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Instability of the hedgehog shape for the octet baryon in the chiral quark soliton model
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In this paper the stability of the hedgehog shape of the chiral soliton is studied for the octet baryon with the
SU(3) chiral quark soliton model. The strangeness degrees of freedom are treated by a simplified bound-state
approach, which omits the locality of the kaon wave function. The mean field approximation for the flavor
rotation is applied to the model. The classical soliton changes shape according to the strangeness. The baryon
appears as a rotational band of the combined system of the deformed soliton and the kaon.
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I. INTRODUCTION sion of the effective action. At the the lowest order
expansion, we show the profile functions and the energy of
In the limit of a large number of colomd, of QCD[1] the  the deformed classical soliton. For the higher order expan-
baryon appears as a solitpp,3]. By now, various effective sion, we construct the Hamiltonian due to the collective mo-
models of QCD in the low energy region have employed thdion of the soliton and the canonical quntization of the col-
soliton picture of the baryon: the Skyrme modié9], the lective variables. In Sec. IV, first we deal with the kaon in the
Nambu—Jona-LasiniéNJL) model [10—12, and the chiral background soliton and the stability of the combined system
quark soliton mode{(CQSM) [13—16. The static properties 0f the soliton and the kaon. Next we give an outline of the
(mass, magnetic momentl7—19 and the quark distribution diagonalization of the collective Hamiltonian and show the
functions[20—27 of the baryon have been studied by meansresults for the octet baryon. Finally, in Sec. V we summarize
of these models. Here, the baryon appears as a rotationtle results and discuss the relation to other papers.
band of the solitof5]. The soliton takes the hedgehog shape

and adiabatically rotates as a rigid body in flavor and real || THE SU (3) CHIRAL QUARK SOLITON MODEL
space. Although there is also an approach using the harmonic AND ITS MEAN FIELD APPROXIMATION
approximation of the meson fluctuations off the shfp@,

in any case the stability of the shape is assumed. The chiral quark model in the case of flavor SUis

From the point of view of the constituent quark, the as-given by the following path integratl3,14,27:
sumption is justified in the case of the nucle®) ( since the
hedgehog shape of the chiral meson fields is caused b$ the _ - - 4, T h ye A
state of theu,d quarks, which have equal mag34]. How- Z_f D¢ Dy DU ex;{|f dxg(i0=MU7s=m) s
ever, it may be not so for the strange baryons £, =, etc) 1)
consisting of quarks with different masses. The inertial force
in the body fixed frame of the soliton depends on the masgVith
Therefore, the hedgehog shape would be unstable.
The baryon as a nonrigid rotator has been studied with the U7s(x) =
Skyrmion[25]. There, the effects of the Coriolis force were
neglected in the shape of the static soliton and included per-
turbatively in the state vector for the collective rotation. Forwhere is the quark field and) is the chiral meson field:

the excited states of the baryon, there are several studies g{y(3). FurthermoreM is the dynamical quark mass anuis

u'(x), 2

1-vs
X)+ 5

this problem in the nonrelativistic quark moc[QIG] the current quark mass matrix given by
In this article we shall argue this problem for the octet
baryon by means of the CQSM. This model provides the M= Mo\ o+ Mah s+ Mghg

simplest foothold to study the above problem from the point
of view of the relativistic quark model. The shape of the

soliton can be determined self-consistently as the mean field m, 0 0
potential for the quark. Thus the model can eliminate the [ 0 mg O (3)
influence of the artificial assumption that the mean field po- 0 0 m ’
tential takes a spherical shape.
In Sec. Il, after a brief review of the SB) chiral quark
soliton model we show the cranking method for the de-where, (u=1,2,...,8) are theell-Mann matrices)
formed soliton and the mean field approximation for the ro-—(J_3)1 andmsz~ 0 becausexenu md< mg. In this article,
tated system. Section Ill deals with the perturbative expanwe set M =400 MeV, m,=my=6 MeV, and mq
=200 MeV.
Using the path integral formula for the quark field, we
*Electronic address: akiyama@ph.noda.tus.ac.jp find
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Z= f DUe'SFIVL (4)
iSe[U]=N.logdetig,—H), (5)
whereN. is the number of colors and
1 ~
H=~a V+B(MU+m) (6)

is the quark Hamiltonian.

For the chiral fieldU(x), we postulate the so called

cranking form[5,28:

U(x)=A)BT(H)Uo(r)B(1).AT(1), @)

whereUy(r) is the static chiral meson field4(t) describes
the adiabatic rotation of the system in &Y flavor space,
andB(t) describes the spatial rotation. We wrltg(r) as

eiF(r)[\(r)»r 0)

®)

Uo(r):( of 1

whereF is the radial component of the profile functioh,is
a unit vector in the isospin space, aadrepresents Pauli
matrices. For the flavor rotation we wrif29]

A(t) 0
A<t>=( of 1)As<t>, ©

whereA is the flavor SW2) rotation operator and rotates

U, into the strange directions. In particular, we parametriz

Ag(t) as
Aq(t)=expiD(t), (10
where

0 V2D (t)
V2D (1) 0
andD= (D% D?) T is the isodoublet spinor. Although E(p)
was motivated by the bound-state approf@®, we will not

treat the locality of the kaon wave function in this article.
From Egs.(5) and(7), we obtain

(11)

iSg=Nogdetig,+iATA+iBB'—H"), (12)
where
1 -
H'=A'BHB A= TeVEBMUSE+m) (13
is the rotated Hamiltonian anu’ is given by
m’'=ATmA=moho+mgDE) (AN, . (14)

Here, the term proportional tmg breaks the S(B) symme-
try and D$))(A,) is the WignerD function of A in the ad-

joint representation. We show some important components:

e
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V3 sirt\kg
- K

B _ =
83

2 Ko 3 (15)

3
D®=1- Es,mwk—, (16)
where
ko=2D'D, (17
k3=2D"7r3D. (18)

We now wish to discuss this model in the mean field
approximation. Suppose that the collective motidrand B
is quantized an¢B) as an eigenstate of the collective Hamil-
tonian. The operato® andD" convert a non-strange quark
into a strange one. Therefore,|B) points to a specific di-
rection in the isospin space,

kgo=(B|ko|B), (19

rxga=(B|«3|B) (20

have nonzero values. For a fixeg,, we have the following
constraint forkgs:

(21)

— Ko<Kp3< T Kpo-

Intuitively, kgg and kg5 represent the quantity of the strange-
ness and the asymmetry of the strangeness, respectively,
coupled to the isodoublet inB). The expectation value

(B|m’|B) may be approximated by

Mg=MoX o+ Mazh 3+ Maghg

mg, O 0
| 0 mg O (22)
0 0 mgg
with
mg,=Mmg lim DAY (1=38). (23

K0,37KB0,3

Equation(22) indicates that thel,d,s quarks mix with each

other by rotation in the strange direction, and their masses
are renormalized in the body fixed frame. Figure 1 shows the
kgo and kg3 dependencies of the effective quark masses

mBu,d,s-

IIl. PERTURBATION AND CANONICAL QUANTIZATION

We separateH’ into an unperturbed pat) and a per-
turbing partAH’ as follows:

H'=Hg+AH', (24)
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kgo dependence In actual calculation, we introduce the tensor operators
§ Sl T e ?Pdi ______ ZJK"K?(F) defined by the following equations, where=|r|
1 > andr=r/r [31]:
L} \
> \
g 100 (KD, ZRST=KaZi, (29)
(¢)
"% [K@2Z3SN=K(K+1) g, (30)
=
w 0
(92, 28N =30+ 1) 2, (3
¥Bo
S 160 [LO2Z=L(L+ DZ (32
>
[}]
s 140 F
% 120 [S'92,Zi 1= S(S+ 1) Zyi (33
1]
s 100
§ fgg [|<Q>2,ZJK&<33' :|(|+1)zJK%<33'. (34)
(]
E Zg Then the chiral fields can be expanded in seriezf@i':
L

Ug(n=20 2 2 2 Ui (NZigy (1) (39)
3
FIG. 1. Thekgg and kg; dependencies of the effective quark

mass. Forkg, dependence, we seks=0, at whichmg, andmg,  Eduation(28) means that E¢(35) contain onlyK;=0 com-

take the same value. Fafz;, we setxgy=1. ponents. _ .
Similarly, the quark fields are expanded in the Kana-

1 A Ripka basespy_q [32]:
Ho= i—ae~V+,8(MU75+ mg), (25

o Y= > CirzaPrrgall), (36)
AH'=B(m’ —mg). (26) Kiga

where the subscript indicates quantum numbers other than
K and K3. The matrix elements ofi; with ¢KK3a have a
contribution only from the bases with the saieg.

We expandSg in powers ofi. AT A, iBB', andAH’ around
the eigenstate ofi g,—Hg) [15].

SinceH|, contains theng, H/, breaks not only the S@3)
symmetry but also S(2). Thus it has only rotation symmetry
around the third axis in isospin space. When the isospin
space is mapped into the real space, the configuration of the The lowest order perturbative expansion of the act&n
system has an axial symmetry with respect to the specifits given by

axis in real space. . . , .
The grand spin operator in the quark space is given by 1Sro=Nclog detidi—Ho) = —iEqT, (37)

A. The self-consistent classical soliton

K (@ = 3@ 4 (@ = | (@) 4 &) 4 (@), 27) where T is a sufficiently large time interval and,, is the
classical soliton energy. With the eigenvalugsof H| and
where J@, L@, and S9 are the total, orbital, and spin €y of
angular momenta, respectively, aH® denotes the isospin.

The above argument is expressed as K'= lim Hy= ila' V4 B(M +1mg), 39)
[KE) ,Ug(r)]=0, (28) o
we obtain
whereK ¥ is the third component df (¥ and we choose the
tzr;)’fls as the specific one. We call this equatidf,‘symme E. zn: [Ncﬂﬁa'ervAac( e )]en En: poac Eg)eg,
The isosinglet part of Eq28) means that the radial com- (39)

ponent of the profile functio depends only om and # of

the polar coordinates. On the other hand, the isotriplet pafyhere nﬁa' is the occupation number of the valence quark
means that the unit vectdk has axial symmetry about ttee  level e, and p}®°(e,) is the cutoff function of the vacuum
axis. Thus, the deviation from the hedgehog shape takesnergy for levele, with cutoff parameter\ (Appendi¥. In

place only in ther and ¢ directions. this article, we use Schwinger’s proper time regularization
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FIG. 2. The radial component of the profile functiGhwith FIG. 4. Classical soliton energy. Each curve corresponds to a
| k3| =0. The solid line represents the function@=2.6 and the  value of kgo=0-2.8. The range okgs iS restricted to— kg
dashed line akgy=0. < Kkp3<+ Kgp-

[11,13,33 and setA =700 MeV, and we assume that the N
valence quark is in the lowest positive energy state. 3(r)=§n: PACER) (1) (), (43
To subtractE.,, we useK’ but

K= lim H=i1a-v+ﬂ(|v|+rh). (40) P(r)=2 pR(en) ¥n(N)i vsmhin(1), (44)
U—1 n

The reason is the following. PhysicalE,, is the static soli- Wherey,(r)=(r|n), [n) is the eigenvector belonging to the

ton energy in the body fixed frame and its subtraction poineigenvaluee, of H,, and pR(e,) is the cutoff function

is the Dirac sea in the absence of a static soliton. We emploghown in the Appendix. Using the boundary conditions

the body fixed frame in whiclkgy and gz are nonzero. In

this frame the Hamiltonian without the static solitonkis. imF(r)=—, (45)
The equations of motion for the profile functiofist] are r0

obtained by the extremum conditions for the acti$yg with

respect to the radial componeRtand the direction of the

unit vectorA: limF(r)=0, (46)

r—o

S(r)sinF(r)=P(r)- A(r)cosF(r), (41) Egs.(41),(42) and the Dirac equation with the Hamiltonian

Eq. (25) are self-consistently solvgd4].
P(r) Both the profile functions and the classical soliton energy
)]m' (42) are some even functions af3 because of the isospin sym-
metry of the model. The value ofgy mainly affects ther
and dependence of the profile functions and the valuexpf
ffects thed dependence of the profile functions. It was
ound from the calculation tha& hardly depends ofwgs).
Thus, we can tred as a function of only. The profileF (r)
is shown for the cases afyq=0,2.6 with| xg3| =0 in Fig. 2.
It is shown below that the range;o=0-2.6 corresponds to

the octet baryon. On the other hand, the unit vedohas
axial symmetry about the axis and plane symmetry with
respect to thexy plane. The deviation from the hedgehog
shape is an increasing function pfg;| and takes a maxi-
mum atf= /4,37/4 and a minimum at=_0,7/2,7 in real
space. We showA at kgo=xg3=0,2.6 in Fig. 3.

Figure 4 displays theg; dependence dE,. Each curve
corresponds to a value afgg, and the range okg; is re-
stricted by Eq.(21). The classical soliton enerdy,, is an
increasing function okgy aroundxgg=0 and a decreasing
FIG. 3. The unit vectoR in isospin space withgs| = kgo and  function of | k3| at a fixedxgy. Because the deviation from

p=1X?+y2. The solid arrow represents the vectorgs=2.6 and  the hedgehog shape increases Withs|, the soliton takes a
the dashed arrow atgo=0. stable deformed shape ag,#0.

A(r)=sgr S(r)sin 2F (r

Here, S(r) and P(r) are the scalar-isoscalar
pseudoscalar-isovector densities, respectively, and are d
fined by
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B. Effective Lagrangian and Hamiltonian where the coefficients are defined as

There are two expansion parameters for the effective ac-
tion Sg: the number of colordN, and the SWB) symmetry B R
breakingmg. We expandsg up to second order in powers of UMV_n;n pA(em’6“)<mlTﬂ|n><n|TV|m>’
1/N. and first order in powers ahg.

First, we define the local variables, a, and b of the

rotation A, A, andB, respectively, and the fluctuatian by V= > pﬁ(em,en)(mlJi(Q)In)(nlJ}q)lm),
m#n
atT,=—iATA
—iATA 0} W= = 2 pR(em en)(m[T,[n)(n|3{V|m),
=Al( of 0>As—lAlAs, (47) Mg DT :
éjg= —iATA, (48 B#:%‘J pIA(Em)<m|T,u|m>'
bl )= —iBB' (49)
J ! ~
Bi=—2 ph(em)(mlJ(¥|m),
otT,=m'—mg, (50)
whereT, =\ ,/2, un=1,2,...,8, and =1,2,3. Since in the
large NClLIimitM[l,Z] A’”:ng'n pr(€m>€n)(M[T,[n)(n|BT,|m),
E.~N¢, (51
iA*ANl/NC, (52 Ziv:_rr;n PIA(fm1€n)<m|‘]i(Q)|n><n|BTv|m>1
iBB'~1/N,, (53
r,=> pR(e)(m|BT,Im). (56)
D'DTN:I_/\/N—C, (54) N = PA m< |ﬂ ,u| >
we expandSg up to second order i andb, and first order Here, p?'(en) and p?'(em.€,) are the cutoff functions
in o. Thus, we get the Lagrangiat2,15 shown in the Appendix. The indic&and! denote the origin
S 1 1 of the vacuum part of the coefficients from the real and
L= === Eo+ Edu&vuﬂﬁ Ebiijij —d”bjwm imaginary parts of the actioB in the imaginary time pre-

scription. We subtract the vacuum contribution of the eigen-
states oK' [Eq. (38)] from these quantities in a similar way
to EC| .

(55 By K5 symmetry, Eq(55) becomes

+ d”UVAMV— biO'VZiM_ c-z'“B#-l— b'B;— ol

... C ... ... Ce : : . . ~
L=—Eq+ E(alal—i- a?a®) U+ E(blbl—k b2b?)V,— (atbr+ a?b?) Wy + (atot+ a?0?) Ay — (brot+b2e?)A
1'3 23\ 2 " 3_Rh3 3 8 8 3 8 1'4'4 55
+§(a -b ) U33_(a -b )(53_0' A33_0' A38)—a Bg_O' F3_0' F8+ E(af a’ta’a )U44

+ E(a6a6+ a’a" Uget (a*o*+ a®a®) Ayt (ao®+ a’o") Ags. (57)

Sincea ando in Eq. (55) are functions oD, DT andiATA, nonical momenta conjugate to these coordinates are defined
we should further expand these quantities in the actual caby

culation. r
Next, we would like to express the Hamiltonian in terms | = L (59)
of a,b,D and their canonically conjugate momenta. The ca- 'ooal’
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L |3+‘]3+|K3:0' (64)
i= T (59)
ab' . . . . :
Herel; is the third component of the isospin carried by the
kaon,
PY= o (y=1,2) (60
ol ;s
IK=i(DT§P—PT§D). (65)
and satisfy the following commutation relations:
. o1 If we assume the hedgehog shape for the chiral fields, the
. = . Pr— J . 1
[hi,a']=[3,b']= i S (62) constraint becomes
1 [+J+1¢=0. 66
[PV,DL]=[PT,D7]=i—5%. (62) K (66
The collective Hamiltonian derived from E¢57), IV. DIAGONALIZATION OF THE COLLECTIVE
HAMILTONIAN
— ; Hiptp—
H=a-1+b-J+P'D+D'P-L, (63) A. The mean field approximation
is calculated up to order NI, . Because of th&; symmetry Before diagonalizingH [Eq. (63)], we will describeH,,
of the chiral fields, there is the following constraint on the which is theO(1) Hamiltonian ofH in the largeN, limit in
canonical momenta: the mean field approximation:

2

Ho=Eo+ Epg+ —— PP+ PTraP+3| —— 4 2m (Acs)Bs—Ts) | DD+ 3]~ 4 mgA
0 cl ind 4(1)“) 4@(7) 73 4(1)“) gla(+)Ps 8 4(1)”) 82 (+)
i(DTP—P™D)+3 Ba omg| A By— 2| D770 @( Be A )'(DT P—PTrD), (67)
X1 — + + m8 _\bg— ——= 73 + —+m8 /1 T3F — T3 y
40 () AN 40 (- -
|
where whereh; ., are constants for each componenth|f satisfy
I3 | sir’ykgo h1,hay— (h,)2=0, 72
Eind:3m8(KBOF8+KB3ﬁ)K—BOy (68) 172y~ (hs,) (72
'H,o can be diagonalized exactly using the following transfor-
1 1/ 1 1 mations[34]:
= —*x— (69
Doy 2\Uyg Ugs , .
e DY=c,(£,+£)), (73)
44 66
Ary= —(—i—) 70
=72 Uss Uss (70

Pyzm(eflﬁyé;y_eﬂ&ya/), (74)
The eigenstate o, describes the kaon in the background Y Y
soliton. The energy;,q is induced by the deviation to the )
strange and isospin direction from the @Jhedgehog soli- Wherec, andd, are constants depending bn,. The quan-
ton. Here thd g term inE; 4 gives a negative contribution to tities §J; (&) and?; (&,) are the creatiortannihilation) op-
Ho andT'; a positive one. erators for states with the same quantum numbers as the
The HamiltonianH,, is in a bilinear form of the isodou- kaon and antikaon, respectively. These satisfy the commuta-
bletsD and P, and the type of separation of variables with tion relations

respect to the individual component. For the individual com-

ponents, the Hamiltonian except for the constant terms is [gy,gl’g]:[gy ,Ez]zgyﬁ, (75)
given by
H,=hy,PTP7+h,,D'D7+hs (PID7+D'P?) [£).£p]=1¢,,E5]=0. (76)

+hy,i(PID7=DIPY)  (y=1,2, (71) This then finally leads to the diagonalized form
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2 S=0
7—{0: EC|+ Eind+ ’)/Zl (w'yé‘:‘;gy—i_;ygygy)l (77)

where
wy:Sgr(hly) Vhlth)/_(hS)/)z_h4'yv (78)
w,=sgrthy,)vhyha,—(hgy)?+hsy. (79

There are also two physical quantities diagonalized by the
creation and annihilation operators: the third component of
the isospin carried by the kadiq. (65)],

1 _ _
lka=5 (E161- El&1— 6+ E6), (80)
and the strangeness carried by the kaon,
2 J—
S=i(D'P-P'D)= yzl (£e,—€T€,). (81)

The Fock space is generated by successive operation of the
creation operators on the vacuum st

2
— — 1 _
|n1,n1,n2,n2>=H1 - (é‘;)ny(g’;)ny|o>, (82
o

s vyntnt
o 7 FIG. 5. The lowest eigenvalues &f,, wherexgg and kg3 are
wheren, andn, are some positive integers. treated as parameters.

In the mean field approximationgy and kg3 should be )
self-consistently determined by Eq49) and (20). Then the ~ t€ndency tamg,+mgg+ mgs. In the case o= -2, Eq is
stability of the approximation should be checked. Becaus&Milar to (Mg,+Mgg)/2+2mgs. _
the coefficients of the individual terms @, are evaluated Figure 7 shows th&g; dependence d,. It is due to the
using a soliton depending ok, andkgs, the potential term I'; term inE;,q4 thatEy is convex downwgrd as a function of
is physically meaningful only in the vicinity of the expecta- Kgs for S=0. ForS=—1,—2, sinceEj,q is canceled by the
tion values. It is difficult to draw a potential diagram over a Potential ofD andD", Eq is convex upward due to thess
wide range oD andD*. The reason is that, describes the dependence ag,q (Fig. 1. _ _
combined system of the classical soliton and the kaon. Therefore, in the case &=0 itis energetically forbidden

In order to investigate the stability of the mean field ap-that the soliton deviate from the hedgehog shape, and the
proximation we will treatkg, and s as parameters at first. harmonic analysis aroundgo=«g3=0 is justified. On the

When kg and kg are different from the expectation values Other hand, in cases &=—1,—-2 E, is energetically un-
of Egs.(19) and(20), the differences stable atkgz=0. Thus the soliton deviates from the hedge-

hog shape.
kgo—(B|x0o|B), (83 1800
KB3_<B|K3|B> (84) 1700 [

act on the system as a kind of external field. Therefore, by

investigating thexgg and kg3 dependencies of the lowest

eigenvaluee, of Hy, we can study the stability of the system

against external perturbation. Figure 5 shows the behavior of

Ey as a function ofkgg and kg3 in the cases o6=0,—1,

—2. Eg is an even function okgs like Eg . 1300
We further investigate the characteristic behavioEgfin

the three cases. Figure 6 shows thg dependence oE,. ¥80

For S=0, thexgy dependence df, is similar to that of the FIG. 6. The lowest eigenvalues &f, and the classical soliton

SU(2) sector quark mass 8.+ Mgg)/2. Itisdue tothd’s  energy in the cases dkgs| =0 and|«gs| = kgo. Between the two

term inE;nq of Eq. (67) thatE, is flat compared withE.; or  curves withS=0, the case ofxgs|=0 corresponds to lower en-

3(mg,+mgy)/2. In the case o6=—1, E; shows a similar  ergy. ForS=—1,—2 it corresponds to higher energy.

1600

Eq (MeV)

1500 F**

1400
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1700 — - . - . TABLE I. kg, |«gs|, andE,; for S=0,—1,—2 in the mean
field approximation.

1600 [ 8= .

= S Kgo | kel Eci (MeV) Ems (MeV)

>

S 1500 0 0 0 1326 1326

w S=-1 -1 0.8 0.8 1463 1468
1400 e ] -2 2.6 2.6 1505 1475

1300 L~ ; ' ; .
_ where I 3= (n;—n;—n,+n,)/2 from Egs.(80) and (82).
. ) ) BecauseH commutes withS [Eq. (81)], the diagonalization

FIG. 7. The lowest eigenvalues &f, and the classical soliton 5 \yell performed in the subspace with fixed eigenvalues
energy atigo=1.0. (3.j3), (1,iz), S=n,;—n;+n,—n,. For the octet baryon]
L . . =|js|=1/2.
However, it is necessary to keep in mind that under the i3l . .

Y P Corresponding to the expansion Af up to order 1N,

condition of Eqg.(72) the potential term ofH, is convex .
downward andqirfsta)bility fr())D, D' is not causoed. Thus, the we truncate the Fock space of Eg2) on the condition that

instability is due to the classical soliton. If the degrees of
freedom for thexg; direction are not included in the soliton,

the instability does not occur. .
In Table | we showkgg, |kgs|, andEg (=Epg), which €€ we introduce the symbd|K) for the states created by

are self-consistently determined in the mean field approximaéy and [K) for &1 The particular states with the sange

tion. consist of| S K) (valence kaop ||S|K+KK) (valence kaon
+kaon-antikaon pajr etc. Since we determinetsy and kgs

B. Baryon as the rotational band for the lowest eigenstatfS|K) of H, in the mean field ap-

The Hamiltonian [Eq. (63)] is a highly complicated ~Pproximation, the stat§S|K + KK) may be far from the mean
function of U,V, etc. Thus we focus on the algebraic point of field. Thus, we should not treat equall K) and ||S|K
view and do not show its exact form at this point. The actual KK). First, we diagonalizé{ in the subspackS|K). Next

calculation will be performed numerically. . |SIK+KK) is treated as a virtual state in the perturbation.
For the diagonalization df, we introduce the eigenstates For example, the bases for theparticle are given by

of the body fixed operatord?, J;,i2,15 defined by Eqs(58)

Ny +ng+n,+n,<|9+2. (89)

and(59) and the space fixed spjg and isospiri ; operators. T 4120 in —130.0.0.1
Hereafter we denote the operators by a character with a caret, ( | ’1.3’ 12 ’1.3’ 110.0.0,1) \
and a character without a caret denotes its eigenvalue: \/,j3.— 1/2;1,13,0)(0,0,0,1)

|J’j3 ’+ 1/2’1’13 ’0>|0’1a0’0>

F3,ja 35 hia ) =30+ D ja dsiis la), Usaum 12005, +1)[0,1,0,0)
sJ3 sl ot 3o 9 Loy

Jaldijsdaiis ) =jald s, dailiis, ), \.js,+1/251,i5,—1)]0,0,1,2)
3 7,73, —1/2;1,i5,0)]0,0,1,2)
J3l3,i3.93:1,i3,13)=33]3,j3,d3;1,i3,13), it 12 i OO
’. ’ s ’. s a1l (90)
1213,j3,33;1,i3,05)=1(1+1)|3,j5,33;1,i3.13), \J,js,—1/2;1,i5,+1)]0,1,1,1)
\J.j3,+1/251,i5,+1)[0,2,1,0)
i3]d,3,d3;1,i3,13)=i3]d,j3,d3;1,i3,13), |7,j3,—1/2;1,i5,—1)]1,0,0,2)
o i ) . J,js,+1/2:1,i5,—1)%[1,1,0,1
133,i3,d3:1,i3,13)=13]J,j3,J3;1,i3,13) (85) | 1.3 3 N )
.j3,—1/2:1,i5,0)]1,1,0,1)
e |,j3»+1/2:1,i5,0)(1,2,0,0)
—J<j3,d3=, (86) \,js,— 1/2;1,i5,+1)]1,2,0,0)
—I<ij,lz=I. (87 B

Here the top four bases span the valence kaon stSt&s,
By using the constraint of Eq64) betweenJs, I3, and  and the others are bases|& K +KK).

I k3, the basis for the whole space is given by Diagonalization ofH in the basis of Eq(88) gives an
- . estimation of the fluctuation fdp,J,| around the mean field
13,j3,J3;1,i3,— (J3+1k3))|n1,n1,N5,N05), (88) approximation. The results of the calculation are displayed in
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TABLE Il. Baryon masses€g; (without |KK)) andEg, (with ~ ness, the hedgehog shape is stable. On the other hand, for the

|KK)). Expt. denotes experimental value. soliton with strangeness, an instability occurs not only in the
strange direction but also in the isotopic one. The instability
Particle Eg1 (MeV) Eg, (MeV) Expt. (MeV) has a global nature due to the inertial force, and one cannot
find it from a study of the curvature of the local potential. It
N 1382 1369 939 is necessary to incorporate the degrees of freedom for the
A 1195 1187 1116 deviation in the ansatz of the soliton.
by 1218 1200 1193 After the collective quantization has been performed, the
= 1437 1330 1318 states identified as the strange baryonsY,=) also ener-

getically favor the deformed soliton. The strange baryon
) masses are in good agreement with both the absolute value
Table Il and compared with the hedgehog results«<g§  and the difference among the experimental values. These be-
=xgz=0in Fig. 8. HereEp, is the eigenvalue of the collec- come small compared with the results of the mean field ap-
tive Hamiltonian/ in only ||S|K). The massEg, is the  proximation due to the interaction caused by the deformation

eigenvalue in the state which incorporadteK) states as a Of the soliton. On the other hand, the approach with the
perturbation. Except foN, the energy eigenvaludsg, are  hedgehog soliton reproduces the mass difference among the
smaller than the hedgehog results and close to the expefaryons well but the absolute value. Also, the collective
mental values. states have higher energy than the classical soliton.

In the eigenstates of every baryon, there are large transi- Weigel et al. investigated the quantum correction due to
tions among the bases with different valuesgf | 5, thatis, ~ the zero modes off the hedgehog soliton in the NJL model
remains of the Clebsch-Gordan series for the constraint E¢35,36. The correction gives a large negative contribution to
(66) which is maintained only in the hedgehog shape. In théhe N and A masses, and the results are in good agreement
case ofN, the energy eigenvalues are increased by the trariith the experimental values. In our approach, the mas¢ of
sition. The situation does not change on incorporating théS somewhat too large due to the hedgehog shape of the
|KK) states. ForA and S, an interaction induced by the soliton. Therefore, both approaches cooperatively would be
deformation of the soliton picks up the transition. Then the! @greement with the experimental value RrOn the other
energy shows a decrease. That is caused only in the spaE@nd' the deformed soliton corresponding to the strange

. — - . o : aryon has less symmetry than the hedgehog soliton. Be-
with [IS|K). For Z, there is a similar decrease in the SPaCe:ause of the estimatidids,36 relied on the hedgehog shape

that takes account ¢KK) perturbatively. The contributions [35], the relation between the two approaches is obscure at
of |KK) to the energy take negative values for every baryorpresent.

due to the second order perturbation formula. The eigenvalue of the Hamiltonian up to order 1 in the
largeN, limit is an even function okg3. Therefore the mean
V. DISCUSSION field energy atkgs is degenerate with that at kg3. A more

accurate calculation of the fluctuation off the mean field
The stability of the hedgehog shape has been investigateshould treat the tunnel effect.

for the octet baryon by means of the chiral quark soliton A description of the decuplet baryon incorporating the

model. local variation of the kaon wave function are in progress.
In the mean field approximation, it was shown that the
stable form of the soliton changes according to the strange- ACKNOWLEDGMENTS

ness of the baryon. In the case of the soliton without strange-
We would like to thank M. Kawabata and H. Kondo for

1800 — many fruitful discussions of this problem.
1600 | . APPENDIX: CUTOFF FUNCTION
- The cutoff function of the vacuum energy for the energy
3 e0F 7 level ¢, is given by
= 1200 1 ¥ x 7 anc(en):Ncsgr(fn)NA(fn) (A1)
X B —
1000 | e 4 with the cutoff paramete, where, using the Schwinger
B N Ee proper time regularization\, may be written as
800 1 1 1 1 1 ;1 hI hI
BEa Emt Eer Ego Exp. E'g E'gy E'gp — 1 (= e’
i . Na(em)= —f , —39p- (A2)
FIG. 8. Comparison of the energy between the deformed soliton 4\/; (em/N)* p

and the hedgehog onecgo=kg3=0). The superscriph of E" . _ . _
represent the results of the hedgehog soliton. Exp. denotes the ex- The cutoff function for the first order matrix element is
perimental values. given by
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PR (€m) =N 738+ Nesgn e VY (en)  (A3)
with
1
N3 (em) == 5 erfol|em/A]), (Ad)
1
Niy(em == 5. (A5)

The indicesR and | denote the origin of the function from
the real and imaginary parts of the acti®nin the imaginary _
time prescription. Similarly, for the second order matrix ele- f'A(fm,en)zsgr( €m) —Sgn ep) .

ments one obtain

PHYSICAL REVIEW D 67, 074030 (2003

val val
Mm — 7n Nc
R,
g , =N.—M8M8M8M8M8+ —
px (€m,€n) c en—em 2

f/%l(em'en) (AB)
wherefR! are given by

sgri ep)erfo| e/ A|) —sgre,)erfo | e,/ Al)

€m™ €n

fi(em,en)=

A elem/M)?_ glen/A)?

e

(A7)

(A8)

€m~ €n
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