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Extra dimensions and invisible decay of orthopositronium
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We point out that some models with infinite additional dimension~s! of Randall-Sundrum type predict the
disappearance of orthopositronium (o-Ps) into additional dimension~s!. The experimental signature of this
effect is theo-Ps→ invisible decay of orthopositronium which may occur at a rate within three orders of
magnitude of the present experimental upper limit. This result enhances existing motivations for a more
sensitive search for this decay mode and suggests additional directions for testing extra dimensions in nonac-
celerator experiments.
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Positronium~Ps!, the positron-electron bound state, is t
lightest known atom, which is bounded and self-annihila
through the same electromagnetic interaction. At the cur
levels of experimental and theoretical precision this is
only interaction present in this system; see, e.g.,@1#. This
feature has made positronium an ideal system for testing
accuracy of QED calculations for bound states, in particu
for the triplet (13S1) state of Ps, orthopositronium (o-Ps).
Because of the odd parity underC transformation,o-Ps de-
cays predominantly into three photons. As compared w
singlet (11S0) state ~parapositronium!, the ‘‘slowness’’ of
o-Ps decay, due to the phase-space and additionala suppres-
sion factors, gives an enhancement factor.103, making it
more sensitive to an admixture of new interactions which
not accommodated in the standard model~SM!; see, e.g.,@2#.

Within the SM orthopositronium can decay invisibly in
a neutrino-antineutrino pair. Theo-Ps→nen̄e decay occurs
throughW exchange in thet channel ande1e2 annihilation
via Z. The decay width is@3#

G~o-Ps→nen̄e!'6.2310218G~o-Ps→3g!. ~1!

For other neutrino flavors only theZ diagram contributes
For l 5” e the decay width is@3#

G~o-Ps→n l n̄ l !'9.5310221G~o-Ps→3g!. ~2!

Thus, in the SM theo-Ps→nn̄ decay width is very small and
its contribution to the total decay width can be neglected

Presently there is a big interest in models with additio
dimensions which might provide solution to the gauge hi
archy problem@4–9#, for a recent review see, e.g.,@10#. For
instance, as has been shown in the five-dimensional mo
so-called RS two-model@4#, there exists a thin-brane solu
tion to the five-dimensional Einstein equations which has
four-dimensional hypersurfaces,

ds25a2~z!hmndxmdxn2dz2. ~3!

Here

a~z!5exp~2kuzu! ~4!
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and the parameterk.0 is determined by the five
dimensional Planck mass and bulk cosmological constan

Recently, a peculiar feature of massive matter in the br
world has been reported@11#. It has been shown that tunne
ing of massive matter into extra dimensions is generic
fields that can have bulk modes. The massive matter
comes unstable; namely, the discrete zero modes turn
quasilocalized states with finite four-dimensional mass a
finite width @11#. For massive scalar particleF with the mass
m the transition rate into additional dimension is given
@11#

G~F→ add dim!5
pm

16 S m

k D 2

. ~5!

It should be noted that even for a massless scalar par
the nonzero transition rate into additional dimension~s! re-
sults in a nonzero imaginary part of the corresponding sc
propagator@11#

D~p2!5
1

p22 iu~p2!Ap2G~p2!
, ~6!

whereG(p2)'(p/4)Ap2(p2/k2). It means that even for the
massless case, when the transition rate on mass shell is
the virtual scalar particle has a nonzero transition rate i
additional dimension. The explicit expression for the tran
tion rate into additional dimension depends on the conc
model.

To be specific, let us consider a model for the localizat
of gauge fields suggested in Refs.@12,13#. One begins with
the solution to (41n11)-dimensional Einstein equations

ds25
1

~11kuju!2 S dt22dx22(
i 51

n

Ri
2du i

22dj2D , ~7!

whereu iP@0,2p# are compact coordinates,Ri are radii of
compact dimensions, andk is the inverse anti-de Sitter~adS!
radius determined by the bulk cosmological constant. Th
is a single brane located atj50. The only difference be-
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tween this metric and the Randall-Sundrum metric is
presence of extra compact dimensionsu i . These dimensions
are added for obtaining a localized zero mode of the ga
field. In what follows we assume that their radiiRi are the
smallest length scales involved, so all fields are taken in
pendent ofu i . The inverse adS radiik is assumed to be th
largest energy scale involved. For the model of Refs.@12,13#
with additional (n11) dimensions and metric of Randal
Sundrum type the imaginary part of the propagator of ma
less scalar particle isG;Ap2(p2/k2)11n/2.

The case of the electromagnetic field propagating in
Randall-Sundram type of metric of Eq.~7! has been consid
ered in Ref.@13#. It was shown that the transition rate of
virtual photon with the virtual massmg* 5Ap2 into addi-
tional dimensions is different from zero and it is equal to

G5k~n!mg* S mg*
k D n

, ~8!

wherek(n) is a numerical coefficient.
Consider nowo-Ps→ invisible decay, which is a good

candidate for the searching for effect of disappearance
additional dimension~s! since o-Ps has specific quantum
numbers similar to those of vacuum and is a syst
which allows its constituents a rather long interaction tim
To make a quantitative estimate we ta
n52 @(41211)-dimensional space-time#. In this case the
disappearance rate of a virtual photon into additional dim
sions is given by

G~g* → add dim!5
pmg*

4 S mg*
k D 2

. ~9!

Using Eq.~9!, for the branching ratio of orthopositronium
invisible decay into additional dimension~s! through single-
photon annihilationo-Ps→g* → add dim one gets as an e
timate

G~o-Ps→g* → add dim!

G~o-Ps→3g!
5

9p

4~p229!

1

a2

p

4 S mo-Ps

k D 2

'1.23105S mo-Ps

k D 2

. ~10!

To solve the gauge hierarchy problem models with ad
tional dimension~s! one may expectk&O(10) TeV. It
means that

Br~o-Ps→ add dim!*O~1029!. ~11!

Important bounds on the parameterk and Br(o-Ps
→ add dim) arise from the combined LEP result on the p
cise measurements of the total and partialZ widths @14#. We
can write theZ invisible width in the following form:

G inv5GSM~Z→nn̄!1DG inv , ~12!
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whereGSM(Z→nn̄) is the SM contribution andDG inv con-
tains the effects beyond the SM. Assuming that each neut
type contributes the same amount to the invisibleZ width,
one has, numerically@15#,

GSM~Z→nn̄!53G~Z→n i n̄ i !533~167.0660.22! MeV.
~13!

The invisible widthG inv can be obtained from theZ total
width and its partial width into hadrons and leptons using
equation

G tot5Ghad1G lept1G inv . ~14!

The value ofG inv derived from the LEP measurements
G tot , Ghad , andG lept @14,16# is

G inv5499.061.5 MeV. ~15!

Using Eqs.~13! and ~15! we obtain

DG inv522.761.6 MeV. ~16!

If a conservative approach is taken to constrain the resu
only positive valuesDG inv and renormalizing the probability
for DG inv>0 to be unity, then the resulting 95% C.L. upp
limit on additional invisible decay ofZ is @16#

DG inv,2.0 MeV. ~17!

AssumingDG inv5G(Z→ add dim) and using Eqs.~9!,~10!
for the estimate leads tok>17 TeV and to the correspondin
bound

Br~o-Ps→ add dim!<0.431029. ~18!

Note that combined result on direct CERNe1e2 collider
LEP measurements of the invisible width,G inv5503
616 MeV @14#, gives a less stringent limit

Br~o-Ps→ add dim!&1028. ~19!

These estimates, giving only an order of magnitude
the corresponding branching ratio, show that this decay m
occur at a rate within roughly three orders of magnitude
the best present experimental limit@17#:

Br~o-Ps→ invisible!,2.831026. ~20!

Thus, the region Br(o-Ps→ invisible).1029 is of great in-
terest for possible observation of effect of extra dimensio
Interestingly, that forn51 the bound Br(o-Ps→ add dim)
&1024 obtained from Eq.~17! is weaker than that of Eq
~20! obtained from the direct measurement. We believe th
results strengthen current motivations related to the ort
positronium decay rate puzzle and mirror world@18#, milli-
charged particle@19#, and light gauge boson@2# searches and
justify efforts for a more sensitive search for theo-Ps
→ invisible decay in a near future experiment@20#.

The experimental signature of theo-Ps→ invisible decay
is the absence of an energy deposition of.1 MeV, which is
expected from the ordinaryo-Ps annihilation in a 4p Her-
2-2
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metic calorimeter surrounding theo-Ps formation region
@21#. Our first Monte Carlo simulations, based on the resu
of the recent search foro-Ps→g1 invisible decay@22#, show
that for the branching ratio one may expect a limit Br(o-Ps
→ add dim)&1028 if the calorimeter has a mass o
.0.5 ton. Larger simulation statistics and better backgro
.
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evaluation are required in order to see if the sensitivity to
branching ratio as low as 1029 is experimentally reachable
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many useful discussions on models with additional infin
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