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We study a finiteSU(5) grand unified model based on the non-Abelian discrete symmgtrirhis model
leads to the democratic structure of the mass matrices for the quarks and leptons. In the soft supersymmetry
breaking sector, the scalar trilinear couplings are aligned and the soft scalar masses are degenerate, thus solving
the SUSY flavor problem.
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I. INTRODUCTION In these scenarios, it is not necessary to assume that the
supersymmetry is broken in a sector that is separated from
SupersymmetrySUSY) is broken in nature. It is widely the MSSM.

accepted that the effects of supersymmetry breaking appear Although it is attractive to find dynamical mechanisms
as soft supersymmetry breakif@SB) terms[1]. However, if  that suppress the dangerous FCNC processes GiRd
only renormalizability is used to guide the SSB parametersyiolating phases, it is also worthwhile to look for other at-
it is possible to introduce more than 100 new parameters inttractive possibilities. In fact, it has been argue0-23 that
the minimal supersymmetric standard modkISSM) [2].  finitenes$ of softly broken supersymmetric Yang-Mills theo-
The problem is not only this large number of the independenties [28—32 may play an important role to understand the
parameters, but also the fact that one has to highly fine-tungniversality of the SSB parameters. However, it has turned
these parameters so that they do not cause problems witut[32,33 that the universality is not a necessary condition
experimental observations on the flavor changing neutrdor finiteness: It has been four{@2,33 that more relaxed
current (FCNQ) processes andCP-violation phenomena  conditions, sum rules among the soft scalar masses, are suf-
[3—7]. This problem, called the SUSY flavor problem, is not ficient. Clearly, the sum rules do not automatically ensure the
new, but has existed ever since supersymetry found phenomegeneracy of the soft scalar masses. In fact, in the unified
enological application3]. _ models of[29-37 in which the hierarchical structure of the

Th t well-k 11is to simpl that th Mukawa couplings emerges, the sum rules cannot sufficiently
e most well-known ong ].'S O Simply assume that th€ ., ,sirain the individual soft scalar masses in the first two
SSB parameters have a universal form, independent of th

flavor structure of the standard mod@M) at, say, grand Seneratlons of the squarks and sleptons.

unified theory (GUT) scale Mgyt. This is the so-called It?e_cedqtly, atl class of tﬂ_mtehmogels basec_i dS)U(; ) W'tr:j
minimal supergravity model. In this model, supersymmetr certain discrete symmetries has been considerg84h an

breaking occurs in a sector that is hidden to the MSSM seci-t has been found that some of these models yield a demo-

tor, and supersymmetry breaking is mediated to the MSSMFratic strupture of the Yukawa qouplings. As we will see, the
sector by gravity. There exist other ideas of mediation: gaugéémocratic structure is essential to obtain sum rules of the
mediation[9], anomaly mediatioi10] and gaugino media- SOft scalar masses from which their degeneracy in generation
tion [11]. Their common feature is the assumption that therdollows. Therefore, the exact finiteness in the modelg34]
exists a hidden sector that is separated from the MSSM bgnsures the absence of the SUSY flavor problem.
cleverly chosen interactions or it is separated in space-time In Sec. Il we will recapitulate the finiteness conditions in
(for which one needs extra dimensidpsor both. Another softly broken supersymmetric Yang-Mills theorig28—32.
type of idea to overcome the SUSY flavor problem is to useThe unified model of34] based onSU(5)X Ay, including
the infrared attractive force of the gauge interactici¥, in ~ the SSB sector, is investigated in Sec. lll, whégis the
four dimension$14—18 as well as in extra dimension&9]. group of even permutations of four objects. As we will see,
the model has a strong predictive power, and we will calcu-
late various low-energy parameters such as the top quark
*Permanent address: Institute for Theoretical Physics, Kanazaw&ass and the spectrum of the superpartners that are predicted
University, Kanazawa 920-1192, Japan. from the model. In Sec. IV we conclude.
There is a problem associated with this approach, the problem of
sequestering branes between the visible sector and the hidden SSB~
sector[12]. 2See[24-217) for earlier references on finite theories.
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[l. SOFTLY BROKEN N=1 SUPERSYMMETRIC FINITE In the presence of the SSB terms, the exact scale invari-
UNIFIED THEORIES ance is broken by them in a strict sense. However, it is ex-
he pected that the couplings, masses, etc., in a unified field
theory without gravity are vacuum expectation values
(VEV's) of certain fields in a more fundamental theory.
1 1 Therefore, it would be natural to transform them under the
W= _Y'Jk<pi<qu>k+ Spldd;, (1) scale transformation, too. Then the scale invariance of a one
6 2 particle irreducibleg(1PI) functionI” means

We start by considering a generic form of t
superpotentidl

along with the Lagrangian for the SSB terms ITelp,eth,elu,e?B,e?'m?,Y,g]

1 =e'T[p,h, x,B,m?,Y,q], (7)

. 1 . 1 _
_CSB:6h|]k¢i¢j¢k+ §B|J¢i¢j+ E(m2)=¢*l¢j
wherep stand for momenta, andi- is the canonical dimen-
sion of I'. Clearly, Eq.(7) is correct, only if the theory is
finite. Finiteness in the SSB sector can be achieved by using
the relations among the renormalization of the SSB param-
where ¢; is the scalar component db;, and\ stands for eters and those of an unbroken supersymmetric gauge theory
gaugino. Since we consider only finite theories, we assumg23,33,35,40—4J° Accordingly, thep functions of theM ,h
that the one-loog3 function of the gauge coupling van-  andm? parameters can be written p42,43’
ishes, i.e.,

Bg

IBMZZO(E ; ®

1
+5MAN+H.C, 2)

2, T(R)=3C(G)=0, 3
Bilk= yi hlik 4 o) ik K il — 21 ylik— oo il
whereT(R;) is the Dynkin index of the representati®and " ! - I I H !
C(G) is the quadratic Casimir of the adjoint representation — 295, Y10, €)
of the gauge grous. We also assume that the gauge group

is a simple group, and that the theory is free from the gauge i al .
anomaly, of course. According to the finiteness theorem of Bm2)'j= A+X9@ Y (10
[28], the theory is finite to all orders in perturbation thebry,
if (i) the reduction equatiof36—3§ P P
— 2 __ Rwimn
BlK=B,dYik/dg (4) © (Mg oz "oy ’“”)’ )

admits a unique power series solution J - d ~ d
auep A=200* +2IMIg? 2z + Vimn g — + 9™
Y”k:gnzo pI(JnK)QZn' (5) | | (12
where (y1)';= 0%, Yima=(Y'™*, and
where B, and pY¢ are the 8 functions of g and Y'k, . o o )
respectively and (ii) the one-loop anomalous dimensions Y= (m?) Yk (m?)] YK+ (m2)k v, (13
vanish, that is,
X'in Eqg. (10) has been first explicitly calculated in the lowest
1 ina ; order[22,49, and later its all order formi33,45—48
> % Pipa0)P(0) —26/C(R;) =0,
’ ~|M[?C(G)+=m/T(R))
where piq0)=piof?. We would like to recall that if the X= C(G)—8mg?
condition(ii) is satisfied, the two-loop expansion coefficients
in Eq. (5), p(f}. vanish[22], and that if(i) and (i) are sat- has been found in the renormalization scheme of Novikov
isfied, the anomalous dimensiogsvanish to all order§28]. et al, in which the 8 function of the gauge coupling is
Field theories that satisf§i) and(ii) possess the exact scale given by[50]

(14)

invariance.
8In [48] this matter is reviewed in a transparent way. See [dléb
3We follow the notation of35]. "We do not consideB" in the following discussions, because they
“Finiteness here means only for dimensionless coupling®d  do not enter into the3 functions of the other quantitiggl2,43.
Yiik, Moreover, they are automatically finite if the other quantities are
5See[39] for further references on reduction of couplings. finite [23].
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Bgsvz: g9° | T(R)(1-2y)—3C(G) 15

1672 1—g2C(G)/8?
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(23

The key point in[23,33,39 is the assumption that the differ- also ensures the finiteness to two-loop order in accord with

ential operator€) andA given in Egs(11) and(12) become
total derivative operators on the renormalization groR®)

[21-23. Note thatC(G)=3,T(R))/3 andd In Y*/dIng=1
+0(g¥. Similarly, the N=4 supersymmetric casgT(R))

invariant surface which is defined by the solution of the re-=C(G)] with the SSB parametef20] can be simply de-
duction equations for the SBB parameters. It has been showived from Egs.(16) and(17).

in [23,33,3§ that if the trilinear couplings are expressed in

terms ofM andg as[23,35°

dY’*(g)

K= M ————22
h M ding

, (16)
and the soft scalar masses satisfy the sum 38k

1
1—-g°C(G)/(87?)

mi2+mj2+m§=|M|2{

><ol In Yk . 1 d2InY'ik
d Ing 2 d(|n g)z

m?T(R)  dInY'k

T C(G)—8m?lg? ding

, (17)

the differential operator® and A become total derivatives
with respect tag:

M d
2

ding’ (18)

1 d 1 d?

J
A+Xg—=|M|? +=
959~ M 1-g%C(G)/(8w?) dIng ~ 2 d(Ing)?

'S m?T(R)) d

. 19
T C(G)—8w?/g?ding (19

Note that in the derivations from Eqg&l6) to (19), it has
been assumed that
Yi=yd, (20)

(m?)lj=m?s1;, (21)

— y+iik

yiik

on the space of the RG functions.

(22

aYiik SY*iik

Therefore, if the anomalous dimensiopsvanish to all or-
ders[which is ensured ifi) and(ii) given in Eqs.(5) and(6)
are satisfiefl we havegy=B1=(Bm2)|=0.

We see from Eq(17) that the universal choice

8Reduction of massive parameters has been first propog&d]in

To summarize, finiteness in the SSB sector is guaranteed
if h'k are expressed according to Ef6), and the sum rules
(17) are satisfied. The trilinear couplingd®, unless they are
aligned, contribute t&g, [7] which are strongly constrained
from FCNC processes and dangerd@iiviolating phenom-
ena. The explicit form oh'¥ in finite theories is known to
two-loop order{21,22:

hik=—MY(g)+0(g®). (24
The higher order terms depend on the renormalization
scheme. In fact, it is possiblgg8] to make vanish all the
expansion coefficient,s'(’n‘g of Eq. (5) except the lowest order
one p'('ok) by a suitable redefinition of the Yukawa couplings
Y. The redefinition does not modify the form gffunction
By>"% (15), because only the anomalous dimensions change
in By>"%. Therefore, in finite theoriesy* are aligned to all
orders, and therefor&'’¥ introduce no extraCP-violating
phases:

hilk=—MY'k(g). (25)

In contrast to this case, the sum rulds) of the soft scalar
masses do not automatically ensure their degeneracy in the
space of generation. However, as we will see in a concrete
model, the sum rule§l?) can yield the degeneracy of the
soft scalar masses. The exact finiteness does not automati-
cally yield a solution to the SUSY flavor problem. But a
solution to the SUSY flavor problem can result from the
quantum scale invariance.

Since superstring theories are scale invariant theories, a
solution to the SUSY flavor problem based on the exact scale
invariance may be realized. In fact, in a certain class of or-
bifold models of superstrings, in which the massive string
states are organized inbb=4 supermultiplet$52] (see also
[53)]), so that they do not contribute to the quantum modifi-
cation of the kinetic function, the sum rules

m?+m? +mg=|M|?

1-g?C(G)/(87?)

2.

miT(R)

+), — (26)
El C(G)—8m?/g?

along withh'"=—-MY'lk are satisfied32]. (See alsd54—
60].) Therefore, the finiteness conditiof®5) and(17) coin-
cide with those of the above superstrings models to all or-
ders.
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Ill. MODEL BASED ON SU(5)XA, permutations. A, has three irreducible representations

There exist various unified models that are all-order finitel’ 1', 1" and3 [61], and the matter supermultiplets belong

at least in the dimensionless secf@B8—37. In all the mod- to its representation according 4]

els, only such solutions of the reduction equati¢shave

been considered that admit the hierarchal structure of the

Yukawa couplings. As a result, the sum ru(@3) are indeed —

satisfied, but it cannot strongly constrain the individual soft (Hi Hy):3+1", (Hj,Hy:3+1" 21,

scalar masses in the first two generati¢sse[32]). In con- ) ) )

trast to the previous models, t84J(5) models(two of three ~ Wherei=1~3. Then the cubic part of the superpotential

models proposed if{34] yield a democratic structure of the (27) invariant underA, becomes

Yukawa couplings. As we will see, the democratic structure

(which follows as a consequence of certain discrete symme,, _ & 2 =

tries) is essential to obtain sum rules of the soft scalar massg\év3_§(lollol+ 010,10, ©"105105)H4 (10,5,

from which their degeneracy follows. _ _ _
Three generations of quarks and leptons are accommo-  +®?10,5,+ w10353)H 4+ b10;10,H 3+ d (10,5,

dated in1Q andgi, wherei runs over the three generations.
A 3 in 24 is used to breakSU(5) down to SU(3)¢

10:3, 5:3

+10,5;)H3+b10,10,H,+d (1055, + 10,55)H,

XSL'J(Z)LX U(l)y,_and there are four pairsj of Higgs super- +b102103H1+d(102§3+ 103§Z)ﬁ1+k(ﬁ1H1+ ﬁsz
multipletsH, andH, (a=1-4). The starting superpoten- \
tial is +H3Hy S+ 232, (29)
3 4 1
W= > > 5Uj101QH,+d5105H, wherew= exp(27/3) can be removed by field redefinition.
hi=1la=1 The lowest order solution to the reduction equatidh is
4 B N u B [34]:
+ ) KOH S H,+ 2334 o324 4 20H Hy,
ab=t 3 2 2282 22222
27 a=b —1—5g, c’=d°=e —gg,
and the SSB Lagrangian is 1 15
Jrand k=29 \==¢d° (30)
. 3 7
~ ~ 2 - O ~ ~
_LSSB:aZl [mﬁaHzHa+ mﬁaHﬁHa]ﬂngzfz It can be shown that the power series soluti®h exists
uniquely, so that the dimensionless sector can be made finite
s 1 to any finite order in perturbation theory. At this point we

+21 [m2 55+mj,10°10]+ > M+ Bs32  assume that a suitable redefinition of the Yukawa couplings
=

[38] has been performed so that the above solut@f) is
b b o hy ~ exact. Note the mass term for tlieandH is not invariant
[BE HaHp+h{PH 2 H, ]+ 323 underA,, for an arbitrary mass matrix,, . The choice ofu

4
+ >
a,b=1 is, however, very important to make the model phenomeno-
3 4 pa o logically viable, because the Cabibbo-Kobayashi-Maskawa
> > “”f}ﬂ)jﬂﬁ hgijiﬁsta +H.c.!, (CKM) mixing of the quarks in this model basically origi-
ij=1a=1\ 2 nates fromuy . So, theA, invariance has to be broken by

(28)  the mass term, already at the GUT sclllg,r. Therefore, it
is natural to assume that the operators with dimension less

where a hat is used to denote the scalar component of ea@j2n four do not have to rispect thg invariar;]ce.liince_the
chiral supermultiplet. The resulting theory has an unbrdken =B terms consist of such operators, we should not impose

parity along with the conservation &—L. Note that we €A invariance on the SSB Lagrangi&2g). We proceed

assumed the diagonal soft scalar masses, because ndth this _remark in mind.

diagonal soft masses would not satisfy the assumiépas Equation(25) means

well as(20), and hence violates finiteness. a a a a
A. The degeneracy of the soft scalar masses

from their sum rules -
%The S, model[34] can be treated similarly. We have found that

To be specific, we consider the model basedSd(5)  as far as the SSB sector is concerned, it is exactly the same as the
XA, symmetry [34], where A, is the group of even A, model.

075018-4



FINITE THEORIES AND THE SUPERSYMMETRY . ..

Further, the right-hand side of EGL7) (which we denote by

M?2) can be written as

m T(R))
C(G)—8m?/g?

M2=|M|? +
1-g?C(G)/(87?)

Using M2 above, we write down all the sum rulék?):
N2 2 2 _ 2 2 _ 2 2
M<= 2m101+ mi,= 2m102+ m,= 2m103+ My,

MN2— 2 2 2 _ 2 2 2

M =M, + Mg, + My =Mjg +Mig +miy,
—m2 2 2
=Mig, + Mig +Mp.,

2= m2 2 2 _ 2 2 2

M _m101+m§1+mH4_m102+m52+mH4
—m? 2 2
=Mig, + Mg +m,

12— m?2 2 2 _ 2 2 2

M =My + Mg + My =mig, +mg +m ,

2= m2 2 2 _ 2 2 2

M =My + Mg + My =mig +mg +m,

2 2

~ 2 2 2 2
M2=miy +m; +m5 =mi, +me +m-
10,7 s " THg 0 T s, T T H,

2= m?2 2 L2 m2 2 2
M —mHl+mHl+mz—mHzﬁLmszLm2

— 2 2 2
_mH3+ mH3+ ms ,

N2 2
M?=3ms .

The sum ruleg33) require the degeneracy oﬁiq, and the
degeneracy oﬁn% follows from Eq.(35). Similarly, one can

(32

(33

(39

(39

(36)

37

(39

(39

(40

easily derive the degeneracy mﬁ as well as that ofnﬁa:
a

4
2 _ 2 2“4~ 2
m =M2—2m? mz———llﬁ\“/lerZm2
H,= 100 Hoo 3 100

wherei=1-3 anda=1-4. As we can see froii@1), There
are only two independent parameters in the SSB setrl%g,r,

(41)
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>

2
i=1 5

4
me+ >, (mé +mZ)
i a=1 a a

2 1
mPT(R) =5

33
+5 Zl mio +5ms
=C(SU(5))M?, (42)
where we have used Eq§33)—(40). Using this, we then
obtain
M2=|M|>2. (43

Note that the democratic structure for the quark mass ma-
trices is essential to obtain the set of the sum r&& and
(36)—(398) that yields the universal soft masgdd). To sum-
marize, finiteness requires that the trilinear couplings have to
be aligned(31) and the soft scalar masses have to have the
universal form(41). Before the diagonalization qiﬁb, the
Yukawa couplingsu;; and dijb are real numbers. Note that
there are no restrictions quf° andB?P from finiteness. The
diagonalization of,uﬁb and an appropriate phase rotation of

H, andH_ will introduce phases into the Yukawa couplings,
which yields the ordinary CKM phase. The redefinition of
the superfields above does not destroy the alignment of the
trilinear couplings (31) and the universality of the soft
masses(41). Then only the gaugino masdd and Bﬂb are
complex numbers and contaf@P-violating phases in this
model. They may contribute to the electric dipole moment
(EDM) of the neutron, for instancgs]. Nevertheless, the
SUSY flavor problem is drastically reduced in this finite uni-
fied model.

B. Predictions at low energy

Since there are four pairs of the Higgs supermultiplets, it
is not all automatic that there is only one pair of light Higgs
doublets at low energies after a fine tuningMgy. Fur-
thermore, the Yukawa couplings are of ordefg), and so
we have to worry about the problem of fast proton decay
[63] via dimension five operatof$4]. These problems are
related to the choice of the supersymmetric Higgs mass ma-
trix ,uﬁb in the superpotentia29), which we would like to
leave for future problems. Note that there are no constraints
on ,uﬁ,b from finiteness. In what follows, we simply assume
that there is one pair of light Higgs doublets and the proton
decay can be sufficiently suppressed.

The finiteness condition&30), (31) and (41) do not re-
strict the renormalization property at low energies, because
the gauge symmetry is spontaneously broken belbwy,t.

This should be contrasted to the case of the anomaly medi-
ated supersymmetry breakiht0]. Therefore, the conditions
(30), (31) and(41) are just boundary conditions Bt gt in

our case. By assumption, the evolution of the parameters
below Mgt is governed by the MSSM65]. We further

and the gaugino mass M, for instance, as we have indicated®Sume a unique supersymmetry breaking ZS(M@SY,
in Eq. (41). To expresM? in terms ofM, we have to com- which is identified W|th\/(mt2lvL mtzz)lz, wherem; are two

pute the trace in Eq.32). We find

stop masses, so that beloMg,sy the SM is the correct
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effective theory. We recall that t@nis usually determined in TABLE I. The predictions for differenM.
the Higgs sector. However, in the case at hand, it is conve=
nient to define tad by using the matching condition at M (TéV) @3(sn(Mz) tang m; (GeV) m; (GeV)

Msusy, 1 0.118 52 4.6 179
atSMZ a,SirtB, a§M= a,COS B, anZ @,CogB, 15 0117 52 4.6 179
1/3 . . - .
aﬁz(g“ﬁaz cos2p, (44) andm, for different choices of the unified gaugino mads

Comparing, for instance, the, prediction above with the

wherea™ (i=t,b, ) are the SM Yukawa couplings ang, ~ MOSt recent experimental val{iég],

is the Higgs coupling céz|=g|2/4772). The matching condi-
tions (44) and the boundary conditions Btg,r can be sat-
isfied only for a specific value of tgh This is the reason of ) )
why it is possible without knowing the details of the scalar@"d recalling that we have neglectedin Eq. (45) and the

sector of the MSSM to predict various parameters such as tH@reshold corrections, we see that the prediction can be con-
top and quark massé29,31,62. sistent with the experimental data.
Since targ is fixed in the dimension-zero sector and the  Neéxt we turn to the SSB sector with the finiteness condi-

soft scalar masses have to satisfy the boundary conditiorfions (31) and(41). As we can see from Eq¢41), we may

(41) at Mgy, it is by no means trivial that the electroweak treatM andm;, as independent parameters. The nice feature
symmetry is correctly broken at low energig&6]. Fortu-  Of Egs.(41) is that the soft scalar massestef andH, are
nately, the supersymmetric mass paramgigifor the pair of ~ degenerate. Therefore, one pair of the light Higgs doublets,
the light Higgs doublets and the correspondiBidgerm are  Hy andHgy, which can be obtained after the diagonalization
not constrained by the finiteness conditions. Therefore, w@y an appropriate unitary matrix, has exactly the same soft
use this freedom to fiy,; andB to trigger the electroweak Scalar mass. Then we look for the parameter space in the
symmetry breaking. To proceed we write down the up-quarknic—M plane, in which a successful radiative electroweak

mass matrix aM g7 Which can be read off from Eq$29) symmetry breaking occurs and the lightest neutralino is the
and (30): LSP. In Fig. 1 we show the result where the region with dots

and open squares leads to a successful radiative electroweak
1 l+e; 1+e symmetry breaking. In the region with dots, the lightest neu-
MU= \/1% gHy) | 1+e 1 1+e |, (45 tralin_o is the LSP, while in the region V\_/ith open squares the
LSP is the stau. So the phenomenologically viable parameter
lte; lte 1 space in theM —m;, plane is very restrictedn,y has to lie
approximately on the straight line given by ,=5/8M. That

m,=(174.3-5.1) GeV, (49)

where is, for a given unified gaugino mas4, the spectrum of the
(H)) superpartners is basically fixed. In Table Il we present the

=70 -1 with i=1,2,3. (46) results forM=1 TeV and 1.5 TeV in an obvious notation.
(Ha) The dotted region in Fig. 1 is interesting also from the

As we can see also from EqQ9) and (30), the down-type cosmological viewpoint. In the dotted region, the lightest

guark mass matrix has the same structure. It has been found
[67] that the above democratic mass matrix witke 1 agree

with experimental data. Thereforel, have to have almost Al ]
equal VEV's, although there is only one pair of light Higgs |
doublets.

After so many remarks, we are now in position to com-
pute low energy quantities. We use the renormalization grou| osf
equations of two-loop order for dimensionless parameterg
and those of one-loop order for dimensional oh@S]. To E
see the gross nature of the low energy predictions of thi °¢
present model, we, however, neglegtin the mass matrix os |
(45 and the threshold corrections &gyt as well as ,
M susy, While we take into account the SM correction to the o
physical mass of the top quark; and tomy, which is the 03r ® o @ ]
running bottom mass an,. Under this simplification, the 02 . s . . .
top and bottom Yukawa couplings Btgr are given by ' : ' MTev]

09 |

~
T
o o
oo o
0o oo
oo
oo o
0 0o
B 0B D
oo
0Oooao
(2= I -]
0000
D Eoe O
DO Ced O
B O esd O
0 O Dees QO
O o eed O
0 Deasn 0O
D T Oses O O

yi=v6/5 g, Yyp,=+v9/10 g. (47) FIG. 1. The parameter space with a successful radiative elec-
troweak symmetry breaking. The LSP is the lightest neutralihe
In Table | we present the predictions faz(M5),tan3,m; stay in the region with dotfopen squargs
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TABLE II. The predictions of the spectrum of the superpartnerdMer 1 TeV with m,,=0.63 TeV and
M=1.5 TeV withm;;=0.94 TeV.

my (TeV) 0.45 0.69 mg =mg, (TeV) 1.9 2.8
m, (TeV) 0.84 1.3 my =my_ (TeV) 22 32
m,, (TeV) 13 1.9 mz, (TeV) 0.43 0.69
m,, (TeV) 1.3 1.9 mz, (TeV) 0.72 1.0
myx (TeV) 0.84 1.3 mg =m; (TeV) 0.78 1.2
m = (TeV) 1.3 1.9 m, =m; (TeV) 1.1 1.6
m;, (TeV) 1.5 22 m;_ (TeV) 0.68 1.0
my, (TeV) 1.7 2.5 my =ms, (TeV) 0.78 1.2
mj, (TeV) 15 22 m, (TeV) 0.62 0.93
mj, (TeV) 1.7 2.5 my= (TeV) 0.63 0.94
mgl_=m,;1 (TeV) 2.1 3.1 my (TeV) 0.63 0.93
m; =m; (TeV) 22 32 m,, (TeV) 0.13 0.13

neutralinoy, and the light statr; are nearly degenerate in metry has to be broken M g1 by operators with dimension

mass, that ispr.. —m, <25 GeV, where the light stag, is €SS than four. We found that finiteness in this model requires
’ oo ' . that the trilinear couplings have to be aligng@l) and the

the next-to-LSP. With this type of spectrum, neutralino-stau

co-annihilation can occur and that reduces the relic LSP denS—Oft scalar masse have to have the universal fotin. The

sity [69]. Thus, this parameter region is quite interesting forﬁgmgféigcosbtgﬂ%i ?antit]/grg;\?i?s gfwtlgéciif??g;grt?fa::gn_
the LSP dark matter scenario. Yy ’

Therefore, this model shows that finiteness can offers a so-
lution to the SUSY flavor problem, and indicates that the
SUSY flavor problem is closely related to the exact scale

Although it was suggested in the pd&0-23 that the Invariance.
finiteness of softly broken supersymmetric Yang-Mills theo-
ries may play an important role in understanding the univer-
sality of the SSB parameters, there has been so far no finite
model based on softly brokeévi= 1 supersymmetry in which We would like to thank M. Mondragon for useful discus-
the universality of the SSB parameters follows solely fromsions. This work is supported by the Grants-in-Aid for Sci-
finiteness. The simple reason is the relaxed finiteness condentific Research from the Japan Society for the Promotion of
tion, the sum rulg17). Science(JSP$ (No. 14540252, 13135210, 14540256 he

In this paper we considered the finite model [84],  work of K.B. is supported in part by U.S. DOE Grant No.
which is based on the discrete symmety and has the DE-FG03-98ER-41076, a grant from the Research Corpora-
democratic structure of the mass matrices for the quarks anibn and by U.S. DOE Grant No. DE-FG02-01ER-45684.
leptons. We included the SSB sector to this model and reThis work was partially conducted by way of a grant
quired that this sector does not destroy finitenédsssym-  awarded by the Government of Mexico in the Secretariat of
metry in the SSB sector was not assumed, becayssym-  Foreign Affairs.

IV. CONCLUSION
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