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Massless three-dimensional QED with explicit fermions

Dean Lee* and Pieter Maris†

Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202
~Received 18 December 2002; published 15 April 2003!

We study dynamical mass generation in QED in 211 dimensions using Hamiltonian lattice methods. We
use staggered fermions, and perform simulations with explicit dynamical fermions in the chiral limit. We
demonstrate that a recently developed method to reduce the fermion sign problem can successfully be applied
to this problem. Our results are in agreement with both the strong coupling expansion and with the Euclidean
lattice simulations.
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I. INTRODUCTION

Quantum electrodynamics in 211 dimensions (QED3) is
a theory which shares a number of important features w
quantum chromodynamics in 311 dimensions~QCD! such
as dynamical mass generation@1–10# and confinement@11#.
Since QED3 is super-renormalizable and has fewer degr
of freedom than QCD, it serves as a valuable laboratory
which to test new methods and ideas related to these
nomena. Aside from its role as a testing ground for QC
however, QED3 itself plays an important role in solid stat
physics and in particular high-Tc superconductivity@12,13#.
Recently several studies have pursued a new theoretica
proach to cuprate superconductors@14–16# in which one de-
scribes the phase transition in the reverse direction, star
from the superconducting state. In this picture the antifer
magnetic phase, for example, corresponds to spontan
chiral symmetry breaking of massless two-flavor QED3. But
there are also several other phases, and the large chiral m
fold of degenerate states explains the complexity of
phase diagram.

There are extensive studies using the Dyson-Schwin
equations@5# suggesting that chiral symmetry in QED3 is
dynamically broken if the number of fermion flavors
smaller than some critical numberNc;3.3. However, the
scale of this symmetry breaking~i.e. the magnitude of the
chiral condensate! is extremely small, and there are als
studies@6# suggesting that chiral symmetry is broken for
numbers of fermion flavors. Quenched lattice simulatio
have shown clear signs of chiral symmetry breaking, wit
condensatêc̄c&;531023 in units of e4, the dimensionful
coupling constant@3#. The situation for dynamical fermion
however is not so clear, especially for an odd number
flavors. There have been Euclidean lattice studies in b
compact@2# and noncompact@4# formalisms with different
numbers of flavors, all suggesting a very small condens
The most recent Euclidean lattice study of two-flavor no
compact QED3 suggests an upper bound for the condens
of ;531025 @10#, using large lattices.

On the other hand, Hamiltonian lattice studies of QE3
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with one fermion flavor have suggested a rather large va
for the chiral condensate. These studies were based on
strong coupling expansion@9# and variational coupled cluste
expansion@7#. The obtained condensate was;0.28 @9#, sig-
nificantly larger than both quenched and two-flavor Eucl
ean lattice results and about two orders of magnitude la
than the Dyson-Schwinger results for one flavor QED3.

In this paper we study chiral symmetry breaking in on
flavor massless QED3. To our knowledge our analysis@17#
represents the first non-perturbative simulation of latt
gauge theory in more than one spatial dimension with
plicit fermions. By explicit fermions, we mean that fermion
are not integrated out to yield determinants of the Dirac
erator. In the simulation presented here, fermion dynam
are sampled explicitly using fermion worldlines in a gaug
field dependent Hamiltonian. From a theoretical point
view, this is an ideal framework in which to address t
fermion structure of the ground state wave function. From
computational point of view, however, the approach prese
profound difficulties such as the fermion sign problem a
complex phase fluctuations due to the gauge field, both
which scale exponentially with the volume of the syste
Therefore it is not likely that this approach would be possi
for QCD in the near future. However, we do find that b
employing the recently developedzone method@18#, we can
control sign and phase problems sufficiently to study ch
symmetry breaking in massless QED3 on relatively small
spatial lattices.

In our study, we find that in the strong coupling regio
y,1, our results agree very well with the strong coupli
expansion@9#. However, the agreement between the stro
coupling expansion and our simulations breaks down aro
y;1, and fory.1 we see a dramatic decrease in the size
the condensate. These results are in agreement with the
clidean lattice simulations using staggered fermions@2#, sug-
gesting a very small condensate in the continuum limity
→`.

II. QED IN 2 ¿1 DIMENSIONS

QED3 is a super-renormalizable theory, with a dimensio
ful coupling: e2 has dimensions of mass. This dimension
parameter plays a role similar toLQCD in QCD. In the chiral
limit, it also sets the energy scale. We use 4-compon
spinors, such that the fermion mass term is even under pa
©2003 The American Physical Society02-1
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With one massless fermion flavor, the Hamiltonian exhibit
globalU(2) ‘‘chiral’’ symmetry. A fermion mass term break
this symmetry to aU(1)3U(1) symmetry. The question is
is this chiral symmetry broken dynamically? The order p
rameter for this symmetry breaking is the chiral condens

A. Lattice Hamiltonian

We start with the staggered fermion lattice Hamiltoni
on anL13L2 spatial lattice@9#,

Hphysical5
g2

2a
~WE1WB1WF!, ~1!

with

WE5(
rW, j

@Ej~rW !#2, ~2!

WB52y2(
rW

@Up~rW !1Up
†~rW !#, ~3!

WF52m(
rW

~21!r 11r 2x†~rW !x~rW !

1y(
rW, j

h j~rW !x†~rW !U j~rW !x~rW1 ̂ !1H.c., ~4!

whereh1(rW)5(21)r 211, h2(rW)51, y51/g2, andUp is the
plaquette operator given by the product ofU j (rW)’s circuiting
the spatial plaquette anchored atrW,

Up~rW !5U1~rW !U2~rW11̂!U1
†~rW12̂!U2

†~rW !. ~5!

We use a dimensionless mass parameterm52m/e2 and a
dimensionless coupling constantg25e2a, wherea is the lat-
tice spacing. We also make the Hamiltonian and time dim
sionless: the actual simulations are performed with thedi-
mensionlessHamiltonian

Hª

2a

g2
Hphysical5WE1WB1WF , ~6!

in combination with the dimensionless time variable

tª
g2

2a
tphysical, ~7!

instead of the physical Hamiltonian, Eq.~1!.
We use the Dirac matrix representation

g05Fs3 0

0 2s3
G , g1,25F is1,2 0

0 2 is1,2
G .

Assuming thatL1 and L2 are even, we stagger the fermio
components at the four sites of a 232 unit cell

x1~rW !;~2r 1,2r 2! ~8!
07600
a

-
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-

x2~rW !;~2r 111,2r 2! ~9!

x3~rW !;~2r 111,2r 211! ~10!

x4~rW !;~2r 1,2r 211!. ~11!

In the continuum limit the staggered fermions correspond
one flavor of a 4-component fermion@9,19#,

i r 11r 2

2A2aF 0 2 i 0 1

1 0 2 i 0

2 i 0 1 0

0 1 0 2 i

GF x1~rW !

x2~rW !

x3~rW !

x4~rW !

G→F c1~rW !

c2~rW !

c3~rW !

c4~rW !

G .

~12!

For the states in our physical Hilbert space we choos
basis that is a tensor product of the gauge field and the
mion field degrees of freedom. For each gauge link field
us define the gauge field basis,

U j~rW !uXj~rW !&5eiX j (r
W)uXj~rW !&, ~13!

where eachXj is a real number in the interval@0,2p). We let
uX& be the tensor product of statesuXj (rW)& at each link,

uX&5 ^

rW, j

uXj~rW !&. ~14!

Consider the Green’s function

GX8,a8;X,a~Dt !5@^a8u ^ ^X8u#e2HDt@ uX& ^ ua&#, ~15!

whereuX& ^ ua& and uX8& ^ ua8& are two states in our physi
cal Hilbert space, withua& and ua8& being general fermion
states. IfDt is small andXj (rW)'Xj8(rW) for all rW and j, then

GX8,a8;X,a~Dt !}expF2
1

4Dt (
rW, j

@Xj~rW !2Xj8~rW !#22Dt WB
XG

3^a8uexp@2Dt WF
X#ua&, ~16!

where

WB
X5WBuU j (r

W)5eiX j (r
W) , ~17!

WF
X5WFuU j (r

W)5eiX j (r
W) . ~18!

We can evaluateGXf ,a f ;Xi ,a i
(t) for general initial and final

states and arbitraryt by breaking the exponential in Eq.~15!
into N equal time steps and inserting a complete set of st
at each time stepDt5t/N. If Dt is small, the sum over
intermediate states is dominated by consecutive states
are similar, i.e., thenth time step is dominated by state
which satisfyXj

(n11)'Xj
(n) and thus we can use Eq.~16!

repeatedly. If we letXi5X(0), Xf5X(N), a i5a (0), and a f
5a (N), then
2-2



p
ug
in
te
th

o

’’

rs
ys
or
In
ne
w

ve

ded
llel

ed

ar-
er-
are
s a

ine
ine
w
g a
to

ne

ied
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GXf ,a f ;Xi ,a i
~ t !5 (

X(1), . . . ,X(N21)

a(1), . . . ,a(N21)

AX,aBX ~19!

where

AX,a5 )
n50

N21

^a (n11)ue2t/NWF
X(n)

ua (n)&, ~20!

BX5 )
n50

N21

expF2
N

4t (
rW, j

@Xj
(n11)~rW !2Xj

(n)~rW !#2G
3expF2

t

N
WB

X(n)G . ~21!

In our simulation the gauge field configurations are u
dated using the Metropolis algorithm. For each new ga
configuration we compute the evolution of the correspond
time-dependent Hamiltonian in the space of fermionic sta
The sampling over fermion states is performed using
worldline formalism@20#, which we now briefly discuss.

B. Worldlines

At the nth time step we have an exponential operator
the form

S(n)5expH 2(
rW

@H0~rW !1H1
X(n)

~rW !1H2
X(n)

~rW !#J , ~22!

where

H0~rW !52
Nm~21!r 11r 2

t
x†~rW !x~rW ! ~23!

H1
X(n)

~rW !5
yNh1~rW !eiX1

(n)(rW)

t
x†~rW !x~rW11̂!1H.c. ~24!

H2
X(n)

~rW !5
yNh2~rW !eiX2

(n)(rW)

t
x†~rW !x~rW12̂!1H.c. ~25!

In the following we use the shorthand ‘‘e’’ for even and ‘‘o
for odd values ofr j , j 51,2. Let us break upS(n) into a
product of four terms,

S(n)'S2;o
(n)S2;e

(n)S1;o
(n)S1;e

(n) , ~26!

where

Sj ;e/o
(n) 5expF2 (

r j ;e/o
S 1

4
H0~rW !1H j

X(n)
~rW ! D G . ~27!

EachSj ;e/o
(n) is the product of mutually commuting operato

which contain the interactions for an adjacent two-site s
tem. With this decomposition of the time evolution operat
one can trace out the worldline of any individual fermion.
Fig. 1 we have drawn the worldlines for a sample worldli
configuration. For visual clarity the example we have dra
07600
-
e
g
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e

f

-
,

n

is a simpler system with only one spatial dimension. We ha
placed shaded squares where the interactionsSj ;e/o

(n) occur. In
the case when two identical fermions enter the same sha
square we use the convention that the worldlines run para
and do not cross.

The sum over all worldline configurations is calculat
with the help of the loop algorithm@21#. At each occupied or
unoccupied site, we place an upward/downward pointing
row as shown in Fig. 2. Because of fermion number cons
vation, the number of arrows pointing into a shaded squ
equals the number of arrows pointing out of the square. A
consequence of this conservation law, any valid worldl
configuration can be generated from any other worldl
configuration by flipping arrows that form closed loops. Ne
Monte Carlo updates are therefore implemented by pickin
random closed loop and using the Metropolis condition
determine whether or not to flip the loop.

FIG. 1. Sample worldline configuration of a system with o
spatial dimension.

FIG. 2. Upward/downward arrows are drawn at each occup
or unoccupied site.
2-3
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C. Measuring the chiral condensate

For m50, the staggered lattice formulation reduces
chiral U(2) symmetry to a discrete symmetry generated b
shift of one lattice spacing. To study chiral symmetry brea
ing on the lattice, we calculate the lattice condensate^c̄c& in
the chiral limit as a function of the lattice couplingy. The
lattice condensate is related to the continuum condensat
the relation

y2^c̄c& lattice5
1

e4
^c̄c&continuum, ~28!

in the limit y→`. From here on ^c̄c& will denote

^c̄c& lattice. We determine the lattice condensate by comp
ing the limit

lim
t→`

~^au ^ ^Fu!e2Ht/2Oe2Ht/2~ uF& ^ ua&!

~^au ^ ^Fu!e2Ht~ uF& ^ ua&!
, ~29!

where

O52
1

L1L2
(

rW
~21!r 11r 2x†~rW !x~rW !. ~30!

The stateuF& is a variational approximation to the gaug
field ground state,

uF&5E dXF~X!uX&, ~31!

where

F~X!5expH c(
rW

cos@X1~rW !1X2~rW11̂!

2X1~rW12̂!2X2~rW !#J , ~32!

andc is a real parameter we choose to optimize overlap w
the true gauge field ground state@22#. In our simulations we
have usedc5y/4, which appears to work well for both sma
and largey. The stateua& is the y50 fermion ground state
for m.0, a configuration where even sites are occupied
odd sites are unoccupied. The essential characteristic o
trial stateuF& ^ ua& is that it has non-zero overlap with th
physical vacuum.

In Eq. ~29!, for both numerator and denominator, the in
tial quantum state is the same as the final state. Any confi
ration of fermion worldlines can therefore be regarded a
permutation of the initial fermions. Even permutations giv
positive contribution while odd permutations come with
minus sign. Numerically, these minus signs give rise to
fermion sign problem. With the worldline formalism we ca
keep track of these permutations, and we use the rece
developed zone method@18# to manage the sign problem a
well as phase oscillations due to the gauge field.
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D. Zone method

The zone method@18# consists of introducing a specia
n13n2 spatial sub-lattice or zone. See for example Fig.
We allow worldline configurations which may permute fe
mions lying inside this zone, but do not allow configuratio
that permute any fermions lying outside of the zone. At
termediate time slices though the fermions are still allow
to wander through the entire lattice. In order to control pha
oscillations associated with the gauge field, we use a dif
ent value of the couplingy8 and/or fermion massm8 when
the fermions are outside the zone. We obtain physical res
by extrapolation to the limit when the zone covers the en
L13L2 lattice.

As demonstrated in Ref.@18#, observables should scal
linearly in the zone size provided that the zone size is lar
than the characteristic ‘‘fermion wandering length.’’ For an
finite values of the couplingy and of the time variablet, this
wandering length is finite, even for massless fermions. T
one can extrapolate the results from relatively small zone
the entire lattice.

III. NUMERICAL RESULTS

A. Zone extrapolations

There are different ways to define the size of a zone:
the number of lattice points or by the number of links insi
the zone. For large lattices it does not matter which is us
However, for the relatively small lattices we have used
far, it turns out that the best way to characterize the zone
is the number of links inside the zone. As an example,
show in Fig. 4 the lattice condensate for different zone si
as function of the area of the zone, the number of poi
inside a zone, and the number of links inside a zone
straight line fit to the condensate as function of the num
of links gives a very good fit with ax2/d.o.f. of 0.6, whereas
linear fits using the number of points or the area have
x2/d.o.f. of 6.1 and 8.5 respectively. Furthermore, the e
trapolated result, using the number of links inside a zo
does indeed agree~within error bars! with the exact result.

To further test this method, we calculated the lattice co
densate using different parametersy8 and m8 outside the

FIG. 3. Illustration of the zone method, an 638 spatial lattice
with a 334 zone. The size of this zone is 17, as characterized
the number of links inside the sub-lattice.
2-4
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MASSLESS THREE-DIMENSIONAL QED WITH . . . PHYSICAL REVIEW D67, 076002 ~2003!
zone, while keeping the parametersy andm inside the zone
fixed. As can be seen from Fig. 5, the three different sets
data points extrapolate to results within the error bars of
lattice condensate obtained without using the zone extra
lation method. Thex2/d.o.f. of the linear fits are 0.3, 0.7 an
1.2 respectively, indicating that the numerical data are ind
on straight lines.

Finally, in Fig. 6 we show results on a larger lattice. On
838 lattice the method seems to work quite well, althou
in this case we cannot compare our result with a simula
on the entire lattice.

B. Finite size effects

In order to avoid possible errors due to the zone extra
lation, we checked for finite size effects without the zo

FIG. 4. Numerical results for the condensate for different zo
sizes within a 636 lattice, with fixed values ofy50.4, y850.1,
m5m850, t51.5, andN510. The total number of links in the
lattice is 72; the total number or points is 36, as is the total area.
straight lines are linear fits to the data.

FIG. 5. Numerical results for different zone sizes within a
36 lattice, for fixed values ofy50.5, m50, t51.5, andN510.
The total number of links in the lattice is 72, where the three lin
fits meet~within enlarged error bars!.
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method, which limits us to rather small values ofy and
coarse grids. In Fig. 7 we show fory50.4 the dependence o
the chiral condensate onL, the spatial lattice size; onN, the
number of time steps; and ont, the dimensionless time vari
able. We see a slight dependence onL, which is actually
smaller than our MC error bars. Note that the result for
838 grid was obtained using the zone extrapolation meth
where the error bar is the error of thex2 linear fit only.
Within numerical error bars, our results are also independ
of the number of time steps,N.

The most significant finite-size effect is the dependen
on t, as can be seen in the bottom panel of Fig. 7. An ex
nential fit of the type

^c̄c&~ t !5^c̄c&~ t5`!1a0exp~2a1t ! ~33!

fits these data quite well fort.1. However, for simulations
at larger lattices and larger values ofy the numerical errors
are too large to do a proper finite-t extrapolation using such
an exponential fit.

C. Summary of main results

In Figs. 8 and 9 we show our results for a range of valu
of the couplingy. Most of the results are obtained on 636
spatial lattices withN510 using several different zone size
The error bars in Fig. 8 represent thex2 error of the linear fit
from our zone extrapolation. The error bars in Fig. 9 are
best estimate of the combined errors. They are dominate
the t5` extrapolation, which is based on three~or more!
different values oft where possible. For the largest values
y, y>1.25, we could only establish upper limits for the co
densate, due to the uncertainties in thet5` extrapolation.

Our results for the condensate indicate a dramatic cha
in behavior aroundy;1: for y,1 we agree within error
bars with the 5/6 Pade´ approximant to the strong couplin
expansion@9#. For y→0 our results approach the leadin
order behavior in the strong coupling expansion

e

e

r

FIG. 6. Numerical results for different zone sizes within a
38 lattice, for values ofy50.4 andy51.0, both withm50, t
51.5, andN510. The total number of links in the lattice is 128
2-5
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D. LEE AND P. MARIS PHYSICAL REVIEW D67, 076002 ~2003!
y2^c̄c& lattice50.5y2, ~34!

as expected. However, fory.1 we see a dramatic change
the behavior of the condensate, and a deviation from
strong coupling predictions: the value of the condensate
creases rapidly. This strong decrease of the condensate
increasingy for 1,y,2 is in good agreement with the dy
namical Euclidean Monte Carlo simulations by Burkitt a
Irving @2#.

It is not possible to determine at this time whether or n
the condensate is small or exactly zero in the continu
limit, y→`. However, it is clear from our simulations tha
the continuum condensate is significantly smaller than
prediction@9# y2^c̄c& lattice'0.284 based on the strong co
pling expansion.

IV. CONCLUDING REMARKS

In this work we studied chiral symmetry breaking in on
flavor massless QED3, and our analysis represents the fi

FIG. 7. Finite size effects fory50.4, m50: the condensate a
function of the spatial square lattice of sizeL3L for N510 andt
51.5 ~top!, as function of the number of time stepsN for L54 and
t51.5 ~middle!, and as function oft for N510 andL54 ~bottom!.
07600
e
e-
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e

t

non-perturbative simulation of lattice gauge theory in mo
than one spatial dimension with explicit fermions. While th
approach is likely not practical for QCD in the near futur
we were able to use the zone method to control sign
phase problems to study chiral symmetry breaking in ma
less QED3.

We were able to resolve one puzzling issue regarding
size of the chiral condensate. The Hamiltonian lattice stud
had suggested a rather large value for the chiral conden
whereas lattice simulations and the Dyson-Schwinger stu
indicated a value for the condensate about two orders
magnitude smaller. In our results we found that fory.1 our
results agree very well with the strong coupling expans
and the condensate appears to increase asy decreases. How-
ever for 1,y,2 we see a rather dramatic decrease in
condensate asy increases. These results are in agreem

FIG. 8. Our results for the lattice condensate as a function oy
for three different values oft on a 636 spatial grid, compared to
the Euclidean lattice simulations data from Ref.@2#.

FIG. 9. Our results for the lattice condensate as a function oy,
obtained by extrapolating several different zone sizes for a fi
value of t, compared to the strong coupling expansion@9#.
2-6
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with the Euclidean lattice simulations using staggered fer
ons @2#.

In future studies we would like to study the fermion stru
ture of the ground state wavefunction and to compare
contrast what we see in the simulations with the coup
cluster variational state used in Ref.@7#. We also plan to
study the behavior of the chiral condensate as a functio
fermion density. We note that studies at finite density in t
Hamiltonian formalism are no more difficult computationa
than the simulations presented here. Since the Euclidean
tice simulations of one-flavor QED3 at finite density are also
l.

-

No
B

,

07600
i-

d
d

of
s

at-

afflicted by phase/sign oscillations~which make the compu-
tational effort scale exponentially with volume!, comparison
with explicit fermion simulations in the Hamiltonian frame
work could provide a valuable numerical check.
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