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Instability of the hedgehog shape for the octet baryon in the chiral quark soliton model
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In this paper the stability of the hedgehog shape of the chiral soliton is studied for the octet baryon with the
SU~3! chiral quark soliton model. The strangeness degrees of freedom are treated by a simplified bound-state
approach, which omits the locality of the kaon wave function. The mean field approximation for the flavor
rotation is applied to the model. The classical soliton changes shape according to the strangeness. The baryon
appears as a rotational band of the combined system of the deformed soliton and the kaon.
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I. INTRODUCTION

In the limit of a large number of colorsNc of QCD @1# the
baryon appears as a soliton@2,3#. By now, various effective
models of QCD in the low energy region have employed
soliton picture of the baryon: the Skyrme model@4–9#, the
Nambu–Jona-Lasinio~NJL! model @10–12#, and the chiral
quark soliton model~CQSM! @13–16#. The static properties
~mass, magnetic moment! @17–19# and the quark distribution
functions@20–22# of the baryon have been studied by mea
of these models. Here, the baryon appears as a rotat
band of the soliton@5#. The soliton takes the hedgehog sha
and adiabatically rotates as a rigid body in flavor and r
space. Although there is also an approach using the harm
approximation of the meson fluctuations off the shape@23#,
in any case the stability of the shape is assumed.

From the point of view of the constituent quark, the a
sumption is justified in the case of the nucleon (N), since the
hedgehog shape of the chiral meson fields is caused by tS
state of theu,d quarks, which have equal mass@24#. How-
ever, it may be not so for the strange baryons (L, S, J, etc.!
consisting of quarks with different masses. The inertial fo
in the body fixed frame of the soliton depends on the ma
Therefore, the hedgehog shape would be unstable.

The baryon as a nonrigid rotator has been studied with
Skyrmion @25#. There, the effects of the Coriolis force we
neglected in the shape of the static soliton and included
turbatively in the state vector for the collective rotation. F
the excited states of the baryon, there are several studie
this problem in the nonrelativistic quark model@26#.

In this article we shall argue this problem for the oc
baryon by means of the CQSM. This model provides
simplest foothold to study the above problem from the po
of view of the relativistic quark model. The shape of t
soliton can be determined self-consistently as the mean
potential for the quark. Thus the model can eliminate
influence of the artificial assumption that the mean field
tential takes a spherical shape.

In Sec. II, after a brief review of the SU~3! chiral quark
soliton model, we show the cranking method for the d
formed soliton and the mean field approximation for the
tated system. Section III deals with the perturbative exp
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sion of the effective action. At the the lowest ord
expansion, we show the profile functions and the energy
the deformed classical soliton. For the higher order exp
sion, we construct the Hamiltonian due to the collective m
tion of the soliton and the canonical quntization of the c
lective variables. In Sec. IV, first we deal with the kaon in t
background soliton and the stability of the combined syst
of the soliton and the kaon. Next we give an outline of t
diagonalization of the collective Hamiltonian and show t
results for the octet baryon. Finally, in Sec. V we summar
the results and discuss the relation to other papers.

II. THE SU „3… CHIRAL QUARK SOLITON MODEL
AND ITS MEAN FIELD APPROXIMATION

The chiral quark model in the case of flavor SU~3! is
given by the following path integral@13,14,27#:

Z5E Dc Dc̄ DU expF i E d4xc̄~ i ]”2MUg52m̂!c G
~1!

with

Ug5~x!5
11g5

2
U~x!1

12g5

2
U†~x!, ~2!

wherec is the quark field andU is the chiral meson fieldP
SU~3!. Furthermore,M is the dynamical quark mass andm̂ is
the current quark mass matrix given by

m̂5m0l01m3l31m8l8

5S mu 0 0

0 md 0

0 0 ms
D , ~3!

where lm (m51,2, . . . ,8) are theGell-Mann matrices,l0

5(A2/3)1, andm3'0 becausemu'md!ms . In this article,
we set M5400 MeV, mu5md56 MeV, and ms
5200 MeV.

Using the path integral formula for the quark field, w
find
©2003 The American Physical Society30-1
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Z5E DUeiSF[U] , ~4!

iSF@U#5Nclog det~ i ] t2H !, ~5!

whereNc is the number of colors and

H5
1

i
a•“1b~MUg51m̂! ~6!

is the quark Hamiltonian.
For the chiral fieldU(x), we postulate the so calle

cranking form@5,28#:

U~x!5A~ t !B†~ t !U0~r !B~ t !A †~ t !, ~7!

whereU0(r ) is the static chiral meson field,A(t) describes
the adiabatic rotation of the system in SU~3! flavor space,
andB(t) describes the spatial rotation. We writeU0(r ) as

U0~r !5S eiF (r )L̂(r )•t 0

0† 1
D , ~8!

whereF is the radial component of the profile function,L̂ is
a unit vector in the isospin space, andt represents Paul
matrices. For the flavor rotation we write@29#

A~ t !5S A~ t ! 0

0† 1DAs~ t !, ~9!

whereA is the flavor SU~2! rotation operator andAs rotates
U0 into the strange directions. In particular, we parametr
As(t) as

As~ t !5expiD~ t !, ~10!

where

D~ t !5S 0 A2D~ t !

A2D†~ t ! 0
D ~11!

andD5(D1,D2)T is the isodoublet spinor. Although Eq.~9!
was motivated by the bound-state approach@30#, we will not
treat the locality of the kaon wave function in this article.

From Eqs.~5! and ~7!, we obtain

iSF5Nclog det~ i ] t1 iA †Ȧ1 iBḂ†2H8!, ~12!

where

H85A †BHB†A5
1

i
a•“1b~MU0

g51m̂8! ~13!

is the rotated Hamiltonian andm̂8 is given by

m̂85A †m̂A5m0l01m8D8m
(8)~As!lm . ~14!

Here, the term proportional tom8 breaks the SU~3! symme-
try and D8m

(8)(As) is the WignerD function of As in the ad-
joint representation. We show some important componen
07403
e

:

D83
(8)52

A3

2

sin2Ak0

k0
k3 , ~15!

D88
(8)512

3

2
sin2Ak0, ~16!

where

k052D†D, ~17!

k352D†t3D. ~18!

We now wish to discuss this model in the mean fie
approximation. Suppose that the collective motionA andB
is quantized anduB& as an eigenstate of the collective Ham
tonian. The operatorsD andD† convert a non-strange quar
into a strange one. Therefore, ifuB& points to a specific di-
rection in the isospin space,

kB05^Buk0uB&, ~19!

kB35^Buk3uB& ~20!

have nonzero values. For a fixedkB0, we have the following
constraint forkB3:

2kB0<kB3<1kB0 . ~21!

Intuitively, kB0 andkB3 represent the quantity of the strang
ness and the asymmetry of the strangeness, respecti
coupled to the isodoublet inuB&. The expectation value

^Bum̂8uB& may be approximated by

m̂B5m0l01mB3l31mB8l8

5S mBu 0 0

0 mBd 0

0 0 mBs
D ~22!

with

mBm5m8 lim
k0,3→kB0,3

D8m
(8)~As!~m53,8!. ~23!

Equation~22! indicates that theu,d,s quarks mix with each
other by rotation in the strange direction, and their mas
are renormalized in the body fixed frame. Figure 1 shows
kB0 and kB3 dependencies of the effective quark mass
mBu,d,s .

III. PERTURBATION AND CANONICAL QUANTIZATION

We separateH8 into an unperturbed partH08 and a per-
turbing partDH8 as follows:

H85H081DH8, ~24!
0-2
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H085
1

i
a•¹1b~MUg51m̂B!, ~25!

DH85b~m̂82m̂B!. ~26!

We expandiSF in powers ofiA †Ȧ, iBḂ†, andDH8 around
the eigenstate of (i ] t2H08) @15#.

SinceH08 contains them̂B , H08 breaks not only the SU~3!
symmetry but also SU~2!. Thus it has only rotation symmetr
around the third axis in isospin space. When the isos
space is mapped into the real space, the configuration o
system has an axial symmetry with respect to the spe
axis in real space.

The grand spin operator in the quark space is given b

K (q)5J(q)1I (q)5L (q)1S(q)1I (q), ~27!

where J(q), L (q), and S(q) are the total, orbital, and spi
angular momenta, respectively, andI (q) denotes the isospin
The above argument is expressed as

@K3
(q) ,U0~r !#50, ~28!

whereK3
(q) is the third component ofK (q) and we choose the

z axis as the specific one. We call this equation ‘‘K3 symme-
try.’’

The isosinglet part of Eq.~28! means that the radial com
ponent of the profile functionF depends only onr andu of
the polar coordinates. On the other hand, the isotriplet
means that the unit vectorL̂ has axial symmetry about thez
axis. Thus, the deviation from the hedgehog shape ta
place only in ther andu directions.

FIG. 1. ThekB0 and kB3 dependencies of the effective qua
mass. ForkB0 dependence, we setkB350, at whichmBu andmBd

take the same value. ForkB3, we setkB051.
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In actual calculation, we introduce the tensor operat
ZKK3

JLSI( r̂ ) defined by the following equations, wherer 5ur u

and r̂5r /r @31#:

@K3
(q) ,ZKK3

JLSI#5K3ZKK3

JLSI , ~29!

@K (q)2,ZKK3

JLSI#5K~K11!ZKK3

JLSI , ~30!

@J(q)2,ZKK3

JLSI#5J~J11!ZKK3

JLSI , ~31!

@L (q)2,ZKK3

JLSI#5L~L11!ZKK3

JLSI , ~32!

@S(q)2,ZKK3

JLSI#5S~S11!ZKK3

JLSI , ~33!

@ I (q)2,ZKK3

JLSI#5I ~ I 11!ZKK3

JLSI . ~34!

Then the chiral fields can be expanded in series ofZKK3

JLSI :

U0~r !5(
L

(
I

(
K

(
K3

UKK3

LL0I~r !ZKK3

LL0I~ r̂ !. ~35!

Equation~28! means that Eq.~35! contain onlyK350 com-
ponents.

Similarly, the quark fields are expanded in the Kan
Ripka basesfKK3a @32#:

c~r !5 (
KK3a

CKK3afKK3a~r !, ~36!

where the subscripta indicates quantum numbers other th
K and K3. The matrix elements ofH08 with fKK3a have a

contribution only from the bases with the sameK3.

A. The self-consistent classical soliton

The lowest order perturbative expansion of the actioniSF
is given by

iSF05Nclog det~ i ] t2H08!52 iEclT, ~37!

whereT is a sufficiently large time interval andEcl is the
classical soliton energy. With the eigenvaluesen of H08 and
en

0 of

K85 lim
U0→1

H085
1

i
a•¹1b~M1m̂B!, ~38!

we obtain

Ecl5(
n

@Nchn
val1rL

vac~en!#en2(
n

rL
vac~en

0!en
0 ,

~39!

wherehn
val is the occupation number of the valence qua

level en and rL
vac(en) is the cutoff function of the vacuum

energy for levelen with cutoff parameterL ~Appendix!. In
this article, we use Schwinger’s proper time regularizat
0-3
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@11,13,33# and setL5700 MeV, and we assume that th
valence quark is in the lowest positive energy state.

To subtractEcl , we useK8 but

K5 lim
U→1

H5
1

i
a•“1b~M1m̂!. ~40!

The reason is the following. Physically,Ecl is the static soli-
ton energy in the body fixed frame and its subtraction po
is the Dirac sea in the absence of a static soliton. We emp
the body fixed frame in whichkB0 andkB3 are nonzero. In
this frame the Hamiltonian without the static soliton isK8.

The equations of motion for the profile functions@14# are
obtained by the extremum conditions for the actionSF0 with
respect to the radial componentF and the direction of the
unit vectorL̂:

S~r !sinF~r !5P~r !•L̂~r !cosF~r !, ~41!

L̂~r !5sgn@S~r !sin 2F~r !#
P~r !

uP~r !u
. ~42!

Here, S(r ) and P(r ) are the scalar-isoscalar an
pseudoscalar-isovector densities, respectively, and are
fined by

FIG. 2. The radial component of the profile functionF with
ukB3u50. The solid line represents the function atkB052.6 and the
dashed line atkB050.

FIG. 3. The unit vectorL̂ in isospin space withukB3u5kB0 and
r5Ax21y2. The solid arrow represents the vector atkB052.6 and
the dashed arrow atkB050.
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S~r !5(
n

rL
R~en!c̄n~r !cn~r !, ~43!

P~r !5(
n

rL
R~en!c̄n~r !ig5tcn~r !, ~44!

wherecn(r )5^r un&, un& is the eigenvector belonging to th
eigenvalueen of H08 , and rL

R(en) is the cutoff function
shown in the Appendix. Using the boundary conditions

lim
r→0

F~r !52p, ~45!

lim
r→`

F~r !50, ~46!

Eqs. ~41!,~42! and the Dirac equation with the Hamiltonia
Eq. ~25! are self-consistently solved@14#.

Both the profile functions and the classical soliton ene
are some even functions ofkB3 because of the isospin sym
metry of the model. The value ofkB0 mainly affects ther
dependence of the profile functions and the value ofkB3
affects theu dependence of the profile functions. It wa
found from the calculation thatF hardly depends onukB3u.
Thus, we can treatF as a function ofr only. The profileF(r )
is shown for the cases ofkB050,2.6 withukB3u50 in Fig. 2.
It is shown below that the rangekB050 –2.6 corresponds to
the octet baryon. On the other hand, the unit vectorL̂ has
axial symmetry about thez axis and plane symmetry with
respect to thexy plane. The deviation from the hedgeho
shape is an increasing function ofukB3u and takes a maxi-
mum atu5p/4,3p/4 and a minimum atu50,p/2,p in real
space. We showL̂ at kB05kB350,2.6 in Fig. 3.

Figure 4 displays thekB3 dependence ofEcl . Each curve
corresponds to a value ofkB0, and the range ofkB3 is re-
stricted by Eq.~21!. The classical soliton energyEcl is an
increasing function ofkB0 aroundkB050 and a decreasing
function of ukB3u at a fixedkB0. Because the deviation from
the hedgehog shape increases withukB3u, the soliton takes a
stable deformed shape atkB0Þ0.

FIG. 4. Classical soliton energy. Each curve corresponds
value of kB050 –2.8. The range ofkB3 is restricted to2kB0

<kB3<1kB0.
0-4
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B. Effective Lagrangian and Hamiltonian

There are two expansion parameters for the effective
tion SF : the number of colorsNc and the SU~3! symmetry
breakingm8. We expandSF up to second order in powers o
1/Nc and first order in powers ofm8.

First, we define the local variablesa, a, and b of the
rotationA, A, andB, respectively, and the fluctuations by

ȧmTm52 iA †Ȧ

5As
†S 2 iA†Ȧ 0

0† 0
D As2 iAs

†Ȧs, ~47!

ȧ j
t j

2
52 iA†Ȧ, ~48!

ḃ jJj
(q)52 iBḂ†, ~49!

smTm5m̂82m̂B , ~50!

whereTm5lm/2, m51,2, . . . ,8, andj 51,2,3. Since in the
largeNc limit @1,2#

Ecl;Nc , ~51!

iA†Ȧ;1/Nc , ~52!

iBḂ†;1/Nc , ~53!

D,D†;1/ANc, ~54!

we expandSF up to second order inȧ andḃ, and first order
in s. Thus, we get the Lagrangian@12,15#

L5
SF

T
52Ecl1

1

2
ȧmȧnUmn1

1

2
ḃi ḃ jVi j 2ȧmḃ jWm j

1ȧmsnDmn2ḃisnD̃ im2ȧmBm1ḃi B̃i2smGm ,

~55!
ca

s
ca

07403
c-

where the coefficients are defined as

Umn5 (
mÞn

rL
R~em ,en!^muTmun&^nuTnum&,

Vi j 5 (
mÞn

rL
R~em ,en!^muJi

(q)un&^nuJj
(q)um&,

Wm j52 (
mÞn

rL
R~em ,en!^muTmun&^nuJj

(q)um&,

Bm5(
m

rL
I ~em!^muTmum&,

B̃i52(
m

rL
I ~em!^muJi

(q)um&,

Dmn5 (
mÞn

rL
I ~em ,en!^muTmun&^nubTnum&,

D̃ in52 (
mÞn

rL
I ~em ,en!^muJi

(q)un&^nubTnum&,

Gm5(
m

rL
R~em!^mubTmum&. ~56!

Here, rL
R,I(em) and rL

R,I(em ,en) are the cutoff functions
shown in the Appendix. The indicesR andI denote the origin
of the vacuum part of the coefficients from the real a
imaginary parts of the actionSF in the imaginary time pre-
scription. We subtract the vacuum contribution of the eige
states ofK8 @Eq. ~38!# from these quantities in a similar wa
to Ecl .

By K3 symmetry, Eq.~55! becomes
L52Ecl1
1

2
~ ȧ1ȧ11ȧ2ȧ2!U111

1

2
~ ḃ1ḃ11ḃ2ḃ2!V112~ ȧ1ḃ11ȧ2ḃ2!W111~ ȧ1s11ȧ2s2!D112~ ḃ1s11ḃ2s2!D̃11

1
1

2
~ ȧ32ḃ3!2U332~ ȧ32ḃ3!~B32s3D332s8D38!2ȧ8B82s3G32s8G81

1

2
~ ȧ4ȧ41ȧ5ȧ5!U44

1
1

2
~ ȧ6ȧ61ȧ7ȧ7!U661~ ȧ4s41ȧ5s5!D441~ ȧ6s61ȧ7s7!D66. ~57!
ned
Sinceȧ ands in Eq. ~55! are functions ofD, D† and iA†Ȧ,
we should further expand these quantities in the actual
culation.

Next, we would like to express the Hamiltonian in term
of a,b,D and their canonically conjugate momenta. The
l-

-

nonical momenta conjugate to these coordinates are defi
by

I i5
]L
]ȧi

, ~58!
0-5
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Ji5
]L
]ḃi

, ~59!

Pg5
]L
]Ḋg

† ~g51,2!, ~60!

and satisfy the following commutation relations:

@ I i ,aj #5@Ji ,bj #5
1

i
d i

j , ~61!

@Pg,Db
† #5@Pb

† ,Dg#5
1

i
db

g . ~62!

The collective Hamiltonian derived from Eq.~57!,

H5ȧ•I1ḃ•J1P†Ḋ1Ḋ†P2L, ~63!

is calculated up to order 1/Nc . Because of theK3 symmetry
of the chiral fields, there is the following constraint on t
canonical momenta:
nd
e

o

-
th
m
s

07403
I 31J31I K350. ~64!

HereI K3 is the third component of the isospin carried by t
kaon,

IK5 i S D†
t

2
P2P†

t

2
D D . ~65!

If we assume the hedgehog shape for the chiral fields,
constraint becomes

I1J1IK50. ~66!

IV. DIAGONALIZATION OF THE COLLECTIVE
HAMILTONIAN

A. The mean field approximation

Before diagonalizingH @Eq. ~63!#, we will describeH0,
which is theO(1) Hamiltonian ofH in the largeNc limit in
the mean field approximation:
H05Ecl1Eind1
1

4F (1)
P†P1

1

4F (2)
P†t3P13S B8

2

4F (1)
12m8~D (1)B82G8! DD†D1A3S B8

4F (1)
1m8D (1)D

3 i ~D†P2P†D !13F B8
2

4F (2)
12m8S D (2)B82

G3

A3
D GD†t3D1A3S B8

4F (2)
1m8D (2)D i ~D†t3P2P†t3D !, ~67!
or-

the
uta-
where

Eind53m8S kB0G81kB3

G3

A3
D sin2AkB0

kB0
, ~68!

1

F (6)
5

1

2 S 1

U44
6

1

U66
D , ~69!

D (6)5
1

2 S D44

U44
6

D66

U66
D . ~70!

The eigenstate ofH0 describes the kaon in the backgrou
soliton. The energyEind is induced by the deviation to th
strange and isospin direction from the SU~2! hedgehog soli-
ton. Here theG8 term inEind gives a negative contribution t
H0 andG3 a positive one.

The HamiltonianH0 is in a bilinear form of the isodou
blets D and P, and the type of separation of variables wi
respect to the individual component. For the individual co
ponents, the Hamiltonian except for the constant term
given by

Hg5h1gPg
†Pg1h2gDg

†Dg1h3g~Pg
†Dg1Dg

†Pg!

1h4gi ~Pg
†Dg2Dg

†Pg! ~g51,2!, ~71!
-
is

wherehig are constants for each component. Ifhig satisfy

h1gh2g2~h3g!2>0, ~72!

H0 can be diagonalized exactly using the following transf
mations@34#:

Dg5cg~jg1 j̄g
†!, ~73!

Pg5
1

2icgcosdg
~e2 idgjg2e1 idgj̄g

†!, ~74!

wherecg anddg are constants depending onhig . The quan-
tities jg

† (jg) and j̄g
† ( j̄g) are the creation~annihilation! op-

erators for states with the same quantum numbers as
kaon and antikaon, respectively. These satisfy the comm
tion relations

@jg ,jb
† #5@ j̄g ,j̄b

† #5dgb , ~75!

@jg ,j̄b#5@jg ,j̄b
† #50. ~76!

This then finally leads to the diagonalized form
0-6
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H05Ecl1Eind1 (
g51

2

~vgjg
†jg1v̄gj̄g

†j̄g!, ~77!

where

vg5sgn~h1g!Ah1gh2g2~h3g!22h4g , ~78!

v̄g5sgn~h1g!Ah1gh2g2~h3g!21h4g . ~79!

There are also two physical quantities diagonalized by
creation and annihilation operators: the third componen
the isospin carried by the kaon@Eq. ~65!#,

I K35
1

2
~j1

†j12 j̄1
†j̄12j2

†j21 j̄2
†j̄2!, ~80!

and the strangeness carried by the kaon,

S5 i ~D†P2P†D !5 (
g51

2

~jg
†jg2 j̄g

†j̄g!. ~81!

The Fock space is generated by successive operation o
creation operators on the vacuum stateu0&:

un1 ,n̄1 ,n2 ,n̄2&5 )
g51

2 1

Ang! n̄g!
~jg

†!ng~ j̄g
†! n̄gu0&, ~82!

whereng and n̄g are some positive integers.
In the mean field approximation,kB0 andkB3 should be

self-consistently determined by Eqs.~19! and~20!. Then the
stability of the approximation should be checked. Beca
the coefficients of the individual terms ofH0 are evaluated
using a soliton depending onkB0 andkB3, the potential term
is physically meaningful only in the vicinity of the expect
tion values. It is difficult to draw a potential diagram over
wide range ofD andD†. The reason is thatH0 describes the
combined system of the classical soliton and the kaon.

In order to investigate the stability of the mean field a
proximation we will treatkB0 andkB3 as parameters at firs
WhenkB0 andkB3 are different from the expectation value
of Eqs.~19! and ~20!, the differences

kB02^Buk0uB&, ~83!

kB32^Buk3uB& ~84!

act on the system as a kind of external field. Therefore,
investigating thekB0 and kB3 dependencies of the lowes
eigenvalueE0 of H0, we can study the stability of the syste
against external perturbation. Figure 5 shows the behavio
E0 as a function ofkB0 and kB3 in the cases ofS50,21,
22. E0 is an even function ofkB3 like Ecl .

We further investigate the characteristic behavior ofE0 in
the three cases. Figure 6 shows thekB0 dependence ofE0.
For S50, thekB0 dependence ofE0 is similar to that of the
SU~2! sector quark mass 3(mBu1mBd)/2. It is due to theG8
term inEind of Eq. ~67! thatE0 is flat compared withEcl or
3(mBu1mBd)/2. In the case ofS521, E0 shows a similar
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tendency tomBu1mBd1mBs . In the case ofS522, E0 is
similar to (mBu1mBd)/212mBs .

Figure 7 shows thekB3 dependence ofE0. It is due to the
G3 term inEind thatE0 is convex downward as a function o
kB3 for S50. ForS521,22, sinceEind is canceled by the
potential ofD andD†, E0 is convex upward due to thekB3
dependence ofmBu,d ~Fig. 1!.

Therefore, in the case ofS50 it is energetically forbidden
that the soliton deviate from the hedgehog shape, and
harmonic analysis aroundkB05kB350 is justified. On the
other hand, in cases ofS521,22 E0 is energetically un-
stable atkB350. Thus the soliton deviates from the hedg
hog shape.

FIG. 5. The lowest eigenvalues ofH0, wherekB0 andkB3 are
treated as parameters.

FIG. 6. The lowest eigenvalues ofH0 and the classical soliton
energy in the cases ofukB3u50 andukB3u5kB0. Between the two
curves withS50, the case ofukB3u50 corresponds to lower en
ergy. ForS521,22 it corresponds to higher energy.
0-7
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However, it is necessary to keep in mind that under
condition of Eq. ~72! the potential term ofH0 is convex
downward and instability forD, D† is not caused. Thus, th
instability is due to the classical soliton. If the degrees
freedom for thekB3 direction are not included in the soliton
the instability does not occur.

In Table I we showkB0 , ukB3u, andE0 ([Em f), which
are self-consistently determined in the mean field approxi
tion.

B. Baryon as the rotational band

The HamiltonianH @Eq. ~63!# is a highly complicated
function ofU,V, etc. Thus we focus on the algebraic point
view and do not show its exact form at this point. The act
calculation will be performed numerically.

For the diagonalization ofH, we introduce the eigenstate
of the body fixed operatorsĴ2,Ĵ3 , Î2, Î 3 defined by Eqs.~58!

and~59! and the space fixed spinĵ 3 and isospinî 3 operators.
Hereafter we denote the operators by a character with a c
and a character without a caret denotes its eigenvalue:

Ĵ2uJ, j 3 ,J3 ;I ,i 3 ,I 3&5J~J11!uJ, j 3 ,J3 ;I ,i 3 ,I 3&,

ĵ 3uJ, j 3 ,J3 ;I ,i 3 ,I 3&5 j 3uJ, j 3 ,J3 ;I ,i 3 ,I 3&,

Ĵ3uJ, j 3 ,J3 ;I ,i 3 ,I 3&5J3uJ, j 3 ,J3 ;I ,i 3 ,I 3&,

Î2uJ, j 3 ,J3 ;I ,i 3 ,I 3&5I ~ I 11!uJ, j 3 ,J3 ;I ,i 3 ,I 3&,

î 3uJ, j 3 ,J3 ;I ,i 3 ,I 3&5 i 3uJ, j 3 ,J3 ;I ,i 3 ,I 3&,

Î 3uJ, j 3 ,J3 ;I ,i 3 ,I 3&5I 3uJ, j 3 ,J3 ;I ,i 3 ,I 3& ~85!

with

2J< j 3 ,J3<J, ~86!

2I< i 3 ,I 3<I . ~87!

By using the constraint of Eq.~64! betweenJ3 , I 3, and
I K3, the basis for the whole space is given by

uJ, j 3 ,J3 ;I ,i 3 ,2~J31I K3!&un1 ,n̄1 ,n2 ,n̄2&, ~88!

FIG. 7. The lowest eigenvalues ofH0 and the classical soliton
energy atkB051.0.
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where I K35(n12n̄12n21n̄2)/2 from Eqs. ~80! and ~82!.
BecauseH commutes withŜ @Eq. ~81!#, the diagonalization
is well performed in the subspace with fixed eigenvalu
(J, j 3), (I ,i 3), S5n12n̄11n22n̄2. For the octet baryon,J
5u j 3u51/2.

Corresponding to the expansion ofH up to order 1/Nc ,
we truncate the Fock space of Eq.~82! on the condition that

n11n̄11n21n̄2<uSu12. ~89!

Here we introduce the symbolsuK& for the states created b
jg

† and uK̄& for j̄g
† . The particular states with the sameS

consist ofiSuK̄& ~valence kaon!, uuSuK̄1KK̄& ~valence kaon
1kaon-antikaon pair!, etc. Since we determinedkB0 andkB3

for the lowest eigenstateiSuK̄& of H0 in the mean field ap-
proximation, the stateuuSuK̄1KK̄& may be far from the mean
field. Thus, we should not treat equallyiSuK̄& and iSuK̄
1KK̄&. First, we diagonalizeH in the subspaceiSuK̄&. Next
iSuK̄1KK̄& is treated as a virtual state in the perturbation

For example, the bases for theS particle are given by

~90!

Here the top four bases span the valence kaon statesiSuK̄&,
and the others are bases ofiSuK̄1KK̄&.

Diagonalization ofH in the basis of Eq.~88! gives an
estimation of the fluctuation forD,J,I around the mean field
approximation. The results of the calculation are displayed

TABLE I. kB0 , ukB3u, and Em f for S50,21,22 in the mean
field approximation.

S kB0 ukB3u Ecl ~MeV! Em f ~MeV!

0 0 0 1326 1326
21 0.8 0.8 1463 1468
22 2.6 2.6 1505 1475
0-8
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Table II and compared with the hedgehog results atkB0
5kB350 in Fig. 8. HereEB1 is the eigenvalue of the collec
tive Hamiltonian H in only iSuK̄&. The massEB2 is the
eigenvalue in the state which incorporateuKK̄& states as a
perturbation. Except forN, the energy eigenvaluesEB2 are
smaller than the hedgehog results and close to the ex
mental values.

In the eigenstates of every baryon, there are large tra
tions among the bases with different values ofJ31I 3, that is,
remains of the Clebsch-Gordan series for the constraint
~66! which is maintained only in the hedgehog shape. In
case ofN, the energy eigenvalues are increased by the t
sition. The situation does not change on incorporating
uKK̄& states. ForL and S, an interaction induced by th
deformation of the soliton picks up the transition. Then t
energy shows a decrease. That is caused only in the s
with iSuK̄&. For J, there is a similar decrease in the spa
that takes account ofuKK̄& perturbatively. The contributions
of uKK̄& to the energy take negative values for every bary
due to the second order perturbation formula.

V. DISCUSSION

The stability of the hedgehog shape has been investig
for the octet baryon by means of the chiral quark solit
model.

In the mean field approximation, it was shown that t
stable form of the soliton changes according to the stran
ness of the baryon. In the case of the soliton without stran

TABLE II. Baryon massesEB1 ~without uKK̄&) and EB2 ~with

uKK̄&). Expt. denotes experimental value.

Particle EB1 ~MeV! EB2 ~MeV! Expt. ~MeV!

N 1382 1369 939
L 1195 1187 1116
S 1218 1200 1193
J 1437 1330 1318

FIG. 8. Comparison of the energy between the deformed sol
and the hedgehog one (kB05kB350). The superscripth of Eh

represent the results of the hedgehog soliton. Exp. denotes th
perimental values.
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ness, the hedgehog shape is stable. On the other hand, fo
soliton with strangeness, an instability occurs not only in
strange direction but also in the isotopic one. The instabi
has a global nature due to the inertial force, and one can
find it from a study of the curvature of the local potential.
is necessary to incorporate the degrees of freedom for
deviation in the ansatz of the soliton.

After the collective quantization has been performed,
states identified as the strange baryons (L,S,J) also ener-
getically favor the deformed soliton. The strange bary
masses are in good agreement with both the absolute v
and the difference among the experimental values. These
come small compared with the results of the mean field
proximation due to the interaction caused by the deforma
of the soliton. On the other hand, the approach with
hedgehog soliton reproduces the mass difference among
baryons well but the absolute value. Also, the collect
states have higher energy than the classical soliton.

Weigel et al. investigated the quantum correction due
the zero modes off the hedgehog soliton in the NJL mo
@35,36#. The correction gives a large negative contribution
the N andD masses, and the results are in good agreem
with the experimental values. In our approach, the mass oN
is somewhat too large due to the hedgehog shape of
soliton. Therefore, both approaches cooperatively would
in agreement with the experimental value forN. On the other
hand, the deformed soliton corresponding to the stra
baryon has less symmetry than the hedgehog soliton.
cause of the estimation@35,36# relied on the hedgehog shap
@35#, the relation between the two approaches is obscur
present.

The eigenvalue of the Hamiltonian up to order 1 in t
largeNc limit is an even function ofkB3. Therefore the mean
field energy atkB3 is degenerate with that at2kB3. A more
accurate calculation of the fluctuation off the mean fie
should treat the tunnel effect.

A description of the decuplet baryon incorporating t
local variation of the kaon wave function are in progress
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APPENDIX: CUTOFF FUNCTION

The cutoff function of the vacuum energy for the ener
level en is given by

rL
vac~en!5Ncsgn~en!N̄L~en! ~A1!

with the cutoff parameterL, where, using the Schwinge
proper time regularization,N̄L may be written as

N̄L~em!5
1

4Ap
E

(em /L)2

` e2r

r3/2
dr. ~A2!

The cutoff function for the first order matrix element
given by

n

ex-
0-9
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rL
R,I~em!5Nchm

val1Ncsgn~em!N L
R,I~em! ~A3!

with

N L
R~em!52

1

2
erfc~ uem /Lu!, ~A4!

N L
I ~em!52

1

2
. ~A5!

The indicesR and I denote the origin of the function from
the real and imaginary parts of the actionSF in the imaginary
time prescription. Similarly, for the second order matrix e
ments one obtain
ys

tt

s.

.
og

07403
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rL
R,I~em ,en!5Nc

hm
val2hn

val

en2em
1

Nc

2
f L

R,I~em ,en! ~A6!

where f L
R,I are given by

f L
R~em ,en!5

sgn~em!erfc~ uem /Lu!2sgn~en!erfc~ uen /Lu!
em2en

2
2L

Ap

e(em /L)2
2e(en /L)2

em
2 2en

2
, ~A7!

f L
I ~em ,en!5

sgn~em!2sgn~en!

em2en
. ~A8!
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