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CP-conserving two-Higgs-doublet model: The approach to the decoupling limit
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A CP-even neutral Higgs boson with standard-model-like couplings may be the lightest scalar of a two-
Higgs-doublet model. We study the decoupling limit of the most generalCP-conserving two-Higgs-doublet
model, where the mass of the lightest Higgs scalar is significantly smaller than the masses of the other Higgs
bosons of the model. In this case, the properties of the lightest Higgs boson are nearly indistinguishable from
those of the standard model Higgs boson. The first nontrivial corrections to Higgs boson couplings in the
approach to the decoupling limit are also evaluated. The importance of detecting such deviations in precision
Higgs boson measurements at future colliders is emphasized. We also clarify the case in which a neutral Higgs
boson can possess standard-model-like couplings in a regime where the decoupling limit does not apply. The
two-Higgs-doublet sector of the minimal supersymmetric model illustrates many of the above features.

DOI: 10.1103/PhysRevD.67.075019 PACS number~s!: 14.80.Cp, 12.60.Fr, 12.60.Jv, 14.80.Bn
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I. INTRODUCTION

The minimal version of the standard model~SM! contains
one complex Higgs doublet, resulting in one physical neu
CP-even Higgs bosonhSM after electroweak symmetr
breaking~EWSB!. However, the standard model is not like
to be the ultimate theoretical structure responsible for e
troweak symmetry breaking. Moreover, the standard mo
must be viewed as an effective field theory that is embed
in a more fundamental structure, characterized by an en
scale L, which is larger than the scale of EWSB,v
5246 GeV. AlthoughL may be as large as the Planck sca
there are strong theoretical arguments that suggest thatL is
significantly lower, perhaps of order 1 TeV@1#. For example,
L could be the scale of supersymmetry breaking@2–4#, the
compositeness scale of new strong dynamics@5#, or associ-
ated with the inverse size of extra dimensions@6#. In many of
these approaches, there exists an effective low-energy th
with elementary scalars that comprise a nonminimal Hig
sector@7#. For example, the minimal supersymmetric exte
sion of the standard model~MSSM! contains a scalar Higg
sector corresponding to that of a two-Higgs-doublet mo
~2HDM! @8,9#. Models with Higgs doublets~and singlets!
possess the important phenomenological property
r5mW /(mZ cosuW)51 up tofinite radiative corrections.

In this paper we focus on a general 2HDM. There are t
possible cases. In the first case, there is never an en
range in which the effective low-energy theory contains o
one light Higgs boson. In the second case, oneCP-even neu-
tral Higgs bosonh is significantly lighter than a new scal
L2HDM , which characterizes the masses of all the remain
2HDM Higgs states. In this latter case, the scalar secto
the effective field theory belowL2HDM is that of the SM
Higgs sector. In particular, ifL2HDM@v, and all dimension-
less Higgs self-coupling parametersl i&O(1) @see Eq.~1!#,
then the couplings ofh to gauge bosons and fermions and t
h self-couplings approach the corresponding couplings of
hSM, with the deviations vanishing as some power
v2/L2HDM

2 @10#. This limit is called the decoupling limit@11#
0556-2821/2003/67~7!/075019~26!/$20.00 67 0750
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and is one of the main subjects of this paper.
The purpose of this paper is to fully define and explo

the decoupling limit of the 2HDM.1 We will explain the~of-
ten confusing! relations between different parameter se
~e.g., Higgs boson masses and mixing angles vs Lagran
tree-level couplings! and give a complete translation table
Appendix A. We then make one simplifying assumptio
namely, that the Higgs sector isCP conserving.~The condi-
tions that guarantee that there is no explicit or spontane
breaking ofCP in the 2HDM are given in Appendix B. The
more generalCP-violating 2HDM is treated elsewher
@13,14#.! In the CP-conserving 2HDM, there is still some
freedom in the choice of Higgs-boson–fermion couplings
number of different choices have been studied in the lite
ture @7,15#: type I, in which only one Higgs doublet couple
to the fermions; and type II, in which the neutral member
one Higgs doublet couples only to up-type quarks and
neutral member of the other Higgs doublet couples only
down-type quarks and leptons. For Higgs-boson–ferm
couplings of type I or type II, tree-level flavor-changing ne
tral currents~FCNCs! mediated by Higgs bosons are aut
matically absent@16#. Type-I and type-II models can b
implemented with an appropriately chosen discrete sym
try ~which may be softly broken without dire phenomen
logically consequences!. The type-II model Higgs sector als
arises in the MSSM. In this paper, we allow for the mo
general Higgs-boson–fermion Yukawa couplings~the so-
called type-III model @17#!. For type-III Higgs-boson–
fermion Yukawa couplings, tree-level Higgs-boson-media
FCNCs are present, and one must be careful to choose H
boson parameters that ensure that these FCNC effects
numerically small. We will demonstrate in this paper that
the approach to the decoupling limit, FCNC effects gen
ated by tree-level Higgs boson exchanges are suppresse
a factor ofO(v2/L2HDM

2 ).

1Some of the topics of this paper have also been addresse
cently in Ref.@12#.
©2003 The American Physical Society19-1
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In Sec. II, we define the most generalCP-conserving
2HDM and provide a number of useful relations among
parameters of the scalar Higgs potential and the Higgs bo
masses in Appendixes C and D. In Appendix E, we note
certain combinations of the scalar potential parameters
invariant with respect to the choice of basis for the two sca
doublets. In particular, the Higgs boson masses and
physical Higgs boson interaction vertices can be written
terms of these invariant coupling parameters. The decoup
limit of the 2HDM is defined in Sec. III and its main prop
erties are examined. In this limit, the properties of the lig
estCP-even Higgs bosonh precisely coincide with those o
the SM Higgs boson. This is shown in Sec. IV, where
exhibit the tree-level Higgs boson couplings to vec
bosons, fermions, and Higgs bosons, and evaluate the
the decoupling limit~cubic and quartic Higgs boson sel
couplings are written out explicitly in Appendixes F and
respectively!. The first nontrivial corrections to the Higg
boson couplings as one moves away from the decoup
limit are also given. In Sec. V, we note that certain parame
regimes exist outside the decoupling regime in which one
the CP-even Higgs bosons exhibits tree-level couplings t
approximately coincide with those of the SM Higgs boso
We discuss the origin of this behavior and show how one
distinguish this region of parameter space from that of t
decoupling. In Sec. VI, the two-Higgs-doublet sector of t
MSSM is used to illustrate the features of the decoupl
limit when mA@mZ . In addition, we briefly describe th
impact of radiative corrections and show how these corr
tions satisfy the requirements of the decoupling limit. W
emphasize that the rate of approach to decoupling can
delayed at large tanb, and we discuss the possibility of
SM-like Higgs boson in a parameter regime in which
Higgs boson masses are in the range&O(v). Finally, our
conclusions are give in Sec. VII.

II. THE CP-CONSERVING TWO-HIGGS-DOUBLET
MODEL

We first review the general~nonsupersymmetric! two-
Higgs-doublet extension of the standard model@7#. Let F1
and F2 denote two complexY51, SU(2)L doublet scalar
fields. The most general gauge invariant scalar potentia
given by2

V5m11
2 F1

†F11m22
2 F2

†F22@m12
2 F1

†F21H.c.#

1 1
2 l1~F1

†F1!21 1
2 l2~F2

†F2!21l3~F1
†F1!~F2

†F2!

1l4~F1
†F2!~F2

†F1!1$ 1
2 l5~F1

†F2!21@l6~F1
†F1!

1l7~F2
†F2!#F1

†F21H.c.%. ~1!

In general,m12
2 , l5 , l6 , andl7 can be complex. In many

discussions of two-Higgs-doublet models, the terms prop

2In Refs.@7# and@9#, the scalar potential is parametrized in term
of a different set of couplings, which are less useful for the dec
pling analysis. In Appendix A, we relate this alternative set of co
plings to the parameters appearing in Eq.~1!.
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tional to l6 and l7 are absent. This can be achieved
imposing a discrete symmetryF1→2F1 on the model.
Such a symmetry would also requirem12

2 50 unless we allow
a soft violation of this discrete symmetry by dimension-tw
terms.3 In this paper, we refrain in general from setting a
of the coefficients in Eq.~1! to zero.

We next derive the constraints on the parametersl i such
that the scalar potentialV is bounded from below. It is suf-
ficient to examine the quartic terms of the scalar poten
~which we denote byV4). We definea[F1

†F1 , b[F2
†F2 ,

c[ReF1
†F2, d[Im F1

†F2, and note thatab>c21d2. Then,
one can rewrite the quartic terms of the scalar potentia
follows:

V45 1
2 @l1

1/2a2l2
1/2b#21@l31~l1l2!1/2#~ab2c22d2!

12@l31l41~l1l2!1/2#c2

1@Rel52l32l42~l1l2!1/2#~c22d2!22cd Im l5

12a@c Rel62d Im l6#12b@c Rel72d Im l7#. ~2!

We demand that no directions exist in field space in wh
V→2`. ~We also require that no flat directions exist f
V4 .) Three conditions on thel i are easily obtained by ex
amining asymptotically large values ofa and/or b with
c5d50:

l1.0, l2.0, l3.2~l1l2!1/2. ~3!

A fourth condition arises by examining the direction in fie
space wherel1

1/2a5l2
1/2b and ab5c21d2. Settingc5jd,

and requiring that the potential is bounded from below for
j leads to a condition on a quartic polynomial inj, which
must be satisfied for allj. There is no simple analytical con
straint on thel i that can be derived from this condition.
l65l750, the resulting polynomial is quadratic inj, and a
constraint on the remaining nonzerol i is easily derived@18#:

l31l42ul5u.2~l1l2!1/2 ~assumingl65l750!.
~4!

In this paper, we shall ignore the possibility of explic
CP-violating effects in the Higgs potential by choosing a
coefficients in Eq.~1! to be real~see Appendix B!.4 The
scalar fields will develop nonzero vacuum expectation val

-
-

3This discrete symmetry is also employed to restrict the Hig
boson–fermion couplings so that no tree-level Higgs-bos
mediated FCNCs are present. Ifl65l750 but m12

2 Þ0, the soft
breaking of the discrete symmetry generatesfinite Higgs-boson-
mediated FCNCs at one loop.

4The most generalCP-violating 2HDM will be examined in Ref.
@14#.
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CP-CONSERVING TWO-HIGGS-DOUBLET MODEL: THE . . . PHYSICAL REVIEW D 67, 075019 ~2003!
if the mass matrixmi j
2 has at least one negative eigenvalu

We assume that the parameters of the scalar potentia
chosen such that the minimum of the scalar potential resp
the U(1)e.m. gauge symmetry. Then, the scalar field vacu
expectation values are of the form

^F1&5
1

&
S 0
v1

D , ^F2&5
1

&
S 0
v2

D , ~5!

where thev i are taken to be real, i.e., we assume that sp
taneousCP violation does not occur.5 The corresponding po
tential minimum conditions are

m11
2 5m12

2 tb2 1
2 v2@l1cb

21l345sb
213l6sbcb1l7sb

2 tb#, ~6!

m22
2 5m12

2 tb
212 1

2 v2@l2sb
21l345cb

21l6cb
2 tb

2113l7sbcb#,
~7!

where we have defined

l345[l31l41l5 , tb[tanb[
v2

v1
, ~8!

and

v2[v1
21v2

25
4mW

2

g2 5~246 GeV!2. ~9!
07501
.
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It is always possible to choose the phases of the scalar
blet Higgs fields such that bothv1 and v2 are positive;
henceforth we take 0<b<p/2.

Of the original eight scalar degrees of freedom, thr
Goldstone bosons (G6 andG! are absorbed by theW6 and
Z. The remaining five physical Higgs particles are twoCP-
even scalars~h and H, with mh<mH), one CP-odd scalar
(A), and a charged Higgs pair (H6). The squared-mass pa
rametersm11

2 and m22
2 can be eliminated by minimizing the

scalar potential. The resulting squared masses for theCP-odd
and charged Higgs states are6

mA
25

m12
2

sbcb
2 1

2 v2~2l51l6tb
211l7tb!, ~10!

mH6
2

5mA0
2

1 1
2 v2~l52l4!. ~11!

The twoCP-even Higgs states mix according to the follow
ing squared-mass matrix:

M2[mA0
2 S sb

2 2sbcb

2sbcb cb
2 D 1B2, ~12!

where
B2[v2S l1cb
212l6sbcb1l5sb

2 ~l31l4!sbcb1l6cb
21l7sb

2

~l31l4!sbcb1l6cb
21l7sb

2 l2sb
212l7sbcb1l5cb

2 D . ~13!

Defining the physical mass eigenstates

H5~& ReF1
02v1!ca1~& ReF2

02v2!sa ,

h52~& ReF1
02v1!sa1~& ReF2

02v2!ca , ~14!

the masses and mixing anglea are found from the diagonalization process

S mH
2 0

0 mh
2D 5S ca sa

2sa ca
D S M11

2 M12
2

M12
2 M22

2 D S ca 2sa

sa ca
D

5S M11
2 ca

212M12
2 casa1M22

2 sa
2 M12

2 ~ca
22sa

2 !1~M22
2 2M11

2 !saca

M12
2 ~ca

22sa
2 !1~M22

2 2M11
2 !saca M11

2 sa
222M12

2 casa1M22
2 ca

2 D . ~15!

5The conditions required for the absence of explicit and spontaneousCP violation in the Higgs sector are elucidated in Appendix B.
6Here and in the following, we use the shorthand notationcb[cosb, sb[sinb, ca[cosa, sa[sina, c2a[cos 2a, s2a[cos 2a,

cb2a[cos(b2a), sb2a[sin(b2a), etc.
9-3
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J. F. GUNION AND H. E. HABER PHYSICAL REVIEW D67, 075019 ~2003!
The mixing anglea is evaluated by setting the off-diagon
elements of theCP-even scalar squared-mass matrix@Eq.
~15!# to zero, and demanding thatmH>mh . The end result is

mH,h
2 5 1

2 @M11
2 1M22

2 6A~M11
2 2M22

2 !214~M12
2 !2#,

~16!

and the correspondingCP-even scalar mixing angle is fixe
by

s2a5
2M12

2

A~M11
2 2M22

2 !214~M12
2 !2

,

c2a5
M11

2 2M22
2

A~M11
2 2M22

2 !214~M12
2 !2

. ~17!

We shall take2p/2<a<p/2.
It is convenient to define the following four combination

of parameters:

mD
4 [B11

2 B22
2 2@B12

2 #2,

mL
2[B11

2 cos2 b1B22
2 sin2 b1B12

2 sin 2b,

mT
2[B11

2 1B22
2 ,

mS
2[mA

21mT
2, ~18!

where theBi j
2 are the elements of the matrix defined in E

~13!. In terms of these quantities we have the exact relati

mH,h
2 5 1

2 @mS
26AmS

424mA
2mL

224mD
4 #. ~19!

and

cb2a
2 5

mL
22mh

2

mH
2 2mh

2 . ~20!

Equation ~20! is most easily derived by using the identi
cb2a

2 5 1
2 (11c2bc2a1s2bs2a) and the results of Eq.~17!.

Note that the case ofmh5mH is special and must be treate
carefully. We do this in Appendix C, where we explicit
verify that 0<cb2a

2 <1.
Finally, for completeness we record the expressions

the original hypercharge-1 scalar fieldsF i in terms of the
physical Higgs states and the Goldstone bosons:

F1
65cbG62sbH6,

F2
65sbG61cbH6,

F1
05

1

&
@v11caH2sah1 icbG2 isbA#,

F2
05

1

&
@v21saH1cah1 isbG1 icbA#. ~21!
07501
.
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III. THE DECOUPLING LIMIT

In an effective field theory, we may examine the behav
of the theory characterized by two disparate mass sca
mL!mS , by integrating out all particles with masses of o
der mS , assuming that all the couplings of the ‘‘low-mass
effective theory comprising particles with masses of ord
mL can be kept fixed. In the 2HDM, the low-mass effecti
theory, if it exists, must correspond to the case where on
the Higgs doublets is integrated out. That is, the result
effective low-mass theory is precisely equivalent to the o
scalar-doublet SM Higgs sector. These conclusions foll
from electroweak gauge invariance; namely, there are
relevant scales—the electroweak scale characterized by
scalev5246 GeV and a second scalemS@v. The underly-
ing electroweak symmetry requires that scalar mass splitt
within doublets cannot be larger thanO(v) @assuming that
dimensionless couplings of the theory are no larger th
O~1!#. It follows that theH6, A, andH masses must be o
O(mS), while mh;O(v). Moreover, since the effective low
mass theory consists of a one-doublet Higgs sector, the p
erties ofh must be indistinguishable from those of the S
Higgs boson.

We can illustrate these results more explicitly as follow
Suppose that all the Higgs boson self-coupling parame
l i are held fixed such thatul i u&O(1), while taking
mA

2@ul i uv2. In particular, we constrain thea i[l i /(4p) so
that the Higgs sector does not become strongly coupled,
plying no violations of tree unitarity@19–23#. Then the
Bi j

2 ;O(v2), and it follows that

mh.mL5O~v !, ~22!

mH ,mA ,mH65mS1O~v2/mS!, ~23!

and

cos2~b2a!.
mL

2~mT
22mL

2!2mD
4

mA
4

5
@ 1

2 ~B11
2 2B22

2 !s2b2B12
2 c2b

2#

mA
4

5OS v4

mS
4D . ~24!

We shall establish the above results in more detail below
The limit mA

2@ul i uv2 ~subject toua i u&1) is called the
decoupling limitof the model.7 Note that Eq.~24! implies
that in the decoupling limitcb2a5O(v2/mA

2). We will dem-
onstrate that this implies that the couplings ofh in the de-
coupling limit approach values that correspond precisely

7In Sec. IV @see Eq.~51! and surrounding discussion#, we refine
this definition slightly, and also require thatmA

2@ul6uv2 cotb and
mA

2@ul7uv2 tanb, in order to guarantee that at large cotb (tanb)
the couplings ofh to up-type~down-type! fermions approach the
corresponding SM Higgs-boson–fermion couplings.
9-4
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CP-CONSERVING TWO-HIGGS-DOUBLET MODEL: THE . . . PHYSICAL REVIEW D 67, 075019 ~2003!
those of the SM Higgs boson. We will also obtain expli
expressions for the squared-mass differences between
heavy Higgs bosons~as a function of thel i couplings in the
Higgs potential! in the decoupling limit.

One can give an alternative condition for the decoupl
limit. As above, we assume that allua i u&1. First consider the
following special cases. If neither tanb nor cotb is close to
0, thenm12

2 @ul i uv2 @see Eq.~10!# in the decoupling limit.
On the other hand, ifm12

2 ;O(v2) and tanb@1 (cotb@1),
then it follows from Eqs.~6! and ~7! that m11

2 @O(v2) if
l7,0 @m22

2 @O(v2) if l6,0] in the decoupling limit. All
such conditions depend on the original choice of the sc
field basisF1 andF2 . For example, we can diagonalize th
squared-mass terms of the scalar potential@Eq. ~1!# thereby
settingm1250. In the decoupling limit in the new basis, on
is simply driven to the second case above. A bas
independent characterization of the decoupling limit
simple to formulate. Starting from the scalar potential in
arbitrary basis, form the matrixmi j

2 @made up of the coeffi-
cients of the quadratic terms in the potential; see Eq.~1!#.
Denote the eigenvalues of this matrix byma

2 andmb
2, respec-

tively; note that the eigenvalues are real but can be of ei
sign. By convention, we can takeuma

2u<umb
2u. Then the de-

coupling limit corresponds toma
2,0, mb

2.0 such that
mb

2@uma
2u,v2 ~with ua i u&1).

For some choices of the scalar potential, no decoup
limit exists. Consider the case ofm12

2 5l65l750 ~and all
otherua i u&1). Then the potential minimum conditions@Eqs.
~6! and~7!# do not permit eitherm11

2 or m22
2 to become large;

m11
2 , m22

2 ;O(v2), and clearly all Higgs boson masses are
O(v). Thus, in this case no decoupling limit exists.8 The
case ofm12

2 5l65l750 corresponds to the existence of
discrete symmetry in which the potential is invariant und
the change of sign of one of the Higgs doublet fields. A
though the latter statement is basis dependent, one can c
that the following stronger condition holds: no decoupli
limit exists if and only if l65l750 in the basis where
m12

2 50. Thus, the absence of a decoupling limit implies t
existence of some discrete symmetry under which the sc
potential is invariant~although the precise form of this sym
metry is most evident for the special choice of basis!.

We now return to the results for the Higgs boson mas
and theCP-even Higgs boson mixing angle in the deco
pling limit. For fixed values ofl6 , l7 , a, andb, there are
two equivalent parameter sets:~i! l1 , l2 , l3 , l4 , andl5 ;
~ii ! mh

2, mH
2 , m12

2 , mH6
2 , andmA

2. The relations between thes
two parameter sets are given in Appendix D. Using the
sults Eqs.~D3!–~D7! we can give explicit expressions in th
decoupling limit for the Higgs boson masses in terms of

8However, it may be difficult to distinguish between the nond
coupling effects of the SM with a heavy Higgs boson and those
the 2HDM where all Higgs bosons are heavy@24#.
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potential parameters and the mixing angles. First, it is c
venient to define the following four linear combinations
the l i :9

l[l1cb
41l2sb

41 1
2 l345s2b

2 12s2b~l6cb
21l7sb

2 !, ~25!

l̂ [ 1
2 s2b@l1cb

22l2sb
22l345c2b#2l6cbc3b2l7sbs3b ,

~26!

lA[c2b~l1cb
22l2sb

2 !1l345s2b
2 2l512l6cbs3b

22l7sbc3b , ~27!

lF[l52l4 , ~28!

wherel345 is defined in Eq.~8!. The significance of these
coupling combinations is discussed in Appendix E. W
consider the limitcb2a→0, corresponding to the decouplin
limit mA

2@ul i uv2. In nearly all of the parameter spac
M12

2 ,0 @see Eq.~12!#, and it follows from Eq.~17! that
2p/2<a<0 ~which implies thatcb2a→0 is equivalent to
b2a→p/2 given that 0<b<p/2). However, in the small
regions of parameter space in whichb is near zero~or p/2!,
roughly corresponding tomA

2 tanb,l6v
2 ~or mA

2 cotb
,l7v

2), one findsM12
2 .0 ~and consequently 0,a,p/2).

In these last two cases, the decoupling limit is achieved
a5p/22b and cotb@1 (tanb@1). That is, cos(b2a)
5sin 2b!1 and sin(b2a).21 (11).10 In practice, since
tanb is fixed and cannot be arbitrarily large~or arbitrarily
close to zero!, one can always find a value ofmA large
enough such thatM12

2 ,0. This is equivalent to employing
the refined version of the decoupling limit mentioned in foo
note 7. In this case, the decoupling limit simply correspon
to b2a→p/2 @i.e., sin(b2a)51] independently of the
value ofb.

In the approach to the decoupling limit wherea.b
2p/2 ~that is, ucb2au!1 and sb2a.12 1

2 cb2a
2 ), we may

use Eqs.~D9!–~D12! and Eq.~11! to obtain11

mA
2.v2F l̂

cb2a
1lA2

3

2
l̂cb2aG , ~29!

mh
2.v2~l2 l̂cb2a!, ~30!

-
f

9We make use of the triple-angle identitiesc3b5cb(cb
223sb

2)
ands3b5sb(3cb

22sb
2).

10We have chosen a convention in which2p/2<a<p/2. An
equally good alternative is to choose sin(b2a)>0. If negative, one
may simply change the sign of sin(b2a) by taking a→a6p,
which is equivalent to the field redefinitionsh→2h, H→2H.

11In obtaining Eqs.~29!, ~31!, and ~32! we divided both sides of
each equation bycb2a , so these equations need to be treated w
care if cb2a50 exactly. In this latter case, it suffices to note th

l̂/cb2a has a finite limit whose value depends onmA andlA @see
Eq. ~36!#.
9-5
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mH
2 .v2F l̂

cb2a
1l2 1

2 l̂cb2aG
.mA

21~l2lA1 l̂cb2a!v2, ~31!

mH6
2 .v2F l̂

cb2a
1lA1 1

2 lF2
3

2
l̂cb2aG

5mA
21 1

2 lFv2. ~32!

The conditionmH.mh implies the inequality~valid to first
order incb2a)

mA
2.v2~lA22 l̂cb2a! ~33!

@cf. Eq. ~D32!#. The positivity ofmh
2 also imposes a usefu

constraint on the Higgs potential parameters. For exam
mh

2.0 requires thatl.0.
In the decoupling limit~wheremA

2@ul i uv2), Eqs. ~29!–
~32! provide the first nontrivial corrections to Eqs.~22! and
~23!. Finally, we employ Eq.~10! to obtain

m12
2 .v2sbcbF l̂

cb2a
1lA1l51 1

2 l6tb
211 1

2 l7tb

2 3
2 l̂cb2aG . ~34!

This result confirms our previous observation thatm12
2

@ul i uv2 in the decoupling limit as long asb is not close to 0
or p/2. However,m12

2 can be ofO(v2) in the decoupling
limit ( cb2a→0) if either tb@1 @and cb /cb2a;O(1)] or
tb

21@1 @andsb /cb2a;O(1)].
The significance of Eq.~30! is easily understood

by noting that the decoupling limit corresponds to integr
ing out the second heavy Higgs doublet. The res
ing low-mass effective theory is the one-Higg
doublet model with corresponding scalar potent
V5m2(F†F)1(l/2)(F†F)2, wherel is given by Eq.~25!
and

m2[m11
2 cb

21m22
2 sb

222m12
2 sbcb . ~35!

Imposing the potential minimum conditions@Eqs. ~6! and
~7!#, we see thatv2522m2/l ~where^F0&[v/&) as ex-
pected. Moreover, the Higgs boson mass is given bymh

2

5lv2, in agreement with thecb2a→0 limit of Eq. ~30!.
We can rewrite Eq.~29! in another form@or equivalently

use Eqs.~D30! and ~D31! to obtain#

cos~b2a!.
l̂v2

mA
22lAv2 .

l̂v2

mH
2 2mh

2 . ~36!

This yields anO(v2/mA
2) correction to Eq.~24!. Note that

Eq. ~36! also implies that in the approach to the decoupl
limit, the sign of cos(b2a) is given by the sign of̂l.
07501
e,
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IV. TWO-HIGGS-DOUBLET MODEL COUPLINGS
IN THE DECOUPLING LIMIT

The phenomenology of the two-Higgs-doublet model d
pends in detail on the various couplings of the Higgs bos
to gauge bosons, Higgs bosons, and fermions@7#. The Higgs
boson couplings to gauge bosons follow from gauge inv
ance and are thus model independent:

ghVV5gVmVsb2a , gHVV5gVmVcb2a , ~37!

wheregV[2mV /v for V5W or Z. There are no tree-leve
couplings ofA or H6 to VV. In the decoupling limit where
cb2a50, we see thatghVV5ghSMVV , whereas theHVV cou-
pling vanishes. Gauge invariance also determines
strength of the trilinear couplings of one gauge boson to t
Higgs bosons:

ghAZ5
gcb2a

2 cosuW
, gHAZ5

2gsb2a

2 cosuW
. ~38!

In the decoupling limit, thehAZcoupling vanishes, while the
HAZ coupling attains its maximal value. This pattern is r
peated in all the three-point and four-point couplings ofh
andH to VV, Vf, andVVf final states~whereV is a vector
boson andf is one of the Higgs scalars!. These results can
be summarized as follows: the coupling ofh andH to vector
boson pairs or vector-scalar boson final states is proportio
to either sin(b2a) or cos(b2a) as indicated below@7,9#:

cos(b2a) sin(b2a)

HW1W2 hW1W2

HZZ hZZ
ZAh ZAH

W6H7h W6H7H
ZW6H7h ZW6H7H
gW6H7h gW6H7H ~39!

Note in particular thatall vertices in the theory that contai
at least one vector boson andexactly oneof the nonminimal
Higgs boson states~H, A, or H6) are proportional to the
factor cos(b2a) and hence vanish in the decoupling limit.

The Higgs boson couplings to fermions are model dep
dent. The most general structure for the Higgs-boso
fermion Yukawa couplings, often referred to as the type-
model @17#, is given by

2LY5Q̄L
0F̃1h1

U,0UR
01Q̄L

0F1h1
D,0DR

01Q̄L
0F̃2h2

U,0UR
0

1Q̄L
0F2h2

D,0DR
01H.c., ~40!

where F1,2 are the Higgs doublets,F̃ i[ is2F i* , QL
0

is the weak isospin quark doublet, andUR
0,DR

0 are
weak isospin quark singlets.@The right- and left-handed
fermion fields are defined as usual:cR,L[PR,Lc ,
PR,L[ 1

2 (16g5).] Here, QL
0,UR

0,DR
0 denote the interaction

basis states, which are vectors in flavor space, whe
h1

U,0 ,h2
U,0 ,h1

D,0 ,h2
D,0 are matrices in flavor space. We hav

omitted the leptonic couplings in Eq.~40!; these follow the
same pattern as the down-type quark couplings.
9-6
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We next shift the scalar fields according to their vacu
expectation values, and then reexpress the scalars in term
the physical Higgs states and Goldstone bosons@see Eq.
~21!#. In addition, we diagonalize the quark mass matric
and define the quark mass eigenstates. The resulting Hi
boson–fermion Lagrangian can be written in several w
@25#. We choose to display the form that makes the type
model limit of the general type-III couplings apparent. T
type-II model ~whereh1

U,05h2
D,050) automatically has no

tree-level flavor-changing neutral Higgs boson couplin
whereas these are generally present for type-III couplin
The fermion mass eigenstates are related to the interac
eigenstates by biunitary transformations:

PLU5VL
UPLU0, PRU5VR

UPRU0,

PLD5VL
DPLD0, PRD5VR

DPRD0, ~41!
s.

irs

he
e
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and the Cabibbo-Kobayashi-Maskawa matrix is defined
K[VL

UVL
D† . It is also convenient to define ‘‘rotated’’ cou

pling matrices

h i
U[VL

Uh i
U,0VR

U† , h i
D[VL

Dh i
D,0VR

D† . ~42!

The diagonal quark mass matrices are obtained by repla
the scalar fields with their vacuum expectation values

MD5
1

&
~v1h1

D1v2h2
D!, MU5

1

&
~v1h1

U1v2h2
U!. ~43!

After eliminating h2
U and h1

D , the resulting Yukawa cou-
plings are
LY5
1

v
D̄MDDS sa

cb
h2

ca

cb
H D1

i

v
D̄MDg5D~ tbA2G!2

1

&cb

D̄~h2
DPR1h2

D†PL!D~cb2ah2sb2aH !2
i

&cb

D̄~h2
DPR

2h2
D†PL!DA2

1

v
ŪMUUS ca

sb
h1

sa

sb
H D1

i

v
ŪMUg5U~ tb

21A1G!1
1

&sb

Ū~h1
UPR1h1

U†PL!U~cb2ah2sb2aH !

2
i

&sb

Ū~h1
UPR2h1

U†PL!UA1
&

v
@ŪKMDPRD~ tbH12G1!1ŪMUKPLD~6tb

21H11G1!1H.c.#

2F 1

sb
Ūh1

U†KPLDH11
1

cb
ŪKh2

DPRDH11H.c.G . ~44!
ion
n

gs-
ne
rd
In general,h1
U and h2

D are complex nondiagonal matrice
Thus, the Yukawa Lagrangian displayed in Eq.~44! exhibits
both flavor-nondiagonal andCP-violating couplings between
the neutral Higgs bosons and the quarks.

In the decoupling limit~where cb2a→0), the Yukawa
Lagrangian displays a number of interesting features. F
the flavor nondiagonal and theCP-violating couplings ofh
vanish ~although the corresponding couplings toH and A
persist!. Moreover, in this limit, theh coupling to fermions
reduces precisely to its standard model valueLY

SM5

2(mf /v) f̄ f h. To better see the behavior of couplings in t
decoupling limit, the following trigonometric identities ar
particularly useful:

hD̄D: 2
sina

cosb
5sin~b2a!2tanb cos~b2a!, ~45!

hŪU:
cosa

sinb
5sin~b2a!1cotb cos~b2a!, ~46!

HD̄D:
cosa

cosb
5cos~b2a!1tanb sin~b2a!, ~47!
t,

HŪU:
sina

sinb
5cos~b2a!2cotb sin~b2a!, ~48!

where we have indicated the type of Higgs-boson–ferm
coupling with which a particular trigonometric expressio
arises. It is now easy to read off the corresponding Hig
boson–fermion couplings in the decoupling limit and o
verifies that theh-fermion couplings reduce to their standa
model values. Working toO(cb2a), the Yukawa couplings
of h are given by

LhQQ52D̄F1

v
MD2tanbS 1

v
MD2

1

&sb

~SD

1 iPDg5!D cb2aGDh2ŪF1

v
MU1cotbS 1

v
MU

2
1

&cb

~SU1 iPUg5!D cb2aGUh, ~49!

where

SD[ 1
2 ~h2

D1h2
D†!, PD[2

i

2
~h2

D2h2
D†! ~50!
9-7
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are 333 Hermitian matrices andSU and PU are defined
similarly by making the replacementsD→U and 2→1. Note
that bothh-mediated FCNC interactions~implicit in the off-
diagonal matrix elements ofSandP! andCP-violating inter-
actions proportional toP are suppressed by a factor ofcb2a
in the decoupling limit. Moreover, FCNCs andCP-violating
effects mediated byA andH are suppressed by the square
the heavy Higgs boson masses~relative to v), due to the
propagator suppression. Sincemh!mH ,mA and cb2a

.O(v2/mA
2) near the decoupling limit, we see that th

flavor- andCP-violating processes mediated byh, H, andA
are all suppressed by the same factor. Thus, formA
*O(1 TeV), the decoupling limit provides a viable mech
nism for suppressed Higgs-boson-mediated FCNCs and
pressed Higgs-boson-mediatedCP-violating effects in the
most general 2HDM.

Note that the approach to decoupling can be delaye
either tanb@1 or cotb@1, as is evident from Eq.~49!. For
example, decoupling at large tanb or cotb occurs when
ucb2a tanbu!1 or ucb2a cotbu!1, respectively. Using Eqs
~36! and~26!, these conditions are respectively equivalent

mA
2@ul6uv2 cotb and mA

2@ul7uv2 tanb, ~51!

which supplement the usual requirement ofmA
2@l iv

2. That
is, there are two possible ranges of theCP-odd Higgs boson
squared mass,l iv

2!mA
2&ul7uv2 tanb ~or l iv

2!mA
2

&ul6uv2 cotb) when tanb@1 ~or cotb@1), where theh
07501
f

p-

if

o

couplings toVV, hh, and hhh are nearly indistinguishable
from the correspondinghSM couplings, whereas one of th
h f f̄ couplings can deviate significantly from the correspon
ing hSMf f̄ couplings.

The cubic and quartic Higgs boson self-couplings depe
on the parameters of the 2HDM potential@Eq. ~1!#, and are
listed in Appendixes F and G, respectively. In the decoupl
limit ~DL! of a→b2p/2, we denote the terms of the scal
potential corresponding to the cubic Higgs boson couplin
by VDL

(3) and the terms corresponding to the quartic Hig
boson couplings byVDL

(4) . The coefficients of the quartic
terms in the scalar Higgs potential can be written more s
ply in terms of the linear combinations of couplings defin
earlier @Eqs. ~25!–~28!# and three additional combination
~see Appendix E for a discussion of the significance of th
combinations!:

lT[ 1
4 s2b

2 ~l11l2!1l345~sb
41cb

4 !22l5

2s2bc2b~l62l7!, ~52!

lU[ 1
2 s2b~sb

2l12cb
2l21c2bl345!2l6sbs3b2l7cbc3b .

~53!

lV[l1sb
41l2cb

41 1
2 l345s2b

2 22s2b~l6sb
21l7cb

2 !. ~54!

The resulting expressions forVDL
(3) andVDL

(4) are
VDL
~3!5 1

2 lv~h31hG212hG1G2!1~lT1lF!vhH1H21 1
2 l̂v@3Hh21HG212HG1G222h~AG1H1G21H2G1!#

1 1
2 lUv~H31HA212HH1H2!1[lA2l1 1

2 lF]vH~H1G21H2G1!1~lA2l!vHAG1 1
2 lTvhA2

1(l2lA1 1
2 lT)vhH21

i

2
lFvA~H1G22H2G1! ~55!

and

VDL
~4!5 1

8 l~G212G1G21h2!21 l̂~h3H2h2AG2h2H1G22h2H2G11hHG212hHG1G22AG322AGG1G2

2G2H2G12G2H1G222H1G2G1G222H2G2G1!1 1
2 ~lT1lF!~h2H1H21H2G1G21A2G1G2

1G2H1H2!1lU~hH31hHA212hHH1H22H2AG2H2H1G22H2H2G12A3G2A2H1G22A2H2G1

22AGH1H222H1H2H1G222H2H1H2G1!1@2~lA2l!1lF#~hHH1G21hHH2G1

2AGH1G2AGH2G1!1 1
4 lV~H412H2A21A414H2H1H214A2H1H214H1H2H1H2!1 1

2 ~l2lA!

3~H1H1G2G21H2H2G1G122hHAG!1 1
4 lT~h2A21H2G2!1 1

4 @2~l2lA!1lT#~h2H21A2G2!

1~l2lA1lT!H1H2G1G21
i

2
lF~hAH1G2hAH2G11HGH1G22HGH2G1!, ~56!
9-8
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whereG andG6 are the Goldstone bosons~absorbed by the
Z and W6, respectively!. Moreover, forcb2a50, we have
mh

25lv2 and mH
2 2mA

25(l2lA)v2, whereas mH6
2

2mA
2

5 1
2 lFv2 is exact at the tree level. As expected, in the dec

pling limit, the low-energy effective scalar theory~which in-
cludesh and the three Goldstone bosons! is precisely the
same as the corresponding SM Higgs theory, withl propor-
tional to the Higgs boson quartic coupling.

One can use the results of Appendixes F and G to c
pute the first nontrivialO(cb2a) corrections to Eqs.~55! and
~56! as one moves away from the decoupling limit. The
results are given in Tables I and II in the Appendixes. F
example, thehhhandhhhhcouplings in the decoupling limi
are given by

ghhh.23v~l23 l̂cb2a!.
23mh

2

v
16 l̂cb2av, ~57!

ghhhh.23~l24 l̂cb2a!.
23mh

2

v2 19 l̂cb2a , ~58!

where we have used Eq.~30!. Precision measurements o
these couplings could in principle~modulo radiative correc-
tions, which are known within the SM@26#! provide evi-
dence for a departure from the corresponding SM relatio

Using the explicit forms for the quartic Higgs boson co
plings given in Appendix G, it follows that all quartic cou
plings are&O~1! if we require that thel i&O(1). Unitarity
constraints on Goldstone and Higgs boson scattering
cesses can be used to impose numerical limitations on
contributing quartic couplings@19–23#. If we apply tree-
level unitarity constraints forAs larger than all Higgs boson
masses, thenl i /4p&O(1) ~the precise analytic uppe
bounds are given in Ref.@22#!. One can also investigate
less stringent requirement if the Higgs sector is close to
decoupling limit; namely, assumingmh!mH ,mA ,mH6, one
can simply impose unitarity constraints on the low-ene
effective scalar theory. One must check, for example, tha
2→2 scattering processes involving theW6, Z, andh satisfy
partial-wave unitarity@20,22,23#. At the tree level, one sim
ply obtains the well known SM resultl<8p/3, wherel is
given by Eq.~25!.12 At one loop, the heavier Higgs scala
can contribute via virtual exchanges, and the restrictions
the self-couplings now involve both the light and the heav
Higgs scalars. For example, in order to avoid large one-l
corrections to the four-point interactionW1W2→hh via an
intermediate loop of a heavy Higgs pair, the quartic inter
tions amongh2H2, h2A2, andh2H1H2 must be perturba-
tive. In this case, Eq.~56! implies thatul2lAu,ulFu&1. It
follows that there is a bound on the squared-mass splitt
among the heavy Higgs boson states ofO(v2). Thus, to
maintain unitarity and perturbativity, the decoupling limit d
mands rather degenerate heavy Higgs bosons.

12Using mh
25lv2, this bound is a factor of 2 more stringent tha

that of Ref. @20# based on the requirementu Rea0u<1/2 for the
s-wave partial-wave amplitude@27#.
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Using the explicit forms for the cubic Higgs boson co
plings given in Appendix F, it follows that all cubic cou
plings are&O(v) if we require that thel i&O(1). The cu-
bic couplings can also be rewritten in terms of the Hig
boson masses. For example, one possible form for thehhh
coupling is given in Eq.~F6!. Here, we shall consider two
equivalent expressions for thehH1H2 coupling:

ghH1H252
1

v F S mh
22

m12
2

sbcb
D cb1a

sbcb
1~2mH6

2
2mh

2!sb2a

1 1
2 v2S l6

sb
2 2

l7

cb
2 D cb2aG

5
1

v F ~2mA
222mH6

2
2mh

2!sb2a12~mA
22mh

2!

3
c2bcb2a

s2b
1v2S l5cb1a

sbcb
2

l6sa

sb
1

l7ca

cb
D G .

~59!

From the first equality of Eq.~59!, it appears thatghH1H2

grows quadratically with the heavy charged Higgs bos
mass. However, this is an illusion, as can be seen in
subsequent expression forghH1H2. In particular,mA

22mH6
2

;O(v2) follows from Eq.~11!, while in the decoupling limit
mA

2cb2a;O(v2) follows from Eq. ~D3!. Hence, ghH1H2

;O(v) as expected. One can also check that the appa
singular behavior assb→0 or cb→0 is in fact absent, since
the original form ofghH1H2 was well behaved in this limit.
Clearly, the most elegant form forghH1H2 is given in Eq.
~F1!. No matter which form is used, it is straightforward
perform an expansion for smallcb2a to obtain

ghH1H252v~lF1lT!1O~cb2a!, ~60!

which agrees with the corresponding result given in Tab
of Appendix F.

One can also be misled by writing the cubic couplings
terms ofL i , which are employed in an alternate parame
zation of the 2HDM scalar potential given in Appendix A. I
particular, in theCP-conserving case,m12

2 51/2v2sbcbL5 ,
which becomes large in the approach to the decoupling lim
Consequently, all theL i( i 51,...,6) are large in the decou
pling limit @see Eq.~A3!#, even though the magnitudes of th
l i are all&O(1).

One important consequence ofghH1H2;O(v) is that the
one-loop amplitude forh→gg reduces to the correspondin
SM result in the decoupling limit~wheremH6@v). To prove
this, we observe that in the decoupling limit allh couplings
to SM particles that enter the one-loop Feynman diagra
for h→gg are given by the corresponding SM values. Ho
ever, there is a new contribution to the one-loop amplitu
that arises from a charged Higgs boson loop. But this con
bution is suppressed byO(v2/mH6

2 ) because ghH1H2

;O(v), and our assertion is proved. In addition, the fi
nontrivial corrections to decoupling, ofO(v2/mA

2), can eas-
ily be computed and arise from two sources. First, the c
9-9
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tribution of the charged Higgs boson loop yields a contrib
tion to theh→gg amplitude proportional toghH1H2v/mH6

2 .
Second, the contributions of the fermion loops are alte
due to the modifiedh f f̄ couplings@see Eq.~49!#, which yield
corrections ofO(cb2a);O(v2/mA

2). Both corrections ente
at the same order. Note that the contribution of theW loop is
also modified, but the corresponding first order correction
of O(cb2a

2 ) ~since thehW1W2 coupling is proportional to
sb2a) and thus can be neglected.

The above considerations can be generalized to all lo
induced processes which involve theh and SM particles as
external states. As long asl i&O(1), the Appelquist-
Carazzone decoupling theorem@28# guarantees that formA
→` the amplitudes for such processes approach the co
sponding SM values. The same result also applies to ra
tively correctedh decay rates and cross sections.

V. A SM-LIKE HIGGS BOSON WITHOUT DECOUPLING

We have demonstrated above that the decoupling l
~where mA

2@ul i uv2) implies that ucb2au!1. However, the
ucb2au!1 limit is more general than the decoupling lim
From Eq.~36!, one learns thatucb2au!1 implies that either
~i! mA

2@lAv2, and/or ~ii ! u l̂u!1 subject to the condition
specified by Eq.~33!. Case~i! is the decoupling limit de-
scribed in Sec. III. Although case~ii ! is compatible with
mA

2@l iv
2, which is the true decoupling limit, there is n

requirementa priori thatmA be particularly large@as long as
Eq. ~33! is satisfied#. It is even possible to havemA,mh ,
implying that all Higgs boson masses are&O(v), in contrast
to the true decoupling limit. In this latter case, there does
exist an effective low-energy scalar theory consisting o
single Higgs boson.

Although the tree-level couplings ofh to vector bosons
may appear to be SM-like, a significant deviation of eith
the hD̄D or hŪU coupling from the corresponding SM
value is possible. For example, forucb2au!1, the h cou-
plings to quark pairs normalized to their SM values@see Eqs.
~36!, ~45!, and~46!# are given by

hD̄D: 12
l̂v2 tanb

mA
22lAv2 , hŪU: 11

l̂v2 cotb

mA
22lAv2 .

~61!

If mA&O(v) and tanb@1 (cotb@1), then the deviation of
the hD̄D(hŪU) coupling from the corresponding SM valu
can be significant even thoughu l̂u!1. A particularly nasty
case is one where thehD̄D (hŪU) coupling is equal in
magnitude but opposite in sign to the corresponding
value @29#.13 For example, thehD̄D coupling of Eq.~61! is

13Note that for u l̂u!1 ~i.e., for ucb2au!1 with mA arbitrary,
where thehVVcouplings are SM-like!, there is no choice of param

eters for whichboth the hD̄D and hŪU couplings are equal in
magnitude but opposite in sign relative to the corresponding
couplings.
07501
-

d

is

p-

e-
ia-

it

t
a

r

equal to 21 when tanb.2@(mA
2/v2)2lA#/ l̂@1. Of course,

the latter corresponds to an isolated point of the param
space; it is far more likely that thehD̄D coupling will ex-
hibit a discernible deviation in magnitude from its SM valu

Even if the tree-level couplings ofh to both vector bosons
and fermions appear to be SM-like, radiative corrections
introduce deviations from SM expectations@29# if mA is not
significantly larger thanv.14 For example, consider the am
plitude for h→gg ~which corresponds to a dimension-5 e
fective operator!. If mA&O(v) @implying that mH6

;O(v)] and u l̂u!1 ~implying that tree-level couplings ofh
approach their SM values!, then the charged Higgs boso
loop contribution to theh→gg amplitude will not be sup-
pressed. Hence the resulting amplitude will be shifted fr
the SM result, thus revealing that true decoupling has
been achieved, and theh is not the SM Higgs boson@29#.

Radiative corrections can also introduce deviations fr
SM expectations if the Higgs boson self-coupling parame
are large@30#. We can illustrate this in a model in whichh is
SM-like and all other Higgs bosons are very heavy, and
the decoupling limit does not apply. Consider a model
which m12

2 5l65l750 and the Higgs potential paramete
are chosen to yieldmH5mA5mH6 and cb2a50. This can
be achieved by takingm11

2 5m22
2 and15

l15l31
l5c2b

cb
2 , l25l32

l5c2b

sb
2 , l45l5 , ~62!

with l5,0 and2(l1l2)1/2,l345,0 @thereby ensuring tha
mA

2.0, mh,mH , and Eq.~4! are satisfied#. These results are
most easily obtained by using Eqs.~D20!–~D23!. One im-
mediately finds thatmh

25(l31l5)v2 and mH
2 5mA

25mH6
2

52l5v2. It is easy to check that̂l50 is exact, which
yields cb2a50 „since l345,0 implies thatmA

2.mL
2 and

mh
25mL

2 @cf. Eqs.~19! and~20!#…, andl5lA5l31l5 . Note

that, althoughl̂5cb2a50, Eq. ~36! implies that the ratio
l̂/cb2a52l3455(mA

22mh
2)/v2 can be taken to be an arb

trary positive parameter. This example exhibits a mode
which the properties ofh are indistinguishable from those o
the SM Higgs boson, but the decoupling limit can never
achieved~sincem12

2 50). One cannot take the masses of t
mass-degenerateH, A, and H6 arbitrarily large with mh
;O(mZ) without taking all theul i u( i 51,...,5) arbitrarily
large~thereby violating unitarity!. Nevertheless, if one take
the ul i u close to their unitarity limits, one can find a region
parameter space in whichmH5mA5mH6@mh;O(mZ). If
only h were observed, it would appear to be difficult to di

14Radiative corrections that contribute to shifts in the coefficie
of operators of dimension<4 will simply renormalize the param
eters of the scalar potential. Hence the deviation from the SM of
properties ofh associated with dimension<4 operators will con-
tinue to be suppressed in the limit of the renormalized param

u l̂u!1.
15In this case, Eqs.~6! and ~7! imply that tan2 b5(l345

2l1)/(l3452l2).
9-10
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tinguish this case from a Higgs sector close to the decoup
limit. However, when theul i u are large one expects larg
radiative corrections due to loops that depend on the Hi
boson self-couplings. For example, the one-loop correcti
to the hhh coupling ~which at the tree level is given b
ghhh523mh

2/v2 whencb2a50) can deviate by as much a
100% or more from the corresponding corrections in
standard model in the above model wherecb2a50 and
mH5mA5mH6@mh;O(mZ) @30#. More generally, a mode
with a light SM-like Higgs boson and all other Higgs boso
heavy could be distinguished from a Higgs sector near
decoupling limit only by observing the effects of one-loo
corrections proportional to the~large! Higgs boson self-
coupling parameters. Such radiative corrections could d
ate significantly from the corresponding loop corrections
the standard model.

Two additional examples in which theu l̂u!1 limit is
realized are given by~1! tanb@1, l65l750, and
mA

2.(l22l5)v2, and ~2! l15l25l345, l65l750, and

mA
2.(l22l5)v2 @31#.
The condition onmA

2 in the two cases is required by Eq

~33!. In case 1,l̂50 whenb5p/2, whereas in case 2,l̂
50 independently of tanb. In both these cases, it is straigh
forward to use Eqs.~12! and ~16! to obtain

mh,H
2 5 H l2v2,

mA
21l5v2. ~63!

SincemL
25l2v2, Eq. ~20! yields cos(b2a)50 as expected.

Two special limits of case 2 above are treated in Ref.@31#,
where scalar potentials withl15l25l357l456l5.0
~and l65l750) are considered. Assuming thatmA

2.(l2

2l5)v2, the resulting Higgs spectrum is given bymH6
2

5mH
2 5mA

26mh
2 andmh

25l1v2 (mA
2 is a free parameter tha

depends onm12
2 ). In the case ofl5.0, one hasmA

2.0 and it
is possible to have a Higgs spectrum in whichA is very light,
while the other Higgs bosons~including h! are heavy and
approximately degenerate in mass. In the case ofl5,0, one
hasmA

2.2mh
2, and a lightA would imply that all the Higgs

bosons of the model are light. In both casescb2a50, and the
tree-level couplings ofh correspond precisely to those of th
SM Higgs boson~see Sec. IV!. These are clearly very specia
cases, corresponding to a distinctive form of the qua
terms of the Higgs potential:

V45 1
2 l1@~F1

†F11F2
†F2!26~F1

†F22F2
†F1!2#, ~64!

where the choice of sign corresponds to the sign ofl5 . Note
that V4 above exhibits a flat direction ifl5.0, whereas the
scalar potential possesses a globally stable minimum ifl5
,0 @see Eq.~4!#.

Next, we examine a region of Higgs parameter sp
where usin(b2a)u!1, in which the heavierCP-even Higgs
bosonH is SM-like ~also considered in Refs.@29# and@31#!.
In this case, theh couplings to vector boson pairs are high
suppressed. This is far from the decoupling regime. Nev
theless, this region does merit a closer examination, wh
we now perform.
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Whensb2a→0, we haveb2a50 orp. We shall work to
first nontrivial order in ansb2a expansion, withcb2a.
6(12 1

2 sb2a
2 ). Using the results of Eqs.~D9!–~D11! and

Eq. ~11!, we obtain16

mA
2.v2F7

l̂

sb2a
1lA6 3

2 l̂sb2aG , ~65!

mh
2.v2F7

l̂

sb2a
1l6 1

2 l̂sb2aG
.mA

21~l2lA7 l̂sb2a!v2, ~66!

mH
2 .v2~l6 l̂sb2a!, ~67!

mH6
2 .v2F7

l̂

sb2a
1lA1 1

2 lF6 3
2 l̂sb2aG

5mA
21 1

2 lFv2. ~68!

The conditionmH.mh imposes the inequality~valid to first
order insb2a)

mA
2,v2~lA62 l̂sb2a!, ~69!

@cf. Eq. ~D32!#. Note that Eq.~69! implies that all Higgs
boson squared masses are ofO(v2). We may also use Eq
~10! to obtain

m12
2 .v2sbcbF7

l̂

sb2a
1lA1l51 1

2 l6tb
211 1

2 l7tb

6 3
2 l̂sb2aG . ~70!

We can rewrite Eq.~65! in another form@or equivalently
use Eqs.~D30! and ~D31! to obtain#

sin~b2a!.
7 l̂v2

mA
22lAv2 .

6 l̂v2

mH
2 2mh

2 . ~71!

The usb2au!1 limit is achieved whenu l̂u!1, subject to the
condition given in Eq.~69!. Clearly, H is SM-like, since if

16Note that Eqs.~D4! and ~D5! are interchanged under the tran
formation mh

2↔mH
2 and cb2a↔2sb2a . Thus, applying these

transformations to Eqs.~29!–~32! yields the results given in Eqs
~65!–~68! with cb2a511.
9-11
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sb2a.0, then the couplings ofH to VV, HH, and HHH
coincide with the corresponding SM Higgs bos
couplings.17

The couplings ofH to fermion pairs are obtained from Eq
~44! by expanding the Yukawa couplings ofH to O(sb2a):

LHQQ52D̄F6
1

v
MD1tanbS 1

v
MD2

1

&sb

~SD

1 iPDg5!D sb2aGDH2ŪS 6
1

v
MU2cotbF1

v
MU

2
1

&cb

~SU1 iPUg5!Gsb2aD UH, ~72!

where 6 corresponds tocb2a561 and SD and PD are
given by Eq.~50!. If u l̂utanb!1 or u l̂ucotb!1, then the
H f f̄ couplings reduce to the correspondinghSMf f̄ couplings.
However, if u l̂u!1&u l̂utanb ~or u l̂u!1&u l̂ucotb) when
tanb@1 ~or cotb@1), then theH f f̄ couplings can deviate
significantly from the correspondinghSMf f̄ couplings. This
behavior is qualitatively different from the decoupling lim
where for fixedl i and large tanb ~or large cotb), one can
always choosemA large enough such that theh f f̄ couplings
approach the corresponding SM values. In contrast, w
usb2au!1, the size ofmA is restricted by Eq.~69!, and so
there is no guarantee of SM-likeH f f̄ couplings when either
tanb or cotb is large.

Although the tree-level properties ofH are SM-like when
u l̂u!1, deviations can occur for loop-induced processes
noted earlier. Again, theH→gg amplitude will deviate from
the corresponding SM amplitude due to the contribution
the charged Higgs boson loop which is not suppressed s
mH6;O(v). Thus, departures from true decoupling can
principle be detected forusb2au!1.

We now briefly examine some model examples in wh
usb2au!1 is realized. These examples are closely related
the ones previously considered in the case ofcb2a50. First,
consider the model in whichm12

2 5l65l750 and the Higgs
potential parameters are chosen to yieldmh5mA5mH6 and
sb2a50. This can be achieved by takingm11

2 5m22
2 and the

nonzerol i given by Eq.~62! with l5,0 andl345.0. In this
case,mH

2 5(l31l5)v2 and mh
25mA

25mH6
2

52l5v2. It is

easy to check that̂l50 is exact and yieldssb2a50 „since
l345.0 implies thatmA

2,mL
2 andmH

2 5mL
2 @cf. Eqs.~19! and

~20!#…. Thus, the properties ofH are indistinguishable from
those of the SM Higgs boson. However, all the other ma
degenerate Higgs bosons are lighter than the SM-like Hi

17When l̂50, theH couplings toVV, HH, and f f̄ @see Eq.~72!#
all differ by an overall sign from the correspondinghSM couplings if
cb2a521. However, this sign is unphysical, since one can elim
nate it with a redefinitionh→2h and H→2H, which is equiva-
lent to replacinga with a6p.
07501
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bosonH. Thus, one expects that all Higgs bosons can
observed~once the SM-like Higgs boson is discovered!. That
is, there is little chance of confusingH with the Higgs boson
of the standard model.

Two additional examples in which theusb2au!1 limit
is realized are given by~1! tanb@1, l65l750, and
mA

2,(l22l5)v2, and ~2! l15l25l345, l65l750, and

mA
2,(l22l5)v2 @31#. The condition onmA

2 in the two cases

is required by Eq.~69!. In case 1, l̂50 when b5p/2,
whereas in case 2,̂l50 independently of tanb. In both
these cases, it is straightforward to use Eqs.~12! and~16! to
obtain

mh,H
2 5 H mA

21l5v2,
l2v2.

~73!

Since mL
25l2v2, it follows from Eq. ~20! that cb2a

2 51.

Hence, sin(b2a)50, which implies thatH is SM-like.18

Finally, we note that the SM-like Higgs bosons resulti
from the limiting cases above wherêl50 can be easily
understood in terms of the squared-mass matrix entrie
Eqs. ~12! and ~13!. In order to achievecb2a50 or
sb2a50, we demand that tan 2b5tan 2a. This implies
@see Eq.~17!# that the entries in theB2 matrix be in the same
ratio as the entries in the term proportional tomA

2 in Eq. ~12!:

2M12
2

M11
2 2M22

2 5tan 2b. ~74!

It is easy to check that

l̂v25 1
2 ~B11

2 2B22
2 !sin 2b2B12

2 cos 2b. ~75!

Equations~12! and ~74! immediately imply that l̂50 is
equivalent to tan 2b5tan 2a. Moreover, to determine
whethercb2a50 or sb2a50, simply note that if the sign of
sin 2a/ sin 2b is negative~positive!, then cb2a50 (sb2a
50). In the convention where tanb is positive, it follows
that sin 2b.0. Using Eqs.~12! and ~13!, if the sign of

M12
2 5sbcb@~l3452l5!v22mA

2 #1v2~l6cb
21l7sb

2 !
~76!

is negative~positive!, then cb2a50 (sb2a50). One can
check that the conditions given by Eqs.~33! and ~69! corre-
spond precisely to the negative~positive! sign of M12

2 @Eq.

~76!#, after imposing l̂50.19 The condition l̂50 can be
achieved not only for appropriate choices of thel i and tanb
in the general 2HDM, but also can be satisfied in the MSS
when radiative corrections are incorporated~see Sec. VI!.

VI. DECOUPLING EFFECTS IN THE MSSM
HIGGS SECTOR

The Higgs sector of the MSSM is aCP-conserving two-
Higgs-doublet model, with a Higgs potential whos
dimension-4 terms respect supersymmetry and with typ
Higgs-boson–fermion couplings. The quartic couplingsl i
are given by@9#

-
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l15l252l3455
1
4 ~g21g82!, l452 1

2 g2,

l55l65l750. ~77!

The squared-mass parameters defined in Eq.~18! simplify to
mL

25mZ
2 cos2 2b, mD

2 50, mT
25mZ

2, andmS
25mA

21mZ
2. Using

Eq. ~77!, the invariant coupling parameters defined in E
~25!–~28! and Eqs.~52!–~54! reduce to

l52lT5lV5 1
4 ~g21g82!cos2 2b,

l̂52lU5 1
4 ~g21g82!sin 2b cos 2b,

lA5 1
4 ~g21g82!cos 4b,

lF5 1
2 g2. ~78!

The results of Sec. II can then be used to obtain the w
known tree-level results

mA
25m12

2 ~ tanb1cotb!, mH6
2

5mA
21mW

2 , ~79!

and a neutralCP-even squared-mass matrix given by

M0
25S mA

2 sin2 b1mZ
2 cos2 b 2~mA

21mZ
2!sinb cosb

2~mA
21mZ

2!sinb cosb mA
2 cos2 b1mZ

2 sin2 b
D ,

~80!

with eigenvalues

mH0,h0
2

5 1
2 ~mA

21mZ
26A~mA

21mZ
2!224mZ

2mA
2 cos2 2b!,

~81!

and the diagonalizing anglea given by

cos 2a52cos 2bS mA
22mZ

2

mH0
2

2mh0
2 D ,

sin 2a52sin 2bS mH0
2

1mh0
2

mH0
2

2mh0
2 D . ~82!

One can also write

18Sincel65l750, if we additionally setm12
2 50, then we recover

the discrete symmetry of the Higgs potential previously noted
Sec. III. Thus, there is no true decoupling limit in this model. Mo
over, sincemA

252l5v2 ~which implies thatl5,0), Eq.~73! yields
mh50, although this result would be modified once radiative c
rections are included.

19It is simplest to usel̂50 to eliminate the quantityl1cb
2

2l2sb
2 from lA in Eqs.~33! and ~69!.
07501
.

ll-

cos2~b2a!5
mh

2~mZ
22mh

2!

mA
2~mH

2 2mh
2!

. ~83!

In the decoupling limit wheremA@mZ , the above formulas
yield

mh
2.mZ

2 cos2 2b, mH
2 .mA

21mZ
2 sin2 2b,

mH6
2

5mA
21mW

2 , cos2~b2a!.
mZ

4 sin2 4b

4mA
4 . ~84!

That is,mA.mH.mH6 up to corrections ofO(mZ
2/mA), and

cos(b2a)50 up to corrections ofO(mZ
2/mA

2).
It is straightforward to work out all the tree-level Higg

couplings, both in general and in the decoupling limit. Sin
the Higgs-boson–fermion couplings follow the type-II pa
tern, the Higgs-boson–fermion Yukawa couplings are giv
by Eq. ~44! with h1

U5h2
U50. However, one-loop radiative

corrections can lead in some cases to significant shifts f
the tree-level couplings. It is of interest to examine how t
approach to the decoupling limit is affected by the inclusi
of radiative corrections.

First, we note that in some cases, one-loop effects m
ated by loops of supersymmetric particles can genera
deviation from standard model expectations, even ifmA
@mZ where the corrections to the decoupling limit are ne
ligible. As a simple example, if squarks are relatively ligh
then squark loop contributions to theh→gg and h→gg
amplitudes can be significant@32#. Of course, in the limit of
large squark masses, the contributions of the supersymm
loops decouple as well@33#. Thus, in the MSSM, there are
two separate decoupling limits that must be analyzed.
simplicity, we assume henceforth that supersymmetric p
ticle masses are large~say of order 1 TeV!, so that supersym-
metric loop effects of the type just mentioned are negligib

The leading contributions to the radiatively correct
Higgs boson couplings arise in two ways. First, the radiat
corrections to theCP-even Higgs boson squared-mass mat
results in a shift of theCP-even Higgs boson mixing anglea
from its tree-level value. That is, the dominant Higgs prop
gator corrections can to a good approximation be absor
into an effective~‘‘radiatively corrected’’! mixing anglea
@34#. In this approximation, we can write

M2[S M11
2 M12

2

M12
2 M22

2 D 5M0
21dM2, ~85!

where the tree-level contributionM0
2 was given in Eq.~80!

anddM2 is the contribution from the radiative correction
Then, cos(b2a) is given by

n
-

-
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cos~b2a!5
~M11

2 2M22
2 !sin 2b22M12

2 cos 2b

2~mH
2 2mh

2!sin~b2a!

5
mZ

2 sin 4b1~dM11
2 2dM22

2 !sin 2b22dM12
2 cos 2b

2~mH
2 2mh

2!sin~b2a!
. ~86!
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Using tree-level Higgs boson couplings witha replaced by
its renormalized value provides a useful first approximat
to the radiatively corrected Higgs boson couplings.

Second, contributions from the one-loop vertex corr
tions to tree-level Higgs-boson–fermion couplings c
modify these couplings in a significant way, especially in t
limit of large tanb. In particular, although the tree-leve
Higgs boson–fermion coupling follow the type-II patter
when radiative corrections are included, all possi
dimension-4 Higgs-boson–fermion couplings are genera
These results can be summarized by an effective Lagran
that describes the coupling of the neutral Higgs bosons to
third generation quarks:

2Leff5@~hb1dhb!b̄RbLF1
0* 1~ht1dht! t̄ RtLF2

0#

1Dht t̄ RtLF1
01Dhbb̄RbLF2

0* 1H.c., ~87!

resulting in a modification of the tree-level relation betwe
ht (hb) andmt (mb) as follows@35–38#:

mb5
hbv

&
cosbS 11

dhb

hb
1

Dhb tanb

hb
D[

hbv

&
cosb~11Db!,

~88!

mt5
htv

&
sinbS 11

dht

ht
1

Dht cotb

ht
D[

htv

&
sinb~11D t!.

~89!

The dominant contributions toDb are tanb enhanced, with
Db.(Dhb /hb)tanb; for tanb@1, dhb /hb provides a small
correction toDb . @In the same limit,D t.dht /ht , with the
additional contribution of (Dht /ht)cotb providing a small
correction.#

From Eq.~87! we can obtain the couplings of the physic
neutral Higgs bosons to third generation quarks. The res
ing interaction Lagrangian is of the form

Lint52 (
q5t,b

@ghqq̄hqq̄1gHqq̄Hqq̄2 igAqq̄Aq̄g5q#.

~90!

Using Eqs.~88! and ~89!, one obtains@39,40#

ghbb̄52
mb

v
sina

cosbF11
1

11Db
S dhb

hb
2DbD ~11cota cotb!G ,

~91!
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gHbb̄5
mb

v
cosa

cosb F11
1

11Db
S dhb

hb
2DbD ~12tana cotb!G ,

~92!

gAbb̄5
mb

v
tanbF11

1

~11Db!sin2 b S dhb

hb
2DbD G , ~93!

ght t̄5
mt

v
cosa

sinb F12
1

11D t

Dht

ht
~cotb1tana!G , ~94!

gHt t̄5
mt

v
sina

sinb F12
1

11D t

Dht

ht
~cotb2cota!G , ~95!

gAt t̄5
mt

v
cotbF12

1

11D t

Dht

ht
~cotb1tanb!G . ~96!

We now turn to the decoupling limit. First consider th
implications for the radiatively corrected value of cosb
2a). Since dMi j

2 ;O(mZ
2), and mH

2 2mh
25mA

21O(mZ
2),

one finds@39#

cos~b2a!5cFmZ
2 sin 4b

2mA
2 1OS mZ

4

mA
4 D G ~97!

in the limit of mA@mZ , where

c[11
dM11

2 2dM22
2

2mZ
2 cos 2b

2
dM12

2

mZ
2 sin 2b

. ~98!

The effect of the radiative corrections has been to modify
tree-level definition of̂l:

l̂v25cmZ
2 sin 2b cos 2b. ~99!

Equation~97! exhibits the expected decoupling behavior f
mA@mZ . However, Eqs.~86! and ~97! exhibit another way
in which cos(b2a)50 can be achieved—simply choose th
MSSM parameters~that govern the Higgs boson mass rad
tive corrections! such that the numerator of Eq.~86! van-
ishes. That is,

2mZ
2 sin 2b52dM12

2 2tan 2b~dM11
2 2dM22

2 !. ~100!

This condition is equivalent toc50, and thus correspond
precisely to the case of̂l50 discussed at the beginning o
Sec. V. Although l̂Þ0 at the tree level, the above analys
shows thatu l̂u!1 can arise due to the effects of one-loo
9-14
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radiative corrections that approximately cancel the tree-le
result.20 In particular, Eq.~100! is independent of the valu
of mA . Typically, Eq.~100! yields a solution at large tanb.
That is, by approximating tan 2b.2sin 2b.22/tanb, one
can determine the value ofb at which l̂.0 @39#:

tanb.
2mZ

22dM11
2 1dM22

2

dM12
2 . ~101!

Hence, there exists a value of tanb ~which depends on the
choice of MSSM parameters! where cos(b2a).0 indepen-
dently of the value ofmA . If mA is not much larger thanmZ ,
then h is a SM-like Higgs boson outside the decoupli
regime.21 Of course, as explained in Sec. V, this SM-lik
Higgs boson can be distinguished in principle from the S
Higgs boson by measuring its decay rate to two photons
looking for a deviation from SM predictions.

Finally, we analyze the radiatively corrected Higg
boson–fermion couplings@Eqs.~91!–~96!# in the decoupling
limit. Here it is useful to note that, formA@mZ ,

cota52tanb2
2mZ

2

mA
2 tanb cos 2b1OS mZ

4

mA
4 D . ~102!

Applying this result to Eqs.~91! and ~94!, it follows that in
the decoupling limitghqq̄5ghSMqq̄

5mq /v. Away from the
decoupling limit, the Higgs boson couplings to down-ty
fermions can deviate significantly from their tree-level v
ues due to enhanced radiative corrections at large tb
@where Db.O(1)]. In particular, becauseDb}tanb, the
leading one-loop radiative correction toghbb̄ is of
O(mZ

2 tanb/mA
2), which formally decouples only whenmA

2

@mZ
2 tanb. This behavior is calleddelayed decouplingin

Ref. @41#, although this phenomenon can also occur in
more general 2HDM~with tree-level couplings!, as noted
previously in Sec. IV@below Eq.~50!#.

VII. DISCUSSION AND CONCLUSIONS

In this paper, we have studied the decoupling limit o
general CP-conserving two-Higgs-doublet model. In th
limit, the lightest Higgs boson of the model is aCP-even
neutral Higgs scalar~h! with couplings identical to those o
the SM Higgs boson. Near the decoupling limit, the fi
order corrections for the Higgs boson couplings to gauge
Higgs bosons, the Higgs-boson–fermion Yukawa couplin
and the Higgs boson cubic and quartic self-couplings h
also been obtained. These results exhibit a definite patter
the deviations of theh couplings from those of the SM Higg
boson. In particular, the rate of the approach to decoup

20The one-loop corrections arise from the exchange of supers
metric particles, whose contributions can be enhanced for ce
MSSM parameter choices. One can show that the two-loop cor
tions are subdominant, so that the approximation scheme is u
control.

21For large tanb and mA&O(mZ), one finds that sin(b2a).0,
implying thatH is the SM-like Higgs boson, as discussed in Sec
07501
el
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depends on the particular Higgs boson coupling as follow

ghVV
2

ghSMVV
2 .12

l̂2v4

mA
4 , ~103!

ghhh
2

ghSMhSMhSM

2 .12
6 l̂2v2

lmA
2 , ~104!

ghtt
2

ghSMtt
2 .11

2 l̂v2 cotb

mA
2 ~12j t!, ~105!

ghbb
2

ghSMbb
2 .12

2 l̂v2 tanb

mA
2 ~12jb!, ~106!

wherej t andjb reflect the terms proportional toS andP in
Eq. ~49!. Thus, the approach to decoupling is fastest for thh
couplings to vector bosons and slowest for the couplings
down-type~or up-type! quarks if tanb.1 ~or tanb,1). We
may apply the above results to the MSSM~see Sec. VI!.
Including the leading (tanb)-enhanced radiative correction
jb5vDhb /(&sbmb)5Db /@sb

2(11Db)# ~whereasj t!1 can
be neglected! and l̂ is given by Eq.~99!. Plugging into Eqs.
~103!–~106!, one reproduces the results obtained in R
@39#.

Although the results of this paper were derived from
tree-level analysis of couplings, these results can also be
plied to the radiatively corrected couplings that multiply o
erators of dimension 4 or less. An example of this was giv
in Sec. VI, where we showed how the decoupling limit a
plies to the radiatively corrected Higgs-boson–fermi
Yukawa couplings. In particular, near the decoupling lim
one can neglect radiative corrections that are generated
the exchange of heavy Higgs bosons. These contributions
suppressed by a loop factor in addition to the suppress
factor of O(v2/mA

2) and thus are smaller than corrections
tree-level Higgs boson couplings that enter at first order
cb2a . This should be contrasted with loop-induced Hig
boson couplings~e.g., h→gg, which is generated by a
dimension-5 effective operator!, where the corrections o
O(cb2a) to tree-level Higgs boson couplings that appear
the one-loop amplitude and the effects of a heavy Hig
boson loop are both ofO(v2/mA

2) ~in addition to the overall
one-loop factor!. Consequently, both contributions a
equally important in determining the overall correction to t
loop-induced Higgs couplings due to the departure from
decoupling limit.

If a neutral Higgs bosonh is discovered at a future col
lider, it may turn out that its couplings are close to tho
expected of the SM Higgs boson. The challenge for fut
experiments is then to determine whether the observed s
is the SM Higgs boson, or whether it is the lowest-lyin
scalar state of a nonminimal Higgs sector@42#. If the latter,
then it is likely that the additional scalar states of the mo
are heavy, and the decoupling limit applies. In this case,
possible that the heavier scalars cannot be detected a
CERN Large Hadron Collider~LHC! or at ane1e2 linear
collider ~LC! with a center-of-mass energy in the range
350–800 GeV. Moreover, it may not be possible to dist

-
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guish between theh and the SM Higgs boson at the LHC
However, the measurements of Higgs boson observable
the LC can provide sufficient precision to observe deviatio
from SM Higgs boson properties at the few percent level
this case, one can begin to probe deep into the decoup
regime@12#.

In this paper, we also clarified a Higgs boson parame
regime in whichh possesses SM-like couplings to vect
bosons but wheremA

2&O(v2) and the decoupling limit doe
not apply ~see Sec. V!. In this case, the couplings ofh to
fermion pairs can deviate significantly from the correspo
ing SM Higgs-boson–fermion couplings if either tanb or
cotb is large. Moreover, the masses ofH, A, andH6 are not
particularly large, and all scalars would be accessible at
LHC and/or the LC.

The discovery of the Higgs boson will be a remarkab
achievement. Nevertheless, the lesson of the decoupling
is that a SM-like Higgs boson provides very little inform
tion about the nature of the underlying electrowe
symmetry-breaking dynamics. It is essential to find evide
for departures from SM Higgs boson predictions. Such
partures can reveal crucial information about the existenc
a nonminimal Higgs sector. Precision Higgs boson meas
ments can also provide critical tests of possible new phy
beyond the standard model. As an example, in the MSS
deviations in Higgs boson couplings from the decoupl
limit can yield indirect information about the MSSM param
eters. In particular, at large tanb the sensitivity to MSSM
parameters may be increased due to enhanced radiative
rections. The decoupling limit is both a curse and an opp
tunity. If nature chooses the Higgs sector parameters to
e

h

i
,
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deep in the decoupling regime, then it may not be possibl
distinguish the observedh from the SM Higgs boson. On the
other hand, given sufficient precision of the measurement
h branching ratios and cross sections@40#, it may be possible
to observe a small but statistically significant deviation fro
SM expectations and provide a first glimpse of the phys
responsible for electroweak symmetry breaking.
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APPENDIX A: AN ALTERNATIVE PARAMETRIZATION
OF THE 2HDM SCALAR POTENTIAL

In this Appendix, we give the translation of the param
eters of Eq.~1! employed in this paper to the paramete
employed in theHiggs Hunter’s Guide~HHG! @7#. While the
HHG parametrization was useful for some purposes~e.g., the
scalar potential minimum is explicitly exhibited!, it obscures
the decoupling limit.

In the HHG parametrization, the most general 2HDM sc
lar potential, subject to a discrete symmetryF1→2F1 that
is only softly violated by dimension-2 terms, is given by22
V5L1~F1
†F12V1

2!21L2~F2
†F22V2

2!21L3@~F1
†F12V1

2!1~F2
†F22V2

2!#21L4@~F1
†F1!~F2

†F2!2~F1
†F2!~F2

†F1!#

1L5@Re~F1
†F2!2V1V2 cosj#21L6@ Im~F1

†F2!2V1V2 sinj#2

1L7@Re~F1
†F2!2V1V2 cosj#@ Im~F1

†F2!2V1V2 sinj#, ~A1!
where theL i are real parameters.23 TheV1,2 are related to the
v1,2 of Eq. ~5! by V1,25v1,2/&. The conversion from thes
L i to thel i andmi j

2 of Eq. ~1! is

l152~L11L3!

l252~L21L3!,

22In the HHG,Vi andL i are denoted byv i andl i , respectively.
In Eq. ~A1!, we employ the former notation in order to distinguis
between the HHG parametrization and the notation of Eqs.~1! and
~5!.

23In Eq. ~A1! we include theL7 term that was left out in the
hardcover edition of the HHG. See the erratum that has been
cluded in the paperback edition of the HHG~Perseus Publishing
Cambridge, MA, 2000!.
l352L31L4 ,

l452L41 1
2 ~L51L6!,

l55 1
2 ~L52L62 iL7!,

l65l750

m11
2 522V1

2L122~V1
21V2

2!L3 ,

m22
2 522V2

2L222~V1
21V2

2!L3 ,

m12
2 5V1V2S L5 cosj2 iL6 sinj2

i

2
ei jL7D . ~A2!

n-
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Excluding l6 and l7 , the scalar potentials@Eqs. ~1! and
~A1!# are fixed by ten real parameters. TheCP-conserving
limit of Eq. ~A1! is most easily obtained by settingj50 and
L750. In the CP-conserving limit, it is easy to invert Eq
~A2! and solve for theL i ( i 51,...,6). The result is

L15 1
2 @l12l34512m12

2 /~v2sbcb!#,

L25 1
2 @l22l34512m12

2 /~v2sbcb!#,

L35 1
2 @l34522m12

2 /~v2sbcb!#,

L452m12
2 /~v2sbcb!2l42l5 ,

L552m12
2 /~v2sbcb!,

L652m12
2 /~v2sbcb!22l5 , ~A3!

wherel345[l31l41l5 andv2sbcb52V1V2 .

APPENDIX B: CONDITIONS FOR CP CONSERVATION
IN THE TWO-HIGGS-DOUBLET MODEL

First, we derive the conditions such that the Higgs sec
does not exhibit explicitCP violation.24 It is convenient to
adopt a convention in which one of the vacuum expecta
values, sayv1 , is real and positive.25 This still leaves one
additional phase redefinition for the Higgs doublet fields
there is no explicitCP violation, it should be possible to
choose the phases of the Higgs fields so that there ar
explicit phases in the Higgs potential parameters of Eq.~1!.
If we considerF1

†F2→e2 ihF1
†F2 , then theh-dependent

terms inV are given by

V]2m12
2 e2 ihF1

†F21 1
2 l5e22ih~F1

†F2!21l6e2 ih~F1
†F1!

3~F1
†F2!1l7e2 ih~F2

†F2!~F1
†F2!1H.c. ~B1!

Let us write

m12
2 5um12

2 ueium, l5,6,75ul5,6,7ueiu5,6,7. ~B2!

Then, all explicit parameter phases are removed if

um2h5nmp, u522h5n5p, u6,72h5n6,7p,
~B3!

where nm,5,6,7 are integers. Writingh5um2nmp from the
first condition of Eq.~B3! and substituting into the othe
conditions, gives

u522um5~n522nm!p⇒Im@~m12
2 !2l5* #50, ~B4!

24For another approach, in which invariants are employed to id
tify basis-independent conditions forCP violation in the Higgs sec-
tor, see Refs.@43# and @44#.

25Due to theU(1)-hypercharge symmetry of the theory, it is a
ways possible to make a phase rotation on the scalar fields such
v1.0.
07501
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u62um5~n62nm!p⇒Im@m12
2 l6* #50, ~B5!

u72um5~n72nm!p⇒Im@m12
2 l7* #50. ~B6!

Equations~B4!–~B6! constitute the conditions for the ab
sence of explicitCP violation in the~tree-level! Higgs sector.
A useful convention is one in whichm12

2 is real~by a suitable
choice of the phaseh!. It then follows thatl5 , l6 , andl7
are also real. Henceforth, we shall assume that all parame
in the scalar potential are real.

Let us consider now the conditions for the absence
spontaneous CP violation.26 Let us write ^F1

†F2&
51

2v1v2e
ij with v1 and v2 real and positive and 0<j<p.

The j-dependent terms inV are given by

V]2m12
2 v1v2 cosj1 1

4 l5v1
2v2

2 cos 2j1 1
2 l6v1

3v2 cosj

1 1
2 l7v2

3v1 cosj, ~B7!

which yields

]V
] cosj

52m12
2 v1v21l5v1

2v2
2 cosj1 1

2 l6v1
3v21 1

2 l7v2
3v1

~B8!

and

]2V
]~cosj!2 5l5v1

2v2
2. ~B9!

SpontaneousCP violation occurs whenjÞ0, p/2, orp at the
potential minimum. That is,l5.0 and there exists aCP-
violating solution to

cosj5
m12

2 2 1
2 l6v1

22 1
2 l7v2

2

l5v1v2
. ~B10!

Thus, we conclude that the criterion for spontaneousCP vio-
lation ~in a convention where all parameters of the sca
potential are real! is

0Þum12
2 2 1

2 l6v1
22 1

2 l7v2
2u,l5v1v2 and l5.0.

~B11!

-

hat
26Similar considerations can be found in Refs.@44–46# and @13#.
9-17
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Otherwise, the minimum of the potential occurs either aj
50, p/2 or p andCP is conserved.27 The case ofj5p/2 is
singular and arises whenm12

2 51/2l6v1
211/2l7v2

2 and l5

.0.28 It is convenient to choose a convention where^F1
0& is

real and^F2
0& is pure imaginary. One must then reevalua

the Higgs boson mass eigenstates. As shown in Ref.@47#, the
neutral Goldstone boson is now a linear combination
Im F1

0 and ReF2
0, while the physicalCP-odd scalarA corre-

sponds to the orthogonal combination. The twoCP-even
Higgs scalars are orthogonal linear combinations of ReF1

0

and ImF2
0. Most of the results of this paper do not apply f

this case without substantial revision. Nevertheless, it is c
that the decoupling limit (mA

2@l iv
2) does not exist due to

the condition onm12
2 .

We shall not consider thej5p/2 model further in this
paper. Then, if the parameters of the scalar potential are
and if there is no spontaneousCP violation, then it is always
possible to choose the phaseh in Eq. ~B1! so that the poten-
tial minimum corresponds toj50.29 In this convention,

m12
2 2 1

2 l6v1
22 1

2 l7v2
2>l5v1v2 for l5.0, ~B12!

m12
2 2 1

2 l6v1
22 1

2 l7v2
2>0 for l5<0, ~B13!

where Eq.~B12! follows from Eq.~B11!, and Eq.~B13! is a
consequence of the requirement thatV(j50)<V(j5p).
Since j50 and bothv1 and v2 are real and positive, this
convention corresponds to the one chosen below Eq.~9!.
Note that if we rewrite Eq.~10! as30

mA
25

v2

v1v2
[m12

2 2l5v1v22 1
2 l6v1

22 1
2 l7v2

2], ~B14!

it follows that if l5.0 then the conditionmA
2>0 is equiva-

lent to Eq.~B12!. However, ifl5<0, then Eq.~B13! implies
that mA

2>ul5uv2.

APPENDIX C: A SINGULAR LIMIT: mhÄmH

By definition, mh<mH . The limiting case ofmh5mH is
special and requires careful treatment in some cases.
example, despite the appearance ofmH

2 2mh
2 in the denomi-

27The CP-conserving minimum corresponding toj50 or j5p
does not in general correspond to an extremum inV(cosj). Specifi-
cally, for l5,0, the extremum corresponds to a maximum inV,
while for l5.0 the extremum corresponding to a minimum
V(cosj) arises forucosju.1. In both cases, when restricted to th
physical region corresponding toucosju<1, the minimum of
V(cosj) is attained on the boundaryucosju51.

28Note that the case ofj5p/2 arises automatically in the case
the discrete symmetry discussed in Sec. III,m12

2 5l65l750, when
l5.0.

29In particular, ifj5p, simply chooseh5p, which corresponds
to changing the overall sign ofF1

†F2 . This is equivalent to rede
fining the parametersm12

2 →2m12
2 , l6→2l6 , andl7→2l7 .

30Under the assumption thatv1 andv2 are positive, Eq.~10! im-
plicitly employs the convention in whichj50.
07501
f
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nator of Eq.~20!, one can show that 0<cb2a
2 <1. To prove

this, we first write

cb2a
2 5 1

2 F 12
mS

222mL
2

AmS
424mA

2mL
224mD

4 G . ~C1!

Next, we use Eq.~18! to explicitly compute

mS
424mA

2mL
224mD

4 5mA
422mA

2@~B22
2 2B11

2 !c2b12B12
2 s2b#

1~B11
2 2B22

2 !214@B12
2 #2 ~C2!

and

~mS
222mL

2!25mS
424mA

2mL
224mD

4

2@~B11
2 2B22

2 !s2b22B12
2 c2b#2. ~C3!

Note that Eq.~C2!, viewed as a quadratic function ofmA
2 ~of

the form AmA
41BmA

21C), is non-negative ifB224AC
5@(B11

2 2B22
2 )s2b22B12

2 c2b#2>0. It then follows from Eq.
~C1! that 0<cb2a

2 <1 if

~mS
222mL

2!2<mS
424mA

2mL
224mD

4 , ~C4!

a result which is manifestly true@see Eq.~C3!#.
We now turn to the case ofmh5mH . This can arise if and

only if the CP-even Higgs boson squared-mass matrix~in
any basis! is proportional to the unit matrix. From Eq.~12!, it
then follows that

B11
2 2B22

2 5mA
2c2b , 2B12

2 5mA
2s2b . ~C5!

where mh
25mH

2 5B11
2 1mA

2sb
25B22

2 1mA
2cb

2. Alternatively,
from Eq. ~19!, the condition formh5mH is given by mS

4

24mA
2mL

224mD
4 [AmA

41BmA
21C50. However, one mus

check that this quadratic equation possesses a positive~real!
solution formA

2. Noting the discussion above Eq.~C4!, such
a solution can exist if and only ifB224AC50, which is
indeed consistent with Eq.~C5!. Of course, the results of Eq
~C5! are not compatible with the decoupling limit, since it
not possible to havemh5mH andmA

2@ul i uv2.
If we takeB224AC50 but keepmA arbitrary, then Eq.

~C1! yields

cb2a
2 5H 0 if mL

2, 1
2 mS

2,

1 if mL
2. 1

2 mS
2.

~C6!

For mL
251/2mS

2, we havemh
25mH

2 51/2mS
2, and the anglea

is not well defined. In this case, one cannot distinguish
tweenh andH in either production or decays, and the corr
sponding squared amplitudes should be~incoherently! added
9-18
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in all processes. It is easy to check that the undetermi
anglea that appears in the relevant Higgs boson couplin
would then drop out in any such sum of squared amplitud
The singular point of parameter space corresponding tomh
5mH will not be considered further in this paper.

APPENDIX D: RELATIONS AMONG HIGGS BOSON
POTENTIAL PARAMETERS AND MASSES

It is useful to express the physical Higgs boson masse
terms of the parameters of the scalar potential@Eq. ~1!#. First,
inserting Eqs.~12! and~13! into Eq. ~15! and examining the
diagonal elements yields theCP-even Higgs boson square
masses

mh
25mA

2cb2a
2 1v2@l1cb

2sa
21l2sb

2ca
222l345cacbsasb

1l5cb2a
2 22l6cbsacb1a12l7sbcacb1a#, ~D1!

mH
2 5mA

2sb2a
2 1v2@l1cb

2ca
21l2sb

2sa
212l345cacbsasb

1l5sb2a
2 12l6cbcasb1a12l7sbsasb1a#, ~D2!

while the requirement that the off-diagonal entries in E
~15! are zero yields

mA
2sb2acb2a5 1

2 v2@s2a~2l1cb
21l2sb

2 !1l345s2bc2a

22l5sb2acb2a12l6cbcb12a

12l7sbsb12a#, ~D3!

wherel345[l31l41l5 . We can now eliminatemA
2 from

Eqs.~D1! and~D2! and Eqs.~10! and~11! using the result of
Eq. ~D3!. This yields equations for the other three physic
Higgs boson squared masses and the scalar potential
parameterm12

2 in terms of the Higgs scalar quartic coupling

mh
2

v2 sb2a52l1cb
3sa1l2sb

3ca

1 1
2 l345cb1as2b1l6cb

2~cbca23sbsa!

1l7sb
2~3cbca2sbsa!, ~D4!

mH
2

v2 cb2a5l1cb
3ca1l2sb

3sa1 1
2 l345sb1as2b

1l6cb
2~3sbca1cbsa!1l7sb

2~sbca13cbsa!,

~D5!

2mH6
2

v2 sb2acb2a52s2a~l1cb
22l2sb

2 !1l345s2bc2a

2~l41l5!sb2acb2a12l6cbcb12a

12l7sbsb12a , ~D6!
07501
d
s
s.

in
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l
ass

2m12
2

v2 sb2acb2a52 1
2 s2bs2a~l1cb

22l2sb
2 !1 1

2 l345s2b
2 c2a

1l6cb
2@3cbsbc2a2casa~112sb

2 !#

1l7sb
2@3sbcbc2a1casa~112cb

2 !#. ~D7!

Note that Eq.~D6! is easily derived by inserting Eq.~D3!
into Eq. ~11!. A related useful result is easily derived from
Eqs.~D3! and ~D5!:

~mA
22mH

2 !

v2 sb2a5 1
2 s2b~2l1cacb1l2sasb1l345cb1a!

2l5sb2a1l6cb@cbcb1a22sb
2ca#

1l7sb@sbcb1a12cb
2sa#. ~D8!

It is remarkable that the left-hand side of Eq.~D8! is propor-
tional only tosb2a ~i.e., the factor ofcb2a has canceled!. As
a result, in the decoupling limit wherecb2a→0, we see that
mA

22mH
2 5O(v2).

The expressions given in Eqs.~D3!–~D6! are quite com-
plicated. These results simplify considerably when expres
in terms ofl, l̂, andlA @Eqs.~25!–~27!#:

mA
25v2FlA1 l̂S sb2a

cb2a
2

cb2a

sb2a
D G , ~D9!

mh
25v2Fl2

l̂cb2a

sb2a
G , ~D10!

mH
2 5v2Fl1

l̂sb2a

cb2a
G . ~D11!

One can then rewrite Eq.~D8! as

mH
2 2mA

25v2Fl2lA1
l̂cb2a

sb2a
G . ~D12!

We can invert Eqs.~D3!–~D7! and solve for any five of
the scalar potential parameters in terms of the physical Hi
boson masses and the remaining three undetermined
ables@12,48,49#. It is convenient to solve forl1 ,...,l5 in
terms of l6 , l7 , m12

2 , and the Higgs boson masses. W
obtain

l15
mH

2 ca
21mh

2sa
22m12

2 tb

v2cb
2 2 3

2 l6tb1 1
2 l7tb

3, ~D13!

l25
mH

2 sa
21mh

2ca
22m12

2 tb
21

v2sb
2 1 1

2 l6tb
232 3

2 l7tb
21, ~D14!
9-19
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l35
~mH

2 2mh
2!casa12mH6

2 sbcb2m12
2

v2sbcb
2 1

2 l6tb
212 1

2 l7tb

~D15!

l45
~mA

222mH6
2

!sbcb1m12
2

v2sbcb
2 1

2 l6tb
212 1

2 l7tb ,

~D16!

l55
m12

2 2mA
2sbcb

v2sbcb
2 1

2 l6tb
212 1

2 l7tb . ~D17!

In addition, the minimization conditions of Eqs.~6! and ~7!
reduce to

m11
2 52

1

2cb
~mH

2 cacb2a2mh
2sasb2a!1m12

2 tb ,

~D18!

m22
2 52

1

2sb
~mh

2casb2a1mH
2 sacb2a!1m12

2 tb
21.

~D19!

Note thatl6 and l7 do not appear whenm11
2 and m22

2 are
expressed entirely in terms ofm12

2 and physical Higgs boson
masses.

In some cases, it proves more convenient to eliminatem12
2

in favor of l5 using Eq.~D17!. The end result is

l15
mH

2 ca
21mh

2sa
22mA

2sb
2

v2cb
2 2l5tb

222l6tb , ~D20!

l25
mH

2 sa
21mh

2ca
22mA

2cb
2

v2sb
2 2l5tb

2222l7tb
21, ~D21!

l35
~mH

2 2mh
2!saca1~2mH6

2
2mA

2 !sbcb

v2sbcb

2l52l6tb
212l7tb , ~D22!

l45
2~mA

22mH6
2

!

v2 1l5 , ~D23!

and

m11
2 52

1

2cb
~mH

2 cacb2a2mh
2sasb2a!1~mA

21l5v2!sb
2

1 1
2 v2~l6sbcb1l7sb

2 tb!, ~D24!

m22
2 52

1

2sb
~mh

2casb2a1mH
2 sacb2a!1~mA

21l5v2!cb
2

1 1
2 v2~l6cb

2 tb
211l7sbcb!. ~D25!

Using Eqs.~D9!–~D11!, one may obtain simple expres
sions for l, l̂, and lA @Eqs. ~25!–~27!# in terms of the
neutral Higgs boson squared masses:
07501
lv25mh
2sb2a

2 1mH
2 cb2a

2 , ~D26!

l̂v25~mH
2 2mh

2!sb2acb2a , ~D27!

lAv25mA
21~mH

2 2mh
2!~cb2a

2 2sb2a
2 !, ~D28!

lFv252~mH6
2

2mA
2 !, ~D29!

where we have also included an expression forlF[l5

2l4 in terms of the Higgs boson squared masses@see Eq.
~11!#. Thus, four of the invariant coupling parameters can
expressed in terms of the physical Higgs boson masses
the basis-independent quantityb2a ~see Appendix E!.

Finally, we note that Eqs.~D27! and ~D28! also yield a
simple expression forb2a, which plays such a central rol
in the decoupling limit. We find two forms that are notewo
thy:

tan@2~b2a!#5
22 l̂v2

mA
22lAv2 ~D30!

and

sin@2~b2a!#5
2 l̂v2

mH
2 2mh

2 . ~D31!

Indeed, if l̂50 then eithercb2a50 or sb2a50 as dis-

cussed in Sec. V. For̂lÞ0, the conditionmH.mh implies

that l̂sb2acb2a.0. This inequality, when applied to Eq
~D9!, imposes the following constraint onmA :

v2FlA2
2 l̂cb2a

sb2a
G,mA

2,v2FlA1
2 l̂sb2a

cb2a
G . ~D32!

In addition, we require thatmA
2>0.

The expressions for the Higgs boson masses@Eqs.~D9!–
~D11!# andb2a @Eq. ~D30! or ~D31!# are especially usefu
when considering the approach to the decoupling lim
where ucb2au!1. For example, Eqs.~D9!–~D11! reduce in
this limit to the results of Eqs.~29!–~31!. Moreover,
sin@2(b2a)#.2tan@2(b2a)#.2cb2a , and Eqs.~D30! and
~D31! reduce to the results given by Eq.~36!. The corre-
sponding results in the limiting case ofusb2au!1 treated in
Sec. V are also similarly obtained.
9-20
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CP-CONSERVING TWO-HIGGS-DOUBLET MODEL: THE . . . PHYSICAL REVIEW D 67, 075019 ~2003!
APPENDIX E: INVARIANT COMBINATIONS OF THE
HIGGS SCALAR POTENTIAL PARAMETERS

In the most general 2HDM model, there is no distincti
between the twoY51 complex doubletsF1 and F2 . In
principle, one could choose any two orthogonal linear co
binations ofF1 and F2 ~i.e., choose a new basis for th
scalar doublets! and construct the scalar sector Lagrang
with respect to the new basis. Clearly, the parameters of
~1!, mi j

2 and thel i , would all be modified, along witha and
b. However, there exist seven invariant combinations of
l i that are independent of basis choice@50#. These arel, l̂,
lA , lF defined in Eqs.~25!–~28!, and lT , lU , and lV
defined in Eqs.~52!–~54!. In addition, the combinationb
2a is clearly basis independent. Thus, all physical Hig
boson masses and Higgs boson self-couplings can be
pressed in terms of the above invariant coupling parame
and b2a. In Appendix D, we have already shown how
express the Higgs boson masses in terms of the inva
parameters. In Appendixes F and G we also exhibit the th
and four-Higgs-boson couplings in terms of the invaria
parameters.31

To obtain expressions for the Higgs boson self-couplin
in terms of invariant parameters, one must invert the re
tions between thel i and the invariant coupling parameter
The end result is

l15cb
2~113sb

2 !l12s2b~cb
2 l̂1sb

2lU!

2 1
2 s2b

2 ~2lA2lT!1sb
4lV ,

l25sb
2~113cb

2 !l22s2b~sb
2 l̂1cb

2lU!

2 1
2 s2b

2 ~2lA2lT!1cb
4lV ,

l3455~2c2b
2 2cb

2sb
2 !l23s2bc2b~ l̂2lU!

2~c2b
2 22cb

2sb
2 !~2lA2lT!1 3

4 s2b
2 lV ,

l55~c2b
2 1cb

2sb
2 !l2s2bc2b~ l̂2lU!2c2b

2 lA

1 1
4 s2b

2 ~lV22lT!,

l65 1
2 s2b~3sb

221!l2cbc3b l̂2sbs3blU

1 1
2 s2bc2b~2lA2lT!2 1

2 sb
2s2blV ,

31The Higgs boson couplings to vector bosons depend only
b2a @see Eqs.~37!–~39!#. The Higgs boson couplings to fermion
in the type-III model~in which both up-and down-type fermion
couple to both Higgs doublets! can also be written in terms o
invariant parameters. However, one would then have to identify
appropriate invariant combinations of the Higgs-boson–ferm
Yukawa coupling parameters@50# h i

U andh i
D @see Eq.~42!#.
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l75 1
2 s2b~3cb

221!l2sbs3b l̂2cbc3blU

2 1
2 s2bc2b~2lA2lT!2 1

2 cb
2s2blV , ~E1!

andl45l52lF .
The significance of the invariant coupling parameters

most evident in the so-called Higgs basis of Ref.@44#, in
which only the neutral component of one of the two Hig
doublets~say, the first one! possesses a vacuum expectati
value. Let us denote the two Higgs doublets in this basis
Fa andFb . Then, after a rotation from theF1-F2 basis by
an angleb,

Fa5F1 cosb1F2 sinb,

Fb52F1 sinb1F2 cosb, ~E2!

one obtains

Fa5S G1

1

&
~v1wa

01 iG0!D , Fb5S H1

1

&
~wb

01 iA !D ,

~E3!

wherewa
0 andwb

0 are related in theCP-conserving model to
the CP-even neutral Higgs bosons by

H5wn
0 cos~b2a!2wb

0 sin~b2a!, ~E4!

h5wa
0 sin~b2a!1wb

0 cos~b2a!. ~E5!

Here, we see thatb2a is the invariant angle that characte
izes the direction of theCP-even mass eigenstates~in the
two-dimensional Higgs ‘‘flavor’’ space! relative to that of the
vacuum expectation value.

In the Higgs basis, the corresponding values ofl1 ,...,l7
are easily evaluated by puttingb50 in Eq. ~E1!. Thus, the
scalar potential takes the following form:

V5maa
2 Fa

†Fa1mbb
2 Fb

†Fb2@mab
2 Fa

†Fb1H.c.#

1 1
2 l~Fa

†Fa!21 1
2 lV~Fb

†Fb!21~lT1lF!~Fa
†Fa!

3~Fb
†Fb!1~l2lA2lF!~Fa

†Fb!~Fb
†Fa!

1{ 1
2 ~l2lA!~Fa

†Fb!22@ l̂~Fa
†Fa!

1lU~Fb
†Fb!#Fa

†Fb1H.c.}, ~E6!

where three new invariant quantities are revealed:

n

e
n
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maa
2 5m11

2 cb
21m22

2 sb
22@m12

2 1~m12
2 !* #sbcb , ~E7!

mbb
2 5m11

2 sb
21m22

2 cb
21@m12

2 1~m12
2 !* #sbcb ,

~E8!

mab
2 5~m11

2 2m22
2 !sbcb1m12

2 cb
22~m12

2 !* sb
2. ~E9!

In the CP-conserving theory wherem12
2 is real, the corre-

sponding potential minimum conditions@Eqs. ~6!,~7!# sim-
plify to

maa
2 52 1

2 v2l, mab
2 52 1

2 v2 l̂, ~E10!

with no constraint onmbb
2 . In fact, mbb

2 is related tomA
2:

mA
25Tr m21 1

2 v2~l1lT!5mbb
2 1 1

2 v2lT ~E11!

after imposing the potential minimum condition@Eq. ~E10!#.
It is convenient to trade the free parametermbb

2 for b2a.
Using the results of Eqs.~D30! and ~D31!, it follows that

tan@2~b2a!#5
2 l̂

lA2 1
2 lT2mbb

2 /v2
, ~E12!

where the sign of sin@2(b2a)# is equal to the sign of̂l.
It is now straightforward to obtain the three- and fou

Higgs-boson couplings in terms of the invariant coupli
parameters andb2a, by inserting Eqs.~E3!–~E5! into Eq.
~E6!.

APPENDIX F: THREE-HIGGS-BOSON VERTICES
IN THE TWO-HIGGS-DOUBLET MODEL

In this appendix, we list the Feynman rules for the thre
point Higgs boson interaction in the most generalCP-
conserving two-Higgs-doublet extension of the stand
model. The Feynman rule for theABC vertex is denoted by
igABC .32 For completeness,R-gauge Feynman rules involv
ing the Goldstone bosons (G6 andG! are also listed.

The Feynman rules are obtained from the scalar poten
by multiplying the corresponding coefficients ofV by 2 i
times the appropriate symmetry factor. To obtain the thr
Higgs-boson couplings in terms ofb2a and the invariant
coupling parameters, we insert Eqs.~E3!–~E5! into Eq.~E6!,
and identify the terms that are cubic in the Higgs bos
fields. The resulting three-point Higgs boson couplin
~which are proportional tov[2mW /g) are given by

32To obtaingABC , multiply the coefficient ofABC that appears in
the interaction Lagrangian by the appropriate symmetry factorn!,
wheren is the number of identical particles at the vertex. Note t
H1 andH2 are not considered identical.
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ghAA52v@lTsb2a2lUcb2a#,

gHAA52v@lTcb2a1lUsb2a#,

ghHH53v[lsb2a(2 2
3 1cb2a

2 )1 l̂cb2a~123sb2a
2 !

1~2lA2lT!sb2a( 1
3 2cb2a

2 )1lUsb2a
2 cb2a],

gHhh53v[lcb2a(2 2
3 1sb2a

2 )2 l̂sb2a~123cb2a
2 !

1~2lA2lT!cb2a( 1
3 2sb2a

2 )2lUcb2a
2 sb2a],

ghhh523v@lsb2a~11cb2a
2 !23 l̂cb2asb2a

2

2~2lA2lT!sb2acb2a
2 2lUcb2a

3 #,

gHHH523v@lcb2a~11sb2a
2 !13 l̂sb2acb2a

2

2~2lA2lT!cb2asb2a
2 1lUsb2a

3 #,

ghH1H252v@~lT1lF!sb2a2lUcb2a#,

gHH1H252v@~lT1lF!cb2a1lUsb2a#. ~F1!

In the approach to the decoupling limit, the three-Higg
boson vertices simplify considerably as exhibited in Table
Here, we have listed all the cubic couplings in the form

gABC5v~XABC1YABCcb2a!, ~F2!

where the coefficientsX andY are given in terms of various
linear combinations of the invariant coupling paramete
These results follow trivially from Eq.~F1!.

The couplings involving the Goldstone bosons are giv
by

t

TABLE I. Three-Higgs-boson vertex Feynman rules in the a
proach to the decoupling limit are given byigABC5 iv(XABC

1YABCcb2a), where the coefficientsX andY are listed below.

ABC XABC YABC

hhh 23l 9 l̂

hhH 23 l̂ l12(lT22lA)

hHH 2(lA2l)2lT 3(lU22 l̂)
hAA 2lT lU

hH1H2 2lT2lF lU

HHH 23lU 6(lA2l)23lT

HAA 2lU 2lT

HH1H2 2lU 2lT2lF
9-22
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ghGG5ghG1G25v@ l̂cb2a2lsb2a#,

gHGG5gHG1G252v@ l̂sb2a1lcb2a#,

ghAG5v@ l̂sb2a2~l2lA!cb2a#,

gHAG5v@ l̂cb2a1~l2lA!sb2a#,

ghH6G65v[ l̂sb2a2(l2lA2 1
2 lF)cb2a],

gHH6G75v[ l̂cb2a1(l2lA2 1
2 lF)sb2a],

gAH6G756
i

2
vlF . ~F3!

In the rule for theAH6G7 vertex, the sign corresponds t
H6 entering the vertex andG6 leaving the vertex.

One can also express the three-Higgs-boson vertice
terms of the Higgs boson masses by using Eqs.~D26!–
~D29!. The Feynman rules for the three-point Higgs bos
vertices that involve Goldstone bosons then take on ra
simple forms:

ghGG5ghG1G25
2g

2mW
mh

2sb2a ,

gHGG5gHG1G25
2g

2mW
mH

2 cb2a ,

ghAG5
2g

2mW
~mh

22mA
2 !cb2a ,

gHAG5
g

2mW
~mH

2 2mA
2 !sb2a ,

ghH6G75
g

2mW
~mH6

2
2mh

2!cb2a ,

gHH6G75
2g

2mW
~mH6

2
2mH

2 !sb2a ,

gAH6G75
6 ig

2mW
~mH6

2
2mA

2 !. ~F4!

The cubic couplings of the physical Higgs bosons, expres
in terms of the Higgs boson masses, are more complica
For example, let us first computeghhh in terms ofl1 ,...,l7 :

ghhh53v@l1sa
3cb2l2ca

3sb1l345sacaca1b

2l6sa
2~3cacb2sasb!1l7ca

2~3sasb2cacb!#.

~F5!

This can then be reexpressed in terms of the Higgs bo
masses using Eqs.~D20!–~D23!. The end result is@12#

ghhh523vFmh
2sb2a

v2 1S mh
22mA

22l5v2

v2sbcb
D cb2a

2 cb1a

1S l6

sa

sb
2l7

ca

cb
D cb2a

2 G . ~F6!

Note that the decoupling limit result@Eq. ~57!# follows easily
after using Eq.~29! to obtain theO(cb2a) correction. We
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have also exhibitedghH1H2 in Eq. ~59!. Expressions for the
other three-Higgs-boson couplings in terms of the Higgs
son masses can be found in Ref.@12# ~see also Ref.@48# for
the case ofl65l750 and Ref.@51# for other special cases!.
However, in the most general case, such expressions are
useful. Finally, using Eq.~D29! we note the relations

v@ghH1H22ghAA#522~mH6
2

2mA
2 !sb2a ,

v@gHH1H22gHAA#522~mH6
2

2mA
2 !cb2a . ~F7!

APPENDIX G: FOUR-HIGGS-BOSON VERTICES
IN THE TWO-HIGGS-DOUBLET MODEL

In this appendix, we list the Feynman rules for the fou
point Higgs boson interaction in the most generalCP-
conserving two-Higgs-doublet extension of the stand
model. Recalling thatLint]2V, the Feynman rules are ob
tained from the scalar potential33 by multiplying the corre-
sponding coefficients ofV by 2 i times the appropriate sym
metry factor. We find it convenient to write the terms of th
potential that are quartic in the Higgs fields as a sum of t
pieces:V]VA1VB , whereVA depends explicitly onb2a
and VB is independent ofb2a. To obtain the four-Higgs-
boson couplings in terms ofb2a and the invariant coupling
parameters, we insert Eqs.~E3!–~E5! into Eq.~E6! and iden-
tify the terms that are quartic in the Higgs boson fields. F
completeness, the quartic interaction terms involving
Goldstone bosons (G6 andG! are also listed. The end resu
is

33Note, e.g., that the term proportional tohAH1G2 in V corre-
sponds toH1 andG2 directedinto the vertex, etc.

TABLE II. Four-Higgs-boson vertex Feynman rules in the a
proach to the decoupling limit are given byigABCD5 i (XABCD

1YABCDcb2a), where the coefficientsX and Y are listed below.
The rules forAAAA, AAH1H2, andH1H2H1H2 are exact~since
they are independent ofb2a).

ABCD XABCD YABCD

hhhh 23l 12l̂

hhhH 23 l̂ 3(l1lT22lA)

hhHH 2(lA2l)2lT 6(lU2 l̂)
hhAA 2lT 2lU

hhH1H2 2lT2lF 2lU

hHHH 23lU 3(lV2lT)16(lA2l)
hHAA 2lU 2lT1lV

hHH1H2 2lU lV2lT2lF

HHHH 23lV 212lU

HHAA 2lV 22lU

HHH1H2 2lV 22lU

AAAA 23lV 0
AAH1H2 2lV 0

H1H2H1H2 22lV 0
9-23
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8VA5h4@lsb2a
2 ~3cb2a

2 11!24 l̂cb2asb2a
3 22~2lA2lT!cb2a

2 sb2a
2 24lUcb2a

3 sb2a1lVcb2a
4 #

14h3H@lsb2acb2a~3cb2a
2 21!2 l̂sb2a

2 ~4cb2a
2 21!2~2lA2lT!sb2acb2a~cb2a

2 2sb2a
2 !1lUcb2a

2 ~4sb2a
2 21!

2lVsb2acb2a
3 #12h2H2@l~229sb2a

2 cb2a
2 !26~ l̂2lU!sb2acb2a~cb2a

2 2sb2a
2 !2~2lA2lT!~126sb2a

2 cb2a
2 !

13lVsb2a
2 cb2a

2 #14hH3@lsb2acb2a~3sb2a
2 21!1 l̂cb2a

2 ~4sb2a
2 21!1~2lA2lT!sb2acb2a~cb2a

2 2sb2a
2 !

2lUsb2a
2 ~4cb2a

2 21!2lVcb2asb2a
3 #1H4@lcb2a

2 ~3sb2a
2 11!14 l̂cb2a

3 sb2a22~2lA2lT!cb2a
2 sb2a

2

14lUcb2asb2a
3 1lVsb2a

4 #12h2A2@lTsb2a
2 22lUsb2acb2a1lVcb2a

2 #14h2AG@2~l2lA!sb2acb2a2 l̂sb2a
2

2lUcb2a
2 #12h2G2@lsb2a

2 22 l̂sb2acb2a1lTcb2a
2 #14h2H1H2@~lT1lF!sb2a

2 22lUsb2acb2a1lVcb2a
2 #

14~h2H1G21h2H2G1!@~2l22lA2lF!sb2acb2a2 l̂sb2a
2 2lUcb2a

2 #14h2G1G2@lsb2a
2 22 l̂sb2acb2a

1~lT1lF!cb2a
2 #14hHA2@~lT2lV!sb2acb2a2lU~cb2a

2 2sb2a
2 !#18hHAG@~l2lA!~cb2a

2 2sb2a
2 !2~ l̂

2lU!sb2acb2a#14hHG2@~l2lT!sb2acb2a2 l̂~cb2a
2 2sb2a

2 !#18hHH1H2@~lT2lV1lF!sb2acb2a

2lU~cb2a
2 2sb2a

2 !#14~hHH1G21hHH2G1!@~2l22lA2lF!~cb2a
2 2sb2a

2 !22~ l̂2lU!sb2acb2a#

18hHG1G2@~l2lT2lF!sb2acb2a2 l̂~cb2a
2 2sb2a

2 !#12H2A2@lTcb2a
2 12lUsb2acb2a1lVsb2a

2 #

14H2AG@2~lA2l!sb2acb2a2 l̂cb2a
2 2lUsb2a

2 #12H2G2@lcb2a
2 12 l̂sb2acb2a1lTsb2a

2 #14H2H1H2@~lT

1lF!cb2a
2 12lUsb2acb2a1lVsb2a

2 #14~H2H1G21H2H2G1!@~2lA22l1lF!sb2acb2a2 l̂cb2a
2 2lUsb2a

2 #

14H2G1G2@lcb2a
2 12 l̂sb2acb2a1~lT1lF!sb2a

2 #14i @hAH1G22hAH2G11HGH1G2

2HGH2G1#lFsb2a24i @hGH1G22hGH2G12HAH1G21HAH2G1#lFcb2a , ~G1!

and

8VB5lV~A414A2H1H214H1H2H1H2!24lU~A3G1A2H1G21A2H2G112AGH1H212H1H2H1G2

12H1H2H2G1!12@2~l2lA!1lT#A2G214~lT1lF!~A2G1G21G2H1H2!24 l̂~AG312AGG1G2

1G2H1G21G2H2G112H1G1G2G212H2G2G1G1!14@2~l2lA!2lF#~AGH1G21AGH2G1!1l~G4

14G2G1G214G1G2G1G2!14~l2lA!~H1H1G2G21H2H2G1G1!18~l2lA1lT!H1H2G1G2. ~G2!
b
o

pe

r-
in

rs.

f

ms
r-
x-
The quartic Higgs boson couplings are now easily o
tained by including the appropriate symmetry factors. F
example, theh4 andH4 couplings are given by

ghhhh523@lsb2a
2 ~113cb2a

2 !24 l̂cb2asb2a
3 22~2lA

2lT!cb2a
2 sb2a

2 24lUcb2a
3 sb2a1lVcb2a

4 #,

~G3!

gHHHH523@lcb2a
2 ~113sb2a

2 !14 l̂cb2a
3 sb2a22~2lA

2lT!cb2a
2 sb2a

2 14lUcb2asb2a
3 1lVsb2a

4 #.

~G4!

Note the first appearance of physical observables that de
on lV .
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Let us denote the Feynman rule for theABCD vertex by
igABCD . In the approach to the decoupling limit, the fou
Higgs-boson vertices simplify considerably as exhibited
Table II. Here, we have listed all couplings in the form

gABCD5~XABCD1YABCDcb2a!, ~G5!

where the coefficientsX andY are given in terms of various
linear combinations of the invariant coupling paramete
Note that the terms contained inVB are not affected by the
decoupling limit since these terms are independent ob
2a.

The four-Higgs-boson couplings can be rewritten in ter
of l1 ,...,l7 , a, andb. The resulting expressions are gene
ally more complex, with a few notable exceptions. For e
ample, the quartic couplings inVA that depend only onh and
H are independent ofb:
9-24
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VA] 1
8 h4@l1sa

41l2ca
41 1

2 l345s2a
2 22s2a~l6sa

21l7ca
2 !#1 1

2 h3H@ 1
2 s2a~2l1sa

21l2ca
22l345c2a!1l6sas3a1l7cac3a#

1 1
4 h2H2@ 3

4 s2a
2 ~l11l222l345!1l34523s2ac2a~l62l7!#1 1

2 hH3 @ 1
2 s2a~2l1ca

21l2sa
21l345c2a!1l6cac3a

1l7sas3a#1 1
8 H4@l1ca

41l2sa
41 1

2 l345s2a
2 12s2a~l6ca

21l7sa
2 !#, ~G6!

and in this form these results are somewhat simpler than the corresponding expressions in terms of the invariant
parameters given in Eq.~G1!. One can check that the latter can be obtained from Eq.~G6! by rotating to the Higgs basis~see
the discussion in Appendix E!. That is, in Eq.~G6!, let a→a2b, l1→l, l2→lV , l345→2(l2lA)1lT , l6→2 l̂, and
l7→2lU @cf. Eq. ~E6!#.

One can also express the four-Higgs-boson vertices in terms of the Higgs boson masses by using Eqs.~D20!–~D23!. For
example@12#,

ghhhh523Fmh
2

v2 S sb2a2
cb1acb2a

2

sbcb
D 2

1
mH

2

v2 S sacacb2a

sbcb
D 2

2
mA

21l5v2

v2 S cb1acb2a

sbcb
D 2

2
2~l6sa

21l7ca
2 !cb2a

2

sbcb
G . ~G7!

Note that the decoupling limit result@Eq. ~58!# follows trivially, after using Eqs.~29! and ~31! to obtain theO(cb2a)
correction. Expressions for other four-Higgs-boson couplings in terms of the Higgs boson masses can be found in R@12#
~see also Ref.@48# for the case ofl65l750 and Ref.@51# for other special cases!. However, in the most general case, su
expressions are less useful.
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