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CP-conserving two-Higgs-doublet model: The approach to the decoupling limit
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A CP-even neutral Higgs boson with standard-model-like couplings may be the lightest scalar of a two-
Higgs-doublet model. We study the decoupling limit of the most genéRatonserving two-Higgs-doublet
model, where the mass of the lightest Higgs scalar is significantly smaller than the masses of the other Higgs
bosons of the model. In this case, the properties of the lightest Higgs boson are nearly indistinguishable from
those of the standard model Higgs boson. The first nontrivial corrections to Higgs boson couplings in the
approach to the decoupling limit are also evaluated. The importance of detecting such deviations in precision
Higgs boson measurements at future colliders is emphasized. We also clarify the case in which a neutral Higgs
boson can possess standard-model-like couplings in a regime where the decoupling limit does not apply. The
two-Higgs-doublet sector of the minimal supersymmetric model illustrates many of the above features.
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I. INTRODUCTION and is one of the main subjects of this paper.
The purpose of this paper is to fully define and explore

The minimal version of the standard mod8M) contains  the decoupling limit of the 2HDM.We will explain the(of-
one complex Higgs doublet, resulting in one physical neutraten confusing relations between different parameter sets
CP-even Higgs bosonhg,, after electroweak symmetry (e.g., Higgs boson masses and mixing angles vs Lagrangian
breaking(EWSB). However, the standard model is not likely tree-level couplingsand give a complete translation table in
to be the ultimate theoretical structure responsible for elecAppendix A. We then make one simplifying assumption,
troweak symmetry breaking. Moreover, the standard modehamely, that the Higgs sector @GP conserving(The condi-
must be viewed as an effective field theory that is embeddetlons that guarantee that there is no explicit or spontaneous
in a more fundamental structure, characterized by an energyreaking ofCP in the 2HDM are given in Appendix B. The
scale A, which is larger than the scale of EWSB, more generalCP-violating 2HDM is treated elsewhere
=246 GeV. AlthoughA may be as large as the Planck scale,[13,14).) In the CP-conserving 2HDM, there is still some
there are strong theoretical arguments that suggestAthsit  freedom in the choice of Higgs-boson—fermion couplings. A
significantly lower, perhaps of order 1 T¢¥]. For example, number of different choices have been studied in the litera-
A could be the scale of supersymmetry breaKigg4|, the  ture[7,15]: type I, in which only one Higgs doublet couples
compositeness scale of new strong dynamifds or associ-  to the fermions; and type II, in which the neutral member of
ated with the inverse size of extra dimensipék In many of  one Higgs doublet couples only to up-type quarks and the
these approaches, there exists an effective low-energy theoneutral member of the other Higgs doublet couples only to
with elementary scalars that comprise a nonminimal Higgslown-type quarks and leptons. For Higgs-boson—fermion
sector[7]. For example, the minimal supersymmetric exten-couplings of type | or type Il, tree-level flavor-changing neu-
sion of the standard mod@MSSM) contains a scalar Higgs tral currents(FCNC9 mediated by Higgs bosons are auto-
sector corresponding to that of a two-Higgs-doublet modematically absen16]. Type-l and type-Il models can be
(2HDM) [8,9]. Models with Higgs doublet¢and singlets  implemented with an appropriately chosen discrete symme-
possess the important phenomenological property thaty (which may be softly broken without dire phenomeno-
p=my,/(m; cosf,)=1 up tofinite radiative corrections. logically consequencgsThe type-1l model Higgs sector also

In this paper we focus on a general 2HDM. There are twaarises in the MSSM. In this paper, we allow for the most
possible cases. In the first case, there is never an energyeneral Higgs-boson—fermion Yukawa couplinfee so-
range in which the effective low-energy theory contains onlycalled type-lll model [17]). For type-lll Higgs-boson—
one light Higgs boson. In the second case, GReeven neu-  fermion Yukawa couplings, tree-level Higgs-boson-mediated
tral Higgs bosorh is significantly lighter than a new scale FCNCs are present, and one must be careful to choose Higgs
A,npm, Which characterizes the masses of all the remainingposon parameters that ensure that these FCNC effects are
2HDM Higgs states. In this latter case, the scalar sector ofiumerically small. We will demonstrate in this paper that in
the effective field theory belowA,py is that of the SM  the approach to the decoupling limit, FCNC effects gener-
Higgs sector. In particular, i\ ,p>v, and all dimension- ated by tree-level Higgs boson exchanges are suppressed by
less Higgs self-coupling parametexss O(1) [see Eq(1)], a factor ofO(vzlAgHDM).
then the couplings df to gauge bosons and fermions and the
h self-couplings approach the corresponding couplings of the———
hsw, Wwith the deviations vanishing as some power of some of the topics of this paper have also been addressed re-
v2I A3, o0 [10]. This limit is called the decoupling lim[tl1]  cently in Ref.[12].

0556-2821/2003/67)/07501926)/$20.00 67 075019-1 ©2003 The American Physical Society



J. F. GUNION AND H. E. HABER PHYSICAL REVIEW D67, 075019 (2003

In Sec. Il, we define the most gener@P-conserving tional to Ag and \; are absent. This can be achieved by
2HDM and provide a number of useful relations among themposing a discrete symmetr§p,;— —®,; on the model.
parameters of the scalar Higgs potential and the Higgs bosoBuch a symmetry would also requ'm§2: 0 unless we allow
masses in Appendixes C and D. In Appendix E, we note thag soft violation of this discrete symmetry by dimension-two
certain combinations of the scalar potential parameters am@rms?® In this paper, we refrain in general from setting any
invariant with respect to the choice of basis for the two scalabf the coefficients in Eq(1) to zero.
doublets. In particular, the Higgs boson masses and the We next derive the constraints on the parameigrsuch
physical Higgs boson interaction vertices can be written inthat the scalar potentid! is bounded from below. It is suf-
terms of these invariant coupling parameters. The decouplinficient to examine the quartic terms of the scalar potential
limit of the 2HDM is defined in Sec. Ill and its main prop- (which we denote by’,). We defineaE(I)Iq)l’ qu>Zq>2,
erties are examined. In this limit, the properties of the “ght'czRed)J{(Dz, d=Im ®]d,, and note thahb=c2+d2 Then,

estCP-even Higgs bosoi precisely coincide with those of e can rewrite the quartic terms of the scalar potential as
the SM Higgs boson. This is shown in Sec. IV, where wesq)iows:

exhibit the tree-level Higgs boson couplings to vector

bosons, fermions, and Higgs bosons, and evaluate them in

the decoupling limit(cubic and quartic Higgs boson self- 1, =1 [\Y2%a—\1%H]2+[ N3+ (A 1)) 2] (ab—c?—d?)
couplings are written out explicitly in Appendixes F and G,

respectively. The first nontrivial corrections to the Higgs +2[ N3+ Nat (NN )M c?

boson couplings as one moves away from the decoupling Ly 1210 a2 a2y
limit are also given. In Sec. V, we note that certain parameter TIReAs—Ag—Na=(Ah2)P(c*~d%) —2cdImAg

regimes exist outside the decoupling regime in which one of +2a[cRexg—dIm\g]+2b[c Rex;—dImA;]. (2)
the CP-even Higgs bosons exhibits tree-level couplings that

approximately coincide with those of the SM Higgs boson.

We discuss the origin of this behavior and show how one cawve demand that no directions exist in field space in which
distinguish this region of parameter space from that of true)— —. (We also require that no flat directions exist for
decoupling. In Sec. VI, the two-Higgs-doublet sector of they,.) Three conditions on th&; are easily obtained by ex-
MSSM is used to illustrate the features of the decouplingamining asymptotically large values & and/or b with
limit when my>m;. In addition, we briefly describe the c=d=0:

impact of radiative corrections and show how these correc-

tions satisfy the requirements of the decoupling limit. We

emphasize that the rate of approach to decoupling can be A1>0, Ap,>0, A3>—(N A2 ()
delayed at large tal, and we discuss the possibility of a

SM-like Higgs boson in a parameter regime in which all N ) o S
Higgs boson masses are in the rasg®(v). Finally, our A fourth condition arises by examining the direction in field

conclusions are give in Sec. VIL. space where.}?a=\3"b andab=c?+d? Settingc=&d,
and requiring that the potential is bounded from below for all
Il. THE CP-CONSERVING TWO-HIGGS-DOUBLET ¢ leads to a condition on a quartic polynomial §nwhich
MODEL must be satisfied for alf. There is no simple analytical con-

_ _ _ straint on the\; that can be derived from this condition. If
We first review the generaﬂnonsupersymmetr)CtWO- )\6= )\7= 0, the resu]ting po]ynomia| is quadratic &]and a

Higgs-doublet extension of the standard modgl Let ®;  constraint on the remaining nonzexpis easily derived18]:
and &, denote two complex=1, SU(2) doublet scalar

fields. The most general gauge invariant scalar potential is
given by N3+ Na—[Ng|>— (N A )Y (assuminghg=\,=0).
V=mZ,®IdD,+m3d ], —[m2dId,+H.cl 4

FINU(PID )2+ 2N (PIDL) 2+ Ng(PID ) (DD
2M(P1P)H 7 No(P2P2) "+ Ng(P1P1) (D2 Do) In this paper, we shall ignore the possibility of explicit

A DTD N DID)+IEN(DITD N2+ N(DTD CP-violating effects in the Higgs potential by choosing all
A(P1P2) (P22 + {5 hs(P1D2)"+ [Ae(D1D) coefficients in Eq.(1) to be real(see Appendix B* The
+ )\7(CI>£<I>2)]<I>I<I>2+ H.c}. (1) scalar fields will develop nonzero vacuum expectation values

In general,mfz, N5, Ag, and\; can be complex. In many

discussions of two-Higgs-doublet models, the terms propor- 3This discrete symmetry is also employed to restrict the Higgs-
boson—fermion couplings so that no tree-level Higgs-boson-
mediated FCNCs are present.Nf=\,=0 but m2,#0, the soft
2In Refs.[7] and[9], the scalar potential is parametrized in terms breaking of the discrete symmetry generafimite Higgs-boson-
of a different set of couplings, which are less useful for the decoumediated FCNCs at one loop.
pling analysis. In Appendix A, we relate this alternative set of cou- “The most generaCP-violating 2HDM will be examined in Ref.
plings to the parameters appearing in Eb. [24].
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if the mass matri>mi2j has at least one negative eigenvalue.lt is always possible to choose the phases of the scalar dou-
We assume that the parameters of the scalar potential akdet Higgs fields such that both, and v, are positive;
chosen such that the minimum of the scalar potential respectgenceforth we take € < w/2.
the U(1), , gauge symmetry. Then, the scalar field vacuum Of the original eight scalar degrees of freedom, three
expectation values are of the form Goldstone bosons3* andG) are absorbed by thé&/~ and
Z. The remaining five physical Higgs particles are t@B-
1/0 1/0 even scalargh and H, with my<my), one CP-odd scalar
(by)= 5(111)’ (P2)= %(Uz = ) (A), and a charged Higgs paiH(*). The squared-mass pa-
rametersms, and m3, can be eliminated by minimizing the
where thev; are taken to be real, i.e., we assume that sponscalar potential. The resulting squared masses foCfedd
taneousCP violation does not occttrThe corresponding po- and charged Higgs states are
tential minimum conditions are

2
m
My =Mits— 5 v N1C5+ N 355+ 3NeSpCe+ N7S5t5],  (6) m2 = ﬁ_ L 02(2hg+ ety A t), (10
B~B

M5y= Mgt — 3 02 NpS5+NaasCht NeCats T+ 3N 7S4C4],
@) M2 =m2o+ 2 v2(As—\y). (11)
where we have defined

The two CP-even Higgs states mix according to the follow-
ing squared-mass matrix:

v
)\3455)\3+)\4+)\5, tBEtanBEv_z, (8)
1
2
s —S4C
and Mzzm,io( g 5B, (12
—SgCq C3
2.2 2 4m\2N 2
v :Ul+vz_ 92 —(246 GeV) . (9) Where
|
G2 N1C5+2NeSCeT NS5 (N3FNg)SeCatNeChT N S5 w3
(gt Ag)SeCat NeCaHN7S5  NpSh+2N7S4C5+ NsCh
Defining the physical mass eigenstates
H=(v2Re®{—v,)c,+ (V2 Red®S—v,)s,,
h=—(vV2Re®{—v,)s,+ (V2 Re®I-v,)c,, (14)
the masses and mixing angleare found from the diagonalization process
ma 0 ( Ca Sa) Mil M%Z (Ca _Sa)
0 m? \-s, c./iM3, M3)\s, c,
MECe+2MiL,S,+ M5S, MEACL—S%) + (M= M3)S,Cq
= 2,2 2 2 2 2.2 2 2 .2 (15
MIZ(Ca_ Sa) + (MZZ_ Mll)saca Mllsa_ 2M12Casa+ MZZCa

5The conditions required for the absence of explicit and spontan@Busolation in the Higgs sector are elucidated in Appendix B.
®Here and in the following, we use the shorthand notatigA= cosB, sg=sinB, c,=Ccosa, S,=Sina, C,,=C0S A, S,,=C0S Z,
Cp—o=C0S(B—a), s5_,=sin(3—a), etc.
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The mixing anglex is evaluated by setting the off-diagonal [ll. THE DECOUPLING LIMIT
elements of theCP-even scalar squared-mass matfixg.

(15)] to zero, and demanding thak,=m,,. The end result is In an effective field theory, we may examine the behavior

of the theory characterized by two disparate mass scales,
2 _1 2 2 2 2.2 2.2 m_<mg, by integrating out all particles with masses of or-
mg p=3 [M71+ M5E N (M7— M5) +4(M ; LS ) :
Fn= 2 LM+ Mo V(M= Moy ™+ 4(M ) ](16) dermg, assuming that all the couplings of the “low-mass”
effective theory comprising particles with masses of order

and the correspondingP-even scalar mixing angle is fixed M can be kept fixed. In the 2HDM, the low-mass effective

by theory, if it exists, must correspond to the case where one of
the Higgs doublets is integrated out. That is, the resulting
2M2, effective low-mass theory is precisely equivalent to the one-
Sy, = , scalar-doublet SM Higgs sector. These conclusions follow
\/(Mfl—M§2)2+4(M§2)2 from electroweak gauge invariance; namely, there are two
relevant scales—the electroweak scale characterized by the
Mil_ Mgz _scalev =246 GeV and a secon_d scalg>v. The underly-_
Cop= . (17 ing electroweak symmetry requires that scalar mass splittings
VM2 = M2)2+ 4(M2)2 within doublets cannot be larger th&X(v) [assuming that
dimensionless couplings of the theory are no larger than
We shall take— 7/2< a< /2. O(D)]. It follows that theH*, A, andH masses must be of
It is convenient to define the following four combinations O(ms), while m,~O(v). Moreover, since the effective low-
of parameters: mass theory consists of a one-doublet Higgs sector, the prop-
erties ofh must be indistinguishable from those of the SM
mg=152,85,— [ B3,)?, Higgs boson.
We can illustrate these results more explicitly as follows.
mZ=182,cog B+ B5,sir? B+ B2,sin 23, Suppose that all the Higgs boson self-coupling parameters
N\, are held fixed such that\;|=O(1), while taking
m3= B2+ 5, ma>|\;|v?. In particular, we constrain the;=\;/(4) so
that the Higgs sector does not become strongly coupled, im-
m3=ma+m3, (18 plying no violations of tree unitarityf19—23. Then the

Bi~0O(v?), and it follows that
where theBizj are the elements of the matrix defined in Eq.

(13). In terms of these quantities we have the exact relations my=m_=0(v), (22)
mé =3 [m3+ Vmg—4mim? —4mg]. (19) My ,Ma,My== Mg+ O(v3/mg), (23)
and and
m?—m? mZ(m2—m?)—m¢
Cz’*azﬁﬁ' (20) cod(B—a)= ——" m“AL >
Equation (20) is most easily derived by using the identity [3(B3—B3)Szp— BiLop]
Cho o= 5(1+CopCantSypSy,) and the results of Eq(17). = m

Note that the case af,=my is special and must be treated
carefully. We do this in Appendix C, where we explicitly
verify that 0<c5_,<1.

Finally, for completeness we record the expressions for
the original hypercharge-1 scalar fields in terms of the We shall establish the above results in more detail below.
physical Higgs states and the Goldstone bosons: The limit m3>|\;|v? (subject to|e;|<1) is called the
decoupling limitof the model’ Note that Eq.(24) implies
that in the decoupling limic;_,= O(uzlmi). We will dem-
onstrate that this implies that the couplingstofn the de-
coupling limit approach values that correspond precisely to

=0

v 4
) . (24)

3
Mg

(DJ_tZC‘BGi_SBHi,

CD;:SﬁGi—l—CBHi,

1
0 . .
®9= —[v,+c H—s,h+ic,G—iszA
) [v1+CH=sh+ic,GoisgAl, In Sec. IV[see Eq.(51) and surrounding discussihrwe refine

this definition slightly, and also require that3>|\g|v? cot3 and
1 m§>|x7|vztan/3, in order to guarantee that at large goftanp)
q)g: —[v,+s,H+c,h+ iSBG+ iCBA]' (21) the couplings ofh to up-type(down-type fermions approach the
V2 corresponding SM Higgs-boson—fermion couplings.
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those of the SM Higgs boson. We will also obtain explicit potential parameters and the mixing angles. First, it is con-
expressions for the squared-mass differences between thienient to define the following four linear combinations of
heavy Higgs boson@s a function of the; couplings in the the\; 9
Higgs potentigl in the decoupling limit.

One can give an alternative condition for the decoupling N=N\;Cg+N,SE+5 N3asSa5+ 2S25(N6C5TN7S5), (25
limit. As above, we assume that &dt;| < 1. First consider the
following special cases. If neither tghnor cotg is close to A 2 2
0, thenm?>|\|v? [see Eq.(10)] in the decoupling limit. 2 SZB[MC'B_)\ZS'B_)\345C2B]_)\GCB%B_MSBS?’B(’ZG)
On the other hand, i?,~O(v?) and tand>1 (cotB>1),
then it follows from Egs.(6) and (7) that mi1>(9(uz) if
\,<0 [m§2>(9(u2) if Ag<<O] in the decoupling limit. All

)\AECZﬁ()\lC%_)\ZS,%)+)\345S§ﬁ_)\5+ 2)\60[353[3

such conditions depend on the original choice of the scalar —2N7S4C3p, (27)
field basisd; and®,. For example, we can diagonalize the
squared-mass terms of the scalar potenfia. (1)] thereby Ae=As— N\, (28)

settingm,,= 0. In the decoupling limit in the new basis, one

is simply driven to the second case above. A basisynere),,. is defined in Eq(8). The significance of these
independent characterization of the decoupling limit IScoupling combinations is discussed in Appendix E. We
simple to formulate. Starting from the scalar potential in anzgnsider the limic;_,— 0, corresponding to the decoupling
arbitrary basis, form the matrimﬁ [made up of the coeffi-  |imit m2>|\;[v2 In nearly all of the parameter space,
cients of the quadratic terms in the potential; see @&g]. M?2,<0 [see Eq.(12)], and it follows from Eq.(17) that
Denote the eigenvalues of this matrix mj andmg, respec-  — /2<a<0 (which implies thatc,_,—0 is equivalent to
tively; note that the eigenvalues are real but can be of eitheg— o— 7/2 given that G< 8< =/2). However, in the small
sign. By convention, we can take2|<|m?|. Then the de- regions of parameter space in whighs near zerqor /2),
coupling limit corresponds tam2<0, m2>0 such that roughly corresponding tom3 tanB<\gv®> (or macotB
mzs|mZ|,v? (with |a;|<1). <\?), one findsM3,>0 (and consequently @ a< 7/2).

For some choices of the scalar potential, no decouplindn these last two cases, the decoupling limit is achieved for
limit exists. Consider the case of},=\s=\;=0 (and all ~@=m/2=f and coig>1 (tanf>1). That is, cos§—a)
other|a;|=<1). Then the potential minimum conditiofgs. ~ —SiN38<1 and sin—a)=-1(+1).”" In practice, since
(6) and(7)] do not permit eithemfl or mgz to become large: tang is fixed and cannot be arblt_rarlly larder arbitrarily

2 2 2 . close to zerp one can always find a value ah, large
M1 Mz™ O(l{ ) gnd clearly all H|ggs'bosqn.mas.ses are Ofenough such thal\/l§2<0. This is equivalent to employing
O(v). Thgs’ in this case no decoupling limit .eX|§t§'.he the refined version of the decoupling limit mentioned in foot-
case ofm3,=Ng=A;=0 corresponds to the existence of a

. . . ) ) note 7. In this case, the decoupling limit simply corresponds
discrete symmetry in which the potential is invariant under,[0 B—a—ml2 [ie., sinB—a)=1] independently of the
the change of sign of one of the Higgs doublet fields. Al-\5i,e of B. '

though the latter statement is basis dependent, one can check| the approach to the decoupling limit where=p3
that the following stronger condition holds: no decoupling _ /2 (that is, |Cg—a|<1 and Sﬁ—azl_%cz—a)! we may
limit exists if and only if \¢=\7=0 in the basis where se Eqs(D9)—(D12) and Eq.(11) to obtairt

mfzz 0. Thus, the absence of a decoupling limit implies the

existence of some discrete symmetry under which the scalar

potential is invariantalthough the precise form of this sym- mi:vz L +Ap— §A}‘Cﬁw , (29
metry is most evident for the special choice of basis Cp-a 2

We now return to the results for the Higgs boson masses
and theCP-even Higgs boson mixing angle in the decou- mﬁZUZ()\_}\CBw), (30)

pling limit. For fixed values of\g, \;, @, and B, there are
two equivalent parameter set§} A1, Ny, A3, N4, andis;
(i) mg, mg, m?,, mﬁ.r, andmy. The relations between these  Sye make use of the triple-angle identitieg;= c4(c5—3s5)
two parameter sets are given in Appendix D. Using the reandssﬂzsﬁ(gcg_sz)_
sults Eqs(D3)—(D7) we can give explicit expressions in the 19%\e have chosen a convention in whichm/2<a</2. An
decoupling limit for the Higgs boson masses in terms of theequally good alternative is to choose $#r{()=0. If negative, one
may simply change the sign of sp{«) by taking a— a=*m,
which is equivalent to the field redefinitiots——h, H——H.
Hin obtaining Egs(29), (31), and(32) we divided both sides of
each equation bg,_,, so these equations need to be treated with
8However, it may be difficult to distinguish between the nonde-care ifcz_,=0 exactly. In this latter case, it suffices to note that
coupling effects of the SM with a heavy Higgs boson and those oﬁ\/cﬁ,a has a finite limit whose value depends o and\ 5 [see
the 2HDM where all Higgs bosons are hed2g]. Eq. (36)].
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3 IV. TWO-HIGGS-DOUBLET MODEL COUPLINGS

2 +7\—% ’}\Cﬁa:| IN THE DECOUPLING LIMIT

mg=v

Cooa
R The phenomenology of the two-Higgs-doublet model de-
=mx+ (A=At NCs_o)v?, (31  pends in detail on the various couplings of the Higgs bosons

to gauge bosons, Higgs bosons, and ferm{aisThe Higgs

3 3. boson couplings to gauge bosons follow from gauge invari-
ma::vz +AAtENe— = ACs_ ance and are thus model independent:
B-a 2
=gvMySsz_,, =gyMyCs_,, 3
:mi+%)\sz_ 32) Ohvv= 9vMySg Onvv=9viMyCp (37)

wheregy=2my /v for V=W or Z. There are no tree-level
The conditionmy>m, implies the inequality(valid to first  couplings ofA or H* to VV. In the decoupling limit where
order incg_,) Cz_,=0, we see thaf),y,= 9. vv, Whereas thédVV cou-
B B-a SM

) . pling vanishes. Gauge invariance also determines the
Ma>v*(Na—2ACp_,) (33)  strength of the trilinear couplings of one gauge boson to two
Higgs bosons:
[cf. Eg. (D32)]. The positivity ofmﬁ also imposes a useful
constraint on the Higgs potential parameters. For example, g _9%-a g _ 9%« (38)
m2>0 requires thah > 0. "AZ7 2 costy’  TMA7T 2 costy”
h
i 2 2
(32|)nptrr;?/igsiﬁlép:ilrs% rl:(r)nr::[[(r\i,y/?aelrce;(;??eitli)(;irlg t)o’ Eg(;z()zz)n_d In the decqupling I_imit,_ thdnAZ_coupIing vanis_hes, While_the
(23). Finally, we employ Eq(10) to obtain HAZ coupling attains its maximal value. This pattern is re-
: ’ peated in all the three-point and four-point couplingshof
« andH to VV, V¢, andVV¢ final stateqwhereV is a vector
FAatNgtd xst;1+% At boson andy is one of the Higgs scalarsThese results can

2 __..2
le—U Sﬁcﬁ

Csa be summarized as follows: the couplinglodndH to vector
boson pairs or vector-scalar boson final states is proportional
3 ’}\Cﬁ—a} (34) to either sinf3—a) or cosB—a) as indicated beloy7,9]:
cosB—a) sin(B—a)
This rgs_ult confirms our previous obs_ervatlon that, HWHW- W W
>|\;|v? in the decoupling limit as long a8 is not close to 0 HZ7 hZ7
or /2. However,m?, can be ofO(v?) in the decoupling
limit (cz-,—0) if eithertz>1 [and cgz/cs,~O(1)] or %AQ ZA';'
t;1>1 [andsg/cs o~ O(1)]. W7 H"h W=H™H
The significance of Eq.(30) is easily understood ZW-H"h ZW"H™H
by noting that the decoupling limit corresponds to integrat- YW*H"h YW= H*H (39

ing out the second heavy Higgs doublet. The resultNote in particular thaall vertices in the theory that contain
ing low-mass effective theory is the one-Higgs- at least one vector boson aesactly oneof the nonminimal
doublet model with corresponding scalar potentialHiggs boson stategH, A, or H™) are proportional to the
V=m?(®T®)+(M2)(®'®)?, where\ is given by Eq(25)  factor cos—a) and hence vanish in the decoupling limit.
and The Higgs boson couplings to fermions are model depen-
dent. The most general structure for the Higgs-boson—
M?=m3,C5+M5,S5— 2M3,SsCp (35  fermion Yukawa couplings, often referred to as the type-llI
model[17], is given by
Imposing the potential minimum conditiorj&qgs. (6) and - _ .
(7)], we see thab?=—2m?/\ (where(®°)=v/v2) as ex- — Ly=QPD; 77 °UR+ QY1 77 DR+ QY D, 75 U
pected. Moreover, the Higgs boson mass is givenn’[ﬁy
=\v?, in agreement with the;_,—0 limit of Eq. (30).
We can rewrite Eq(29) in another formlor equivalentl . ~
is the weak isospin quark doublet, andg,Dy are
weak isospin quark singlet§The right- and left-handed
> 5= (36) fermion fields are defined as usualyr =Pg ¥,
My—Aav”  my—my Pri=3(1*vs).] Here, Q),U% DS denote the interaction
basis states, which are vectors in flavor space, whereas

This yields anO(v?/my) correction to Eq.(24). Note that U0 ,U0 D0 /D0 are matrices in flavor space. We have

Eq. (36) also implies that in the approach to the decouplingomitted the leptonic couplings in E¢40); these follow the
limit, the sign of cosB—«) is given by the sign ofA. same pattern as the down-type quark couplings.

+QY®,70DY%+H.c., (40)

2 o2

cogB—a)=
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We next shift the scalar fields according to their vacuumand the Cabibbo-Kobayashi-Maskawa matrix is defined as
expectation values, and then reexpress the scalars in termskt=V’VP". It is also convenient to define “rotated” cou-
the physical Higgs states and Goldstone bosfme®e Eq. pling matrices
(21)]. In addition, we diagonalize the quark mass matrices
and define the quark mass eigenstates. The resulting Higgs- UoyUT D_/D,D.0\Df
boson—fermion Lagrangian can be written in several ways L i P VLT
[25]. We choose to display the form that makes the type-ll

model limit of the general type- Il couplings apparent. TheThe diagonal quark mass matrices are obtained by replacing

type-Il model (where 77 °= 75"°=0) automatically has no  the scalar fields with their vacuum expectation values
tree-level flavor-changing neutral Higgs boson couplings,

whereas these are generally present for type-Ill couplings.
The fermion mass eigenstates are related to the interaction D D _ 1 U U
eigenstates by biunitary transformations: MD V2 - Wantvans), MU_‘Q (0171 Fv27z). (49)

(42

PLU=V’P.U°% PRU=VRPRU®,

After eliminating 75 and %7, the resulting Yukawa cou-
P.D=VPP D° PgrD=VRPD", (4 plings are

1 S c i — 1 — [J—
Ly=—DM D(—ah——aH)+—DM D(t;A—G)— ——D(75Pr+ 75 "P)D(cs_sh—s5_ ,H)— ——D(75P
YT, D Cs Cs v pYsP g VQCB MPERT 72 FL B 8 1/205 72FR

1
—nZTPL)DA——UM U(—h+S—H

1
; +— UMUy5U(t31A+G)+FU(n&’PFﬁnl PU(csgh—s5_,H)

Sp

i Vi _ _
— ——U(pYPr— VTP UA+ F[UKMDPRD(tBHJr—G*)nLUMUKPLD(6t51H++G+)+H.C.]

V2sg
1— o 1 5
Um KP DH++—UK772PRDH++HC (44)
|

In general,n&J and 775’ are complex nondiagonal matrices. _ sina .
Thus, the Yukawa Lagrangian displayed in E44) exhibits HUU: sm,B_COS('B a)—cotgsinf—a), (49
both flavor-nondiagonal andP-violating couplings between
the neutral Higgs bosons and the quarks. where we have indicated the type of Higgs-boson—fermion

In the decoupling limit(where c;_,—0), the Yukawa coupling with which a particular trigonometric expression
Lagrangian displays a number of interesting features. Firstrises. It is now easy to read off the corresponding Higgs-
the flavor nondiagonal and theP-violating couplings ofh  boson—fermion couplings in the decoupling limit and one
vanish (although the corresponding couplings kband A verifies that théh-fermion couplings reduce to their standard
persisj. Moreover, in this limit, theh coupling to fermions  model values. Working t@(cz_,), the Yukawa couplings
reduces precisely to its standard model vaIl(liéM= of h are given by

—(m;/v)ffh. To better see the behavior of couplings in the . 1
decoupling limit, the following trigonometric identities are Lnog= —5[—MD—tan,8

1
particularly useful: ~“Mp——(Sp

V2sy

. 1 1
hDD: (S:g:;—sm(ﬁ a)—tanBcogB—a), (45 +iPpys) | Cp-a Dh_U[;MUJFCOt:B My
1
_ sa __(SU+iPU75))CB—a Uh, (49
hUU: sm,B_S'n(B a)+cotBcog B—a), (46) v2cy
where

—  cosa ) 4 . B i b Dt

COSIB—COS(,B_01)+tan,35m(,3—01), (47) So=3(n5+713)), PD=_§(772_712 ) (50
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are 3x3 Hermitian matrices an&, and P are defined couplings toVV, hh, and hhh are nearly indistinguishable
similarly by making the replacemeriis—U and 2—1. Note  from the correspondingpsy couplings, whereas one of the

that bothh-mediated FCNC interaction@mplicit in the off-  hff couplings can deviate significantly from the correspond-
diagonal matrix elements &andP) andCP-violating inter- ing hSMff_coupIings

actions proportional t® are suppressed by a factor@f_, The cubic and quartic Higgs boson self-couplings depend

in the decoupling limit. Moreover, FCNCs ai@P-violating on the
; parameters of the 2HDM potentj&q. (1)], and are
effects mediated b andH are suppressed by the square OfIisted in Appendixes F and G, respectively. In the decoupling

the heavy Higgs boson masseelative tov), due to the it (DL) of w— B— m/2, we denote the terms of the scalar

propagator - suppression. Since,<my .My and Cs—»  potential corresponding to the cubic Higgs boson couplings

:O(vzlmi) near the decoupling limit, we see that theb Y3 : o
o ;! y and the terms corresponding to the quartic Higgs
flavor- andCP-violating processes mediated byH, andA boso%L couplings byAd). The coefficients of the quartic

iri)(illre?/u)ppt;]e;?ji(iosy"r:he"r;?mgvrgggog v-ir;bl::,mmg:ha- terms in the scalar Higgs potential can be written more sim-
= ' ping P ly in terms of the linear combinations of couplings defined

nism for suppressed Higgs-boson-mediated FCNCs and SuEarlier [Egs. (25—(28)] and three additional combinations

msgfegnz:glggﬁgsl\;m-med|at@:P-V|0Iat|ng effects in the (see Appendix E for a discussion of the significance of these
9 ' i?ombinationis

Note that the approach to decoupling can be delayed
either tarnB>1 or cotB>1, as is evident from Eq49). For

example, decoupling at large tg@nor cot occurs when AN=1: sgﬁ()\ﬁ 7\2)+)\345(ng+ Cé)—Z)\s
|cs— . tanB|<1 or [cz_, cotpB|<1, respectively. Using Egs.
(36) and(26), these conditions are respectively equivalent to —S25C25(Ne— \7), (52)
1 2 2
m2>|\glvZcot and mi>|\,jvtans,  (51) Nu=72 Sop(Sph1—Cphat Cophaus) ~NeSpSap~N7CsCap.-

(53

which supplement the usual requirememmﬁ>)\iv2. That
is, there are two possible ranges of bE-odd Higgs boson
squared mass,\jp’<ma<|\;|v®tanB (or \jp2<mi
<|\glv?cotB) when tanB>1 (or cotB>1), where theh  The resulting expressions foi) and V&) are

)\VE)\154B+ )\2C?;+% )\34553ﬁ_282ﬁ(}\682+ )\7C2). (54)

Ve =1 o(h¥+hG?+2hG*G )+ (Ar+Ag)vhH H ™ + 2 Ao[3Hh?+HG2+ 2HG G~ —2h(AG+H G +H G™)]
+3 Ao (H3+HAZ+2HH H )+ [Aa— A+ 3 NeJoH(H G +H G )+ (Aa—N)vHAG+ 3 AvhA?

[
+()\—)\A+%)\T)vhH2+§)\FvA(H+G‘—H_G+) (55)

and

V=3 N(G?+2G "G~ +h?)2+ A (h*H—h?AG—h?H"G™ —h?H G"+hHG?+2hHG'G™ —AG®-2AGG'G"~
—G’H G"=G’H'G —-2H'G G'G —2H G G")+ 3 (At+Ap)(h®*HTH +H?G"G +A%G" G~
+G?H H )+ Ay(hH3+hHA?+ 2hHH"H™ —H?AG—-H?H*G™ —H?H G*-A3G-A’H*G —-A’H G*
—2AGH™H —2H"H H'G™ —2H H'H G")+[2(Aa=\)+Ag](hHHT G~ +hHH G™
—AGH" "G AGH G")+3 Ay(H*+2H?A?+ A*+4H?H H +4A’H H +4H H HTH )+ 3 (A—\,)
X(HTHTG G +H H G"G"—2hHAG)+ 3 A1(h?A2+ H?G?)+ 2 [2(A— N a) + A 1] (h?H?+ A%G?)

i
+(\=Na+ADHTH GTG ™+ 5\p(NAH G hAH G" +HGH'G™—HGH G*), (56)
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whereG andG™ are the Goldstone bosofabsorbed by the Using the explicit forms for the cubic Higgs boson cou-
Z and W*, respectively. Moreover, forc,_,=0, we have plings given in Appendix F, it follows that all cubic cou-
mé=\v? and mi—ma=(A—\a)v?, whereas ma:_mi plings aresO(v) if we require that the\;<O(1). The cu-
=1\rv?is exact at the tree level. As expected, in the decoubiC couplings can also be rewritten in terms of the Higgs
pling limit, the low-energy effective scalar theofyhich in-  P0oson masses. For example, one possible form fomtite
cludesh and the three Goldstone bosdris precisely the —coupling is given in Eq(F6). Here, we shall consider two
same as the corresponding SM Higgs theory, witbropor- ~ €duivalent expressions for tieH"H ™ coupling:

tional to the Higgs boson quartic coupling.

One can use the results of Appendixes F and G to com- Ot = — l ( 2_ m_EZ) Cpta +(2m2. —md)s
pute the first nontriviaD(c,_,) corrections to Eqg55) and hH™H v[ 7™ sgch) spcp H= TThI=6-a
(56) as one moves away from the decoupling limit. These
results are given in Tables | and Il in the Appendixes. For 1,2 ﬁ_ ﬁ
example, thenhhandhhhhcouplings in the decoupling limit 2V Sé cf; Cp-a
are given by

P =~ (2mi—2m{. —m})sg_ ,+2(mZ—mp)

Ohnn=—3v(A—3\Cg_,) = +6NCg_qv, (57)

XCZBCB—Q+02( )\SCB+(1/_ )\Gsa+ )\7Ca) .
2 S2p SpCp Sg Cp

my, ~
1)2 +9)\Cﬁ*a= (58) (59)

Ohhhr=—3(A _4’}\Cﬁfa):

From the first equality of Eq(59), it appears thatpy+n-

. . 7 " grows quadratically with the heavy charged Higgs boson
these couplings could in principl@enodulo radiative correc- mass. However, this is an illusion, as can be seen in the

tions, which are known within the SNI26]) provide evi- . : )
dence for a departure from the corresponding SM reIations.SUbseguem expression fgr‘“*“", ln, partlcular,mA-— My
Using the explicit forms for the quartic Higgs boson cou- ~20(U ) fOHOWZS from Eq.(11), while in the decoupling limit
plings given in Appendix G, it follows that all quartic cou- MaCs-o~O(v?) follows from Eq. (D3). Hence, gnp+n-
plings are<O(1) if we require that they,<O(1). Unitarity ~_(9(v) as exp_ected. One can alsq gheck that the apparent
constraints on Goldstone and Higgs boson scattering prasingular behavior as;—0 or cs—0 is in fact absent, since
cesses can be used to impose numerical limitations on tH&e original form ofgy, -+, was well behaved in this limit.
contributing quartic coupling$19—23. If we apply tree- Clearly, the most elegant form fa+,- is given in Eqg.
level unitarity constraints fox/s larger than all Higgs boson (F1). No matter which form is used, it is straightforward to
masses, them\/4m=<O(1) (the precise analytic upper Perform an expansion for smalp_, to obtain
bounds are given in Ref22]). One can also investigate a
less stringent requirement if the Higgs sector is close to the Ihrn-="U (Nt A+ O(Cp-0),
decoupling limit; namely, assuming,<my,mp,My=, one . . . : .
can si?npl?/ impose uni¥arity conrsrggintsHon /;he Hlow-energyWh'Ch agrees with the corresponding result given in Table |
effective scalar theory. One must check, for example, that afPf Appendix F.

2—2 scattering processes involving thé", Z, andh satisfy One can alsq be misled by writjng the cubic couplings i.n
partial-wave unitarity{20,22,23. At the tree level, one sim- terms ofA;, which are employed in an alternate parametri-

ply obtains the well known SM resuk<8/3, where\ is zatiqn of th_e 2HDM scalar p(_)tential givzen in Apzpendix A.ln
given by Eq.(25).12 At one loop, the heavier Higgs scalars Particular, in theCP-conserving casemi,=1/20°s,CpA5,
can contribute via virtual exchanges, and the restrictions o/Nich becomes large in the approach to the decoupling limit.
the self-couplings now involve both the light and the heavierconseauently, all the\;(i=1,...,6) are large in the decou-
Higgs scalars. For example, in order to avoid large one-loop!ing limit [see Eq(A3)], even though the magnitudes of the
corrections to the four-point interactio* W~ —hh via an M @re all=0(1).

intermediate loop of a heavy Higgs pair, the quartic interac- ©ON€ important consequence g+ -~ O(v) is that the
tions amongh?H2, h2A2, andh?H*H~ must be perturba- one-loop amplitude foh— y+y reduces to the corresponding

tive. In this case, Eq(56) implies that|\ —\a|,|Ng|=1. It SM result in the decoupling limiwheremy=>v). To prove

follows that there is a bound on the squared-mass splitting&!iS; We observe that in the decoupling limit alcouplings
among the heavy Higgs boson states@fv2). Thus, to to SM particles that enter the one-loop Feynman diagrams

maintain unitarity and perturbativity, the decoupling limit de- for h— v are given by the corresponding SM values. How-
mands rather degenerate heavy Higgs bosons. ever, there is a new contribution to the one-loop amplitude
that arises from a charged Higgs boson loop. But this contri-

bution is suppressed 'bp(vzlmﬁi) becauggthm— .
12Using mZ=\v?, this bound is a factor of 2 more stringent than ~O(v), and our assertion is proved. In addition, the first

that of Ref.[20] based on the requiremehReag<1/2 for the  nontrivial corrections to decoupling, @(v?/m3), can eas-
swave partial-wave amplitudg27]. ily be computed and arise from two sources. First, the con-

where we have used E@30). Precision measurements of

(60)
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tribution of the charged Higgs boson loop yields a cgntribu-equa| to—1 when tarﬁzZ[(nﬁ/vz)—)\A]/5\>1. Of course,
tion to theh— yy amplitude proportional t@y+y-v/My+.  the latter corresponds to an isolated point of the parameter
Second, the contributions of the fermion loops are altereq;pace; it is far more likely that theDD coupling will ex-
due to the modifiedh ff couplings[see Eq(49)], which yield  hibit a discernible deviation in magnitude from its SM value.
corrections ofO(cg- )~ O(v?/m3). Both corrections enter Even if the tree-level couplings dfto both vector bosons
at the same order. Note that the contribution of Wiéoop is  and fermions appear to be SM-like, radiative corrections can
also modified, but the corresponding first order correction isntroduce deviations from SM expectatiof29] if m, is not
of (’)(c%,a) (since thehW" W™ coupling is proportional to  significantly larger thaw.* For example, consider the am-
Sg-o) and thus can be neglected. plitude for h— vy (which corresponds to a dimension-5 ef-
The above considerations can be generalized to all loopfective operator If ma<O(v) [implying that my+
induced processes which involve theand SM particles as ~0)] and|3\|<1 (implying that tree-level couplings &f
external states. As long ai;=O(1), the Appelquist-  approach their SM valugsthen the charged Higgs boson
Carazzone decoupling theore®8] guarantees that fama  |oop contribution to then— yy amplitude will not be sup-
—oo the amplitudes for such processes approach the corrgressed. Hence the resulting amplitude will be shifted from
sponding SM values. The same result also applies to radighe SM result, thus revealing that true decoupling has not

tively correctedh decay rates and cross sections. been achieved, and theis not the SM Higgs boso[29].
Radiative corrections can also introduce deviations from
V. A SM-LIKE HIGGS BOSON WITHOUT DECOUPLING SM expectations if the Higgs boson self-coupling parameters

. ._.are largd 30]. We can illustrate this in a model in whidhis
We hazve demzon.strat.ed above that the decoupling limigy jike and all other Higgs bosons are very heavy, and yet
(where my>|\|v®) implies that|cs_,|<1. However, the 1 gecoupling limit does not apply. Consider a model in
|cs—o/<1 limit is more general than the d_ecoupllng_ limit. \ynich m2,=\g=\;=0 and the Higgs potential parameters
From Eq.(36), one learns thdt; | <1 implies that either 4o chosen to yielan, =ma=m,- andc,_,=0. This can
(i) ma>\0?, andlor(ii) | \|<1 subject to the condition pe achieved by takingi?,=m2, and"®
specified by Eq(33). Case(i) is the decoupling limit de-

scribed in Sec. lll. Although caséi) is compatible with \sCop \sCop

ma>\;v?, which is the true decoupling limit, there is no M=Agt =7 A=hgm 7, Aa=hs, (62
requirement priori thatmy be particularly larg¢as long as P p

Eqg. (33) is satisfied. It is even possible to haveia<my,  with \s<0 and— (A ;) ,) ¥?>< A 345<0 [thereby ensuring that

implying that all Higgs boson masses a&(v), in contrast mi> 0, my,<my, and Eq.(4) are satisfiell These results are

to the true decoupling limit. In this latter case, there does nof, st easily obtained by using Eq®©20)—(D23). One im-
exist an effective low-energy scalar theory consisting of %ediately finds tham?=(\g+\s)v? and m3=mz = mai

single Higgs boson. 5 ) - . y
Although the tree-level couplings ¢f to vector bosons = —Asv™. It is easy to check thah =0 is exact, which
may appear to be SM-like, a significant deviation of eithery";‘IdS gﬁfazo (since A345<0 implies thatmi>m{ and
the hDD or hUU coupling from the corresponding SM Mh= M [cf. Es.(19) and(20)]), andh =X x=A3+\s. Note
value is possible. For example, fqm:ﬁ,a|<1, the h cou- that, althoughh=c;_,=0, Eq. (36) implies that the ratio
plings to quark pairs normalized to their SM valjsse Egs. A)\/cﬁ_az — Naas= (Ma—mZ)/v? can be taken to be an arbi-

(36), (45), and(46)] are given by trary positive parameter. This example exhibits a model in
. . which the properties dfi are indistinguishable from those of

- Av?tang — \v?cotB the SM Higgs boson, but the decoupling limit can never be

hDD: B mi_xsz’ huu: 1+ mi—?\sz' achieved(sincem§2=0). One cannot take the masses of the

(62) mass-degeneratel, A, and H* arbitrarily large with m,

~O(m;) without taking all the|x;[(i=1,...,5) arbitrarily
If my=O(v) and tanB>1 (cotB>1), then the deviation of |arge (thereby violating unitarity Nevertheless, if one takes
thehDD(hUU) coupling from the corresponding SM value the|\;| close to their unitarity limits, one can find a region of

can be significant even though|<1. A particularly nasty ~Parameter space in whiafn,=ma=my+>m,~O0(mz). If
. — — L . only h were observed, it would appear to be difficult to dis-
case is one where theDD (hUU) coupling is equal in

magnitude but opposite in sign to the corresponding SM_____

13 — . .
value[29]."* For example, thdDD coupling of Eq.(61) is URadiative corrections that contribute to shifts in the coefficients

of operators of dimensior=4 will simply renormalize the param-
eters of the scalar potential. Hence the deviation from the SM of the
Note that for|\|<1 (i.e., for |cs_,/<1 with m, arbitrary,  properties ofh associated with dimensios4 operators will con-
where thehVV couplings are SM-likg there is no choice of param- tinue to be suppressed in the limit of the renormalized parameter
eters for whichboth the hDD and hUU couplings are equal in |3\|<1.
magnitude but opposite in sign relative to the corresponding SM °In this case, Egs.(6) and (7) imply that tarf 8=(\sss
couplings. —N)/(Nga5—Ny).

075019-10



CP-CONSERVING TWO-HIGGS-DOUBLET MODEL: TH . .. PHYSICAL REVIEW D 67, 075019 (2003

tinguish this case from a Higgs sector close to the decoupling Whens;_ ,— 0, we havg8— a=0 or 7. We shall work to
limit. However, when the\;| are large one expects large first nontrlwal order in ansg_, expansion, withcg_ ,=
radiative corrections due to loops that depend on the Higgs-(1—3s5__). Using the results of EqgD9)—(D11) and
boson self-couplings. For example, the one-loop corrchonEq (11), We obtair®

to the hhh coupling (which at the tree level is given by

Ohhh= —Smﬁ/u2 whenc,_,=0) can deviate by as much as oA

100% or more from the corresponding corrections in the m2=v? ¥ A ISVES S (65)
standard model in the above model wharg ,=0 and L Sg-a

My = Mp=my=>my~O(my) [30]. More generally, a model

with a light SM-like Higgs boson and all other Higgs bosons Y

heavy c_ould_b(_a distinguished fr_om a Higgs sector near the mﬁzvz = N ‘)\ }

decoupling limit only by observing the effects of one-loop L Sg-a

corrections proportional to thélarge Higgs boson self- 2 A 2

coupling parameters. Such radiative corrections could devi- =Mat (A= AaF ASp_o)v7, (66)

ate significantly from the corresponding loop corrections in
the standard model. . R

Two additional examples in which the\|<1 limit is My=v (A ASg_a), (67
realized are given by(l) tanp>1, Ag=\;=0, and
mi>()\2_)\5)02, and (2) )\1:)\2:)\345, )\6:)\720, and

mz> (N2~ \s)v? [31]. m’.=v? ¥ A +)\A+%)\Fi%’}\sl3*a
The condition orrnA in the two cases is required by Eq. H Sg—a
(33). In case 1,\=0 when 3= /2, whereas in case 2 :miJr%)\sz. (68)

=0 independently of tag. In both these cases, it is straight-

forward to use Egs(12) and(16) to obtain N . ] ) . .
The conditionm,>m;, imposes the inequalitgvalid to first

Av? order ins;_,)
2 _|"2Y B-a
MhH= | M2+ \gv? ©3
Sincem?=\,v?, Eq. (20) yields cos—a)=0 as expected. Ma<v?(ANa=2ASp_,), (69

Two special limits of case 2 above are treated in Rf],

where scalar potentials with{=N,=A3=FN\,;=*A5>0 P -
i 30 e consred g (1, (55052, Nt 1 ELD s o oge
—\s)v?, the resulting Higgs spectrum is given tmﬁ: (10) to obtain
=mZ=ma+m?2 andmZ=\,v? (m3 is a free parameter that

depends om?)). In the case oks>0, one hasn3>0 and it

is possible to have a Higgs spectrum in whils very light,

while the other Higgs boson@ncluding h) are heavy and mi,~v SBCB
approximately degenerate in mass. In the casessf0, one
hasmz>2m?, and a lightA would imply that all the Higgs
bosons of the model are light. In both casgs ,=0, and the
tree-level couplings offi correspond precisely to those of the
SM Higgs bosorisee Sec. IY. These are clearly very special ) ) )
cases, corresponding to a distinctive form of the quartic We can rewrite Eq(65) in another form{or equivalently

——+Fhathst+3 Ntz 3 Nt
B7

Asg

le

(70)

terms of the Higgs potential: use Egs(D30) and(D31) to obtair
Va=3 M(P]P1+ P ]Do) = (PP, P]P1)?], (64) ) )
_ F A2 +\v?
where the choice of sign corresponds to the sigh#fNote sin(B—a)=-— ey a—" (72)
Ma—Aa0°  Mmi—my

that), above exhibits a flat direction X5>0, whereas the

scalar potential possesses a globally stable minimui if

<0 [see Eq(4)]. The|ss_,|<1 limit is achieved whem)|<1, subject to the
Next, we examine a region of Higgs parameter spaceondition given in Eq(69). Clearly, H is SM-like, since if

where |sin(8—a)|<1, in which the heavieCP-even Higgs

bosonH is SM-like (also considered in Reff29] and[31]).

In this case, thé couplings to vector boson pairs are highly éNote that Eqs(D4) and (D5) are interchanged under the trans-

suppressed. This is far from the decoupling regime. Neverformation mi<-mZ and ¢4, —sz_,. Thus, applying these

theless, this region does merit a closer examination, whiclransformations to Eq€29)—(32) yields the results given in Egs.

we now perform. (65—(68) with c5_,=+1.
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Sg-,=0, then the couplings oH to VV, HH, and HHH bosonH. Thus, one expects that all Higgs bosons can be
coincide with the corresponding SM Higgs bosonObservedonce the SM-like Higgs boson is discoverethat

couplingst’ is, there is little chance of confusirtd with the Higgs boson
The couplings of to fermion pairs are obtained from Eq. ©f the standard model. _ _ o

is realized are given by(1l) tang>1, \¢g=A;=0, and
mi<()\2_)\5)l)2, and (2) )\1:)\2:)\345, )\6:)\7:0, and

Lhog= _5[ J_ri Mp+tang 1 Mp— L(SD ma<(\,—\s)v? [31]. The condition orm3 in the two cases
v v V2sg is required by Eq.69). In case 1,A\=0 when g= /2,
| 1 1 whereas in case 2\=0 independently of taB. In both
+iPpys) |Sg-o|DH-U| £—My—cotg| —My these cases, it is straightforward to use E@8) and(16) to
v v obtain
- (Sy+iPyys) s UH (72 M2+ \gv?
vac, e Mn=| w2, (73

where = corresponds ta,_,=*1 andSp and Pp are  gjnee mi=X\,v?, it follows from Eq. (20) that c5_,=1.
given by Eq.(50). If [A[tanB<1 or [A[cotB<1, then the  jonce sing—a)=0, which implies that is SM-like1®

Hff couplings reduce to the correspondimg,f f couplings. Finally, we note that the SM-like Higgs bosons resulting
However, if [ \|<1=<|\[tangB (or | A[<1=[A[cotB) when  from the limiting cases above wherk=0 can be easily
tang>1 (or cotB>1), then theHff couplings can deviate understood in terms of the squared-mass matrix entries of

significantly from the correspondinigyff couplings. This Egs. (12) and (13). In order to achievecs,_,=0 or
behavior is qualitatively different from the decoupling limit, Ss-o=0, we demand that tarﬂzgtan 2. This implies
where for fixed\; and large ta (or large cofB), one can [see Eq(17)] that the entries in th& matrix be in the same

always choosen, large enough such that tfha‘?couplings ratio as the entries in the term proportionahﬁ§ in Eq.(12):

approach the corresponding SM values. In contrast, when 2/\/1%2

|Sg— o<1, the size ofm, is restricted by Eq(69), and so mztan 2B. (74)
there is no guarantee of SM-likéff couplings when either

tang or cotg is large. It is easy to check that

Although the tree-level properties bf are SM-like when
|\|<1, deviations can occur for loop-induced processes as
noted earlier. Again, thel — vy amplitude will deviate from ; . . . T
the corresponding SM amplitude due to the contribution Otggllji?/g(l)gri(li)) a?: ngi)t ;rr??rzed'at:rl)elol\:gfly tt:at d):ate(r)mli?we
the charged Higgs boson loop which is not suppr_essed Si.ncfﬁhetherc  —0ors. =0 .simply note Ehat if the sign of
my=~O(v). Thus, departures from true decoupling can iNgin 2a/sinﬁ25 i neggti\;(e(positive), then ¢, =0 (S,

prl?/\c;leplr?o\?veb?‘g]‘?cfgafr?}ﬁ}ﬁe_DéL)<:n]é model examples in which— 0). In the convention where tghis positive, it follows
y P that sin 23>0. Using Eqgs(12) and(13), if the sign of

|ss—ol<1 is realized. These examples are closely related to 5 . , 5 5
the ones previously considered in the case pf,,=0. First, M= 5C4[ (N3gs— N5)v "= M [+ v (NCs+ N7S))

consider the model in whicin?,=\g=\,=0 and the Higgs (76)
potential parameters are chosen to yiglg= my=m= and
Sg—,=0. This can be achieved by takimgZ,=m3, and the
nonzero\; given by Eq.(62) with A5<<0 and\ 345> 0. In this
case,m3=(\3+\s)v? and mi=mi=mZ.=—Ag?. It is

Nv2=1 (B2~ B2,)sin 28— BB2,c0s 28. (75

is negative(positive), thencg_,=0 (sg_,=0). One can
check that the conditions given by Ed83) and (69) corre-
spond precisely to the negativpositive sign of M3, [Eq.
> _ _ _ (76)], after imposingA=0.° The conditonA=0 can be
easy to check thak =0 is exact and yields,_,=0 (since  achieved not only for appropriate choices of Meand tan3
345> 0 implies thatmy<m( andm;=m{ [cf. Egs.(19) and  jn the general 2HDM, but also can be satisfied in the MSSM

(20)]). Thus, the properties dfi are indistinguishable from \yhen radiative corrections are incorporatege Sec. VL
those of the SM Higgs boson. However, all the other mass-

degenerate Higgs bosons are lighter than the SM-like Higgs VI. DECOUPLING EFEECTS IN THE MSSM

HIGGS SECTOR

Awhen\ =0, theH couplings toVV, HH, andff [see Eq(72)] The Higgs sector of the MSSM is @P-conserving two-
all differ by an overall sign from the correspondihg, couplings if ~ Higgs-doublet model, with a Higgs potential whose
o= — 1. However, this sign is unphysical, since one can elimi-dimension-4 terms respect supersymmetry and with type-I|
nate it with a redefinitiorh— —h andH— —H, which is equiva-  Higgs-boson—fermion couplings. The quartic couplings
lent to replacingx with a+ 7. are given by 9]
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N1=No=—Nags= 1 (0°+0'%), Ng=—30%

)\5:)\6:)\7:0. (77)

The squared-mass parameters defined in(E8).simplify to
mZ=m3 cog 28, m3=0, m3=m3, andm3=mj+ m3. Using

PHYSICAL REVIEW D 67, 075019 (2003

2, 2 2
mg(mz—mp)

(B—a)= . 83
cog(B—a) mE(mE—md) (83

In the decoupling limit wheren,>m,, the above formulas
yield

Eq. (77), the invariant coupling parameters defined in Egs.

(25—(28) and Eqs{(52)—(54) reduce to
A=—\r=\y=13 (g°+g’'?)cos 28,
A=—\y=1(g?+g'?sin28 cos 28,
Na=3 (9%+g'?)cos 48,

=302 (79)

m2=m3cos 2B, mi=mi+mssir’28,

m3 sir? 4

Z
4my

2 _
H* ™

mf.=ma+ma, cod(B—a)= (84)

That is,mp=my=my+ up to corrections o@(m%/mA), and
cos(3—a)=0 up to corrections oB(m3/m3).
It is straightforward to work out all the tree-level Higgs

The results of Sec. Il can then be used to obtain the welleouplings, both in general and in the decoupling limit. Since

known tree-level results

ma=mZ tang+cotB), m;.=mi+m, (79

and a neutraCP-even squared-mass matrix given by

, [ misifB+micos B —(mi+mg)sing cosp
M= —(mi+m3)sinBcosB micog B+mssirt B |’
(80

with eigenvalues

Mijo ho=3 (Ma+m3= (Ma+m2)2—4mZm3 cog 23),
(82)

and the diagonalizing angle given by

mji—m;
CosS2a=—C0S2B| ——— |,
M o— Mo

2 2
mHo+ mho

2 2
Mp0— Mo

sin 2a= —sin 28 (82

One can also write

18sinceN g=\,=0, if we additionally sem?2,=0, then we recover
the discrete symmetry of the Higgs potential previously noted in
Sec. lll. Thus, there is no true decoupling limit in this model. More-

over, sincem3= — \sv? (which implies thats<0), Eq.(73) yields

m,,=0, although this result would be modified once radiative cor-

rections are included.

Mt is simplest to useA=0 to eliminate the quantity;c5
— S5 from N4 in Egs.(33) and (69).

the Higgs-boson—fermion couplings follow the type-Il pat-
tern, the Higgs-boson—fermion Yukawa couplings are given
by Eq. (44) with 7%= 75=0. However, one-loop radiative
corrections can lead in some cases to significant shifts from
the tree-level couplings. It is of interest to examine how the
approach to the decoupling limit is affected by the inclusion
of radiative corrections.

First, we note that in some cases, one-loop effects medi-
ated by loops of supersymmetric particles can generate a
deviation from standard model expectations, evermjf
>m, where the corrections to the decoupling limit are neg-
ligible. As a simple example, if squarks are relatively light,
then squark loop contributions to tHe—gg and h— yy
amplitudes can be significaf®2]. Of course, in the limit of
large squark masses, the contributions of the supersymmetric
loops decouple as welB3]. Thus, in the MSSM, there are
two separate decoupling limits that must be analyzed. For
simplicity, we assume henceforth that supersymmetric par-
ticle masses are largsay of order 1 TeV, so that supersym-
metric loop effects of the type just mentioned are negligible.

The leading contributions to the radiatively corrected
Higgs boson couplings arise in two ways. First, the radiative
corrections to th€€P-even Higgs boson squared-mass matrix
results in a shift of th&€P-even Higgs boson mixing angte
from its tree-level value. That is, the dominant Higgs propa-
gator corrections can to a good approximation be absorbed
into an effective(“radiatively corrected’) mixing angle «

[34]. In this approximation, we can write

2 2
Miy Mp

MZE<
Mip M3

):M§+ SM?, (85)

where the tree-level contributiaM3 was given in Eq(80)

and SM? is the contribution from the radiative corrections.

Then, cosB—a) is given by
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(M2,— M2,)sin 28— 2M2,cos 28

cogB—a)= -
# 2(m?, —m)sin A a)
m2 sin 48+ (SM2,— 6M3,)sin 28— 25 M2, cos 28 o6
- 2(mE—mR)sin - a) ' (89
|
Using tree-level Higgs boson couplings withreplaced by My, COSa 1 shy,
its renormalized value provides a useful first approximatior@ubp= —— ~——5| 1+ ——Ap[(1-tanacotp)|,
o ) : v cosp 1+Ap\ hy
to the radiatively corrected Higgs boson couplings. (92
Second, contributions from the one-loop vertex correc- )
tions to tree-level Higgs-boson—fermion couplings can
modify these couplings in a significant way, especially in the . __ %tanﬁ 14 1 (5hb A ) ©3
limit of large tang. In particular, although the tree-level “A°®" o (1+Ap)sie B\ hy, P/
Higgs boson—fermion coupling follow the type-Il pattern,
when radiative corrections are included, all possible
. . ) ) : M coSa 1 Ah
dimension-4 Higgs-boson—fermion couplings are generatedghttz — 11— —(cotB+tana)|, (94)
These results can be summarized by an effective Lagrangian v sing 1+A¢ hy
that describes the coupling of the neutral Higgs bosons to the
third generation quarks: _ m sina 1 Ah,
~ Le=[ (hy+ 8hp)brby @T* + (hy+ Sho) trt @3]
r 0 Y 0 m, Ah
+AhtthLcI)1+AhbbRbLCD2* + H.C., (87) gAtT: thotﬂ 1— —1+A h—t(COtB‘l‘tanB) . (96)
t t

resulting in a modification of the tree-level relation between
h; (hy) andm, (my) as follows[35-38:

We now turn to the decoupling limit. First consider the
implications for the radiatively corrected value of ¢8s(
—a). Since SM{~O(mZ), and mj—mi=mz+O(m),

h oh, Ahytan h i
my= LUCOS,B( 1+ h—b + —bh P = LUCOSB(l'f'Ab), one finds{39)
V2 ° ° V2 m2 sin 48 ma
(88) cog B—a)=¢| ———— -z 97)
2ma ma
h ohy  Ah;cot h i imi s
m,= %sinﬂ 1+ h_t+ th—IB) = i}sin[g’(1+At). in the limit of my>m;, where
t t
SMiy— M5,  SMF
(89 =1+ 11 22 12 99)

The dominant contrib

2mZcos28 m2sin2B’
utions td, are tanB enhanced, with

Ap=(Ahy/hy)tang; for tang>1, shy/h, provides a small The effect of the radiative corrections has been to modify the
correction toA, . [In the same limitA,~= sh,/h,, with the  tree-level definition of\:
additional contribution of 4h;/h;)cotB providing a small

correction]

\v2=cm? sin 28 cos 28. (99)

From Eq.(87) we can obtain the couplings of the physical ) . ) )
neutral Higgs bosons to third generation quarks. The resulEduation(97) exhibits the expected decoupling behavior for
ing interaction Lagrangian is of the form my>m; . However, Eqs(86) and (97) exhibit another way

in which cos3B—a)=0 can be achieved—simply choose the
MSSM parametergthat govern the Higgs boson mass radia-

Lin=— 2 [Ohga GO+ OHggH AT~ 19aATYsA]- tive correctiony such that the numerator of E¢86) van-
q=t,b

ishes. That is,
(90
2m2 sin 28=25M3,—tan 28( SM32,— 5M3,). (100

Using Egs.(88) and(89), one obtaing39,4(

my, sina|

This condition is equivalent te=0, and thus corresponds

1 /5hb precisely to the case ok =0 discussed at the beginning of

Onbo=— " cosp|

* 1+A,\ hy

Ap

(1+cotacotB)|,  sec. V. Althoughh #0 at the tree level, the above analysis
(91 shows thaﬂ3\|<1 can arise due to the effects of one-loop
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radiative corrections that approximately cancel the tree-levellepends on the particular Higgs boson coupling as follows:
result?® In particular, Eq.(100) is independent of the value

" «
of m,. Typically, Eq.(100 yields a solution at large tgh Ghvv ~1_ Aot (103
That is, by approximating tan(%—stn 2B=-2/tanB, one gﬁSMVV mi '
can determine the value @ at which A=0 [39]: , A
o] 6\%?
2m2— SM>2,+ SMS, o, (104
tanf= > (101 Ghguhsmhsm AMy
2 3,2
Hence, there exists a value of tar(which depends on the gh“ ~1+ 2\ fow(l_&), (105
choice of MSSM parametersvhere cosg—a)=0 indepen- Ohgtt Ma
dently of the value ofn, . If m, is not much larger tham,, R
then h is a SM-like Higgs boson outside the decoupling gﬁbb 2\v?tang
regime?! Of course, as explained in Sec. V, this SM-like 2 bb—l_ m2 (1=&p), (106)
SM

Higgs boson can be distinguished in principle from the SM
Higgs boson by measuring its decay rate to two photons angihere &, and &, reflect the terms proportional ®andP in
looking for a deviation from SM predictions. _ Eq.(49). Thus, the approach to decoupling is fastest fortthe
Finally, we analyze the radiatively corrected Higgs- couplings to vector bosons and slowest for the couplings to
boson—fermion coupling€Egs.(91)—(96)] in the decoupling  down-type(or up-type quarks if tan3>1 (or tang<1). We
limit. Here it is useful to note that, famy>m,, may apply the above results to the MSSKee Sec. Vil
Including the leading (taB)-enhanced radiative corrections,
§b=uAhb/(1/isﬁmb)=Ab/[s§(1+Ab)] (whereast;<1 can
be neglectedand \ is given by Eq.(99). Plugging into Eqs.
(103—(106), one reproduces the results obtained in Ref.
Applying this result to Eqs(91) and (94), it follows that in ~ [39].
the decoupling limitgyqg= Inspag— mg/v. Away from the Although the _results of _this paper were derived from a

fermions can deviate significantly from their tree-level val- Plied to the radiatively corrected couplings that multiply op-

ues due to enhanced radiative corrections at large3tan erators of dimension 4 or less. An example of this was given

[where A,=O(1)]. In particular, because\ tang, the m_Sec. VI, where we showed how the _decoupling limit ap-
leading one-loop radiative cérrection ()i ié of plies to the _radlatlvely _corrected nggs-boson—_fermlo_n
O(m? tanB/mﬁ) which formally decouples only whem? Yukawa couplings. In partlcular, near the decoupling limit
> zzt Th" behavior | ledlelaved d i A one can neglect radiative corrections that are generated by
mztanp. This be avior IS calledieiayed decoupiingn - o exchange of heavy Higgs bosons. These contributions are
Ref. [41], although this phenomenon can also occur in &g, ressed by a loop factor in addition to the suppression
more gengral 2HDMwith tree-level couplings as noted factor of(’)(vzlmf\) and thus are smaller than corrections to
previously in Sec. I\fbelow Eq.(50)] tree-level Higgs boson couplings that enter at first order in
Cs—,- This should be contrasted with loop-induced Higgs
VII. DISCUSSION AND CONCLUSIONS boson couplings(e.g., h— vy, which is generated by a

In this paper, we have studied the decoupling limit of adimension-5 effective Qperat)orwhere th.e corrections of
general CP-conserving two-Higgs-doublet model. In this O(Cs-a) to tree-level Higgs boson couplings that appear in
limit, the lightest Higgs boson of the model isGP-even the one-loop amplitude and the effects of a heavy Higgs
neutral Higgs scalath) with couplings identical to those of boson loop are both ab(v?/mj) (in addition to the overall
the SM Higgs boson. Near the decoupling limit, the firstone-loop factor. Consequently, both contributions are
order corrections for the Higgs boson couplings to gauge angdqually important in determining the overall correction to the
Higgs bosons, the Higgs-boson—fermion Yukawa couplingsloop-induced Higgs couplings due to the departure from the
and the Higgs boson cubic and quartic self-couplings havélecoupling limit.
also been obtained. These results exhibit a definite pattern for If @ neutral Higgs bosot is discovered at a future col-
the deviations of th&a couplings from those of the SM Higgs lider, it may turn out that its couplings are close to those

boson. In particular, the rate of the approach to decouplingxpected of the SM Higgs boson. The challenge for future
experiments is then to determine whether the observed state

is the SM Higgs boson, or whether it is the lowest-lying

20The one-loop corrections arise from the exchange of supersymScalar state of a nonminimal Higgs sectdg]. If the latter,
metric particles, whose contributions can be enhanced for certaiffien it is likely that the additional scalar states of the model
MSSM parameter choices. One can show that the two-loop correc'€ heavy, and the decoupling limit applies. In this case, it is
tions are subdominant, so that the approximation scheme is und@ossible that the heavier scalars cannot be detected at the

control. CERN Large Hadron Collide(LHC) or at ane*e™ linear
2lror large tanB and my<O(m,), one finds that sif—a)=0,  collider (LC) with a center-of-mass energy in the range of
implying thatH is the SM-like Higgs boson, as discussed in Sec. V.350—800 GeV. Moreover, it may not be possible to distin-

2m3 m3
cotaz—tanﬁ—Wtan,Bcosz&LO —|. (102
A

A
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guish between thé and the SM Higgs boson at the LHC. deep in the decoupling regime, then it may not be possible to
However, the measurements of Higgs boson observables distinguish the observedfrom the SM Higgs boson. On the
the LC can provide sufficient precision to observe deviationsther hand, given sufficient precision of the measurements of
from SM Higgs boson properties at the few percent level. Inh branching ratios and cross sectidd§], it may be possible
this case, one can begin to probe deep into the decoupling observe a small but statistically significant deviation from
regime[12]. SM expectations and provide a first glimpse of the physics
In this paper, we also clarified a Higgs boson parameteresponsible for electroweak symmetry breaking.
regime in whichh possesses SM-like couplings to vector
bosons but WhermA O(v?) and the decoupling limit does
not apply (see Sec. ¥ In this case, the couplings df to
fermion pairs can deviate significantly from the correspond- We are grateful to Scott Thomas and Chung Kao for their
ing SM Higgs-boson—fermion couplings if either tdror  contributions at the initial stages of this project. We also
cotgBis large. Moreover, the masseshfA, andH™ are not  appreciate a number of useful conversations with Maria
particularly large, and all scalars would be accessible at th&rawczyk. Finally, we would like to thank Marcela Carena,
LHC and/or the LC. Heather Logan, and Steve Mrenna for various insights con-
The discovery of the Higgs boson will be a remarkablecerning the supersymmetric applications based on the results
achievement. Nevertheless, the lesson of the decoupling lim@f this paper. This work was supported in part by the U.S.
is that a SM-like Higgs boson provides very little informa- Department of Energy.
tion about the nature of the underlying electroweak
symmetry-breaking dynamics. It is essential to find evidence AppeNDIX A° AN ALTERNATIVE PARAMETRIZATION
for departures from SM Higgs boson predictions. Such de- OF THE 2HDM SCALAR POTENTIAL
partures can reveal crucial information about the existence of
a nonminimal Higgs sector. Precision Higgs boson measure- In this Appendix, we give the translation of the param-
ments can also provide critical tests of possible new physicsters of Eq.(1) employed in this paper to the parameters
beyond the standard model. As an example, in the MSSMemployed in theHiggs Hunter's GuidéHHG) [7]. While the
deviations in Higgs boson couplings from the decouplingHHG parametrization was useful for some purpageg., the
limit can yield indirect information about the MSSM param- scalar potential minimum is explicitly exhibitgdt obscures
eters. In particular, at large tghthe sensitivity to MSSM  the decoupling limit.
parameters may be increased due to enhanced radiative cor-In the HHG parametrization, the most general 2HDM sca-
rections. The decoupling limit is both a curse and an opporlar potential, subject to a discrete symmedry— — &, that
tunity. If nature chooses the Higgs sector parameters to lies only softly violated by dimension-2 terms, is given’by

ACKNOWLEDGMENTS

V=Ay(O]D,—V2) 2+ Ap(DID,— V3)2+ Ag[ (DD, — VZ) + (D JD,— V3) ]2+ AL (DD ) (D JD,) — (DD ) (DID,)]
+Ag[ReDID,) — V1V, cosé P+ Ag[ IM(DID,) —V, Vv, sing]?
+A7[ReDID,)—V,V, cosé][Im(PId,) — V1V, sing], (A1)

where theA; are real parametefd TheV,,are related to the N3=2A3+ Ay,
vy, Of Eq. (5) by Vl »=U1,/vV2. The conversion from these
A; to the,; andm of Eq. (1) is
a0 Ng=—Agt3 (AstAg),
)\1:2(A1+A3) .
As=3 (As—Ag—iA7),
No=2(Ay+Aj),
)\6:)\7:0

| 22n the HHG,V; and A, are denoted by; and);, respectively. m2,= — 2V2A, — 2(V2+V2) A,
n Eq. (A1), we employ the former notation in order to distinguish
between the HHG parametrization and the notation of Efsand
(5). m3,= —2V3A,—2(V2+V3) A4,
2n Eq. (A1) we include theA, term that was left out in the
hardcover edition of the HHG. See the erratum that has been in- i
g;?nebiiér;;?;is%%rgsck edition of the HHBerseus Publishing, mizz V3 Vs| Agcosé—iAgsiné— Ee|§A7 ) (A2)
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Excluding A\g and \;, the scalar potentialfEgs. (1) and 05— Om=(Ng— Np) T=IM[MIAE]=0, (B5)
(A1)] are fixed by ten real parameters. T6B®-conserving
limit of Eq. (A1) is most easily obtained by settigg=0 and
A;=0. In the CP-conserving limit, it is easy to invert Eq. Ch —(n_ 2 k7
(A2) and solve for the\ (i=1,...,6). The result is 077 6m=(N7=Nm) m=Im[mi\7 ]=0. (B6)

A1=3[N1—Nasst 2m2/(v?s4c,5) ],
177 (M A 12 (v755Cp)] Equations(B4)—(B6) constitute the conditions for the ab-

sence of expliciCP violation in the(tree-leve] Higgs sector.
A useful convention is one in whiaim?, is real(by a suitable

_1 2 g0 2 choice of the phase). It then follows that\g, \g, andA
As=2 [hass—2Mi (v7s4CH) ], are also real. Igenczlgorth, we shall assume that all para7meters
in the scalar potential are real.

Let us consider now the conditions for the absence of
spontaneous CP violation® Let us write (dld,)
=1v0,€¢ with v; andv, real and positive and ¢=< .

The é-dependent terms i are given by

Ay=3[Na—Nagst2mif (v2shcp)],

A4: 2m§2/(vzsﬁcﬁ) - )\4_ )\5,
A5: Zmizl(UZSBCB).
Ag=2mi, (v®s4CH) — 25, (A3)

whereh sge=A3+ N4+ g andv?s,c,=2V,Vs.
ssms AT Es R 1z VB—m§201UZCOS§+%)\5v§v§COSQ§+%Aevivzcosf
APPENDIX B: CONDITIONS FOR CP CONSERVATION +1 \ 00, COSE, (B7)
IN THE TWO-HIGGS-DOUBLET MODEL

First, we derive the conditions such that the Higgs sector . i
does not exhibit expliciCP violation2“ It is convenient to  Which yields
adopt a convention in which one of the vacuum expectation
values, say,, is real and positivé® This still leaves one Py
additional phase redefinition for the Higgs doublet fields. If _ 2 2 2 1 3 1 3
there is ng explicitCP violation, it shog?d be possible to Jdcos¢é Mi0 102+ Asu3vz COSEHZ AU iva 2 A7vgus
choose the phases of the Higgs fields so that there are no (B8)
explicit phases in the Higgs potential parameters of (&j.
If we consider(b{¢2—>e“’7<b1¢>2, then the 7»-dependent

terms in) are given by and
V3 —mie DIdD,+ 1 Nge 2N DID,) 2+ Nge (D ID))
) &ZV
T - T T —y 2.2
X(¢1q32)+)\7e In(q)zq)z)(q)lq)z)‘i‘HC (Bl) W_)\Svlvz. (Bg)
Let us write
mif |m§2| e0m Ao gr=|\s g€ 567, (B2) Spontaneou€P violation occurs wheg+ 0, #/2, or 7 at the
w o potential minimum. That ish5>0 and there exists &P-
Then, all explicit parameter phases are removed if violating solution to
= n=Npmm, Os—27=nNsm, 67— 7=Ng7m,
(B3) M~ 3 Aevi—3 A5
) N cosé= . (B10)
whereny, 567 are integers. Writingp= 6,,— np7 from the Nsv1v2

first condition of Eq.(B3) and substituting into the other

conditions, gives o _
Thus, we conclude that the criterion for spontaneGis/io-

05— 260m=(ns—2n,) m=Im[(m2,)>\¥]=0, (B4) lation (in a convention where all parameters of the scalar
potential are realis

24For another approach, in which invariants are employed to iden- s 4 P 2

tify basis-independent conditions f&P violation in the Higgs sec- 0#|mi,— 3 Aev1— 32 N3 <Asviv, and Ns>0.

tor, see Refs[43] and[44]. (B11
2Due to theU(1)-hypercharge symmetry of the theory, it is al-

ways possible to make a phase rotation on the scalar fields such that

v,>0. 263imilar considerations can be found in Re#4—46 and[13].
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Otherwise, the minimum of the potential occurs eitheg at
=0, 7/2 or  andCP is conserved’ The case of= /2 is
singular and arises whem?,=1/2\qv3+ 1/2\;v5 and \g
>0.28 1t is convenient to choose a convention whéde)) is

real and(®%) is pure imaginary. One must then reevaluate

the Higgs boson mass eigenstates. As shown in[R&f, the

PHYSICAL REVIEW D67, 075019 (2003

nator of Eq.(20), one can show that@cf;,as 1. To prove
this, we first write

2 2
. mg—2m;
=2

1_

(CD

c
B—a
\/m4s— Amam? —4mg,

neutral Goldstone boson is now a linear combination of

Im @ and RedI, while the physicalCP-odd scalar corre-
sponds to the orthogonal combination. The t@®-even
Higgs scalars are orthogonal linear combinations oﬁni%e

Next, we use Eq(18) to explicitly compute

and Imd2. Most of the results of this paper do not apply for M&—4mMzm{ —4mg=mj—2ma[ (B3, B1y)Cop+ 2157,55]

this case without substantial revision. Nevertheless, it is clear

that the decoupling limit mi»xiuz) does not exist due to
the condition orm2,.
We shall not consider thé= /2 model further in this

paper. Then, if the parameters of the scalar potential are real

and if there is no spontaneo@# violation, then it is always
possible to choose the phagen Eq. (B1) so that the poten-
tial minimum corresponds t§=0.2° In this convention,

m2,— 1 Ngv2— 3 Av2=Ngvv, fOr As>0, (B12)

mi,— 3 Ngv2— 3 A703=0 for \5=<O, (B13)
where Eq.(B12) follows from Eq.(B11), and Eq.(B13) is a
consequence of the requirement thitE=0)<V(é=m).
Since ¢é=0 and bothv, anduv, are real and positive, this
convention corresponds to the one chosen below (Eg.
Note that if we rewrite Eq(10) as®

2

v
mi:vlvz [M2,—Nsvivo—3 Nevi—3 Asv3], (B19)

it follows that if A5>0 then the conditiomnf\zo is equiva-
lent to Eq.(B12). However, ifA5<0, then Eq(B13) implies
thatmi=|\g|v2.

APPENDIX C: A SINGULAR LIMIT:  mp=my

By definition, m,<my . The limiting case ofmy,=m, is

special and requires careful treatment in some cases. F%hec

example, despite the appearancemﬁf— mﬁ in the denomi-

2"The CP-conserving minimum corresponding £=0 or é=
does not in general correspond to an extremuivi(icosé). Specifi-
cally, for A5<O, the extremum corresponds to a maximumin

while for Ng>0 the extremum corresponding to a minimum of

+ (B B)?+ 4 BL,)? (C2)
and
(m3—2m?)?=mé— 4mim?—4mp,
—[(B%— B5,)s25—2B3,Co5]%  (C3)

Note that Eq(C2), viewed as a quadratic function Dﬁ (of
the form Ami+Bmi+C), is non-negative ifB2—4AC
=[(BI,— B5)S2p— 21B5,c25]%=0. It then follows from Eq.
(C1) that O<cj_,<1 if

(m3—2m?)?<=mé—4miam?—4mp, (C4)
a result which is manifestly trugsee Eq(C3)].

We now turn to the case of,,=m,, . This can arise if and
only if the CP-even Higgs boson squared-mass mafix
any basigis proportional to the unit matrix. From E(L2), it
then follows that

B~ Bo,=MaCop, 2B3,=M;Sys. (CH
where mi=mg=B5,+mzs;=B5,+macs.  Alternatively,
from Eq. (19), the condition form,=m, is given by mg
—4mam? —4mg=Ami+Bma+C=0. However, one must
k that this quadratic equation possesses a positag
solution formf\. Noting the discussion above E@4), such
a solution can exist if and only iB2—4AC=0, which is
indeed consistent with EGC5). Of course, the results of Eq.
(C5) are not compatible with the decoupling limit, since it is
not possible to haven,=my andmi>|\|v2.

If we take B2—4AC=0 but keepm, arbitrary, then Eq.

V(cosé) arises for|cosg>1. In both cases, when restricted to the (C1) yields

physical region corresponding tfcosé<1, the minimum of
V(cos¢) is attained on the boundafgosg=1.

28\ote that the case df= /2 arises automatically in the case of
the discrete symmetry discussed in Sec.rﬁfQ:x(;:M:O, when
A5>0.

29n particular, if&= 7, simply choosep= 7, which corresponds

0 if mi<ims
C5 . (C6)
b 1 if m?>>imi

2 2 2_ 2 2
to changing the overall sign 6b!®,. This is equivalent to rede- FOr mg=1/2mg, we havemj=mj=1/2mg, and the angler
fining the parameters?,— —m2,, Ag— —\g, andh;— —\. is not well defined. In this case, one cannot distinguish be-
30Under the assumption that, andv, are positive, Eq(10) im-  tweenh andH in either production or decays, and the corre-
plicitly employs the convention in which=0. sponding squared amplitudes should(imeoherently added
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in all processes. It is easy to check that the undeterminegmi2
angle « that appears in the relevant Higgs boson couplings—2—Sg-oCp—a= — 1 Szgsza(MCé—MS,ng 1 )\345s§BCZa
would then drop out in any such sum of squared amplitudes.v
The singular point of parameter space correspondingto +)\ecf;[3cﬁsgcza—ca5a(1+ 25123)]
=m, will not be considered further in this paper.
+N7S5[3S4C4Co, 1 CoSa(1+2¢5)]. (D7)

APPENDIX D: RELATIONS AMONG HIGGS BOSON

POTENTIAL PARAMETERS AND MASSES Note that Eq.(D6) is easily derived by inserting E4D3)
into Eq. (11). A related useful result is easily derived from
It is useful to express the physical Higgs boson masses igqs.(D3) and (D5):

terms of the parameters of the scalar potefiaj. (1)]. First,
inserting Egs(12) and(193) into Eq. (15 and examining the
diagonal elements yields theP-even Higgs boson squared
masses

(ma—mp)
1
T 7 STz S25(—N1CoCpT N2S.Spt+ N3asCpi o)

—N5Sg_ o+ NgCslC4Ca4 o — 255C,]
Ma=MACS_ TV N1C5SE+ NpS5CS — 2N 3450, CS,Sp pra PLEB pte Spra
, +N7Sa[SpCa+ ot 2C5S,]. (D8)
+N5C5_ o~ 2N6CpSaCp+ o 2N7S5C,Cp1q],  (D1)

It is remarkable that the left-hand side of Ef8) is propor-
MG =Mas5_ ,+ 02 N1C5C5+ N pS555+ 2N 34C,CpSaSp tional only tos,_, (i.e., the factor ot4_, has canceledAs
5 a result, in the decoupling limit wheg; _,— 0, we see that
T N5S5_ 4T 2N6C4CaSp+ ot 2N7S5SaSp+ o), (D2) m2—m2=0(v?).
. . _ o The expressions given in Eqd¥3)—(D6) are quite com-
while the requirement that the off-diagonal entries in Eq.plicated. These results simplify considerably when expressed
(15) are zero yields in terms of\, \, and\  [Egs.(25)—(27)]:

2 _1.2 2 2
MaSg—aCp—a= 32 V[ S2al =~ N1C5+ N2Sp) + N3gsS25C24

2_ 2 A[SBa Cp-a
ma=v2 A+ N —— =] |, (D9)
_ZASSB*QCIB*Q+2)\GCECB+ZQ L C,B*a SB,a
+2)\7S,BSB+2C¥]’ (D3) ~
NCs_q
o, mi=v2| \— —£=2|, (D10)
wherehz;s==N3t Azt A5. We can now eliminateny from I Sg—a |
Egs.(D1) and(D2) and Eqs(10) and(11) using the result of
Eqg. (D3). This yields equations for the other three physical r 3
Higgs bosozn _squared masses and the scalar_ potenti_al mass ma:vz N+ ASp-a ] (D11)
parametemj, in terms of the Higgs scalar quartic couplings: ] Co—a |
mﬁ " L One can then rewrite EGD8) as
—5Sg_ o= —AN1C3S, T N2S5C
U2 B—a 1% 82a 2°9B%a i
C —a
+3 NausCp+ o525+ N6Ch(CpCa— 354S,) M —Ma=0| A= \a+ s/ﬁ : (D12
+X\755(3C4C,— SgS,), (D4)

We can invert Eqs(D3)—(D7) and solve for any five of
ma the scalar potential parameters in terms of the physical Higgs
—7 Cp— 0= N1CoCL T N2S)S,t 3 N3asSp- oSop boson masses and the remaining three undetermined vari-
v ables[12,48,49. It is convenient to solve fokq,...,A5 in

+?\sCf;(3550a+C/;Sa)+)\7S;2;(SﬁCa+3CBSa), terms of g, A7, mZ,, and the Higgs boson masses. We
obtain
(D5)
2.2 2.2 2
mgcs,+ mps,, — mist

2m- ., M= 3 Natgt S Nath, (D13

02 Sp-aCp-a= —S24(N1C5— N2Sp) T N345524C24 v s

_()\4—’_)\5)Sﬁ*acﬂfa+2)\60ﬂc,3+2a m|2-|351+ mﬁci—mizt/;l 1 3 3 1

2= 22 T2 Netg =2 Ntg7, (D14

+2N7S6Sg+ 24 (D6) U"Sp
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2 2 2 2
(M5 —M)C,S,+2MpSEC— My,

Ng= —3 Netzt— 3\t

3 0750, z2helg =2 Al

(D15)
2

_ (mi—ZmHi)SﬁCB-l-m%z 1 P

4= 0250, —2 Nelp 2 Natg,
(D16)

2 2
M7,— MzSgC
Szlz—w_%)\Gtgl_%)\ﬁB_ (D17)

2
V"SgCx

In addition, the minimization conditions of Eq&) and (7)
reduce to

1
M1 g MRy o= MESS-a) + Mty
(D18)

1 —
Mo o (MR-t 5.0y o) iy
(D19)

Note that\s and \; do not appear whem?, and m3, are

expressed entirely in terms nffz and physical Higgs boson

masses.
In some cases, it proves more convenient to elimingte
in favor of A5 using Eq.(D17). The end result is

MG 2+ mis? —mas5

)\1— vzcz )\5tf§_2)\6tﬁ’ (DZO)
22 2.2 2.2
MS;, + MiC, — MACh B -
A= 75 stz —2Mqt5t, (D21)
. (MA—m3)s,C,+(2m7 - —m3)sscy
3 v2S4Ch
—Ns—Ngtg = Notg, (D22)
2 2
2(my—mg=)
)\4=T+)\5' (D23
and

1
2 2 2 2\ 2
- Z_CB(mHCaCﬁfa_mhsasﬁfa)'}_(mA_l_)\SU )Sg

+5 0% (NeSpCatN7Shtp), (D24)

m ——i(mzc Sg_,+M3S,Ch,)+(M2+Asv?)CE
227 ZSB h%a°B—a HY2a~¥B—«a A 5V B

+3 02(NgCht 5+ N7S4CH). (D25)

Using Egs.(D9)—(D11), one may obtain simple expres-

sions for\, A\, and A, [Egs. (25)—(27)] in terms of the
neutral Higgs boson squared masses:

PHYSICAL REVIEW D67, 075019 (2003

NvZ=miss_ ,+mics (D26)
Av2=(MG—mp)Ss_oCp_a, (D27)
NavZ=ma+(MmG—mi)(c5 ,—S5 ), (D28)
Npo2=2(m’ . —m3), (D29)

where we have also included an expression Xg=As
— N\, in terms of the Higgs boson squared magses Eq.
(11)]. Thus, four of the invariant coupling parameters can be
expressed in terms of the physical Higgs boson masses and
the basis-independent quantjy- « (see Appendix E

Finally, we note that Eq9(D27) and (D28) also yield a
simple expression foB— «, which plays such a central role
in the decoupling limit. We find two forms that are notewor-
thy:

2

—2\v
taf2(B—a)]= e S (D30)
and
2A 2
Sil’{Z(ﬁ—a)]Z Fmﬁ (D31)
H

Indeed, if A\=0 then eitherc,_,=0 or s;_,=0 as dis-
cussed in Sec. V. Fok #0, the conditionmy>m,, implies
that A)\sﬁ_acﬁ_a>0. This inequality, when applied to Eq.
(D9), imposes the following constraint any :

B 2NCq_¢
Sg-a

\s;_
U2 B

2 2 2
)\A <mA<l) )\A+ . (D32)

B—«a

In addition, we require than3=0.

The expressions for the Higgs boson magd&es. (D9)—
(D11)] and B— « [Eq. (D30) or (D31)] are especially useful
when considering the approach to the decoupling limit,
Wherelclg,a|<1. For example, EqeD9)—(D11) reduce in
this limit to the results of EQgs.(29-(31). Moreover,
sinN2(8—a)]=—tar{2(8—a)]=2cz_,, and Egs.(D30) and
(D31) reduce to the results given by E(B6). The corre-
sponding results in the limiting case [sf;_,|<1 treated in
Sec. V are also similarly obtained.
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APPENDIX E: INVARIANT COMBINATIONS OF THE _1 2 3

HIGGS SCALAR POTENTIAL PARAMETERS N7=252p(3C5~ LA~ SgSagh ~ CpCaphy

1 1 .2

In the most general 2HDM model, there is no distinction ~ 2 S24C2p(2M A= A1) = 2 CgSophv, (ED
between the twoY=1 complex doubletsb; and ®,. In
principle, one could choose any two orthogonal linear Comhnd)\4=)\5—)\p.
binations ofd,; and ®, (i.e., choose a new basis for the
scalar doubletsand construct the scalar sector Lagrangiany,,ost evident in the so-called Higgs basis of Re4], in

with rtzaspect to the new basis. Clearly, the param.eters of EQyhich only the neutral component of one of the two Higgs
(1), mjj and the\;, would all be modified, along wita and  goyplets(say, the first onepossesses a vacuum expectation
B However, there exist seven invariant combinations of the,aye. Let us denote the two Higgs doublets in this basis by
\; that are independent of basis chojé@]. These are\, A\, @, and®,,. Then, after a rotation from th@,-d, basis by
Aa, Ag defined in Egs.(25—(28), and Ay, Ny, and Ay  an angleg,

defined in Eqgs.(52)—(54). In addition, the combinatior8

—a is clearly basis independent. Thus, all physical Higgs )

boson masses and Higgs boson self-couplings can be ex- ®,=P; cosp+d,sing,

pressed in terms of the above invariant coupling parameters

and B— «. In Appendix D, we have already shown how to )

express the Higgs boson masses in terms of the invariant p=—@, sing+P;cosp, (E2)
parameters. In Appendixes F and G we also exhibit the three-

and four-Higgs-boson couplings in terms of the invariant

The significance of the invariant coupling parameters is

B one obtains
parameters!
To obtain expressions for the Higgs boson self-couplings
in terms of invariant parameters, one must invert the rela- G* H*
tions between tha; and the invariant coupling parameters. _ B
The end result is Pq= i(v+(p0+iGO) D= i(‘ngA)
%) ? %)
2 2 25 2 (ES)
)\1:C,3(1+3S,3))\+ZSZB(CB)\+SB)\U)
—3 S55(2Ma— A1) +SpNy, where 2 and ¢} are related in the€P-conserving model to
the CP-even neutral Higgs bosons by
No=52(1+3C2)\ —2S,5(S2 N+ C2Ny)
BT T e ety H =% cos B—a)— pdsin(B—a), (E4)
- % S%B(Z)\A_ )\T) + Cz)\v y
, - A h=(pgsin(,8—a)+<pgcoi,3—a). (E5)
)\345: (ZCZ,B_ CBSﬁ)A - 3S2BC2B( A— Au)
— (€55~ 2C555)(2Aa— A7)+ 3 S5Ny, Here, we see thge— « is the invariant angle that character-

izes the direction of theCP-even mass eigenstatéis the
two-dimensional Higgs “flavor” spagerelative to that of the

)\Sz(cgﬁJr C/Z}Sz))\_SZBCZB(}\_)\U)_C%B)\A vacuum ex'pectatiorll value. .
) In the Higgs basis, the corresponding values of... A
+37855(Ay—2\7), are easily evaluated by putting=0 in Eq. (E1). Thus, the

scalar potential takes the following form:

)\6:%SZB(SS%_1))\_CBC3B,}\_SBS3B)\U
. , L V=m2,®I0,+m2 old,—[m2,dId,+H.c]

+ 5 S,,5C Aa— A7) =5 S5So5Ny,
? S2pCop(ZMaThT) 72 SgSaphy +3N(DID)2+ E NP2+ (N Np) (]D,)

- , X(DiDp) + (A= Aa= Np)(PLDL) (DD ,)
The Higgs boson couplings to vector bosons depend only on

B— «a [see Eqs(37)—(39)]. The Higgs boson couplings to fermions +H{in— )\A)(¢)2¢b)2_[}\(q>;¢>a)
in the type-Ill model(in which both up-and down-type fermions
couple to both Higgs doublétan also be written in terms of +)\U((I>E(Db)]<b;<l>b+ H.c}, (E6)

invariant parameters. However, one would then have to identify the
appropriate invariant combinations of the Higgs-boson—fermion
Yukawa coupling parametef8§0] 7 and 7P [see Eq.(42)]. where three new invariant quantities are revealed:
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2 _ 2 <2 2 2 _1m2 2 \x TABLE I. Three-Higgs-boson vertex Feynman rules in the ap-
m;,=mi,Cztm [MmI,+ (M) * 1S5C4, (E7) 99 Yy p
aa™ MuiCp M225 12732 IDEmA proach to the decoupling limit are given bgagc=iv(Xapc

+YagcCs-4), Where the coefficientX and Y are listed below.

> _ 22,2 2 2 2
Mpp=M11Sp+ M5Lp+[Mip+ (M) * Isscy,

(E8) ABC XaBC Yasc
hhh -3\ 9\
2 2 2 2 2 2 2
MZp= (M= M3)SECa+ MLy — (M1)* S5 (E9 hhH —3% A+2(N7—2\4)
hHH 2(Na—N) = A7 3(\y—21)
In the CP-conserving theory whermi2 is real, the corre- hAA —\T \u
sponding potential minimum conditior&gs. (6),(7)] sim- hHTH™ —A7— A \u
plify to HHH —3\y 6(Aa—N) =3\t
HAA 7)\U 7)\1’
~ + - _ _ _
m2,=—1v2\, ml=—1v?\, (E10 HHH Ny AT he

with no constraint ormZ,. In fact, m2, is related tom3:

=—U[A1Sg_s—AyCp—al,
ma=Tr m>+ 3 v2(N+Ap)=mi+ 302\ (E1D Gnaa [N7sg uCs-al

after imposing the potential minimum conditipiq. (E10)]. 9raa= V[N TCs-a T AuSs-al,
It is convenient to trade the free parametaf, for 83— .
Using the results of Eq$D30) and (D31), it follows that On=30[NSy_o(~ 3 +C2_ )+ ey o(1-353_,)
tar{2(8—a)] 2\ (E12 (M A)Sp-a(3Cho) ¥ AU aCp-al.
a —a)|= ,
)\A_%)\T_mgblvz , X . ,
Irnh=3v[NCp-a(—5+Sg_,) = NSg_a(1—3c5_,)
where the sign of sfi2(8—a)] is equal to the sign of. +(2)\A_)\T)CB—G’(%_Sf?—a)_)\uclzi—asﬁ—a]l

It is now straightforward to obtain the three- and four-
Higgs-boson couplings in terms of the invariant coupling A
E)élg)ameters an@— a, by inserting Eqs(E3)—(E5) into Eq. Onhn= —30[NSg_o(1+C5 ) —3ACp_ oS5,
' ~(2MA=A1)Sp-aCh 0 MuCh- .

APPENDIX F: THREE-HIGGS-BOSON VERTICES i
IN THE TWO-HIGGS-DOUBLET MODEL Gunn= —3V[ACp_o(1+S5_,) +3NsSp_.C5_,,

In this appendix, we list the Feynman rules for the three- _(2)\A_)\T)Cﬁfasz—a+ )\Usz_a],
point Higgs boson interaction in the most genefP-
conserving two-Higgs-doublet extension of the standard
model. The Feynman rule for theBC vertex is denoted by ~ Ghn+n-= —V[(Ar+NE)Sg— o= AuCp-al,
igapc.>? For completenesf}-gauge Feynman rules involv-
ing the Goldstone boson&(- andG) are also listed. _
The Feynman rules are obtained from the scalar potential IHH"H™ =
by multiplying the corresponding coefficients df by —i
times the appropriate symmetry factor. To obtain the three- In the approach to the decoupling limit, the three-Higgs-
Higgs-boson couplings in terms @f— « and the invariant boson vertices simplify considerably as exhibited in Table I.
coupling parameters, we insert E4E3)—(E5) into Eq. (E6), Here, we have listed all the cubic couplings in the form
and identify the terms that are cubic in the Higgs boson
fields. The resulting three-point Higgs boson couplings
(which are proportional te =2my,/g) are given by

—v[(Mr+Np)Cs 0t AuS—ol- (F1)

gasc=v(Xagct YaBcCs- o) (F2)

where the coefficientX andY are given in terms of various
3270 obtaingagc, multiply the coefficient oABC that appears in  linear combinations of the invariant coupling parameters.
the interaction Lagrangian by the appropriate symmetry faator ~These results follow trivially from EqF1).
wheren is the number of identical particles at the vertex. Note that  The couplings involving the Goldstone bosons are given
H*™ andH™ are not considered identical. by
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Ohee=Ohata-=U[ ACg_ o= ASg_4],

Ohee=0OHGte— = —U[A)\S,B—Lﬁ NCs o],

PHYSICAL REVIEW D 67, 075019 (2003

TABLE II. Four-Higgs-boson vertex Feynman rules in the ap-
proach to the decoupling limit are given bgagcp=1(Xasco
+YagcoCs-a), Where the coefficientX and Y are listed below.

The rules forAAAA AAH"H ™, andH"H H™H™ are exactsince

Ihac=0[ ASg_a— (N —Ap)Cp_], they are independent g — ).

OHac=U[ ACg_ o (A—=NA)Sg—al, ABCD Xasch Y asco
Onh=c==0[ ASg_ o= (N=Na—3 NF)Cp_al, hhhh -3\ 123
Irr=er=0[ NCa_ ot (A= A= 3 Ng)Sp_,l, hhhH -3 S(AFAT=2Mp)
gAHiGIZ izv)\p . (F3) hhAA _)\T 2)\U

hhH+H_ _)\T_)\F 2)\U
In the rule for theAH*G™ vertex, the sign corresponds to hHHH 3y 3(v=A)+6(Aa—R)
H* entering the vertex anG ™ leaving the vertex. hHAA - Ay —ArtAy
One can also express the three-Higgs-boson vertices in hHH™H —Auy A=Ar— e
terms of the Higgs boson masses by using E@26)— HHHH —3\y —12ny
(D29). The Feynman rules for the three-point Higgs boson HHAA —Av —2hy
vertices that involve Goldstone bosons then take on rather HHHH™ —Ay —2hy
simple forms: AAAA —3\y 0
_ AAH"H™ Ay 0
— _ 2 _ -
ghGG—ghG+G*—mthﬂw1 H*H H'H —2\y 0
_ - 2 . . .
(¢ [STelchul Schgch ZmeHCB—a' have also exhibited,y+y- in Eq. (59). Expressions for the

other three-Higgs-boson couplings in terms of the Higgs bo-

_ "9, 2 2
ghac= m(mh_ MA)Ca— o

son masses can be found in Ref2] (see also Ref48] for
the case ohg=\,;=0 and Ref[51] for other special casgs

However, in the most general case, such expressions are less

g
OHAG™ m(mﬁ —MX)Sp_a,

useful. Finally, using Eq(D29) we note the relations

v[GhH+H-—Ohaal= _Z(mai_mi)sﬁfaa

U[gHH+H__gHAA]:_Z(mai_mi)cﬁfa- (F7)

APPENDIX G: FOUR-HIGGS-BOSON VERTICES

_ 2 2
thtGI—m(mHt_mh)Cﬁ—a,
9 2 2
OHH=67= g My~ Mi)Sp—a,
B *ig 5
OAH=GT= ZmW(mHt my). (F4)

IN THE TWO-HIGGS-DOUBLET MODEL

In this appendix, we list the Feynman rules for the four-

The cubic couplings of the physical Higgs bosons, expresse@oint Higgs boson interaction in the most gene@iP-
in terms of the Higgs boson masses, are more complicategonserving two-Higgs-doublet extension of the standard

For example, let us first computgp, in terms ofA 1,... ,\7:
Ohhh= 30[)\1320,3_ chis,cﬁ N34554CaCat g

— N6S4(3C4C—SaSp) + N 7C2(3S,85—CuCp)].

model. Recalling that;;= —V, the Feynman rules are ob-
tained from the scalar potentfalby multiplying the corre-
sponding coefficients of by —i times the appropriate sym-
metry factor. We find it convenient to write the terms of the
potential that are quartic in the Higgs fields as a sum of two

(F5  pieces:VoV,+ Vs, whereV, depends explicitly on3— a

This can then be reexpressed in terms of the Higgs bos
masses using EqéD20)—(D23). The end result i$12]

9nhh=—3v ChaCpia

U2 UZSBCﬂ

. Fe) °

S C
+(>\6—“—>\7—“> Coa
S Cp

Note that the decoupling limit resUlEq. (57)] follows easily

Note, e.g., that the term proportional tAH* G

0%nd Vg is independent ofs— «. To obtain the four-Higgs-
boson couplings in terms @ — « and the invariant coupling
) SO ) parameters, we insert E&3)—(E5) into Eq.(E6) and iden-
MiSg—o [ My—Ma—As0%| tify the terms that are quartic in the Higgs boson fields. For
( ) completeness, the quartic interaction terms involving the
Goldstone bosonsg™ andG) are also listed. The end result

in V corre-

after using Eq«(29) to obtain theO(cz_,) correction. We  sponds toH™ andG~ directedinto the vertex, etc.
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8VA=h* NS5 (3¢5 ,+1)—4NCs_ oSy o= 2(2NaA—A1)C5_ 0S5 0= ANUCH_ uSp—at MCh_ ]
+4hPH[ASp_ ,Cp-a(3C5 ,— 1) = NS5 ,(4C5 .= 1) = (2NA=N1)Sp-uCp-al(Ch 0S5 o) FAuCh_4(4S5_,—1)
—AvSg_aCa o]+ 202HZN(2-955 €5 ) = 6(X—Ny)Ss-uCpoal(Ch 0S5 o)~ (2Aa—A7)(1—6S5_,C5 )
+3NSE_ oCh o] T ANHNSs_ (Cp o(3S5_,— 1)+ NC5_ (4S5, — 1)+ (2Ma—A7)SpoCpol(Ch o —S5_4)
—NuSH_o(4C5_ 1) = AyCg_ S o]+ HNCE (35, +1)+4NCS_ ,Sp_ 0= 2(2Aa—A7)C5_ S5,
FANGCH- oSy 0t MSh o]+ 202AZINTSE ,— 2NySp_aChm ot AVC o]+ 4NPAG[2(A—Ap)Sp_uCp_a— NS5,
—NyCho o]+ 2h2GP NS5, —2 NS o Cp_ ot A1C5_ ]+ 4N2H T H [(Nr+Np)S5_ ,— 2MySp— oCpout MCh_ 4]
+4(h?H"G™+h?H G™)[(2N—2Ma— Mp)Sp_uCpa— AS5_ o~ AuCh_ o] T4N?GT G NS5 ,—2XSp_,Ch,
+(NH+AE)CE ]+ ANHAZ T (AT =N)Sp aCpma = ANu(Ch o= S5 o) 1+ BNHAGI (A=A p)(C5_,—S5_ ) — (A
~NU)Sp—aCpmal T ANHGZ (A= A7)Sp_oCpo = MC5_ =S5 o) ] +BNHHTH [(Ar=Ny+Np)Sg_oCps
—Au(C5 =S5 )]+ 4(hHH G +hHH G™)[(2N =2 a—Ap)(C5 =S5 o) —2( N =Ny)Sp-oCp- o]
+8hHG G [(N=N1=Ap)Sg_uCpa— M(Ch_ =S5 ) 1+ 2H?AZN1CS +2NySp_uCpo ot AvS5_,]
+AH?AG[2(NA—=N)Sp—aCp o= AC5_ o= NySh_ o]+ 2HZG?NCE_ ,+2NSp_(Cpo o T A1S5_ ]+ 4HZH T H [(A1
+FAE)CE o+ 2NUSp_aCpoat AvSE o]+ A(HZH G +H?H G H)[(2Aa— 2N+ Ap)Sp_aCpou— ACH_ o= AySH_,]
+AH?G G [NC5_ ,+2XSp_oCpo ot N+ AE)SE_ ]+ 4I[NAH' G —hAH G*+HGH' G~
—HGH G*"I\gsg_,—4[NGH' G —hGH G*'—HAH'G +HAH G"I\eCy_y,, (G1)
and
8Vg=Ay(A*+4A2H"H +4H "H H H ) — 4N y(ASG+AH G +A?H GT+2AGH H +2H"H H'G™

+2H H H GT)+2[2(N—Np) +A7]A2G2+4(A 1+ M) (A’G TG +G?H H ) — 4N (AGP+2AGG" G~

+G?H G +G?H G "+2H'G"G G +2H G G 'G")+4[2(A—Aa)—Ac](AGH"G +AGH G*)+A(G*

+4G2G G +4G TG GG ) +4(A—AM)(HTHTG G +H H GTGH)+8(A— M+ ADHTH G'G™. (G2

The quartic Higgs boson couplings are now easily ob- Let us denote the Feynman rule for tABCD vertex by
tained by including the appropriate symmetry factors. Forigagcp. In the approach to the decoupling limit, the four-
example, thén* andH* couplings are given by Higgs-boson vertices simplify considerably as exhibited in

Table Il. Here, we have listed all couplings in the form

Onnne= —3[ASH_ (1+3c5 ) —4hcs oSh_,—2(2\a
s 3 4 gascp=(XaBcot YaBCDCs-a): (GY
“AT)CE_ S0~ ANUCE_4Sp-aTACa_ ],
(G3) where the coefficientX andY are given in terms of various
linear combinations of the invariant coupling parameters.
Note that the terms contained Wy are not affected by the
decoupling limit since these terms are independent3of
_ 2 2 3 4 — Q.
MG oS- ot ANUCH- oS ot MSp-al: The four-Higgs-boson couplings can be rewritten in terms
(G4 of A1,...,A\7, @, and B. The resulting expressions are gener-
ally more complex, with a few notable exceptions. For ex-
Note the first appearance of physical observables that depemanple, the quartic couplings W, that depend only oh and
oNn\y. H are independent g8:

Qunnn= —3[NC5_(1+3s5 ) +4NC) ,Sp_—2(2\p
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Va2 5 WU N1Sh+ N oCh+ 3 NaasS5,— 2504(N6SatN7C2) 1+ 3 hPH[ 3 Sp0( = N1SA+NoCa— NaaeCoa) + N6SaS3a T N7CaCas]
+3 h?H2[3 3, (N1 + N o= 2\ a48) + Naas— 3524Coa( Mg~ A7) ]+ 3 NH3[ 5 S50(— N1Ch+NoSh+ NgaeCaa) + N 6CoCaq

+N7S,S34]+ 5 HAINICE+ NoSh+ 3 NassSa,+ 2S04(N6Cat+ N7S2) ], (G6)

and in this form these results are somewhat simpler than the corresponding expressions in terms of the invariant coupling
parameters given in EGG1). One can check that the latter can be obtained from(&6) by rotating to the Higgs basisee
the discussion in Appendix)EThat is, in Eq.(G6), let a—a— B, \;—\, Aa— Ay, Azss—2(A—Aa)+ A7, Ag— — \, and
N;— — Ay [cf. Eq. (EB)].

One can also express the four-Higgs-boson vertices in terms of the Higgs boson masses by usbg0eg®23). For
example[12],

m;
Ohhhh= —3 22| Spma”

(G7)

2 2 2 2 2 2 2\ 2
cﬁ+acﬁ_a) . %(sacacﬁ_a)z_ ma+\sv (cﬁ+acﬁ_a)2_ 2(NgSotN7CL)Ch,
v

2 2
SBCB 1% SBCB SBCB SBCB

Note that the decoupling limit resulEq. (58)] follows trivially, after using Eqs(29) and (31) to obtain theO(csz_,)
correction. Expressions for other four-Higgs-boson couplings in terms of the Higgs boson masses can be fourfd2h Ref.
(see also Ref.48] for the case ofhg=\;=0 and Ref[51] for other special casgsHowever, in the most general case, such
expressions are less useful.
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