PHYSICAL REVIEW D 67, 076004 (2003

Fermions on the light front transverse lattice
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We address the problems of fermions in light front QCD on a transverse lattice. We propose and numerically
investigate different approaches of formulating fermions on the light front transverse lattice. In one approach
we use forward and backward derivatives. There is no fermion doubling and the helicity flip term proportional
to the fermion mass in the full light front QCD becomes an irrelevant term in the free field limit. In the second
approach with symmetric derivatigvhich has been employed previously in the literatudoublers appear
and their occurrence is due to the decoupling of even and odd lattice sites. We study their removal from the
spectrum in two ways: namely, the light front staggered formulation and the Wilson fermion formulation. The
numerical calculations in free field limit are carried out with both fixed and periodic boundary conditions on
the transverse lattice and finite-volume effects are studied. We find that an even-odd helicity flip symmetry on
the light front transverse lattice is relevant for fermion doubling.
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[. INTRODUCTION ary conditions which have significant effects in finite vol-
umes. There are two important reasons to thoroughly study
The light front Hamiltonian formulation of transverse lat- finite-volume effects. First, for a reasonable size of Fock
tice QCD[1,2] has many interesting features. With the gaugespace, computing limitations will force us to be in a reason-
choice A*=A%+A3=0 and the elimination of the con- ably small volume when we deal with realistic problems.
strained variableA”=A°—A3, it uses minimal gauge de- Second, the currently practiced version of the transverse lat-
grees of freedom in a manifestly gauge invariant formulationtice gauge theory usdmear link variables and recovering
exploiting the residual gauge symmetry in this gauge. So facontinuum physics is nontrivial. Finite-volume studies are
encouraging results have been obtained in the pure gauggso important in this connection.
sector and in the meson sector with particle number trunca- In one of the approaches of treating fermions on the light
tion (for a recent review, see R4f3]). front transverse lattice, we maintain as much transverse lo-
It is well known that fermions on the lattice pose chal- cality as possible on the lattice by using forward and back-
lenging problems due to the doubling phenomenon. The lightvard derivatives without spoiling the Hermiticity of the
front formulation of field theory has its own peculiarities Hamiltonian. In this case doublers are not present and the
concerning fermions because of the presence of a constraihtlicity flip term proportional to the fermion mass in the full
equation. As an example, the usual chiral transformation ofight front QCD becomes an irrelevant term in the free field
the four component fermion field is incompatible with the limit. Thus in finite volume, depending on the boundary con-
constraint equation for a nonzero fermion m§és There dition used, the two helicity states of the fermion may not be
have been previous studies of fermions on the transversgegenerate in the free field limit. However, we find that in
lattice [5—8]. Our approach in this work is quite extensive the infinite-volume limit the degeneracy is restored irrespec-
and aims to understand the origin of the doublers. We identive of the boundary condition.
tify an even-odd helicity flip symmetry of the light front In the second approacf6], symmetric derivatives are
transverse lattice Hamiltonian, the absence of which meangsed which results in a Hamiltonian with only next-to-
the removal of doublers in all the cases we have studied. Thisearest-neighbor interaction when we take the free field
is closely related to the need to break chiral symmetry ex{imit. As a consequence even and odd lattice sites decouple
plicitly in the usual Euclidean formulation of lattice fermi- and the fermions live independently of each other on the two
ons. sets of sites. As a result we get four species of fermions on a
As we shall see later in this paper, the presence of thewvo-dimensional lattice as excitations around zero transverse
constraint equation in light front field theory allows different momentum.(Note that this is quite different from what one
methods to put fermions on a transverse lattice. It is worthgets in the conventional Euclidean lattice theory when one
while to study all the different methods in order to examineuses symmetric derivatives. In that case, doublers have at
their strengths and weaknesses. In this work, we carry out kast one momentum component near the edge of the Bril-
detailed numerical investigation of three methods in the fredouin zone) The doublers can be removed in more than one
field limit with special emphasis on finite-volume effects. We way. We propose to use the staggered fermion formulation
also study the effects of imposing fixed and periodic bound-on the light front transverse lattice to eliminate two doublers
and reinterpret the remaining two as two flavors. In this light
front staggered fermion formulation, there is no flavor mix-

*Electronic address: dipankar@theory.saha.ernet.in ing in free field limit. But, in QCD, we get irrelevant flavor
"Electronic address:de@theory.saha.ernet.in mixing terms. An alternative which removes doubling com-
*Electronic address: hari@theory.saha.ernet.in pletely is to add the conventional Wilson term which gener-
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ates many irrelevant interactions on the transverse lattice. +

Among them, the helicity flip interactions vanish but the he-  5(x~,x)= >, ka [b(k*,x,\)e (2K
A

licity nonflip interactions survive in the free field limit. 2(2m) \/k_+
The plan of this paper is as follows. The notation and . -
p pap +dt(kt x, =\ ) ek ], (2.6)

conventions are presented in Sec. Il. The QCD Hamiltonian
V.V'th f."”_’Vé.‘fd ba‘?"W‘"?“d derivative Is d|scusseq anq the.fre%vhere X, Is the Pauli spinorA =1,2 denotes two helicity
field limit is studied in Sec. Ill. The QCD Hamiltonian with . .
. e g i o ) . statesx now denotes the transverse lattice points.
symmetric derivative with its free field limit is considered in . : i
. . ; The canonical commutation relations are
Sec. IV. Staggered formulation and reinterpretation of dou-

blers are discussed in Sec. V. Removal of doublers via the {b(k*,x,\) b*(k’+ X' \')}
Wilson term is studied in Sec. VI. We discuss the even-odd e T
spin-flip symmetry and its relation to the fermion doubling ={d(k+,x,)\),d’f(k’*,x’,)\’)}

on the light front transverse lattice in Sec. VII. Finally Sec.

VIII contains summary and conclusions. In the Appendix we
compare and contrast the forward-backward derivative inthe . . ooy _
conventional lattice and the light front transverse lattice forUS'ngf*wdk € =2(2m)é(x” —y"), we have

free fermion field theory. (7(x~ %), nT(y_,X’)}=15x,xr5(X_—y_), 2.9

=2(2mk* (kT =K' *) S\ Oy . (2.7)

Il. LIGHT FRONT PRELIMINARIES wherel is a 2 by 2unit matrix.
We use discretized light cone quantizati@dLCQ) [10]

for the longitudinal dimension{L=<x"<+L) and imple-
The light front coordinates arex™=x%+=x3, x* ment antiperiodic boundary condition to avoid zero modes.

=(x%,x?), the partial derivative)™=2(d/dx*), the gamma Then,

matrices y“=19°++% and projection operatorsA*

=1vy¥ 9% xT is the light front time andc™ is the light front _ 1

longitudinal coordinate. (XX = oL ; X%|:132
The Lagrangian density for the free fermion is -

_ +dT(l,x,—n)e' ™ /(2L (2.9
Liree™ ‘//(|7#(9M_m)‘r//- 2.

Notation and conventions

[b(l 'X,)\)e—iﬂ'lel(ZL)

(2

with
Going to light front coordinates and using- = A =,
{b(1,x,)),bT(1" x" X)) }={d(1,x\),dT(1",x",]\")}
Y T —ti g+ = =t L 0 +
Liree=¢ 10 ¢ +y 10"~ =4 (ia- "+ °m)y = 811 Syt Oyt - (2.10
TGk gt A0 -
e amtyTmyy. 2.2 In DLCQ with antiperiodic boundary condition, it is usual to

multiply the Hamiltonian P~ by =/L, so that H
=(a/L)P~ has the dimension of mass squared.

In the following, for notational convenience we suppress
X~ in the arguments of the fields.

One of the equations of motion from the above free Lagrang
ian is

oty =(iat-a"+y°myyt, (2.3

TH FORWARD AND BACKWARD

which is actually a constraint equation because of absence o!f”' HAMILTONIAN Wi
y q DERIVATIVES

a time derivative.

" is the dynamical fermion field and its equation of A. Construction
motion is given by The fermionic part of the Lagrangian density is
0"t =(iat-d+y°m)y . (2.9 Li=y(iy"D,—m)y (3.

One can remove)~ from Eq. (2.4) using the constraint with iD*=id*—gA*.
equation[Eq. (2.3)]. The dynamical field)™ can essentially Moving to the light front coordinates, using the" =0
be represented by two componef@$ such that gauge, and introducing the transverse lattice,

Li=y N0~ —gA )y +y Tio"y —iy Ta,Dly"
—iy T, DPy —my YOyt —myt Oy (3.2

7(x~,x")

0 ; (2.9

Y (xTxh)=

where 7 is a two component field. Its Fock expansion in theHerer =1,2 andD!’® is the forward/backward covariant lat-
light front quantization with tranverse directions discretizedtice derivative. Our goal here is to write the most local lattice
on a two-dimensional square lattice is given by derivative. That is why, instead of using the symmetric lat-
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tice derivative, in the above we have used the forward and ) )
backward lattice derivatives. However, the Hermiticity of the P,= f dx"a 2 H= J dx"a 2
Lagrangian(Hamiltonian requires that if one of the covari-

291 ()5 700

ant lattice derivatives appearing in E@.2) is the forward 1 1

derivative, the other has to be the backward derivative or - 57 (02 —| n(x+ar)—27(x)+ n(x—ar)
) . - a )

vice versa. The covariant forward and backward derivatives

on the lattice are defined as

V|~

-1 -
+ 2702 (amay) [ n(x+ar) = 27(x)

1 -~
Din(x)=_[U(x)n(x+an-n(x)] (33

+n(x—ar)]|. (3.9

and

In order to get Eq(3.8), we have assumed infinite transverse
b 1 . . . lattice and accordingly have used shifting of lattice points.
Drn()=Z[n(x)—Ur(x—ar)n(x—ar)], (34  The positive sign in front of the last term would change if we

had switched forward and backward derivatives.

Because of the presence of the last term of Eq(3.8)

couples fermions of opposite helicities. Note that it is also
linear in mass. Such a helicity flip linear mass term is typical

where a is the lattice constant and is unit vector in the
directionr=1,2 andD/"=—DP. U,(x) is the group valued

lattice gauge field with the property[(x)=U_.(x+ar).  in continuum light front QCD. Here in free transverse lattice
Using the constraint equation theory this term arises from the interference of the first-order
derivative term and the mass term, due to the constraint
0"y =(ia,DI+°m)y, (3.5  equation. This is in contrast to the conventional lattisee
the Appendix where no helicity flip or chirality-mixing term
and finally going over to the two component fielgs arises in the free theory if we use forward and backward

lattice derivatives.
L=y 0 —gA ) —myt Ty WHaer_ In DLCQ the Hamiltonian is given by
=y (i0”—gA )yt — ¢t ia,DP+ y°m] Hip=Ho+Hut, (3.9

1 where
XF[I CKSDL'F yom] I,U+
m2

Ho=2 2 2

+d*(|,z,)\)d(l,z,)\)]

[bT(l,z,\)b(l,z,\)

trea— _ tr: 2 b 1 .~ f .
=7 (id"=gA ) p=n[io;Dr—im]—=[ioDs+im]7.

(3.6)
1
o1=0, ando,=—o4. S0, we arrive at the Lagrangian den- _EZ Z ; ? Z TXTN’X%[bT(I'Z’)‘,)b(I'Z
sity
+ar,\)—2b"(1,z\")b(l,z\) +b'(1,z\")b(l,z
1 . .
Li=7'(i9” —gA ) p—m’n' =5 —ar,\)+d'(I,z\")d(l,z+ar,\)
0, 11 e —2d'(1,z,\")d(l,z\) +d"(1,z\")d(l,z—ar,0)]
mmz (x) : O'rai(?+[ r(X)ﬂ(X ar) 7I(X)] (3.10
t + 1 and
—m2, [7'(x+an U0 =700 ]or 3 W 7(x)
1 .
1 . Ho=2 2 2 2 2 px'alamoTalb'(,z1)b(l,z
-z 2 [ x+anui U
L +ar,\)—2b"(1,z\")b(l,z\)+bT(l,z\")
_WT(X)]‘}riﬁ_Jra's[Us(X)77(X+a§)_77(X)]- (37) ><b(|,z—aF,)\)+dT(I,z,)\’)d(I,z+aF,)\)

_ 24" ’ T ’ _ar
In the free limit the fermionic part of the Hamiltonian 2d°(1zA")ddlz ) +di(l,zA)d(l,zar,0)].
becomes (3.1)
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B. Absence of doubling
Consider the Fourier transform in transverse space,

77(XiX)=f

where— w/a<kq,k,=<+ m/a. Then the helicity nonflip part
of Eq. (3.8) becomes

fdx J(Z J )2¢k( i 0+ Pp(x)a®

XZ e—i(k—p)‘x( mZ_E Elz(eipaf_z_l_e—ipaf) )
X r

2

(2m)*

e X P (x7),

(3.12

(3.13
Using
aZZX e P x=(27)252(k—p), (3.14
we get
= f ax | %d(x-)iﬂémx-)
w3l s

where we have definekla=k- ra. Note that the sine func-
tion vanishes at the origik; ,k,=0 but does not vanish at
the edges of the Brillouin zonlke, ,k,= *+ 7r/a.

Define k, =k, (sin ka/2))/(k,a/2). In the naive con-
tinuum limit k,—k, .

Now, let us consider the full Hamiltoniaf8.8) including
the helicity flip term. In the helicity space we have the fol-
lowing matrix structure forP*P~ (since P~ is inversely
proportional to the total longitudinal momentu®®, we
study the operatoP*P™):

4m k.a k,a
— i sir? —— +sir? 2~
a 2 2

4 k.a
24 2
m’+ — Er Sir? 3

4

m 4 k.a
X7 24 2
= |S|n2 sm2 m’+ — Er: Sir? >

(3.16
which leads to the eigenvalue equation
k.a 4m k.a
M?2=m?+ P Z 5|n2—+? > sin“rT.
r
(3.17
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M?2=m? only for the casek,=k,=0. Thus there are no
fermion doublers in this casgor physical masseam<1).
In the following for specific choices of momenta we elabo-
rate on this further.

If one component of the momentum vanishes, then

411 ka
M?=m?+ a(aim)sinz?, (3.18

wherek is the nonvanishing momentum component. Thus for
am=1, irrespective of the value &fwe getM 2=m? which

is unwanted. In general, fa@m>1, M ? can become nega-
tive. It is important to recall that physical particles hawve
<1/a (the lattice cutoff and hence are free from the species
doubling on the lattice. With periodic boundary condition
(discussed in the next subsectipallowedk values arek,a
==+27qg/(2n+1), with q=1,2,3...,n for 2n+1 lattice
sites in each direction. Lé¢;=0. Forma=1.0, Eq.(3.18
with the minus sign within the bracket giveel 2= m? for all
values ofk, and we get 2(8+ 1)-fold degenerate ground
state with eigenvaluen®.

The two spin state&pin up and downare degenerate for
ki=k,=0. But if any one(or both of the two transverse
momenta is(areg nonzero then the degeneracy is broken on
the lattice by the spin-flip term proportional ta So the total
degeneracy of the lowest states foa=1.0 can be calcu-
lated in the following wayi) k;=k,=0, number of states
=2 (spin up and spin down (ii) k;=0, k,#0, number of
states=2n; and(iii) k;#0, k,=0, number of states 2n.
Note thatk; can have B nonzero values and there is no spin
degeneracy for any nonzekp. So, the total number of de-
generate states 2+2n+2n=2(2n+1). Butif ma# 1 we
cannot haven? eigenvalue for nonzerk, and we have only
two (spin) degenerate states with eigenvalmé. Again we
see from Eq(3.18 that if ma>1, the kinetic energy term
becomes negative and the eigenvalues go beitiwv But
ma=1 meansm=1/a (ultraviolet lattice cutoff and hence
unphysical.

C. Numerical investigation

We have investigated the effects of two types of boundary
conditions: (i) fixed boundary condition andii) periodic
boundary condition.

1. Fixed boundary condition

For each transverse direction, we choogset+2 lattice
points ranging from—n to +n where fermions are allowed
to hop. To implement fixed boundary condition we add two
more points at the two ends and demand that the fermion
remains fixed at these lattice points. Thus we consider 2
+ 3 lattice points. Let us denote the fermion wave function at

The third term in the above equation comes from the lin-the locations by u(s). We haveu(s)~sin(s—1)ka with

ear mass helicity flip term. If the mass=0, then it is ob-
vious from Eq.(3.17 that M2=0 if and only if k;=k,

u(l)=u(2n+3)=0. Allowed values ofk are (+2)k,a
=pm with p=1,23...,2n+1 andk,=[n/(2n+2)a]p.

=0. For nonzeram, one can also in general conclude thatThus the minimumk, allowed is (r/a)[1/(2n+2)] and
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FIG. 1. Ground-state eigenvalue versus

maximumk,, allowed is @@/a)[(2n+1)/(2n+2)]. For ex-
ample, for n=1 we have k;=m/4a, k,=2w/4a, ki
=3m/4a, etc.

2. Periodic boundary condition

Again, for each transverse direction, we chooset+2
lattice points. We identify the (2+2)th lattice point with
the first lattice point. In this case we have the fermion wave
function u(s)~e'sk® with the condition u(s)=u(s+L)
whereL=2n+1. Thus (21+1)k,a=*27p so thatk,a=
=[2#@/(2n+1)]p, p=0,1,2...,n. Thus the minimurk,
allowed is 0 and the maximurk,a allowed is [ 2n/(2n
+1)]. Forn=1, we havek,=0, k;a=+ 3, etc.

3. Numerical results

For the study of the fermion spectra on the transverse
lattice, the longitudinal momentum plays a passive role and
for the numerical studies we choose the dimensionless lon-
gitudinal momentunil) to be unity which is kept fixed. For
a given set of lattice points in the transverse space we diag-
onalize the Hamiltonian and compute both eigenvalues and
eigenfunctions.

First we discuss the results fbl, given in Eq.(3.10. We
diagonalize the Hamiltonian using basis states defined at
each lattice point in a finite region in the transverse plane.
Let us denote a general lattice point in the transverse plane
by (x; ,y;). For each choice ai (measure of the linear lattice
size), we have—n<x; ,y;<+n. Thus for a givem, we have
a (2n+1)X(2n+1)-dimensional matrix for the Hamil- . ' )
tonian. The boundary conditions do have significant effectsdouFt:ﬁ;n'gzr']:Eégenfuncuons of first three states for the case of no
at small volumes. For example, a zero transverse momentum ' '
fermion atfinite nis/not allowed with periodic/fixed bound-
ary condition. With fixed boundary condition, in the infinite- ~ For a zero transverse momentum fermion, the probability
volume limit, we expect the lowest eigenstate to be the zeramplitude to be at any transverse location should be indepen-
transverse momentum fermion with the eigenvaio® In  dent of the transverse location. Thus we expect the eigen-
Fig. 1 we show the convergence of the lowest eigenvalue asinction for such a particle to be a constant. At finite volume,
a function ofn towards the infinite-volume limit in this case with fixed boundary condition, we do get a nodeless wave
(m=1 in Fig. D. function which nevertheless is not a constant since it carries
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some nonzero transverse momentum. All the excited states 13— - T T T
carry nonzero transverse momentum in the infinite-volume - .
limit. All of them have nodes characteristic of sine waves. 125 -
The eigenfunctions corresponding to the first three eigenval- LT _
ues are shown in Fig. 2 for the case of fixed boundary con- 12
dition. With periodic boundary condition, for amy we get a
zero transverse momentum fermion with a flat wave func-
tion.

Now, we consider the effect of helicity flip term. With
fixed boundary condition the lowest eigenstate has nonvan-
ishing transverse momentum in finite volume. In the absence
of helicity flip term positive and negative helicity fermions 1.05— ig n

._.

—

=
I
1

spin splitting
T
1

—-
-
I
]

are degenerate. The helicity flip term lifts the degeneracy. -
The splitting is larger for larger transverse momentum. In 1+ .
Fig. 3 we present the level splitting for the helicity up and L .
down fermions as a function af. As expected, the level 0951 . | . |
splitting vanishes and we get exact degeneracy in the
infinite-volume limit. For the periodic boundary condition, n

the lowest state has exactly zero transverse momentum and ;5 5 Spin splitting of the ground state caused by the spin-
we get two degenerate fermions for all dependent interaction as a functionrof

IV. HAMILTONIAN WITH SYMMETRIC DERIVATIVE
A. Construction

The symmetric derivative is defined by

1 A A
D,y (x)= E[U,(x)l//i(x+ ar)—U_,(x) g~ (x—ar)]. (4.1)

In place of using forward and backward derivatives in [E82), we use the above symmetric derivative for all lattice
derivatives. Proceeding as in Sec. Il A, we arrive at the fermionic part of the QCD Hamiltonian,

1 1 -
Pa= f dx~a?, m?7'(X) =5 n(x) f dx"a’, [ 227 02 oA U0 n(x+an U () n(x-ar)]

—m—E [7'(x—ar)o,U,(x—ar)— p'(x+ar)o,U_ (x+ar)|— ; 7(X)

—J dx-a2>, %E [nT(x—aF)Ur(x—aF)—nT(x+aF)U,r(x+aF)]i%[Ur(x)n(eraF)—U,r(x)n(x—af)].
X ac’r

4.2
|
In the free limit, the above Hamiltonian becomes Using DLCQ for the longitudinal direction, we get
1 L L
sd_f dx” aZE T(X) (X + 5= Pe=—Haq= —[Hmt Hi] (4.4
t ~ t ~ with
XZ [7T(x+ar)—5f(x—ar)]
1
1 ) A m=am?2 > X H{b'(l,zo)b(l,.2.0)
xm—+[7;(x+ar)— p(x—ar)];. 4.3 e 2z
+d'(1,z,0)d(l,2,0)] (4.5

In the free field limit the two linear mass terms cancel with
each other. and
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1 . N Because of the momentum-bound #f2a doublers can-
H=> 2 2 2 T[bT(LZﬂL ar,o)b(l,z+ar,o) not arise fromka= 7. However, because of the decoupling
b2 of odd and even lattices, one can get two zero transverse
momentum fermions one each from the two sublattices.

+b'(l,z—ar,o)b(l,z—ar,s)—b(l,z+ar,0) ) _
Thus, for two transverse dimensions, we can get four zero

xb(l,z—ar,o)—bf(l,z—ar,o)b(l,z+ar,o) transverse momentum fermions as follovi: even lattice

points inx, even lattice points ity; (ii) even lattice points in

+d'(l,z+ar,o)d(l,z+ar, o) +d(1,z—ar, o) x, odd lattice points iny; (iii) odd lattice points inx, even

~ . ~ lattice points iny; and(iv) odd lattice points irx, odd lattice
xd(l,z—ar,o)—d'(l,z+ar,o)d(l,z-ar,0) points iny. Thus we expect a fourfold degeneracy of zero

- A transverse momentum fermions.
—d'(l,z—ar,o)d(l,z+ar,o)]. (4.6)

. . . . C. Numerical investigation
When we implement the constraint equation on the lattice
and use symmetric definition of the lattice derivative, it is 1. Fixed boundary condition
important to keep in mind that we have only next-to-nearest- For each transverse direction. we have+2l lattice
neighbor interactions. Thus a decoupling of even and odd ;g \where the fermions are allowed to hop. To implement
lattice points occurs and as a result we have two independeff, fiveq boundary condition, we need to consider+®
sublattices, one connecting odd lattice points and the othgLyice noints. For one sublattice we have to fix particles at

corlin?ctmg evendlgttlce Ft)r(l)mts.t ¢ th ; d ths=1 ands=2n+5. We have the wave function at location
el us now adadress the nature of the spectrum and thg us~sin (s—1)ka We haveus=0 for s=1. We also need

presence of doublers. us=0 for s=2n+5. Thus (h+4)k,a=pm, with p
=123...n+1. Forn=1, allowed values ok, arek,
B. Fermion doubling = 7/6a,27/6a.

For the other sublattice, we fix the particlessat2 and
s=2n+4. The wave function at locatiors, ug~sin (s
2t 1 1 —2)ka ug=0 for s=2 ands=2n+4. Thus (h+2)k,a
M=y (X) == 7(X)~ 72 =pm with p=1,2,3...,n. For n=1, the only allowed

value ofk is k= m/4a.

The Hamiltonian(4.3) can be rewritten as

P;d:f dx a2 >
X

=even

" 1 - N Combining the two sublattices, for=1, the allowed val-
x| 7' (X) =% Er [7(x+2ar) ]+ 5(x—2ar) ues ofk are 7/6a,w/4a, and 27/6a.
f q 5 2 - 1 2. Periodic boundary condition
—2n(x) ||+ X a m X) — n(X
70 x=odd 7 )Irfr 70 For a givenn, fermions are allowed to hop ah2-1 lat-
1 1 tice points in each transverse direction. Considef3 lat-
_ 7T (%) — 2 [77(x+2af)] t!qe p0|r_\ts. For one sublgttlce 12- 3)rd lattice point |s_|den-
4a 197 = tified with the lattice point 1. For the other sublatticen(2

+2)nd lattice point is identified with the lattice point 2. The
(47 Wave function at points, us~e'ska  We require e'*?

=gl(@nt+3)ka Thus kpa=x27p/(2n+2), p

=0,1,2...,(n+1)/2. For n=1, we have kgy=0k;=
Clearly the Hamiltonian is divided into even and odd sublat-* /2a.
tices each with lattice constana2As a result, a momentum For the other sublattice we require?'k@=g!(21+2)ka
component in each sublattice is boundedsfa in magni-  Thus kpa=*(#/n)p, p=0,1,2...,(n—1)/2. Forn=1,
tude. Again, going through the Fourier transform in eachthe allowed value ok=0. Thus forn=1, taking the two
sublattice of the transverse space, we arrive at the free pasublattices together, the allowed valueskaire 0,07/2a.

ticle dispersion relation for the light front energy in each
sector 3. Numerical results

+ p(X— 2ar)— Zn(x))

The results of matrix diagonalization in the case of the
k’—i m2+ iz sirtk a (4.9 symmetric derivative with fixed boundary condition are pre-
Kokt a’< e ' sented in Figs. 4—6. In Fig. 4 we present the lowest four
eigenvalues as a function of At finite volume, the four
For fixedk, , in the limita—0(1/a%) sinzk,a—>kr2 and we get  states do not appear exactly degenerate even though the
the continuum dispersion relation even-odd and odd-even states are always degenerate because
of the hypercubig¢square symmetry in the transverse plane.
The four states become degenerate in the infinite-volume
) (4.9  limit. The eigenfunctions of the lowest four states are pre-
k* sented in Fig. 5 fom=5. As they correspond to particle

m?2+ k2

ke =
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' I ' I ' With periodic boundary condition, for anywe get four

210 — degenerate eigenvalues corresponding to zero transverse mo-
mentum fermions. Corresponding wave functions are flat in
transverse coordinate space.

L8 —
L 1 V. STAGGERED FERMION ON THE LIGHT FRONT
TRANSVERSE LATTICE

R o As we have seen in the previous section that the method
of symmetric derivatives results in fermion doublers, we now
consider two approaches to remove the doublers. In this sec-
L ° ° - tion we study an approach similar to the staggered fermions
8 in conventional lattice gauge theory. In the next section we
will take up the case of Wilson fermions.

- 8 In analogy with the Euclidean staggered formulation, de-
fine the spin diagonalization transformation

[o}::204

—

n 7(X1,%2) = ()02 2x (X1, X,). (5.2)

FIG. 4. First four eigenvalues as a functionrof We see from the QCD Hamiltonian given in E@.2) with
symmetric derivative that in the interacting thedgxcept
states, they are nodeless. All other states in the spectrufor the linear mass terjrand also in the free fermion limit,
have one or more nodes. For example, in Fig. 6 we show theven and odd lattice sites are decoupled and the Hamiltonian
eigenfunction corresponding to the fifth eigenvalue whichis already spin diagonal. So, it is very natural to try staggered
clearly exhibits the node structure. fermion formulation on the light front transverse lattice. In

% (B)
0.15
0.1
/ 0.05
0
Y
% (D)
0.15
0.1
.05
0
Y Y

x (A)

0

FIG. 5. Eigenfunctions of first foufdegeneratestates for the case of fermion doublings=5.
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FIG. 6. Eigenfunction corresponding to the fifth staies 5.

this section we shall follow the Kogut-Susskind formulation . . 1
[11] and present an elementary configuration space analysis X[x(x+ar)—x(x—ar)]— 2am
for two flavor interpretation. After the spin transformation

the linear mass term in the Hamiltoni&h.2) becomes N N : . 1
X 2 [x0cran = x'(x=an 1 (xn) = x(x) 1

1
f dx a2 (m—xwx)E B(x,1) .3
X 2a r
The two linear mass terms cancel with each other in the free
1 1 theory, but since they are present in the interacting theory we
—[ U, (0 x(x+ar) —U_ (x)x(x—ar)]-mz— Y, . yarep Acting y
07 2a keep them to investigate the staggered fermions.
Since all the terms in Eq5.3) are spin diagonal, we can
XE [xT(x—ar)¢(x,r)U,(x—ar)— x'(x+ar)¢(x,r) put only a single component field at each transverse site.
r

From now on, all they’s and x's appearing in Eq(5.3) can
1 be taken as single-component fermion fields. Thus we have
XU _ (x+ aF)]TX(X)], (5.2  thinned the fermionic degrees of freedom by half. Without
1d loss of generality, we keep the helicity up componeny @it
each lattice point.
where (x,r)=1 for r=1 and ¢(x,r)=(— 1) for r=2. Apart from the linear mass term in E(5.3), all the other
After spin diagonalization, the full Hamiltonian in the free terms h_ave the featu_re that fermion f'EIdS. on the even and
field limit becomes odd lattices do not mix. Let us denafsee Fig. 7 the even-
even lattice points by 1, odd-odd lattice points by bdd-
even lattice points by 2, and even-odd lattice points by 2

1 1 and the corresponding fields ky, etc. Then the first of the
sf_J' dx™ azz i T(X XX+ 7 linear mass terms,
T T 1 +
X 2, [x"(xtan = x'(x—an I 5 [x(x+ar) 2 X' W 2 p(xnLx(x+ar) - x(x-ar)],
X
(5.9

1
—x(x—ar)]= o—mx'(x) 2¢(xr>

can be rewritten assuppressing factors @ from now on,
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((AY)

10

00 1.0

O-1

FIG. 7. Staggered distribution.

1
)(1Ti(9_+(Vl)(2+V2)(2')+)(2Jr (Vix1—Vax1)

o™

1 1
+X1'Ti8—+(V1X2/_V2X2)+X2'Ti_(V1X1'+V2X1)+ B,

a+
(5.9

whereV; andV, are the symmetric derivatives in the respec-

tive directions. Looking at Fig. 7 it is apparent that th&%e

and V, can also be interpreted as a block derivative, i.e.
finite differences between block variables. For example,

Vix1=x1(1,0)— x1(0,0). B represents the contribution from
other blocks.

Using Eq.(5.1), in terms of the nonvanishing components
of », we have

Mm=X1, M2=iX2, M=ixr, M2=—xz. (506

An interesting feature of lattice points 1 and ik that fer-
mion fields », and »,, have positive helicity., and 7,
have negative helicity. In terms of fields the expression
given in Eq.(5.5 can be written as

t 1 i it
' o (Z1Vam = Vomp ) Himp

: : 1 ,
X(Vim+iVamy) +i 771'Tia_+(_V1772/+|V2772)
(5.7)

1
- 772'Ti(9_+(_|V1771'+V2771)+B-

Now,

PHYSICAL REVIEW D 67, 076004 (2003
1
(1) =7(0)=3[n(1)=n(-1)]

1
+ 5[77(1)+77(—1)—277(0)]

. 1.

=Vn(0)+ §V2n(0), (5.9

1
7(0)—n(—-1)= 5[77(1)— n(—1)]
1

- 5[71(1)+ 7(—1)—27(0)]
. 1,

EVn(O)—EVZn(O), (5.9

where V and V2 are, respectively, first-order and second-
order block derivatives. So, we can write the expresgion
as

1
771Jr T

e 1,
L V1772_§V1772 -

1

~ 1.,
Vaona— §V2772'

+i

.1, L1,
1Mt §V1771 V2771/_§V2771'

+i

1 (.1, .1,
77| T\ a2+ 5Vim Vamat 5V,

p 1 e 1eo
2 e ! V1711'_§V1771'

.1,
+ V27717L§V2711 .
(5.10
’Let us introduce the fields
1
U= —=(m+ 71),
V2
1
Up=—=(72F 72/),
J2
~ 1
di=—=(m—n1),
J2
1
d2=$(772_772')- (5.1

Then, the first-order derivative term in E¢.10 can be
written as

T 1 il v T 1 o T 1 e
u ia—Jr(T VrU‘l'd ia—+0' Vrdzf i&—JrO' Vrf, (512
whered=¢'d and the flavor isospin doublet
f y 5.1
=14l (5.13

Similarly, we can write the second-order block derivative
term in expressioii5.10 as
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Tpr 2 STV, (5.14
2 it '
whereT"’s are the matrices in the flavor space defined as

Tl=—io?, T?=-icl. (5.15

Similarly, the second term in E@5.3),

E[nf<x+ar>— 7' (x—ar) J—=[ n(x+ar) - n(x—ar)],

(5.16

reads as
P SN
Vrme—+V,f+Vr2me—+Vr2f

(5.17

1
VfT +aTV f+ V2T +orTer>

The full Hamiltonian given in Eq(5.3) can now be written
in two flavor notation(restoring factors of) as

me—+Vrf

1
Sf—fdx aZE [ 2f’r—f+

. 1. ia/ . 1 .
+a2V,2fTi&—+V,2f+E Vrme—Nfofo

11
—Em f m—+0'Vrf

- 1 -
+ Vrszm—+0'rTrVrf

a 1 N
+—fTTU3T’Vr2f+H.c.)]. (5.18

2 id

fdx a’2, [4—— 702 o a+[u (x) 7(x-+ar) =U_(x) n(x—ar)]-

dx~ a2,

X

—n'(x+ar)o,U_, (x+ ar)]—+ n(X)  +

raZa 3

PHYSICAL REVIEW B7, 076004 (2003

The above simple exercise shows that applying the spin di-
agonalization on the symmetric derivative method, the num-
ber of doublers on the transverse lattice can be reduced from
4 to 2 which can be reinterpreted as two flavors. Although in
the free case given by E¢5.18 the second and third lines
are separately zero identically, we have kept these terms be-
cause in QCD similar terms will survive. These terms exhibit
flavor mixing and also helicity flipping. The flavor mixing
terms are always irrelevant.

VI. WILSON TERM ON THE LIGHT FRONT
TRANSVERSE LATTICE

Since doublers in the light front transverse lattice arise
from the decoupling of even and odd lattice sites, a term that
will couple these sites will remove the zero momentum dou-
blers. However, conventional doublers now may arise from
the edges of the Brillouin zone. A second derivative term
couples the even and odd lattice sites and also removes the
conventional doublers. Thus the term originally proposed by
Wilson to remove the doublers arising froka= 7 in the
conventional lattice theory will do the jol6].

To remove doublers, add an irrelevant term to the La-
grangian density,

K — ~
SLM)= 7 2 YOOLU () g(x+ar) = 24(x)

+U_ (x)g(x—ar)], (6.1

where is the Wilson parameter. This generates the follow-
ing additional terms in the Hamiltonia@.2):

4__

< %a E [7'(x—ar)o,U,(x—ar)

> > [7f(x—ar)U(x—ar)

+7'(x+anu_ (x+an— 1+as[u (X) (x+a8) — U _(x) n(x— as)]—aZaEE[an ar)o,U,(x—ar)

- n*(x+af>&ru_,<x+aF>]%[us<x> n(x+as)+U_¢(x) n(x—aénJ

I 0 —=

fdx aZE

|(9Jr
~ ~ 1

+ 77T(x+ar)U,r(x+ar)]ia—+ n(x)} —J dx~a?>,

+pf(x+ar)u

(x+ar)] +[U

n(x+ as)+U _s(X) p(x— a§)].

E[u (X) p(x+ar) +U_(x) p(x—an]+u_ E[rﬁ(x ar)u,(x—ar)

2
% S 3 [90can U, (x-ai)

(6.2
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In addition, the factom? in the free term in Eq(4.2) gets

replaced byu?=[m+4(x/a)]>.

In the free limit the resulting Hamiltonian goes over to

P, = J dx~a%>,
X

~.1 1 N A
- n*(x—ar)]ia—+ Sgln(x+ar)—n(x—ar)]

2
+ 32 2 [r'ckan =200+ 7 (x-ai)]

1 - .
X [n(x+ar)=25(x)+ n(x—ar)]

1

i > 700 e [n0cran) ~25(0)

+ p(x—ar)]|. (6.3

We rewrite the free Hamiltonia(6.3) as

Pw=Pp+Popit+Pop2- (6.9

The diagonal terms are
_ o g L
Po= | dx a2 7' 5 70

X

2y Bt 127
KT 2 TORKY K 2
The nearest-neighbor interaction is

P5D1=—f dx‘azg Er [

AL
P RPY]

1 “ 1 ~
x| 7"(x) rn(x+ar)+ 7'(X) —rn(x+ar)

(6.6)

The next-to-nearest-neighbor interaction is

nt(x+ar)

P(}Dz:f dx a2, >
X r

1 K2
-+ —
4a% " a?

1 R ~ 1 “
X p(x—ar)+ p'(x—ar) = n(x+ar)

(6.7

1 1 -
w200 Zm 00+ 55 2 7' (x+ar)

. (6.5

PHYSICAL REVIEW D 67, 076004 (2003

2

d%k 1
- — T -\__ —
Pw_f dx J(ZW)? d)k(x )|<9+ ¢k(x )
2
+2apk, k?

sink,a/2\2

k.a/2

sink,a
2 r
+Z k,( ka

sink,a/2
k.al2

+a2k?), k!
r

4
} (6.9

Note that, as anticipated, Wilson term removes the doublers
because the lowest eigenvalue occurs only if allkfie are
zero.

In DLCQ, we have

Hp=[a?u’+1+8aux
+12K2]2I > %[b*(l,z,a)b(l,z,a)

+d'(l,z,0)d(l,z,0)], (6.9

[b'(l,z,0)b(l,z

1
HODl:_[ZKa/-L+4K2]ZI ; ZZ Z l_
+ar,o)+b'(l,z,0)b(l,z—ar,o) +d'(l,z,0)d(l,z

(6.10

+ar,o)+d(l,z,0)d(l,z—ar,o)]

and

Hop2= [bT(l,Z+aF,cr)b(I,z

1
iezsss
—ar,o)+b'(l,z—ar,o)b(l,z+ar, o)
+df(l,z+ar,o)d(l,z—ar,o)+d'(l,z—ar, o)

(6.17)

xd(l,z+ar,o)].

Numerical investigation
1. Boundary condition

With the Wilson term added, we do not have decoupled
sublattices. We have both nearest-neighbor and next-to-
nearest-neighbor interactions. Since with fixed boundary
condition the lowest four eigenvalues are not exactly degen-
erate in finite volume, it is difficult to investigate the removal
of degeneracy by the addition of the Wilson term. With pe-
riodic boundary condition, for a lattice withn2-1 lattice
points in each transverse direction, we identify then (2
+2)th lattice site with the first lattice site. Then for the

Using the Fourier transform in the transverse space, wélamiltonian matrix we get the following additional contri-

get

butions:
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NN N s [0 0
0 NN Y“lo -4 73
Then
H:
7
. . . . IR . . . . ¢+ _ P lp+ _ O (7 4)
NN O - - .. . . . . R R 0 .
N NN 0
(6.12
. 1, 2 and
The matrix elementsNN=—-z;+«“ and N=-2aux
—4k?. For a givenn, the allowed values ok are Kpa= 0
+2mp/(2n+1), p=0,1,2.... Thus forn=3, we expect
multiples of 27/7 apart from 0. Fom=5, apart from 0O, 72
+ _ +
allowed values ok are multiples of Zr/11. ho=Pup =\ o |- (7.9
0

2. Numerical results

Since the Wilson term connects even and odd lattices, th s n " . .
extra fermions that appear at zero transverse momentum arﬁlus Yr=Pry" represents a positive helicity fermion and
removed once the Wilson term is added as we now hav#L =PL#" represents a negative helicity fermion, even
nearest- and next-to-nearest-neighbor interactions. For largéhen the fermion isnassive This makes sense since chiral-

n, we get the expected spectra but numerical results sugge@( is h.elicity even for a mas;ive fer'mion in front form. This
that the finite-volume effect is larger for smal which is IS again to be contrasted with the instant form. In that case
obvious because is a masslike parameter. For example, he nghtl—hand%d and left-handed 1f|e|ds 5def|ned by
with periodic boundary condition, forn=3, for « —Pr¢=z(1+7")¢ and ¢ =P ¢y=3(1-7")¢ contain
—1.0,0.5,0.4, we get the expected harmonics but notfor both positive helicity and negative helicity states. Only in the
—0.1. The situation is similar fan=5. Forn=10, expected massless limit or in the infinite momentum limit doég

harmonics emerge even far=0.1 but not fork=0.01. become the positive helicity state agigl become the nega-
tive helicity state.

As a passing remark, we would like to mention that in

VII. DOUBLING AND SYMMETRIES ON THE LIGHT continuum light front QCD there is a linear mass term that
FRONT TRANSVERSE LATTICE allows for helicity flip interaction.

Because of the constraint equation which is inconsisten; !N lattice gauge theory in the Euclidean or equal time
with the equal time chiral transformation in the presence ofo'malism, because of reasons connected to anoméhes
massive fermions, we should distinguish between chiraft@ndard ABJ anomaly in vectorlike gauge thedrigsere
symmetry in the equal time formalism and in the light front NS t0 be explicit chiral symmetry breaking in the kinetic
formalism. For example, the free massive light front |- Part of the action or Hamiltonian. Translated to the light front

grangian involving only the dynamical degrees of freedom idransverse _Iatti_ce formalism, this would 'ghen require helicity
invariant underys transformation. On the light front, helicity flip in the kinetic part. A careful observation of all the above

takes over the notion of chirality even in presence of fermiornethods that get rid of fermion _d‘?“'f_"ers on the light front
mass which can be understood in the following way. transverse lattice reveals that thls is indeed true. .

In the two component representatigd] in the light front _ In partlcular,_ we draw attention to the even-odd helicity
formalism, let us look at the object” and ¢ . We have flip transformation

7(X) 7(X1,X2) = (071) U 072)*27(X1,X2) (7.6
¢*<x>=( 0 ) (7.0
that was used in Sec. V for spin diagonalization. It should
also be clear that the form of the above transformation is not
unique in the sense that one could exchaogend o, and
() their exponentx,; andx, could be changed by 1.
77(X)=( n ) (7.2 Note that the HamiltonianB;, given in Eq.(3.8) andP,,
72(X) given in Eq.(6.3) that do not exhibit fermion doubling are
not invariant under the transformation E@.6). On the other
The projection operators a@g=3(1+17°) and P,=3(1  hand the HamiltoniarP,, given by Eq.(4.3) that exhibits
—v°) with fermion doubling is invariant under this transformation.

with

076004-13



CHAKRABARTI, DE, AND HARINDRANATH PHYSICAL REVIEW D 67, 076004 (2003

VIIl. SUMMARY AND CONCLUSIONS umes because of the limited availability of computing re-
sources, andi) the currently available transverse lattice for-

. . . . ; o ulation uses linear link variables and recovering continuum
the light front gives rise to interesting possibilities of formu-

_limit is nontrivial. We have investigated the effects of fixed

lating fermions on a transverse lattice. We have studied inng periodic boundary conditions, which are significant in
detail the transverse lattice Hamiltonians resulting from dif-¢ite volumes.

ferent approaches. Among the many possible extensions of this work, it will
In the first approach, forward and backward derivativespe interesting to study the various QCD Hamiltonians and to

are used respectively faf™ and~ (or vice versaso that compare the resulting spectra.

the resulting Hamiltonian is Hermitian. There is no fermion

doubling. The helicity flip(chiral symmetry breakingterm ACKNOWLEDGMENTS
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In the second approach, symmetric derivatives are used _
for both * and . This results in four fermion species. APPENDIX: FORWARD-BACKWARD DERIVATIVE

This is a consequence of the fact that the resulting free IN CONVENTIONAL LATTICE THEORY
Hamiltonian has only next-to-nearest neighbor interactions |p this appendix we follow Ref{12]. In discretizing the
and as a result even and odd lattice sites get decoupled. ORgrac action in conventional lattice theory the use of forward

way to remove doublers is to reinterpret them as flavors uspr hackward derivative fo#,, leads to non-Hermitian action.

ing staggered fermion formulation on the light front. In QCD The Hermiticity can be preserved in the following way.
Hamiltonian, it generates irrelevant flavor mixing interac- | the chiral representation

I O

0 -1

The presence of the constraint equation for fermions o

tions. However, in the free field limit, there is no flavor mix-

ing. Another way to remove the doublers is to add a Wilson

term which generates many extra terms in the Hamiltonian. Y=
In the free field limit, only the helicity nonflip terms survive.

0 o
- 0

0 -l

5:
-1 0 Y

, Y=

The Wilson term couples even and odd sites and removes the (AL)
doublers. Numerically, we found that in small lattice vol- The Dirac operator in Minkowski space
umes it is preferable to have not too small values of the
Wilson mass«/a. 0 —io*9,

We have tried to understand the fermion doubling in terms iyta,= R 0 , (A2)
of the symmetries of the transverse lattice Hamiltonians. We —lo%d,

are aware that there are rigorous theorems and anomaly ar- — _ _ _
guments in the conventional lattice gauge theories regardinghereo”=(1,0), o*=(l,— o). For massive Dirac fermi-
presence of fermion doublers. In standard lattice gaug&@nS: this leads to the structure
theory, some chiral symmetry needs to be broken in the ki-

— 1 g™ —
netic part of the action to avoid the doublers. On the light 1%, YR My, (A3)
front, chirality means helicity. For example, a standard Wil- o B
son term which is not invariant under chiral transformations 100, — Mi. (A4)

in the conventional lattice gauge theory, is chirally invariant

on the light front in the free field limit. The question is then

why the Wilson term removes the doublers on the light front

transver;e Igttice._ The argument that there is no.nlocality in Af =(8yys =Sy y)la (A5)

the longitudinal direction cannot hold because, in the first " yorm Y

place, having nonlocality is not a guarantee for removingand in Eq.(A4) by backward derivative

doublers, and secondly there is no nonlocality on the trans-

verse lattice. One therefore needs to find a reasoning that Azz(éy,x_éy,x—,u)/a- (AB)

involves the helicity in some way. We have identified an

even-odd helicity flip symmetry of the light front transverse This leads to the structure

lattice Hamiltonian, absence of which means removal of

doublers in all the cases we have studied. iy'd,—m=iy,AL—iy,ysAL—m (A7)
Our interest also lies in studying finite-volume effects on

a transverse lattice. As we have emphasized, there are impokhich results in Hermitian action. Here,

tant issues to be understood sirideany realistic Fock space

truncation will force us to work with relatively small vol- A% =(8y x4 u— By x—u)l2a,

For discretization we replacg, in Eq. (A3) by forward de-
rivative
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A2=(5 +8 —268,,)/2a (A8) contrast, the corresponding term in the transverse lattice de-
2 Y. X+ u Y X— Y,X ' . ; . .

pends linearly orm and flips helicity. One can trace this
Note that an irrelevant helicity nonflip second-order deriva-difference to the presence of the constraint equation in the
tive term is produced in this method of discretization. Inlight front theory.
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