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Massless three-dimensional QED with explicit fermions
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We study dynamical mass generation in QED i 2 dimensions using Hamiltonian lattice methods. We
use staggered fermions, and perform simulations with explicit dynamical fermions in the chiral limit. We
demonstrate that a recently developed method to reduce the fermion sign problem can successfully be applied
to this problem. Our results are in agreement with both the strong coupling expansion and with the Euclidean
lattice simulations.
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[. INTRODUCTION with one fermion flavor have suggested a rather large value
for the chiral condensate. These studies were based on the
Quantum electrodynamics i+21 dimensions (QEE) is  strong coupling expansid®] and variational coupled cluster
a theory which shares a number of important features witlexpansior(7]. The obtained condensate wa$.28[9], sig-
guantum Chromodynamics in31 dimensiong{QCD) such nificantly Iarger than both quenched and two-flavor Euclid-
as dynamical mass generatifh-10] and confinemenit11]. ean lattice results anc_i about two orders of magnitude larger
Since QER is super-renormalizable and has fewer degreedh@n the Dyson-Schwinger results for one flavor QED
of freedom than QCD, it serves as a valuable laboratory in " this paper we study chiral symmetry breaking in one-
which to test new methods and ideas related to these phd@vor massless QED To our knowledge our analys[d7]
nomena. Aside from its role as a testing ground for QCD'represents thg first non-perturbatlve_ smulaﬂon of _Iattlce
however, QER itself plays an important role in solid state gauge thgory n more.than one spatial dimension W't.h ex
physics and in particular highz superconductivityf12,13]. plicit ferf“'ons- By explicit f_erm|ons, We mean that fer_m|ons
Recently several studies have pursued a new theoretical aare not integrated out to yield determinants of the Dirac op-

h d 416 in which d Brator. In the simulation presented here, fermion dynamics
proac to cuprate supercon ,UCtDl ~14inw lich one dé-  5e sampled explicitly using fermion worldlines in a gauge-
scribes the phase transition in the reverse direction, starti

: Ve tartinge|q dependent Hamiltonian. From a theoretical point of
from the superconducting state. In this picture the antiferroyia\ this is an ideal framework in which to address the

magnetic phase, for example, corresponds to spontaneosmion structure of the ground state wave function. From a
chiral symmetry breaking of massless two-flavor QEBuUt  computational point of view, however, the approach presents
there are also several other phases, and the large chiral magiofound difficulties such as the fermion sign problem and
fold of degenerate states explains the complexity of theomplex phase fluctuations due to the gauge field, both of
phase diagram. which scale exponentially with the volume of the system.

There are extensive studies using the Dyson-Schwingerherefore it is not likely that this approach would be possible

equations[5] suggesting that chiral symmetry in QEDS  for QCD in the near future. However, we do find that by
dynamically broken if the number of fermion flavors is employing the recently developemne method18], we can
smaller than some critical numb&¥.~3.3. However, the control sign and phase problems sufficiently to study chiral
scale of this symmetry breakinge. the magnitude of the symmetry breaking in massless QEBn relatively small
chiral condensajeis extremely small, and there are also spatial lattices.

studies[6] suggesting that chiral symmetry is broken for all  |n our study, we find that in the strong coupling region,
numbers of fermion flavors. Quenched lattice simulationsy<1, our results agree very well with the strong coupling
have shown clear signs of chiral symmetry breaking, with aexpansion[9]. However, the agreement between the strong
condensaté ) ~5x 102 in units ofe?*, the dimensionful ~ coupling expansion and our simulations breaks down around
coupling constanf3]. The situation for dynamical fermions y~1, and fory>1 we see a dramatic decrease in the size of
however is not so clear, especially for an odd number othe condensate. These results are in agreement with the Eu-
flavors. There have been Euclidean lattice studies in botllidean lattice simulations using staggered fermi&issug-
compact[2] and noncompadi4] formalisms with different gesting a very small condensate in the continuum limit,
numbers of flavors, all suggesting a very small condensate- .
The most recent Euclidean lattice study of two-flavor non-
compact QER suggests an upper bound for the condensate

of ~5x10"° [10], using large lattices.

On the other hand, Hamiltonian lattice studies of QED  QED; is a super-renormalizable theory, with a dimension-
ful coupling: €% has dimensions of mass. This dimensionful
parameter plays a role similar fogcp in QCD. In the chiral

*Electronic address: dean_lee@ncsu.edu limit, it also sets the energy scale. We use 4-component
"Electronic address: pmaris@unity.ncsu.edu spinors, such that the fermion mass term is even under parity.

II. QED IN 2 +1 DIMENSIONS
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With one ma}‘ssl.ess” fermion flavor, thg Hamiltonian exhibits a Xz(F)~(2r1+ 1,2,) )
globalU(2) “chiral” symmetry. A fermion mass term breaks
this symmetry to &J(1) X U(1) symmetry. The question is: >
is this chiral symmetry broken dynamically? The order pa- x3(r)~(2r;+1,2,+1) (10
rameter for this symmetry breaking is the chiral condensate. R

Xa(r)~(2ry,2r;+1). (13)

A. Lattice Hamiltonian . . .
In the continuum limit the staggered fermions correspond to

We start with the staggered fermion lattice Hamiltonianone flavor of a 4-component fermig@,19],
on anL XL, spatial lattice[9],

2 0 —i o 17[xin g (1)
Hpnysica 55 (We+Wa+We), 1 int2l 10 —i 0 ¥o(P) (1)
with 2\/561 L 0 1 0_ X3( i) ‘/’3( 'i)
0 1 0 =y Pa(r)
We= 2> [E;(N1% (2) (12)

" For the states in our physical Hilbert space we choose a

_ . basis that is a tensor product of the gauge field and the fer-
Wg= _yzz [Up(f)+U,J§(f)]. (3 mion field degrees of freedom. For each gauge link field let
r us define the gauge field basis,

WF:_MZ (—1) 1+ 2T (1) x (1) UJ—(F)|XJ-(F)>=eixi(F)|Xj(F)), (13

where eaclX; is a real number in the intervg0,2m). We let
+y2 p(DXTOU(Nx(r+])+H.c, (@  |X) be the tensor product of statps;(r)) at each link,
r
- - Xy=a|X;(r)). 14
wheren;(r)=(—1)"2"1, n,(r)=1, y=1/g® andU, is the ) ;'j| (") 14
plaquette operator given by the productLQf(F) 's circuiting

the spatial plaquette anchoredrat Consider the Green’s function

- - > A N N - — ' ' —HAt
Up(r)=Ul(r)Uz(r+1)UJ{(r+2)UJ2r(r). (5) Gxr,aix,a(AD=[(a'|®(X'[]e [[X)®]a)], (15
where|X)®|a) and|X')®|a’) are two states in our physi-

; ; 2
We use a dimensionless mass paramgatei2m/e” and a cal Hilbert space, witHa) and|a’) being general fermion

dimensionless coupling constagit=ea, wherea is the lat- i - S - )
tice spacing. We also make the Hamiltonian and time dimenStates. IfAt is small andX;(r)~X;j(r) for all r andj, then
sionless: the actual simulations are performed with dhe

. o 1 . .
mensionlesgiamiltonian er,ar;x,a(At)ocex;{ - a E [X,(F) =X (1) 12— At W}
n
2a X
H ::?thysica,z We+Wg+ W, (6) X(a'|exd — At We]|a), (16
in combination with the dimensionless time variable where
2 Wé:WB|uj(F):ein(f) : 17
t :=£tphy5icala (7)
W>,:(=W,:|Uj(;):ei><j(F) . (18
instead of the physical Hamiltonian, Ed.).
We use the Dirac matrix representation We can evaluatésxf X ,ai(t) for general initial and final
) states and arbitraryby breaking the exponential in E¢GL5)
_|93 0 _ 1012 0 into N equal time steps and inserting a complete set of states
710 —o) YT 00 —ioy) at each time stegAt=t/N. If At is small, the sum over

. ~intermediate states is dominated by consecutive states that
Assuming that_; andL, are even, we stagger the fermion are similar, i.e., then™ time step is dominated by states

components at the four sites of &2 unit cell which satisfyxj(”+1)wxj(”) and thus we can use E@L6)
R repeatedly. If we letX;=X©@, X;=XMN a;=a® and oy
X1(r)~(2ry,2r;) ®  =aM, then
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Gx, a;:x ,a(D)= AXeBX (19
I €O R B )
oM «(N—1)
where
N-1 o
Ao — H <a(n+1)|e—t/va>F< |a(n)>, (20)
n=0

oY

\

N

N

N—-1
N N -
BX=[1 exg—— 2 [X™D(r)—xM(r)]?
n=0 4t 1

—>» Time

DN

to o
Xexr{— —wX™|. (1) X 7l D Vet
N B
\ NN\ /
In our simulation the gauge field configurations are up- Se So
dated using the Metropolis algorithm. For each new gauge e Space

configuration we compute the evolution of the corresponding
time-dependent Hamiltonian in the space of fermionic states. F|G. 1. Sample worldline configuration of a system with one

The sampling over fermion states is performed using thepatial dimension.

worldline formalism[20], which we now briefly discuss.

B. Worldlines

is a simpler system with only one spatial dimension. We have
placed shaded squares where the interac@?gﬁ, occur. In
the case when two identical fermions enter the same shaded

h H . .
At the n" time step we have an exponential operator ofsquare we use the convention that the worldlines run parallel

the form

s<n>=exp[ = [Ho(O +H () +H" (N1}, (22

where
- Np(—1)11%r2
HolF) = = ——————x (F)x(F) (23
>y (n), 2
w - YNp(r)ex’«o
H>1<()(r)z%)ﬂ(r)x(rﬂ)m.c. (24)
-y ()5
. Noo(r)e*x2" ™
Hé()(r)=LXT(r)X(r+2)+H.c. (25)

t

In the following we use the shorthand “e” for even and “0”
for odd values ofr;, j=1,2. Let us break us™ into a
product of four terms,

S~ SP ST tS{ . (26
where
") 1 - XM, =
Siee=exg — 2 | ZHo(N+HT(N || @)
j;elo
Each Sl(;”g,o is the product of mutually commuting operators

and do not cross.

The sum over all worldline configurations is calculated
with the help of the loop algorithrf21]. At each occupied or
unoccupied site, we place an upward/downward pointing ar-
row as shown in Fig. 2. Because of fermion number conser-
vation, the number of arrows pointing into a shaded square
equals the number of arrows pointing out of the square. As a
consequence of this conservation law, any valid worldline
configuration can be generated from any other worldline
configuration by flipping arrows that form closed loops. New
Monte Carlo updates are therefore implemented by picking a
random closed loop and using the Metropolis condition to
determine whether or not to flip the loop.

A
N

A

v

—>» Time

Pl

which contain the interactions for an adjacent two-site sys-

tem. With this decomposition of the time evolution operator,
one can trace out the worldline of any individual fermion. In
Fig. 1 we have drawn the worldlines for a sample worldline

——>» Space

FIG. 2. Upward/downward arrows are drawn at each occupied

configuration. For visual clarity the example we have drawnor unoccupied site.
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C. Measuring the chiral condensate

For u=0, the staggered lattice formulation reduces the
chiralU(2) symmetry to a discrete symmetry generated by a
shift of one lattice spacing. To study chiral symmetry break-

ing on the lattice, we calculate the lattice condenggi) in

the chiral limit as a function of the lattice coupling The *——p————
lattice condensate is related to the continuum condensate by
the relation —o—o—
2(?‘/’) lattice__ i <Z¢> continuum (28
y o ;
in_the limit y—co. From here on(yy) will denote FIG. 3. lllustration of the zone method, arx@ spatial lattice
(yy)Rtice We determine the lattice condensate by computwith a 3x 4 zone. The size of this zone is 17, as characterized by
ing the limit the number of links inside the sub-lattice.
(el (F))e ""20e "2(|F)®|a)) 29 D. Zone method
—Ht ’
toee (ale(Fhe " (|F)ela)) The zone methodi18] consists of introducing a special
n,;Xn, spatial sub-lattice or zone. See for example Fig. 3.

where We allow worldline configurations which may permute fer-

mions lying inside this zone, but do not allow configurations
that permute any fermions lying outside of the zone. At in-
termediate time slices though the fermions are still allowed
to wander through the entire lattice. In order to control phase
The state|F) is a variational approximation to the gauge oscillations associated with the gauge field, we use a differ-
field ground state, ent value of the coupling’ and/or fermion masg’ when

the fermions are outside the zone. We obtain physical results

by extrapolation to the limit when the zone covers the entire

|F>:f dXF(X)[X), (3D  L;xL, lattice.

As demonstrated in Refl18], observables should scale
linearly in the zone size provided that the zone size is larger
than the characteristic “fermion wandering length.” For any
finite values of the coupling and of the time variablg this

F(X)=exp{ ¢, cog Xq(r)+Xy(r+1) wandering length is finite, even for massless fermions. Thus
r one can extrapolate the results from relatively small zones to
the entire lattice.

1 . N
O=— 2 (D) Ox(. (30
1=2

where

—Xl(r+2)—><z(r)]], (32)
IIl. NUMERICAL RESULTS
andc is a real parameter we choose to optimize overlap with A. Zone extrapolations
the true gauge field ground std@2]. In our simulations we There are different ways to define the size of a zone: by
have usea=y/4, which appears to work well for both small the number of lattice points or by the number of links inside
and largey. The statd«a) is they=0 fermion ground state the zone. For large lattices it does not matter which is used.
for >0, a configuration where even sites are occupied antHowever, for the relatively small lattices we have used so
odd sites are unoccupied. The essential characteristic of tHar, it turns out that the best way to characterize the zone size
trial state|F)®|a) is that it has non-zero overlap with the is the number of links inside the zone. As an example, we
physical vacuum. show in Fig. 4 the lattice condensate for different zone sizes
In Eg. (29), for both numerator and denominator, the ini- as function of the area of the zone, the number of points
tial quantum state is the same as the final state. Any configunside a zone, and the number of links inside a zone. A
ration of fermion worldlines can therefore be regarded as atraight line fit to the condensate as function of the number
permutation of the initial fermions. Even permutations give aof links gives a very good fit with g?/d.o.f. of 0.6, whereas
positive contribution while odd permutations come with alinear fits using the number of points or the area have a
minus sign. Numerically, these minus signs give rise to they?/d.o.f. of 6.1 and 8.5 respectively. Furthermore, the ex-
fermion sign problem. With the worldline formalism we can trapolated result, using the number of links inside a zone,
keep track of these permutations, and we use the recentlyoes indeed agrefvithin error barg with the exact result.
developed zone methdd8] to manage the sign problem as  To further test this method, we calculated the lattice con-
well as phase oscillations due to the gauge field. densate using different parameters and p’ outside the
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FIG. 6. Numerical results for different zone sizes within a 8
X 8 lattice, for values ofy=0.4 andy=1.0, both withu=0, t
=1.5, andN=10. The total number of links in the lattice is 128.

FIG. 4. Numerical results for the condensate for different zone
sizes within a 6<6 lattice, with fixed values off=0.4, y'=0.1,
u=u'=0, t=1.5, andN=10. The total number of links in the

lattice is 72; the total number or points is 36, as is the total area. The . L
straight lines are linear fits to the data. method, which limits us to rather small values wpfand

. _ o coarse grids. In Fig. 7 we show fge= 0.4 the dependence of
zone, while keeping the parametgrand u inside the zone the chiral condensate dn the spatial lattice size; oN, the
fixed. As can be seen from Fig. 5, the three different sets ofumber of time steps; and dnthe dimensionless time vari-
data points extrapolate to results within the error bars of thgple. We see a slight dependence lgnwhich is actually
lattice condensate obtained without using the zone extrapGmaller than our MC error bars. Note that the resuit for the
lation method. They“/d.o.f. of the linear fits are 0.3, 0.7 and gx g grid was obtained using the zone extrapolation method,
1.2 respectively, indicating that the numerical data are indeeg{nare the error bar is the error of the linear fit only.

on s_traight_ Iin(_as. , Within numerical error bars, our results are also independent
Finally, in Fig. 6 we show results on a larger lattice. On ang¢ ihe number of time stepd.

88 lattice the method seems to work quite well, although  The most significant finite-size effect is the dependence

in this case we cannot compare our result with a simulatiorbnt as can be seen in the bottom panel of Fig. 7. An expo-
on the entire lattice. nential fit of the type

B. Finite size effects

In order to avoid possible errors due to the zone extrapo-
lation, we checked for finite size effects without the ZONeii< these data quite well fdr>1. However, for simulations

(P) (1) = () (t=20) + agexp — ast) (33)

ey S RS S S at larger lattices and larger valuesythe numerical errors
are too large to do a proper finiteextrapolation using such
035- an exponential fit.
""" C. Summary of main results
_04; ,,,,,,, , ] In Figs. 8 and 9 we show our results for a range of values
R ' o of the couplingy. Most of the results are obtained orx®
% i ‘,.z/”‘" = spatial lattices witiN= 10 using several different zone sizes.
T = - . . =] The error bars in Fig. 8 represent th&error of the linear fit
-0.45 i - Y= 0.15, = L.0 from our zone extrapolation. The error bars in Fig. 9 are our
- Y= 0'15’,” =0 best estimate of the combined errors. They are dominated by
> y=3s w=110 the t=c0 extrapolation, which is based on thréer more
result without zones| - . .
: o extrapolated result | { different values ot where possible. For the largest values of
S i o Mg e o o i T g Vo T ] y, y=1.25, we could only establish upper limits for the con-
0 10 20 30 40 50 60 70 densate, due to the uncertainties in thex extrapolation.

number of links inside zone Our results for the condensate indicate a dramatic change

FIG. 5. Numerical results for different zone sizes within a 6 in behavior around/~1: for y<1 we agree within error
X 6 lattice, for fixed values of=0.5, u=0, t=1.5, andN=10.  bars with the 5/6 Padapproximant to the strong coupling
The total number of links in the lattice is 72, where the three linearexpansion[9]. For y—0 our results approach the leading-
fits meet(within enlarged error bays order behavior in the strong coupling expansion
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FIG. 7. Finite size effects foy=0.4, u=0: the condensate as
function of the spatial square lattice of sike<L for N=10 andt
=1.5(top), as function of the number of time steNsor L =4 and
t=1.5(middle), and as function of for N=10 andL =4 (bottom).

y2<Ew> lattice_ 0_5y2,

(34

as expected. However, fgr>1 we see a dramatic change in

the behavior of the condensate, and a deviation from the
strong coupling predictions: the value of the condensate de
creases rapidly. This strong decrease of the condensate wit

increasingy for 1<y<2 is in good agreement with the dy-

namical Euclidean Monte Carlo simulations by Burkitt and

Irving [2].

It is not possible to determine at this time whether or not
the condensate is small or exactly zero in the continuum

limit, y—oco. However, it is clear from our simulations that

the continuum condensate is significantly smaller than the
prediction[9] y?( )2t~ 0.284 based on the strong cou-

pling expansion.

IV. CONCLUDING REMARKS

PHYSICAL REVIEW D67, 076002 (2003

00071 T T T
L e t=1.50
x t=1.75
¢ t=20
| o Burkitt and Irving
0.05- % - 5/6 Pade approximant o
: r . P4
% - TE
Uy I I *
-0.10F { i z .
_0'15 L rFy ‘|' }/‘ |
. R~ S S T L
0 04 0.8 1.2 1.6 2 24
Iy

FIG. 8. Our results for the lattice condensate as a function of
for three different values of on a 6x6 spatial grid, compared to
the Euclidean lattice simulations data from R&X].

non-perturbative simulation of lattice gauge theory in more
than one spatial dimension with explicit fermions. While this
approach is likely not practical for QCD in the near future,
we were able to use the zone method to control sign and
phase problems to study chiral symmetry breaking in mass-
less QEDR.

We were able to resolve one puzzling issue regarding the
size of the chiral condensate. The Hamiltonian lattice studies
had suggested a rather large value for the chiral condensate,
whereas lattice simulations and the Dyson-Schwinger studies
indicated a value for the condensate about two orders of
magnitude smaller. In our results we found thatyor1 our
results agree very well with the strong coupling expansion
and the condensate appears to increasedesreases. How-
ever for 1<y<2 we see a rather dramatic decrease in the
condensate ay increases. These results are in agreement

0.00 M T T N T L T T T T
-0.05 e
v 4
(] - B A
>
-0.10- - T ] y
. { e Our final results g
/ Leading strong coupling expansion | |
1 - Strong coupling expansion up to y4 1
0.15 _ - Strong coupling expansion up to y6 _
Tl - Strong coupling expansion up to yg i
} -- 5/6 Pade approximan
i P P Y P R
0 1 2 3 4 5 6 7
1y

FIG. 9. Our results for the lattice condensate as a function of

In this work we studied chiral symmetry breaking in one- obtained by extrapolating several different zone sizes for a finite
flavor massless QEJ and our analysis represents the firstvalue oft, compared to the strong coupling expansiéh
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with the Euclidean lattice simulations using staggered fermiafflicted by phase/sign oscillatiorfashich make the compu-
ons[2]. tational effort scale exponentially with volumeomparison
In future studies we would like to study the fermion struc- with explicit fermion simulations in the Hamiltonian frame-
ture of the ground state wavefunction and to compare angork could provide a valuable numerical check.
contrast what we see in the simulations with the coupled
cluster variational state used in R¢¥]. We also plan to
study the behavior of the chiral condensate as a function of
fermion density. We note that studies at finite density in this
Hamiltonian formalism are no more difficult computationally ~ This work was funded by the Department of Energy under
than the simulations presented here. Since the Euclidean laGrant No. DE-FG02-97ER41048; it benefitted from the re-
tice simulations of one-flavor QEt finite density are also sources of the North Carolina Supercomputer Center.
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