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SÄÀ1 meson-baryon unitarized coupled channel chiral perturbation theory and theS01
resonancesL„1405… and ÀL„1670…
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The s-wave meson-baryon scattering is analyzed for the strangenessS521 and isospinI 50 sector in a
Bethe-Salpeter coupled channel formalism incorporating chiral symmetry. Four channels have been consid-

ered: pS, K̄N, hL, andKJ. The required input to solve the Bethe-Salpeter equation is taken from lowest
order chiral perturbation theory in a relativistic formalism. There appear undetermined low energy constants, as
a consequence of the renormalization of the amplitudes, which are obtained from fits to thepS→pS mass

spectrum, to the elasticK̄N→K̄N and K̄N→pS t matrices and to theK2p→hL cross section data. The
position and residues of the complex poles in the second Riemann sheet of the scattering amplitude determine
the masses, widths, and branching ratios of theS01 resonancesL~1405! and2L~1670!, in reasonable agree-
ment with experiment. A good overall description of the data, from thepS threshold up to 1.75 GeV, is
achieved despite the fact that three-body channels have not been explicitly included.

DOI: 10.1103/PhysRevD.67.076009 PACS number~s!: 11.10.St, 11.30.Rd, 11.80.Et
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I. INTRODUCTION

Baryon resonances are outstanding features in elastic
inelastic meson-baryon scattering and signal the onse
nonperturbative physics. Constituent quark model
proaches describe them as excited baryonic bound states
the coupling to the continuum is obtained by evaluating tr
sition matrix elements@1#, but comparison with data can b
done only once the scattering problem is solved. In suc
scheme, the underlying quark constituent nature of hadr
is taken into account but implementation of chiral symme
~CS! becomes difficult. In the region of low energies,
seems appropriate to start considering the hadrons as th
evant degrees of freedom, where CS not only proves hel
to restrict the type of interactions between mesons and b
ons, but also provides an indirect link to the underlyi
quantum chromodynamics~QCD! @2#. For processes involv
ing baryons and mesons, heavy baryon chiral perturba
theory~HBChPT! @3,4# incorporates CS at low energies in
systematic way, and has provided a satisfactory descrip
of pN scattering in the region around threshold@5–7#. It
suffers, however, from known limitations. First, the expa
sion is manifestly not relativistically invariant, and som
convergence problems, especially for the scalar form fac
have been pointed out and solved by defining a suitable re
larization scheme, the so-called infrared regularization~IR!
@8#. The IR scheme has also successfully been applied topN
elastic scattering@9#. The previous remarks concern a theo
with only p andN present. TheD degrees of freedom hav
been explicitly included@10# within the HBChPT scheme

*Email address: g–recio@ugr.es
†Email address: jmnieves@ugr.es
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where the nucleon-D splitting is considered to be of the orde
of the pion mass, pointing toward a better convergence
the pN scattering data than in the case without explicitD’s.
More recently, the work of Ref.@11# has compared the HB
ChPT scheme to the IR one in the presence of expliciD
degrees of freedom forpN scattering, showing that HB
ChPT describes data up to much higher pion c.m. kine
energies than the IR method.

A second limitation of any of the previous approache
both in the HBChPT as well as in the IR frameworks a
with or without explicitD, is that they are based on a pertu
bative expansion of a finite number of Feynman diagram
This complies with unitarity order by order in the expansio
but fails to satisfy exact unitarity of the scattering amplitud
Thus, some nonperturbative resummation should be sup
mented to incorporate exact unitarity and, hopefully, to
commodate resonances. Regarding this second limita
several unitarization methods have been suggested in th
erature and previously used to describe the meson-ba
dynamics: inverse amplitude method~IAM ! @12#, or a some-
what modified IAM to account for the large baryon mass
@13#, dispersion relations@14–16#, the Lippmann-Schwinger
equation~LSE!, and the Bethe-Salpeter equation~BSE! @17–
26#.

In this work, we will study thes-wave meson-baryon sca
tering for the strangenessS521 and isospinI 50 sector in
a Bethe-Salpeter coupled channel formalism incorpora
CS. This reaction provides a good example of the need
unitarization methods; the recent work of Ref.@27# shows
that HBChPT to one loop already fails completely at thre
old. The K̄N scattering length turns out to have a real p
about the same size but with opposite sign and half
imaginary part expected experimentally@28#, due to the
nearby subthresholdL~1405! resonance. It is important to
realize from the very beginning that, for this particular res
©2003 The American Physical Society09-1
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nance, the unitarization program implies considering at le

two channels, namely,pS and K̄N. Thus, one deals with a
coupled channel problem. Unfortunately, there are no o
loop ChPT calculations incorporating this coupled chan
physics. Much of the discussion below and in the rest of
paper reflects this lack of knowledge on the general struc
of this scattering amplitude within ChPT, particularly on t
number of undetermined parameters. Of course, not all co
terterms are independent, as demanded by crossing and
ral symmetries. Actually, the best practical way to impo
these constraints on a unitarized partial wave amplitude is
matching to a ChPT amplitude. The reason for this is that
left-cut partial wave analytical structure implied by crossi
would be automatically incorporated within a one-loop Ch
calculation. This point of view has been used in several u
tarization approaches for the elasticpN process@15,12–14#.
There, the ChPT amplitude is known up to one loop@5–7,9#,
which in HBChPT corresponds to third and fourth ord
This is the lowest order approximation incorporating the p
turbative unitarity correction which is required to match t
perturbative amplitude to a unitarized one. As we have
ready mentioned, the coupled channel ChPT one-loop am
tude for meson-baryon scattering is not known, and thus
matching is not possible.

The first study of the strangenessS521 and isospinI
50 meson-baryon channel incorporating CS and coup
channel unitarization was carried out in Refs.@18,19#, al-
though some phenomenological form factors were employ
More recently, this channel has been studied in Refs.@21#
and @22#, where a three-momentum cutoff is used to ren
malize the LSE and the off-shell behavior is partially tak
into account. In principle, the minimal renormalization pr
cedure used in Refs.@21,22# is acceptable but may turn out t
be too restrictive in practice. If, instead, one takes advant
of the flexibility allowed by the renormalization of an effe
tive field theory~EFT!, there is a chance of improving th
description from threshold up to higher energies. In pract
terms this means increasing the number of counterterms
one has to add to make finite the amplitudes. Along the li
of Ref. @25#, we will adopt this viewpoint below by taking
fully into account the off-shellness suggested by the B
using the tree level amplitude as the lowest order appr
mation to the potential. In the approach of Ref.@25# there are
three parameters for each channel. In the absence of a
loop ChPT coupled channel amplitude, we content ourse
with matching to the tree level one.1 One could also match
the coupled channel unitarized amplitude to HBChPT, mu
below the inelastic thresholds. This procedure was inve
gated in Ref.@25# for thepN system, but did not introduce
any powerful constraints.

Despite the great success of the model of Ref.@21# in

1This point was discussed at length in Ref.@29# in the context of
elasticpp scattering; from there one easily realizes that the ren
malization scheme pursued in Ref.@21# would lead to a scenario

where only one of the four SU~2! Gasser-Leutwylerl̄ 1 , l̄ 2 , l̄ 3 , and

l̄ 4 parameters is independent.
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describing the data around the antikaon-nucleon thresh
including the features of theS01 L~1405! resonance, its pre
dictions for higher energies@22# do not work so well and
clear discrepancies with data appear. Indeed, the limitat
of the model of Ref.@21# already appeared in the strangene
S50 and isospinI 51/2 meson-baryon sector, where th
model is able to describe data only in a more or less nar
energy window around theN(1535) resonance@23,24#.
However, the model previously developed by two of us
the latter channel in Ref.@25# describes data in a wider en
ergy region, ranging from thepN threshold up to almost a
center of mass~c.m.! meson-baryon energy ofAs52 GeV,
including the features of a second resonance@N(1650)#.
Motivated by these encouraging results we extend in
work the model of Ref.@25# to the strangenessS521 and
isospin I 50 meson-baryon channel. As in theS50 sector,
taking into account the off-shellness of the BSE generate
rich structure of unknown constants which allow for a bet
description of the amplitudes. Although the generation
more undetermined constants may appear a less predi
approach than using a cutoff~one single parameter! to regu-
larize the divergent integrals, it reflects the real state of
art of our lack of knowledge on the underlying QCD dynam
ics. The number of adjustable low energy constants~LEC’s!
should not be smaller than those allowed by the symme
this is the only way both to falsify all possible theories em
bodying the same symmetry principles and to widen the
ergy interval that is being described. Limiting such a ri
structure allowed by CS results in a poor description of
perimental data. However, a possible redundancy of par
eters is obviously undesirable but may be detected thro
statistical considerations~see below!. The number of LEC’s
is controlled to any order of the calculation by crossing sy
metry. In a unitarized approach, the only way to avoid t
parameter redundancy is to match the unitarized amplitud
the one obtained from a Lagrangian formalism.2 There is no
standard one-loop ChPT calculation for the meson-bar
reaction with open channels to compare with. Some res
exist within the HBChPT scheme, up to ord
O„1/(M3f p

2 ),1/(M f p
4 )…—M being a typical baryon mass—

but only involving pions and nucleons@7#. An indirect way
to detect such a parameter redundancy might be through
to experimental data if the errors and correlations in so
parameters turn out to be very large. We will adopt this po
of view in this work, and will show that indeed correlation
take place, effectively reducing the total number of indep
dent parameters.

In this paper four coupled channels have been con
ered: pS, K̄N, hL, andKJ, and we have taken into ac
count SU~3! symmetry breaking effects but neglected t
considerably smaller isospin violation effects. We also n
glected three-body channels, mainly for technical reaso
According to Ref.@33# the L~1670! resonance decays into
S* pN three-body final state with a small (0.0870.06)
branching ratio.r-

2See the discussion in Appendix D of Ref.@25#.
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Preliminary results of the present work can be found
@30–32#.

The paper is organized as follows. In Sec. II, a summ
of the theoretical framework used is described. Further
tails can be found in Ref.@25#. Numerical results for the
amplitudes and cross sections and details of the fitting p
cedure are given in Sec. III. Special attention is paid both
the analytical properties, in the complex plane, of thet ma-
trix found and to the statistical correlations between the fit
LEC’s. Appendixes A and B are devoted to these issues
well. Finally, in Sec. IV we outline the conclusions of ou
work.

II. THEORETICAL FRAMEWORK

The coupled channel scattering amplitude for the bary
meson process in the isospin channelI 50,

B~MA ,P2k,sA!1M ~mA ,k!

→B~MB ,P2k8,sB!1M ~mB ,k8!, ~1!

with baryon~meson! massesMA andMB (mA andmB) and
spin indices~helicity, covariant spin, etc.! sA ,sB , is given by

TP@B$k8,sB%←A$k,sA%#

5ūB~P2k8,sB!tP~k,k8!uA~P2k,sA!. ~2!

Here, uA(P2k,sA) and uB(P2k8,sB) are baryon Dirac
spinors3 for the ingoing and outgoing baryons, respective
P is the conserved total four-momentum, andtP(k,k8) is a
matrix in the Dirac and coupled channel spaces. On the m
shell the parity and Lorentz invariant amplitudetP can be
written as

tP~k,k8!uon shell5t1~s,t !P” 1t2~s,t ! ~3!

with s5P25P” 2, t5(k2k8)2, andt1 and t2 matrices in the
coupled channel space.

In terms of the matricest1 and t2 defined in Eq.~3!, the
s-wave coupled channel matrixf 0

1/2(s) @ f L
J # is given by

@ f 0
1/2~s!#B←A52

1

8pAs
AukWBu/ukWAuAEB1MBAEA1MA

3F1

2 E21

1

d ~cosu! @Ast1~s,t !1t2~s,t !#BAG
~4!

where the c.m. three-momentum moduli read

ukW i u5
l1/2~s,Mi

2,mi
2!

2As
, i 5A,B, ~5!

with l(x,y,z)5x21y21z222xy22xz22yz and EA,B the
baryon c.m. energies. The phase of the matrixTP is such that
the relation between the diagonal elements (A5B) in the

3We use the normalizationūu52M .
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coupled channel space off 0
1/2(s) and the inelasticities~h!

and phase shifts~d! is the usual one:

@ f 0
1/2~s!#AA5

1

2i ukWAu
@hA~s!e2idA~s!21#. ~6!

Further details of normalizations and definitions of t
amplitudes can be seen in Sec. II B of Ref.@25#.

To compute the amplitudetP we solve the BSE@see
Fig. 1#

tP~k,k8!5vP~k,k8!1 i E d4q

~2p!4 tP~q,k8!

3D~q!S~P2q!vP~k,q!, ~7!

wheretP(k,k8) is the scattering amplitude defined in Eq.~2!,
vP(k,k8) is the two-particle irreducible Green’s function~or
potential!, andS(P2q) andD(q) are the baryon and meso
exact propagators, respectively. The above equation turns
to be a matrix one, in both the coupled channel and Di
spaces. For any choice of the potentialvP(k,k8), the result-
ing scattering amplitudetP(k,k8) satisfies the coupled chan
nel unitarity condition, discussed in Eq.~21! of Ref. @25#.
The BSE requires some input potential and baryon and
son propagators to be solved. To compute the lowest orde
the BSE-based expansion@29# it is enough to approximate
the iterated potential by the chiral expansion lowest or
meson-baryon amplitudes in the desired strangeness
isospin channel, and the intermediate particle propagator
the free ones~which are diagonal in the coupled chann
space!. From the meson-baryon chiral Lagrangian@2# ~see
Sec. II A of Ref.@25#!, one gets at lowest order for the po
tential

vP~k,k8!5tP
~1!~k,k8!5

D

f 2 ~k”1k” 8! ~8!

with D the coupled channel matrix

DS521
I 50 5

1

4

K̄N pS hL KJ

K̄N

pS

hL

KJ

S 23 A3/2 23/& 0

A3/2 24 0 2A3/2

23/& 0 0 3/&

0 2A3/2 13/& 23

D
~9!

given in the isospin basis and the same phase convention
in Ref. @25#.

While amplitudes follow the chiral symmetry breakin
pattern from the effective Lagrangian to a good approxim

FIG. 1. Diagrams summed by the Bethe Salpeter equation.
nematics defined in the main text.
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GARCÍA-RECIO et al. PHYSICAL REVIEW D 67, 076009 ~2003!
tion, it is well known that physical mass splittings have
important influence when calculating the reaction ph
space. Indeed, the correct location of reaction thresholds
quires taking physical masses for the corresponding reac
channels. We have taken this effect into account in our
merical calculation. We also incorporate explicit CS effe
in the weak meson decay constants and different nume
values for f p , f K , and f h can be used. This can be eas
accomplished through the prescription

D/ f 2→ f̂ 21D f̂ 21, f̂ 5diag~ f K , f p , f h , f K!. ~10!

The solution of the BSE with the kernel specified above c
be found in Ref.@25#. It turns out that the functionst1 and
t2 , defined in Eq.~3!, do not depend on the Mandelsta
variablet, and thus the dynamics is governed by the ma
function t(s) @see Eq.~4!#

t~s!5Ast1~s!1t2~s!, ~11!

which is given in Eq.~34! of Ref. @25#. There, the renormal
ization of the amplitudes obtained is studied at length. A
result of the renormalization procedure, and in addition
the physical masses and weak meson decay constants, a
number of 12,

JK̄N , JpS , JhL , JKJ ,

DN , DS , DL , DJ ,

D K̄ , Dp , Dh , DK , ~12!

undetermined LEC’s appear. We fit these constants to dat
we will see in the next section, and from them we define
three following diagonal matrices:

J0„s5~m̂1M̂ !2
…5S JK̄N 0 0 0

0 JpS 0 0

0 0 JhL 0

0 0 0 JKJ

D ,

D M̂5S DN 0 0 0

0 DS 0 0

0 0 DL 0

0 0 0 DJ

D ,

Dm̂5S D K̄ 0 0 0

0 Dp 0 0

0 0 Dh 0

0 0 0 DK

D ,

~13!

which appear in the solution of the BSE. We have deno
the meson-baryon low energy constantsJ0„s5(mi1M j )

2
…,

i 5K̄, p, h, K and j 5N, S, L, J, of Eq.~A8! of Ref. @25# as
Ji j .
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III. NUMERICAL RESULTS

Throughout the paper we will use the following numeric
values for the masses and weak decay constants of the p
doscalar mesons~all in MeV!:

mK5mK̄5493.68, mp5139.57, mh5547.3,

M p5938.27, MS51189.37, ML51115.68,

MJ51318.0,

f p5 f h5 f K51.15393.0, ~14!

where for the weak meson decay constants we take fo
channels an averaged value.4 This selection of the coupling
constants does not omit the essential features of the me
baryon system since a recent work@34# shows that the ob-
served SU~3! breaking in meson-baryon scatterings cann
be explained by the present SU~3! breaking interactions and
that the essential physics of the resonances seems to lie i
substraction constants.

A. Fitting procedure

We perform ax2 fit, with 12 free parameters, to the fo
lowing set of experimental data and conditions.

S01(S2T2J) K̄N→K̄N and K̄N→pS scattering ampli-
tudes (real and imaginary parts) [35], in the c.m. energ
range of1480<As<1750 MeV. In this c.m. energy region
there are a total number of 56 data points~28 real and 28
imaginary parts! for each channel. The normalization used
Ref. @35# is different from that used here and their amp
tudesTi j

Go77 are related to ours by

Ti j
Go775sgn~ i , j !ukW i u@ f 0

1/2~s!# j← i , ~15!

where sgn(i,j) is 11 for the elastic channel and21 for the
K̄N→pS one. On the other hand, and because in Ref.@35#
errors are not provided, we have taken for those amplitu
errors given by

dTi j
Go775A~0.12Ti j

Go77!210.052 ~16!

in the spirit of those used in Ref.@36#.
S012pS mass spectrum@37#, 1330<As<1440 MeV. In

this c.m. energy region, there are a total of thirteen 10 M
bins and the experimental data are given in arbitrary units
compare with data, taking into account the experimental
ceptance of 10 MeV, we compute

Ds

D@MpS~ i !#
5CE

MpS~ i !25 MeV

MpS~ i !15 MeV
u@ f 0

1/2~s5x2!#2←2u2

3ukW2~s5x2!ux2dx, ~17!

4This makes the comparison with Refs.@21,22# more straightfor-
ward. One could also take the physical values for these decay
stants, but part of the effect can be absorbed into a redefinitio
the parameters in Eq.~13!. See also Eq.~34! in Ref. @25#.
9-4
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FIG. 2. Solid lines: results of our fit. Experimental data forpS→pS andK2p→hL are from Refs.@37# and @39#, respectively.
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where C is an arbitrary global normalization factor5 and i
denotes the bin with central c.m. energyMpS( i ). Hence,
there are only 12 independent data points. Finally, we t
the error of the number of countsNi of the bin i to be
1.61ANi as in Ref.@38#.

The K2p→hL total cross section of Ref. [39], 1662
<As<1684 MeV. We use the Crystal Ball Collaboratio
precise new total cross-section measurements~a total of 17
data points compiled in Table I of Ref.@39#! for the near-
threshold reactionK2p→hL, which is dominated by the
L~1670! resonance. We assume, as in Ref.@39#, that thep
and higher wave contributions do not contribute to the to
cross section.

Finally, we define thex2, which is minimized, as

x2/Ntot5
1

N (
a51

N
1

na
(
j 51

na S xj
~a!theor2xj

~a!

s j
~a! D 2

, ~18!

whereN54 stands for the four sets of data used and d
cussed above6 andxj

(a)theor denotes our model result for th
data pointxj

(a) . Finally, na takes the values 56, 56, 12, an
17, andNtot5(a51

N na is the total number of data points. Wit
such a definition, acceptable best fits should provide va
of x2/Ntot around 1.

Although we have considered four coupled channe
three-body channels, for instance theppS one, are not ex-
plicitly considered, as was also assumed previously in R
@22# and @39#.

B. Results of the bestx2 fit

The model presented up to now has initially 12 free p
rameters@Eq. ~12!#, which have to be determined from dat
This is a cumbersome task because there are many m
ematical minima that are not physically admissible. For
stance, in some cases one finds fits to data with spur

5We fix it by setting the area of our theoretical spectru
( iDs/D@MpS( i )#, to the total number of experimental coun
( iNi .

6From the first item above and to define thex2, we consider two

separate sets:K̄N→K̄N and K̄N→pS.
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poles in the first Riemann sheet which strongly influence
scattering region and hence violate causality. Any fit e
bodying these singularities is physically inadmissible a
should be rejected. This is an important issue, which sho
always be considered in any analysis. We will further elab
rate on this point in Appendix B.

Furthermore, even if one is reasonably convinced tha
physically acceptable minimum has been found, there
strong correlations between the fitted parameters, which h
to be carefully evaluated and, if possible, understood. O
best results come from a minimum for which the pa

(Ji ,DBi
) with i 5K̄N, pS, hL, KJ, andBi5N, S, L, J are

totally correlated ~correlation factors bigger than 0.99!,
which leads to an almost singular correlation matrix, refle
ing the fact that there exists, in very good approximation
linear relation between theJi andDBi

parameters.7 Thus, we

have fixedDBi
to some specific values in the neighborho

of the minimum, given in Appendix A, and have studied t
correlation matrix for the remaining eight parameters. Y
we find a strong correlation~0.99! betweenJKJ andDK and
we proceed as above, i.e., we fixDK and evaluate the corre
lation matrix and variances for the remaining seven para
eters. Thus, at the end of the day we have only seven in
pendent best fit parameters. The best fit parameters,
variances, and the correlation matrix are compiled in App
dix A.

In Figs. 2–4 we compare the results of our best fit w
the experimental data. The overall description is remarka
good, at both low energies and the higher end of the con
ered energy region. In addition, as we will see, the desc
tion of theL~1405! andL~1670! features is also quite good
Thus, our scheme leads to a much better description of
data than the approach of Ref.@22#, as was also the case i
the strangenessS50 sector~@25# versus@23#!.

For the elasticK̄N→K̄N scattering length we get

,
7In Ref. @25# the static limit ~infinitely heavy baryons! is dis-

cussed, and it is shown@Eq. ~D9!# that there exists a linear relatio

betweenJi and DBi
if, as is the case here,Dmi

, i 5K̄,p,h,K, is
small when compared toDBi

.

9-5



d the
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FIG. 3. The real~left panel! and imaginary~right panel! parts of thes-waveT matrix, with normalization specified in Eq.~16!, for the

elastic K̄N→K̄N process in theI 50 isospin channel as functions of the c.m. energy. The solid line is the result of our fit, an
experimental data are taken from the analysis of Ref.@35# with the errors stated in the main text.
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aK̄N[@ f 0
1/2~s5~mK1MN!2!# K̄N←K̄N

5~21.2060.091 i1.2960.09! fm, ~19!

where the error is statistical and has been obtained from
covariance matrix given in Appendix A, taking into accou
the existing statistical correlations, through a Monte Ca
simulation. This value should be compared both to the
perimental one (21.711 i0.68) fm of Ref.@28# and to the
LSE approach of Ref.@21# (22.241 i1.94) fm. Unfortu-
nately, the previous works do not provide error estimates
one cannot decide on the compatibility of the results.

C. Second Riemann sheet: Poles and resonances

In this section we are interested in describing the mas
and widths of theS01 resonances in theS521 channel.
Since causality imposes the absence of poles in thet(s) ma-
trix in the physical sheet@40#, one should search for comple
poles in unphysical ones. Among all of them thoseclosestto
the physical sheet and hence to the scattering line are
most relevant ones. We define the second Riemann she
the relevant fourth quadrant as that which is obtained
continuity across each of the four unitarity cuts~see a de-
tailed discussion in a similar context in Ref.@25#!. Physical
resonances appear in the second Riemann sheet of all m
elements oft(s), defined in Eq.~11!, in the coupled channe
07600
he
t
o
-

o

es

he
t in
y

trix

space, differing only on the value of the residue at the po
The residue determines the coupling of the resonances to
given channel. In Fig. 5 we show the absolute value of
hL→hL element of thet matrix. We choose this channe
because all found poles have a sizable coupling to it. B
the fourth quadrant of the second Riemann sheet and the
quadrant of the first~physical! Riemann sheet are shown
The physical scattering takes place in the scattering line
the plot ~upper lip of the unitarity cut of the first Rieman
sheet!. We find three poles in the second Riemann sh
whose positions are (s5MR

22 iM RGR)

First pole: MR51368612, GR5250623; ~20!

Second pole: MR5144363, GR55067; ~21!

Third pole: MR51677.560.8, GR529.261.4,
~22!

where all units are given in MeV and errors have been tra
ported from those in the best fit parameters@Eq. ~A1!#, tak-
ing into account the existing statistical correlations throug
Monte Carlo simulation.

These poles are related to the twoS01 resonancesL~1405!
andL~1670! which appear up to this range of energy in t
FIG. 4. Same as in Fig. 3 for the inelastic channelK̄N→pS.
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Particle Data Group~PDG! compilation ~Ref. @41#!. The
third pole above can be clearly identified withL~1670!,
which is located at

L~1670!: MR51670610, GR535210
115, Ref. @41#,

MR5167362, GR52366, Ref. @33#,
~23!

where again the units are MeV. The agreement of our pre
tions and the experimental data is satisfactory and better
in the previous theoretical LSE approach of Ref.@22#. Let us
look at theL~1405! resonance, whose nature is under mu
discussion@42,43#. Following the PDG, it is placed at~in
MeV!

L~1405!: MR51406.564.0, GR55062, Ref. @41#.
~24!

Our amplitudes have two poles in the region of 1400 Me
Eqs. ~20! and ~21!. The features of the second one are
agreement with the previous results of Refs.@21,22# and
though the width compares well with the experiment, t
mass is shifted to higher values. In addition, we should n
that the pole quoted in Eq.~20! is very broad and cannot b
identified with any of the experimentally established re
nances. This pole is also present in the LSE model of R
@21,22#, as was pointed out in Ref.@44#; although the mass
position there is similar (MR51390 MeV), the width is
about a factor of 2 narrower (GR5132 MeV) than ours. Our
understanding is that this broad resonance does not stro
influence the scattering line. However, thepS mass spec-
trum peaks around 1405 MeV in the experimental data
also in our approach as can be seen in Fig. 2. This is a c
indication of a sizable nonresonant contribution on top of
1443 MeV pole.

On the other hand, there are unphysical poles in the ph
cal ~first! Riemann sheet. These unphysical poles appear
cause we have truncated the iterated potential to solve

FIG. 5. Modulus of thehL→hL element of the scattering am
plitude t(s) ~fm!, defined in Eq.~11!, analytically extended to the
first and fourth quadrants of thes complex plane. The solid line is
the scattering line,s5x1 i01, xPR, from the first threshold (mp

1MS)2 on. The first~second! Riemann sheet is depicted in the fir
~fourth! quadrant of thes complex plane. Three poles appear in t
second Riemann sheet, which are connected with theL~1405! and
L~1670! resonances; see the discussion in the main text. Unphy
poles also show up in the physical sheet out of the real axis,
they do not influence the scattering lines as can be seen in the
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BSE. The two of them closer to the scattering line are loca
at (s5M21 iM G) with M'1166, G'6200 MeV andM
'1616,G'631 MeV. The tails of both poles can be seen
Fig. 5 and they do not influence the scattering line. In A
pendix B, we will show the results from a fit which, at fir
sight, are in even better agreement with the experime
data ~Sec. III A! than those presented up to now. Howev
this apparent improvement is achieved because the unph
cal poles get closer to the reals axis and they affect, in a
substantial manner, the scattering amplitudes. Hence, we
card this minimum, and we would like to note that it
important to observe the positions and influence of the
physical poles when deciding the goodness of a phenom
logical description of data.

Finally, we have also analyzed the nature of the re
nances in the light of the well known Breit-Wigner~BW!
parametrization for coupled channels and reals ~see, e.g.,
Ref. @45# and references therein!,

t i j
BW~s!52

d i j

2ir i
@e2id i21#1

ei ~d i1d j !MRAG i
BWG j

BW

Ar ir j@s2MR
21 iM RGR#

,

~25!

for which the background is assumed to be diagonal in
coupled channel space, and the relative phase of the r
nance to the background and the summed partial de
widths S iG i

BW5GR are chosen in such a way thatt i j
BW(s)

exactly satisfies unitarity on the real axis. Here,r i is a kine-
matic factor defined by the second line of Eq.~31! below.
The branching ratio is then defined asBi

BW5G i
BW/GR . Sub-

tracting the resonance contribution, Eq.~26!, to the total am-
plitude, we found that for ourL~1670! the background is no
a diagonal matrix, since for ourt i j matrix we get 2S i , j ut i j

2t i j
RBWu2'S i ut i i 2t i i

RBWu2 for s→MR
2, with t i j

RBW the second
term in Eq.~25!. In addition, the BW parametrization sug
gests a relation between the residue at the pole and
imaginary part of the pole. This relation is true only in th
sharp resonance approximationG i

BW!pi with pi the c.m.
momentum of the decaying state. We have also checked
for our problem this is not the case. Actually, with such
definition we find thatS iG i

BW'0.8GR for L~1670!. This is a
simple consequence of the incorrect assumption made in
~25!.

D. Branching ratios and couplings of the resonances
to different final states

Before going further we would like to make some critic
remarks regarding the comparison between ‘‘theory’’ a
‘‘experiment.’’ Our BSE solution has a very specific ener
dependence which, as we saw in Sec. III B, is able to num
cally fit experimental data, or rather a partial wave analy
with a given energy dependence. Obviously, the two fu
tional forms are not identical, and it is also fair to say th
both incorporate their own biases. There is no reason to
pect that they are also numerically alike in the comp

al
ut
ot.
9-7
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TABLE I. Dimensionless complex couplingsgi5ugi ueif i , defined in Eqs.~26!–~28!, for all channelsi

5K̄N,pS,hL,KJ, and for the three poles~resonances! quoted in Eqs.~20!–~22!. The phases are in radian
Errors are purely statistical and affect the last significant digit.

Resonance
~MeV!

gK̄N gpS ghL gKJ

ugu f ugu f ugu f ugu f

MR51368 3.9~1! 20.59~5! 3.65~8! 20.73~3! 1.7~2! 3.0~2! 0.29~7! 1.14~13!

MR51443 3.3~2! 0.72~7! 2.14~16! 1.10~8! 2.2~1! 22.66~3! 0.23~1! 20.008~57!

MR51677.5 0.39~2! 21.29~4! 0.20~1! 0.77~5! 1.22~3! 2.69~2! 1.64~1! 20.13~1!
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plane.8 Under these conditions, some parameters,
branching ratios, have a different meaning, since the extra
lation of the resonant contribution to the reals axis is am-
biguous. Actually, the ambiguity is enhanced as the re
nance becomes wider and as a consequence the definiti
a branching ratio becomes model dependent. We explain
low our definition of branching ratios and how they are e
tracted from our amplitude.

Let us considersR5MR
22 iM RGR a pole in the second

Riemann sheet of the coupled channel scattering matrixt(s).
Then, around the pole, it can be approximated by

@ t~s!# i j '2MR

gi j

s2sR
, ~26!

wheregi j is the residue matrix. Sincet is a complex sym-
metric matrix ~due to time reversal invariance!, g is also
complex symmetric and its rank is 1 to ensure thats5sR is a
pole of order 1 of the det@t(s)#. In this way a nondegenerat
resonant state is being described.9 Under these conditions
gi j turns out to be factorizable:10

gi j 5gigj . ~28!

8A good example of this fact is provided by our best fit results
Sec. III B and the physically inadmissible results of Appendix
they look very much the same on the scattering line although
analytic structure is rather different.

9This can be seen as follows. Using matrix notation, the B
reads t(s)5V1VG0(s)t(s) and it is solved by t(s)5V(1
2G0(s)V…21, with the obvious identifications forV and G0 . A
pole ats5sR in det@t(s)# is produced by a zero of det@12G0(s)V#.
This last condition ensures that the homogeneous~quasi!bound state
Bethe-Salpeter equation

@2G0~s!
211V#C50 ~27!

has a nontrivial solution fors5sR . Indeed, all solutionsC of the
above equation are linear combinations of the null eigenvector
the „12G0(sR)V… matrix and describe the dynamics of the existi
states~resonances! at s5sR . For a nondegenerate resonance~which
we have checked is indeed the case!, the zero eigenspace shou
have dimension 1, whence for the case of four coupled chann
the rank of the matrix„12G0(sR)V… is 3 and therefore det@1
2G0(s)V# should have a single zero ats5sR .

10The symmetric complex matrixg can be diagonalized by a com
plex orthogonal transformationU as g5UTdU, where only one
element of the diagonal matrixd is different from zero. If we take
this element to bed11, we havegi j 5(UT) i1d11U1 j5d11U1iU1 j .
07600
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The above matrixgi j has only one nonzero eigenvalueg1
2

1g2
21g3

21g4
2, with gi the associated eigenvector. The ve

tor gi determines the coupling of the resonance to the diff
ent final states, which are well and unambiguously defin
even if the corresponding channels are closed in the deca
the resonance. In Table I we give the complex vectorsgi for
the three resonances described in Sec. III C. Unfortunat
the PDG does not provide this kind of information and, i
stead, branching ratios are given. To extract meaning
branching ratios from our calculation, we have to extrapol
the resonant contribution of the scattering amplitude to ths
real axis, which is the only one experimentally accessible
addition, the picture of a resonance as a quantum mecha
decaying state requires a probabilistic description. Thus,
isolate the resonant contribution to theS matrix11 for s
5MR

2

Si j
resonant~s5MR

2 !522i2MRAr i
R gigj

MR
22sR

Ar j
R,

r i~s!5Q~s2sth
i !

ukW i~s!u

8pAs
~AMi

21kW i
21Mi !,

r i
R5r i~s5MR

2 !, ~31!

with sth
i the threshold of the baryon-meson channeli. This

definition embodies a sensible kinematic suppression c
patible with Cutkosky’s rules and thes-wave nature of the
resonance. Defining

bi5giA2r i
R/GR, ~32!

we find

Si j
resonant~s5MR

2 !522iM RGR

bibj

MR
22sR

, ~33!

and, taking into account that the matrixbi j 5bibj has rank 1

f
;
e

E

of

ls,
11The S matrix is related to thet matrix, in our convention, by

Sij~s!5dij22iAr i~s!t i j ~s!Ar j~s!, ~29!

and probability conservation (S†S5SS†51) holds sincet satisfies
coupled channel unitarity:

tij* ~s!2tij~s!52i(
k

tik* ~s!rk~s!tkj~s!. ~30!
9-8
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and thatbi ~or any vector proportional to it! is the only
eigenvector ofSresonantwith a nonzero eigenvalue, the res
nant state ats5MR

2 will be given by

uR&}(
i

bi u i &, ~34!

whereui& stands for the meson-baryon states used to build
coupled channel space. Finally, the branching ratioBi will be
given by the probability of findinguR& in the stateui&:

Bi5
ubi u2

( j ubj u2
~35!

which by definition satisfiesS iBi51. The partial decay
width may then be defined asG i5BiGR , and obviously
S iG i5GR . For L~1670! we obtain the following branching
ratios with the above prescription:

BK̄N50.2460.01, BpS50.0860.01, BhL50.6860.01.
~36!

The last two values are not in agreement with the val
quoted by the PDG@41# (BK̄N50.2560.05, BpS50.40
60.15, BhL50.1760.07) and in Ref.@33# (BK̄N50.37
60.07, BpS50.3960.08, BhL50.1660.06, BpS(1385)
50.0860.06).

To finish this subsection, we would like to point out th
in the present context the concept of the branching rati
subtle and it might be ambiguous, from both the theoret
and experimental sides. From the experimental point of v
the difficulty arises from the impossibility of preparing
pure short-lived resonant state strongly coupled to a c
tinuum, and therefore the impossibility of disentangli
events coming from the formation of the resonance fr
those produced through nonresonant processes. From
theoretical point of view the ambiguity comes when defini
Sresonant(s5MR

2) in Eq. ~31!. For instance, at the poles5sR

one could have

@ t~s!# i j '2MR

b i~s!

b i~sR!

gi j

s2sR

b j~s!

b j~sR!
, ~37!

instead of the expression assumed in Eq.~26!, b i(s) being an
arbitrary complex function analytical aroundsR . In these
circumstances the matrixSi j

resonant(s5MR
2) would be differ-

ent from that given in Eq. ~31! by a factor
@b i(MR

2)/b i(sR)#@b j (MR
2)/b j (sR)# and one would get a new

vector b̃i , which in terms of the vectorbi , defined in Eq.
~32!, reads

b̃i5
b i~MR

2 !

b i~sR!
bi , ~38!

leading, in principle, to different branching ratios. Th
trouble comes from the extrapolation fromsR to the real axis,
which is not unique.

The usual assumption is that theb i(s) functions are
smooth and they do not change much froms5sR to s
5MR

2, and, more important, that the change does not dep
significantly on the channeli. However, this is not always
07600
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true; for example, if one were dealing with ap-wave reso-
nance the functionb i(s) would at least include the c.m
meson-baryon momentum. If there is a channel that beco
open close to and aboves5MR

2, then the c.m. momentum
will lead to a suppression of the branching ratio to this ch
nel.

E. Predictions for other processes

In Fig. 6 we show some of our predictions fors-wave I
50 cross sections for some elastic and inelastic channels
most of them there are no data. The effect of theL~1405!
resonance is clearly visible in theSp→Sp, Sp→K̄N, and
K̄N→K̄N cross sections. On the other hand, the elastichL
cross section takes a very large value at threshold, wh
corresponds to a typical low energy resonance behavior
gered by theL~1670! resonance. This is in contrast to an
expectation based on the Born approximation, since the
responding potential in this channel vanishes@Eq. ~9!#. Our
estimates for thepS andhL scattering lengths@defined for
the elastic channels as in Eq.~19!# are

apS51.1060.06 fm,

ahL5~0.5060.05!1 i ~0.2760.01! fm, ~39!

respectively.

F. Heavy baryon expansion at threshold

As we have already mentioned, the only calculati
within HBChPT in theS521 sector is that of Ref.@27#,
where thes-wave scattering lengths in both isospin chann
I 50 and 1 are computed. It is found that HBChPT to o
loop fails completely in theI 50 channel due to the stron
influence of the subthresholdL~1450! resonance. We think
that it is of interest to analyze this problem within the conte
of our unitarization approach.

As was discussed previously by two of us@25#, the con-
dition for the coupled channel amplitude to have a well d
fined static limitM→` is that the combination

Cm̂M̂5
1

m̂ F M̂Jm̂M̂1
1

4M̂
~Dm̂2D M̂ !G ~40!

FIG. 6. I 50 meson-baryons-wave cross sections for differen
channels.
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goes to some definite finite value. The parametersJm̂M̂ and
Dm̂ andD M̂ are listed in Eq.~13! and their best fit result is
presented in Eq.~A1! of Appendix A. Using Eq.~A1! one
can estimate the combinations in units of the relevant me
mass:

MSJpS1
Dp2DS

4MS
510.24mp ,

MNJK̄N1
D K̄2DN

4MN
520.09mK̄ ,

MLJhL1
Dh2DL

4ML
510.08mh ,

MJJKJ1
DK2DJ

4MJ
520.64mK , ~41!
t
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n

showing that they are not unnaturally large. Following t
discussion of Ref.@25#, the heavy baryon expansion is don
in the standard way, and taking the leading heavy bar
approximation of the parameters,

Jm̂M̂5J
m̂M̂

0 H 11OS 1

M D J ,

Dm̂5Dm̂
0 H 11OS 1

M D J ,

D M̂5D
M̂

0 H 11OS 1

M D J , ~42!

we get for theK̄N s-wave scattering length in theI 50 chan-
nel the following expression:
aK̄N5
3mK̄

8p f K
2 F12

mK̄

MN
1

m
K̄

2

MN
2 G1

9

16p f K
4 S 3

4
D

K̄

0
mK̄22C

K̄N

0
m

K̄

3 D1
3

32p f K
2 f p

2 H 3

4
Dp

0 mK̄22CpS
0 m

K̄

2
mp

2
1

4p2 m
K̄

2Am
K̄

2
2mp

2 FarccoshS mp

mK̄
D2 ipG2

1

4p2 m
K̄

2
~mp2mK̄!ln

MS

mp
J 1

9

32p f K
2 f h

2 H 3

4
Dh

0mK̄22ChL
0 m

K̄

2
mh

2
1

4p2 m
K̄

2Amh
22m

K̄

2
arccosS 2

mK̄

mh
D2

1

4p2 m
K̄

2
~mh2mK̄!ln

ML

mh
J 1OS 1

f 2M3 ,
1

M f 4 ,
1

f 6D . ~43!
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This expression can be mapped into the HBChPT resul
Ref. @27#, since the transcendental function dependenc
exactly the same. This should be so because the autho
@27# build the perturbative unitarity correction in HBChP
Thus, one could identify a linear combination of the leadi
order approximation of our constants, with another line
combination of HBChPT constants. On the other hand, if
assume the values of the best fit parameters, Eq.~A1!, for
J

m̂M̂

0
, Dm̂

0 , andD
M̂

0
we obtain the following numerical esti

mate:

~44!

where the contributions are separated according to the o
in the chiral expansion and also to the corresponding in
mediate state. As we see, large cancellations at higher or
must take place to obtain, after summing the whole ser
our result in Eq.~19!. Note also that the real part is abo
twice as large and with opposite sign as compared to
experimental result@28#. A similar situation occurs in HB-
ChPT @27#; the real part of the scattering amplitude has
opposite sign although a similar magnitude to the experim
tal number. Likewise, large cancellations have also b
noted, indicating a bad convergence rate in HBChPT. T
of
is
of

r
e

er
r-
ers
s,

e

e
n-
n
e

fact that our calculation Eq.~44! gives a larger magnitude fo
ReaK̄N than in HBChPT reflects, in addition, a bad conve
gence in the expansion~43!. This situation has also bee
described in the coupled channel caseS50 sector@25# and
seems a common feature of unitarization methods@12–14#.

IV. CONCLUSIONS

In this paper we extended the Bethe-Salpeter formal
developed in Ref.@25# to study s-wave andI 50 meson-
baryon scattering up to 1.75 GeV in the strangenessS
521 sector. We work on a four-dimensional two-bod
channel space and the kernel of the BSE takes into acc
CS constraints as deduced from the corresponding effec
Lagrangian. Thet matrix obtained manifestly complies wit
coupled channel unitarity and the undetermined low ene
constants of the model have been fitted to data. The avail
direct experimental information is limited to thepS→pS
mass spectrum, and theK2p→Lh total cross section, for
which errors are provided, and to theK̄N→K̄N and K̄N
→pS scattering amplitudes of a partial wave analysis,
which errors are guessed. Taking this into account, the ag
ment with experiment is satisfactory. In addition, some p
dictions for other cross sections, not yet measured, have
been given. A careful and detailed statistical study has b
carried out, showing that only seven parameters~LEC’s! out
of the starting 12 are really independent. Thus, although
model has more free parameters than those required in
@22#, the description of data achieved in our approach is
9-10
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perior to that of Ref.@22#. A similar situation was already
found in the strangenessS50 sector also@25#. According to
previous experience, the reduction of parameters is pa
due to the constraint of a well defined heavy baryon lim
@25#. Likewise, crossing symmetry is expected to shed m
light on the number of independent LEC’s. As we have
gued, matching to HBChPT calculations in theS521 and
I 50 sector would be the ideal way to map our LEC’s in
those stemming from an effective chiral Lagrangian, but i
already known that the chiral expansion fails@27# to repro-
duce theK̄N scattering length, due to the influence of t
nearby subthresholdL~1405! resonance. Possibly this cou
be overcome by properly accounting for the singular
structure as suggested in@15#. We believe these points de
serve a deeper investigation.

We have undertaken a careful discussion on the analy
structure of the scattering matrix amplitude in the comples
plane, which becomes mandatory in order to extract the
tures of theS01 resonances. We have searched for poles
the second Riemann sheet and compared masses; widths
branching ratios to data. The agreement is also quite s
factory. In the resonance region our unitary amplitude can
be analyzed as a Breit-Wigner resonance due to a siz
nondiagonal background in coupled channel space. This
particular, prevents a simple interpretation of branching
tios. Although residues at the resonance poles are well
unambiguously defined, the definition of branching ratios
quires special considerations and provisos, due to an amb
ous extrapolation of the resonance contribution of theS ma-
trix from the pole to the scattering line. We have al
illustrated that looking for a good description of experime
tally accessible data is not sufficient and that, in some ca
it can be achieved at the expense of generating nonphysi
acceptable poles in the first Riemann sheet, which influe
on the scattering region is non-negligible. Thus, any fit
data should be supplemented by this additional requirem
of not producing spurious singularities numerically releva
for the description of scattering processes.
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APPENDIX A: BEST FIT RESULTS

The best fit (x2/Ntot50.93) parameters are

JK̄N520.018660.0010,

JpS50.0079660.00061,

JhL50.0126460.00021,

JKJ520.1193660.00018,

D̄N[DN /~mK̄1MN!250.0135560.00029,

D̄S[DS /~mp1MS!2520.0032560.00036,

D̄L[DL /~mh1ML!2520.0026260.00011, ~A1!

with fixed parameters

DJ /~mK1MJ!2520.0035,

D K̄ /~mK̄1MN!2520.034,

Dp /~mp1MS!250.060,

Dh /~mh1ML!250.049,

DK /~mK1MJ!2520.26, ~A2!

as explained in the main text. We assume that the parame
of Eq. ~A1! are Gaussian correlated; this is justified beca
they come from ax2 fit. To make any further statistica
analysis of quantities derived from the parameters above,
corresponding covariance (v) and correlation~c! matrices
are needed. These matrices are defined as usual:

v i j 5F S 1

2

]x2

]bk]bl
D 21G

i j

,

ci j 5v i j /Av i i v j j , ~A3!

bi being any of the seven parametersJ and D of Eq. ~A1!.
The errorsdbi quoted in Eq.~A1! are obtained from the
diagonal elements of the covariance matrix (dbi5Av i i ). Fi-
nally, our estimate for the correlation matrix reads
FIG. 7. Same as Fig. 2 for the nonphysically acceptable fit described in Appendix B.
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1
JK̄N JpS JhL JKJ D̄N D̄S D̄L

JK̄N 1.000

JpS 20.236 1.000

JhL 20.909 0.442 1.000

JKJ 0.569 20.479 20.530 1.000

D̄N 20.830 0.228 0.702 20.829 1.000

D̄S 0.294 0.608 20.030 0.224 20.494 1.000

D̄L 20.158 20.501 0.087 0.613 20.336 20.051 1.000

2 . ~A4!

FIG. 8. Same as Fig. 3 for the nonphysically acceptable fit described in Appendix B.
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Even though the correlations in the above matrix have
most a modulus of about 0.9, the matrix has an eigenva
quite close to zero~0.0025!, which is a clear indication tha
one of the parameters might still be redundant.

APPENDIX B: NONPHYSICALLY ACCEPTABLE FITS
TO DATA

In Figs. 7–9 we present the results of a fit to the data,
we will show is not physically acceptable. The overall d
scription of the data is remarkably good. This fit giv
x2/Ntot50.69, to compare with the value of 0.93 of the be
07600
t
e

at
-

t

fit presented in the main text. However, on looking at t
t(s) matrix in thes complex plane~Fig. 10!, one realizes that
there exist a proliferation of poles, some of them unphysi
and others with no experimental counterparts. In the fi
Riemann sheet we find at least two poles. The first one
located at s5M22 iM G with M51606 MeV and G
5153 MeV. This pole is close to thes real axis and produce
visible effects on the scattering line not only for thethL→hL

entry shown in the figure, but also for alli→ j channels.
Indeed, as we showed in Sec. III C, our preferred fit also
a similar unphysical pole but significantly farther (G
5631 MeV) from the real axis, and therefore with a tin
FIG. 9. Same as Fig. 8 for the inelastic channelK̄N→pS.
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influence on the physical scattering. Since causality impo
the absence of poles in the physical sheet@40#, the existence
of such a pole affecting the scattering line invalidates
description~Figs. 7–9! presented in this appendix, despite
quality. Also, in the first sheet, there exists a pole on the r
axis (As51307 MeV) and below the first threshold, whic
would correspond to a bound state, stable under strong in
actions. Such a state has the same quantum numbe

FIG. 10. Same as Fig. 5 for the nonphysically acceptable fi
the data described in Appendix B.
to

cl.

ys

c

07600
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r-
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L~1115! and it should show up in all reactions where t
latter is produced.

On the other hand, in the second sheet there now e
four poles. Three of them are similar to those presented
Sec. III C, although the one placed around 1370 MeV@Eq.
~20!# is now almost a factor of 2 narrower~it is located at
MR51392 MeV andGR5120 MeV). In addition there exists
a new resonanceMR51343 MeV andGR50.18 MeV which
is responsible for the high peak at the beginning of the s
tering line in Fig. 10 and for the existing bump between 13
and 1360 MeV in thepS mass spectrum of Fig. 7. As far a
we know, there are no other independent indications of
existence of this extremely narrow resonance.

We have presented the results of this nonphysically
ceptable fit to stress that, in order to be sure of having a g
approach to thet matrix of a given physical system, on
shouldnot only look at thet matrix and related observable
~cross sections, etc.! at the physical scattering line~real s
values!, but also study its behavior on thes complex plane,
both in the second Riemann sheet to find the resonances
in the first Riemann sheet to be sure of avoiding patholog
behaviors such as the one illustrated in Fig. 10.
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