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Quark number susceptibilities of hot QCD up to g6 ln g

A. Vuorinen*
Department of Physical Sciences, Theoretical Physics Division, P.O. Box 64, FIN-00014 University of Helsinki, Finland
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The pressure of hot QCD has recently been determined to the last perturbatively computable orderg6 ln g by
Kajantieet al. using three-dimensional effective theories. A similar method is applied here to the pressure in
the presence of small but non-vanishing quark chemical potentials, and the result is used to derive the quark
number susceptibilities in the limitm50. The diagonal quark number susceptibility of QCD withnf flavors of
massless quarks is evaluated to orderg6 ln g and compared with recent lattice simulations. It is observed that
the results qualitatively resemble the lattice ones, and that when combined with the fully perturbative but yet
undeterminedg6 term they may well explain the behavior of the lattice data for a wide range of temperatures.
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I. INTRODUCTION

The grand potential is the most fundamental function
scribing the equilibrium properties of a thermodynamic s
tem. By itself it amounts to minus the pressu
p(T,m1 ,m2 , . . . ) times the volume and from its derivative
one immediately obtains such quantities as entropy, spe
heats, number densities and susceptibilities. In quan
chromodynamics a lot of attention has been devoted to
termining the pressure in the quark-qluon plasma phase
e.g. lattice simulations have been successfully applied to
problem. They are, however, only available for temperatu
no more than a few times above the critical temperatureTc
of the deconfinement phase transition and have only rece
been extended to finite baryon densities.

So far the most powerful tool available for analytic ca
culations in QCD has been perturbation theory, the use
which is justified by the small value of the coupling consta
g at high energy densities due to asymptotic freedom. Am
50 the perturbative series of the pressure has recently b
extended to orderg6ln g @1#, which marks the final step in a
series of impressive computations starting from the deter
nation of the orderg2 contribution@2# and leading through
the ordersg3 @3#, g4ln g @4#, g4 @5# and g5 @6,7#. The next
O(g6) term in the series is already out of reach for analy
computations due to infrared problems@8#.

At non-zero quark chemical potentials the pressure is
present known only to orderg4ln g @4# at finite T and to
order g4 at T50 @9# reflecting in part the computationa
complications induced by a finite value ofm. From these
results one may derive the quark number susceptibilitiex
defined as second derivatives of the pressure with respe
the chemical potentials. They are both important and v
interesting quantities, since they describe the effects of fi
density being at the same time directly measurable on a
tice in the limit m→0 ~see e.g.@10–12#!. The perturbative
results forx obtained from@4# in this limit are, however,
unable to produce even the qualitative behavior of the lat
data. Recent HTL computations~see e.g.@13#! have im-
proved the situation somewhat.
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In the present paper the pressure of quark-gluon pla
with massless quarks is computed to orderg6ln g in the limit
of small but non-vanishing chemical potentials 0<m/T!1.
The calculation is a generalization of the recentm50 paper
@1# and applies the same method, matching of effective thr
dimensional theories to four-dimensional QCD@14#, in sepa-
rating the contributions of different momentum scales
pQCD. The result is used in deriving the quark number s
ceptibilities atm50 to orderg6ln g, and the diagonal sus
ceptibility is subsequently analyzed and compared with
sults of lattice simulations. One observes that the result
the present computation follow the same trend as the lat
ones, but that the effects of the yet undetermined contri
tions may still affect their behavior considerably.

The non-trivial part of deriving the susceptibilities is th
evaluation of the fermionic three-loop diagrams of full QC
that contribute to the pressure. To do that one applies h
the results of yet unpublished work@15#, in which the nec-
essary diagrams are computed for arbitraryT andm. In this
paper the results are, however, only quoted as expande
second order with respect tom/T, which is sufficient for the
present purposes. Due to the use of the effective theory
proach one may here perform the calculations without a
resummations applying dimensional regularization in theMS
scheme is to regulate both ultraviolet and infrared div
gences. All fields are considered massless, while the che
cal potentials of the quark flavors are regarded as being
dependent and non-zero and the temperature higher thanTc .

The general setup of the paper is presented in Sec
while the results for the pressure are assembled in Sec
Section IV is then devoted to explaining the computation
the matching coefficients needed in deriving the press
and the diagonal quark number susceptibility atm50 is dis-
cussed in Sec. V. Conclusions are finally drawn in Sec.
and the values of the matching coefficients listed in the A
pendix.

II. SETUP AND NOTATION

In Euclidean metric quantum chromodynamics is defin
by the Lagrangian density
©2003 The American Physical Society32-1
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LQCD5
1

4
Fmn

a Fmn
a 1c̄D” c, ~2.1!

where

Fmn
a 5]mAn

a2]nAm
a 1g fabcAm

b An
c , ~2.2!

Dm5]m2 igAm5]m2 igAm
a Ta, ~2.3!

and where the massless quark fields have been combined
a multi-component spinorc. The Nc3Nc matricesTa are
here the generators of the fundamental representatio
SU(Nc), and the relevant group theory factors read

CAdcd[ f abcf abd5Ncdcd , ~2.4!

CFd i j [~TaTa! i j 5
Nc

221

2Nc
d i j , ~2.5!

TFdab[Tr TaTb5
nf

2
dab ~2.6!

and

Ddcd[dabcdabd5
Nc

224

Nc
dcd . ~2.7!

The dimensions of the representations aredA[daa5Nc
221

for the adjoint one anddF[d i i 5dATF /CF5Ncnf for the
fermionic one.

The partition function is defined as a path integral over
fields of the functional

expH 2S SQCD2(
f

m fNf D J 5expH 2E
0

b

dt

3E ddx~LQCD2c†mc!J ,

~2.8!

whereb51/T and m is a diagonalnf3nf-matrix in flavor
space representing the different chemical potentials of
quark flavors. In Eq.~2.8! the space dimensionality isd53
22e signifying the use of dimensional regularization. T
partition function gives the pressure through the relationp
5T/V ln Z, where the infinite-volume limit is assumed.

At high temperatures and small chemical potentialsm
!T the pressure of QCD can be separated into three p
pQCD5pE1pM1pG corresponding respectively to the diffe
ent momentum scales 2pT, gT and g2T contributing to it
@14,7#. By definition

pE~T,m![pQCD~T,m!2
T

V
ln E DAi

a DA0
a exp$2SE%,

~2.9!

whereSE is the action of a three-dimensional effective theo
with the Lagrangian density@16#
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LE5
1

2
Tr Fi j

2 1Tr@Di ,A0#21mE
2Tr A0

21
ig3

3p2 (
f

m f Tr A0
3

1dLE, ~2.10!

obtained from QCD by dimensional reduction@17#. In Eq.
~2.10! mE and the coupling constantgE appearing inFi j are
parameters to be determined in full QCD, and terms t
contribute to the pressure starting at orderg6 or higher have
been assembled indLE.

The functionspM(T,m) and pG(T) are similarly defined
by

pM~T,m![pQCD~T,m!2pE~T,m!

2
T

V
ln E DAi

a exp$2SM%

[pQCD~T,m!2pE~T,m!2pG~T!,
~2.11!

LM5
1

2
Tr Fi j

2 1dLM ~2.12!

with yet another coupling constantgM appearing in the defi-
nition of Fi j . At leading order the different parts contribu
to the pressure aspE;g0, pM;g3 and pG;g6ln g. As is
indicated above by writingpG(T), it will be seen that the
dependence ofpG on m is of higher order than what is con
sidered here.

The contributions of the different momentum scales to
m50 pressure have been analyzed in detail in@1#. Since the
effects of finite chemical potentials with few exceptio
manifest themselves merely as changes in the matching
efficients defined there, the treatment of the pressure in
present paper will be restricted to quoting the results for
pN’s from @1# and discussing the effects of finitem on the
coefficients.

The momentum integration measure and the shortha
for sum-integrals used from here onwards are

E
p
[E ddp

~2p!d
5L22eS egL̄2

4p
D eE ddp

~2p!d
,

~2.13!

X P/$P%[T (
p0 /$p0%

E
p
, ~2.14!

whereL̄ is theMS scale andp0[2npT stands for bosonic
and $p0%[(2n11)pT2 im for fermionic Matsubara fre-
quencies. In the following sections the chemical potenti
usually appear in the dimensionless combination

m̄[
m

2pT
. ~2.15!
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III. THE PRESSURE AT 0 Ïµ™T

Collecting results from@1# and @16# one may, in analogy
with @1#, write the different parameters required in comp
ing pQCD to orderg6ln g in the form

pG~T!

TL22e
5dACA

3
gM

6

~4p!4
ln

L̄

2mM
@8aG1O~e!#, ~3.1!

pM~T,m!

TL22e
5

1

~4p!
dAmE

3F1

3
1O~e!G

1
1

~4p!2
dACAgE

2mE
2F2

1

4e
2

3

4
2 ln

L̄

2mE

1O~e!G1
1

~4p!3
dACA

2gE
4mEF2

89

24
2

1

6
p2

1
11

6
ln 21O~e!G

1
1

~4p!4
dACA

3gE
6 ln

L̄

2mE
@8aM11O~e!#

1
1

~4p!4
dADTF

2gE
6 ln

L̄

2mE
@8aM21O~e!#,

~3.2!

mM5CAgM
2 , ~3.3!
07403
-

gM
2 5gE

2@11O~gE
2/mE!#, ~3.4!

pE~T,m!

TL22e
5T3FaE11g2~aE21O~e!!

1
g4

~4p!2
~aE31O~e!!G , ~3.5!

mE
25T2Fg2~aE41aE5e1O~e2!!

1
g4

~4p!2
~aE61O~e!!G , ~3.6!

gE
25TFg21

g4

~4p!2
~aE71O~e!!G , ~3.7!

where the effects of finitem can be explicitly seen only in
the appearance of an additional term proportional toaM2 in
Eq. ~3.2!. Hereg2 is the renormalized coupling of full QCD
and the values of the matching coefficientsa can be imme-
diately obtained from the results of@1,2,13# and@16# with the
exception ofaE3 and aE5. While the latter is found almos
trivially through a one-loop computation, determining th
first one requires the evaluation of all three-loop diagrams
full QCD that contribute to the pressure. This procedure
explained in Sec. IV.

Adding together Eqs.~3.1!, ~3.2! and ~3.5! one has ob-
tained a compact expression for the perturbative expan
of the pressure up toO(g6ln g)
t

re to
derived
ese
pQCD~T,m!

T4L22e
5

pE~T,m!1pM~T,m!1pG~T!

T4L22e

5g0$aE1%1g2$aE2%1
g3

~4p! H dA

3
aE4

3/2J 1
g4

~4p!2 H aE32dACAFaE4S 1

4e
1

3

4
1 ln

L̄

2gTaE4
1/2D 1

1

4
aE5G J

1
g5

~4p!3 H dAaE4
1/2F1

2
aE62CA

2S 89

24
1

p2

6
2

11

6
ln 2D G J 1

g6

~4p!4
$dACA~aE61aE4aE7!ln@gaE4

1/2#

28dACA
3~aM1 ln@gaE4

1/2#12aG ln@gCA
1/2# !28 dADTF

2aM2 ln @gaE4
1/2#% ~3.8!

with the values of the coefficientsa listed in the Appendix and the pole ofaE3 exactly cancelling the 1/e term appearing in
the orderg4 contribution. One should notice here that the numerical factors appearing inside the logarithms of the lasg6ln g
term can be unambiguously defined only after the full orderg6 contribution has been determined.

IV. THE COMPUTATION OF aE3

In order to find the matching coefficientaE3 one needs to compute the diagrammatic expansion of the QCD pressu
three-loop order at finiteT andm, but without any resummations. Since the corresponding expansion has already been
for m50 @5#, one may restrict the treatment here to them-specific part, i.e. to the diagrams containing fermionic lines. Th
diagrams are shown in Fig. 1 and contribute to the expansion as

pferm5pferm
0 1

1

2
I a1

1

3
I b1

1

4
I c1

1

2
I d1

1

4
I e1

1

2
I f1

1

4
I g1

1

4
I h , ~4.1!
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wherepferm
0 represents the pressure of non-interacting quarks~see e.g.@18#!.

Applying the usual Euclidean space finite temperature Feynman rules to the individual diagrams, performing seve
of integration momenta and taking advantage of the fact that the purely bosonic version ofT̃ vanishes atO(e0) @5#, the
diagrams may be rewritten in terms of the sum-integrals

I n
m[X P

~p0!m

~P2!n
, ~4.2!

Ĩ n
m[X $P%

~p0!m

~P2!n
, ~4.3!

t̃[X $PQ%

1

P2Q2~P2Q!2
, ~4.4!

t̃8[X $PQ%

p0

P2Q2~P2Q!4
, ~4.5!

M̃m,n[X $PQR%

1

P2Q2~R2!m~~P2Q!2!n~P2R!2~Q2R!2
, ~4.6!

Nm,n[X $PQ%R

1

P2Q2~R2!m~~P2Q!2!n~P2R!2~Q2R!2
, ~4.7!

defined here in analogy with@7#. For example, for the diagramb one obtains in the Feynman gauge

I b52X $PQR%TrF 1

P”
~ggmTi j

a !
1

Q”
~ggnTjk

b !
1

R”
~ggrTki

c !G ig f abc

3
gmr~2Pn2Qn2Rn!1grn~2Rm2Pm2Qm!1gnm~2Qr2Rr2Pr!

~P2Q!2~Q2R!2~R2P!2

5
3

2
dACATFg4

X $PQR%

PaQbRg~2Pn2Qn2Rn!

P2Q2R2~P2Q!2~Q2R!2~R2P!2
Tr@gagmgbgngggm#

548~12e!dACATFg4
X $PQR%

P•~P2Q!Q•R

P2Q2R2~P2Q!2~Q2R!2~R2P!2

512~12e!dACATFg4F ~I 1
02Ĩ 1

0!T̃1
1

2
M̃0,0G , ~4.8!

and the other ones produce in the same gauge

I a524~12e!dATFg2Ĩ 1
0~ Ĩ 1

022I 1
0!, ~4.9!

FIG. 1. The two- and three-loop fermionic diagrams contributing to the pressure. The solid, wiggly and dashed lines stand res
for the quark, gluon and ghost fields.
074032-4
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I c54~12e!dA~2CF2CA!TFg4@4~I 1
022Ĩ 1

0!T̃1~21e!N0,022eM̃0,012N1,21#, ~4.10!

I d528~12e!2dACFTFg4@~I 1
02Ĩ 1

0!2Ĩ 2
022Ĩ 1

0T̃1M̃0,01M̃1,21#, ~4.11!

I e528dATF
2g4@4~11e!~ Ĩ 1

0!2I 2
0216Ĩ1

1T̃82~12e!~N0,024Ĩ 1
0T̃ !22N1,2122N2,22#, ~4.12!

I f52dACATFg4@8I 1
0Ĩ 1

0I 2
022I 1

0T̃1M̃0,022M̃22,2#, ~4.13!

I g54dACATFg4F4~625e!I 1
0Ĩ 1

0I 2
02~726e!I 1

0T̃2S 3

2
22e DM̃0,02~524e!M̃22,2G , ~4.14!

I h528~322e!~12e!dACATFg4@2I 1
0Ĩ 1

0I 2
02I 1

0T̃ #. ~4.15!

Substituting Eqs.~4.8!–~4.15! into Eq. ~4.1! and allowing explicitly flavor-dependent chemical potentials, one has obtain
representation forpferm in terms of the sum-integrals defined above

pferm5
1

nf
(

f
$pferm

0 22~12e!dATFZg
2g2Ĩ 1

0~ Ĩ 1
022I 1

0!1dAg4~CATF~12e!@8~11e!I 1
0Ĩ 1

0I 2
024eI 1

0T̃14Ĩ 1
0T̃12eM̃0,0

2~21e!N0,022N1,2124M̃22,2#22CFTF~12e!@2~12e!~I 1
02Ĩ 1

0!2Ĩ 2
024I 1

0T̃14~11e!Ĩ 1
0T̃12M̃0,0

2~21e!N0,012~12e!M̃1,2122N1,21# !%2
1

nf
2 (

f g
dAg4TF

2$8~11e!Ĩ 1
0@m f # Ĩ 1

0@mg# I 2
0

14~12e!~ Ĩ 1
0@m f # T̃ @mg#1Ĩ 1

0@mg# T̃ @m f # !216~ Ĩ1
1@m f # T̃8@mg#1Ĩ1

1@mg# T̃8@m f # !22~12e!N0,0@m f ,mg#

24N1,21@m f ,mg#24N2,22@m f ,mg#%. ~4.16!

The renormalization coefficient of the gauge coupling,Zg , is given by

Zg
2512

11CA24TF

3

g2

~4p!2

1

e
, ~4.17!

and in the latter sum of Eq.~4.16! the Nn,2n’s depend on bothm f and mg through the respective fermionic momenta. T
sum-integrals appearing in the result are computed1 in @15# for arbitraryT andm, and thus the coefficientaE3 is available by
simply combining Eq.~4.16! with the bosonic part of the strict perturbation expansion of the pressure~see e.g. Eq.~31! of @7#!.
The outcome of the computation expanded to second order inm̄ is displayed in Eq.~A6! of the Appendix.

V. QUARK NUMBER SUSCEPTIBILITIES AT µÄ0

From the expression~3.8! one may at once extract the quark number susceptibilities defined by

x i j [
]2p

]m i]m j
5xd i j 1x̃~12d i j !, ~5.1!

where the symmetry between the massless quark flavors atm50 has been exploited in the latter equality in dividing the res
explicitly into a diagonal and an off-diagonal part. The off-diagonal susceptibilityx̃ is already known to orderg6ln g @13#, but
the result obtained here for the diagonal onex is new. Specializing to the physical caseNc53 one readily obtains

1Recently there has appeared a new paper@19#, in which one- and two-loop sum-integrals analogous to those considered in@15# have been
independently calculated.
074032-5
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x

x0
U

m50

5122
g2~r!

4p2
18A11

nf

6 S g2~r!

4p2 D 3/2

112S g2~r!

4p2 D 2

ln
g2~r!

4p2
2

1

36 H 12~3322nf !ln
egr

4pT
2432 lnF11

nf

6 G
1133126nf116~1712nf !ln 22432g2432

z8~21!

z~21! J S g2~r!

4p2 D 2

1
1

12A11nf /6
H 4~61nf !~3322nf !ln

egr

4pT

2669130nf14nf
2236p214~99224nf24nf

2!ln 21
28

9
~61nf !

2z~3!J S g2

4p2 D 5/2

12H 2~3322nf !ln
egr

4pT
1

59

9

1nf28nf ln 21
7

3
~61nf !z~3!J S g2

4p2 D 3

ln
g2

4p2
2

3322nf

108 H 6~3322nf !ln
egr

4pT
2432 lnF11

nf

6 G188126nf

116~1712nf ! ln 22432g2432
z8~21!

z~21!
2

2889

3322nf
J S g2

4p2 D 3

ln
egr

4pT
1C~nf !S g2

4p2 D 3

1O~g7!, ~5.2!

wherex05T2 is the free theory result. The two-loop running ofg

g2~L!5g2~r!F11
1

6
~11CA24TF!ln

r

L

g2~r!

4p2
1

1

12S 17CA
2210CATF26

dFCF
2

dA
1

1

3
~11CA24TF!2 ln

r

L D ln
r

L S g2

4p2 D 2G
~5.3!

has been used to determine the form of the second but last term, which cancels the scale dependence of the lo
contributions. The symbolr is used in Eq.~5.2! in place of the scale of dimensional regularization to emphasize the fact
its value is arbitrary, though one expects it to be of order 2pT.

The last term of Eq.~5.2!, proportional toC(nf), represents the yet undeterminedO(g6) contribution to the diagona
susceptibility and can only be obtained through a massive computation involving the evaluation of all four-loop diagr
full QCD contributing to the pressure. It is, however, worth noting that unlike in the case of the pressure@1# no lattice
simulations will be required in this process due to the fact that at orderg6 the contribution ofpG to pQCD is m-independent.
It is therefore obvious thatC(nf) has no direct relation to the coefficientd defined in@1# to represent theO(g6) part ofpQCD.

In Figs. 2 and 3 the result~5.2! is plotted as a function ofT together with lattice data obtained from@10,11#. Figure 2
contains plots of thenf50 andnf52 cases for differentC(nf) showing that for reasonable values ofC the perturbative

FIG. 2. x/x0 plotted as a function ofT/Tc for nf50 ~left! andnf52 ~right! with various values ofC. The parameterD is defined as the
ratio of the coefficients of theg6ln g and g6 terms in the expansion~5.2!. The lattice data is from@10,11#, and the valuesTc /LMSunf50

51.15 andTc /LMSunf5250.49 @20# are used.
074032-6
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FIG. 3. x/x0unf52 at different perturbative orders forC(2)5245 orD'20.18 ~left! and the absolute values of the individual terms
the series~right!. The lattice results are from@11#.
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series can be made to approach the lattice results eve
temperatures surprisingly close toTc . This should, however
by no means be considered an argument suggesting tha
region of applicability of the present results can be exten
down toTc . The success of these perturbative prediction
T<3Tc is in large part merely a consequence of having
free parameter available for plotting, and the behavior of
result at these temperatures may be completely distorte
the eventual computation ofC(nf). For reference, the sus
ceptibility for nf52 andC(2)5245 is nevertheless plotte
in Fig. 3 to different perturbative orders alongside with t
absolute values of the different terms of the series. For t
peratures higher than a few timesTc the convergence prop
erties of the series appear to be reasonably good. In the
the value of the scale parameterr is set to 6.742T for nf
50 and to 8.112T for nf52, for which the one-loop correc
tions togE

2 vanish@21#.
A few words about the curious concept of susceptibility

zero quark flavors are probably in order. The quantity h
been computed above as the formalnf→0 limit of the gen-
eral result~5.2! and has been plotted in Fig. 2. The interest
this unphysical limit is due to the existence of recent latt
results from quenched QCD@10# that provide an interesting
and powerful test for the validity of the perturbative expa
sion of the susceptibility. In particular, being able to comp
the perturbation theory results and the lattice data for dif
ent numbers of fermion flavors makes it possible to qual
tively study thenf dependence of the yet unknown coef
cient C(nf).

VI. CONCLUSIONS

In this paper the diagonal quark number susceptibility
QCD at vanishing chemical potentials has been compute
orderg6ln g in perturbation theory. This is a three-order im
provement to the previous result@4#. Since the next term in
the series requires the determination of the perturbative
of theO(g6) pressure at finiteT andm, and even the corre
07403
at

the
d

at
a
e
by

-

ots

t
s

e

-
e
r-
-

f
to

rt

spondingm50 computation seems to be out of reach f
current computational techniques, the result obtained h
will most likely not be subject to improvement in near futur
Nevertheless, a need for further work aiming at the deter
nation of theO(g6) terms in the expansions of both th
pressure and the susceptibilities is obviously present.

The result obtained here for the diagonal susceptibi
resembles the lattice data available but, as demonstrate
the previous sections, may also be considerably modified
the yet undetermined contributions tox revealing its lack of
predictive power. This could actually have been anticipa
due to similar problems encountered in connection with
perturbative expansion of the pressure. The problem can
viewed as a natural consequence of the relatively large v
of the QCD coupling constant at the energy scale conside
here and of the slow convergence of the perturbative exp
sion of the pressure in the 3D sector.

While the high temperature, small chemical potential
gion of the QCD phase diagram is without doubt of cons
erable special interest, it is also worthwhile to study how
results obtained there can be generalized to other parts o
(T,m) plane. An especially interesting task waiting to b
tackled is the building of a bridge between the orderg4 per-
turbative results for the pressure atTÞ0, m50 @5# and T
50, mÞ0 @9#. In the T!m region the true ground state o
the theory may naturally be modified by the appearance
non-perturbativeqq condensates@22#.
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APPENDIX: THE MATCHING COEFFICIENTS

The values of the matching coefficientsa defined in Sec.
III read
2-7



A. VUORINEN PHYSICAL REVIEW D 67, 074032 ~2003!
aG5
43

96
2

157

6144
p2, ~A1!

aM15
43

32
2

491

6144
p2, ~A2!

aM252
2

3 S 1

nf
(

f
m̄ D 2

, ~A3!

aE15
p2

45

1

nf
(

f
H dA1dFS 7

4
130m̄2D J , ~A4!

aE252
dA

144

1

nf
(

f
H CA1

TF

2
~5172m̄2!J , ~A5!

aE35
dA

144

1

nf
(

f
H CA

2F12

e
1

194

3
ln

L̄

4pT
1

116

5
14g2

38

3

z8~23!

z~23!
1

220

3

z8~21!

z~21!
G1CATFF12~1112m̄2!

1

e

1S 169

3
1600m̄2D ln

L̄

4pT
1

1121

60
2

157

5
ln 218g22~912156g2176 ln 2!m̄22

1

3

z8~23!

z~23!

1
2

3
~731432m̄2!

z8~21!

z~21!
G1CFTFF105

4
224 ln 216~35116 ln 2!m̄2G1TF

2F S 20

3
196m̄2D ln

L̄

4pT
1

1

3

2
88

5
ln 214g28~13116 ln 2212g!m̄2 2

8

3

z8~23!

z~23!
1

16

3

z8~21!

z~21!
G J , ~A6!

aE45
1

3

1

nf
(

f
$CA1TF@1112m̄2#%, ~A7!

aE55
1

3

1

nf
(

f
H 2CAF ln

L̄

4pT
1

z8~21!

z~21!
G1TFF2~1112m̄2!ln

L̄

4pT
1122 ln 2212~124 ln 222g!m̄2

12
z8~21!

z~21!
G J , ~A8!

aE65
1

9

1

nf
(

f
H CA

2F22 ln
egL̄

4pT
15G1CATFF2~71132m̄2!ln

egL̄

4pT
19216 ln 214~33114 z~3!!m̄2G

218CFTF@1112m̄2#24TF
2~1112m̄2!F2 ln

egL̄

4pT
2114 ln 2214 z~3!m̄2G J , ~A9!

aE75
1

3

1

nf
(

f
H CAF22 ln

egL̄

4pT
11G24TFF2 ln

egL̄

4pT
14 ln 2214z~3!m̄2G J . ~A10!
r,
@1# K. Kajantie, M. Laine, K. Rummukainen, and Y. Schrode
Phys. Rev. D~to be published!, hep-ph/0211321.

@2# E.V. Shuryak, Zh. E´ksp. Teor. Fiz.74, 408 ~1978! @Sov. Phys.
JETP47, 212~1978!#; S.A. Chin, Phys. Lett.78B, 552~1978!.

@3# J.I. Kapusta, Nucl. Phys.B148, 461 ~1979!.
@4# T. Toimela, Phys. Lett.124B, 407 ~1983!.
07403
@5# P. Arnold and C.X. Zhai, Phys. Rev. D50, 7603 ~1994!; 51,
1906 ~1995!.

@6# C.X. Zhai and B. Kastening, Phys. Rev. D52, 7232~1995!.
@7# E. Braaten and A. Nieto, Phys. Rev. Lett.76, 1417 ~1996!;

Phys. Rev. D53, 3421~1996!.
@8# A.D. Linde, Phys. Lett.96B, 289 ~1980!.
2-8



h-

h-

QUARK NUMBER SUSCEPTIBILITIES OF HOT QCD UP . . . PHYSICAL REVIEW D 67, 074032 ~2003!
@9# B.A. Freedman and L.D. McLerran, Phys. Rev. D16, 1169
~1977!.

@10# R.V. Gavai and S. Gupta, Phys. Rev. D67, 034501~2003!.
@11# R.V. Gavai, S. Gupta, and P. Majumdar, Phys. Rev. D65,

054506~2002!.
@12# MILC Collaboration, C. Bernardet al., hep-lat/0209079.
@13# J.P. Blaizot, E. Iancu, and A. Rebhan, Phys. Lett. B523, 143

~2001!; hep-ph/0206280.
@14# P. Ginsparg, Nucl. Phys.B170, 388 ~1980!; T. Appelquist and

R.D. Pisarski, Phys. Rev. D23, 2305~1981!.
@15# A. Vuorinen ~in preparation!.
07403
@16# A. Hart, M. Laine, and O. Philipsen, Nucl. Phys.B586, 443
~2000!.

@17# K. Kajantie, M. Laine, K. Rummukainen, and M.E. Shapos
nikov, Nucl. Phys.B458, 90 ~1996!.

@18# J. Kapusta,Finite Temperature Field Theory~Cambridge Uni-
versity Press, Cambridge, England, 1989!.

@19# A. Gynther, hep-ph/0303019.
@20# S. Gupta, Phys. Rev. D64, 034507~2001!.
@21# K. Kajantie, M. Laine, K. Rummukainen, and M.E. Shapos

nikov, Nucl. Phys.B503, 357 ~1997!.
@22# D. Bailin and A. Love, Phys. Rep.107, 325 ~1984!.
2-9


