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Thermal pions at a finite isospin chemical potential
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The density corrections, in terms of the isospin chemical poteptialto the mass of the pions are studied
in the framework of the SU(2) low-energy effective chiral Lagrangian. The pion decay cofhs{dnj,) is
also analyzed. As a function of temperature g0, the mass remains quite stable, starting to grow for very
high values ofT, confirming previous results. However, there are interesting corrections to the mass when both
effects (temperature and chemical potentiare simultaneously present. At zero temperaturestfheshould
condensate whep,=+m_. This is no longer valid at finitd. The mass ofry acquires also a nontrivial
dependence op, due to the finite temperature.
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Pions play a special role in the dynamics of hot hadronighe same answers. Let us proceed in the frame of the SU(2)
matter since they are the lightest hadrons. Therefore, it ighiral perturbation theory. The most general chiral invariant
quite important to understand not only the temperature deexpression for a QCD-extended Lagrangifib6,17 under
pendence of the pions’ Green functions but also their behasthe presence of external Hermitian-matrix auxiliary fields,
ior as a function of density, through the chemical potential.has the form
The dependence of the pion mass and decay constant on
temperaturen_(T), f_(T) has been studied in a variety of

frameworks, such as thermal QCD sum rylg§ chiral per- Loco(S,P.v,, ,aﬂ>=£%w+57“(vﬂ+ ¥52,,)q
turbation theory(low temperature expansipf2], the linear o
sigma model[3,4], mean field approximatiof5,6], virial —q(s—iysp)q, 2

expansior{7,8], etc. In fact, pion propagation at finite tem-

perature has been calculated at two loops in the frame afherev «» @, S, andp are vector, axial, scalar, and pseu-
chiral perturbation theor}9,10]. There seems to be a reason- doscalar fields. The vector current is given by

able agreement thanh_(T) is essentially independent af

except possibly near the critical temperatufge where

m_(T) increases witi and thatf _(T) vanishes for the criti- JZ = %EY L7, 3

cal temperature.

The introduction of in-medium processes via an isospin  \Wheny,a,p=0 ands=M, M =diag(m,,my) being the
chemical potential has been studied at zero temperftdre  mass matrix, we obtain the usual QCD Lagrangian. This pro-
13] in both phases|f|sm,) at the tree level. The problem cedure is formal, in the sense that we reproduce the usual
with both temperature and density has been worked out foh)cD Lagrangian with current masses. However, we would
the baryonic chemical potential with chiral perturbation|jke to notice that a scalar field in chiral Lagrangian models
theory[14]. It is also possible to find a certain region of the the spontaneous break of chiral symmetry through a nonva-
stable pion gas in which the pion number is locally con-pjishing vacuum expectation value. In this sense if we take
served[15]. for s=M, these masses should be actually constituent quark

Usually, there are two procedures to extract the informamgasses, while in the QCD Lagrangian we have current
tion of m; andf in the frame of chiral perturbation theory. masses. Nevertheless, this is a formal step which tries only to

The first one is to Compute the axial-axial correlator WhiChmotivate what follows in the context of effective pion La-
provides us with the decay constant and the mass correctioRgangian.

[2,9,14, The effective action with finite isospin chemical potential
is given by
4y, AIPX a b bpMpr?T |
d*xePX(0|AL(0)AL(0)[0)=6"——=. (1) Loeo=Locp(M,0,0,0 + #1232 = Locp(M,0,1u,,0) "

In the second method, radiative corrections to the propagawhere u2=(0,0,) is the third isospin componenty

tors are considered together with the realization of PCAC= 4,27%/2, andu,, is the four-velocity between the observer
(partial conservation of axial vector curr&zrﬂOlAf‘Llwb(p» and the thermal heat bath. This is required in order to de-
=ipﬂﬁabfw, making then use of appropriate counterterms.scribe this system in a covariant way, where the Lorentz
The use of counterterms is not necessary in the axial-axiahvariance is broken since the thermal heat bath represents a
correlator method. We have checked that both methods givprivileged frame of reference.
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Proceeding in the same way, now in the low-energy de- 1
scription where only pion degrees of freedom are relevant, ﬁz,z=§[(5’ﬂo)2—m2ﬂg]+|(9|77|2—m2|77|2,
let us consider the most general chiral invariant Lagrangian
ordered in a series of powers of the external momentum. We

; ; 2\ ~hi ; 1 m?
will start with the O(p<) chiral Lagrangian 2= p Wg+6f2[_4|‘9'7T|2|7T|2+(‘9|7T|2)2
? 1
£2=ZTr[(DﬂU)TD“U+UTX+XTU], (5 + (| m|2)2]+ ?[—ZI«MIZW(%

with —2(9mg)?| w|?+ dmla| |2+ m2ard| w|?],

D,U=4,U-i[v,,U]l-i{a,,U}, )

L 2=2E L4| 0y 7m|2— m2(I3+1 )| ]2+ E| (97)?
X=2B(s+ip), s2 T AT 4 24

_ T2 i w7\ 12 1
U=U" e ""HU™ (6) —§m2(|3+|4—e§d|7)wg 9
U is the vacuum expectation value of the fielcandB in the
previous equation is an arbitrary constant which will be fixe
when the mass is identified settingn(+my)B=m?. The
most general(p*) chiral Lagrangian has the form

dWith I; the original parameters of Gasser and Leutwyler’s
SU(2) Lagrangian,

|4=8a4,
‘64: al{Tr[(DMU)TDMU]}Z-{_aZTr[(Dp,U)TDVU] |3=16a3+8a8—8a4,
XTI (D*U) DU+ as(Tr xUT+Ux )%+ ay |,=—16a;—8ag, (10)
XTI’[(DMU)TDMU]TF[XUT‘F UXT] where the subindicesi,( j) in the Lagrangian denote the

order in powers of momentum and fields, respectively, and

vt i v\ T

+as[L, UR*UT+iasTL,,D*U(D"U) Gt i,
i e Y2 T_ t1\2
+R,(DHU) DU+ aq(Tr xU ' —=Ux']) This definition of the covariant derivative is natural, since we
know [21,22 that the chemical potential is introduced as the

+agT xUTxUT+UxTUX"] zero component of an external “gauge” field. In the previous
expression,
+agTiL, LA +R, R+ aoTr x" x], (7)
|wlP=a"m", |a7|>=(am)(am)_.
with
. We will neglecte? = (m,—mgy)?/(m,+ my)? because it only
Luy=0,,—a, ), +ill,1], 1,=v,—a,, shifts in a small quantity the neutral pion mass and we are
interested in the thermal and density evolution of the masses.
Ruy=0,0,—d,r,Filr,.r,], r,=v,+a,. (8) For renormalizing with counterterms we introduce the fol-

. . ) . lowing decomposition:
The different coupling constants; in the previous ex-

pression are related to the couplings introducefd 8. Here Leot= Lo+ L5 4+ Ly,
we use the prescription ¢1.9].
The effective action with finite chemical potential in Ly=LY5+ 6L, (12)

terms of pion degrees of freedom has the same form as Eq.

(4), where the different external fields are defined in ).  where ther index denotes the Lagrangian with renormalized
In this paper we will consider one loop corrections, up to thefields.

fourth order in the fields, to the Lagrangi@h and the free Settingmo= \Zomh and 7. = \Z. 7', in L,,, we have
part, i.e., the tree level part af, with renormalized fields.

This procedure is standafd6,20. We will concentrate on SL=1367 [(9mp)>—mP ()21 + 8z [0y 7|2 —mP|7'|?]

the phase wherg,<m_, where the vacuum expectation - (12)
valueU=1. The interacting part, involves higher powers

in the momentum of the pion fields. The constamtpresent ~ With 6z =7;—1.

in £, are known from decay and scattering measurements. First, let us consider the temperature and density correc-
Therefore, we have the following Lagrangiads; : tions to the pion propagator. Since our calculation will be at
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the one loop level, we do not need the full formalism of
thermo-field dynamics, including thermal ghosts and matrix

propagators. The propagator

D.(X)=D(X;=u) +Dpg(X; = u) (13

for charged pions at the tree level will be given by an exten-
of the well

sion, for a nonvanishing chemical potential,
known Dolan-Jackiw propagators for scalar fig]d4]. Note
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iDL(p) t=pZ-ALup. —m¥1-AL+A.],

iDy(p) = p?—mA1—Ag+Aol, (18)
where ¢; terms absorb the divergences

R 1 19

=307 AL (19

that since there is no chemical potential associated with the

neutral pion, the thermal propagatg will be the usual one

Do(x)=D(x;0)+ D4(x;0), (14
where, in momentum space
D(k;xu)= |
=TT e
D g(k; + ) =2mmng(|kul) (k% —m?), (15

with

kiEkIlu“luv nB(X):eﬁx_l

the shifted momentum and the Bose-Einstein factor.

in which they; terms are tabulateld 6,20, A being a scale
factor.

We identify m_+ and m_- from the solution of
Q;(p)*1|p:0=0 in the frame where the heat bath is at rest

[u=(1,0)]. We get the well known result foF= =0,

m,=m(1l—a_l/4) (20

is identified with the physical masa.,=(m_/4wf_)? is the
perturbative term that fixes the scale of energies in the theory
(for energies below 4f ) so we neglect th€)(g?) factors.
This allows us to sein~m_. in all radiative correctiongand
alsof~f ). The procedure is the same far.o.

It is important to remark that radiative corrections will
leave a dependence on the chemical potential for the pion
mass only for finite values of temperature. In a strict sense,
this procedure does not allow us to say anything new for an

We will use the modified minimal subtraction scheme,eventual chemical potential dependence of the massg&s at

and we renormalize as usual B0, since the thermal cor-

=0 (cold mattey which is already included irC,. In this

rections are finite. The self-energy for charged and neutratase,T=0, we have to follow the usual procedUyrEl,12,

pions including the counterterms has the form

S.(p)=[A+~ 687 ]pi —[AL— &z, Im*+ALup.,
2o(p)=[Ag— 8z,1p*—[Ag— 8, ]m* (16)
with
m2
+= [D (0)+Dg (0)]—2f—zl4
2
Al 2D . (0)—Dy(0 2— +1
L 6f2[ -(0)=Dg(0)] =25 (I+1a),
4 2
Aizf—zuﬁDi(O),
2 2
Ag=——D.(0)— 1,4,
=32 +(0) 2 e
m2
Aj= 3Dy(0)—2D.(0)]— —(I5+]
6f2[ o(0)=2D-(0)] = 5 (I5+14).
7
Our prescription to fix the counterterdy is to impose

that does not depend op?, so, 5zi=Ai . In this way, the
renormalized propagators will take the form

of computing the minimum of the effective potential iy
when the chemical potential is taken into account, without
considering radiative corrections. This enables us to identify
a phase structure where a nontrivial vacuum appears for
higher values ofu,, | «,|>m, characterized by the appear-
ance of a condensater ). (The opposite occurs for nega-
tive values of the chemical potential, where the vacuum state
is a condensatér*).) At T=0 whenu,=m,., the mass of
7~ vanishes.

For finite T and «, , we find the following expression for
the masses:

(T =m[1+azlot () /mz—4azd)],
mﬂTO(Tvﬂ'l):mw[l—‘raw(z' _IO)]! (21)
with
I=dex\/xz—1[nB(m7Tx—,u|)+nB(me+,u,,)],
1
Zfdx XyX = 1[ng(Mx— 1) = Ng(M X+ u))],
lo=1(x;=0). (22)

Note that our convention for the chemical potential sign is
contrary to the one adopted in the paper by Kogut and Tou-
blan[12], who extended previous results by Son and Stepha-
nov [11].
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FIG. 3. f as a function ofT for a fixed u, .

The axial vector current is

* — | *
A(l,l),u,__f(é’,uﬂ-) )

FIG. 1. mo as a function ofl and w«, in units ofm_, .

. 2 I
If the chemical potential of the charged pions vanishes, A(lx3)u:§{770[770(‘9lﬂ77)7_777&#770]
i.e., for symmetric matter, at finit€ we get the well known B 3
result form_(T) due to chiral perturbation theof2]; see +at[aT ()~ 7 (3,7 ]},
also[3]. However, due to radiative corrections to the neutral
pion propagator, its mass will acquire a nontrivial chemical . m L
potential dependence for finite values of temperature. In the A=~ Tzu(aﬂ”) '
approach where the minimum of the effective potential is
calculated(for finite u;, andT=0), the mass of the neutral
pion remains constant.

We show in Fig 1 a tridimensional picture for the behav- 5
ior of th_e mass of the neutral pion. Note that whep=0, A?l,s)#=—{2|77|2%770—TTO%|TF|2},
M, (T)=m=(T). 3f

From Fig. 2 we see that at zero temperature, we agree
with the usual predictionm=m_+,. In fact, at zero
temperaturer™ should condensate when=—m_, (the in-
verse situation occurs far ™). Now, this situation changes if
temperature starts to increase. The condensation point disapow, the effective axial current @(p?) will be
pears atu,=—m,_; in u;=m_ the mass starts to decrease. _ _ _ _ _ _

For smallT (for example, inside an neutron stathis effect A=A AL AG YL \/ZA'(rlyl)#ﬂLA'(rl’g)MnLA'éyl)#
is negligible. (25)

In connection with the behavior of (T,u,;) when w,
<m,,, we have make used of PCAC, which provides us withwith i ={=,0}. We will take
a relation between the renormalized propagator and the pion

2

0 — 0
A(l,l),u_ f(‘)M’ﬂ' y

0 m2 0
A(3,1)/J,: - T2|4(?M7T . (24)

decay constant. VZi= 1+ 82.=1+367+0( 52)-
The axial vector current is obtained as the functional de-
rivative of the action with respect t@j; , with a,=a’, 7/2, The values of theS; are the same as those obtained in the
mass renormalization.
oS ing i i i
Al — (M,0y2u,.0). 23) After taking into accpunt the different tadpole .d|agrams
ko sad © which correct the coupling of the current to one pion states,
” we find
foe/m.
0.95
0.9
0.85
0.8
B 0.75
0.5 1 ma
FIG. 2. m_+ as a function ofy, for a fixedT. FIG. 4. f .= as a function ofT for a fixed u, .
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I For u,=0 we agree with the well known results of Gasser
1 and Leutwyler[2]. For an increasing finite chemical poten-
tial, thef (T) couplings decrease fastfigs. 3 and 4 This
0.8 effect is enhanced fof ; (T) and is related to the fact that

fwo(T)onIy receives radiative corrections from charged pion

0.6 tadpoles.
In heavy ion collisions, a finite value @f, means that, at
0.4 least locally, we would expect more pions with definite
charge than in the symmetric case. According to this picture,
0.2 the production rate of dileptons from pion annihilation
should be suppressed. Probably, the detection of such kind of
effects will demand a higher center-of-mass energy.
In order to explore the region whelre,|>m_,, associated
FIG. 5. T,u, phase diagram for pion condensation. with a new phase where the condensates occur, we need to
redefine our fields as fluctuations around the configuration
<0|Ai|wi(p)>:ipt#[f7_fzaﬂ_“ +1g)]*=iu,fe,8, corresponding to a minima of the effective potentialdga
At present we are working on it, but it is possible to extrapo-
(0|A2| 7o(p))=ip [, —fda,l], (26) late, forT<m_ andu,~m,, the condensation point in such
a way that we actually remain in the first phase. However,
with the curve in theu,-T plane that separates both phases is only
o reliable in the parameters region mentioned before, where in
f.=f(1+a,l,). (27 the thermal factors in Eq422) we have taken the approxima-
) . tion ng(m_ x= u,)= exd —B(m,x*u,)]. A complete analy-
Now, we can sef=f_, m=m_ in all O(«a,) terms, since  gjs of the phase can be found[i23]. The phase diagram is
any correction will be of order? (including «,); then we  shown in Fig. 5 in accordance wifi1]. However, for higher
define the effective decay constant as the part proportional tPalues ofu, Changes abrupt]y and our approximation is no

LI
0.95 1 1.05 1.1 1.15™M=

P, SO longer valid.
fre(Tow)=f[1-2a,(1+1g)], The work of M.L. has been supported by Fondecyt
(Chile) under Grant No. 1010976. C.V. acknowledges sup-
fo(T,u)=f[1-4a,l]. (28)  port from Conicyt.
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