
I_4 parameters is independent. 2See the discussion in Appendix D of RE25].
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Preliminary results of the present work can be found in k’ ©
[30-32. NS N o

The paper is organized as follows. In Sec. Il, asummary ..~ + /™ F 2O W Nt e e e
of the theoretical framework used is described. Further de-p-«x P-K P-k P-k

tails can be found in Refl25]. Numerical results for the , ) .
amplitudes and cross sections and details of the fitting pro- F'G: 1. Diagrams summed by the Bethe Salpeter equation. Ki-
cedure are given in Sec. lll. Special attention is paid both tg'€matics defined in the main text.

the analytical properties, in the complex plane, of thea- . _
trix fount):i/ and Fo tﬁe statistical correlgtionspbetween the fitted:OUpkad chan_nel space églz(s) and the inelasticities)
LEC’s. Appendixes A and B are devoted to these issues a&nd phase shifted) is the usual one:

well. Finally, in Sec. IV we outline the conclusions of our

work. [FIA(S)]an=

[ 7a(s)€? A9 —1]. (6)

2i|Ka|
Il. THEORETICAL FRAMEWORK _ o o
Further details of normalizations and definitions of the

The coupled channel scattering amplitude for the baryonamplitudes can be seen in Sec. Il B of R&5|.

meson process in the isospin chanhelD, To compute the amplitudé, we solve the BSHsee
B(Ma,P—k,sp)+M(my k) Fig. 1]
! ’ d4
Mo PRSI Mme O, to(k k) =0p K +1 [ 5 et

with baryon(meson massesM , andMg (m, andmg) and

spin indiceghelicity, covariant spin, etgs,,Sg, is given by XA(q)S(P—q)ve(k,q), (7)

Tp[B{k’,sg}—Alk,Sa}] wheretp(k,k”) is the scattering amplitude defined in E8),
_ ) ) vp(k,k") is the two-particle irreducible Green’s functidor
=Ug(P—k’,sp)tp(k,k" ) ua(P—k,s5).  (2)  potentia), andS(P—q) andA(q) are the baryon and meson
, i exact propagators, respectively. The above equation turns out
Here, up(P—k,sa) and ug(P—k’,sg) are baryon Dirac 4 pe 4 matrix one, in both the coupled channel and Dirac
sp_|n0r§ for the ingoing and outgoing baryons, res,pe_Ct'VeW*spaces. For any choice of the potentialk,k’), the result-
P is the conserved total four-momentum, andk,k') is @ iy scattering amplitudes(k,k’) satisfies the coupled chan-
matrix in the Dirac and couple_d ch:_;mnel spaces. On the masg,, unitarity condition, discussed in ER1) of Ref. [25].
sh_ell the parity and Lorentz invariant amplitutie can be 1. BSE requires some input potential and baryon and me-
written as son propagators to be solved. To compute the lowest order of
tp(K,K")|on shei= t1(S,H)P+ta(s,t) (3) the BSE—based expansicﬁBQ] it i§ enough to approximate
the iterated potential by the chiral expansion lowest order
with s=P?=p?, t=(k—k’)?, andt, andt, matrices in the meson-baryon amplitudes in the desired strangeness and

coupled channel space. isospin channel, and the intermediate particle propagators by
In terms of the matrices, andt, defined in Eq(3), the  the free oneswhich are diagonal in the coupled channel
swave coupled channel matrb§'q(s) [ f]] is given by space. From the meson-baryon chiral Lagrangig?j (see
Sec. Il A of Ref.[25]), one gets at lowest order for the po-
1 —— tential
[f(l)lz(s)]BHA:_s—\/g V|kgl/|Kal VEg+ Mg VEA+ M4 5
o
. vp(kK) =t (kK') = £ (K+K') ®)
1
x5 | dicosn [\Bt(s0+ (s Tas
2J)-1 with D the coupled channel matrix
) KN T, nA KE
where the c.m. three-momentum moduli read -3 32 -3v2 0 \KN
N )\1/2(S'Mi2’mi2) 1=0 1 m —4 0 —m T
ki]= ———=—, i=AB, (5) Ds--177
245 -3v2 0 0 32 | pA
0 —\32 +3v2 -3 |KE
with N(X,y,2) =x?+y?+2%—2xy—2xz—2yz and E g the V12 )

baryon c.m. energies. The phase of the mafxs such that
the relation between the diagonal elemems=B) in the given in the isospin basis and the same phase conventions as
in Ref.[25].
While amplitudes follow the chiral symmetry breaking
3We use the normalizationu=2M. pattern from the effective Lagrangian to a good approxima-
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tion, it is well known that physical mass splittings have an I1. NUMERICAL RESULTS
important influence when calculating the reaction phase

space. Indeed, the correct location of reaction thresholds re'alz(z;o;) grrlﬁgtr;hfsgzgirnvgewﬂkujgéze (f:cc))lrl]osvtv;r:]gtzjsn(;Tﬁ:czleu_
quires taking physical masses for the corresponding reaaioﬁoscalar meson@ll in MeV): y P
channels. We have taken this effect into account in our nu- '

merical calculation. We also incorporate explicit CS effects Mg =mg=493.68, m,=139.57, m,=547.3,
in the weak meson decay constants and different numerical
values forf ., fx, andf, can be used. This can be easily M,=938.27, My=1189.37, M, =1115.68,
accomplished through the prescription
Mz=1318.0,
2 F-1n%-1 F_Ai
D/f*—=f7°Df %, f=diagfk.f,.f,.fx). (10 f=f, =fc=1.15¢93.0, (14

The solutipn of the BSE with the kernel specifigd above Cayhere for the weak meson decay constants we take for all
be found in Ref{25]. It turns out that the function, and  channels an averaged vatti@his selection of the coupling
tz, defined in Eq.(3), do not depend on the Mandelstam .,nsiants does not omit the essential features of the meson-
varlaplet, and thus the dynamics is governed by the matrlxbaryon system since a recent wdd] shows that the ob-
functiont(s) [see Eq.(4)] served SB) breaking in meson-baryon scatterings cannot
be explained by the present &) breaking interactions and
t(8)=stu(s) +15(9), (1) that the essential physics of the resonances seems to lie in the

L _ substraction constants.
which is given in Eq(34) of Ref.[25]. There, the renormal-

ization of the amplitudes obtained is studied at length. As a
result of the renormalization procedure, and in addition to g
the physical masses and weak meson decay constants, a totale perform ay< fit, with 12 free parameters, to the fol-

A. Fitting procedure

number of 12, lowing set of experimental data and conditions.
B Sp1(Sot25) KN—KN and KN— 7Y scattering ampli-
Jens Jdasy Ipn ke, tudes (real and imaginary parts) [35], in the c.m. energy
Ay, As, A, Ag, range 0f1480< \/s<1750 MeV. In this c.m. energy region,
Ac, An. A, Ay, 12 there are a total number of 56 data poi(28 real and 28

imaginary partsfor each channel. The normalization used in

) . Ref. [35] is different from that used here and their ampli-
undetermined LEC’s appear. We fit these constants to data, "E\?desTi‘f"” are related to ours by

we will see in the next section, and from them we define the R
three following diagonal matrices: TEO=sgn(i, )| f5(s)1j i (15)

o

Jkw O where sgni(j) is +1 for the elastic channel and1 for the

J,s O 0 KN— 72 one. On the other hand, and because in R3H]
errors are not provided, we have taken for those amplitudes
errors given by

Jo(s=(f+M)?)=

STEOT=(0.1215°7)2+0.08 (16)
Ay 0 0 O
0 A 0 0 in the spirit of those used in Ref36].
A= = ' Sp;— 7S mass spectrurfd7], 1330< \s<1440 MeV. In
0 0 Ay O this c.m. energy region, there are a total of thirteen 10 MeV
0 0 0 A= bins and the experimental data are given in arbitrary units. To
- compare with data, taking into account the experimental ac-
Ak 0 0 O ceptance of 10 MeV, we compute
0 A, 0 O Ao (Max(D+5 Mev 2
A 0 0 A, O] A[M ()] ijﬁz(ns Mev|[fO (s=x9]o-d
0 0 0 A 13 X | Kyo(s=x2)|x2dXx, (17)

which appear in the solution of the BSE. We have dzenoted “This makes the comparison with Ref&1,24 more straightfor-
the_meson-baryon low energy constadggs= (m; + MJ') ), ward. One could also take the physical values for these decay con-
i=K, m, p,Kandj=N, 3, A, E, of Eq.(A8) of Ref.[25] as  stants, but part of the effect can be absorbed into a redefinition of
Jij . the parameters in Eq13). See also Eq(34) in Ref.[25].

076009-4



S= -1 MESON-BARYON UNITARIZED COUPLED. .. PHYSICAL REVIEW 67, 076009 (2003
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7 161 { Kp-—>nA
S o015} = 4T
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3 3
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Eem MeV] Ecm [MeV]

FIG. 2. Solid lines: results of our fit. Experimental data fe¥ — 72, andK ™ p— »A are from Refs[37] and[39], respectively.

where C is an arbitrary global normalization factoand i poles in the first Riemann sheet which strongly influence the
denotes the bin with central c.m. enertyy.s(i). Hence, scattering region and hence violate causality. Any fit em-
there are only 12 independent data points. Finally, we tak®odying these singularities is physically inadmissible and
the error of the number of counts; of the bini to be  should be rejected. This is an important issue, which should
1.61JN; as in Ref[38]. always be considered in any analysis. We will further elabo-
The K p—»nA total cross section of Ref. [39]1662 rate on this point in Appendix B.
<s<1684 MeV. We use the Crystal Ball Collaboration  Furthermore, even if one is reasonably convinced that a
precise new total cross-section measuremeattal of 17 physically acceptable minimum has been found, there are
data points compiled in Table | of Reff39]) for the near-  strong correlations between the fitted parameters, which have
threshold reactiorkK ™ p— »A, which is dominated by the to be carefully evaluated and, if possible, understood. Our
A(1670 resonance. We assume, as in R8B], that thep  pest results come from a minimum for which the pairs
zpodsglg:éetzovxéve contributions do not contribute to the totaI(Ji !ABi) with i=KN, 73, A, KZ, andB,=N, 3, A, E are
Finally, we define they2, which is minimized, as totally correlated (correlation factors bigger than 099
which leads to an almost singular correlation matrix, reflect-

1 &y [ xjemeo—xi@ 2 ing the fact that there exists, in very good approximation, a
A n_,Zl B O B (18) linear relation between th andABi parameteré.Thus, we
al= j

have fixedAg to some specific values in the neighborhood

whereN=4 stands for the four sets of data used and dis-of the minimum, given in Appendix A, and have studied the
cussed aboVeand x{*"**" denotes our model result for the correlation matrix for the remaining eight parameters. Yet,
data pointxj(“). Finally, n, takes the values 56, 56, 12, and we find a strong correlatio(0.99 between]y =z andAy and
17, andN,==N_,n, is the total number of data points. With we proceed as above, i.e., we fix and evaluate the corre-
such a definition, acceptable best fits should provide valuektion matrix and variances for the remaining seven param-
of x?/N around 1. eters. Thus, at the end of the day we have only seven inde-
Although we have considered four coupled channelspendent best fit parameters. The best fit parameters, their
three-body channels, for instance the> one, are not ex- variances, and the correlation matrix are compiled in Appen-
plicitly considered, as was also assumed previously in Refglix A.
[22] and[39]. In Figs. 2—4 we compare the results of our best fit with
the experimental data. The overall description is remarkably
B. Results of the besty? fit good, at both low energies and the higher end of the consid-

The model presented up to now has initially 12 free IOa_ered energy region. In addition, as we will see, the descrip-

rameterd Eq. (12)], which have to be determined from data. tion of the A(1409 and A(1670 features is also quite good.

This is a cumbersome task because there are many mat hus, our scheme leads to a much better description of the
ematical minima that are not physically admissible. For in-data than the approach of R¢22], as was also the case in

stance, in some cases one finds fits to data with spurioU§€ strangenesS=0 sector([(25] versus[23]).
For the elastikK N— KN scattering length we get

N

5 1
X /Ntotzﬁa

SWe fix it by setting the area of our theoretical spectrum,
S Ac/A[M ,5(i)], to the total number of experimental counts 'In Ref.[25] the static limit (infinitely heavy baryonsis dis-

=N cussed, and it is showEq. (D9)] that there exists a linear relation
SFrom the first item above and to define th& we consider two betweenJ; and ABi if, as is the case hereﬁmi, i=K,, 7K, is
separate sets:KN—KN andKN— 7. small when compared tABi.
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' T — ' 1 . . : .
04 KN — KN 1
0.8 |
02} . IH
— 0.6 |
E o} HI [ { E
o E — —
04 | KN — KN
02}
02}
04
1 I 1 N 1 0 I I 1 2 I
1450 1500 1550 1600 1650 1700 1750 1450 1500 1550 1600 1650 1700 1750
Ecm [MeV] Ecm [MeV]

FIG. 3. The realleft pane) and imaginary(right pane] parts of theswave T matrix, with normalization specified in E16), for the
elastic KN—KN process in thd =0 isospin channel as functions of the c.m. energy. The solid line is the result of our fit, and the
experimental data are taken from the analysis of 8] with the errors stated in the main text.

agn=[f&(s=(mc+Mu)?) Tkn_kn space, Qiffering only on the value'of the residue at the pole.
. The residue determines the coupling of the resonances to the
=(—1.20=0.09+i1.29£0.09 fm, (19 given channel. In Fig. 5 we show the absolute value of the

] o ) nA— nA element of the matrix. We choose this channel
where the error is statistical and has been obtained from thgacause all found poles have a sizable coupling to it. Both
covariance matrix given in Appendix A, taking into account ihe fourth quadrant of the second Riemann sheet and the first
the existing statistical correlations, through a Monte Ca”Oquadrant of the firs(physica) Riemann sheet are shown.
simulation. This value should be compared both to the exThe physical scattering takes place in the scattering line in
perimental one ¢ 1.71+i0.68) fm of Ref.[28] and to the  the plot (upper lip of the unitarity cut of the first Riemann
LSE approach of Ref[21] (—2.24+i1.94) fm. Unfortu-  sheet. We find three poles in the second Riemann sheet
nately, the previous works do not provide error estimates, sq;nose positions aresE Mé—iM «TR)
one cannot decide on the compatibility of the results. _

First pole: Mg=1368+12, ['r=250+23; (20

C. Second Riemann sheet: Poles and resonances

In this section we are interested in describing the masses Second pole: Mg=1443+3, ['z=50+7; (21)
and widths of theSy; resonances in th&=—1 channel.
Since causality imposes the absence of poles iri(thlema- Third pole: Mo=1677.5-08. To=29.2+1.4
trix in the physical shed#0], one should search for complex e pole: R e TR ' ' (’22)

poles in unphysical ones. Among all of them thasesestto

the physical sheet and hence to the scattering line are the

most relevant ones. We define the second Riemann sheet where all units are given in MeV and errors have been trans-
the relevant fourth quadrant as that which is obtained byorted from those in the best fit parametfs|. (Al)], tak-
continuity across each of the four unitarity cytee a de- ing into account the existing statistical correlations through a
tailed discussion in a similar context in R¢25]). Physical Monte Carlo simulation.

resonances appear in the second Riemann sheet of all matrix These poles are related to the t&g resonanced (1405
elements of(s), defined in Eq(11), in the coupled channel and A(1670 which appear up to this range of energy in the

04} KN = T ] 04}
02} ] 02}
= =
E o 1 £ o
& { { } { { E
02} ] 02t
04} H . 04 KN = 1z
1450 1500 1550 1600 1650 1700 1750 1450 1500 1550 1600 1650 1700 1750
ECM [MeV] ECM [MeV]

FIG. 4. Same as in Fig. 3 for the inelastic chankél— 73,
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BSE. The two of them closer to the scattering line are located
at (s=M?+iMT) with M~1166, '~ +200 MeV andM
~1616,I'~631 MeV. The tails of both poles can be seen in
—_FistRlemann Sheet Fig. 5 and they do not influence the scattering line. In Ap-

= pendix B, we will show the results from a fit which, at first
sight, are in even better agreement with the experimental
data(Sec. Il A) than those presented up to now. However,
this apparent improvement is achieved because the unphysi-
cal poles get closer to the reslaxis and they affect, in a
substantial manner, the scattering amplitudes. Hence, we dis-
card this minimum, and we would like to note that it is
important to observe the positions and influence of the un-
physical poles when deciding the goodness of a phenomeno-
logical description of data.

Finally, we have also analyzed the nature of the reso-
nances in the light of the well known Breit-WignéBW)
parametrization for coupled channels and redkee, e.g.,
Ref. [45] and references thergin

60 2
20 40 Re s [fm™]

FIG. 5. Modulus of theyA — nA element of the scattering am-
plitude t(s) (fm), defined in Eq(11), analytically extended to the
first and fourth quadrants of tteecomplex plane. The solid line is
the scattering lines=x+i0", xe R, from the first thresholdrf,
+Ms)? on. The first(second Riemann sheet is depicted in the first
(fourth) quadrant of thes complex plane. Three poles appear in the
second Riemann sheet, which are connected with\iti&05 and
A(1670 resonances; see the discussion in the main text. Unphysical

poles also show up in the physical sheet out of the real axis, but (546 BW=EW
they do not influence the scattering lines as can be seen in the plot. {BW(g) = — 9 [e29i—1]+ e My I
g N 2ip;

Vpipi[s—ME+iMgIR]’
Particle Data Group(PDG) compilation (Ref. [41]). The pipil R RURl

third pole above can be clearly identified with(1670), (25
which is located at
A(1670: Mg=1670+10, T'r=35"13 Ref. [41], for which the background is assumed to be diagonal in the
coupled channel space, and the relative phase of the reso-
Mgr=1673+2, I'r=23*=6, Ref. [33], nance to the background and the summed partial decay

(23)  widths 3;T?"=T are chosen in such a way thg}"(s)

where again the units are MeV. The agreement of our predic(—axactIy satisfies unitarity on the real axis. Hepgjs a kine-

tions and the experimental data is satisfactory and better tha.rfhat'% factcr)]r. defmt-ed. b¥hthe dse;_con ddBIIEr‘]"?—OIE B%,?Il,) b eSIovt\)/.
in the previous theoretical LSE approach of R@2]. Let us € branching ratio Is then aefined s =1 R. SUD-

. tracting the resonance contribution, Eg6), to the total am-
look at theA (1405 resonance, whose nature is under much" ¢ .
discussion[42,43. Following the PDG, it is placed ain plitude, we found that for ouA (1670 the background is not
MeV) a diagonal matrix, since for ouy; matrix we get Z;_j[t;;
—t7oV2= 3, |t —tFBY)? for s—MZ, with t5*" the second
A(1405: Mg=1406.5-4.0, I'k=50=2, Ref. [41]. term in Eq.(25). In addition, the BW parametrization sug-
(24 gests a relation between the residue at the pole and the
Our amplitudes have two poles in the region of 1400 Mevimaginary part of the polg. This \r/tvalation !s true only in the
Egs. (20) and (21). The features of the second one are in;hc?r:]per:?usr?\nci‘nt%i ggs;z)i(r']rgas?gi Vigih;\(/lteha?siotzﬁez.krgd that
agreement with the previous results of Ref21,22 and for our problem this is not the case. Actually, with such a

though the width compares well with the experiment, the =~~~ X _
mass is shifted to higher values. In addition, we should notéj_e'clnltlon we find thaﬁiFiBW’TV’O'SFR for A(167Q' Thisis a
that the pole quoted in EG20) is very broad and cannot be simple consequence of the incorrect assumption made in Eq.
identified with any of the experimentally established reso- 29).
nances. This pole is also present in the LSE model of Refs.
[21,22, as was pointed out in Ref44]; although the mass
position there is similar Nlg=1390 MeV), the width is
about a factor of 2 narrowel =132 MeV) than ours. Our
understanding is that this broad resonance does not strongly Before going further we would like to make some critical
influence the scattering line. However, th& mass spec- remarks regarding the comparison between “theory” and
trum peaks around 1405 MeV in the experimental data anélexperiment.” Our BSE solution has a very specific energy
also in our approach as can be seen in Fig. 2. This is a clealependence which, as we saw in Sec. |1l B, is able to numeri-
indication of a sizable nonresonant contribution on top of ourcally fit experimental data, or rather a partial wave analysis
1443 MeV pole. with a given energy dependence. Obviously, the two func-
On the other hand, there are unphysical poles in the phystional forms are not identical, and it is also fair to say that
cal (first) Riemann sheet. These unphysical poles appear béoth incorporate their own biases. There is no reason to ex-
cause we have truncated the iterated potential to solve thgect that they are also numerically alike in the complex

D. Branching ratios and couplings of the resonances
to different final states
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TABLE |. Dimensionless complex couplingg=|g;|€'?', defined in Eqs(26)—(29), for all channels

=KN, 73, nA,KE, and for the three polgsesonancesjuoted in Eqs(20)—(22). The phases are in radians.
Errors are purely statistical and affect the last significant digit.

kN Oz gnA Ok=
Resonance
(MeV) [¢] ¢ [¢] ¢ [¢] ¢ [¢] ¢
Mgr=1368 3.91) —0.595) 3.6598) —-0.733) 1.7(2) 3.02) 0.297) 1.1413)
Mg=1443 3.32) 0.727) 2.1416) 1.108) 2.2(1) —-2.663) 0.231) -—0.00857)
Mg=1677.5 0.3®2) -1.294) 0.201) 0.7715) 1.223) 2.692) 1.641) -0.131)

plane® Under these conditions, some parameters, likeThe above matribg;; has only one nonzero eigenvalgé
branching ratios, have a different meaning, since the extrapos g5+ g3+ g2, with g; the associated eigenvector. The vec-
lation of the resonant contribution to the reséxis is am-  tor g; determines the coupling of the resonance to the differ-
biguous. Actually, the ambiguity is enhanced as the resoent final states, which are well and unambiguously defined
nance becomes wider and as a consequence the definition &fen if the corresponding channels are closed in the decay of
a branching ratio becomes model dependent. We explain bgne resonance. In Table | we give the complex vectpror

low our definition of branching ratios and how they are eX-the three resonances described in Sec. Ill C. Unfortunately,

tracted from our amplitude.

Let us considersR=M2R—iM r['r @ pole in the second
Riemann sheet of the coupled channel scattering mgs)x
Then, around the pole, it can be approximated by

Jij
RS_ SR,

[t(s)];j=2M (26)

whereg;; is the residue matrix. Sinceis a complex sym-
metric matrix (due to time reversal invariangeg is also
complex symmetric and its rank is 1 to ensure 8wty is a
pole of order 1 of the dEi(s)]. In this way a nondegenerate
resonant state is being describetinder these conditions,
gi; turns out to be factorizabl€:

gij=aig; - (28)

8A good example of this fact is provided by our best fit results of

the PDG does not provide this kind of information and, in-
stead, branching ratios are given. To extract meaningful
branching ratios from our calculation, we have to extrapolate
the resonant contribution of the scattering amplitude tosthe
real axis, which is the only one experimentally accessible. In
addition, the picture of a resonance as a quantum mechanical
decaying state requires a probabilistic description. Thus, we
isola;te the resonant contribution to ti& matrix* for s

_MR

. gig;
SPris=Mg)=—2i2Mg PiRle_JS Vo
R R
 |ki(s ~
Pi(S)=®(S—S'm)M(VMinrkinrMi),
877\/5

pr=pi(s=M3Q), (3D

Sec. Il B and the physically inadmissible results of Appendix B; With S'm the threshold of the baryon-meson chanheThis
they look very much the same on the scattering line although thélefinition embodies a sensible kinematic suppression com-

analytic structure is rather different.

patible with Cutkosky’s rules and thewave nature of the

This can be seen as follows. Using matrix notation, the BSEresonance. Defining

reads t(s)=V+VGy(s)t(s) and it is solved byt(s)=V(1
—Go(s)V) 1, with the obvious identifications fo¥ and G,. A
pole ats=sg in deft(s)] is produced by a zero of déat-Gy(s)V].
This last condition ensures that the homogendquasjbound state
Bethe-Salpeter equation

[~Go(9 +V]¥=0 (27)
has a nontrivial solution fos=sg. Indeed, all solutionsl of the
above equation are linear combinations of the null eigenvectors

the (1—Gy(sg)V) matrix and describe the dynamics of the existing

stategresonancesats=sg. For a nondegenerate resonafwaich

we have checked is indeed the dadbe zero eigenspace should
have dimension 1, whence for the case of four coupled channels,

the rank of the matrix(1—Gy(sg)V) is 3 and therefore dgt
—Gy(9)V] should have a single zero st sg.

1%The symmetric complex matrig can be diagonalized by a com-
plex orthogonal transformatiob) as g=UTdU, where only one
element of the diagonal matrikis different from zero. If we take
thIS element to bdll! we haVegij = (UT)ild]_lU 1j =d11U liUlj .

[0)

bi=giV2p{/Tr, (32
we find
Sprts=MR = - 2Malez—, (33

And, taking into account that the mattx =b;b; has rank 1

U The Smatrix is related to the matrix, in our convention, by

Si(8)=6;—2iNpi(s)ti;(s)Vpj(s), (29
and probability conservatiorS{S=SS=1) holds since satisfies
coupled channel unitarity:

tr;(s>ftij<s>=2i; £5(S)p St (S)- (30)
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and thatb; (or any vector proportional to )itis the only nA>mA
eigenvector ofS'®s°"a"with a nonzero eigenvalue, the reso- e i,
nant state as=M?2 will be given by 100 pXn—>Xm}
IRy > byli), (34) g 10} C“:__\m,..{:\
i E \\..
o B

whereli) stands for the meson-baryon states used to build the Ty A
coupled channel space. Finally, the branching rgtiwill be l
given by the probability of findingR) in the stateli): 01 in->KN Py 1

|bi|2 ‘ | . E I=.~.-’KN->.11A

Bi=s b2 (39 1300 1400 1500 1600 1700 1800
]J Ecum [MeV]

which by definition satisfiesx;B;=1. The partial decay FIG. 6. | =0 meson-baryors-wave cross sections for different
width may then be defined ab;=B;I'g, and obviously channels.

>;I'j=Tg. For A(1670 we obtain the following branching
ratios with the above prescription: true; for example, if one were dealing withpawave reso-
Bxy=0.24+0.01, B,x=0.08-0.01, B,,=0.68+0.01. nance the functions;(s) would at !east include the c.m.
(36)  meson-baryon momentum. If there is a channel that becomes
open close to and above= M3, then the c.m. momentum

The last two values are not in agreement with the valuegill lead to a suppression of the branching ratio to this chan-
quoted by the PDG[41] (Biy=0.25+0.05, B,s=0.40 nel,

+0.15, B,,=0.17+0.07) and in Ref.[33] (Byy=0.37
+0.07, B,+=0.39£0.08, B,,=0.16£0.06, B, (1385 E. Predictions for other processes

=0.08+0.06).
) In Fig. 6 we show some of our predictions fefwave |

To finish this subsection, we would like to point out that ) ; . !
in the present context the concept of the branching ratio is:O cross sections for some elastic and inelastic channels. For
of them there are no data. The effect of @405

subtle and it might be ambiguous, from both the theoretical™©St AE
and experimental sides. From the experimental point of viewesonance is clearly visible in ter— X 7, % 7—KN, and

the difficulty arises from the impossibility of preparing a KN—KN cross sections. On the other hand, the elastic
pure short-lived resonant state strongly coupled to a coneross section takes a very large value at threshold, which
tinuum, and therefore the impossibility of disentangling corresponds to a typical low energy resonance behavior trig-
events coming from the formation of the resonance fromgered by theA(1670 resonance. This is in contrast to any
those produced through nonresonant processes. From tlegpectation based on the Born approximation, since the cor-
theoretical point of view the ambiguity comes when definingresponding potential in this channel vanisigs. (9)]. Our
gesenats=M2) in Eq. (31). For instance, at the poke=s;  estimates for ther>, and 7A scattering lengthgdefined for

one could have the elastic channels as in E4.9)] are
i(s i (s a =1.10+0.06 fm,
[t(S)]ijWZMRIBﬂ_((S )) S?; 51((5 )) , (37 : _
iVSR R PSR a,,=(0.50+0.09+i(0.27+0.01) fm, (39

instead of the expression assumed in 6), 8;(s) being an
arbitrary complex function analytical aroursk. In these
circumstances the matrig*°"*"(s=Mg2) would be differ-
ent from that given in Eqg. (31) by a factor
[Bi(MZR)/IBi(SR)][:Bj(MZR)/ﬂj(SR)] and one would getanew ~ As we have _already mentioned,_ the only calculation
vectorb;, which in terms of the vectob;, defined in Eq.  Within HBChPT in theS=—1 sector is that of Refl27],

respectively.

F. Heavy baryon expansion at threshold

(32), reads where thes-wave scattering lengths in both isospin channels
’ I=0 and 1 are computed. It is found that HBChPT to one

~ _Bi(Mé) loop fails completely in thé =0 channel due to the strong

bi= Bi(sr) b (38 influence of the subthresholti(1450 resonance. We think

that it is of interest to analyze this problem within the context
leading, in principle, to different branching ratios. The of our unitarization approach.
trouble comes from the extrapolation fr@pto the real axis, As was discussed previously by two of 5], the con-
which is not unique. dition for the coupled channel amplitude to have a well de-

The usual assumption is that thg&(s) functions are fined static limitM — o is that the combination

smooth and they do not change much frawsg to s 1 1
=M2, and, more important, that the change does not depend Cim=— Mjm +—(Aq—Ap) (40)
significantly on the channdl However, this is not always m 4M
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goes to some definite finite value. The paramefigs and  showing that they are not unnaturally large. Following the
Ay andAy, are listed in Eq(13) and their best fit result is  discussion of Ref[25], the heavy baryon expansion is done

presented in Eq(Al) of Appendix A. Using Eq.(Al) one in the standard way, and taking the leading heavy baryon
can estimate the combinations in units of the relevant mesoapproximation of the parameters,

mass:

1
0
A,—As sz\]ﬁq»[pro(—)]
Zm TE_ M
Msd, s+ ani, +0.24m,,
_ 1
Ax—A =AQ il
M i+ < =N— 0. 0amyc, An=Ap 110 M))
4My
M3 v AA_ L0 oam Ag=A%01+0 * (42)
A 771\+ 4MA =+0. 7 M M M ’
Ak—Asz for thekN ing length in tHe=0 ch
Mzdez + =~ _0.64my, (41  We get for theKN swave scattering length in tHe=0 chan-
- AMz nel the following expression:
2
o=y, Tl 9 (300 e > 2 A5m—2C)
AN 12| T My |v|2 T Temry | 2 KM 20 <" 3z 2¢2 | g 2K Fsmem,
1 }6 | My 9 3A 90
a1 2m m m arccos i = 2m%m mK)an 3277]( f MK~ ,]Amﬂ‘n
1 me| 1 M, 1 1 1
_4_772mK\/mﬂ—mKarcco%—m—ﬂ)—4 2m%m mK)In +O(f2M3’W’f_6> (43

This expression can be mapped into the HBChPT result ofact that our calculation Eq44) gives a larger magnitude for
Ref. [27], since the transcendental function dependence iReaxy than in HBChPT reflects, in addition, a bad conver-
exactly the same. This should be so because the authors génce in the expansio3). This situation has also been
[27] build the perturbative unitarity correction in HBChPT. described in the coupled channel c&e0 sector{25] and
Thus, one could identify a linear combination of the leadingseems a common feature of unitarization methdds-14.
order approximation of our constants, with another linear

combination of HBChPT constants. On the other hand, if we IV. CONCLUSIONS

assume the values of the best fit parameters, (&t)), for In this paper we extended the Bethe-Salpeter formalism
2 PN Am, andA we obtain the following numerical esti- developed in Ref[25] to study swave andl=0 meson-
mate baryon scattering up to 1.75 GeV in the strangen8ss
s R =-—1 sector. We work on a four- dlmenS|onaI_two body
L channel space and the kernel of the BSE takes into account
agy=102—053+ 028 +1.00+i041—1.25+3.17+--- CS constraints as deduced from the corresponding effective
— Lagrangian. The matrix obtained manifestly complies with
u? M uPu? urt coupled channel unitarity and the undetermined low energy
=3.69+i0.41 fm+---, (44)  constants of the model have been fitted to data. The available

direct experimental information is limited to the3 — 7%,

where the contributions are separated according to the ord@hass spectrum, and tH€™p— A # total cross section, for

in the chiral expansion and also to the corresponding interwhich errors are provided, and to theéN—KN and KN
mediate state. As we see, large cancellations at higher orders 73, scattering amplitudes of a partial wave analysis, for
must take place to obtain, after summing the whole seriesyhich errors are guessed. Taking this into account, the agree-
our result in Eq.(19). Note also that the real part is about ment with experiment is satisfactory. In addition, some pre-
twice as large and with opposite sign as compared to thelictions for other cross sections, not yet measured, have also
experimental resulf28]. A similar situation occurs in HB- been given. A careful and detailed statistical study has been
ChPT[27]; the real part of the scattering amplitude has thecarried out, showing that only seven parametefC's) out
opposite sign although a similar magnitude to the experimenef the starting 12 are really independent. Thus, although our
tal number. Likewise, large cancellations have also beemodel has more free parameters than those required in Ref.
noted, indicating a bad convergence rate in HBChPT. Th¢22], the description of data achieved in our approach is su-
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perior to that of Ref[22]. A similar situation was already tracts No. BFM2000-1326 and No. PB98-1367 and by the
found in the strangene&=0 sector als$25]. According to  Junta de Andalucia.

previous experience, the reduction of parameters is partly

due to the constraint of a well defined heavy baryon limit APPENDIX A: BEST FIT RESULTS

[25]. Likewise, crossing symmetry is expected to shed more L

light on the number of independent LEC’s. As we have ar- The best fit {“/Ni,=0.93) parameters are

gued, matching to HBChPT calculations in t8e —1 and Jin=—0.0186+0.0010,
I =0 sector would be the ideal way to map our LEC'’s into
those stemming from an effective chiral Lagrangian, but it is J»s=0.00796-0.00061,

already known that the chiral expansion fdi&] to repro-

— . . J,,=0.01264-0.00021,
duce theKN scattering length, due to the influence of the

nearby subthreshold (1405 resonance. Possibly this could Jk=z=—0.11936-0.00018,
be overcome by properly accounting for the singularity _ B 5
structure as suggested [ih5]. We believe these points de- An=An/(mg+My)“=0.01355-0.00029,

serve a deeper investigation. — -
We have undertaken a careful discussion on the analytical Ay=As/(m;+My)=—0.003250.00036,

structure of the scattering matrix amplitude in the comex ~ _ 2

plane, which becomes mandatory in order to extract the fea- Ap=Aa,/(m,+M,)"=-0.00262-0.00011, (A1)

tures of theSy, resonances. We have searched for poles iRyt fixed parameters

the second Riemann sheet and compared masses; widths, and )

branching ratios to data. The agreement is also quite satis- Az /(m¢+Mg)°=—0.0035,

factory. In the resonance region our unitary amplitude cannot A=/ Mo+ M) 2= —0.034

be analyzed as a Breit-Wigner resonance due to a sizably </(Mic+My) S

nondiagonal background in coupled channel space. This, in A, /(m,+Ms)?=0.060,

particular, prevents a simple interpretation of branching ra- 5

tios. Although residues at the resonance poles are well and Ay, l(m,+M,)®=0.049,

unambiguously defined, the definition of branching ratios re- Ay /(Mg+Mz)2=—0.26, (A2)

quires special considerations and provisos, due to an ambigu-

ous extrapolation of the resonance contribution of$htea-  as explained in the main text. We assume that the parameters
trix from the pole to the scattering line. We have alsoof Eq. (A1) are Gaussian correlated:; this is justified because
illustrated that looking for a good description of experimen—they come from ay? fit. To make any further statistical
tally accessible data is not sufficient and that, in some casegnalysis of quantities derived from the parameters above, the

it can be achieved at the expense of generating nonphysicaliprresponding covariance) and correlation(c) matrices
acceptable poles in the first Riemann sheet, which influencgre needed. These matrices are defined as usual:
on the scattering region is non-negligible. Thus, any fit to

2 -1
data should be supplemented by this additional requirement - } ax )
of not producing spurious singularities numerically relevant 4 2 dbydb, '
for the description of scattering processes.
Cij=vij INviivjj, (A3)
ACKNOWLEDGMENTS b; being any of the seven parametdrand A of Eq. (Al).

The errorséb; quoted in Eq.(Al) are obtained from the
We warmly thank E. Oset and A. Ramos for useful dis-diagonal elements of the covariance matrdb(=\v;;). Fi-
cussions. This research was supported by DGES under Conally, our estimate for the correlation matrix reads

0.2 : . . : . . 1.8 : : :
) 16 Kp->nA
S o015t = T
g & 12+
8 s |
S 0.1 ¢ B
£ $ o8¢
[ [}
& g 06|
g 005} S o4l
= 02t
0 L 1 1 L 1 1 O 1 1 1 1 1
1320 1340 1360 1380 1400 1420 1440 1460 1660 1665 1670 1675 1680 1685 1690
Ecm MeV] Eem [MeV]

FIG. 7. Same as Fig. 2 for the nonphysically acceptable fit described in Appendix B.
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' ' ; 1
04} KN —> KN
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. 06 |
& - 1 B
S o il c o
- 04} KN — KN
02+
02}
04}
1 1 1 1 1 0 1 1 1 1 1
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Ecm [MeV] Ecm [MeV]

FIG. 8. Same as Fig. 3 for the nonphysically acceptable fit described in Appendix B.

Jkn Jos oA Jk= Ay As Ay
Joy 1.000
J.s —0.236 1.000
J,n —0.909 0.442 1.000
Jk 0.569 —-0.479 —0.530 1.000

Ay —0.830 0.228 0.702 —-0.829 1.000

Ay 0.294 0.608 —0.030 0.224 -0.494 1.000

A, —0.158 —-0.501 0.087 0.613 —0.336 —0.051 1.00

(Ad)

il

Even though the correlations in the above matrix have afit presented in the main text. However, on looking at the
most a modulus of about 0.9, the matrix has an eigenvalug(s) matrix in thes complex planéFig. 10, one realizes that
quite close to zer@0.0025, which is a clear indication that there exist a proliferation of poles, some of them unphysical
one of the parameters might still be redundant. and others with no experimental counterparts. In the first
Riemann sheet we find at least two poles. The first one is
located at s=M2?—iMI" with M=1606 MeV and I’
=153 MeV. This pole is close to thereal axis and produces
visible effects on the scattering line not only for thg _. , A

In Figs. 7—9 we present the results of a fit to the data, thagntry shown in the figure, but also for dl—j channels.
we will show is not physically acceptable. The overall de-Indeed, as we showed in Sec. Il C, our preferred fit also has
scription of the data is remarkably good. This fit givesa similar unphysical pole but significantly farthed” (
x%IN,,=0.69, to compare with the value of 0.93 of the best=631 MeV) from the real axis, and therefore with a tiny

APPENDIX B: NONPHYSICALLY ACCEPTABLE FITS
TO DATA

04| KN = T ] 0.4 |
02t ] 02t {
£ £
E 9 i B o0
& { { { { { £
02} ] 02}
04} { : 04 | KN —> iz
1450 1500 1550 1600 1650 1700 1750 1450 1500 1550 1600 1650 1700 1750
Ecm [MeV] Ecm [MeV]

FIG. 9. Same as Fig. 8 for the inelastic chankél— 73,
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A(1115 and it should show up in all reactions where the
latter is produced.

On the other hand, in the second sheet there now exist
four poles. Three of them are similar to those presented in
Sec. Il C, although the one placed around 1370 M&4.
(20)] is now almost a factor of 2 narrowéit is located at
Mgr=1392 MeV and'g=120 MeV). In addition there exists
a new resonanckl = 1343 MeV and'g=0.18 MeV which
is responsible for the high peak at the beginning of the scat-
tering line in Fig. 10 and for the existing bump between 1330
and 1360 MeV in therX mass spectrum of Fig. 7. As far as

FIG. 10. Same as Fig. 5 for the nonphysically acceptable fit toye know, there are no other independent indications of the

the data described in Appendix B.

existence of this extremely narrow resonance.
We have presented the results of this nonphysically ac-

influence on the physical scattering. Since causality imposegeptable fit to stress that, in order to be sure of having a good
the absence of poles in the physical sHdél, the existence approach to theé matrix of a given physical system, one

of such a pole affecting the scattering line invalidates theshouldnot onlylook at thet matrix and related observables
description(Figs. 7—9 presented in this appendix, despite its (cross sections, efcat the physical scattering lingeal s
quality. Also, in the first sheet, there exists a pole on the realbalues, but also study its behavior on the complex plane,

axis (y's=1307 MeV) and below the first threshold, which both in the second Riemann sheet to find the resonances and
would correspond to a bound state, stable under strong intein the first Riemann sheet to be sure of avoiding pathological
actions. Such a state has the same quantum numbers lashaviors such as the one illustrated in Fig. 10.
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