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Fermions on the light front transverse lattice

Dipankar Chakrabarti,* Asit K. De,† and A. Harindranath‡

Theory Group, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064, India
~Received 27 November 2002; published 24 April 2003!

We address the problems of fermions in light front QCD on a transverse lattice. We propose and numerically
investigate different approaches of formulating fermions on the light front transverse lattice. In one approach
we use forward and backward derivatives. There is no fermion doubling and the helicity flip term proportional
to the fermion mass in the full light front QCD becomes an irrelevant term in the free field limit. In the second
approach with symmetric derivative~which has been employed previously in the literature!, doublers appear
and their occurrence is due to the decoupling of even and odd lattice sites. We study their removal from the
spectrum in two ways: namely, the light front staggered formulation and the Wilson fermion formulation. The
numerical calculations in free field limit are carried out with both fixed and periodic boundary conditions on
the transverse lattice and finite-volume effects are studied. We find that an even-odd helicity flip symmetry on
the light front transverse lattice is relevant for fermion doubling.
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I. INTRODUCTION

The light front Hamiltonian formulation of transverse la
tice QCD@1,2# has many interesting features. With the gau
choice A15A01A350 and the elimination of the con
strained variableA25A02A3, it uses minimal gauge de
grees of freedom in a manifestly gauge invariant formulat
exploiting the residual gauge symmetry in this gauge. So
encouraging results have been obtained in the pure ga
sector and in the meson sector with particle number trun
tion ~for a recent review, see Ref.@3#!.

It is well known that fermions on the lattice pose cha
lenging problems due to the doubling phenomenon. The l
front formulation of field theory has its own peculiaritie
concerning fermions because of the presence of a const
equation. As an example, the usual chiral transformation
the four component fermion field is incompatible with th
constraint equation for a nonzero fermion mass@4#. There
have been previous studies of fermions on the transv
lattice @5–8#. Our approach in this work is quite extensiv
and aims to understand the origin of the doublers. We id
tify an even-odd helicity flip symmetry of the light fron
transverse lattice Hamiltonian, the absence of which me
the removal of doublers in all the cases we have studied. T
is closely related to the need to break chiral symmetry
plicitly in the usual Euclidean formulation of lattice ferm
ons.

As we shall see later in this paper, the presence of
constraint equation in light front field theory allows differe
methods to put fermions on a transverse lattice. It is wo
while to study all the different methods in order to exami
their strengths and weaknesses. In this work, we carry o
detailed numerical investigation of three methods in the f
field limit with special emphasis on finite-volume effects. W
also study the effects of imposing fixed and periodic bou
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ary conditions which have significant effects in finite vo
umes. There are two important reasons to thoroughly st
finite-volume effects. First, for a reasonable size of Fo
space, computing limitations will force us to be in a reaso
ably small volume when we deal with realistic problem
Second, the currently practiced version of the transverse
tice gauge theory useslinear link variables and recovering
continuum physics is nontrivial. Finite-volume studies a
also important in this connection.

In one of the approaches of treating fermions on the li
front transverse lattice, we maintain as much transverse
cality as possible on the lattice by using forward and ba
ward derivatives without spoiling the Hermiticity of th
Hamiltonian. In this case doublers are not present and
helicity flip term proportional to the fermion mass in the fu
light front QCD becomes an irrelevant term in the free fie
limit. Thus in finite volume, depending on the boundary co
dition used, the two helicity states of the fermion may not
degenerate in the free field limit. However, we find that
the infinite-volume limit the degeneracy is restored irresp
tive of the boundary condition.

In the second approach@6#, symmetric derivatives are
used which results in a Hamiltonian with only next-t
nearest-neighbor interaction when we take the free fi
limit. As a consequence even and odd lattice sites deco
and the fermions live independently of each other on the
sets of sites. As a result we get four species of fermions o
two-dimensional lattice as excitations around zero transve
momentum.~Note that this is quite different from what on
gets in the conventional Euclidean lattice theory when o
uses symmetric derivatives. In that case, doublers hav
least one momentum component near the edge of the B
louin zone.! The doublers can be removed in more than o
way. We propose to use the staggered fermion formula
on the light front transverse lattice to eliminate two double
and reinterpret the remaining two as two flavors. In this lig
front staggered fermion formulation, there is no flavor m
ing in free field limit. But, in QCD, we get irrelevant flavo
mixing terms. An alternative which removes doubling com
pletely is to add the conventional Wilson term which gen
©2003 The American Physical Society04-1
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ates many irrelevant interactions on the transverse lat
Among them, the helicity flip interactions vanish but the h
licity nonflip interactions survive in the free field limit.

The plan of this paper is as follows. The notation a
conventions are presented in Sec. II. The QCD Hamilton
with forward-backward derivative is discussed and the f
field limit is studied in Sec. III. The QCD Hamiltonian wit
symmetric derivative with its free field limit is considered
Sec. IV. Staggered formulation and reinterpretation of d
blers are discussed in Sec. V. Removal of doublers via
Wilson term is studied in Sec. VI. We discuss the even-o
spin-flip symmetry and its relation to the fermion doublin
on the light front transverse lattice in Sec. VII. Finally Se
VIII contains summary and conclusions. In the Appendix
compare and contrast the forward-backward derivative in
conventional lattice and the light front transverse lattice
free fermion field theory.

II. LIGHT FRONT PRELIMINARIES

Notation and conventions

The light front coordinates arex65x06x3, x'

5(x1,x2), the partial derivative]652(]/]x7), the gamma
matrices g65g06g3, and projection operatorsL6

5 1
4 g7g6. x1 is the light front time andx2 is the light front

longitudinal coordinate.
The Lagrangian density for the free fermion is

Lf ree5c̄~ igm]m2m!c. ~2.1!

Going to light front coordinates and usingc65L6c,

Lf ree5c1†i ]2c11c2†i ]1c22c2†~ ia'
•]'1g0m!c1

2c1†~ ia'
•]'1g0m!c2. ~2.2!

One of the equations of motion from the above free Lagra
ian is

i ]1c25~ ia'
•]'1g0m!c1, ~2.3!

which is actually a constraint equation because of absenc
a time derivative.

c1 is the dynamical fermion field and its equation
motion is given by

i ]2c15~ ia'
•]'1g0m!c2. ~2.4!

One can removec2 from Eq. ~2.4! using the constrain
equation@Eq. ~2.3!#. The dynamical fieldc1 can essentially
be represented by two components@9# such that

c1~x2,x'!5Fh~x2,x'!

0 G , ~2.5!

whereh is a two component field. Its Fock expansion in t
light front quantization with tranverse directions discretiz
on a two-dimensional square lattice is given by
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h~x2,x!5(
l

xlE dk1

2~2p!Ak1
@b~k1,x,l!e2( i /2)k1x2

1d†~k1,x,2l!e( i /2)k1x2
#, ~2.6!

where xl is the Pauli spinor,l51,2 denotes two helicity
states.x now denotes the transverse lattice points.

The canonical commutation relations are

$b~k1,x,l!,b†~k81,x8,l8!%

5$d~k1,x,l!,d†~k81,x8,l8!%

52~2p!k1d~k12k81!dll8dx,x8 . ~2.7!

Using *2`
1`dk1e( i /2)k1(x22y2)52(2p)d(x22y2), we have

$h~x2,x!,h†~y2,x8!%51dx,x8d~x22y2!, ~2.8!

where1 is a 2 by 2unit matrix.
We use discretized light cone quantization~DLCQ! @10#

for the longitudinal dimension (2L<x2<1L) and imple-
ment antiperiodic boundary condition to avoid zero mod
Then,

h~x2,x!5
1

A2L
(
l

xl (
l 51,3,5, . . .

@b~ l ,x,l!e2 ip lx2/(2L)

1d†~ l ,x,2l!eip lx2/(2L)# ~2.9!

with

$b~ l ,x,l!,b†~ l 8,x8,l8!%5$d~ l ,x,l!,d†~ l 8,x8,l8!%

5d l l 8dx,x8dl,l8 . ~2.10!

In DLCQ with antiperiodic boundary condition, it is usual t
multiply the Hamiltonian P2 by p/L, so that H
5(p/L)P2 has the dimension of mass squared.

In the following, for notational convenience we suppre
x2 in the arguments of the fields.

III. HAMILTONIAN WITH FORWARD AND BACKWARD
DERIVATIVES

A. Construction

The fermionic part of the Lagrangian density is

Lf5c̄~ igmDm2m!c ~3.1!

with iD m5 i ]m2gAm.
Moving to the light front coordinates, using theA150

gauge, and introducing the transverse lattice,

Lf5c1†~ i ]22gA2!c11c2†i ]1c22 ic2†a rDr
fc1

2 ic1†a rDr
bc22mc2†g0c12mc1†g0c2. ~3.2!

Herer 51,2 andDr
f /b is the forward/backward covariant la

tice derivative. Our goal here is to write the most local latti
derivative. That is why, instead of using the symmetric l
4-2
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tice derivative, in the above we have used the forward
backward lattice derivatives. However, the Hermiticity of t
Lagrangian~Hamiltonian! requires that if one of the covari
ant lattice derivatives appearing in Eq.~3.2! is the forward
derivative, the other has to be the backward derivative
vice versa. The covariant forward and backward derivati
on the lattice are defined as

Dr
fh~x!5

1

a
@Ur~x!h~x1ar̂ !2h~x!# ~3.3!

and

Dr
bh~x!5

1

a
@h~x!2Ur

†~x2ar̂ !h~x2ar̂ !#, ~3.4!

where a is the lattice constant andr̂ is unit vector in the
directionr 51,2 andDr

f †52Dr
b . Ur(x) is the group valued

lattice gauge field with the propertyUr
†(x)5U2r(x1ar̂ ).

Using the constraint equation

i ]1c25~ ia rDr
f1g0m!c1, ~3.5!

and finally going over to the two component fieldsh

Lf5c1†~ i ]22gA2!c12mc1†g0c22 ic1†a rDr
bc2

5c1†~ i ]22gA2!c12c1†@ ia rDr
b1g0m#

3
1

i ]1 @ iasDs
f1g0m#c1

5h†~ i ]22gA2!h2h†@ i ŝ rDr
b2 im#

1

i ]1 @ i ŝsDs
f1 im#h.

~3.6!

ŝ15s2 andŝ252s1. So, we arrive at the Lagrangian de
sity

Lf5h†~ i ]22gA2!h2m2h†
1

i ]1 h

2mh†~x!(
r

ŝ r

1

a

1

i ]1 @Ur~x!h~x1ar̂ !2h~x!#

2m(
r

@h†~x1ar̂ !Ur
†~x!2h†~x!#ŝ r

1

a

1

i ]1 h~x!

2
1

a2 (
r

@h†~x1ar̂ !Ur
†~x!

2h†~x!#ŝ r

1

i ]1ŝs@Us~x!h~x1aŝ!2h~x!#. ~3.7!

In the free limit the fermionic part of the Hamiltonia
becomes
07600
d

r
s

Pf b
2 5E dx2a2(

x
H5E dx2a2(

x
Fm2h†~x!

1

i ]1 h~x!

2
1

a2 h†~x!(
r

1

i ]1 Fh~x1ar̂ !22h~x!1h~x2ar̂ !

1
1

a2 h†~x!(
r

~amŝ r !
1

i ]1 @h~x1ar̂ !22h~x!

1h~x2ar̂ !#G . ~3.8!

In order to get Eq.~3.8!, we have assumed infinite transver
lattice and accordingly have used shifting of lattice poin
The positive sign in front of the last term would change if w
had switched forward and backward derivatives.

Because of the presence ofŝ r the last term of Eq.~3.8!
couples fermions of opposite helicities. Note that it is a
linear in mass. Such a helicity flip linear mass term is typi
in continuum light front QCD. Here in free transverse latti
theory this term arises from the interference of the first-or
derivative term and the mass term, due to the constr
equation. This is in contrast to the conventional lattice~see
the Appendix! where no helicity flip or chirality-mixing term
arises in the free theory if we use forward and backw
lattice derivatives.

In DLCQ the Hamiltonian is given by

H f b5H01Hh f , ~3.9!

where

H05(
z

(
l

(
l

a2m2

l
@b†~ l ,z,l!b~ l ,z,l!

1d†~ l ,z,l!d~ l ,z,l!#

2(
z

(
r

(
l

(
l8

(
l

1

l
x†

l8xl@b†~ l ,z,l8!b~ l ,z

1ar̂ ,l!22b†~ l ,z,l8!b~ l ,z,l!1b†~ l ,z,l8!b~ l ,z

2ar̂ ,l!1d†~ l ,z,l8!d~ l ,z1ar̂ ,l!

22d†~ l ,z,l8!d~ l ,z,l!1d†~ l ,z,l8!d~ l ,z2ar̂ ,s!#

~3.10!

and

Hh f5(
z

(
r

(
l

(
l8

(
l

1

l
x†

l8@amŝ r #xl@b†~ l ,z,l8!b~ l ,z

1ar̂ ,l!22b†~ l ,z,l8!b~ l ,z,l!1b†~ l ,z,l8!

3b~ l ,z2ar̂ ,l!1d†~ l ,z,l8!d~ l ,z1ar̂ ,l!

22d†~ l ,z,l8!d~ l ,z,l!1d†~ l ,z,l8!d~ l ,z2ar̂ ,s!#.

~3.11!
4-3
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B. Absence of doubling

Consider the Fourier transform in transverse space,

h~x2,x!5E d2k

~2p!2 eik•xfk~x2!, ~3.12!

where2p/a<k1 ,k2<1p/a. Then the helicity nonflip part
of Eq. ~3.8! becomes

Pn f
2 5E dx2E d2k

~2p!2E d2p

~2p!2fk
†~x2!

1

i ]1 fp~x2!a2

3(
x

e2 i (k2p)•xS m22(
r

1

a2 ~eip•ar̂221e2 ip•ar̂ ! D .

~3.13!

Using

a2(
x

ei (k2p)•x5~2p!2d2~k2p!, ~3.14!

we get

Pn f
2 5E dx2E d2k

~2p!2 fk
†~x2!

1

i ]1fk~x2!

3Fm21(
r

kr
2S sinkra/2

kra/2 D 2G ~3.15!

where we have definedkra5k• r̂a. Note that the sine func
tion vanishes at the origink1 ,k250 but does not vanish a
the edges of the Brillouin zonek1 ,k256p/a.

Define k̃r5kr„sin (kra/2)…/(kra/2). In the naive con-
tinuum limit k̃r→kr .

Now, let us consider the full Hamiltonian~3.8! including
the helicity flip term. In the helicity space we have the fo
lowing matrix structure forP1P2 ~since P2 is inversely
proportional to the total longitudinal momentumP1, we
study the operatorP1P2):

S m21
4

a2 (
r

sin2
kra

2
2

4m

a S i sin2
kxa

2
1sin2

kya

2 D
4m

a S i sin2
kxa

2
2sin2

kya

2 D m21
4

a2 (
r

sin2
kra

2

D
~3.16!

which leads to the eigenvalue equation

M 25m21
4

a2 (
r

sin2
kra

2
6

4m

a A(
r

sin4
kra

2
.

~3.17!

The third term in the above equation comes from the
ear mass helicity flip term. If the massm50, then it is ob-
vious from Eq. ~3.17! that M 250 if and only if k15k2
50. For nonzerom, one can also in general conclude th
07600
-

t

M 25m2 only for the casek15k250. Thus there are no
fermion doublers in this case~for physical massesam,1).
In the following for specific choices of momenta we elab
rate on this further.

If one component of the momentum vanishes, then

M 25m21
4

a S 1

a
6mD sin2

ka

2
, ~3.18!

wherek is the nonvanishing momentum component. Thus
am51, irrespective of the value ofk we getM 25m2 which
is unwanted. In general, foram.1, M 2 can become nega
tive. It is important to recall that physical particles havem
,1/a ~the lattice cutoff! and hence are free from the speci
doubling on the lattice. With periodic boundary conditio
~discussed in the next subsection!, allowedk values arekqa
562pq/(2n11), with q51,2,3, . . . ,n for 2n11 lattice
sites in each direction. Letk150. For ma51.0, Eq.~3.18!
with the minus sign within the bracket givesM 25m2 for all
values ofk2 and we get 2(2n11)-fold degenerate ground
state with eigenvaluem2.

The two spin states~spin up and down! are degenerate fo
k15k250. But if any one~or both! of the two transverse
momenta is~are! nonzero then the degeneracy is broken
the lattice by the spin-flip term proportional tom. So the total
degeneracy of the lowest states forma51.0 can be calcu-
lated in the following way:~i! k15k250, number of states
52 ~spin up and spin down!; ~ii ! k150, k25” 0, number of
states52n; and~iii ! k15” 0, k250, number of states52n.
Note thatki can have 2n nonzero values and there is no sp
degeneracy for any nonzeroki . So, the total number of de
generate states5 212n12n52(2n11). But if ma5” 1 we
cannot havem2 eigenvalue for nonzeroki and we have only
two ~spin! degenerate states with eigenvaluem2. Again we
see from Eq.~3.18! that if ma.1, the kinetic energy term
becomes negative and the eigenvalues go belowm2. But
ma>1 meansm>1/a ~ultraviolet lattice cutoff! and hence
unphysical.

C. Numerical investigation

We have investigated the effects of two types of bound
conditions: ~i! fixed boundary condition and~ii ! periodic
boundary condition.

1. Fixed boundary condition

For each transverse direction, we choose 2n11 lattice
points ranging from2n to 1n where fermions are allowed
to hop. To implement fixed boundary condition we add tw
more points at the two ends and demand that the ferm
remains fixed at these lattice points. Thus we considern
13 lattice points. Let us denote the fermion wave function
the location s by u(s). We haveu(s);sin(s21)ka with
u(1)5u(2n13)50. Allowed values ofk are (2n12)kpa
5pp with p51,2,3, . . . ,2n11 and kp5@p/(2n12)a#p.
Thus the minimumkp allowed is (p/a)@1/(2n12)# and
4-4
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maximumkp allowed is (p/a)@(2n11)/(2n12)#. For ex-
ample, for n51 we have k15p/4a, k252p/4a, k3
53p/4a, etc.

2. Periodic boundary condition

Again, for each transverse direction, we choose 2n11
lattice points. We identify the (2n12)th lattice point with
the first lattice point. In this case we have the fermion wa
function u(s);eiska with the condition u(s)5u(s1L)
whereL52n11. Thus (2n11)kpa562pp so thatkpa5
6@2p/(2n11)#p, p50,1,2, . . . ,n. Thus the minimumkp
allowed is 0 and the maximumkpa allowed is p@2n/(2n
11)#. For n51, we have,k050, k1a56 2

3 p, etc.

3. Numerical results

For the study of the fermion spectra on the transve
lattice, the longitudinal momentum plays a passive role a
for the numerical studies we choose the dimensionless
gitudinal momentum~l! to be unity which is kept fixed. Fo
a given set of lattice points in the transverse space we d
onalize the Hamiltonian and compute both eigenvalues
eigenfunctions.

First we discuss the results forH0 given in Eq.~3.10!. We
diagonalize the Hamiltonian using basis states defined
each lattice point in a finite region in the transverse pla
Let us denote a general lattice point in the transverse p
by (xi ,yi). For each choice ofn ~measure of the linear lattic
size!, we have2n<xi ,yi<1n. Thus for a givenn, we have
a (2n11)3(2n11)-dimensional matrix for the Hamil
tonian. The boundary conditions do have significant effe
at small volumes. For example, a zero transverse momen
fermion atfinite n is/not allowed with periodic/fixed bound
ary condition. With fixed boundary condition, in the infinite
volume limit, we expect the lowest eigenstate to be the z
transverse momentum fermion with the eigenvaluem2. In
Fig. 1 we show the convergence of the lowest eigenvalu
a function ofn towards the infinite-volume limit in this cas
(m51 in Fig. 1!.

FIG. 1. Ground-state eigenvalue versusn.
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For a zero transverse momentum fermion, the probab
amplitude to be at any transverse location should be indep
dent of the transverse location. Thus we expect the eig
function for such a particle to be a constant. At finite volum
with fixed boundary condition, we do get a nodeless wa
function which nevertheless is not a constant since it car

FIG. 2. Eigenfunctions of first three states for the case of
doubling,n55.
4-5
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some nonzero transverse momentum. All the excited st
carry nonzero transverse momentum in the infinite-volu
limit. All of them have nodes characteristic of sine wave
The eigenfunctions corresponding to the first three eigen
ues are shown in Fig. 2 for the case of fixed boundary c
dition. With periodic boundary condition, for anyn, we get a
zero transverse momentum fermion with a flat wave fu
tion.

Now, we consider the effect of helicity flip term. Wit
fixed boundary condition the lowest eigenstate has nonv
ishing transverse momentum in finite volume. In the abse
of helicity flip term positive and negative helicity fermion
are degenerate. The helicity flip term lifts the degenera
The splitting is larger for larger transverse momentum.
Fig. 3 we present the level splitting for the helicity up a
down fermions as a function ofn. As expected, the leve
splitting vanishes and we get exact degeneracy in
infinite-volume limit. For the periodic boundary conditio
the lowest state has exactly zero transverse momentum
we get two degenerate fermions for alln.
ith

07600
es
e
.
l-
-

-

n-
e

y.
n

e

nd FIG. 3. Spin splitting of the ground state caused by the sp
dependent interaction as a function ofn.
ce
IV. HAMILTONIAN WITH SYMMETRIC DERIVATIVE

A. Construction

The symmetric derivative is defined by

Drc
6~x!5

1

2a
@Ur~x!c6~x1ar̂ !2U2r~x!c6~x2ar̂ !#. ~4.1!

In place of using forward and backward derivatives in Eq.~3.2!, we use the above symmetric derivative for all latti
derivatives. Proceeding as in Sec. III A, we arrive at the fermionic part of the QCD Hamiltonian,

Psd
2 5E dx2a2(

x
m2h†~x!

1

i ]1 h~x!2E dx2a2(
x

H m
1

2a
h†~x!(

r
ŝ r

1

i ]1@Ur~x!h~x1ar̂ !2U2r~x!h~x2ar̂ !#

2m
1

2a (
r

@h†~x2ar̂ !ŝ rUr~x2ar̂ !2h†~x1ar̂ !ŝ rU2r~x1ar̂ !#
1

i ]1 h~x!J
2E dx2a2(

x

1

4a2 (
r

@h†~x2ar̂ !Ur~x2ar̂ !2h†~x1ar̂ !U2r~x1ar̂ !#
1

i ]1@Ur~x!h~x1ar̂ !2U2r~x!h~x2ar̂ !#.

~4.2!
In the free limit, the above Hamiltonian becomes

Psd
2 5E dx2a2(

x
H m2h†~x!

1

i ]1h~x!1
1

4a2

3(
r

@h†~x1ar̂ !2h†~x2ar̂ !#

3
1

i ]1 @h~x1ar̂ !2h~x2ar̂ !#J . ~4.3!

In the free field limit the two linear mass terms cancel w
each other.
Using DLCQ for the longitudinal direction, we get

Psd
2 5

L

p
Hsd[

L

p
@Hm1Hk# ~4.4!

with

Hm5a2m2(
l

(
s

(
z

1

l
@b†~ l ,z,s!b~ l ,z,s!

1d†~ l ,z,s!d~ l ,z,s!# ~4.5!

and
4-6
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Hk5(
l

(
s

(
z

(
r

1

l
@b†~ l ,z1ar̂ ,s!b~ l ,z1ar̂ ,s!

1b†~ l ,z2ar̂ ,s!b~ l ,z2ar̂ ,s!2b†~ l ,z1ar̂ ,s!

3b~ l ,z2ar̂ ,s!2b†~ l ,z2ar̂ ,s!b~ l ,z1ar̂ ,s!

1d†~ l ,z1ar̂ ,s!d~ l ,z1ar̂ ,s!1d†~ l ,z2ar̂ ,s!

3d~ l ,z2ar̂ ,s!2d†~ l ,z1ar̂ ,s!d~ l ,z2ar̂ ,s!

2d†~ l ,z2ar̂ ,s!d~ l ,z1ar̂ ,s!#. ~4.6!

When we implement the constraint equation on the lat
and use symmetric definition of the lattice derivative, it
important to keep in mind that we have only next-to-neare
neighbor interactions. Thus a decoupling of even and
lattice points occurs and as a result we have two indepen
sublattices, one connecting odd lattice points and the o
connecting even lattice points.

Let us now address the nature of the spectrum and
presence of doublers.

B. Fermion doubling

The Hamiltonian~4.3! can be rewritten as

Psd
2 5E dx2a2 (

x5even
Fm2h†~x!

1

i ]1 h~x!2
1

4a2

3S h†~x!
1

i ]1 (
r

@h~x12ar̂ !#1h~x22ar̂ !

22h~x! D G1E dx2a2 (
x5odd

Fm2h†~x!
1

i ]1 h~x!

2
1

4a2 S h†~x!
1

i ]1 (
r

@h~x12ar̂ !#

1h~x22ar̂ !22h~x! D G . ~4.7!

Clearly the Hamiltonian is divided into even and odd subl
tices each with lattice constant 2a. As a result, a momentum
component in each sublattice is bounded byp/2a in magni-
tude. Again, going through the Fourier transform in ea
sublattice of the transverse space, we arrive at the free
ticle dispersion relation for the light front energy in ea
sector

kk
25

1

k1 S m21
1

a2(
r

sin2kraD . ~4.8!

For fixedkr , in the limit a→0(1/a2) sin2kra→kr
2 and we get

the continuum dispersion relation

kk
25

m21k2

k1
. ~4.9!
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Because of the momentum-bound ofp/2a doublers can-
not arise fromka5p. However, because of the decouplin
of odd and even lattices, one can get two zero transve
momentum fermions one each from the two sublattic
Thus, for two transverse dimensions, we can get four z
transverse momentum fermions as follows:~i! even lattice
points inx, even lattice points iny; ~ii ! even lattice points in
x, odd lattice points iny; ~iii ! odd lattice points inx, even
lattice points iny; and~iv! odd lattice points inx, odd lattice
points in y. Thus we expect a fourfold degeneracy of ze
transverse momentum fermions.

C. Numerical investigation

1. Fixed boundary condition

For each transverse direction, we have 2n11 lattice
points where the fermions are allowed to hop. To implem
the fixed boundary condition, we need to consider 2n15
lattice points. For one sublattice we have to fix particles
s51 ands52n15. We have the wave function at locatio
s, us;sin (s21)ka. We haveus50 for s51. We also need
us50 for s52n15. Thus (2n14)kpa5pp, with p
51,2,3, . . . ,n11. For n51, allowed values ofkp are kp
5p/6a,2p/6a.

For the other sublattice, we fix the particles ats52 and
s52n14. The wave function at locations, us;sin (s
22)ka. us50 for s52 and s52n14. Thus (2n12)kpa
5pp with p51,2,3, . . . ,n. For n51, the only allowed
value ofk is k5p/4a.

Combining the two sublattices, forn51, the allowed val-
ues ofk arep/6a,p/4a, and 2p/6a.

2. Periodic boundary condition

For a givenn, fermions are allowed to hop at 2n11 lat-
tice points in each transverse direction. Consider 2n13 lat-
tice points. For one sublattice (2n13)rd lattice point is iden-
tified with the lattice point 1. For the other sublattice (2n
12)nd lattice point is identified with the lattice point 2. Th
wave function at points, us;eiska. We require eika

5ei (2n13)ka. Thus kpa562pp/(2n12), p
50,1,2, . . . ,(n11)/2. For n51, we have k050,k15
6p/2a.

For the other sublattice we requiree2ika5ei (2n12)ka.
Thus kpa56(p/n)p, p50,1,2, . . . ,(n21)/2. For n51,
the allowed value ofk50. Thus forn51, taking the two
sublattices together, the allowed values ofk are 0,0,p/2a.

3. Numerical results

The results of matrix diagonalization in the case of t
symmetric derivative with fixed boundary condition are pr
sented in Figs. 4–6. In Fig. 4 we present the lowest fo
eigenvalues as a function ofn. At finite volume, the four
states do not appear exactly degenerate even though
even-odd and odd-even states are always degenerate be
of the hypercubic~square! symmetry in the transverse plan
The four states become degenerate in the infinite-volu
limit. The eigenfunctions of the lowest four states are p
sented in Fig. 5 forn55. As they correspond to particl
4-7
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states, they are nodeless. All other states in the spec
have one or more nodes. For example, in Fig. 6 we show
eigenfunction corresponding to the fifth eigenvalue wh
clearly exhibits the node structure.

FIG. 4. First four eigenvalues as a function ofn.
07600
m
e

With periodic boundary condition, for anyn we get four
degenerate eigenvalues corresponding to zero transverse
mentum fermions. Corresponding wave functions are fla
transverse coordinate space.

V. STAGGERED FERMION ON THE LIGHT FRONT
TRANSVERSE LATTICE

As we have seen in the previous section that the met
of symmetric derivatives results in fermion doublers, we n
consider two approaches to remove the doublers. In this
tion we study an approach similar to the staggered fermi
in conventional lattice gauge theory. In the next section
will take up the case of Wilson fermions.

In analogy with the Euclidean staggered formulation, d
fine the spin diagonalization transformation

h~x1 ,x2!5~ ŝ1!x1~ ŝ2!x2x~x1 ,x2!. ~5.1!

We see from the QCD Hamiltonian given in Eq.~4.2! with
symmetric derivative that in the interacting theory~except
for the linear mass term! and also in the free fermion limit
even and odd lattice sites are decoupled and the Hamilto
is already spin diagonal. So, it is very natural to try stagge
fermion formulation on the light front transverse lattice.
FIG. 5. Eigenfunctions of first four~degenerate! states for the case of fermion doubling,n55.
4-8
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FIG. 6. Eigenfunction corresponding to the fifth state,n55.
on
ly
n

e

free
we

ite.

ave
ut

and

2

this section we shall follow the Kogut-Susskind formulati
@11# and present an elementary configuration space ana
for two flavor interpretation. After the spin transformatio
the linear mass term in the Hamiltonian~4.2! becomes

E dx2a2(
x

H m
1

2a
x†~x!(

r
f~x,r !

3
1

i ]1@Ur~x!x~x1ar̂ !2U2r~x!x~x2ar̂ !#2m
1

2a

3(
r

@x†~x2ar̂ !f~x,r !Ur~x2ar̂ !2x†~x1ar̂ !f~x,r !

3U2r~x1ar̂ !#
1

i ]1 x~x!J , ~5.2!

where f(x,r )51 for r 51 and f(x,r )5(21)x1 for r 52.
After spin diagonalization, the full Hamiltonian in the fre
field limit becomes

Ps f
25E dx2a2(

x
H m2x†~x!

1

i ]1x~x!1
1

4a2

3(
r

@x†~x1ar̂ !2x†~x2ar̂ !#
1

i ]1 @x~x1ar̂ !

2x~x2ar̂ !#2
1

2a
mx†~x!

1

i ]1(
r

f~x,r !
07600
sis 3@x~x1ar̂ !2x~x2ar̂ !#2
1

2a
m

3(
r

@x†~x1ar̂ !2x†~x2ar̂ !#f~x,r !
1

i ]1 x~x!J .

~5.3!

The two linear mass terms cancel with each other in the
theory, but since they are present in the interacting theory
keep them to investigate the staggered fermions.

Since all the terms in Eq.~5.3! are spin diagonal, we can
put only a single component field at each transverse s
From now on, all thex ’s andx†’s appearing in Eq.~5.3! can
be taken as single-component fermion fields. Thus we h
thinned the fermionic degrees of freedom by half. Witho
loss of generality, we keep the helicity up component ofx at
each lattice point.

Apart from the linear mass term in Eq.~5.3!, all the other
terms have the feature that fermion fields on the even
odd lattices do not mix. Let us denote~see Fig. 7! the even-
even lattice points by 1, odd-odd lattice points by 18, odd-
even lattice points by 2, and even-odd lattice points by8,
and the corresponding fields byx1, etc. Then the first of the
linear mass terms,

(
x

x†~x!
1

i ]1 (
r

f~x,r !@x~x1ar̂ !2x~x2ar̂ !#,

~5.4!

can be rewritten as~suppressing factors ofa from now on!,
4-9
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x1
†

1

i ]1 ~¹1x21¹2x28!1x2
†

1

i ]1 ~¹1x12¹2x18!

1x18
†

1

i ]1 ~¹1x282¹2x2!1x28
†

1

i ]1 ~¹1x181¹2x1!1B,

~5.5!

where¹1 and¹2 are the symmetric derivatives in the respe
tive directions. Looking at Fig. 7 it is apparent that these¹1
and ¹2 can also be interpreted as a block derivative, i
finite differences between block variables. For examp
¹1x15x1(1,0)2x1(0,0). B represents the contribution from
other blocks.

Using Eq.~5.1!, in terms of the nonvanishing componen
of h, we have

h15x1 , h25 ix2 , h185 ix18 , h2852x28 . ~5.6!

An interesting feature of lattice points 1 and 18 is that fer-
mion fieldsh1 and h18 have positive helicity.h2 and h28
have negative helicity. In terms ofh fields the expression
given in Eq.~5.5! can be written as

h1
†

1

i ]1 ~2 i¹1h22¹2h28!1 ih2
†

1

i ]1

3~¹1h11 i¹2h18!1 ih18
†

1

i ]1 ~2¹1h281 i¹2h2!

2h28
†

1

i ]1 ~2 i¹1h181¹2h1!1B. ~5.7!

Now,

FIG. 7. Staggered distribution.
07600
-

.,
,

h~1!2h~0!5
1

2
@h~1!2h~21!#

1
1

2
@h~1!1h~21!22h~0!#

[¹̂h~0!1
1

2
¹̂2h~0!, ~5.8!

h~0!2h~21!5
1

2
@h~1!2h~21!#

2
1

2
@h~1!1h~21!22h~0!#

[¹̂h~0!2
1

2
¹̂2h~0!, ~5.9!

where ¹̂ and ¹̂2 are, respectively, first-order and secon
order block derivatives. So, we can write the expression~5.7!
as

h1
†

1

i ]1 H 2 i S ¹̂1h22
1

2
¹̂1

2h2D2S ¹̂2h282
1

2
¹̂2

2h28D J
1 ih2

†
1

i ]1 H S ¹̂1h11
1

2
¹̂1

2h1D1 i S ¹̂2h182
1

2
¹̂2

2h18D J
1 ih18

†
1

i ]1 H 2S ¹̂1h281
1

2
¹̂1

2h28D1 i S ¹̂2h21
1

2
¹̂2

2h2D J
2h28

†
1

i ]1 H 2 i S ¹̂1h182
1

2
¹̂1

2h18D1S ¹̂2h11
1

2
¹̂2

2h1D J .

~5.10!

Let us introduce the fields

u15
1

A2
~h11h18!,

u25
1

A2
~h21h28!,

d̃15
1

A2
~h12h18!,

d̃25
1

A2
~h22h28!. ~5.11!

Then, the first-order derivative term in Eq.~5.10! can be
written as

u†
1

i ]1ŝ r¹̂ru1d†
1

i ]1ŝ r¹̂rd5 f †
1

i ]1ŝ r¹̂r f , ~5.12!

whered5ŝ1d̃ and the flavor isospin doublet

f 5Fu

dG . ~5.13!

Similarly, we can write the second-order block derivati
term in expression~5.10! as
4-10
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1

2
f †

1

i ]1 s3Tr¹̂ r
2f , ~5.14!

whereTr ’s are the matrices in the flavor space defined a

T152 is2, T252 is1. ~5.15!

Similarly, the second term in Eq.~5.3!,

(
r

@h†~x1ar̂ !2h†~x2ar̂ !#
1

i ]1 @h~x1ar̂ !2h~x2ar̂ !#,

~5.16!

reads as

¹̂r f
†

1

i ]1¹̂r f 1¹̂ r
2f †

1

i ]1¹̂ r
2f

1
i

2 S ¹̂r f
†

1

i ]1 s rTr¹̂ r
2f 1¹̂ r

2f †
1

i ]1 s rTr¹̂r f D . ~5.17!

The full Hamiltonian given in Eq.~5.3! can now be written
in two flavor notation~restoring factors ofa! as

Ps f
25E dx2a2(

x
H m2f †

1

i ]1 f 1
1

4 F ¹̂r f
†

1

i ]1¹̂r f

1a2¹̂ r
2f †

1

i ]1¹̂ r
2f 1

ia

2 S ¹̂r f
†

1

i ]1 s rTr¹̂ r
2f

1¹̂ r
2f †

1

i ]1 s rTr¹̂r f D G2
1

2
mS f †

1

i ]1ŝ r¹̂r f

1
a

2
f †

1

i ]1 s3Tr¹̂ r
2f 1H.c.D J . ~5.18!
07600
The above simple exercise shows that applying the spin
agonalization on the symmetric derivative method, the nu
ber of doublers on the transverse lattice can be reduced f
4 to 2 which can be reinterpreted as two flavors. Although
the free case given by Eq.~5.18! the second and third line
are separately zero identically, we have kept these terms
cause in QCD similar terms will survive. These terms exhi
flavor mixing and also helicity flipping. The flavor mixing
terms are always irrelevant.

VI. WILSON TERM ON THE LIGHT FRONT
TRANSVERSE LATTICE

Since doublers in the light front transverse lattice ar
from the decoupling of even and odd lattice sites, a term t
will couple these sites will remove the zero momentum do
blers. However, conventional doublers now may arise fr
the edges of the Brillouin zone. A second derivative te
couples the even and odd lattice sites and also removes
conventional doublers. Thus the term originally proposed
Wilson to remove the doublers arising fromka5p in the
conventional lattice theory will do the job@6#.

To remove doublers, add an irrelevant term to the L
grangian density,

dL~x!5
k

a (
r

c̄~x!@Ur~x!c~x1ar̂ !22c~x!

1U2r~x!c~x2ar̂ !#, ~6.1!

wherek is the Wilson parameter. This generates the follo
ing additional terms in the Hamiltonian~4.2!:
Pw
252E dx2a2(

x
H 4

k

a

1

2a
h†~x!(

r
ŝ r

1

i ]1@Ur~x!h~x1ar̂ !2U2r~x!h~x2ar̂ !#24
k

a

1

2a (
r

@h†~x2ar̂ !ŝ rUr~x2ar̂ !

2h†~x1ar̂ !ŝ rU2r~x1ar̂ !#
1

i ]1 h~x!J 1E dx2a2(
x

H k

a

1

2a (
r

(
s

@h†~x2ar̂ !Ur~x2ar̂ !

1h†~x1ar̂ !U2r~x1ar̂ !#
1

i ]1ŝs@Us~x!h~x1aŝ!2U2s~x!h~x2aŝ!#2
k

a

1

2a (
r

(
s

@h†~x2ar̂ !ŝ rUr~x2ar̂ !

2h†~x1ar̂ !ŝ rU2r~x1ar̂ !#
1

i ]1@Us~x!h~x1aŝ!1U2s~x!h~x2aŝ!#J
2E dx2a2(

x
H m

k

a
h†~x!

1

i ]1 (
r

@Ur~x!h~x1ar̂ !1U2r~x!h~x2ar̂ !#1m
k

a (
r

@h†~x2ar̂ !Ur~x2ar̂ !

1h†~x1ar̂ !U2r~x1ar̂ !#
1

i ]1 h~x!J 2E dx2a2(
x

k2

a2 (
r

(
s

@h†~x2ar̂ !Ur~x2ar̂ !

1h†~x1ar̂ !U2r~x1ar̂ !#
1

i ]1@Us~x!h~x1aŝ!1U2s~x!h~x2aŝ!#. ~6.2!
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In addition, the factorm2 in the free term in Eq.~4.2! gets
replaced bym25@m14(k/a)#2.

In the free limit the resulting Hamiltonian goes over to

Pw
25E dx2a2(

x
Fm2h†~x!

1

i ]1 h~x!1
1

2a (
r

@h†~x1ar̂ !

2h†~x2ar̂ !#
1

i ]1

1

2a
@h~x1ar̂ !2h~x2ar̂ !#

1
k2

a2 (
r

@h†~x1ar̂ !22h†~x!1h†~x2ar̂ !#

3
1

i ]1 @h~x1ar̂ !22h~x!1h~x2ar̂ !#

22
mk

a (
r

h†~x!
1

i ]1 @h~x1ar̂ !22h~x!

1h~x2ar̂ !#G . ~6.3!

We rewrite the free Hamiltonian~6.3! as

Pw
25PD

21POD1
2 1POD2

2 . ~6.4!

The diagonal terms are

PD
25E dx2a2(

x
h†~x!

1

i ]1 h~x!

3Fm21
1

a2 18mk
1

a
112k2

1

a2G . ~6.5!

The nearest-neighbor interaction is

POD1
2 52E dx2a2(

x
(

r̂
F S 2mk

1

a
14

k2

a2D
3Fh†~x!

1

i ]1 h~x1ar̂ !1h†~x!
1

i ]1 h~x1ar̂ !G G .
~6.6!

The next-to-nearest-neighbor interaction is

POD2
2 5E dx2a2(

x
(

r̂
H 2

1

4a2 1
k2

a2J Fh†~x1ar̂ !

3
1

i ]1 h~x2ar̂ !1h†~x2ar̂ !
1

i ]1 h~x1ar̂ !G .
~6.7!

Using the Fourier transform in the transverse space,
get
07600
e

Pw
25E dx2E d2k

~2p!2 fk
†~x2!

1

i ]1 fk~x2!Fm2

1(
r

kr
2S sinkra

kra
D 2

12amk(
r

kr
2S sinkra/2

kra/2 D 2

1a2k2(
r

kr
4S sinkra/2

kra/2 D 4G . ~6.8!

Note that, as anticipated, Wilson term removes the doub
because the lowest eigenvalue occurs only if all thekr ’s are
zero.

In DLCQ, we have

HD5@a2m21118amk

112k2#(
l

(
s

(
z

1

l
@b†~ l ,z,s!b~ l ,z,s!

1d†~ l ,z,s!d~ l ,z,s!#, ~6.9!

HOD152@2kam14k2#(
l

(
s

(
z

(
r

1

l
@b†~ l ,z,s!b~ l ,z

1ar̂ ,s!1b†~ l ,z,s!b~ l ,z2ar̂ ,s!1d†~ l ,z,s!d~ l ,z

1ar̂ ,s!1d†~ l ,z,s!d~ l ,z2ar̂ ,s!# ~6.10!

and

HOD252S 1

4
2k2D(

l
(
s

(
z

(
r

1

l
@b†~ l ,z1ar̂ ,s!b~ l ,z

2ar̂ ,s!1b†~ l ,z2ar̂ ,s!b~ l ,z1ar̂ ,s!

1d†~ l ,z1ar̂ ,s!d~ l ,z2ar̂ ,s!1d†~ l ,z2ar̂ ,s!

3d~ l ,z1ar̂ ,s!#. ~6.11!

Numerical investigation

1. Boundary condition

With the Wilson term added, we do not have decoup
sublattices. We have both nearest-neighbor and nex
nearest-neighbor interactions. Since with fixed bound
condition the lowest four eigenvalues are not exactly deg
erate in finite volume, it is difficult to investigate the remov
of degeneracy by the addition of the Wilson term. With p
riodic boundary condition, for a lattice with 2n11 lattice
points in each transverse direction, we identify the (n
12)th lattice site with the first lattice site. Then for th
Hamiltonian matrix we get the following additional contr
butions:
4-12
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H51
• • • • ••• • • NN N

• • • • ••• • • 0 NN

• • • • ••• • • • •

•••

•••

• • • • ••• • • • •

NN 0 • • ••• • • • •

N NN • • ••• • • • •

2
~6.12!

The matrix elementsNN52 1
4 1k2 and N522amk

24k2. For a givenn, the allowed values ofk are kpa5
62pp/(2n11), p50,1,2, . . . . Thus forn53, we expect
multiples of 2p/7 apart from 0. Forn55, apart from 0,
allowed values ofk are multiples of 2p/11.

2. Numerical results

Since the Wilson term connects even and odd lattices,
extra fermions that appear at zero transverse momentum
removed once the Wilson term is added as we now h
nearest- and next-to-nearest-neighbor interactions. For l
n, we get the expected spectra but numerical results sug
that the finite-volume effect is larger for smallk which is
obvious becausek is a masslike parameter. For examp
with periodic boundary condition, forn53, for k
51.0,0.5,0.4, we get the expected harmonics but not fok
50.1. The situation is similar forn55. Forn510, expected
harmonics emerge even fork50.1 but not fork50.01.

VII. DOUBLING AND SYMMETRIES ON THE LIGHT
FRONT TRANSVERSE LATTICE

Because of the constraint equation which is inconsis
with the equal time chiral transformation in the presence
massive fermions, we should distinguish between ch
symmetry in the equal time formalism and in the light fro
formalism. For example, the free massive light front L
grangian involving only the dynamical degrees of freedom
invariant underg5 transformation. On the light front, helicity
takes over the notion of chirality even in presence of ferm
mass which can be understood in the following way.

In the two component representation@9# in the light front
formalism, let us look at the objectscL

1 andcR
1 . We have

c1~x!5S h~x!

0 D ~7.1!

with

h~x!5S h1~x!

h2~x!
D . ~7.2!

The projection operators arePR5 1
2 (11g5) and PL5 1

2 (1
2g5) with
07600
e
re
e
ge
est

,

nt
f
l

-
s

n

g55S s3 0

0 2s3D . ~7.3!

Then

cR
15PRc15S h1

0

0

0

D ~7.4!

and

cL
15PLc15S 0

h2

0

0

D . ~7.5!

Thus cR
15PRc1 represents a positive helicity fermion an

cL
15PLc1 represents a negative helicity fermion, ev

when the fermion ismassive. This makes sense since chira
ity is helicity even for a massive fermion in front form. Th
is again to be contrasted with the instant form. In that c
the right-handed and left-handed fields defined bycR
5PRc5 1

2 (11g5)c and cL5PLc5 1
2 (12g5)c contain

both positive helicity and negative helicity states. Only in t
massless limit or in the infinite momentum limit doescR
become the positive helicity state andcL become the nega
tive helicity state.

As a passing remark, we would like to mention that
continuum light front QCD there is a linear mass term th
allows for helicity flip interaction.

In lattice gauge theory in the Euclidean or equal tim
formalism, because of reasons connected to anomalies~the
standard ABJ anomaly in vectorlike gauge theories!, there
has to be explicit chiral symmetry breaking in the kine
part of the action or Hamiltonian. Translated to the light fro
transverse lattice formalism, this would then require helic
flip in the kinetic part. A careful observation of all the abov
methods that get rid of fermion doublers on the light fro
transverse lattice reveals that this is indeed true.

In particular, we draw attention to the even-odd helic
flip transformation

h~x1 ,x2!→~ ŝ1!x1~ ŝ2!x2h~x1 ,x2! ~7.6!

that was used in Sec. V for spin diagonalization. It sho
also be clear that the form of the above transformation is
unique in the sense that one could exchangeŝ1 and ŝ2 and
their exponentsx1 andx2 could be changed by61.

Note that the HamiltoniansPf b
2 given in Eq.~3.8! andPw

2

given in Eq.~6.3! that do not exhibit fermion doubling ar
not invariant under the transformation Eq.~7.6!. On the other
hand the HamiltonianPsd

2 given by Eq.~4.3! that exhibits
fermion doubling is invariant under this transformation.
4-13
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VIII. SUMMARY AND CONCLUSIONS

The presence of the constraint equation for fermions
the light front gives rise to interesting possibilities of form
lating fermions on a transverse lattice. We have studied
detail the transverse lattice Hamiltonians resulting from d
ferent approaches.

In the first approach, forward and backward derivativ
are used respectively forc1 andc2 ~or vice versa! so that
the resulting Hamiltonian is Hermitian. There is no fermi
doubling. The helicity flip~chiral symmetry breaking! term
proportional to the fermion mass in the full light front QC
becomes an irrelevant term in the free field limit. With pe
odic boundary condition one can get the helicity up and
licity down fermions to be degenerate for any transverse
tice sizen. With fixed boundary condition, there is a splittin
between the two states at anyn but the splitting vanishes in
the large volume limit.

In the second approach, symmetric derivatives are u
for both c1 and c2. This results in four fermion species
This is a consequence of the fact that the resulting f
Hamiltonian has only next-to-nearest neighbor interacti
and as a result even and odd lattice sites get decoupled.
way to remove doublers is to reinterpret them as flavors
ing staggered fermion formulation on the light front. In QC
Hamiltonian, it generates irrelevant flavor mixing intera
tions. However, in the free field limit, there is no flavor mi
ing. Another way to remove the doublers is to add a Wils
term which generates many extra terms in the Hamilton
In the free field limit, only the helicity nonflip terms survive
The Wilson term couples even and odd sites and removes
doublers. Numerically, we found that in small lattice vo
umes it is preferable to have not too small values of
Wilson massk/a.

We have tried to understand the fermion doubling in ter
of the symmetries of the transverse lattice Hamiltonians.
are aware that there are rigorous theorems and anomal
guments in the conventional lattice gauge theories regar
presence of fermion doublers. In standard lattice ga
theory, some chiral symmetry needs to be broken in the
netic part of the action to avoid the doublers. On the lig
front, chirality means helicity. For example, a standard W
son term which is not invariant under chiral transformatio
in the conventional lattice gauge theory, is chirally invaria
on the light front in the free field limit. The question is the
why the Wilson term removes the doublers on the light fro
transverse lattice. The argument that there is nonlocality
the longitudinal direction cannot hold because, in the fi
place, having nonlocality is not a guarantee for remov
doublers, and secondly there is no nonlocality on the tra
verse lattice. One therefore needs to find a reasoning
involves the helicity in some way. We have identified
even-odd helicity flip symmetry of the light front transver
lattice Hamiltonian, absence of which means removal
doublers in all the cases we have studied.

Our interest also lies in studying finite-volume effects
a transverse lattice. As we have emphasized, there are im
tant issues to be understood since~i! any realistic Fock space
truncation will force us to work with relatively small vol
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umes because of the limited availability of computing r
sources, and~ii ! the currently available transverse lattice fo
mulation uses linear link variables and recovering continu
limit is nontrivial. We have investigated the effects of fixe
and periodic boundary conditions, which are significant
finite volumes.

Among the many possible extensions of this work, it w
be interesting to study the various QCD Hamiltonians and
compare the resulting spectra.
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APPENDIX: FORWARD-BACKWARD DERIVATIVE
IN CONVENTIONAL LATTICE THEORY

In this appendix we follow Ref.@12#. In discretizing the
Dirac action in conventional lattice theory the use of forwa
or backward derivative for]m leads to non-Hermitian action
The Hermiticity can be preserved in the following way.

In the chiral representation

g05F 0 2I

2I 0 G , g i5F 0 s i

2s i 0 G , g55F I 0

0 2I G .
~A1!

The Dirac operator in Minkowski space

igm]m[F 0 2 ism]m

2 i s̄m]m 0 G , ~A2!

wheresm5(I ,s), s̄m5(I ,2s). For massive Dirac fermi-
ons, this leads to the structure

2 ism]mcR2mcL , ~A3!

2 ism]mcL2mcR . ~A4!

For discretization we replace]m in Eq. ~A3! by forward de-
rivative

Dm
f 5~dy,x1m2dy,x!/a ~A5!

and in Eq.~A4! by backward derivative

Dm
b 5~dy,x2dy,x2m!/a. ~A6!

This leads to the structure

igm]m2m5 igmDm
s 2 igmg5Dm

a 2m ~A7!

which results in Hermitian action. Here,

Dm
s 5~dy,x1m2dy,x2m!/2a,
4-14
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Dm
a 5~dy,x1m1dy,x2m22dy,x!/2a. ~A8!

Note that an irrelevant helicity nonflip second-order deriv
tive term is produced in this method of discretization.
.

.

07600
-

contrast, the corresponding term in the transverse lattice
pends linearly onm and flips helicity. One can trace thi
difference to the presence of the constraint equation in
light front theory.
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