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We develop an implementation for a recently proposed noisy Monte Carlo approach to the simulation of
lattice QCD with dynamical fermions by incorporating the full fermion determinant directly. Our algorithm
uses a quenched gauge field update with a shifted gauge coupling to minimize fluctuations in the trace of the
logarithm of the Wilson-Dirac matrix. The details of tuning the gauge coupling shift as well as results for the
distribution of noisy estimators in our implementation are given. We present data for some basic observables
from the noisy method, as well as the acceptance rate information and discuss potential autocorrelation and
sign violation effects. Both the results and the efficiency of the algorithm are compared against those of the
hybrid Monte Carlo algorithm.
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I. INTRODUCTION given baryon number sector so that the overlap problem can
be avoided5]. In this case, it is essential to have an algo-
Monte Carlo(MC) calculations in lattice QCD with dy- rithm which accommodates the determinant directly.
namical fermions are notoriously time consuming. These An interesting proposal for simulating the determinant di-
simulations generally proceed through a numerical realizarectly has been put forward recently in RE8). In that ap-
tion of an ergodic Markov process having the desired latticgoroach the idea was to split the determinant into infrared and
QCD probability distribution as its fixed point. In direct ap- ultraviolet parts and to treat the infrared part exactly and the
proaches, the major stumbling block is the evaluation of thailtraviolet part approximately. This can in principle be
fermion determinant which is typically needed somewhere inurned into an exact algorithfi], but it is not yet clear how
the process. For interesting volumésthe fermion matrix is well the systematic error of the splitting of the determinant
extremely high dimensional and the time to compute the deyas under control, particularly for small quark masses and
terminant exactly scales &. Hence computing the fermion large lattices.
determinant exactly is not a feasible option. _ _ The approach that will be followed here has several roots.
The current standard workhorse for dynamical latticepne jmportant ingredient is an efficient evaluation of the
QCD computations is the hybrid Monte Ca'(l!dMC) algo-_ determinant based on Pade stochastic estimators of the
rithm [1]. In this case the problem of evaluating the fermlon,[race of logarithm of the fermion matri§8]. For example,

determinant is sidestepped by expressing the determinant ﬁ%ing the unbiased subtraction, one can reduce the error on

an integral over bosoni¢pseudofermionfields which be- . ! . .

; . . the trace of the logarithm of the Wilson fermion matrix on an
come f_u_llffledged dynamical ﬂeld_s " the Markoy PrOTESS.g3. 12 Jattice at,Bg=5 6 by a factor of 25—40 relative to an
One criticism of the HMC method is its supposed inability to 20Dy al .
deal with an odd number of fermion flavors. Indeed, theUnsubtracted one with negligible overhead st 0.154 with

natural settings for HMC are even-flavor theories where thé00 Z noise vectors, the absolute error on the trace of the
pseudofermion heatbath is straightforward and the bosonize@garithm M is about 0.29, which translates into the same
action is manifestly positive. However, this limitation is not relative error for the determinant.
fundamental and can be addressed within the framework of Nevertheless, this would still not be good enough if one
molecular dynamics algorithnig,3]. This is a topic of cur- intended to develop a Metropolis-IiK8] algorithm, because
rent research. the acceptance probability has to be evaluated exactly. To
Even though the direct simulation of the fermion determi-address this problem, Kennedy and K(K) proposed an
nant is infamous for being nearly impossible to implement, italgorithm in which the nonlinear Metropolis acceptance step
promises distinct advantages over the pseudofermion methadas replaced with a linear onel0]. This opened up the
employed in HMC. In addition to being able to accommo- possibility of using unbiased noisy estimators for the re-
date any number of flavors, it has the potential of being ajuired probability ratios instead of having to evaluate them
viable finite density algorithm in the canonical ensemble ap-exactly. Indeed, the required unbiased estimators can be de-
proach. The usual finite chemical potential algorithm in theveloped based on the idea of stochastic series summation
grand canonical ensemble has the well-known sign problerfill]. However, the quantity used as the KK linear acceptance
and the imaginary chemical potential approach has the oveprobability can in principle be negative or greater thdriZ]
lap problem[4,5]. Considering the canonical ensemble in- when the noisy estimate comes from the outlying tails of the
stead, one can project out a definite baryon number from thenderlying distribution. This introduces a bias in the results
fermion determinant before the acceptance test, to stay inlaut the authors of Ref§10,11] argue that in practice it is
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possible to tune both the expression for the linear acceptandbhe gauge invariant function of lattice link variables of the
probability and the estimators so that the bias is substantiallform
smaller than the statistical errors.

The above discussion motivates the second root of our N¢
approach which amounts to choosing stochastic variables so PRCO(U) e~V [T detM(U)
that they provide unbiased estimators for the determinant f=1
itself (rather than acceptance probabiljityvhich eliminates
the need for the linear acceptance step, and allows these Ny
variables to be treated as full-fledged fields in the Markov :e—Sg(U)+E Trin M¢(U) (1)
process. This has been accomplished in R&8] and re- =t
sulted in a procedure without probability bound violation
problems. We will refer to algorithms based on this approactwhereSy(U) is the gauge action anld ¢(U) is the fermion
as Kentucky noisy Monte Carl&NMC) algorithms. In Ref.  matrix [detM ¢(U)>0] [16] for a given flavor of dynamical
[13] this idea was applied to a simple five state model wherdluark. The indices run over the number of flavors one
the amount of noise in the estimators could be preciselyvishes to simulate. For clarity of the discussion and notation
tuned. Although the statistical errors in the results of thebelow, we shall describe our algorithm using just a single
KNMC method grew with increasing levels of noise, the flavor of fermion and drop the subscriptor now, with the
result did remain unbiased while the bias in the KK proce-understanding that the generalization to many flavors is
dure was substantially greater than the KNMC errors. straightforward.

Applying this approach to QCD requires not only a satis- It will be assumed that there is a suitable approximation
factory way of estimating the determinant, but also an effi-Ry(U) of InM(U) that is easy to evaluate, and whose accu-
cient way of proposing new configurations in the Markov racy can be controlled so that the corresponding distribution
process. Indeed, one can easily construct a useless algorithm
when proposed configurations are almost always rejected. It P(U)oxce™ Sy(W+TrRu(U) )
is well known that changes of the gauge field constructed
from sweeps guided solely by a pure gauge actioncanleadto . . Qco
a widely fluctuating determinant and an essentially vanishingS arbitrarily close toP~-*(U). _
acceptance probability for small quark masses. To address e will construct an exact algorithm fé?(U) of Eq. (2)
this issue we adopt the idea of splitting the short-distanc&@sed on the following considerations:
part of the determinant by the loop action and incorporating (1) As pointed out in the Introduction, the exact compu-
it into the pure gauge actiofv,14,15. This is the third in- t_atlon of TrRM(U) is not feasible. For th|s.reason one WOt_JId
gredient of our approach. As a matter of fact, one of ourike to use noisy estimators of this quantity. Let us consider
points is that while we have only split the determinant with
Fhe simpl_est plaguette action, we nevertheless obtain a work- x=E[TrRy(U),7]=7'"Ry(U) 5 3
ing algorithm at least for relatively heavy quark masses. We
view the inclusion of optimized higher loop actions for the
split as being the most promising way of improving our al-
gorithm further.

In what follows, we present the results from applying the
KNMC algorithm with the above specifics to two flavors of
Wilson dynamical fermions. Even though the number of fla- (77;‘7]J->P,,(,7): 5ij - (4
vors is a mere parameter in our approach, we use the two-
flavor setting to be able to compare to HMC easily. The
remainder of this paper is organized as follows. We begin b){h
outlining the main ideas on which our algorithm is built in ” : ; .
Sec. Il. We then discuss the concrete application of the algol—D (7). In I_Eq. (3) the notatlorE[TrRM(U),y] Is also Intro-
rithm to Wilson fermions in Sec. Ill where we discuss someduced' which may be used throughout this paper to indicate

of the numerical techniques used in our implementation a&hat a given quantity is an unbiased estimator for the first
well as some work estimates. After presenting some Complﬁrgument in the square brackets depeqdlng on t_he subsequent
tational details in Sec. IV we discuss our assorted numericl'duments. In this case, for examplejs an estimator of

results in Secs. V, VI and VII. We summarize and discuss rRu(U), dependir:jg on the nOi.Si \f/ectard h h
these results in Secs. VIII and IX and present our conclu- .From Eqs.(3).an (4) it is straightforward to s .OWt a¢
sions in Sec. X. is indeed an estimator for Rg,(U). However for simulating

the measure defined by E(®) estimates of the quantitg”
are needed. If a sequence of estimates niTRM(U)ni,
withi=1,2... , forx=TrRy(U) is available to us, where
the subscripts ony now refer to the position ofy; in the

We start by describing the basic ideas on which our algosequence rather than its elements, we can construct an esti-
rithm is built. Our goal is to simulate a distribution given by mator fore™Ru(Y) by evaluating the functiofil1]

where 7 is a vector in the linear space &fi(U) whose
elements are random numbers drawn from a distribution
P7(x) satisfying the property that

In Eqg. (4) the subscripts on the angle brackets imply that
e expectation value is to be taken in the measure defined by

Il. THE ALGORITHM
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c X, 1 let us introduce the collective notatiaf=(7,p), f(U,§)
f(U {7} {p},C)=1+{ %+ 6 E—Pz) F+9(§C—P3> =f(U,7,p), P(U,&)=P(U,7,p). We can then write sche-
matically P(U,£)=P1(U)P,(U,£)P3(&) with
X3 c )
X ?+...+0 ﬁ—pn Pl(U)oce g
Xn PZ(U7§)OC|f(U1§)| (10)
X{ =+ ... , 5
C oc o0
wherec>0 is a tunable constané(x) is the Heavyside step Ps(f)“iﬂl P7(7i) kl:[z P?(py).

function and thep, is the random number uniformly distrib-
uted in the range € p,=<1 [in other wordsp, has distribu-  We will use two steps based on the following two statements
tion P?(py) = 6(py) — O(px—1).] One can easily verify that that can be verified directly:
" " (@) Let T;(U,U") be the ergodic Markov matrix satisfy-
f . =gl Ru) ing detailed balance with respect #,; in other words,
< (U'{n'}’{pk}’c»ﬂl P”(”i)kﬂz Pr(e =€ © P,(U)T,(U,U")dU=P,(U’)T,(U',U)dU’. Then the
transition matrix
(2) Motivated by the discussion above, and by the form of

Eq. (2), we extend the variable space and write the corre- ) - P>(U", &)
sponding partition function in the form TV, U)=To(U,U") min| 1575 | (1D
_ ) . Y. satisfies detailed balance with respect to FhéU)P,(U, &)
z dee | 11 dn P7(n) (with £ fixed).
. (b) The transition matrix
xI1 dpx PP(p) T(U,7.p), (7) , [ Pa(ULE)
k=2 Tod£,€")=Pa(&")min 15— (12
P,(U,¢)

where we have introduced the shorthah@J,n,p) for
f(U,{7}.{px}.c). We have thus introduced an infinite num- satisfies detailed balance with respect Ro(U,&)P3(£)
ber of auxiliary variables. How can one deal with them in a(with U fixed).
practical simulation? The point is that given the nature of From(a), (b) it follows thatT,, and T, keep the original
terms in Eq.(5) only a finite number of them will be used in distributionP(U,£) invariant and interleaving them will lead
any particular evaluation of(U, 7,p), since the series ter- to an ergodic Markov process with the desired fixed point.
minates stochastically. The average number of terms can be We note that there is a lot of freedom in choosing the pure
tuned by appropriate choice of the constaptand if the — gauge proces$;(U,U’). If local updates are used, then it is
typical values ofx, can be kept reasonably small during the necessary to ensure that a given sequence of such updates
simulation then a practical scheme with effectively finite satisfies detailed balance with respecPtgU). This can be
number of noise fields present can be developed. achieved, for example, by updating the sites at random or
(3) The basic problem with partition functiof?) is that  Selecting the order of updated variables appropriately. We
f(U,7,p) is not positive definite, causing the well-known adopt the procedure wherein only links corresponding to
difficulties to standard simulation techniques. We will as-chosen even/odd part of the lattice and chosen direction are
sume(and demonstrate latethat things can be arranged so updated. One can easily check that such a “subsweep” sat-
that the occurrence of negati¥éU, ,p) in typical equilib-  isfies detailed balance for the Wilson pure gauge action if the
rium configurations U, 7,p) is very small. In that case one €lementary local updates also do so. Further, we note that in
can cure this problem by absorbing the sign into the obsenstep(b) use is made of the fact that the probability distribu-

ables in the usual way, i.e. tion P3(¢§) for the noise can be generated directly from a
heatbath.
( Osgn(P) )p| Finally it should be emphasized that in E¢&l) and(12)
<O>P:<Sgr(—p)>“3" ®  one needs to compute a ratio of the form
Our goal then is to find a suitable Markov process for gen- Po(U",&) [f(U",§)] 13
erating the probability distribution P,(U,&)  [f(U,8)] (13

[ o

—sy(U) where f(U,§) in Eqg. (5) is an estimator foe*. Since the
P(U,7,p)xe > |f(U,77,P)|iHl P”(ﬂi)kﬂz P?(pw). quantityx is an estimator for the quantity R, (U), it can be
- - (9 Very large, asRy(U) is an extensive quantity. Looking at
Eq. (5) it can be seen that(U, ,p) can indeed give a very
(4) One may attempt to simulate the distributit®) in poor estimate of the exponential, if tkg are large, and only
several possible ways. To explain the approach adopted hera,few terms are taken.
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Ideally one would like to be in a situation wherel in x by splitting this part of TRy, (U) into the gauge action
<x,<0O(1). Certainly whernx, < —1, one faces the problem when setting up the Markov proce&ee, e.g[7]). To recall
thatf(U, ,p) can become negative depending on the numihe argument let us write
ber of terms taken. If this happens only occasionally the

—Sy(U Tr Ry (U
effects can be taken into account by folding the sign of P(U)ce™ %) el Ru()

f(U,7,p) into the observable as in E8). However, if it — oSy +AS4(U) TrRy(U)~A54(U)

happens often, it can cause a large effective reduction in '

statistics. (16)
While no firm upper limit has been placed ap we do  \we can thus replace

note that the exponential function diverges rapidly for in-

creasingx>0. Given an infinite amount of statistics, the Sy(U)—S4(U)—ASy(U)

stochastic exponentiation technique will still give an unbi-

ased estimator fog*. However, wherx>1 the terms in Eq. TrRu(U)—TrRy(U)—AS,(U) (17)

(5) have increasing absolute value, thus causing the variance

of the estimators to become very large. Furthermore, in &' 0ur Monte Carlo procedure. Then the gauge updates are
Markov process such as the one described above, the evol@érformed with the new local action, and evaluation of
tion can potentially get stuck in a region of configuration f(Y7.p) involves the variablesc, estimating TRy (U)
space with a given number of ternisoise fieldsp) being '—ASQ(U). The specifics of how to do this will be discussed
used to estimaté(U, 7,p). This is because although having N S€c. 1l C.

a large number of terms is unlikely, once reached with

>1, thenf(U, ,p) will have a higher numerical value than C. Explicit splitting

it would with fewer termg(corresponding to a potential new  ilizing the fact thate*= ()N, one can also split
noise field configuratiop’) in which case the new field is TR, (U) directly by writing TRy (V)

Iikgly to be rejected. For this reason it is prudent in a Sim”'=EiN=l(1/N)Tr Ry(U), and use separate noise fields for ev-
lation to arrange matters so that is of O(1). _ ery (IN)TrRy(U). SinceN divides TiRy(U) into N pieces,
The above discussion suggests that, while the approaglych carrying M flavor, we shall refer to it as the number of
described above theoretically leads to simulating the distrigacional flavors. Indeed, the corresponding modification of
bution (2), additional steps need to be taken to turn it into &yarkov process is straightforward. To see this, consider for
practical scheme. We now discuss some ways that can Rgmpjicity the caseN=2. Originally, the simulated probabil-
employed to deal with the issue of typical magnitudes anqty distribution was written schematically a®(U,¢£)

variances ok, below. %P, (U)P,(U,£)P4(£), while now we have
A. Shifting the action by a constant P(U,§1,&)> Pl(U)PZ(val) PZ(U,&) P3(&1)P3(&2),
Motivated by the fact that a ratio of exponentials can bewhere theP$ is P, of Eq. (10) with x from Eq. (5) replaced
written as by x/N.
o (' —xq) In the step(a) of the MC procedure we thus hawe,
€ e ® (14) —P3(U,£)P3(U, &) with £,¢, fixed. There is an arbi-
¢ el X’ trariness in selecting the procedls. For example, if one

chooses to update a single set of noise at a time,(bjajpes
Jot change at all, and one can choose, for example, the se-
quence(a), (b),, (a), (b), as an elementary Markov step.
The only requirement here is the overall ergodicity.

The main effect of explicit splitting is to scale the width
of the distribution ofx by the number of fractional flavors.
The optimal mixture of action shifting, splitting by the loop

, o action and explicit splitting is a matter to be explored.
Such a shift can move the mean of the distribution of the

values ofx to an arbitrary real number without affecting the
simulation in any way. With this in mind, our main goal is to
minimize the variance ox. While splitting the loop action as described above reduces
the fluctuations i arising from the fluctuation of the gauge
configurations, the variance &falso receives a contribution
from the noise fields; since 'Ry, (U) 7 is used in the con-

It is well known that a significant portion of Tr K (U) struction ofx. Further variance reduction techniques can be
can be typically taken into account by a short-distance loo@pplied to reduce this contribution. The particular technique
action ASy(U) [14,15, especially at larger quark masses, depends on the kind of noise used. In the specific case when
and this is expected to remain true forRf(U) also. This Z, noise is used, it has been shoy¥] that all the contri-
fact can be used to reduce the magnitude of the fluctuationsutions to the variance of R;;(U) come from off-diagonal

one notices that the fermionic action can be shifted by
constant through making the replacement:

x(U,7)=5"Ru(U) n—x(U,7,X0)=7"Ry(U) n—Xq.
(15

D. Reducing the variance from noise

B. Splitting with the loop action
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elements oRy,(U) in which case the unbiased subtraction parameter Klg) in our code. However, for the results pre-
noise reduction technique §8] is highly effective. We will  sented here we have always uség=1.
present details of this method in Sec. Il B.
B. Estimating TrRy(U)
11l. APPLICATION TO LATTICE QCD WITH DYNAMICAL

WILSON FERMIONS In order to estimate Ry (U, «) we turn to the technology

described if8]. The logarithm is approximated using a Pade
To demonstrate that the ideas described in the previougpproximation, which after a partial fraction expansion, has

section can lead to a working algorithm, we now describe théhe form:

details of the implementation of the algorithm that we used Np

to perform simulations with two flavors of degenerate Wilson _ _ —1

quaplrks. Although in principle both the alg%rithm and the InM(U’K)NRM(U)zbOI_i; biLM(U, )+ il ]

implementation can handle an arbitrary number of flavors, (21

the case of two degenerate flavors is convenient from the

point of view that its results can be checked against HMGyhere N, is the order of the Pddapproximation, and the

simulations. Further, we can also carry out some tuning usingonstantsy, andc; are the Padeoefficients. In our imple-

these reference simulations as we shall detail in Secs. Ill Gnentation we have used an 11th order approximation whose

and VI A. , _ coefficients are tabulated [i18].
We simulate the theory with the standard Wilson gauge The traces are then estimated by evaluating bilinears of
action the form 'Ry, (U) 7. If the components of; are chosen
from the Z, group, then the contributions to the variance of
Sg(U)=—§ReTrUD (18)  these biIine_ars come on_ly from off_-diagonal eIeme_nts of
Ru(U) as discussed previously. In this c448] an effective

h is th i Th ity i method reducing the variance is to subtract off a linear com-
w ere,B Is the gauge coupling parameter. The quamiityls — pination of traceless operators frdry,(U) and to consider
obtained as usual by evaluating the product of link matrices

around each elementary plaquette and summing the results
over the whole lattice. After integrating out the Grassmann
numbers, the effective fermion action is

E[TrRu(U), 71=7"[Rm(U) — ;O] 7. (22

Here theO; are operators with T®;=0. Clearly since the

Ne O, are traceless they do not bias our estimators in any way.

Si(U)= —Zl TrinM(U, «¢) (19 The w; are constants that can be tur@griori to minimize
N the fluctuations irE[ TrRy (U), 7].
where the sum is over all desired flavol(U, ) is the In practice theO; are constructed by taking traceless
Wilson fermion matrix terms from the hopping parameter expansion Nor*(U).
These reduce the noise coming from the terph(U)
M(U,ks)=1—«;D(U), (200  +¢;] tin Eq. (22). The termsD, D2, D and further odd

powers ofD are explicitly traceless and terms which have
D(U) is the usual Wilson hopping matrix ang is the hop-  even powers such &* have known traces given in terms of
ping parameter for the flavor with indéxIn our simulations  various loops. For example
we used an approximatioR,(U) to InM(U) given by a
gggeﬂpl)péroxmatmn, which we will discuss in more detail in TrD4(U)=—64TrUg (23)

and hence®,=D*U)+64TrU_ is traceless. Details of
A. Local gauge update finding the traces of even powers Bf can be found, for
In order to update the gauge fields, we use the quasi heagxample, in[20]. In our computations we have subtracted

bath method18] amended as described previously. We splitobservables involving, D?, D3, D*, D® andD".
the lattice into even and odd sites such that even sites have Although the parameters; are tunable in principle, the
only odd neighbors and vice versa. This is a common techhopping parameter expansion fod —1(U) is sufficiently
nique known as checkerboarding. We randomly pick onegood for heavier quark masses, so that for such masses, the
half or our lattice sites corresponding to either even or oddv; are numerically close to unity. Hence in our simulations
sites, and within that sublattice we choose—also randomly—we have always used;=1 for all i.
one of the 4 space-time dimensions. This identifies a particu- Since in our implementation we need the sunRgf(U)
lar subset of lattice links with the chosen checkerboard valuéor all flavors, we can estimate the whole sum using a single
and which connect sites in the chosen direction. We updateoise field». This allows us to compute all tHM (U, «¢)
all the links in this subset simultaneously. Each such sub-c;1] 17 for all ¢; and all flavorsk;, for a givenz using a
sweep allows us to updateof our lattice. As outlined ear- single multiple shift inversiofi21,22. In practice we employ
lier, one is free to perform any number of such updates bethe M3R [22,23 algorithm as it is the most memory effi-
fore updating the noise fields. In fact, this remains a freecient, and memory was a bottleneck on our target computers.
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C. Loop splitting specifics TABLE |. Summary of implementation parameters.

We now turn to the details of splitting the loop action. The

fermionic action for a single flavor can be written as Parameter Description
. . B Gauge coupling
St=—[TRu(U,x)—A" ReTU]—ARe T, Ky Fermion hopping parametét per flavoy
(29 . ,
N, Number of noise vectors per estimator of
where the\ is a tunable parameter for that particular flavor. E[Rm(U)] (we useN,=1)
One can then shift the fermion action for each flavor as fol- i Parameters for reducing the noise in
lows: E[TrRy(U), 7] (we usew;=1 for all i)
r Target fractional residual in the multiple
SH(U)— —[TrRy(U, k1) —\" Re TU]. (25 mass invertefwe user =106 for the
. .. . . lightest shifted mags
At this pomft it becomes convenient to introduce the short- A Loop action splitting parameters
handT(U,A) for the quantity (1 per flavor. The shifted gauge coupling
T(UANDH=TrRy(U,x)—\' Re T, (26) is B =B+3Z\ iy
N Number of fractional flavors
and to write (explicit splitting termg
‘ x§ Action shifting constants
Si(U)——T(U,\). (27) (1 per flavoy

Action shift fine tuning factor

In order to absorb this change, the gauge action needs to X1
(we usex;=2)

be correspondingly shifted as

c Variance control parameter for E(p)
B (we usec=1.5)
Sy(U)—— 3 ReTUL—\" Re T, N The number ofcheckerboard, direction
subsweeps in the gauge update
(B+3\h algorithm (we usedNg=1)

=———5 —ReTUp (29)

tuning of [24] can be carried out in any measure, one can
perform a quenched simulation, and employ a self-consistent
procedure to find\| .
B’ Ny Once\! .. are determined, one can immediately compute
S(U)=—ZReTUy with B'=p+ 3;1 Af (T(U,AT.)) which are good first estimates for the action
a 29 shift parameter9<{), which will ensure the quantitie’
=E[T(U,\[;)]—x{ have means of 0. These may not be the
The \f need to be tuned to minimize the variance ofoptimal shift factorsx)), since it may be desirable to have
T(U,\"). The tuning procedure is given by the action match-(x")>0, to minimize the number of negative sign violations.
ing technology of Sexton, Irving and Weingartelb,24. In One can then shift the’ even further so that practically
fact, finding\ .., the values of' for which the fluctuations  all the values o' are greater than 0. This can be achieved
of T(U,\") are minimized, corresponds exactly to tuning aby defining
guenched simulation to a dynamical fermion one in an action

with an extra shifted term for each flavor of fermion. The end
result is that the gauge action becomes

matching sense. The quantm}nin is given(see[24]) by the XI):<T(U!)\;nin)>_ ixl, (31)
formula N
CO[TrRy (U, x;),Re TUL ] wherex, is some factor ofr(E[T(U,\[:)]).
)\Imn= — (30 The final valuex that we use in Eq(5) is then
o?(Re TU)
1
whereo?(Re TiU) is the variance of the plaquette and the X=N Z E[T(UNH]—x§ (32

guantity in the numerator is the standard covariance between
the TRy (U,x;) and the plaquette. We note the action, i Xg as defined in Eq(31).

match.mg technology 052.4] IS not' I|m|.ted to S'”.‘P'y tunlng For later reference, the values and definitions of all the
the Wilson plaquette action, but is fairly generic. In particu-

lar, it can be used to tune the splitting of the determinant b)parameters in our implementation are summarized in Table I.
actions which are linear combinations of higher order loops.
When a preliminary reference simulation is available at
the desired parameters, one can measure the required cova-The costC of the present implementation of KNMC for
riances and correlations on this data set. Otherwise, since tleach accepted update of the gauge field and noise fields is

D. Work estimates
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N, NNegCw+Cs N, NeyCu to be estimated for all the fractional flavdis. thg first te_rm
C~ U + : ) (33 of Eg. (33)] we will neglect the cost of updating a single
Pacc Pacc noise field[where the determinant only has to be estimated

for a single fractional flavor—cf. the second term of Eg.
In Eq. (33), the first term represents the computational cos{33)]. Also, asCg, the cost of performing the gauge update
of updating the gauge field, and the second corresponds tgwveep, is negligible in the current implementation in com-
the contribution from updating a single noise fiétdit of the  parison toC,,, the cost of performing a multiple mass inver-

N). HereNe,, is the average number of terms in the stochassjon, the cost of the noisy algorithm is approximately
tic expansion of the exponential function in E§) which is

e for the casec=1. C,, is the cost of estimating Ry, (U) N, NNeChu
for all flavors but for only one noise fiel@ ¢ is the cost of Cknmc™ P—U (35
updating the gauge configuratidth The quantitiesP;’CC and acc

chcare.the acceptance rgtes for_the gauge and r_10ise uPdateS’Comparing Eqgs(35) and (34) and assuming tha€y,
respectively. The cosCg is negligible in comparison with _¢_ gince they both involve a solution of a similar set of

Cw which is dominated by the time to perform the multiple |ine5r equations we note that the two algorithms are compa-
mass solution of the systepM () +c;]X=7 for all k and  5pje when

Ci.
N, NNgp Nup

E. Volume scaling pKNMC - pHMC (36)
acc acc

The cost for creating a single estimator fois dominated
by the cost of the multiple mass solve. This should scalavhere PXN"“ refers to the gauge acceptance rate of the

linearly with the volume. The quantityitself is expected to KNMC algorithm andP';C"gC refers to the HMC acceptance

scale with the square root of the volume, since evaluating theate. In a typical applicationNyp~0O(100) and pHmc
bilinear involves a sum of random numbers over the volume_g g As we shall see later on, our simulations using the
which can be positive or negative with equal likelihood. x\vc algorithm managed to achiev@™C~0.3, with
Hence one would expect the varianaé(x) of x to scale N3 andN~20, which makes our current simulations

linearly with V and soo(x) should scale asV. In this case  somewhat more expensive than their HMC counterparts.
the number of fractional flavors needed to kegfx) to be
O(1) must also increase ad/. Hence the total cost of the
algorithm must scale at least @V°/?). V. COMPUTATIONAL DETAILS

We now briefly describe our numerical computations. In

F. Comparison to HMC all we have performed three sets of numerical studies.
. . Firstly, we have performed a brief study of the stochastic
Let us compare our work estimate to that of a typical

' . , : exponentiation technique which we describe in Sec. V.
HMC accepted configuration. The work involved in generat- : .
) . . . Thereafter we performed two sets of lattice QCD simula-
ing this configuration grows as

tions:
No-Cot 2C The first set of simulations was carried out using a volume
CHM(?W (34)  of V=8 lattice sites, and we used the results from these
Pace simulations to study the tuning of the algorithm. This set

consisted of a reference HMC simulati@mereafter referred

whereN,,p is the number of time steps one takes while in-to asH1), and three KNMC simulations denotédl, K2
tegrating the Hamiltonian equations of motion for one trajec-and K3, respectively. We used the reference simulatitih
tory. The predominant contribution to the cost of carrying outto tune the parametex’ . for the KNMC simulations. Be-
such a time step is the co€l- of the computation of the tween simulation& 1, K2 andK3 we varied the number of
molecular dynamics force for the time step, which for fermi-fractional flavors, and examined the effect of these on the
onic systems involves solving the system of equationsdistribution of the estimators, which are used to make es-
(M™)x= ¢, where ¢ are the pseudo-fermion fields. The timators of TiR,,. We also looked for consistency between
costCy, is the cost of calculating the energy which also re-observables from the KNMC simulations and the reference
quires the solution of a system similar to that of the forcesimulationH1. A detailed description for the results from
computation. The energy calculations are done at the stathese simulations is given in Sec. VI.
and end of the trajectory. While in principle one can carry While observables from the first set of simulations
out the inversions for the energy using a different stoppingseemed unbiased compared to their reference HMC counter-
criterion from the one used for the force computation, it isparts, we found the statistics inadequate to make a strong
convenient now to consider a case where this is not done angtatement about the autocorrelations in our ensemble. For
Ce=Cy. this reason we carried out a second set of simulations, this

Since the predominant cost for our KNMC algoritifas-  time using a smaller volume &f= 44 sites. This reduction in
suming thatPy.<P%.) comes from the accept/reject step volume allowed us to generate sufficient statistics to be able
following the gauge field update; when the determinant haso discuss the issues of autocorrelations meaningfully, and
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TABLE Il. Summary of simulations and their main parameters. All the simulations were carried out using
N;=2 flavors of dynamical fermions, except for simulatiQhwhich was performed in the quenched ap-

proximation.
Simulation Type Y B K A (X 1072) Xo X1 N
H1 HMC g 5.5 0.1550 - - - -
K1 KNMC 84 55 0.1550 3.27 —679.6 2 10
K2 KNMC 84 55 0.1550 3.27 —679.6 2 15
K3 KNMC 84 55 0.1550 3.27 —679.6 2 20
H2 HMC 44 55 0.1550 - - - -
K4 KNMC 44 55 0.1550 3.25 —38.92 0.7 15
Q HMC 44 5.695 - - - - -

indeed to demonstrate that the autocorrelation times are fagainst the number of sampleskife*]. To be more precise,
nite. The second set of simulations consists of a referenca number of samples dE[e*] were averaged to obtain a
HMC simulation, a single KNMC simulation and a quenchedmeasurement ofe*) and this was subtracted from the true
simulation to which we shall refer to ad2, K4 and Q, value of €*. It can be seen from Fig. 1 that the technique
respectively. The results for this simulation are discussed ivorks quite well forx=3, c=1 and about 1000 samples.
Sec. VII. The labels, types and main parameters of our latticéncreasingc to c=1.5 allows one to get unbiased estimates
simulations are collected and summarized in Table II. for x=5 for the same number of samples and it is even

Our implementation of the KNMC algorithm was coded possible to get unbiased estimatesxer6 for such a sample
for the QCDSH25] supercomputer, and simulatiod, K2 size if c=2.0. However, we note that asis increased the
andK3 were performed on 1, 2 and 4 motherboard QCDSRIuctuations increase enormously, too, as can be seen when
computers located at Columbia University and at theone compares the scales on the vertical axes of Fig. 1. The
Brookhaven National Laboratory. Our code was written indata shown in Fig. 1 confirm our earlier reasoning about the
C++ utilizing the Columbia Physics Software Systé¢atso  distribution ofx in our earlier discussions, namely that it is
known as CPBwhich was made available to us by the preferable for the valug in Eqg. (5) to be small.
RIKEN-BNL-Columbia (RBC) Collaboration. Our simula-
tion K4 was run on a Linux workstation. Porting the code
between the two platforms was assisted by the efforts of the
Edinburgh Parallel Computing CentégPCQ.

Our reference hybrid Monte Carl®iMC) simulationH1
was carried out at the T3E facility at NERSC, using the
GHMC code[26] made available to us by the UKQCD Col-
laboration. SimulationdH2 and Q were carried out on a
Linux workstation using the publicly available SZIN soft-
ware system, currently maintained at the Thomas Jefferson

VI. RESULTS FROM THE LARGE VOLUME
SIMULATION: H1, K1, K2 AND K3

A. Reference HMC simulationH 1

In order to carry out the required tuning, and to have some
benchmark results for our noisy simulations we have per-
formed a reference HMC simulation with two flavors of Wil-

5(x)=0.01

National Laboratory(JLAB) under the SciDAC program 30
= =1.
[27]. . . L Z 20 § (D)x=§ o=1.0
Our analysis program, as well as our investigation of the ¢ % Ot
stochastic exponentiation, was carried out on workstations. § 3
P o8 i .
g or---O-- B = e ettt A
V. STOCHASTIC EXPONENTIATION STUDY 10
Ox=4 _
Before we describe our simulation results, we will make a2z o o158
detour and experiment with the technique of stochastic ex-£ %% =
. . . . . . o 100
ponentiation. A question of interest is this: How good an [ z § < o
estimatorE[ €*] of €* can one obtain by applying E¢) to g op---H-- B R G----- -

estimatorsE[ x] of x? In this section we attempt to give a
partial answer to this question in a situation where bodind

its fluctuations, as characterized by its standard deviatior
o(x), are under explicit control.

In this study, noisy estimatdq x] were made for several
values ofx by adding Gaussian noise of known variance
o?(x) to the actual values of. Equation(5) was then ap-
plied to these values d&[ x] to make estimatorg[ €*] of e*.

The results of this study are shown in Fig. 1 where the FIG. 1. Bias in the stochastic estimation as a function of
bias in the results of the stochastic exponentiation is plottedtatistics.

800 c=2.0

exp(x)—<E[exp(X)]>
n F3
g 8
K—o—
o
o
e
L
R
ko

o
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|

e 10° 10* 10
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TABLE lll. Results from simulatiorH1. The first set of errors 2.110 T T T T
are the naive bootstrap errors. The second set shows the effects «

autocorrelation estimated by blocking the data. i
B—=a Varying A Manually

O—CO Equation (30)

Observable Value 2.105 -
(Plaquett 0.54761)(4)
(TrRy(V)) 640.96)(20) 2100

o(<T(U, A)>,),

son dynamical fermions using the desired physical simula-
tion parameters listed in Table Il. We generated 1280 HMC =~ 2.09 ]
trajectories, of which the first 625 were discarded for equili- | |
bration. Of the remaining 655 trajectories we stored every

fifth one to measure Ry (U) giving us a total of 132 con- 2090 : . : s
figurations to work with. On these configurations we have 0.028 0030 0.032 N 0.034 0036 0038
estimated TRy,(U) using 100 noise vectors per configura-

tion. When the noise fields per configuration were averaged, FIG. 2. Tuning for\;, using Method 1. The circle gives the
the measurement a[ﬂ'rRM(U))n was accurate to a relative result from Eq.(30). The squares are the results of explicitly vary-
error of less than 1% per configuration. ing A around this minimum.

B. HMC observables covariances and correlations. The results for
o(T(U,\)) as a function ofA for this method are

The values of TRy (U) and the plaquettéhormalized by plotted in Fig. 2.

the volume and the number of planeseasured in our HMC (2) Method 2.In this method one does not first average
computations are shown in Table Ill. In the case of the over the fields. Instead the averaging is performed
plagquette, we used the values of the observable on all 655 over all the noise fields and gauge fields simulta-
trajectories. The statistical errors were first estimated using a neously when evaluating variances, covariances and
simple bootstrap technique with 500 bootstrap samples. A correlations. The results fer(T(U,\)) are plotted in
blocking technique was then used to estimate the effects of Fig. 3 for this method.

autocorrelation on the observables. This technique consisted \yhijle method 1 is perhaps the preferred method from the
of averaging successive values of the observable in the timgoint of view of action and observable matching, the num-
series into a single observable of a new data(sth less  pers from it may be misleading from the point of view of a
statistics than the original The naive variance was then nojsy algorithm since it neglects the effects of noise in the
measured on the resulting new data set. This procedure wastimation of TR,y (U). However, one would expect the two
repeated until we ran out of statistics, or observed a plateaghethods to both give the same,;, because they are both
in the variance. Unfortunately, these data are rather noisy angyyivalent to carrying out the same path integral. In method

hence estimating the plateaus is somewhat subjective. We since more statistics are available, one may expect to get
believe we have been conservative in Table IIl.

8.570 . . . . .
C. Tuning A,
We now describe the results of performing the tuning for  gggg | O'Z'O“E‘SS:;',,Z‘;‘QS;'°" o _
the ' .. Since, both the HMC and the KNMC simulations
were done using degenerate flavors of fermions, we will drop
. . : 8.568 |- .
the flavor indexf on this quantity from now on. -
We used the estimators of Hy;(U) to estimate\ i, us- 5‘
ing the tuning formula of Eq(30). Before outlining the re- 5 8567 | T
sults we note that there are two ways of computing the vari-=
ances and covariances in Eg0), the choice of which has a  ° g5 | _
bearing on the resulting standard deviatiotT (U, \ ,;,)) of
T(U Ain)- 8.565 | 1
(1) Method 1. In this method, all the estimators
E[TrRy(U), ] are first averaged over all the noise 564 . . . . .
fields 7 for a given configuration. This gives an esti- 0.0310 0.0315 0.0320 00325 00330 0.0335 0.0340
mate of(TrRy), per configuration with some small A
error. These estimates can then be uéeeglecting FIG. 3. Tuning for\y;, using Method 2. The circle gives the

the small errorsto perform averages with respect to result from Eq.(30). The squares are the results of explicitly vary-
the gauge fields as usual when computing variancesng \ around this minimum.
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o
=3
¥

TABLE V. HMC tuning results.
-, 0.03 N=25
Statistic Method 1 Method 2 =
g 0.02
a(Tr Ry (V)) 7.99 11.51 £ .0
Corr(Tr Ry (U), TrUp) 0.9612) 0.661)
Nmin (X1072) 3.2739) 3.295) o -
a(T(U N i) 2.09 8.56 - N=20 K2
(T(U A min)) —679.6(1) ~689.60(7) &
dlilh
smaller errors om\,;,. Finally, comparing the results of 0 ""'""“"" ||||""|""'"
methods 1 and 2, one can get a rough idea of how much o_
the variance in our TRy (U) comes from the noise fields % o0z
and how much comes from fluctuations from gauge configu-§ oot
ration to gauge configuration. e
We note in passing that methods 1 and 2 can be thought o

0

as opposite extremes of carrying out KNMC simulations 2 - Sk, (Tr R, (U) — A, Plag —x0,} /N *

with various values ofN,. Method 1 corresponds to the

situation Wherd\lﬂ is large, and many conventional estima- FIG. 4. Distributions ofx for the three noisy simulations.
tors E[TrRy,(U); ] are averaged, to get a better estimator, . , ) , ,
whereas method 2 corresponds to the situation wiheye Using this ve}lue OR min resulted in a gauge coupling shift
=1. of AB=3N¢X\,;,=0.1962 giving a value 0B’ =5.6962 to

Looking at Table IV it can be seen that the two methodsuSe in the quenched gauge updating algorithmstead of the
do in fact give similar results fok ,;,. Method 2 appears 8=5.5 of the HMC computations
more accurate, presumably because of the larger number of The only difference between the three large volume
estimators available. By examining Figs. 2 and 3 the increasENMC simulations was the value of the number of fractional
in statistics is clearly visible from the size of the horizontal flavors N which took the values=15, N=20 andN=25
error bar on the tuned point. It can also be seen that thir simulationsK1, K2 andKs3, respectively. This choice
minima are quite shallow in terms af The error bar on the Was based on the values ofT(U,\ry)) measured in the
point obtained with method 1 is quite large, despite the facPreliminary HMC simulation using Method 1. These param-
that the point itself lies near the minimum. With method 2 ters are summarized in Table II. The vahigvas chosen so
the error bar is smaller and the point is better placed. Oufhato(x) with x defined in Eq(32), which should be close
recommendation from these results would be to alway$0 o(T(U,Amin))N¢/N, is of the order unity.
check that the minimum is found, by performing some We show some basic statistics for the simulations in Table
manual tuning around the value ®f,;, given by Eq.(30). V. In particular, we give the number of negative signs for

We note that we carried out the measurements of methof(U, 7,p) that we counted along each simulation and the
2 after our KNMC simulations as an afterthought. Hence outvidth of the distribution o as characterized by its standard

simulations all used values determined by method 1. deviation o(x) which —are indeed close to
a(T(U,Nmin) )N¢ /N.

D. KNMC simulations K1, K2 and K3 E. Distribution of x

We now turn to the discussion of our KNMC simulations  |n Fig. 4 we plot the distributions of the quantityas

K1, K2 andK3. In all three simulations we have used the measured in the three simulations. The distributions appear

same physical parameters asHii. We used the loop split- to be Gaussian as one would expect from the Central Limit
ting factor\ yi,=3.27x 10" 2 for both flavors as obtained by Theorem.

Method 1 of the tuningsee Table IV. For our value ofx) It can clearly be seen, that simulati&ii is quite near the
we used(T(U,\ynn))=—679.6 (Table IV) with an addi- limits prescribed upon the values of the quantitpy the
tional fine tuning factor ok,=2 as per Eq(31). stochastic exponentiation study, namely that the values of

TABLE V. Summary of statistics for the noisy simulations.

Negative signs of (U, 7,p)

Simulation N # Gauge updates (Number, % a(x)
K1 15 2400 (70,29 0.944
K2 20 4229 (1, 0.023 0.734
K3 25 4050 0,0 0.6
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TABLE VI. Acceptance rates for the noisy simulation. 650
Gauge update Noise update N o5 =
acceptance acceptance §= o o &
Simulation N (%) (%) "-"::
K1 15 321) 49(1) Yo ” - " K3
K2 20 331) 53(1) 0
K3 25 331 55.17) s Hi K1 K2 K3
% 055 o o 5
are getting near the upper limit of=4, x=5 where the = § *** 0.02% No Sign
stochastic exponentiation technique begins to break down fo% os 2.9% Sign Violation
our limited statistics. Also for simulatiok 1, it can clearly 0ses Sign Violation
be seen that the lower tail of the distribution stretches well ., Violation
beyond 0. This manifests itself in that about 2.9% of the ° [ = *

estimators forE[ e*] were negative, which has a noticeable

effect on the statistical errors for observables as will be dem- F'C- 5 Observables from the KNMC simulations. The plaquette
onstrated shortly. is shown on the bottom graph, ati@irRy,(U)) is shown on the top.

SimulationK 2 seems to be more or less where one WouldThe values plotted afl=10 are the HMC results for comparison.

expect this noisy method to behave well. A few of the esti- We also note that the autocorrelation times for the KNMC
mates forx are larger thax=5 and although the tail of the simulations are probably very longee Sec. VIH for the
distribution stretches into the negative region, in practice thigletailed discussion which may further increase the error
results in very few sign violations df(U,7,p) (only 1 out  estimates. Due to this fact, we do not wish to attach any
of the total number of statistics equating to 0.02%he trick ~ more significance to the consistency between the HMC and
of folding the sign off into the observable may be a practical KNMC results than to make the claim that the presence of
proposition in this case. sign violations does not appear to bias our results.

Finally K3 is the best behaved of the simulations, with ~ In Table VIl we show the bootstrap errors on the numera-
few values ofx>4 and no sign of violations ifi(U, 7,p). tor and denominator of E@8) used in evaluating the expec-

The results of this simulation can be analyzed with conventation value of the plaguette in the presence of sign viola-
tional techniques. tions (for K1 sinceK3 is free of sign violations and there is

only one single violation ifK2). In the third line we tabulate
the relative error in the plaquette measurements when the
sign is not folded in—although it must be borne in mind that

The acceptance rates of the three KNMC simulations argging the analysis this way would give a biased value for the
shown in Table VI. One can see that the gauge acceptanggaquette.

rate seems not to depend on the number of fractional flavors | the case of simulatiok 1 it can clearly be seen that the

used (\), whereas there is a marked increase in the noisghagnitude of the relative errors, when the sign is folded in, is
update acceptance rate whins increased. We believe that apout two orders of magnitude greater than when it is not,
being able to achieve a gauge acceptance rate of around 33§ that the relative errors in the numerator and denominator
by performing quenched updates at a shiffeds a great (first two lines in Table VI} are approximately the same.

success of the action matching technology; however, for theis clearly suggests that the errors are entirely dominated
algorithm to be practical it is somewhat low. Such a lowpy the error in the sign.

acceptance rate, combined with updating only one-eighth of
the lattice gauge fields with every update, can result in long
autocorrelation times.

F. Acceptance rates

H. Autocorrelations

Let us now turn to the question of autocorrelations. It is

G. Observables not entirely clear how to best estimate autocorrelation effects

In Fig. 5 we show our measurements of the plaquette and TABLE VII. The relative errors in the numerator and denomi-
TrRy(U) for the KNMC simulations as well as the result of nator of the quantity needed to estimate the expectation value of the

the reference HMC calculation for comparison. The errofPlagquette forkK1. The third line shows the relative error on the
estimates for the noisy simulations do not include the effect@/2duette without folding in the sign.
of autocorrelations so as not to obscure the effects incurred

. i . Sign Relative bootstrap
by the sign violations irf (U, ,p). . . I
yWe noq[e with gratifica(tionntﬁglt the results for simulation Simulation _ violation Observable error
K1 appear unbiased, even with 2.9% of the estimates of (Plaquette sgrf()) 0.709%
f(U, »,p) having negative signs. However, the statistical er- K1 2.9% (sgn(f)) 0.708%
rors on this value are massive when compared to those of the (Plaquetty 0.0037%

other simulations.
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0.0015 y - ¥ ; TABLE VIIl. KNMC Tuning results for one flavor for simula-
tion K3.
E 0.0010 [
2 Statistic Method 1 Method 2
R
N% 0.0005 o(TrRy(U)) 10.38 12.73
Corr(Tr Ry (U), TrUp) 0.98 0.81
0.0000 5 100 200 . 300 200 500 )\min (X 107 2) 3-51(4) 3'52&7)
Block Size a(T(U A min)) 1.87 7.45
FIG. 6. Variance of the plaquette measuremerit 8fas a func- a(T(U,Ay1)) 2.0 7.49

tion of block size.

in the presence of sign violations. When a substantial amouRould expect that the parametef,;, which minimizes the

of sign violations are present, one would expect these to b@ariance of the fermion action, is a universal quantity, and

the dominant contributors to the statistical error in any caseshould depend largely on the physical parameters which de-

However, we did attempt to make an investigation into aufine the expectation value of TrM(U). The amount of vari-

tocorrelation effects in simulatioi3 where no negative ance reduction thus achieved is expected to depend on the

signs are present if(U, 7,p). gauge generation algorithm to some degree, but certainly,
Once again, we used the blocking procedure that was oubne would expect some self-consistency when carrying out

lined earlier for our HMC simulation(Sec. VIA). The  the tuning on the HMC and the KNMC data sets.

growth of the variance of the plaquette is plotted as a func-  To this end we repeated the procedure for tuning,

tion of block size in Fig. 6. It can be seen that the errors dq,sing both methods 1 and 2 on estimates @ JtU) pro-

not plateau as a function of block size, indicating that thejuced during simulatioiK3 which is not affected by sign

integrated autocorrelation time is very long. We expect this isjiplations. The main difference here is that the number of

due in part to the fact that only one-eighth of the lattice iSestimates of TRy (U) varied slightly from configuration to

updated with every gauge update, and in part because th@nfiguration since the number of noisy estimatesxfalif-

rate of acceptance for the gauge updates is quite low—abowrs for each update. However, withi=25 and a value of

33%. _ . . _ c=1.5 the average number of terms used in evaluating
We note that in our experience with the quasi-heatbathy , ;) was about 65 terms per gauge update. With over

method in quenched simulations, the plaquette usually decoryog updates, these statistics should prove adequate.

rrelates in about 2040 sweefad around this level of gauge  The retuning results are shown in Table VIII. We note that

coupling and on similar volumgsHowever, in this imple-  he value of\,, has now increased a little with respect to

mentation of KNMC only one-eighth of the lattice is updated he HMC resultgTable IV); however, this is not a very large

with any one sweep. This in itself could be expected to in-change. Indeed, it is less than 10% of the HMC value in
crease the autocorrelation time to about 160-320 accepteghpie |v.

sweeps. If this is the case, the amount of statistics available \ye z1s0 show in Table VIII the corresponding value of

to us (around 4000 sweepss quite inadequate to measure o(T(U,\ ). For the purpose of comparison we also redis-

the autocorrelation time accurateig8] and the lack of the play the value ofo(T(U,\)) using A obtained from the

plateau in Fig. 6 should come as no surprise to us. The onlygina| tuning on the ensemble BfL. We denote this latter

statement we wish to make here is that the autocorrelatloau(,mtity aso(T(U,\y,)) in Table VIII. It can be seen that

time is sufficiently long for us not to be able to measure ity change in the,vgllue of-.._ from that of the HMC result
min

accura_ttely. S . . does not reduce the value by a great deal, probably be-
While autocorrelation times of this large magnitude WOU|dcause of the very flat minimum of as a function of\

not present a problem in a conventional quenched simulation A similar trend can be seen when switching to method 1
where gauge field updates are cheap and no sweeps are ffom method 2, as was visible when tuning in the ensemble

jected (they are after _aII from a heatbat_H-|owever, vv_hen of H1. When averaging the noise fields and effectively mea-
one couples a potentially expensive noisy accept/reject Stesﬁlring(TrR (U)) on each configuration, the subtraction of
after each one-eighth update the computational cost increas loop a(':v'lion from the plaquette is rﬁuch more effective
significantly, so that one cannot hope to achieve the level o han when using method 2¢a reduction frome~8 to o
statistics in quenched simulations. In this case the low accen=, in the former case against a reduction from12 to
tance rate of the simulations becomes a problem. Clearly fo(rrm? 5 in the latter
the KNMC approach to be practicable, a better gauge update ° '
algorithm is needed than the one used here, with a higher
acceptance rate. VII. SMALL VOLUME SIMULATIONS
A. Reference HMC simulation H 2

I Rechecking the tuning SimulationH2 was performed by generating 10000 HMC

Before we proceed to discuss our small volume simulatrajectories, of which the first 250 were dropped for equili-
tions, we would like to discuss the quality of the tuning for bration. We measured Ry,(U) on every trajectory with 20
the three KNMC simulations. On physical grounds, onenoise vectors per configuration. Since we left the physical
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TABLE IX. Results from simulatiorH2. The first set of errors ' ' " T K4'
are the naive bootstrap errors. The second set shows the effects « L -
autocorrelation estimated by blocking the data.

Observable Value 003 A i
(Plaquetti 0.56531)(2) £ i
(Tr Ru(V)) 45.732)(4) 3

) 0.9210%3)(7) & 00 ]

parameters unchanged with respecHtb but decreased our
lattice volume substantially—see Table Il—we also com-

puted the chiral condensa¢$¢) on this ensemble to make

0. 0.5 1 15 2
sure that decreasing the lattice spacing has not pushed tr X=Z, (TrR' (U} - A Plaq - x0,) /N
simulation into the deconfined sector. This quantity was de-
fined as FIG. 7. Distribution of quantity for simulationK4.
1 Overall we performed 15000 such compound updates, hav-
(gpih)= < TrM(k;U)~ 1> . (37)  ing started from an equilibrated configuration from simula-
u tion H2.

. 1 . D. Distribution of x for simulation K4
In practice the trace ™ («;U) - was estimated by averag- o _ o .
ing overN, =20 noisy estimators;'™M ~1(k;U) 5. The re- We show the distribution of the estimatorén Fig. 7; this

quired inverse could be obtained with minimal overheadshows the same information as Fig. 4. We can see that be-

from the procedure we used to estimat&(U), with an ~ cause of the smaller volume, and the comparatively large
added shift term of zero in our multiple shift solver. number of fractional flavors, the distribution gffor K4 is

The results of observables are shown in Table IX. Anclose to optimal, in the sense that there appear to be no

important thing to note is that the value af)=0.92105 v?luels ?fx SlfJCh thax< — Il which 'm(f“ﬁs thﬁlwe are com-
indicates that the simulation is still in the confined region. pletely free rom sign vio ations, and that theave amean
of around 0.6, with no values of>2. The stochastic expo-

nentiation technique should be working perfectly in this re-
B. Tuning A\, for simulation K4 gime.

We used the results from simulatiéh? to tunel ;, for
simulationK4. Since the lattice volume is quite small, and
because of the amount of statistics available, we simply em- The acceptance rates f&i4 were 79% for gauge update
ployed method 1 without any additional manual fine tuning.steps and 87% for the noise update steps, respectively. This
The tuning results are shown in Table X. again seems to imply that the algorithm is behaving opti-

mally.

E. Acceptance rates fork 4

C. KNMC simulation K4

. . . . F. |
We performed simulatiotK4 with the same physical pa- Observables

rameters as all the others. From the tuning exercise above, We show the mean values of the plaquette anB\yJtU),
we identified our actions splitting parameters that we show irdlong with the corresponding values from the refereH@
Table Il. We maintained the same update scheme as for tHéin in Table XI. We can see from Table XI that there is a
other simulations, namely, that our updates consisted of upystematic difference in the mean plaquette an@Tibe-
dating one-eighth of the gauge field, followed by an updatéween the KNMC simulationk4 and the corresponding
of the noise fields corresponding to one fractional flavorHMC simulation H2. However, the difference is rather
small, less than 1% in the case of the plaquette and about 3%
in the case of the Ry, .

In order to ensure that the systematic discrepancy is not
due to updating the gauge fields with a quenched action at a

TABLE X. Tuning results from H2.

Statistic Value . . 3
shifted value of the coupling3, we carried out a short
a(TrRy(V)) 1.58 guenched simulation, using=5.695. This was the value of
Corr(TrRy(U), TrUp) 0.927) B used in our KNMC simulations when we took into account
Nmin (X1072) 3.252) the shift from splitting the determinant. We display the val-
a(T(U,Npmc)) 0.67 ues of the observables from this quenched simulation in
(T(U, A min)) —38.920(7) Table Xl labelling it as simulatiorQ. It is clear that the

observables fronK4 are substantially different from the
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TABLE Xl. Observables from simulatiodlK4 and H2. The VIIl. SUMMARY OF NUMERICAL RESULTS
simulation labeled) is from a quenched simulation carried out at

B=5.695. Autocorrelations have been taken into account in the A. Stochastic exponentiation technique

errors. The stochastic exponentiation technique works well when

: - the argumentx to be exponentiated is small and positive.
Simulation Observable Value Whenx>1 successive terms in the expressionffad, 7, p)

K4 (Plaquetty 0.56038) hayg greater and greater numerica_ll value although the prob—
H2 (Plaquettg 0.56532) f’:lbI|IFy of reaching 'these terms stllll drop; fgctonally. This
Q (Plaquetty 0.55855) implies that the variance of the estimates is likely to be large
K4 (TrRy(U)) 44.2015) whenx is large, and also that the estimates for the exponen-
H2 (TrRy(U)) 45.734) tial are likely to be poor when only a few terms are taken. If
Q (TrRy(U)) 41.9215) X is negative, one risks getting negative values @, »,p)

which can result in large statistical errors.

quenched simulation, and lie much closer to the values from B. Tuning A

H4. We are therefore confident that the difference between Our main result here is that the tuning can be done in two
K4 andH2 is not due to updating the gauge fields at theways (methods 1 and )2to carry out the minimization of
shifted value of3=5.695. Rather we believe it comes from ¢(T(U,\)). We found that a much larger degree of noise
the fact that our KNMC simulations ud®y,(U) in the fer-  reduction can be achieved by subtracting the loop action us-
mion action which is an approximation to Trim(U). In ef-  ing method 1 rather than method 2. Further, the minima thus
fect, the HMC and KNMC simulations are simulating found is very flat with respect ta (see Figs. 2 and)3
slightly different actions in which case the small systematidmplying that not much gain may be made by dynamically

discrepancy is perhaps unsurprising. tuning thex parameter. _
These results seem to imply that a greater improvement

may be achieved in the acceptance rates of the noisy algo-
G. Autocorrelations in K4 rithm using the loop-splitting technique if more noise vectors
were used in the noisy estimators oRJy(U) instead of the
Let us now turn to the question of autocorrelations incurrent one vector per estimatére. if N, was increasel.
simulationK4. We show in Fig. 8 the results of our blocking However, this would also imply more numerical work as
procedure, both for the plaquette and also for our estimatesomputing each noisy estimator involves a multi-mass inver-
of TrRy,(U). The graphs show that the variance of both ob-sion. On the other hand, it may be possible to reduce the
servables stops increasing at a block size of about 25@umber of fractional flavoréN) in return. Further investiga-
samples, indicating that the data is free from autocorrelationson is required to establish when the trade-off becomes
at that point, or put in a different way, that the integratedworthwhile. Finally, it was found that switching to method 2
autocorrelation time is around 125 compound updates. Thisom method 1 on the noisy data sets showed a behavior
is in contrast to Fig. 6 showing the same kind of measurepattern very similar to switching between methods 1 and 2
ment on the larger volume simulations, where the variancen the HMC data, even if the actual values were somewhat
does not seem to plateau. Hence, our small volume simulaifferent.
tions show that the Monte Carlo procedure will in fact con-
verge. C. Observables and sign violations

While the expectation values of observables appear to be
unbiased in our large volume simulations and show a small
systematic discrepancy in the small volume high statistics
simulation, it appears that even a small number of negative
signs in f(U,n,p)—such as 2.9% of the total nhumber of
estimates—can completely dominate the statistical errors. In
| this situation the effort of creating more and more configu-
0 ' : ' ' : rations goes into reducing the error in the estimate of
i ] (sgr(f(U,n,p))) a more difficult problem than the usual
1/y/N problem of reducing the errors in the bare observables.

O'Z(Plaquene)

5

o While in the KK linear accept/reject approach these sign vio-
g lations manifest themselves as an explicit bias in the result,

in KNMC this bias is traded for a larger statistical error.

0 ‘ 100 ‘ 200 I 300 ‘ 400 ‘ 500 )
Block Size D. Autocorrelations

FIG. 8. Variances of the plaquette andRf(U) as a function of We have shown in our small volume simulations that the

block size after the blocking procedure of Sec. VI H. autocorrelation times for the plaquette andRyjj{U) are
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long but finite, in other words, that eventually the algorithmcan introduce a bias into the answers. Hence in choosing
would converge to the correct equilibrium distribution. We between the two approaches, one has a choice of which in-
do accept, however, that the autocorrelation times are rathgtrinciple problem one wishes to accept as the challenge.
long. This coupled with the drop in the acceptance rate, from

around 80% to about 30% as the volume was increased from X. CONCLUSIONS

4% to 8% sites, indicates that this method of updating will not
scale very well to larger volumes. This issue needs to b?u
addressed if the algorithm is to be competitive with say
HMC.

We have developed a QCD implementation for the Ken-
cky noisy Monte Carlo approach and performed an initial
numerical study in the context of two flavors of dynamical
Wilson fermions. This study was a success in several ways,
most notably since we have managed to assemble all the

IX. ISSUES NOT ADDRESSED IN THIS STUDY necessary numerical technology required for incorporating
the fermion determinant directly for the first time. The
method produced results that are consistent with reference

brid Monte Carlo simulations, barring small systematic ef-
ects.

We have gained valuable insight into the necessary tuning
methodology, and have learned what essentially drives the

A. Equilibration algorithm, notably the stochastic properties of the quamntity
) . which needs to be distributed so that it is@f1) and has a

In our study we have always started our simulations fromsma| variance. A large variance leads to many excessively
an equilibrated configuration produced by our preliminaryjarge estimates in the tail of the distribution, causing the
HMC study. One may very well ask the question: “How stochastic exponentiation technique to be inefficient. Also,
would we equilibrate our algorithm and tune the necessaryn the other side of the distribution, one could get many sign
parameters if the reference simulation was not present?” Wgiolations which, while not introducing bias, can lead to
point to the idea outlined ifi24]. The idea presented there is large statistical errors. Even though the distribution can be
that one can carry out an initial quenched simulation, whichmade arbitrarily narrow by employing more noise fields, by
can be used to carry out a preliminary tuning. This will pro-using more loops for splitting the determinant, and by using
vide amongst other things a shiftggl value. One can then a larger number of fractional flavors, all these come at the
carry out a second quenched computation with the shifted Pprice of an increase in computational cost.
value, thus bringing the quenched configuration distribution Unfortunately, in our current implementation, the algo-
as close to the intended dynamical one as possible. At thigthm is not particularly efficient. It suffers from the problem
point, one can start to carry out simulations with the noisyOf long autocorrelations and rather low acceptance rates, on

. . 4 .
algorithm, retuningB and the other parameters along the &V€N falrlyblsmall Iafttlce(sj dsuch_as trr]l_os_e havig ?d s'teﬁ'
way until a self-consistency is achieved. This is possible be©ON€ Possible way for addressing this issue could be the use

cause the tuning if24] can be carried out in any measure. of molecular dynar_nicg for updating the gauge field. Once
again, however, this improvement would come at a poten-

) o o tially high computational cost as in HMC.
B. The question of an infinite number of noise fields In addition, several other improvements have been sug-

One may be concerned that since technically an infinitegested for making the algorithm more effici¢@8], notably
number of dynamical noise fields are present in Ggitis ~ USing the technique of eigenvalue deflat{@0] and the use
not possible to update them all. In particular, very high ordei°f additional noisy techniquei81,33, both to improve the
terms in Eq.(5) may never be reached. Thus some of thes@Onvergence of matrix inversions. _
noise fields will have infinitely long autocorrelation times. __ DesPite the relative inefficiency of the current implemen-
Another way of saying this is that the KNMC algorithm may {@tion. we believe that our approach holds great future prom-
not be ergodic in its infinite variable state space. ise with its capability to handle an arbitrary number of fer-

While this is a problem in principle, we do not expect it to Mion flavors. More importantly, in combination with the
be a problem in practice, since the probability of reaching thé?rJection of the definite baryon number from the determi-
higher order terms is factorially suppressed. Because of thid@nt: it is @ viable candidate to be used in a finite density
suppression, we expect that these fields can have little effe8{90rithm at zero temperatuf8]. o
on our partition function and that any bias in our results from__SINce the submission of this paper for publication, we

such fields is expected to be very much smaller than statid? ) . . :
tical errors. It may be possible to construct operators thatPdates for the gauge links and noisy estimators for the ratio

: i f the fermion determinant—the partial global stodastic me-
probe these high order terms explicitly, where the effect of . ; . SO
long autocorrelations should be clearly visible. Perhaps &/0Plis (PGSM algorithm[33,34]. This approach is similar

more relevant potential setback comes from the visibly Iongﬁ ours, an_d in particula_lr employs the same fractional flavor
autocorrelations of our gauge update procedure. We note thile2 to split the determinant.

in the KK approach, this problem does not arise, since in that
case the noise is not part of the state space. On the other
hand, algorithms adopting the KK accept/reject step have the We would like to acknowledge DOE grant DE-FGO5-

in-principle problem of probability bound violations which 84ER0154 and the Center for Computational Sciences at the

This study was the initial foray into the study of KNMC
algorithms. There are several issues which have not be
addressed which are also relevant to the algorithm. We ou
line two of these here.
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