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Finite theories and the supersymmetry flavor problem
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We study a finiteSU(5) grand unified model based on the non-Abelian discrete symmetryA4. This model
leads to the democratic structure of the mass matrices for the quarks and leptons. In the soft supersymmetry
breaking sector, the scalar trilinear couplings are aligned and the soft scalar masses are degenerate, thus solving
the SUSY flavor problem.
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I. INTRODUCTION

Supersymmetry~SUSY! is broken in nature. It is widely
accepted that the effects of supersymmetry breaking ap
as soft supersymmetry breaking~SSB! terms@1#. However, if
only renormalizability is used to guide the SSB paramete
it is possible to introduce more than 100 new parameters
the minimal supersymmetric standard model~MSSM! @2#.
The problem is not only this large number of the independ
parameters, but also the fact that one has to highly fine-t
these parameters so that they do not cause problems
experimental observations on the flavor changing neu
current ~FCNC! processes andCP-violation phenomena
@3–7#. This problem, called the SUSY flavor problem, is n
new, but has existed ever since supersymetry found phen
enological applications@8#.

There are several approaches to overcome this prob
The most well-known one@1# is to simply assume that th
SSB parameters have a universal form, independent of
flavor structure of the standard model~SM! at, say, grand
unified theory ~GUT! scale MGUT. This is the so-called
minimal supergravity model. In this model, supersymme
breaking occurs in a sector that is hidden to the MSSM s
tor, and supersymmetry breaking is mediated to the MS
sector by gravity. There exist other ideas of mediation: ga
mediation@9#, anomaly mediation@10# and gaugino media
tion @11#. Their common feature is the assumption that th
exists a hidden sector that is separated from the MSSM
cleverly chosen interactions or it is separated in space-t
~for which one needs extra dimensions1!, or both. Another
type of idea to overcome the SUSY flavor problem is to u
the infrared attractive force of the gauge interactions@13#, in
four dimensions@14–18# as well as in extra dimensions@19#.

*Permanent address: Institute for Theoretical Physics, Kanaz
University, Kanazawa 920-1192, Japan.

1There is a problem associated with this approach, the problem
sequestering branes between the visible sector and the hidden
sector@12#.
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In these scenarios, it is not necessary to assume that
supersymmetry is broken in a sector that is separated f
the MSSM.

Although it is attractive to find dynamical mechanism
that suppress the dangerous FCNC processes andCP-
violating phases, it is also worthwhile to look for other a
tractive possibilities. In fact, it has been argued@20–23# that
finiteness2 of softly broken supersymmetric Yang-Mills theo
ries @28–32# may play an important role to understand t
universality of the SSB parameters. However, it has turn
out @32,33# that the universality is not a necessary conditi
for finiteness: It has been found@32,33# that more relaxed
conditions, sum rules among the soft scalar masses, are
ficient. Clearly, the sum rules do not automatically ensure
degeneracy of the soft scalar masses. In fact, in the un
models of@29–32# in which the hierarchical structure of th
Yukawa couplings emerges, the sum rules cannot sufficie
constrain the individual soft scalar masses in the first t
generations of the squarks and sleptons.

Recently, a class of finite models based onSU(5) with
certain discrete symmetries has been considered in@34#, and
it has been found that some of these models yield a de
cratic structure of the Yukawa couplings. As we will see, t
democratic structure is essential to obtain sum rules of
soft scalar masses from which their degeneracy in genera
follows. Therefore, the exact finiteness in the models of@34#
ensures the absence of the SUSY flavor problem.

In Sec. II we will recapitulate the finiteness conditions
softly broken supersymmetric Yang-Mills theories@28–32#.
The unified model of@34# based onSU(5)3A4, including
the SSB sector, is investigated in Sec. III, whereA4 is the
group of even permutations of four objects. As we will se
the model has a strong predictive power, and we will cal
late various low-energy parameters such as the top qu
mass and the spectrum of the superpartners that are pred
from the model. In Sec. IV we conclude.
a

of
SB

2See@24–27# for earlier references on finite theories.
©2003 The American Physical Society18-1
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II. SOFTLY BROKEN NÄ1 SUPERSYMMETRIC FINITE
UNIFIED THEORIES

We start by considering a generic form of th
superpotential3

W5
1

6
Yi jkF iF jFk1

1

2
m i j F iF j , ~1!

along with the Lagrangian for the SSB terms

2LSB5
1

6
hi jkf if jfk1

1

2
Bi j f if j1

1

2
~m2! i

jf* if j

1
1

2
Mll1H.c., ~2!

wheref i is the scalar component ofF i , and l stands for
gaugino. Since we consider only finite theories, we assu
that the one-loopb function of the gauge couplingg van-
ishes, i.e.,

(
i

T~Ri !23C~G!50, ~3!

whereT(Ri) is the Dynkin index of the representationRi and
C(G) is the quadratic Casimir of the adjoint representat
of the gauge groupG. We also assume that the gauge gro
is a simple group, and that the theory is free from the ga
anomaly, of course. According to the finiteness theorem
@28#, the theory is finite to all orders in perturbation theor4

if ~i! the reduction equation@36–38#

bY
i jk5bgdYi jk /dg ~4!

admits a unique power series solution

Yi jk5g(
n50

r (n)
i jk g2n, ~5!

where bg and bY
i jk are the b functions of g and Yi jk ,

respectively,5 and ~ii ! the one-loop anomalous dimensio
vanish, that is,

1

2 (
p,q

r ipq(0)r (0)
jpq22d i

jC~Ri !50, ~6!

where r ipq(0)5r (0)* jpq . We would like to recall that if the
condition~ii ! is satisfied, the two-loop expansion coefficien
in Eq. ~5!, r (1)

i jk , vanish@22#, and that if~i! and ~ii ! are sat-
isfied, the anomalous dimensionsg i

j vanish to all orders@28#.
Field theories that satisfy~i! and ~ii ! possess the exact sca
invariance.

3We follow the notation of@35#.
4Finiteness here means only for dimensionless couplingsg and

Yi jk .
5See@39# for further references on reduction of couplings.
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In the presence of the SSB terms, the exact scale inv
ance is broken by them in a strict sense. However, it is
pected that the couplings, masses, etc., in a unified fi
theory without gravity are vacuum expectation valu
~VEV’s! of certain fields in a more fundamental theor
Therefore, it would be natural to transform them under
scale transformation, too. Then the scale invariance of a
particle irreducible~1PI! function G means

G@etp,eth,etm,e2tB,e2tm2,Y,g#

5edGtG@p,h,m,B,m2,Y,g#, ~7!

wherep stand for momenta, anddG is the canonical dimen-
sion of G. Clearly, Eq.~7! is correct, only if the theory is
finite. Finiteness in the SSB sector can be achieved by u
the relations among the renormalization of the SSB para
eters and those of an unbroken supersymmetric gauge th
@23,33,35,40–47#.6 Accordingly, theb functions of theM ,h
andm2 parameters can be written as@42,43#7

bM52OS bg

g D , ~8!

bh
i jk5g i

lh
l jk1g j

lh
ilk1gk

lh
i j l 22g1

i
lY

l jk22g1
j

lY
ilk

22g1
k

lY
i j l , ~9!

~bm2! i
j5FD1Xg

]

]gGg i
j , ~10!

O5S Mg2
]

]g2 2hlmn
]

]YlmnD , ~11!

D52OO* 12uM u2g2
]

]g2 1Ỹlmn

]

]Ylmn
1Ỹlmn

]

]Ylmn ,

~12!

where (g1) i
j5Og i

j , Ylmn5(Ylmn)* , and

Ỹi jk5~m2! i
lY

l jk1~m2! j
lY

ilk1~m2!k
lY

i j l . ~13!

X in Eq. ~10! has been first explicitly calculated in the lowe
order @22,49#, and later its all order form@33,45–48#

X5
2uM u2C~G!1( lml

2T~Rl !

C~G!28p2/g2
~14!

has been found in the renormalization scheme of Novik
et al., in which theb function of the gauge couplingg is
given by @50#

6In @48# this matter is reviewed in a transparent way. See also@16#.
7We do not considerBi j in the following discussions, because the

do not enter into theb functions of the other quantities@42,43#.
Moreover, they are automatically finite if the other quantities a
finite @23#.
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bg
NSVZ5

g3

16p2 F( lT~Rl !~122g l !23C~G!

12g2C~G!/8p2 G . ~15!

The key point in@23,33,35# is the assumption that the differ
ential operatorsO andD given in Eqs.~11! and~12! become
total derivative operators on the renormalization group~RG!
invariant surface which is defined by the solution of the
duction equations for the SBB parameters. It has been sh
in @23,33,35# that if the trilinear couplings are expressed
terms ofM andg as @23,35#8

hi jk52M
dYi jk~g!

d ln g
, ~16!

and the soft scalar masses satisfy the sum rules@33#

mi
21mj

21mk
25uM u2H 1

12g2C~G!/~8p2!

3
d ln Yi jk

d ln g
1

1

2

d2ln Yi jk

d~ ln g!2 J
1(

l

ml
2T~Rl !

C~G!28p2/g2

d ln Yi jk

d ln g
, ~17!

the differential operatorsO and D become total derivatives
with respect tog:

O5
M

2

d

d ln g
, ~18!

D1Xg
]

]g
5uM u2H 1

12g2C~G!/~8p2!

d

d ln g
1

1

2

d2

d~ ln g!2J
1(

l

ml
2T~Rl !

C~G!28p2/g2

d

d ln g
. ~19!

Note that in the derivations from Eqs.~16! to ~19!, it has
been assumed that

g j
i5g id

j
i , ~20!

~m2! j
i5mi

2d j
i , ~21!

Yi jk
]

]Yi jk
5Y* i jk

]

]Y* i jk
on the space of the RG functions.

~22!

Therefore, if the anomalous dimensionsg i vanish to all or-
ders@which is ensured if~i! and~ii ! given in Eqs.~5! and~6!
are satisfied#, we havebM5bh

i jk5(bm2) j
i 50.

We see from Eq.~17! that the universal choice

8Reduction of massive parameters has been first proposed in@51#.
07501
-
n

mi
25

uM u2

3
~23!

also ensures the finiteness to two-loop order in accord w
@21–23#. Note thatC(G)5( lT(Rl)/3 andd ln Yijk/d ln g51
1O(g4). Similarly, the N54 supersymmetric case@T(Rl)
5C(G)# with the SSB parameters@20# can be simply de-
rived from Eqs.~16! and ~17!.

To summarize, finiteness in the SSB sector is guarant
if hi jk are expressed according to Eq.~16!, and the sum rules
~17! are satisfied. The trilinear couplingshi jk , unless they are
aligned, contribute todRL @7# which are strongly constraine
from FCNC processes and dangerousCP-violating phenom-
ena. The explicit form ofhi jk in finite theories is known to
two-loop order@21,22#:

hi jk52MYi jk~g!1O~g5!. ~24!

The higher order terms depend on the renormalizat
scheme. In fact, it is possible@38# to make vanish all the
expansion coefficientsr (n)

i jk of Eq. ~5! except the lowest orde
one r (0)

i jk by a suitable redefinition of the Yukawa coupling
Yi jk . The redefinition does not modify the form ofb function
bg

NSVZ ~15!, because only the anomalous dimensions cha
in bg

NSVZ . Therefore, in finite theories,hi jk are aligned to all
orders, and thereforehi jk introduce no extraCP-violating
phases:

hi jk52MYi jk~g!. ~25!

In contrast to this case, the sum rules~17! of the soft scalar
masses do not automatically ensure their degeneracy in
space of generation. However, as we will see in a conc
model, the sum rules~17! can yield the degeneracy of th
soft scalar masses. The exact finiteness does not autom
cally yield a solution to the SUSY flavor problem. But
solution to the SUSY flavor problem can result from t
quantum scale invariance.

Since superstring theories are scale invariant theorie
solution to the SUSY flavor problem based on the exact sc
invariance may be realized. In fact, in a certain class of
bifold models of superstrings, in which the massive stri
states are organized intoN54 supermultiplets@52# ~see also
@53#!, so that they do not contribute to the quantum mod
cation of the kinetic function, the sum rules

mi
21mj

21mk
25uM u2

1

12g2C~G!/~8p2!

1(
l

ml
2T~Rl !

C~G!28p2/g2
~26!

along withhi jk52MYi jk are satisfied@32#. ~See also@54–
60#.! Therefore, the finiteness conditions~25! and~17! coin-
cide with those of the above superstrings models to all
ders.
8-3
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III. MODEL BASED ON SU„5…ÃA4

There exist various unified models that are all-order fin
at least in the dimensionless sector@28–32#. In all the mod-
els, only such solutions of the reduction equations~4! have
been considered that admit the hierarchal structure of
Yukawa couplings. As a result, the sum rules~17! are indeed
satisfied, but it cannot strongly constrain the individual s
scalar masses in the first two generations~see@32#!. In con-
trast to the previous models, theSU(5) models~two of three
models! proposed in@34# yield a democratic structure of th
Yukawa couplings. As we will see, the democratic struct
~which follows as a consequence of certain discrete sym
tries! is essential to obtain sum rules of the soft scalar mas
from which their degeneracy follows.

Three generations of quarks and leptons are accom
dated in10i and 5̄i , wherei runs over the three generation
A S in 24 is used to breakSU(5) down to SU(3)C
3SU(2)L3U(1)Y , and there are four pairs of Higgs supe
multiplets Ha and H̄a (a51 –4). The starting superpoten
tial is

W5 (
i , j 51

3

(
a51

4 S 1

2
ui j

a 10i10jHa1di j
a 10i 5̄j H̄aD

1 (
a,b51

4

kabH̄aSHb1
l

3
S31

mS

2
S21mH

abH̄aHb ,

~27!

and the SSB Lagrangian is

2LSSB5 (
a51

4

@mHa

2 Ĥa* Ĥa1mH̄a

2
Ĥ̄a* Ĥ̄a#1mS

2 Ŝ†Ŝ

1(
i 51

3

@m5i

2 5̂̄i* 5̂̄i1m10i

2 10̂i* 10̂i #1H 1

2
Mll1BSŜ2

1 (
a,b51

4

@BH
abĤ̄aĤb1hf

abĤ̄aŜĤb#1
hl

3
Ŝ3

1 (
i , j 51

3

(
a51

4 S hui j
a

2
10̂i10̂j Ĥa1hdi j

a 10̂i 5̂̄j Ĥ̄aD 1H.c.J ,

~28!

where a hat is used to denote the scalar component of
chiral supermultiplet. The resulting theory has an unbrokeR
parity along with the conservation ofB2L. Note that we
assumed the diagonal soft scalar masses, because
diagonal soft masses would not satisfy the assumption~6! as
well as ~20!, and hence violates finiteness.

A. The degeneracy of the soft scalar masses
from their sum rules

To be specific, we consider the model based onSU(5)
3A4 symmetry @34#, where A4 is the group of even
07501
e
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permutations.9 A4 has three irreducible representatio
1, 18, 19 and 3 @61#, and the matter supermultiplets belon
to its representation according to@34#

10i :3, 5̄i :3

~Hi ,H4!:3118, ~H̄ i ,H̄4!:3119 S:1,

where i 51;3. Then the cubic part of the superpotent
~27! invariant underA4 becomes

W35
a

2
~1011011v1021021v2103103!H41c~1015̄1

1v21025̄21v1035̄3!H̄41b101102H31d~1015̄2

11025̄1!H̄31b103101H21d~1035̄111015̄3!H̄2

1b102103H11d~1025̄311035̄2!H̄11k~H̄1H11H̄2H2

1H̄3H3!S1
l

3
S3, ~29!

wherew5exp(i2p/3) can be removed by field redefinition
The lowest order solution to the reduction equation~4! is
@34#:

a25b25
8

15
g2, c25d25e25

2

5
g2,

k25
1

3
g2, l25

15

7
g2. ~30!

It can be shown that the power series solution~5! exists
uniquely, so that the dimensionless sector can be made fi
to any finite order in perturbation theory. At this point w
assume that a suitable redefinition of the Yukawa coupli
@38# has been performed so that the above solution~30! is
exact. Note the mass term for theH and H̄ is not invariant
underA4 for an arbitrary mass matrixmH . The choice ofmH
is, however, very important to make the model phenome
logically viable, because the Cabibbo-Kobayashi-Maska
~CKM! mixing of the quarks in this model basically orig
nates frommH . So, theA4 invariance has to be broken b
the mass term, already at the GUT scaleMGUT. Therefore, it
is natural to assume that the operators with dimension
than four do not have to respect theA4 invariance. Since the
SSB terms consist of such operators, we should not imp
the A4 invariance on the SSB Lagrangian~28!. We proceed
with this remark in mind.

Equation~25! means

hui j
a 52Mui j

a , hdi j
a 52Mdi j

a . ~31!

9The S4 model @34# can be treated similarly. We have found th
as far as the SSB sector is concerned, it is exactly the same a
A4 model.
8-4
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Further, the right-hand side of Eq.~17! ~which we denote by
M̃2) can be written as

M̃25uM u2
1

12g2C~G!/~8p2!
1(

l

ml
2T~Rl !

C~G!28p2/g2
.

~32!

Using M̃2 above, we write down all the sum rules~17!:

M̃252m101

2 1mH4

2 52m102

2 1mH4

2 52m103

2 1mH4

2 , ~33!

M̃25m101

2 1m102

2 1mH1

2 5m101

2 1m103

2 1mH2

2

5m102

2 1m103

2 1mH3

2 , ~34!

M̃25m101

2 1m5̄1

2
1mH̄4

2
5m102

2 1m5̄2

2
1mH̄4

2

5m103

2 1m5̄3

2
1mH̄4

2 , ~35!

M̃25m101

2 1m5̄2

2
1mH̄1

2
5m102

2 1m5̄1

2
1mH̄1

2 , ~36!

M̃25m101

2 1m5̄3

2
1mH̄2

2
5m103

2 1m5̄1

2
1mH̄2

2 , ~37!

M̃25m102

2 1m5̄3

2
1mH̄3

2
5m103

2 1m5̄2

2
1mH̄3

2 , ~38!

M̃25mH1

2 1mH̄1

2
1mS

2 5mH2

2 1mH̄2

2
1mS

2

5mH3

2 1mH̄3

2
1mS

2 , ~39!

M̃253mS
2 . ~40!

The sum rules~33! require the degeneracy ofm10i

2 , and the

degeneracy ofm5̄i

2 follows from Eq.~35!. Similarly, one can

easily derive the degeneracy ofmH̄a

2 as well as that ofmHa

2 :

m10i

2 5m10
2 , m5̄i

2
5

4

3
M̃223m10

2 ,

mHa

2 5M̃222m10
2 , mH̄a

2
52

1

3
M̃212m10

2 , ~41!

wherei 51 –3 anda51 –4. As we can see from~41!, There
are only two independent parameters in the SSB sector,m10

2

and the gaugino mass M, for instance, as we have indic
in Eq. ~41!. To expressM̃2 in terms ofM, we have to com-
pute the trace in Eq.~32!. We find
07501
ed

ml
2T~Rl !5

1

2 F(
i 51

3

m5̄i

2
1 (

a51

4

~mHa

2 1mH̄a

2
!G

1
3

2 (
i 51

3

m10i

2 15mS
2

5C„SU~5!…M̃2, ~42!

where we have used Eqs.~33!–~40!. Using this, we then
obtain

M̃25uM u2. ~43!

Note that the democratic structure for the quark mass
trices is essential to obtain the set of the sum rules~35! and
~36!–~38! that yields the universal soft masses~41!. To sum-
marize, finiteness requires that the trilinear couplings hav
be aligned~31! and the soft scalar masses have to have
universal form~41!. Before the diagonalization ofmH

ab , the
Yukawa couplingsui j and di j are real numbers. Note tha
there are no restrictions onmH

ab andBH
ab from finiteness. The

diagonalization ofmH
ab and an appropriate phase rotation

Ha andH̄a will introduce phases into the Yukawa coupling
which yields the ordinary CKM phase. The redefinition
the superfields above does not destroy the alignment of
trilinear couplings ~31! and the universality of the sof
masses~41!. Then only the gaugino massM and BH

ab are
complex numbers and containCP-violating phases in this
model. They may contribute to the electric dipole mome
~EDM! of the neutron, for instance@5#. Nevertheless, the
SUSY flavor problem is drastically reduced in this finite un
fied model.

B. Predictions at low energy

Since there are four pairs of the Higgs supermultiplets
is not all automatic that there is only one pair of light Hig
doublets at low energies after a fine tuning atMGUT. Fur-
thermore, the Yukawa couplings are of orderO(g), and so
we have to worry about the problem of fast proton dec
@63# via dimension five operators@64#. These problems are
related to the choice of the supersymmetric Higgs mass
trix mH

ab in the superpotential~29!, which we would like to
leave for future problems. Note that there are no constra
on mH

ab from finiteness. In what follows, we simply assum
that there is one pair of light Higgs doublets and the pro
decay can be sufficiently suppressed.

The finiteness conditions~30!, ~31! and ~41! do not re-
strict the renormalization property at low energies, beca
the gauge symmetry is spontaneously broken belowMGUT.
This should be contrasted to the case of the anomaly m
ated supersymmetry breaking@10#. Therefore, the conditions
~30!, ~31! and ~41! are just boundary conditions atMGUT in
our case. By assumption, the evolution of the parame
below MGUT is governed by the MSSM@65#. We further
assume a unique supersymmetry breaking scaleMSUSY,
which is identified withA(mt1

2 1mt2
2 )/2, wheremti

2 are two

stop masses, so that belowMSUSY the SM is the correct
8-5
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effective theory. We recall that tanb is usually determined in
the Higgs sector. However, in the case at hand, it is con
nient to define tanb by using the matching condition a
MSUSY,

a t
SM5a tsin2b, ab

SM5abcos2b, at
SM5atcos2b,

al5
1

4 S 3

5
a11a2D cos22b, ~44!

wherea i
SM ( i 5t,b,t) are the SM Yukawa couplings andal

is the Higgs coupling (a I5gI
2/4p2). The matching condi-

tions ~44! and the boundary conditions atMGUT can be sat-
isfied only for a specific value of tanb. This is the reason o
why it is possible without knowing the details of the sca
sector of the MSSM to predict various parameters such as
top and quark masses@29,31,62#.

Since tanb is fixed in the dimension-zero sector and t
soft scalar masses have to satisfy the boundary condit
~41! at MGUT, it is by no means trivial that the electrowea
symmetry is correctly broken at low energies@66#. Fortu-
nately, the supersymmetric mass parametermH for the pair of
the light Higgs doublets and the correspondingB term are
not constrained by the finiteness conditions. Therefore,
use this freedom to fixmH andB to trigger the electroweak
symmetry breaking. To proceed we write down the up-qu
mass matrix atMGUT which can be read off from Eqs.~29!
and ~30!:

Mu5A 8

15
g^H4& S 1 11e1 11e2

11e1 1 11e3

11e2 11e3 1
D , ~45!

where

e i5
^HI&

^H4&
21 with i 51,2,3. ~46!

As we can see also from Eqs.~29! and ~30!, the down-type
quark mass matrix has the same structure. It has been fo
@67# that the above democratic mass matrix withe i!1 agree
with experimental data. Therefore,Ha have to have almos
equal VEV’s, although there is only one pair of light Higg
doublets.

After so many remarks, we are now in position to co
pute low energy quantities. We use the renormalization gr
equations of two-loop order for dimensionless parame
and those of one-loop order for dimensional ones@65#. To
see the gross nature of the low energy predictions of
present model, we, however, neglecte i in the mass matrix
~45! and the threshold corrections atMGUT as well as
MSUSY, while we take into account the SM correction to t
physical mass of the top quarkmt and tomb , which is the
running bottom mass atmb . Under this simplification, the
top and bottom Yukawa couplings atMGUT are given by

yt5A6/5 g, yb5A9/10 g. ~47!

In Table I we present the predictions fora3(MZ),tanb,mt
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andmb for different choices of the unified gaugino massM.
Comparing, for instance, themt prediction above with the
most recent experimental value@68#,

mt5~174.365.1! GeV, ~48!

and recalling that we have neglectede i in Eq. ~45! and the
threshold corrections, we see that the prediction can be c
sistent with the experimental data.

Next we turn to the SSB sector with the finiteness con
tions ~31! and ~41!. As we can see from Eqs.~41!, we may
treatM andm10 as independent parameters. The nice feat
of Eqs.~41! is that the soft scalar masses ofHa and H̄a are
degenerate. Therefore, one pair of the light Higgs doubl
Hu andHd , which can be obtained after the diagonalizati
by an appropriate unitary matrix, has exactly the same
scalar mass. Then we look for the parameter space in
m102M plane, in which a successful radiative electrowe
symmetry breaking occurs and the lightest neutralino is
LSP. In Fig. 1 we show the result where the region with d
and open squares leads to a successful radiative electro
symmetry breaking. In the region with dots, the lightest ne
tralino is the LSP, while in the region with open squares
LSP is the stau. So the phenomenologically viable param
space in theM2m10 plane is very restricted;m10 has to lie
approximately on the straight line given bym1055/8M . That
is, for a given unified gaugino massM, the spectrum of the
superpartners is basically fixed. In Table II we present
results forM51 TeV and 1.5 TeV in an obvious notation.

The dotted region in Fig. 1 is interesting also from t
cosmological viewpoint. In the dotted region, the lighte

TABLE I. The predictions for differentM.

M ~TeV! a3(5f)(MZ) tanb mb ~GeV! mt ~GeV!

1 0.118 52 4.6 179
1.5 0.117 52 4.6 179

FIG. 1. The parameter space with a successful radiative e
troweak symmetry breaking. The LSP is the lightest neutralino~the
stau! in the region with dots~open squares!.
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TABLE II. The predictions of the spectrum of the superpartners forM51 TeV with m1050.63 TeV and
M51.5 TeV withm1050.94 TeV.
n

ta
e

fo

o
e
n

m
n

a
r

ires

sen-
es.
so-

he
ale

s-
ci-

of

o.
ra-
4.
nt
t of
neutralinox1 and the light staut̃1 are nearly degenerate i
mass, that is,mt̃1

2mx1
,25 GeV, where the light staut̃1 is

the next-to-LSP. With this type of spectrum, neutralino-s
co-annihilation can occur and that reduces the relic LSP d
sity @69#. Thus, this parameter region is quite interesting
the LSP dark matter scenario.

IV. CONCLUSION

Although it was suggested in the past@20–23# that the
finiteness of softly broken supersymmetric Yang-Mills the
ries may play an important role in understanding the univ
sality of the SSB parameters, there has been so far no fi
model based on softly brokenN51 supersymmetry in which
the universality of the SSB parameters follows solely fro
finiteness. The simple reason is the relaxed finiteness co
tion, the sum rule~17!.

In this paper we considered the finite model of@34#,
which is based on the discrete symmetryA4 and has the
democratic structure of the mass matrices for the quarks
leptons. We included the SSB sector to this model and
quired that this sector does not destroy finiteness.A4 sym-
metry in the SSB sector was not assumed, becauseA4 sym-
tin
c

s.

07501
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metry has to be broken atMGUT by operators with dimension
less than four. We found that finiteness in this model requ
that the trilinear couplings have to be aligned~31! and the
soft scalar masse have to have the universal form~41!. The
democratic structure of the mass matrices played the es
tial role to obtain the universality of the soft scaler mass
Therefore, this model shows that finiteness can offers a
lution to the SUSY flavor problem, and indicates that t
SUSY flavor problem is closely related to the exact sc
invariance.
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