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The Kentucky noisy Monte Carlo algorithm for Wilson dynamical fermions
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We develop an implementation for a recently proposed noisy Monte Carlo approach to the simulation of
lattice QCD with dynamical fermions by incorporating the full fermion determinant directly. Our algorithm
uses a quenched gauge field update with a shifted gauge coupling to minimize fluctuations in the trace of the
logarithm of the Wilson-Dirac matrix. The details of tuning the gauge coupling shift as well as results for the
distribution of noisy estimators in our implementation are given. We present data for some basic observables
from the noisy method, as well as the acceptance rate information and discuss potential autocorrelation and
sign violation effects. Both the results and the efficiency of the algorithm are compared against those of the
hybrid Monte Carlo algorithm.
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I. INTRODUCTION

Monte Carlo~MC! calculations in lattice QCD with dy-
namical fermions are notoriously time consuming. The
simulations generally proceed through a numerical real
tion of an ergodic Markov process having the desired lat
QCD probability distribution as its fixed point. In direct ap
proaches, the major stumbling block is the evaluation of
fermion determinant which is typically needed somewhere
the process. For interesting volumesV, the fermion matrix is
extremely high dimensional and the time to compute the
terminant exactly scales asV3. Hence computing the fermion
determinant exactly is not a feasible option.

The current standard workhorse for dynamical latt
QCD computations is the hybrid Monte Carlo~HMC! algo-
rithm @1#. In this case the problem of evaluating the fermi
determinant is sidestepped by expressing the determina
an integral over bosonic~pseudofermion! fields which be-
come full-fledged dynamical fields in the Markov proce
One criticism of the HMC method is its supposed inability
deal with an odd number of fermion flavors. Indeed, t
natural settings for HMC are even-flavor theories where
pseudofermion heatbath is straightforward and the boson
action is manifestly positive. However, this limitation is n
fundamental and can be addressed within the framewor
molecular dynamics algorithms@2,3#. This is a topic of cur-
rent research.

Even though the direct simulation of the fermion determ
nant is infamous for being nearly impossible to implement
promises distinct advantages over the pseudofermion me
employed in HMC. In addition to being able to accomm
date any number of flavors, it has the potential of bein
viable finite density algorithm in the canonical ensemble
proach. The usual finite chemical potential algorithm in t
grand canonical ensemble has the well-known sign prob
and the imaginary chemical potential approach has the o
lap problem@4,5#. Considering the canonical ensemble i
stead, one can project out a definite baryon number from
fermion determinant before the acceptance test, to stay
0556-2821/2003/67~7!/074505~16!/$20.00 67 0745
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given baryon number sector so that the overlap problem
be avoided@5#. In this case, it is essential to have an alg
rithm which accommodates the determinant directly.

An interesting proposal for simulating the determinant
rectly has been put forward recently in Ref.@6#. In that ap-
proach the idea was to split the determinant into infrared
ultraviolet parts and to treat the infrared part exactly and
ultraviolet part approximately. This can in principle b
turned into an exact algorithm@7#, but it is not yet clear how
well the systematic error of the splitting of the determina
was under control, particularly for small quark masses a
large lattices.

The approach that will be followed here has several roo
One important ingredient is an efficient evaluation of t
determinant based on Pade´-Z2 stochastic estimators of th
trace of logarithm of the fermion matrix@8#. For example,
using the unbiased subtraction, one can reduce the erro
the trace of the logarithm of the Wilson fermion matrix on
83312 lattice atb55.6 by a factor of 25–40 relative to a
unsubtracted one with negligible overhead. Atk50.154 with
400 Z2 noise vectors, the absolute error on the trace of
logarithm M is about 0.29, which translates into the sa
relative error for the determinant.

Nevertheless, this would still not be good enough if o
intended to develop a Metropolis-like@9# algorithm, because
the acceptance probability has to be evaluated exactly
address this problem, Kennedy and Kuti~KK ! proposed an
algorithm in which the nonlinear Metropolis acceptance s
was replaced with a linear one@10#. This opened up the
possibility of using unbiased noisy estimators for the
quired probability ratios instead of having to evaluate th
exactly. Indeed, the required unbiased estimators can be
veloped based on the idea of stochastic series summa
@11#. However, the quantity used as the KK linear accepta
probability can in principle be negative or greater than 1@12#
when the noisy estimate comes from the outlying tails of
underlying distribution. This introduces a bias in the resu
but the authors of Refs.@10,11# argue that in practice it is
©2003 The American Physical Society05-1
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possible to tune both the expression for the linear accepta
probability and the estimators so that the bias is substant
smaller than the statistical errors.

The above discussion motivates the second root of
approach which amounts to choosing stochastic variable
that they provide unbiased estimators for the determin
itself ~rather than acceptance probability!, which eliminates
the need for the linear acceptance step, and allows th
variables to be treated as full-fledged fields in the Mark
process. This has been accomplished in Ref.@13# and re-
sulted in a procedure without probability bound violatio
problems. We will refer to algorithms based on this approa
as Kentucky noisy Monte Carlo~KNMC! algorithms. In Ref.
@13# this idea was applied to a simple five state model wh
the amount of noise in the estimators could be precis
tuned. Although the statistical errors in the results of
KNMC method grew with increasing levels of noise, th
result did remain unbiased while the bias in the KK proc
dure was substantially greater than the KNMC errors.

Applying this approach to QCD requires not only a sat
factory way of estimating the determinant, but also an e
cient way of proposing new configurations in the Mark
process. Indeed, one can easily construct a useless algo
when proposed configurations are almost always rejecte
is well known that changes of the gauge field construc
from sweeps guided solely by a pure gauge action can lea
a widely fluctuating determinant and an essentially vanish
acceptance probability for small quark masses. To add
this issue we adopt the idea of splitting the short-dista
part of the determinant by the loop action and incorporat
it into the pure gauge action@7,14,15#. This is the third in-
gredient of our approach. As a matter of fact, one of o
points is that while we have only split the determinant w
the simplest plaquette action, we nevertheless obtain a w
ing algorithm at least for relatively heavy quark masses.
view the inclusion of optimized higher loop actions for th
split as being the most promising way of improving our
gorithm further.

In what follows, we present the results from applying t
KNMC algorithm with the above specifics to two flavors
Wilson dynamical fermions. Even though the number of fl
vors is a mere parameter in our approach, we use the
flavor setting to be able to compare to HMC easily. T
remainder of this paper is organized as follows. We begin
outlining the main ideas on which our algorithm is built
Sec. II. We then discuss the concrete application of the a
rithm to Wilson fermions in Sec. III where we discuss som
of the numerical techniques used in our implementation
well as some work estimates. After presenting some com
tational details in Sec. IV we discuss our assorted numer
results in Secs. V, VI and VII. We summarize and discu
these results in Secs. VIII and IX and present our conc
sions in Sec. X.

II. THE ALGORITHM

We start by describing the basic ideas on which our al
rithm is built. Our goal is to simulate a distribution given b
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the gauge invariant function of lattice link variables of th
form

PQCD~U !}e2Sg(U) )
f 51

Nf

detM f~U !

5e2Sg(U)1(
f 51

Nf

Tr ln M f (U) ~1!

whereSg(U) is the gauge action andM f(U) is the fermion
matrix @detM f(U).0# @16# for a given flavor of dynamical
quark. The indicesf run over the number of flavors on
wishes to simulate. For clarity of the discussion and notat
below, we shall describe our algorithm using just a sin
flavor of fermion and drop the subscriptf for now, with the
understanding that the generalization to many flavors
straightforward.

It will be assumed that there is a suitable approximat
RM(U) of ln M(U) that is easy to evaluate, and whose acc
racy can be controlled so that the corresponding distribu

P~U !}e2Sg(U)1Tr RM(U) ~2!

is arbitrarily close toPQCD(U).
We will construct an exact algorithm forP(U) of Eq. ~2!

based on the following considerations:
~1! As pointed out in the Introduction, the exact comp

tation of TrRM(U) is not feasible. For this reason one wou
like to use noisy estimators of this quantity. Let us consid

x[E@TrRM~U !,h#5h†RM~U !h ~3!

where h is a vector in the linear space ofM (U) whose
elements are random numbers drawn from a distribut
Ph (h) satisfying the property that

^h i
†h j&Ph (h)5d i j . ~4!

In Eq. ~4! the subscripts on the angle brackets imply th
the expectation value is to be taken in the measure define
Ph(h). In Eq. ~3! the notationE@TrRM(U),h# is also intro-
duced, which may be used throughout this paper to indic
that a given quantity is an unbiased estimator for the fi
argument in the square brackets depending on the subseq
arguments. In this case, for example,x is an estimator of
TrRM(U), depending on the noise vectorh.

From Eqs.~3! and~4! it is straightforward to show thatx
is indeed an estimator for TrRM(U). However for simulating
the measure defined by Eq.~2! estimates of the quantityex

are needed. If a sequence of estimatesxi5h i
†RM(U)h i ,

with i 51,2 . . . , forx5TrRM(U) is available to us, where
the subscripts onh now refer to the position ofh i in the
sequence rather than its elements, we can construct an
mator foreTr RM(U) by evaluating the function@11#
5-2
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f ~U,$h i%,$rk%,c!511H x11uS c

2
2r2D H x2

c
1uS 1

3
c2r3D

3H x3

c
1 . . . 1uS c

n
2rnD

3H xn

c
1 . . . J J J J , ~5!

wherec.0 is a tunable constant,u(x) is the Heavyside step
function and therk is the random number uniformly distrib
uted in the range 0<rk<1 @in other words,rk has distribu-
tion Pr(rk)5u(rk)2u(rk21).# One can easily verify that

^ f ~U,$h i%,$rk%,c!&)
i 51

`

Ph(h i ))
k52

`

Pr(rk)5eTr RM(U). ~6!

~2! Motivated by the discussion above, and by the form
Eq. ~2!, we extend the variable space and write the cor
sponding partition function in the form

Z5E dUe2Sg(U)E )
i 51

`

dh i Ph ~h i !

3)
k52

`

drk Pr ~rk! f ~U,h,r!, ~7!

where we have introduced the shorthandf (U,h,r) for
f (U,$h i%,$rk%,c). We have thus introduced an infinite num
ber of auxiliary variables. How can one deal with them in
practical simulation? The point is that given the nature
terms in Eq.~5! only a finite number of them will be used i
any particular evaluation off (U,h,r), since the series ter
minates stochastically. The average number of terms ca
tuned by appropriate choice of the constantc, and if the
typical values ofxk can be kept reasonably small during t
simulation then a practical scheme with effectively fin
number of noise fields present can be developed.

~3! The basic problem with partition function~7! is that
f (U,h,r) is not positive definite, causing the well-know
difficulties to standard simulation techniques. We will a
sume~and demonstrate later! that things can be arranged s
that the occurrence of negativef (U,h,r) in typical equilib-
rium configurations (U,h,r) is very small. In that case on
can cure this problem by absorbing the sign into the obs
ables in the usual way, i.e.

^O&P5
^ O sgn~P! & uPu

^ sgn~P! & uPu
. ~8!

Our goal then is to find a suitable Markov process for g
erating the probability distribution

P~U,h,r!}e2Sg(U) u f ~U,h,r!u)
i 51

`

Ph ~h i !)
k52

`

Pr ~rk!.

~9!

~4! One may attempt to simulate the distribution~9! in
several possible ways. To explain the approach adopted h
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let us introduce the collective notationj[(h,r), f (U,j)
[ f (U,h,r), P(U,j)[P(U,h,r). We can then write sche
matically P(U,j)}P1(U)P2(U,j)P3(j) with

P1~U !}e2Sg(U)

P2~U,j!}u f ~U,j!u ~10!

P3~j!})
i 51

`

Ph~h i ! )
k52

`

Pr~rk!.

We will use two steps based on the following two stateme
that can be verified directly:

~a! Let T1(U,U8) be the ergodic Markov matrix satisfy
ing detailed balance with respect toP1; in other words,
P1(U)T1(U,U8)dU5P1(U8)T1(U8,U)dU8. Then the
transition matrix

T12~U,U8!5T1~U,U8! min F 1,
P2~U8,j!

P2~U,j! G ~11!

satisfies detailed balance with respect to theP1(U)P2(U,j)
~with j fixed!.

~b! The transition matrix

T23~j,j8!5P3~j8!minF 1,
P2~U,j8!

P2~U,j! G ~12!

satisfies detailed balance with respect toP2(U,j)P3(j)
~with U fixed!.

From ~a!, ~b! it follows thatT12 andT23 keep the original
distributionP(U,j) invariant and interleaving them will lead
to an ergodic Markov process with the desired fixed poin

We note that there is a lot of freedom in choosing the p
gauge processT1(U,U8). If local updates are used, then it
necessary to ensure that a given sequence of such up
satisfies detailed balance with respect toP1(U). This can be
achieved, for example, by updating the sites at random
selecting the order of updated variables appropriately.
adopt the procedure wherein only links corresponding
chosen even/odd part of the lattice and chosen direction
updated. One can easily check that such a ‘‘subsweep’’
isfies detailed balance for the Wilson pure gauge action if
elementary local updates also do so. Further, we note tha
step~b! use is made of the fact that the probability distrib
tion P3(j) for the noise can be generated directly from
heatbath.

Finally it should be emphasized that in Eqs.~11! and~12!
one needs to compute a ratio of the form

P2~U8,j!

P2~U,j!
5

u f ~U8,j!u
u f ~U,j!u

~13!

where f (U,j) in Eq. ~5! is an estimator forex. Since the
quantityx is an estimator for the quantity TrRM(U), it can be
very large, asRM(U) is an extensive quantity. Looking a
Eq. ~5! it can be seen thatf (U,h,r) can indeed give a very
poor estimate of the exponential, if thexk are large, and only
a few terms are taken.
5-3
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Ideally one would like to be in a situation where21
,xk,O(1). Certainly whenxk,21, one faces the problem
that f (U,h,r) can become negative depending on the nu
ber of terms taken. If this happens only occasionally
effects can be taken into account by folding the sign
f (U,h,r) into the observable as in Eq.~8!. However, if it
happens often, it can cause a large effective reduction
statistics.

While no firm upper limit has been placed onxk we do
note that the exponential function diverges rapidly for
creasingx.0. Given an infinite amount of statistics, th
stochastic exponentiation technique will still give an un
ased estimator forex. However, whenx.1 the terms in Eq.
~5! have increasing absolute value, thus causing the varia
of the estimators to become very large. Furthermore, i
Markov process such as the one described above, the e
tion can potentially get stuck in a region of configurati
space with a given number of terms~noise fieldsr) being
used to estimatef (U,h,r). This is because although havin
a large number of terms is unlikely, once reached withxk
.1, thenf (U,h,r) will have a higher numerical value tha
it would with fewer terms~corresponding to a potential ne
noise field configurationr8) in which case the new field is
likely to be rejected. For this reason it is prudent in a sim
lation to arrange matters so thatxk is of O(1).

The above discussion suggests that, while the appro
described above theoretically leads to simulating the dis
bution ~2!, additional steps need to be taken to turn it into
practical scheme. We now discuss some ways that can
employed to deal with the issue of typical magnitudes a
variances ofxn below.

A. Shifting the action by a constant

Motivated by the fact that a ratio of exponentials can
written as

ex8

ex
5

e(x82x0)

e(x2x0)
, ~14!

one notices that the fermionic action can be shifted b
constant through making the replacement:

x~U,h!5h†RM~U !h→x~U,h,x0!5h†RM~U !h2x0 .
~15!

Such a shift can move the mean of the distribution of
values ofx to an arbitrary real number without affecting th
simulation in any way. With this in mind, our main goal is
minimize the variance ofx.

B. Splitting with the loop action

It is well known that a significant portion of Tr lnM(U)
can be typically taken into account by a short-distance lo
action DSg(U) @14,15#, especially at larger quark masse
and this is expected to remain true for TrRM(U) also. This
fact can be used to reduce the magnitude of the fluctuat
07450
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in x by splitting this part of TrRM(U) into the gauge action
when setting up the Markov process~see, e.g.@7#!. To recall
the argument let us write

P~U !}e2Sg(U) eTr RM(U)

5e2Sg(U)1DSg(U) eTr RM(U)2DSg(U).
~16!

We can thus replace

Sg~U !→Sg~U !2DSg~U !

Tr RM~U !→Tr RM~U !2DSg~U ! ~17!

in our Monte Carlo procedure. Then the gauge updates
performed with the new local action, and evaluation
f (U,h,r) involves the variablesxn estimating TrRM(U)
2DSg(U). The specifics of how to do this will be discusse
in Sec. III C.

C. Explicit splitting

Utilizing the fact that ex5(ex/N)N, one can also split
TrRM(U) directly by writing TrRM(U)
5( i 51

N (1/N)Tr RM(U), and use separate noise fields for e
ery (1/N)TrRM(U). SinceN divides TrRM(U) into N pieces,
each carrying 1/N flavor, we shall refer to it as the number o
fractional flavors. Indeed, the corresponding modification
Markov process is straightforward. To see this, consider
simplicity the caseN52. Originally, the simulated probabil
ity distribution was written schematically asP(U,j)
}P1(U)P2(U,j)P3(j), while now we have

P~U,j1 ,j2!}P1~U !P2
s~U,j1!P2

s~U,j2!P3~j1!P3~j2!,

where theP2
s is P2 of Eq. ~10! with x from Eq. ~5! replaced

by x/N.
In the step~a! of the MC procedure we thus haveP2

→P2
s(U,j1)P2

s(U,j2) with j1 ,j2 fixed. There is an arbi-
trariness in selecting the process~b!. For example, if one
chooses to update a single set of noise at a time, step~b! does
not change at all, and one can choose, for example, the
quence~a!, (b)j1

, ~a!, (b)j2
as an elementary Markov step

The only requirement here is the overall ergodicity.
The main effect of explicit splitting is to scale the widt

of the distribution ofx by the number of fractional flavorsN.
The optimal mixture of action shifting, splitting by the loo
action and explicit splitting is a matter to be explored.

D. Reducing the variance from noise

While splitting the loop action as described above redu
the fluctuations inx arising from the fluctuation of the gaug
configurations, the variance ofx also receives a contribution
from the noise fieldsh sinceh†RM(U)h is used in the con-
struction ofx. Further variance reduction techniques can
applied to reduce this contribution. The particular techniq
depends on the kind of noise used. In the specific case w
Z2 noise is used, it has been shown@17# that all the contri-
butions to the variance of TrRM(U) come from off-diagonal
5-4
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elements ofRM(U) in which case the unbiased subtracti
noise reduction technique of@8# is highly effective. We will
present details of this method in Sec. III B.

III. APPLICATION TO LATTICE QCD WITH DYNAMICAL
WILSON FERMIONS

To demonstrate that the ideas described in the prev
section can lead to a working algorithm, we now describe
details of the implementation of the algorithm that we us
to perform simulations with two flavors of degenerate Wils
quarks. Although in principle both the algorithm and t
implementation can handle an arbitrary number of flavo
the case of two degenerate flavors is convenient from
point of view that its results can be checked against HM
simulations. Further, we can also carry out some tuning us
these reference simulations as we shall detail in Secs. I
and VI A.

We simulate the theory with the standard Wilson gau
action

Sg~U !52
b

3
Re TrUh ~18!

whereb is the gauge coupling parameter. The quantityUh is
obtained as usual by evaluating the product of link matri
around each elementary plaquette and summing the re
over the whole lattice. After integrating out the Grassma
numbers, the effective fermion action is

Sf~U !52(
f 51

Nf

Tr ln M ~U,k f ! ~19!

where the sum is over all desired flavors,M (U,k f) is the
Wilson fermion matrix

M ~U,k f !512k fD~U !, ~20!

D(U) is the usual Wilson hopping matrix andk f is the hop-
ping parameter for the flavor with indexf. In our simulations
we used an approximationRM(U) to lnM(U) given by a
Padéapproximation, which we will discuss in more detail
Sec. III B.

A. Local gauge update

In order to update the gauge fields, we use the quasi h
bath method@18# amended as described previously. We sp
the lattice into even and odd sites such that even sites h
only odd neighbors and vice versa. This is a common te
nique known as checkerboarding. We randomly pick o
half or our lattice sites corresponding to either even or o
sites, and within that sublattice we choose—also randoml
one of the 4 space-time dimensions. This identifies a part
lar subset of lattice links with the chosen checkerboard va
and which connect sites in the chosen direction. We upd
all the links in this subset simultaneously. Each such s
sweep allows us to update18 of our lattice. As outlined ear-
lier, one is free to perform any number of such updates
fore updating the noise fields. In fact, this remains a f
07450
us
e
d

,
e

g
C

e

s
lts
n

at-
t
ve
h-
-
d

u-
e
te
-

e-
e

parameter (Ns) in our code. However, for the results pre
sented here we have always usedNs51.

B. Estimating TrRM„U…

In order to estimate TrRM(U,k) we turn to the technology
described in@8#. The logarithm is approximated using a Pa´
approximation, which after a partial fraction expansion, h
the form:

ln M ~U,k!'RM~U ![b0I 2(
i 51

NP

bi@M ~U,k!1ci I #21

~21!

whereNP is the order of the Pade´ approximation, and the
constantsbi and ci are the Pade´ coefficients. In our imple-
mentation we have used an 11th order approximation wh
coefficients are tabulated in@8#.

The traces are then estimated by evaluating bilinears
the form h†RM(U)h. If the components ofh are chosen
from theZ2 group, then the contributions to the variance
these bilinears come only from off-diagonal elements
RM(U) as discussed previously. In this case@19# an effective
method reducing the variance is to subtract off a linear co
bination of traceless operators fromRM(U) and to consider

E@Tr RM~U !,h#5h†@RM~U !2v iOi #h. ~22!

Here theOi are operators with TrOi50. Clearly since the
Oi are traceless they do not bias our estimators in any w
The v i are constants that can be tuneda priori to minimize
the fluctuations inE@TrRM(U),h#.

In practice theOi are constructed by taking tracele
terms from the hopping parameter expansion forM 21(U).
These reduce the noise coming from the terms@M (U)
1ci #

21 in Eq. ~21!. The termsD, D2, D3 and further odd
powers ofD are explicitly traceless and terms which ha
even powers such asD4 have known traces given in terms o
various loops. For example

Tr D4~U !5264 TrUh ~23!

and henceO45D4(U)164 TrUh is traceless. Details o
finding the traces of even powers ofD can be found, for
example, in@20#. In our computations we have subtracte
observables involvingD, D2, D3, D4, D5 andD7.

Although the parametersv i are tunable in principle, the
hopping parameter expansion forM 21(U) is sufficiently
good for heavier quark masses, so that for such masses
v i are numerically close to unity. Hence in our simulatio
we have always usedv i51 for all i.

Since in our implementation we need the sum ofRM(U)
for all flavors, we can estimate the whole sum using a sin
noise fieldh. This allows us to compute all the@M (U,k f)
1ci I #21h for all ci and all flavorsk f , for a givenh using a
single multiple shift inversion@21,22#. In practice we employ
the M3R @22,23# algorithm as it is the most memory effi
cient, and memory was a bottleneck on our target comput
5-5
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C. Loop splitting specifics

We now turn to the details of splitting the loop action. T
fermionic action for a single flavor can be written as

Sf52@TrRM~U,k f !2l f Re TrUh#2l fRe TrUh ,
~24!

where thel f is a tunable parameter for that particular flav
One can then shift the fermion action for each flavor as
lows:

Sf~U !→2@TrRM~U,k f !2l f Re TrUh#. ~25!

At this point it becomes convenient to introduce the sho
handT(U,l f) for the quantity

T~U,l f ![Tr RM~U,k f !2l f Re TrUh ~26!

and to write

Sf~U !→2T~U,l f !. ~27!

In order to absorb this change, the gauge action need
be correspondingly shifted as

Sg~U !→2
b

3
Re TrUh2l f Re TrUh

52
~b13l f !

3
Re TrUh ~28!

with an extra shifted term for each flavor of fermion. The e
result is that the gauge action becomes

Sg~U !52
b8

3
Re TrUh with b85b13(

f 51

Nf

l f .

~29!

The l f need to be tuned to minimize the variance
T(U,l f). The tuning procedure is given by the action matc
ing technology of Sexton, Irving and Weingarten@15,24#. In
fact, findinglmin

f , the values ofl f for which the fluctuations
of T(U,l f) are minimized, corresponds exactly to tuning
quenched simulation to a dynamical fermion one in an ac
matching sense. The quantitylmin

f is given~see@24#! by the
formula

lmin
f 52

Cov@TrRM~U,k f !,Re TrUh#

s2~Re TrUh!
~30!

wheres2(Re TrUh) is the variance of the plaquette and t
quantity in the numerator is the standard covariance betw
the TrRM(U,k f) and the plaquette. We note the actio
matching technology of@24# is not limited to simply tuning
the Wilson plaquette action, but is fairly generic. In partic
lar, it can be used to tune the splitting of the determinant
actions which are linear combinations of higher order loo

When a preliminary reference simulation is available
the desired parameters, one can measure the required
riances and correlations on this data set. Otherwise, since
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tuning of @24# can be carried out in any measure, one c
perform a quenched simulation, and employ a self-consis
procedure to findlmin

f .
Oncelmin

f are determined, one can immediately compu
^T(U,lmin

f )& which are good first estimates for the actio
shift parametersx0

f , which will ensure the quantitiesxf

5E@T(U,lmin
f )#2x0

f have means of 0. These may not be t
optimal shift factorsx0

f , since it may be desirable to hav
^xf&.0, to minimize the number of negative sign violation

One can then shift thexf even further so that practically
all the values ofxf are greater than 0. This can be achiev
by defining

x0
f 5^T~U,lmin

f !&2
1

Nf
x1 , ~31!

wherex1 is some factor ofs„E@T(U,lmin
f )#….

The final valuex that we use in Eq.~5! is then

x5
1

N (
f

E@T~U,l f !#2x0
f ~32!

with x0
f as defined in Eq.~31!.

For later reference, the values and definitions of all
parameters in our implementation are summarized in Tab

D. Work estimates

The costC of the present implementation of KNMC fo
each accepted update of the gauge field and noise fields

TABLE I. Summary of implementation parameters.

Parameter Description

b Gauge coupling
k f Fermion hopping parameter~1 per flavor!
Nh Number of noise vectors per estimator o

E@RM(U)# ~we useNh51)
v i Parameters for reducing the noise in

E@Tr RM(U),h# ~we usev i51 for all i )
r Target fractional residual in the multiple

mass inverter~we user 51026 for the
lightest shifted mass!

l f
min Loop action splitting parameters

~1 per flavor!. The shifted gauge coupling
is b85b13( flmin

f

N Number of fractional flavors
~explicit splitting terms!

x0
f Action shifting constants

~1 per flavor!
x1 Action shift fine tuning factor

~we usex152)
c Variance control parameter for Eq.~5!

~we usec51.5)
Ns The number of~checkerboard, direction!

subsweeps in the gauge update
algorithm ~we usedNs51)
5-6
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C;
Nh NNexpCM1CG

Pacc
U

1
Nh NexpCM

Pacc
j

. ~33!

In Eq. ~33!, the first term represents the computational c
of updating the gauge field, and the second correspond
the contribution from updating a single noise field~out of the
N). HereNexp is the average number of terms in the stoch
tic expansion of the exponential function in Eq.~5! which is
e for the casec51. CM is the cost of estimating TrRM(U)
for all flavors but for only one noise field,CG is the cost of
updating the gauge configurationU. The quantitiesPacc

U and
Pacc

j are the acceptance rates for the gauge and noise upd
respectively. The costCG is negligible in comparison with
CM which is dominated by the time to perform the multip
mass solution of the system@M (k)1ci #X5h for all k and
ci .

E. Volume scaling

The cost for creating a single estimator forx is dominated
by the cost of the multiple mass solve. This should sc
linearly with the volume. The quantityx itself is expected to
scale with the square root of the volume, since evaluating
bilinear involves a sum of random numbers over the volu
which can be positive or negative with equal likelihoo
Hence one would expect the variances2(x) of x to scale
linearly with V and sos(x) should scale asAV. In this case
the number of fractional flavors needed to keeps(x) to be
O(1) must also increase asAV. Hence the total cost of the
algorithm must scale at least asO(V3/2).

F. Comparison to HMC

Let us compare our work estimate to that of a typic
HMC accepted configuration. The work involved in gener
ing this configuration grows as

CHMC;
NMDCF12CH

Pacc
U

~34!

whereNMD is the number of time steps one takes while
tegrating the Hamiltonian equations of motion for one traj
tory. The predominant contribution to the cost of carrying o
such a time step is the costCF of the computation of the
molecular dynamics force for the time step, which for ferm
onic systems involves solving the system of equatio
(M†M )x5f, wheref are the pseudo-fermion fields. Th
costCH is the cost of calculating the energy which also
quires the solution of a system similar to that of the for
computation. The energy calculations are done at the s
and end of the trajectory. While in principle one can ca
out the inversions for the energy using a different stopp
criterion from the one used for the force computation, it
convenient now to consider a case where this is not done
CF5CH .

Since the predominant cost for our KNMC algorithm~as-
suming thatPacc

U <Pacc
j ) comes from the accept/reject ste

following the gauge field update; when the determinant
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to be estimated for all the fractional flavors@cf. the first term
of Eq. ~33!# we will neglect the cost of updating a sing
noise field@where the determinant only has to be estima
for a single fractional flavor—cf. the second term of E
~33!#. Also, asCG, the cost of performing the gauge upda
sweep, is negligible in the current implementation in co
parison toCM , the cost of performing a multiple mass inve
sion, the cost of the noisy algorithm is approximately

CKNMC;
Nh NNexpCM

Pacc
U

. ~35!

Comparing Eqs.~35! and ~34! and assuming thatCM
;CF since they both involve a solution of a similar set
linear equations we note that the two algorithms are com
rable when

Nh NNexp

Pacc
KNMC

;
NMD

Pacc
HMC

~36!

where Pacc
KNMC refers to the gauge acceptance rate of

KNMC algorithm andPacc
HMC refers to the HMC acceptanc

rate. In a typical application,NMD;O(100) and Pacc
HMC

;0.8. As we shall see later on, our simulations using
KNMC algorithm managed to achievePacc

KNMC;0.3, with
Nexp;3 and N'20, which makes our current simulation
somewhat more expensive than their HMC counterparts.

IV. COMPUTATIONAL DETAILS

We now briefly describe our numerical computations.
all we have performed three sets of numerical stud
Firstly, we have performed a brief study of the stochas
exponentiation technique which we describe in Sec.
Thereafter we performed two sets of lattice QCD simu
tions:

The first set of simulations was carried out using a volu
of V584 lattice sites, and we used the results from the
simulations to study the tuning of the algorithm. This s
consisted of a reference HMC simulation~hereafter referred
to asH1), and three KNMC simulations denotedK1, K2
andK3, respectively. We used the reference simulationH1
to tune the parameterlmin

f for the KNMC simulations. Be-
tween simulationsK1, K2 andK3 we varied the number o
fractional flavors, and examined the effect of these on
distribution of the estimatorsx, which are used to make es
timators of TrRM . We also looked for consistency betwee
observables from the KNMC simulations and the referen
simulation H1. A detailed description for the results from
these simulations is given in Sec. VI.

While observables from the first set of simulatio
seemed unbiased compared to their reference HMC coun
parts, we found the statistics inadequate to make a str
statement about the autocorrelations in our ensemble.
this reason we carried out a second set of simulations,
time using a smaller volume ofV544 sites. This reduction in
volume allowed us to generate sufficient statistics to be a
to discuss the issues of autocorrelations meaningfully,
5-7
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TABLE II. Summary of simulations and their main parameters. All the simulations were carried out
Nf52 flavors of dynamical fermions, except for simulationQ which was performed in the quenched a
proximation.

Simulation Type V b k lmin
f (31022) x0 x1 N

H1 HMC 84 5.5 0.1550 – – – –
K1 KNMC 84 5.5 0.1550 3.27 2679.6 2 10
K2 KNMC 84 5.5 0.1550 3.27 2679.6 2 15
K3 KNMC 84 5.5 0.1550 3.27 2679.6 2 20
H2 HMC 44 5.5 0.1550 – – – –
K4 KNMC 44 5.5 0.1550 3.25 238.92 0.7 15
Q HMC 44 5.695 – – – – –
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indeed to demonstrate that the autocorrelation times ar
nite. The second set of simulations consists of a refere
HMC simulation, a single KNMC simulation and a quench
simulation to which we shall refer to asH2, K4 and Q,
respectively. The results for this simulation are discusse
Sec. VII. The labels, types and main parameters of our lat
simulations are collected and summarized in Table II.

Our implementation of the KNMC algorithm was code
for the QCDSP@25# supercomputer, and simulationsK1, K2
andK3 were performed on 1, 2 and 4 motherboard QCD
computers located at Columbia University and at
Brookhaven National Laboratory. Our code was written
C11 utilizing the Columbia Physics Software System~also
known as CPS! which was made available to us by th
RIKEN-BNL-Columbia ~RBC! Collaboration. Our simula-
tion K4 was run on a Linux workstation. Porting the co
between the two platforms was assisted by the efforts of
Edinburgh Parallel Computing Center~EPCC!.

Our reference hybrid Monte Carlo~HMC! simulationH1
was carried out at the T3E facility at NERSC, using t
GHMC code@26# made available to us by the UKQCD Co
laboration. SimulationsH2 and Q were carried out on a
Linux workstation using the publicly available SZIN sof
ware system, currently maintained at the Thomas Jeffer
National Laboratory~JLAB! under the SciDAC program
@27#.

Our analysis program, as well as our investigation of
stochastic exponentiation, was carried out on workstation

V. STOCHASTIC EXPONENTIATION STUDY

Before we describe our simulation results, we will make
detour and experiment with the technique of stochastic
ponentiation. A question of interest is this: How good
estimatorE@ex# of ex can one obtain by applying Eq.~5! to
estimatorsE@x# of x? In this section we attempt to give
partial answer to this question in a situation where bothx and
its fluctuations, as characterized by its standard devia
s(x), are under explicit control.

In this study, noisy estimatesE@x# were made for severa
values of x by adding Gaussian noise of known varian
s2(x) to the actual values ofx. Equation~5! was then ap-
plied to these values ofE@x# to make estimatorsE@ex# of ex.

The results of this study are shown in Fig. 1 where
bias in the results of the stochastic exponentiation is plo
07450
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against the number of samples ofE@ex#. To be more precise
a number of samples ofE@ex# were averaged to obtain
measurement of̂ex& and this was subtracted from the tru
value of ex. It can be seen from Fig. 1 that the techniq
works quite well forx53, c51 and about 1000 samples
Increasingc to c51.5 allows one to get unbiased estimat
for x55 for the same number of samples and it is ev
possible to get unbiased estimates forx56 for such a sample
size if c52.0. However, we note that asx is increased the
fluctuations increase enormously, too, as can be seen w
one compares the scales on the vertical axes of Fig. 1.
data shown in Fig. 1 confirm our earlier reasoning about
distribution ofx in our earlier discussions, namely that it
preferable for the valuex in Eq. ~5! to be small.

VI. RESULTS FROM THE LARGE VOLUME
SIMULATION: H1, K1, K2 AND K3

A. Reference HMC simulation H1

In order to carry out the required tuning, and to have so
benchmark results for our noisy simulations we have p
formed a reference HMC simulation with two flavors of Wi

FIG. 1. Bias in the stochastic estimation as a function
statistics.
5-8
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son dynamical fermions using the desired physical simu
tion parameters listed in Table II. We generated 1280 HM
trajectories, of which the first 625 were discarded for equ
bration. Of the remaining 655 trajectories we stored ev
fifth one to measure TrRM(U) giving us a total of 132 con-
figurations to work with. On these configurations we ha
estimated TrRM(U) using 100 noise vectors per configur
tion. When the noise fields per configuration were averag
the measurement of^TrRM(U)&h was accurate to a relativ
error of less than 1% per configuration.

B. HMC observables

The values of TrRM(U) and the plaquette~normalized by
the volume and the number of planes! measured in our HMC
computations are shown in Table III. In the case of t
plaquette, we used the values of the observable on all
trajectories. The statistical errors were first estimated usin
simple bootstrap technique with 500 bootstrap samples
blocking technique was then used to estimate the effect
autocorrelation on the observables. This technique consi
of averaging successive values of the observable in the
series into a single observable of a new data set~with less
statistics than the original!. The naive variance was the
measured on the resulting new data set. This procedure
repeated until we ran out of statistics, or observed a plat
in the variance. Unfortunately, these data are rather noisy
hence estimating the plateaus is somewhat subjective.
believe we have been conservative in Table III.

C. Tuning lmin
f

We now describe the results of performing the tuning
the lmin

f . Since, both the HMC and the KNMC simulation
were done using degenerate flavors of fermions, we will d
the flavor indexf on this quantity from now on.

We used the estimators of TrRM(U) to estimatelmin us-
ing the tuning formula of Eq.~30!. Before outlining the re-
sults we note that there are two ways of computing the v
ances and covariances in Eq.~30!, the choice of which has a
bearing on the resulting standard deviation,s„T(U,lmin)… of
T(U,lmin).

~1! Method 1. In this method, all the estimator
E@TrRM(U),h# are first averaged over all the nois
fields h for a given configuration. This gives an es
mate of^TrRM&h per configuration with some sma
error. These estimates can then be used~neglecting
the small errors! to perform averages with respect
the gauge fields as usual when computing varianc

TABLE III. Results from simulationH1. The first set of errors
are the naive bootstrap errors. The second set shows the effec
autocorrelation estimated by blocking the data.

Observable Value

^Plaquette& 0.5476~1!~4!

^TrRM(U)& 640.9~6!~20!
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covariances and correlations. The results
s„T(U,l)… as a function ofl for this method are
plotted in Fig. 2.

~2! Method 2.In this method one does not first avera
over theh fields. Instead the averaging is performe
over all the noise fields and gauge fields simul
neously when evaluating variances, covariances
correlations. The results fors„T(U,l)… are plotted in
Fig. 3 for this method.

While method 1 is perhaps the preferred method from
point of view of action and observable matching, the nu
bers from it may be misleading from the point of view of
noisy algorithm since it neglects the effects of noise in
estimation of TrRM(U). However, one would expect the tw
methods to both give the samelmin because they are bot
equivalent to carrying out the same path integral. In meth
2, since more statistics are available, one may expect to

of

FIG. 2. Tuning forlmin using Method 1. The circle gives th
result from Eq.~30!. The squares are the results of explicitly var
ing l around this minimum.

FIG. 3. Tuning forlmin using Method 2. The circle gives th
result from Eq.~30!. The squares are the results of explicitly var
ing l around this minimum.
5-9
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smaller errors onlmin . Finally, comparing the results o
methods 1 and 2, one can get a rough idea of how muc
the variance in our TrRM(U) comes from the noise fieldsh
and how much comes from fluctuations from gauge confi
ration to gauge configuration.

We note in passing that methods 1 and 2 can be though
as opposite extremes of carrying out KNMC simulatio
with various values ofNh . Method 1 corresponds to th
situation whereNh is large, and many conventional estim
tors E@TrRM(U);h# are averaged, to get a better estimat
whereas method 2 corresponds to the situation whereNh
51.

Looking at Table IV it can be seen that the two metho
do in fact give similar results forlmin . Method 2 appears
more accurate, presumably because of the larger numb
estimators available. By examining Figs. 2 and 3 the incre
in statistics is clearly visible from the size of the horizon
error bar on the tuned point. It can also be seen that
minima are quite shallow in terms ofl. The error bar on the
point obtained with method 1 is quite large, despite the f
that the point itself lies near the minimum. With method
the error bar is smaller and the point is better placed. O
recommendation from these results would be to alw
check that the minimum is found, by performing som
manual tuning around the value oflmin given by Eq.~30!.

We note that we carried out the measurements of met
2 after our KNMC simulations as an afterthought. Hence
simulations all used values determined by method 1.

D. KNMC simulations K1, K2 and K3

We now turn to the discussion of our KNMC simulation
K1, K2 andK3. In all three simulations we have used t
same physical parameters as inH1. We used the loop split
ting factorlmin53.2731022 for both flavors as obtained b
Method 1 of the tuning~see Table IV!. For our value ofx0

f

we used^T(U,lmin)&52679.6 ~Table IV! with an addi-
tional fine tuning factor ofx152 as per Eq.~31!.

TABLE IV. HMC tuning results.

Statistic Method 1 Method 2

s„Tr RM(U)… 7.99 11.51
Corr„Tr RM(U),Tr Uh… 0.96~12! 0.66~1!

lmin (31022) 3.27~38! 3.29~5!

s„T(U,lmin)… 2.09 8.56
^T(U,lmin)& 2679.6(1) 2689.60(7)
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Using this value oflmin resulted in a gauge coupling shi
of Db53Nf3lmin

f 50.1962 giving a value ofb855.6962 to
use in the quenched gauge updating algorithm~instead of the
b55.5 of the HMC computations!.

The only difference between the three large volum
KNMC simulations was the value of the number of fraction
flavors N which took the valuesN515, N520 andN525
for simulationsK1, K2 andK3, respectively. This choice
was based on the values ofs„T(U,lmin)… measured in the
preliminary HMC simulation using Method 1. These para
eters are summarized in Table II. The valueN was chosen so
that s(x) with x defined in Eq.~32!, which should be close
to s„T(U,lmin)…Nf /N, is of the order unity.

We show some basic statistics for the simulations in Ta
V. In particular, we give the number of negative signs f
f (U,h,r) that we counted along each simulation and t
width of the distribution ofx as characterized by its standa
deviation s(x) which are indeed close to
s„T(U,lmin)…Nf /N.

E. Distribution of x

In Fig. 4 we plot the distributions of the quantityx as
measured in the three simulations. The distributions app
to be Gaussian as one would expect from the Central Li
Theorem.

It can clearly be seen, that simulationK1 is quite near the
limits prescribed upon the values of the quantityx by the
stochastic exponentiation study, namely that the valuesx

FIG. 4. Distributions ofx for the three noisy simulations.
TABLE V. Summary of statistics for the noisy simulations.

Negative signs off (U,h,r)
Simulation N # Gauge updates ~Number, %! s(x)

K1 15 2400 ~70, 2.9! 0.944
K2 20 4229 ~1, 0.023! 0.734
K3 25 4050 ~0, 0! 0.6
5-10
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THE KENTUCKY NOISY MONTE CARLO ALGORITHM FOR . . . PHYSICAL REVIEW D67, 074505 ~2003!
are getting near the upper limit ofx54, x55 where the
stochastic exponentiation technique begins to break down
our limited statistics. Also for simulationK1, it can clearly
be seen that the lower tail of the distribution stretches w
beyond 0. This manifests itself in that about 2.9% of t
estimators forE@ex# were negative, which has a noticeab
effect on the statistical errors for observables as will be de
onstrated shortly.

SimulationK2 seems to be more or less where one wo
expect this noisy method to behave well. A few of the es
mates forx are larger thanx55 and although the tail of the
distribution stretches into the negative region, in practice
results in very few sign violations off (U,h,r) ~only 1 out
of the total number of statistics equating to 0.02%!. The trick
of folding the sign off into the observable may be a practic
proposition in this case.

Finally K3 is the best behaved of the simulations, w
few values ofx.4 and no sign of violations inf (U,h,r).
The results of this simulation can be analyzed with conv
tional techniques.

F. Acceptance rates

The acceptance rates of the three KNMC simulations
shown in Table VI. One can see that the gauge accepta
rate seems not to depend on the number of fractional fla
used (N), whereas there is a marked increase in the no
update acceptance rate whenN is increased. We believe tha
being able to achieve a gauge acceptance rate of around
by performing quenched updates at a shiftedb is a great
success of the action matching technology; however, for
algorithm to be practical it is somewhat low. Such a lo
acceptance rate, combined with updating only one-eighth
the lattice gauge fields with every update, can result in lo
autocorrelation times.

G. Observables

In Fig. 5 we show our measurements of the plaquette
TrRM(U) for the KNMC simulations as well as the result
the reference HMC calculation for comparison. The er
estimates for the noisy simulations do not include the effe
of autocorrelations so as not to obscure the effects incu
by the sign violations inf (U,h,r).

We note with gratification that the results for simulatio
K1 appear unbiased, even with 2.9% of the estimates
f (U,h,r) having negative signs. However, the statistical
rors on this value are massive when compared to those o
other simulations.

TABLE VI. Acceptance rates for the noisy simulation.

Gauge update Noise update
acceptance acceptance

Simulation N ~%! ~%!

K1 15 32~1! 49~1!

K2 20 33~1! 53~1!

K3 25 33~1! 55.7~7!
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We also note that the autocorrelation times for the KNM
simulations are probably very long~see Sec. VI H for the
detailed discussion!, which may further increase the erro
estimates. Due to this fact, we do not wish to attach a
more significance to the consistency between the HMC
KNMC results than to make the claim that the presence
sign violations does not appear to bias our results.

In Table VII we show the bootstrap errors on the nume
tor and denominator of Eq.~8! used in evaluating the expec
tation value of the plaquette in the presence of sign vio
tions ~for K1 sinceK3 is free of sign violations and there i
only one single violation inK2). In the third line we tabulate
the relative error in the plaquette measurements when
sign is not folded in—although it must be borne in mind th
doing the analysis this way would give a biased value for
plaquette.

In the case of simulationK1 it can clearly be seen that th
magnitude of the relative errors, when the sign is folded in
about two orders of magnitude greater than when it is n
and that the relative errors in the numerator and denomin
~first two lines in Table VII! are approximately the same
This clearly suggests that the errors are entirely domina
by the error in the sign.

H. Autocorrelations

Let us now turn to the question of autocorrelations. It
not entirely clear how to best estimate autocorrelation effe

FIG. 5. Observables from the KNMC simulations. The plaque
is shown on the bottom graph, and^TrRM(U)& is shown on the top.
The values plotted atN510 are the HMC results for comparison

TABLE VII. The relative errors in the numerator and denom
nator of the quantity needed to estimate the expectation value o
plaquette forK1. The third line shows the relative error on th
plaquette without folding in the sign.

Simulation
Sign

violation Observable
Relative bootstrap

error

^Plaquette sgn(f )& 0.709%
K1 2.9% ^sgn(f )& 0.708%

^Plaquette& 0.0037%
5-11
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in the presence of sign violations. When a substantial amo
of sign violations are present, one would expect these to
the dominant contributors to the statistical error in any ca
However, we did attempt to make an investigation into a
tocorrelation effects in simulationK3 where no negative
signs are present inf (U,h,r).

Once again, we used the blocking procedure that was
lined earlier for our HMC simulation~Sec. VI A!. The
growth of the variance of the plaquette is plotted as a fu
tion of block size in Fig. 6. It can be seen that the errors
not plateau as a function of block size, indicating that
integrated autocorrelation time is very long. We expect thi
due in part to the fact that only one-eighth of the lattice
updated with every gauge update, and in part because
rate of acceptance for the gauge updates is quite low—a
33%.

We note that in our experience with the quasi-heatb
method in quenched simulations, the plaquette usually de
rrelates in about 20–40 sweeps~at around this level of gaug
coupling and on similar volumes!. However, in this imple-
mentation of KNMC only one-eighth of the lattice is updat
with any one sweep. This in itself could be expected to
crease the autocorrelation time to about 160–320 acce
sweeps. If this is the case, the amount of statistics avail
to us ~around 4000 sweeps! is quite inadequate to measu
the autocorrelation time accurately@28# and the lack of the
plateau in Fig. 6 should come as no surprise to us. The o
statement we wish to make here is that the autocorrela
time is sufficiently long for us not to be able to measure
accurately.

While autocorrelation times of this large magnitude wou
not present a problem in a conventional quenched simula
where gauge field updates are cheap and no sweeps a
jected ~they are after all from a heatbath!. However, when
one couples a potentially expensive noisy accept/reject
after each one-eighth update the computational cost incre
significantly, so that one cannot hope to achieve the leve
statistics in quenched simulations. In this case the low acc
tance rate of the simulations becomes a problem. Clearly
the KNMC approach to be practicable, a better gauge up
algorithm is needed than the one used here, with a hig
acceptance rate.

I. Rechecking the tuning

Before we proceed to discuss our small volume simu
tions, we would like to discuss the quality of the tuning f
the three KNMC simulations. On physical grounds, o

FIG. 6. Variance of the plaquette measurement ofK3 as a func-
tion of block size.
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would expect that the parameterlmin which minimizes the
variance of the fermion action, is a universal quantity, a
should depend largely on the physical parameters which
fine the expectation value of Tr lnM(U). The amount of vari-
ance reduction thus achieved is expected to depend on
gauge generation algorithm to some degree, but certa
one would expect some self-consistency when carrying
the tuning on the HMC and the KNMC data sets.

To this end we repeated the procedure for tuninglmin
using both methods 1 and 2 on estimates of TrRM(U) pro-
duced during simulationK3 which is not affected by sign
violations. The main difference here is that the number
estimates of TrRM(U) varied slightly from configuration to
configuration since the number of noisy estimates forx dif-
fers for each update. However, withN525 and a value of
c51.5 the average number of terms used in evaluat
f (U,h,r) was about 65 terms per gauge update. With o
4000 updates, these statistics should prove adequate.

The retuning results are shown in Table VIII. We note th
the value oflmin has now increased a little with respect
the HMC results~Table IV!; however, this is not a very large
change. Indeed, it is less than 10% of the HMC value
Table IV.

We also show in Table VIII the corresponding value
s„T(U,lmin)…. For the purpose of comparison we also red
play the value ofs„T(U,l)… using l obtained from the
original tuning on the ensemble ofH1. We denote this latter
quantity ass„T(U,lH1)… in Table VIII. It can be seen tha
the change in the value oflmin from that of the HMC result
does not reduce thes value by a great deal, probably be
cause of the very flat minimum ofs as a function ofl.

A similar trend can be seen when switching to method
from method 2, as was visible when tuning in the ensem
of H1. When averaging the noise fields and effectively m
suring ^TrRM(U)& on each configuration, the subtraction
the loop action from the plaquette is much more effect
than when using method 2—~a reduction froms'8 to s
'2 in the former case against a reduction froms'12 to
s'7.5 in the latter!.

VII. SMALL VOLUME SIMULATIONS

A. Reference HMC simulation H2

SimulationH2 was performed by generating 10000 HM
trajectories, of which the first 250 were dropped for equ
bration. We measured TrRM(U) on every trajectory with 20
noise vectors per configuration. Since we left the physi

TABLE VIII. KNMC Tuning results for one flavor for simula-
tion K3.

Statistic Method 1 Method 2

s„Tr RM(U)… 10.38 12.73
Corr„Tr RM(U),Tr Uh… 0.98 0.81
lmin (31022) 3.51~4! 3.526~7!

s„T(U,lmin)… 1.87 7.45
s„T(U,lH1)… 2.0 7.49
5-12
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parameters unchanged with respect toH1 but decreased ou
lattice volume substantially—see Table II—we also co
puted the chiral condensate^c̄c& on this ensemble to mak
sure that decreasing the lattice spacing has not pushed
simulation into the deconfined sector. This quantity was
fined as

^c̄c&5 K 1

12V
Tr M ~k;U !21L

U

. ~37!

In practice the trace TrM (k;U)21 was estimated by averag
ing over Nh520 noisy estimatorsh†M 21(k;U)h. The re-
quired inverse could be obtained with minimal overhe
from the procedure we used to estimate TrRM(U), with an
added shift term of zero in our multiple shift solver.

The results of observables are shown in Table IX.
important thing to note is that the value of^c̄c&50.92105
indicates that the simulation is still in the confined region

B. Tuning lmin for simulation K4

We used the results from simulationH2 to tunelmin for
simulationK4. Since the lattice volume is quite small, an
because of the amount of statistics available, we simply
ployed method 1 without any additional manual fine tunin
The tuning results are shown in Table X.

C. KNMC simulation K4

We performed simulationK4 with the same physical pa
rameters as all the others. From the tuning exercise ab
we identified our actions splitting parameters that we show
Table II. We maintained the same update scheme as for
other simulations, namely, that our updates consisted of
dating one-eighth of the gauge field, followed by an upd
of the noise fields corresponding to one fractional flav

TABLE IX. Results from simulationH2. The first set of errors
are the naive bootstrap errors. The second set shows the effec
autocorrelation estimated by blocking the data.

Observable Value

^Plaquette& 0.5653~1!~2!

^Tr RM(U)& 45.73~2!~4!

^c̄c& 0.92105~3!~7!

TABLE X. Tuning results from H2.

Statistic Value

s„TrRM(U)… 1.58
Corr„TrRM(U),Tr Uh… 0.92~7!

lmin (31022) 3.25~2!

s„T(U,lHMC)… 0.67
^T(U,lmin)& 238.920(7)
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Overall we performed 15000 such compound updates, h
ing started from an equilibrated configuration from simu
tion H2.

D. Distribution of x for simulation K4

We show the distribution of the estimatorsx in Fig. 7; this
shows the same information as Fig. 4. We can see that
cause of the smaller volume, and the comparatively la
number of fractional flavors, the distribution ofx for K4 is
close to optimal, in the sense that there appear to be
values ofx such thatx,21 which implies that we are com
pletely free from sign violations, and that thex have a mean
of around 0.6, with no values ofx.2. The stochastic expo
nentiation technique should be working perfectly in this
gime.

E. Acceptance rates forK4

The acceptance rates forK4 were 79% for gauge updat
steps and 87% for the noise update steps, respectively.
again seems to imply that the algorithm is behaving op
mally.

F. Observables

We show the mean values of the plaquette and TrRM(U),
along with the corresponding values from the referenceH2
run in Table XI. We can see from Table XI that there is
systematic difference in the mean plaquette and TrRM be-
tween the KNMC simulationK4 and the corresponding
HMC simulation H2. However, the difference is rathe
small, less than 1% in the case of the plaquette and abou
in the case of the TrRM .

In order to ensure that the systematic discrepancy is
due to updating the gauge fields with a quenched action
shifted value of the couplingb, we carried out a shor
quenched simulation, usingb55.695. This was the value o
b used in our KNMC simulations when we took into accou
the shift from splitting the determinant. We display the va
ues of the observables from this quenched simulation
Table XI labelling it as simulationQ. It is clear that the
observables fromK4 are substantially different from th

of

FIG. 7. Distribution of quantityx for simulationK4.
5-13
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JOÓ, HORVÁTH, AND LIU PHYSICAL REVIEW D 67, 074505 ~2003!
quenched simulation, and lie much closer to the values fr
H4. We are therefore confident that the difference betw
K4 and H2 is not due to updating the gauge fields at t
shifted value ofb55.695. Rather we believe it comes fro
the fact that our KNMC simulations useRM(U) in the fer-
mion action which is an approximation to Tr lnM(U). In ef-
fect, the HMC and KNMC simulations are simulatin
slightly different actions in which case the small systema
discrepancy is perhaps unsurprising.

G. Autocorrelations in K4

Let us now turn to the question of autocorrelations
simulationK4. We show in Fig. 8 the results of our blockin
procedure, both for the plaquette and also for our estim
of TrRM(U). The graphs show that the variance of both o
servables stops increasing at a block size of about
samples, indicating that the data is free from autocorrelati
at that point, or put in a different way, that the integrat
autocorrelation time is around 125 compound updates. T
is in contrast to Fig. 6 showing the same kind of measu
ment on the larger volume simulations, where the varia
does not seem to plateau. Hence, our small volume sim
tions show that the Monte Carlo procedure will in fact co
verge.

TABLE XI. Observables from simulationK4 and H2. The
simulation labeledQ is from a quenched simulation carried out
b55.695. Autocorrelations have been taken into account in
errors.

Simulation Observable Value

K4 ^Plaquette& 0.5603~8!

H2 ^Plaquette& 0.5653~2!

Q ^Plaquette& 0.5585~5!

K4 ^TrRM(U)& 44.20~15!

H2 ^TrRM(U)& 45.73~4!

Q ^TrRM(U)& 41.92~15!

FIG. 8. Variances of the plaquette and TrRM(U) as a function of
block size after the blocking procedure of Sec. VI H.
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VIII. SUMMARY OF NUMERICAL RESULTS

A. Stochastic exponentiation technique

The stochastic exponentiation technique works well wh
the argumentx to be exponentiated is small and positiv
Whenx.1 successive terms in the expression forf (U,h,r)
have greater and greater numerical value although the p
ability of reaching these terms still drops factorially. Th
implies that the variance of the estimates is likely to be la
whenx is large, and also that the estimates for the expon
tial are likely to be poor when only a few terms are taken
x is negative, one risks getting negative values off (U,h,r)
which can result in large statistical errors.

B. Tuning lmin

Our main result here is that the tuning can be done in t
ways ~methods 1 and 2! to carry out the minimization of
s„T(U,l)…. We found that a much larger degree of noi
reduction can be achieved by subtracting the loop action
ing method 1 rather than method 2. Further, the minima t
found is very flat with respect tol ~see Figs. 2 and 3!,
implying that not much gain may be made by dynamica
tuning thel parameter.

These results seem to imply that a greater improvem
may be achieved in the acceptance rates of the noisy a
rithm using the loop-splitting technique if more noise vecto
were used in the noisy estimators of TrRM(U) instead of the
current one vector per estimator~i.e. if Nh was increased.!
However, this would also imply more numerical work a
computing each noisy estimator involves a multi-mass inv
sion. On the other hand, it may be possible to reduce
number of fractional flavors~N! in return. Further investiga-
tion is required to establish when the trade-off becom
worthwhile. Finally, it was found that switching to method
from method 1 on the noisy data sets showed a beha
pattern very similar to switching between methods 1 an
on the HMC data, even if the actual values were somew
different.

C. Observables and sign violations

While the expectation values of observables appear to
unbiased in our large volume simulations and show a sm
systematic discrepancy in the small volume high statis
simulation, it appears that even a small number of nega
signs in f (U,h,r)—such as 2.9% of the total number o
estimates—can completely dominate the statistical errors
this situation the effort of creating more and more config
rations goes into reducing the error in the estimate
^sgn„f (U,h,r)…& a more difficult problem than the usua
1/AN problem of reducing the errors in the bare observab
While in the KK linear accept/reject approach these sign v
lations manifest themselves as an explicit bias in the res
in KNMC this bias is traded for a larger statistical error.

D. Autocorrelations

We have shown in our small volume simulations that t
autocorrelation times for the plaquette and TrRM(U) are

e
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long but finite, in other words, that eventually the algorith
would converge to the correct equilibrium distribution. W
do accept, however, that the autocorrelation times are ra
long. This coupled with the drop in the acceptance rate, fr
around 80% to about 30% as the volume was increased f
44 to 84 sites, indicates that this method of updating will n
scale very well to larger volumes. This issue needs to
addressed if the algorithm is to be competitive with s
HMC.

IX. ISSUES NOT ADDRESSED IN THIS STUDY

This study was the initial foray into the study of KNMC
algorithms. There are several issues which have not b
addressed which are also relevant to the algorithm. We
line two of these here.

A. Equilibration

In our study we have always started our simulations fr
an equilibrated configuration produced by our prelimina
HMC study. One may very well ask the question: ‘‘Ho
would we equilibrate our algorithm and tune the necess
parameters if the reference simulation was not present?’’
point to the idea outlined in@24#. The idea presented there
that one can carry out an initial quenched simulation, wh
can be used to carry out a preliminary tuning. This will pr
vide amongst other things a shiftedb value. One can then
carry out a second quenched computation with the shifteb
value, thus bringing the quenched configuration distribut
as close to the intended dynamical one as possible. At
point, one can start to carry out simulations with the no
algorithm, retuningb and the other parameters along t
way until a self-consistency is achieved. This is possible
cause the tuning in@24# can be carried out in any measure

B. The question of an infinite number of noise fields

One may be concerned that since technically an infin
number of dynamical noise fields are present in Eq.~5! it is
not possible to update them all. In particular, very high or
terms in Eq.~5! may never be reached. Thus some of the
noise fields will have infinitely long autocorrelation time
Another way of saying this is that the KNMC algorithm ma
not be ergodic in its infinite variable state space.

While this is a problem in principle, we do not expect it
be a problem in practice, since the probability of reaching
higher order terms is factorially suppressed. Because of
suppression, we expect that these fields can have little e
on our partition function and that any bias in our results fro
such fields is expected to be very much smaller than sta
tical errors. It may be possible to construct operators t
probe these high order terms explicitly, where the effect
long autocorrelations should be clearly visible. Perhap
more relevant potential setback comes from the visibly lo
autocorrelations of our gauge update procedure. We note
in the KK approach, this problem does not arise, since in
case the noise is not part of the state space. On the o
hand, algorithms adopting the KK accept/reject step have
in-principle problem of probability bound violations whic
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can introduce a bias into the answers. Hence in choos
between the two approaches, one has a choice of which
principle problem one wishes to accept as the challenge

X. CONCLUSIONS

We have developed a QCD implementation for the Ke
tucky noisy Monte Carlo approach and performed an ini
numerical study in the context of two flavors of dynamic
Wilson fermions. This study was a success in several wa
most notably since we have managed to assemble all
necessary numerical technology required for incorporat
the fermion determinant directly for the first time. Th
method produced results that are consistent with refere
hybrid Monte Carlo simulations, barring small systematic
fects.

We have gained valuable insight into the necessary tun
methodology, and have learned what essentially drives
algorithm, notably the stochastic properties of the quantityx,
which needs to be distributed so that it is ofO(1) and has a
small variance. A large variance leads to many excessiv
large estimates in the tail of the distribution, causing t
stochastic exponentiation technique to be inefficient. Al
on the other side of the distribution, one could get many s
violations which, while not introducing bias, can lead
large statistical errors. Even though the distribution can
made arbitrarily narrow by employing more noise fields,
using more loops for splitting the determinant, and by us
a larger number of fractional flavors, all these come at
price of an increase in computational cost.

Unfortunately, in our current implementation, the alg
rithm is not particularly efficient. It suffers from the problem
of long autocorrelations and rather low acceptance rates
even fairly small lattices such as those havingV584 sites.
One possible way for addressing this issue could be the
of molecular dynamics for updating the gauge field. On
again, however, this improvement would come at a pot
tially high computational cost as in HMC.

In addition, several other improvements have been s
gested for making the algorithm more efficient@29#, notably
using the technique of eigenvalue deflation@30# and the use
of additional noisy techniques@31,32#, both to improve the
convergence of matrix inversions.

Despite the relative inefficiency of the current impleme
tation, we believe that our approach holds great future pro
ise with its capability to handle an arbitrary number of fe
mion flavors. More importantly, in combination with th
projection of the definite baryon number from the determ
nant, it is a viable candidate to be used in a finite dens
algorithm at zero temperature@5#.

Since the submission of this paper for publication, w
became aware of a recent algorithm which also uses lo
updates for the gauge links and noisy estimators for the r
of the fermion determinant—the partial global stodastic m
tropolis ~PGSM! algorithm@33,34#. This approach is similar
to ours, and in particular employs the same fractional fla
idea to split the determinant.
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