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Quark number susceptibilities of hot QCD up to g°Ing
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The pressure of hot QCD has recently been determined to the last perturbatively computatué lorddry
Kajantie et al. using three-dimensional effective theories. A similar method is applied here to the pressure in
the presence of small but non-vanishing quark chemical potentials, and the result is used to derive the quark
number susceptibilities in the limit=0. The diagonal quark number susceptibility of QCD wnthflavors of
massless quarks is evaluated to org®m g and compared with recent lattice simulations. It is observed that
the results qualitatively resemble the lattice ones, and that when combined with the fully perturbative but yet
undeterminedy® term they may well explain the behavior of the lattice data for a wide range of temperatures.
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I. INTRODUCTION In the present paper the pressure of quark-gluon plasma
with massless quarks is computed to org8n g in the limit
The grand potential is the most fundamental function deof small but non-vanishing chemical potentialss@/T<1.
scribing the equilibrium properties of a thermodynamic sys-The calculation is a generalization of the recgnt 0 paper
tem. By itself it amounts to minus the pressure[1]and applies the same method, matching of effective three-

P(T,p1,p2, - - .) times the volume and from its derivatives gimensional theories to four-dimensional QEBY], in sepa-
one immediately obtains such quantities as entropy, specifiyiing the contributions of different momentum scales to

hﬁats, gumbe_r den|S|tt|e? ?tndt_SUSﬁeptlé)llltleSd. Int qdu?ntg oco- The result is used in deriving the quark number sus-
chromodynamics a lot of attention has been devoted to n%eptibilities atu=0 to orderg®ing, and the diagonal sus-

termining the pressure in the quark-gluon plasma phase a G . )
e.g. lattice simulations have been successfully applied to th(e\’zepthIIIty is subsequently analyzed and compared with re

problem. They are, however, only available for temperature%hu'ts of lattice simulations. One observes that the results of
no more. than a fe\’/v times ai)ove the critical temperaiyre e present computation follow the same trend as the lattice

of the deconfinement phase transition and have only recent es, but thf"‘t the effech of the. yet undetermined contribu-
been extended to finite baryon densities. lons may still affect their behavior considerably.

So far the most powerful tool available for analytic cal- The 'non-trivial part of'deriving the sgsceptibilities is the
culations in QCD has been perturbation theory, the use oevaluatloq of the fermionic three-loop diagrams of ful! QCD
which is justified by the small value of the coupling constantthat contribute to the pressure. To do that one applies here
g at high energy densities due to asymptotic freedomuAt the results of yet unpublished wof#5], in which the nec-
=0 the perturbative series of the pressure has recently be@gsary diagrams are computed for arbitrérgnd . In this
extended to ordeg®ln g [1], which marks the final step in a paper the results are, however, only quoted as expanded to
series of impressive computations starting from the determisecond order with respect @/ T, which is sufficient for the
nation of the ordeg? contribution[2] and leading through present purposes. Due to the use of the effective theory ap-
the ordersg® [3], g%Ing [4], g* [5] andg® [6,7]. The next proach one may here perform the calculations without any
O(g®) term in the series is already out of reach for analyticresummations applying dimensional regularization inrg
computations due to infrared problerf&. scheme is to regulate both ultraviolet and infrared diver-

At non-zero quark chemical potentials the pressure is agences. Al fields are considered massless, while the chemi-
present known only to ordeg‘ing [4] at finite T and to  cq| potentials of the quark flavors are regarded as being in-
order g* at T=0 [9] reflecting in part the computational dependent and non-zero and the temperature highefthan
complications induced by a finite value @f. From these The general setup of the paper is presented in Sec. I,
results one may derive the quark number susceptibiliies \yhile the results for the pressure are assembled in Sec. III.
defined as second derivatives of the pressure with respect taction 1V is then devoted to explaining the computation of
the chemical potentials. They are both important and verghe matching coefficients needed in deriving the pressure,
interesting quantities, since they describe the effects of finitgnq the diagonal quark number susceptibilityzat O is dis-
density being at the same time directly measurable on a lakyssed in Sec. V. Conclusions are finally drawn in Sec. VI

tice in the limit »—0 (see e.g[10-12). The perturbative and the values of the matching coefficients listed in the Ap-
results fory obtained from[4] in this limit are, however, pendix.

unable to produce even the qualitative behavior of the lattice
data. Recent HTL computationsee e.g.[13]) have im-
proved the situation somewhat. Il SETUP AND NOTATION
In Euclidean metric quantum chromodynamics is defined
*Email address: aleksi.vuorinen@helsinki.fi by the Lagrangian density
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1 —
‘CQCD:_ Fa Fa +$Dlﬂ,

7 FuFi (2.2)

where
Fa,=0,A3—0,A%+gfaP AP AL, 2.2
D,=d,~igA,=d,—igA3T?, (2.3

and where the massless quark fields have been combined i

a multi-component spinog,. The N.X N, matricesT? are

here the generators of the fundamental representation

SU(N.), and the relevant group theory factors read

Cadoq=fAPFPI=N; 5,4, (2.4)
e NZ-1
C|:5|]E(T T )ijZZ—NC 5” y (25)
n
T,:&abETrTaTb=Ef - (2.6)
and
N2—4
D 8,q=d2Pod?Pd=——— 5. 2.7)

c

The dimensions of the representations dge= 6,,=NZ—1
for the adjoint one andlr=4;;=d,Tr/Cr=N.n; for the
fermionic one.

PHYSICAL REVIEW D 67, 074032 (2003

1 ig®
Le= TrFﬁ+Tr[Di,Ao]2+mETrA3+% 2y TOAS
T
+ 6L, (.10

obtained from QCD by dimensional reductiph7]. In Eq.
(2.10 mg and the coupling constag appearing irF;; are
parameters to be determined in full QCD, and terms that
8ntribute to the pressure starting at orgéror higher have

rif)een assembled 6L .

The functionspy(T,«) and pg(T) are similarly defined

B
Pm(T, ) =poco(T, 1) —Pe(T, 1)
T a
v InJDAi exp{ — Su}

=pocp( T, u) = Pe(T, ) —pa(T),
(2.11)

1
L:M:_

> TrF;+6Ly

(2.12

with yet another coupling constagt, appearing in the defi-
nition of F;; . At leading order the different parts contribute
to the pressure ape~g° py~9® and ps~gfing. As is
indicated above by writingog(T), it will be seen that the
dependence gbg on u is of higher order than what is con-

The partition function is defined as a path integral over allsigered here.

fields of the functional

exp{ - ( Sqcp— Ef: miNg

B
]:ex;ﬂ’ — fo dr
dedx(ﬁQ(:D_ i//TIM//)J,

(2.9

where 8=1/T and u is a diagonaln; X ng-matrix in flavor

The contributions of the different momentum scales to the
u=0 pressure have been analyzed in detajllih Since the
effects of finite chemical potentials with few exceptions
manifest themselves merely as changes in the matching co-
efficients defined there, the treatment of the pressure in the
present paper will be restricted to quoting the results for the
pn's from [1] and discussing the effects of finige on the
coefficients.

The momentum integration measure and the shorthands
for sum-integrals used from here onwards are

space representing the different chemical potentials of the

quark flavors. In Eq(2.8) the space dimensionality =3

—2e€ signifying the use of dimensional regularization. The
partition function gives the pressure through the relagion

=T/VInZ, where the infinite-volume limit is assumed.

At high temperatures and small chemical potentials
<T the pressure of QCD can be separated into three part
Pocp= Pet Pm+ Pg corresponding respectively to the differ-

ent momentum scales72T, gT and g°T contributing to it
[14,7]. By definition

T
pE(TuU')EpQCD(TuU')_v InfDA? DAG exp{ — Sg},
(2.9

whereS; is the action of a three-dimensional effective theory

with the Lagrangian density16]

_ d’p _ 25(eyX2 )E dp
fp_j (277)0 M f (2m9 "’
(2.13

prpy =T > f (2.14
Po{pot Jp

whereA is theMS scale any=2n=T stands for bosonic
and {po}=(2n+1)aT—iu for fermionic Matsubara fre-
quencies. In the following sections the chemical potentials
usually appear in the dimensionless combination

— u

2«T

(2.19
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Ill. THE PRESSURE AT 0 <p<T g5=0d 1+ O(g&/mp)], (3.9
Collecting results fronj1] and[16] one may, in analogy
yvith [1], write the giﬁergnt parameters required in comput- pE(T_"“):Ts agrt g2 agyt O(€))
ing pocp to orderg®Iing in the form TA 2
Pa(T) gw A g*
R +— +0O , 3.
T dACA( o N [Bac+ O], (3.1 (4W)2(aEs (€)) 3.5
pm(T, ) 1 sl 1 m2=T2| 02( ae,t +O(&
TA 2€ ~ (4 damg §+0(€) E 9 (gt apse+ O(€))
2 duCagl 18 A +g—42(aEG+(’)(e)) , (3.6
(477) ATA 4e 4 T 2mg (4)
4
89 1 2_ 1| g2y 9
- 2 .4 _2Y = 2 =T| g+ ag7+0(€)) |, 3.
+0(e) |+ )3dACAgEmE{ 52" 6" 9t {9 (477)2( ezt O(e)) 3.7

11 where the effects of finitg. can be explicitly seen only in
+ ZIn2+0( 6)} the appearance of an additional term proportionak g in
6 Eq.(3.2). Hereg? is the renormalized coupling of full QCD,
/T and the values of the matching coefficieatsan be imme-
diately obtained from the results [df,2,13 and[16] with the
(477) (4 daCageln [SaMl+O( €] exception ofags and ags. While the latter is found almost
trivially through a one-loop computation, determining the

first one requires the evaluation of all three-loop diagrams of
——— daADTEGEIN5—[8ay,+ O(e)]

(4 ' full QCD that contribute to the pressure. This procedure is
)4 Mg . .
explained in Sec. IV.
3.2 Adding together Eqgs(3.1), (3.2) and (3.5 one has ob-
) tained a compact expression for the perturbative expansion
My =Cadi, 3.3 of the pressure up t@(g®In g)

Poco( T x)  Pe(T, )+ pw(T, )+ pa(T)
T4A*2€ - T4A725

Iy
s — 4> +In——
E“(“f 4 2gTaf;

1
+Z g5

_ 0 2 93 dA 32 94
=g{ag}+9g {aE2}+(4_7T) 3 YE4 "‘(47)2 agz—daCh

—5 dA va Z C _2 —In2 i {d C )l [ 1/2
a a n A A a Apy n e
(l )3 E4 2 E6 “A 24 6 6 ( | ) E6 E4%E7 g
8dACf\(aM1 |n[gal/2] ZCYG |n[gC1/2]) 8 dAD | |2:aM2 | [ga1/2 } (38)

with the values of the coefficients listed in the Appendix and the pole afz3 exactly cancelling the &/term appearing in
the orderg® contribution. One should notice here that the numerical factors appearing inside the logarithms ofgfie tast
term can be unambiguously defined only after the full ogfecontribution has been determined.

IV. THE COMPUTATION OF a3

In order to find the matching coefficientz3 one needs to compute the diagrammatic expansion of the QCD pressure to
three-loop order at finitd and i, but without any resummations. Since the corresponding expansion has already been derived
for w=0 [5], one may restrict the treatment here to fhapecific part, i.e. to the diagrams containing fermionic lines. These
diagrams are shown in Fig. 1 and contribute to the expansion as

0 1 1 1 1 1 1 1 1
pferm:pferm+§ |a+§ |b+Z |C+§ Id+Z |e+§ If+Z Ig+Z I, 4.1
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FIG. 1. The two- and three-loop fermionic diagrams contributing to the pressure. The solid, wiggly and dashed lines stand respectively
for the quark, gluon and ghost fields.

wherep?e,m represents the pressure of non-interacting qués&e e.g[18]).
Applying the usual Euclidean space finite temperature Feynman rules to the individual diagrams, performing several shifts

of integration momenta and taking advantage of the fact that the purely bosonic versiouaofshes at)(e°) [5], the
diagrams may be rewritten in terms of the sum-integrals

_ (po)™
Inm=$ pw ' (4.2
o (Po)™
Iﬂ“=$ ) 2y “.3
~_$ 1 4.4
T PR o |
~ Po
'= — 4.
T $ {PQ} P2Q%(P—Q)* (4.9
M —$ ! (4.6
A PR p2Q2(R?)™(P—Q)2)(P—R)HQ-R)? |
Noo=3 : @7
A PRI (RYM(P- Q) (P-R)ZQ-R)? | |
defined here in analogy witf¥]. For example, for the diagraimone obtains in the Feynman gauge
1 a 1 vb 1 CH |
|b:_$ (PQRTT P (g?’MTij)a (9y Tjk)ﬁ (97T |i9fanc
><§1,L,)(2|°V—QV—Ry)v“Qpr(ZR,rP,L—Q,L)+9V,,,(2Q,,—Rp—F’p)
(P—Q)*(Q-R)*(R-P)?
3 P.QgR,(2P,—Q,—R,)
=—d,C,T 4$ LA v THT V& kB ay? Y
5 datalrg {PQR P20%R2(P—Q)2(Q— R)ZAR—P)? LY YY" ¥ v vl
P-(P-Q)Q-R
=48(1— €)dACAT 4$
AT UCATET 4 (PR B2 g2R2 - Q) 2(Q-RI(R—P)?
4 0_ 70\7 1~
=12(1—-€)daCaTrg (Il_Il)T+§ Mol (4.8
and the other ones produce in the same gauge
la=—4(1—€)daTeg?ZAZ9-279), 4.9
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lc=4(1— €)da(2Ce— CA)TEg T 4(Z9— 2T T+ (2+ €) Ny o— 2e Mo o+ 2N; 4], (4.10
lg=—8(1—€)’daCeTeg [(Z3-I0) T3~ 2177+ Moot My 4], (4.1
lo=—8daT2g[4(1+€)(T)?T2— 16117 — (1— €)(Noo—4ZIT)—2N; 1 — 2N, 5], (4.12)
l1=—daCATrg*[8ZZ279— 277+ Moo= 2M ], (4.13
lg=4dACaTrg% 4(6—5€) 71375 (7 ee)Igf‘T—(g —Ze)ﬁxto,o—(s—zle)ﬁxl_z,z , (4.14
In=—8(3—2€)(1— €)daCaTeg*[ 2797975 7977. (4.15

Substituting Eqs(4.8—(4.15 into Eq.(4.1) and allowing explicitly flavor-dependent chemical potentials, one has obtained a
representation fopy,, in terms of the sum-integrals defined above

1 o - -
Dierm= n Z {Prm— 21— €)daTeZ50?Z0(Z 9~ 279) + dag*(CATE(1— €)[8(1+ €)I31979— 4eZ7T+ 4T T+ 2e Mg
—(2+ €)Nog—2N1_1—4M 551 —2CeTe(1— €)[2(1— e)(Z9-TNZTI-4TTT+ 41+ )T TT+2 Mg
v 1 442 =0 =0 0
—(2+e)Ngot2(1—e) My _1—2N; 1]} — 2 ng daQ TE8(1+ )T [ il T gl I,
f

+4(1—€) (I pe] Tlpgl+ I gl TTae]) = 16T el T' [ gl + Zil gl 7' ]) — 2(1— €) Nod et g
— 4Ny [ s, gl = AN, o gl (4.19

The renormalization coefficient of the gauge couplig, is given by

2

11C,—4T g 1
¢ 3 (4m? e’

(4.17

and in the latter sum of Eq4.16 the AV, _,’s depend on bothi and u4 through the respective fermionic momenta. The
sum-integrals appearing in the result are complitedi15] for arbitrary T and «, and thus the coefficientg, is available by
simply combining Eq(4.16) with the bosonic part of the strict perturbation expansion of the presseeee.g. Eq31) of [7]).

The outcome of the computation expanded to second orderigdisplayed in Eq(A6) of the Appendix.

V. QUARK NUMBER SUSCEPTIBILITIES AT p=0
From the expressiofB.8) one may at once extract the quark number susceptibilities defined by
__op
i

Xij =x&;+x(1-5), (5.1

where the symmetry between the massless quark flavars-& has been exploited in the latter equality in dividing the result

explicitly into a diagonal and an off-diagonal part. The off-diagonal susceptikilig/already known to ordeg®in g [13], but
the result obtained here for the diagonal gnés new. Specializing to the physical caNge=3 one readily obtains

'Recently there has appeared a new pfp@}, in which one- and two-loop sum-integrals analogous to those considef#H]ihave been
independently calculated.
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FIG. 2. x/ xq plotted as a function of /T, for n;=0 (left) andn;= 2 (right) with various values o€. The parameteA is defined as the
ratio of the coefficients of thg®ln g and g® terms in the expansio(6.2). The lattice data is fronil0,11], and the valuegc/Am|nf:0
=1.15 andT./Awg|n,->=0.49[20] are used.

2 2 3/2 2 2 2
X 3 9°(p) [, Nt [9%(p) 9°(p) g°(p) 1 e’p Ny
E =1-2 a2 +8 1+€ A2 +12 a2 In a2 36 12(33— 2nf)ln4 T —4321 1+E

=0 T T T
+133+ 26n,+ 16(17+ 2n;)In 2 — 432 43 Y TN 4(6+n;)(33—2n;)In —= el
f f 7T [ a2 121+ n(/6 f U anT

5 28 g2 \*? e’p 59
— 669+ 300+ 4n?— 367+ 4(99- 24n;—4nDIn2+ T (6+n)(3) (| —5 | +2{23B-2n)in =+
A2 47T 9
—-8n;In2 ! 6 3 92 | —92 33— 2n 6(33—2n;)l e’p —-432In 1 il 88+ 26n
n¢In + (6+n¢)Z(3) a2 n47_r2 108 ( nf)n4 e +€ + 88+ 26n¢
+16(17+2n;) In2—432 43"§ D 2889 gz | e’p +C 92 3+(’) 7 5.2
6( ng) In Y432y T33an, (| 12 NT-T (ng) a2 (9", (5.2

where yo,=T? is the free theory result. The two-loop runningf

pgp) 1
A gz2 12

1
2( A= 2 - —
g (A)=g°(p)| 1+ 6 (11CA—4Tg)In R A

d C2 2 2
17C2— 10C,Tr — 6——0 +2 (11cA 4T,:)2In—)l %(g—)

(5.3

has been used to determine the form of the second but last term, which cancels the scale dependence of the lower-order
contributions. The symbai is used in Eq(5.2) in place of the scale of dimensional regularization to emphasize the fact that
its value is arbitrary, though one expects it to be of ordeil2

The last term of Eq(5.2), proportional toC(n;), represents the yet undeterminéqg®) contribution to the diagonal
susceptibility and can only be obtained through a massive computation involving the evaluation of all four-loop diagrams of
full QCD contributing to the pressure. It is, however, worth noting that unlike in the case of the prgsbue lattice
simulations will be required in this process due to the fact that at aji¢he contribution ofpg to Poco IS ,u independent.
It is therefore obvious tha(n;) has no direct relation to the coefficiefidefined in[1] to represent thé(g®) part of pocp-

In Figs. 2 and 3 the resulb.2) is plotted as a function of together with lattice data obtained frofh0,11]. Figure 2
contains plots of then;=0 andn;=2 cases for differen€(n;) showing that for reasonable values ©fthe perturbative
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FIG. 3. X/Xo|nf:2 at different perturbative orders f@(2)= —45 or A~ —0.18(left) and the absolute values of the individual terms of
the serieqright). The lattice results are frofil].

series can be made to approach the lattice results even spondingu=0 computation seems to be out of reach for
temperatures surprisingly closeTg. This should, however, current computational techniques, the result obtained here
by no means be considered an argument suggesting that tiadl most likely not be subject to improvement in near future.
region of applicability of the present results can be extendedNevertheless, a need for further work aiming at the determi-
down toT,. The success of these perturbative predictions abation of theO(g®) terms in the expansions of both the
T<3T, is in large part merely a consequence of having aPressure and the susceptibilities is obviously present.
free parameter available for plotting, and the behavior of the The result obtained here for the diagonal susceptibility
result at these temperatures may be completely distorted t{gsemblgs the Ia;tlce data available but,. as demonst'rated in
the eventual computation @(n;). For reference, the sus- U11€ Previous sections, may also be considerably modified by
ceptibility for n;=2 andC(2)= — 45 is nevertheless plotted the yet undetermined contributions forevealing its lack of

in Fig. 3 to different perturbative orders alongside with theperiCtiV.e POWer. This could actually have been_ antic_ipated
' due to similar problems encountered in connection with the

. . m;')erturbative expansion of the pressure. The problem can be
peratures h|ghe_r than a few timgg the convergence prop- viewed as a natural consequence of the relatively large value
erties of the series appear to be rgasonably good. In the plogg ihe QCD coupling constant at the energy scale considered
the value of the scale parameieris set to 6.74Z for Ny here and of the slow convergence of the perturbative expan-
=0 and to 8.11% for ny=2, for which the one-loop correc- sjon of the pressure in the 3D sector.
tions togg vanish[21]. While the high temperature, small chemical potential re-

A few words about the curious concept of susceptibility atgion of the QCD phase diagram is without doubt of consid-
zero quark flavors are probably in order. The quantity hagrable special interest, it is also worthwhile to study how the
been computed above as the formal-0 limit of the gen-  results obtained there can be generalized to other parts of the
eral result(5.2) and has been plotted in Fig. 2. The interest in(T,«) plane. An especially interesting task waiting to be
this unphysical limit is due to the existence of recent latticetackled is the building of a bridge between the orgémper-
results from quenched QCEL0] that provide an interesting turbative results for the pressure B#0, u=0 [5] and T
and powerful test for the validity of the perturbative expan-=0, ##0 [9]. In the T<y region the true ground state of
sion of the susceptibility. In particular, being able to comparethe theory may naturally be modified by the appearance of
the perturbation theory results and the lattice data for differnon-perturbativelq condensatef22].
ent numbers of fermion flavors makes it possible to qualita-
tively study then; dependence of the yet unknown coeffi-
cientC(ny). The author wishes to thank Keijo Kajantie for invaluable
advice concerning the writing of the paper. Useful comments
from Antti Gynther, Mikko Laine and York Schder are also
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QCD at vanishing chemical potentials has been computed fyo- 77744.
orderg®Ing in perturbation theory. This is a three-order im-
provement to the previous resii#t]. Since the next term in
the series requires the determination of the perturbative part The values of the matching coefficientsdefined in Sec.
of the O(g®) pressure at finitd and ., and even the corre- Il read
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e~ g5~ 6144 " (A1)
43 491 ”
T35 5144 " (A2)
2 (1 _\2
ame= "3 (n_f Z Mmoo (A3)
1 > {datde| = +30u? A4
Qg1 Enf - At + w (A4)
dy 1 . .
=~ Tz o Z Cat o (5+72u%)f, (A5)
dy 1 12 194 A 116 38 '(—3) 220¢'(—1) 1
a’E3—n I’]_f Z [CA{ . +?Inﬁ 5 +4'y—§ ﬂ Tﬂ +CAT|: 12(1+12,LL )Z
+ 169+600_2 [ A +1121 157| 2+8y—2(91—156y—176In2 L &(=3)
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ae= 3 o 2 ACA+Te1+124%]}, (A7)
1 iz 2C |ni+§,(_l) +Te| 2(1+ 1202 In—= A +1-21In2-121—4In2—2) >
=30 7 |2 " T [T #O g [
{'(-1) H
+22 2 |, A8
(-1 (A8)
_1 C3| 221 e"A 5+ CaTH 2(7 13_2|67/T 9—161In2+4(33+14 {(3)) u?
01E6—§n_f A n4ﬂ_-|—+ +CaTg| 2(7+ 2#)n47ﬂ-+ —16In2+4(33+ £(3))
2 2 ) e’A ™
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