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Recently computed terms of ordé a‘s‘n?) in the perturbative series for thedecay rate, and simildnew
strange quark mass corrections, are used to discuss the validity of various optimization schemes. The results
are then employed to arrive at improved predictions for the complete terms of(ﬁ(déb andO(ag’) in the
massless limit as well as for terms due to the strange quark mass. The phenomenological implications are
presented.
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. INTRODUCTION schemegcoinciding ata?) for the coefficient of orden?ag
are in reasonable agreement with our calculations, which are

The dependence of the decay rate on the strong cou- then used to predict the complete fixed orde©) and the
pling a. has been used for the determinationaafat lower ~ “contour improved” (Cl) [17,18 O(a¢) contributions to the
energies, with the results of 0.384.007,,*0.024,,and 7 decay rate. Employing the four-loop QCD beta function in
0.348+ 0.009,+ 0.01Q¢, by the ALEPH[1] and OPAL[2] comblneétlon with improvedy _terms a rough estimate even
Collaborations. After evolution up to higher energies thesdor O(as) terms can be obtained. The results lead to fairly
results agree remarkably well with determinations based ofitaPle values for consistent with current analyses.
the hadronicZ decay rate. In view of the relatively large Unfortunately, no essential decrease of the difference be-

value of a((M ), estimates for the yet unknown terms of tween the central valuesy(M ;) as obtained with FI and CI

higher orders play an important role in the current determi-2PProaches is observed after including ordgrand a; cor-
nation of o at low energies. This is in contrast with high rections, assuming for the moment that these estimates are

energy measurements, where the uncertainty from terms 6@deed correct. On the other hand, the theoretical uncertainty

order 2 of 0.001 to 0.0043] is somewhat less or at most assigned toxg(M,) within each method according to stan-

ble to th t ; tal dard techniques does decrease significantly.
comparan’e [0 e Present expermena; erors. The implication of this approach for the extractionrof

_ The situation is even more problematic for_the determinas o, Cabibbo-suppressed decays is investigated along the
tion of the strange quark mass from the Cabibbo-suppressedime |ines. New results are presented for the terms of order
7 decays. Perturbative QCD corrections affecting the niam? in the total rate. In this case the agreement between
term are extremely large and contributions from increasingac or PMS predictions and our results is quite encouraging
powers ofa; are barely decreasing, which casts doubt on oubng naturally suggests the use of the former as a reliable
ability to extract a reliable result famg from this (in prin- prediction for the completer®m? term. Following an ap-

ciple) clean and straightforward measurempht-10). proach discussed ifl6], a rosugsh estimate of2a? terms

Palr tial results of grdeals for thel absorEtlve %art of ttt]e' cgn even be obtained from these considerations.
massless vector and scalar correlators have been obtaine However, the rapid increase of the coefficients indicates

; 2
recently [11], namely, terms proportional tof, wheren; ot the inherent uncertainty of the presentdeterminations
denotes the number of massless fermion species. These allgyii not necessarily decrease with inclusion of the higher

us to test two popular optimization schemes—based on thgygers. As we will see, the situation is somewhat better for
principles of “minimal sensitivity”(PMS) and of fastest ap- e spin 1 contribution if considered separately.
parent convergenc@AC) [12—14—which have been used

to predict yet uncalculated higher order terfi§,16. Il. GENERALITIES

It will be demonstrated that the predictions of both ) .
We start with the well-known representatipfi9—23 of
the tau-lepton hadronic rate as the contour integral along a
H H —_n2.
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HereII® andII(® are proper flavor combinations of the ~ On the other hand, the unknown constant drops out if one
polarization operators appearing in the decomposition of theonsiders the moments
correlators of vector and axial vector currents of light

quarks! 'dREO)

ds '’

sods S

=

ROkl (g0) = J %

0o M2

(6

VIA
L5, my,my,m, i, a)

: with k=0, I=1. (Note that the moments introduced[ib8
:iJ' dxeX(TLj, 5 ()17 (0)]) are related to ou(rs R=RWK! ROKI ) -
B © ) @ ) The decay rat®, may be expressed as the sum of differ-
=017 va(a%) + 0,0, 157A(0%) ) ent contributions corresponding to Cabibbo-suppressed or
VIA -allowed decay modes, vector or axial vector contributions,

. _ 2 _ . . .
with m2—2f=u,d,smf andj, ij=0div.(7s)q;- The two(ge-  and the mass dimension of the corrections
nerically differen} quarks with massesy; and m; are de-

noted byq; andg;, respectively. R.=R,.vtR,a*+R;s @
For the case of the lepton the relevant combinations of

quark flavors aréj =ud andij =us. The polarization func- with

tionsHS,)A, I=g,q, are conveniently represented in the form

2 _~2 3
(=) Ry=5IVudl?| 1480+ 3 mdD),
) a,...
NI A (o) =——110), | 2
s wiald 1672 VIA,0 sza’s 3
RA:§|Vud| 1+50+D:; 5AudD), (8
3 B MZ A, ...
+16772 DZZQ DHS/)A,D —z,mg,as :
Rs=3|Vyd?[ 1+ 8o+ 2> 5us,D)-
(3) D=24,...

HereN(g)zlle,N(q)zl, the first term on the right-hand Here D indicates the mass dimension of the fractional cor-
side corresponds to the massless limit, while the first term imectionséy,a j; o, andd;; p denotes the average of the vector
the sum stands for quadratic mass corrections. We negleand the axial vector contributions: & p=(dvij b
the masses oti and d quarks. Therefore, in perturbative + d,;; p)/2. If a decomposition into different spin or parity
QcDI1{ =11’ and we will often omit the subscriptor A contributions is made or a particular pattern of moments is
in the following. Current conservation implies thﬁ[gg) considered then we will use the corresponding obvious gen-

S eralization of Eq/(8). For instance,
The full tau-lepton hadron rat®, can be presented as a
sum of spin 1 and spin 0 parts, viz., R(s%\)/klzakl|vus|2 1+ 518|+D:; 5%,25) 9)
R<1>:6iwf dsfi_ = 2 142> | s
T lsl=m2 M2 M2 M2 and
kl_ Kl
+119(0)/s|, R(s(,)\)/ _|VUS|2(D_;,... 5&/?315,D)' (10
q 2 Thus, in our notation we have the relation
S
R<°)=6iwf — | 1-—| [T1O(s)—119(0)/s],
PO ez ) HEO IO o uso=a o+ A0 1
(4)

The integral in Eq.(1) is, obviously, insensitive, to the
where Q?-independent terms in the polarization functidh§’ and
19 . This means that without loss of generality we may deal
1) = 1710952 0) =1y (9792 2
11 /g I IF%+IT%/ o, 5) with the correspondingAdler) D functions, viz.,

and the contribution of the singularity at the origpropor-

tional to IT9(0)] has to beincluded. A nonvanishing value 3 d
(0)] g Dég)(QZ)E—ZQZ—HE)g),

of I1(9(0) is a nonperturbative constant. dQ?

1 ) ) . 1 d

The correspondence to the notations of our previous Wetks D(ZQI)(QZ)E _ _QZ_H(zg)-
as follows: IT19 =TT and IT19 = 1121, 27 d@?
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An important property of the functior®{?, DY, andI1{?  terms of order O(nde?),0(n%e?) to D DY and

is their scale independence, which implies that they are dl@(n%a3) O(nsa?d) to I . Our results are described in the
rectly related to measurements. following section.

The Adler functionsD{® and DY have been calculated
with (’)(ag) accuracy, but the polarization functi(ﬁfl(ZQ) only
to O(a?) (see[6] and references thergin

The (apparent convergence of the perturbative series for
D is acceptable; the one f@{Y andI1{¥ is at best mar- Using the technique described [ih1,24,23 and the par-
g|nal This has led to S|gn|f|cant theoretlcal uncertainties indllel version ofForm [26,27], the leading and subleadirign
extractinga, and to a fairly unstable behavior in extraction nf) terms of the next order in the perturbative series for
of m, from 7 decays. DY, DY, and 1Y have been obtained in the standard

To improve the situation, we have computed the two leadmodified minimal subtractlonl\(IS) renormalization scheme
ing terms in the largen; expansion of the next order, i.e., [28,29:

lll. FIXED ORDER RESULTS IN a2 AND o

D=1+ as 1 o2 ] 365 | [[151 19 » 7847 262 25 | 87029
actag| — 5t 3ds|Nit 5z ~ 15 162 27%|" 216 T 9 %37 g ¢5|MT g8
1103 275 | ([ 6131 203 5 |, [1045381 5 , 40655 260 |,

T g bt g o[ TAs)| T 5g3pT 3pa%s T 1g%s 15552 | 6% "84 2 27 5|Mi

oy
=1+agt+a{—0.115%+1.986 +a2{0.0862h?— 4.216;+ 18.24 + aZ{ — 0.0100%} + 1.875?
+d{0*n;+dQ%, (12)
@zl 14 50 s a2 1 2 ] 5185 39 8671 13 2 44273 3257 5
2 =Ms| It zastas)| — gt 38Nt 77— 58 11664 27%|" 972 " 81 3 g%
1265 2641517 131275 12845 L[ 396781 461 1 5 1,
81 5|™" 5182 ~ 216 3t 36 %57 3|| soosra’ 1206% 28%4T 18%5|M

61913567 59 . 352549 67 22859
1119744 54§3 7776g 96>§“+ 388855

n? +d(g)4nf+d(g)4] )

=mZ(1+1.667¢+a2{—0.5736+ 12.5% +a2{0.16467 — 14.31n;+ 149.0 + aZ{ — 0.0156 % + 6.06 h?

+d(g)4n +d(9)4}), (13
19— — am 14 7 4 a2 25 2 N 15331+ 359 520 2131 19
2 =AM I gastas) | m o g Mt gy T ea bt 7 s 11664  81%2|"
68135 52 5 3997 5 3875 +k(q)

1044 27°3 2863 %41 243 %5\

= —4mZ(1+2.33%¢+a2{— 1.30%+23.53 + a2{0.464h7 — 32.08 + ki}}). (14)
|

Here we have useds=a(Q?)/7,ms=my(Q?) and set IV. IMPLICATIONS FOR THE a2 PREDICTIONS AND
the normalization scalg?=Q?; results for generic values of PHENOMENOLOGICAL ANALYSIS

u can easily be recovered with the standard renormalization
group techniques. The result for the terms inD{® has

already been presented|[itl]; the coefficients of thez;1 and FAC (fastest apparent convergeha@nd PMS(principle
a? terms inDY andI1{Y, respectively, are new. of minimal sensitivity methods are both based eventually on

A. Massless case
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TABLE |. Estimates for the coefficientsl;=d{¥° and d, In general, the FAC and PMS methods correctly repro-
=d§,g)4 in the functionDE)g) based on FAC and PMS optimizations. duce the sign and order of magnitude of the higher order
The estimate for ofi{’* employs the exact value af?°. The last  coefficients. The agreement gets better when the coefficients
column contains the FAC predictions for the coeﬁicidEﬁC which happen to be large, as is the case for the quadratic mass
was obtained assuming the value &’ as given in the fifth  corrections(see below.
column; the corresponding uncertainties have been estimated as de- Taken separately, the FAC and PMS estimates of the co-
scribed in the text. efficients of then; expansion could deviate rather strongly
from the true result. However, for a given, the deviation

N dgxact dgAC d?F”MS dZAC/PMS dEAC i X n
in the predicted value of the fulD(«g) term tends to be
3 6.371 5.604 6.39 2716 145+ 100 significantly smaller than what could be expected from sum-
4 2.758 4.671 5.26 828 40+ 160 ming individual terms of then; expansion. In addition, for
5 —0.68 3.762 416 —8+44  —3+230 the particular poinh;=3 very good agreement is observed.

To illustrate this feature, let us consider the worst case:
the FAC or PMS prediction for thegnf term in the function
the concept of scheme-invariant properties and the idea mgg>. Here the ratio of the exact result relative to the pre-
the choice of an “optimal” scheme to provide better conver-dicted one is quite large@about 4. Without knowledge of the
gence of the resulting perturbative series. For both methoda2n? contribution one would expect that the uncertainty of

the optimal scheme depends on the physical observable Wae prediction for the fullad coefficient should be at least
are dealing with. With FAC it should be a scheme that mini-ground

mizes(set to zero by constructigrall the terms of order
and higher, while the F_’MS scheme is fixed by the require- (dggslexact_ dé?FIFAc)nf-
ment that the perturbative expansion for the observable is as

insensitive as possible to a change in the scheme. The agypr n,=34,5 this amounts to 9, 12, 15, which should be
sumption that a renormalization scheme is in a sense optimgbmpared to the corresponding differences of the full order
sets certain constraints on not yet computed higher ord%(ag) (summed over all contributing power of) coeffi-
corrections in any other scheme. These constraints can h&ents viz., 1,2,4. This example demonstrates that the devia-
used to “predict” (at least roughly the magnitude of these i, of FAC and PMS predictions for terms subleadinguin
corrections. © _ , may well serve as a conservative estimate of the accuracy in

For the functionDy” the result is known since long from 4 prediction of the complete terms of ordersand a’

4

Ref. [15] (see Table I, column)5 From the three entries — rpeqe ghservations motivate the assumption that the pre-
corresponding tm¢= 3, 4, and 5 one easily restores the FAC diction for the coefficientd(@* (Ed(g)4+d(g)4nf+d(g)4nf2
or PMS prediction for then; dependence of the? term in +d©%3) should also be correct within 0.2

0,3 ''f

D (the term of orden; was fixed to its computed value

(@4 @4 2
d{94=127.6- 44.1n;+3.6M?—0.0100928°.  (15) *+(dg”" exactdo” | rac)N§ -

(Note that the FAC and PMS predictions happen to coincidérhus’ in our phenomenological analysis of théepton de-

for the a;‘ term) tays the estimate
It is interesting to compare the FAC and PMS predictions

for the n; dependence of the coefficied® with the exact

result given in Eq(12). The results of both estimates are

d{@4| n—3=27+16 (19

will be used. On the basis of this improved estimate and the

d(()g)?,( FAC)=8.54—1.0131f+0.01161f2, (16) f05ur—loop,8 function[30] one may even speculate about the
ay term (whose exact evaluation is completely out of reach
@3 5 in the foreseeable futureFollowing the discussion of Ka-
de”*(PMS)=9.93- 1.2+ 0.0125¢. (170 taev and StarshenKd6], one obtains
Comparison of the complete® and partial @ results d§?l, — 3= 145+ 100, (19
with FAC and PMS estimates leads to the following obser-
vations. not far from the previous estimates of REE6]. The varia-

Starting froma?, the leading inas and r; terms of order  ion of d{9* by + 16 leads to the variation af?® by = 100.
alnf and agni are numerically quite smallat least forny  For other values ofi;, the corresponding predictions can be
<6) and, thus, should have a negligibly small influence orpbtained in the same way. They are listed in Table I.
the coefficients of thexs expansion. On the other hand, the  The FAC and PMS predictiofl5) for the n; dependence
term subleading imy, say,gogord.erc-zgnf is coTpgrable.in of the coefficiend{?* does not take into account the avail-
size with the term of ordesn; .482|m|IarIy, theagns tefT IS able knowledge of the corresponding part. One can easily
significantly smaller than thersnf one, whereas thegn;  include this by fitting the FAC and PMS predictions for only
and a2n? terms are expected to be of similar magnitude.  two values ofn; with alinear function ofn; . As a result one

074026-4



TOWARDS ORDERcv;1 ACCURACY IN 7 DECAYS PHYSICAL REVIEW D67, 074026 (2003

obtaing (we have boxed the predicted coefficients in order to ~ Similarly, we can use the contour improved formulas

separate them clearly from the input [17,18 [assuming as reference valug(M ;) =0.334[1]] to
get
AP (FAC/PMS,n,=3,4)=|105.7—31.8n; |+ 1.875n2
¢ ! d / ROI=3(1+1.364+ 2.5%&2+9.71a3+ 1.31a%d{®
—0.01009n} . (20
+0.952d{¥°) (26)

dEP*(FAC/PMS,n;=4,5)=107.7—32.3n; |+ 1.875n;

or, equivalently,
~0.0100977, (21
RS'=3[1+1.364,+2.542+9.71a3+ aZ(35+ 20)

dP*(FAC/PMS,n;=3,5)=|106.4—32.0n; |+ 1.875n}

+a3(138+95)]. (27)

—0.010097. (22
Let us compare our new value for the coefficiefft* in

One could now perform a self-consistency check of Table g. (18) with the ones used in extractimg(l\/! ») from 7 data
by predicting, say,d®* for n;=5 from Eq. (20). The y the OPAL[2] and ALEPH[1] Collaborations, namely,

result—(— 7.5).—|s compared successfplly to th_e yalue listed dgg)4|n _,=25+50 (OPAL), 5050 (ALEPH).

in the table, viz.—8. The corresponding predictions from f

Egs. (21) and (22) are also in very good agreement with

Table L. ) ) _ The OPAL central value is basically the same as ours. In the
An instructive example of how knowledge and inclusion case of ALEPH the central value is significantly larger than

of the subleading; term can improve FAC and PMS pre- oyr number. In this connection, we would like to stress that

dictions is provided by théexactly known coefficientd{®®.  Eq. (18 utilizes completely new nontrivial information

Indeed, assuming the knowledged@fj%s anddgﬁ’}s and using  given in Eq.(12): the subleading term in the; term of order

the values otl5*® andd5"® (atn;=3) as given by Table I, .

one easily arrives at It is of interest to see in detail what accuracy in the de-

termination of ag(M,) one could achieve assuming Egs.

dP(FAC)=(17.48|—4.216n,+0.08621n;  (23)  (18),(19). Let us introduce the qualityp as follows:

(28)

and I'(7—hs_ov)

2 = |Vid 2SenR 29
T(rToy) [Vudl*SewR;, (29

Rrs—0=

d®*(PMS)=18.27| —4.216n,+0.08621n7,  (24)

which should be compared to the exact vaﬁﬁ,f!%3= 18.24.
Repeating the same exercise figr=4,5 we get 20.16FAC) R;=3(1+ 6p+ Sewt Onp)-

and 20.75PMS) for n=4 as well as 22.69°AC) and 23.08 The first term here is the parton result, the second stands for

(Pl\lg?a];ﬂgn{:;ind that in many cases FAC and PMS pre_perturbative QCD effects. The nonperturbative correction

dictions made fom;=3 are in better agreement with the represented bydye happens to be rather smalbyp=

exact resultgsee, e.g., Table | and tables from Rdf6]), we —0.003£0.003(see, e.g[21]). Here the flavor mixing ma-

H 2__
suggest Eq(20) as the best FAC and PMS prediction for the t_”)i Sllegrzeiryt\t/wuedel_egt'?o‘lv:ig ggrlrg([j(l)]n -\If—vhh?c;af:tglrlsgt\g the
constant term and the term linear m in the coefficient | ™

4(@4 large logarithmic term$32], while 5g\=0.001 is an addi-
0 0 . . . . .
Equations(18),(19) can be used to prediet, in the mass- tive electroweak correctiof33]. Using for definiteness the

less limit first in fixed order perturbation theotlfOPT) latest result of ALEPH as quoted [84]

with

R.s_o=3.480+0.014, 30
RFOPT_3[ 1+ ag+5.2022+ 26.3%3+ a%( 105+ 16) 570 80

5 one arrives at
+a2(138+230+100)]. (25

55P'=0.203+0.006. (31)
Here ag=ay(M,)/7. The first uncertainty in the1§ term
comes from that ot while the second is our estimation To get a value forg(M ) one should simply fib® against
of the error in the very coefficierd{¥). (Of course, within  R,/3—1 as given by Eq(25) or by Eq.(27) to get a result
this approach they are strongly correlajed. corresponding to FOPT or CIPT.
Unfortunately, there is no unique way to assign a theoret-
ical uncertaintydag to the obtained value af(M,). In the
2We thank Matthias Steihnauser and Robert Harlander for a usefiiterature one finds several suggestions. Let us consider them

discussion of this point. in turn.
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(1) das is a half of the shift inas induced by the last fully  yes ofd{®* andd{?® we observe a significant decrease of the
computed term in the PTthat is, by the one of ordex? at  , dependence after inclusion of additional terms in the
presenk series.

(2) asis equal to the change ias caused by varyingthe  OQur final predictions foreS°" (M) and «$'P(M ) are
normalization poinfu aroundM ., typically within the range  given in the first column of Table IlI, together with experi-
of 1.1-2.5 GeV. mental errof and the combined theoretical uncertainty. The

The corresponding results redittrms of orderag and  values of theory uncertainties are listed separately in col-
higher in Eq.(25) and in theD function have been set to umns 3, 4, and 5. The corresponding values at the scale of

zerq| M are
FOPT, _
ag™ (M) =0.34+(0.0240.035, (32 P (M) =0.1188+ 0.0007+ 0.002, (36)
a5""(M,)=0.358+(0.0110.029). 33 2SPT(M)=0.1213+ 0.001= 0.0006 37)
¢ . . .0006.

Here the first(second value in parentheses corresponds to Thus we observe that the total uncertainty based on a
the use of the firstsecond suggestion for the error estima- combination of not yet calculated higher order termsge-
tion. After evolution fromM . to M this corresponds to pendence, and scheme dependence is reducedagrieems

are available. However, the difference between FOPT and
(34 CIPT results of roughly 0.02 is a remaining, at the moment

irreducible uncertaint§.
(35) It is thus of interest to study this difference as a function
of m,. In practice, this could be applied to sum rules for
spectral functions as determinedéfie” annihilation.

Therefore, let us consider the hypothetical case af a

lepton with mass equal to 3 GeV. Assumiag(1.77GeV)
=0.334 and running this value to 3 GeV via the standard
four-loop evolution equation, one gets(3GeV)=0.2558
and predicts

afOPT(M,)=0.1204* (0.00240.0036,

a$'PT(M;)=0.1223(0.00110.002.

(3) dag is equal to the change iag caused by the uncer-
tainty in the predictedthat is not yet completely known
higher order terms in the perturbative series Ryr.

(4) dag is a half of the difference in they(M,) as ob-
tained within FOPT and CIPT. This difference comes from
different handling of higher order terms.

In order to quantify the error estimates according(3p 55P=0.1353,
and(4) we show in Table Il the results fat,(M ,) obtained

with various choices fodi?*, di?’°, andu. The entries with  \yhich corresponds to Eq25) with the * and o® terms
the choices+100 for the coefficients illustrate the large fixed to their central valueksee Eqs(18),(19)]. Let us now
change ina that would result from a failure of PMS and jyyestigate the results fars and the theory error that would
FAC once higher order terms are included. For plausible valyog it froms$®'=0.1353 as a starting point. The correspond-

] ) ing analogues of Eqg32)—(35) and Table Il are displayed
TABLE Il. The predicted value of(M ) in dependence on the below as Eqgs(38),(39) and Table 1V, respectively. The dif-

o e e e memer it smuromtuelSreNCe between FOPT and CIPT decreases signifcantly, and
series included. The upper value @f is the one predicted within this remains true even after extrapolatingaig(Mz):

FOPT, the lower corresponds to CIPT. The uncertainty in the value

of a5 corresponds to changing the normalization pgirds follows: af°F1(3 GeV)=0.263+(0.0130.019), (38
M2/M§=O.4—2. The entry with a question mark means that the
equation forag(x) does not have a solution for some valuegof aSCIPT(3 GeV=0.265+- (0-0050-008, (39)

within the interval.

d(@4 al d(s al at°P (M) =0.1198+(0.0020.003, (40)
27 0.3270.02 145 0.326:0.02
0.351+0.009 0.34%-0.004 3according to Eq(3D) the | includ | o
43 0.326-0.02 245 0.3210.01 g to Eq.(31) the latter inclu 9$smab uncerta_unhes in
0.347+0.01 0.343-0.005 the values OfVud! and the nonperturbatllve (:orre.ctmi?ﬂP in addi-
tion to the experimental errgrer seas displayed in Eq.30).
11 0.329-0.02 45 0.332 72 “This is in agreement with the analysis of REF5], where it was
0.355+0.008 0.355:0.002 concluded that “the resummed values @f from 7 decay lie out-
100 0.32:£0.02 100 0.31+0.01 side the convergence radii and can therefore not be obtained from a
0.335-0.01 0.33%0.006 power series expansion. Regular perturbation series do not converge
—100 0.344: ? —100 ? to their resummed counterparts. The experimental valuR cdp-
0.391+0.03 0.394 ? pears to be too large for a fixed order perturbation analysis to ap-

ply.” See also[36)].
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TABLE lll. The value of ag(M,) obtained withs&®, d{®*, and d{¥® fixed to their central values
according to Eqs(31),(18),(19) together with corresponding errors.

Method as(M,) A5 Aup Ad{@4 Ad{@®
FOPT 0.326:0.006,,+ 0.02pe0 0.0055 0.016 0.0044 0.0011
CIPT 0.349- 0.008,,, 0.006e, 0.0079 0.0036 0.004 0.0018

aS®T(M;)=0.1203+ (0.0090.0018. (41)
The same coefficients{9* andd{®’® can be used to pre-
dict [15,16 (the nonsinglet part ¢fcorrections of ordersz‘s"
and a2 to theR ratio in Z decays:

R(Ng=5)=1+ay+1.40%;—12.7%+ (- 97=44)a]
+(76+230)a2.

It is also of interest to displayr(s) for n;=3 and 4,
which is accessible a&*e~ colliders at lower energies,

R(nf=4)=1+as+1.5282—11.523+ (—112+30)a?
+(— 245+ 160)a2,

R(n;=3)=1+as+1.6402—10.2&3+ (— 129+ 16)al
+(—635-100)a2.

Our results are close to those [d5,16]; they employ, how-
ever, the additional information frofri1,30.

B. Quadratic mass corrections

Let us first discuss the functidd!® . The FAC and PMS
predictions can easily be obtained followifg7]; they are
listed in Table V.

We again restore th@; dependence of the coefficient
d{®* as predicted by FAC and PMS:

d9% FAC/PMS = 1931.44- 281.956; + 9.0294?
—0.01562887%, (42
as well as that ofi{9?,

d\@3(FAC)=123.654- 11.663%);+0.1332987, (43)

d®3(PMS)=125.975-12.002% +0.134769?, (44)
to be compared with

d{93%(exach =148.978- 14.3097;+ 0.164637.

The comparison of estimates and exact results reveals a pic-
ture qualitatively similar to the massless case but with some
modifications. A few important observations are in order.

These formulas demonstrate rather good convergency for (1) All three terms of then; expansion ofd(zg)3 are suc-

n{=5 and a reasonably good one foy=3 and 4 if our
predictions for the coefficientd@*,d{?® deviate from the
true values within the assumed error margins.

TABLE IV. The predicted value oftxs(M,) in dependence on
the chosen values for the coefficien®*, d{¥° for the hypotheti-

cessfully predicted within about 20% accuracy.

(2) Unlike the massless case the agreement between the
FAC and PMS predictions for the coefficiedt?* for n;
=3,4,5 and the corresponding exact numbers is within the
range of 15-20%. On the other hand, the estimation of the
accuracy of thex§ fixed n; predictions obtaine@xclusively

cal case oM,=3 GeV. The third and fourth columns differ in the from knowledge of the subleading contribution ©f agnf)
number of terms in the perturbative series included. The uppefs of the right order of magnitude but somewhat less. All this
value ofag is the one predicted within FOPT, the lower correspondsiS probably a consequence of a significantly largeinde-

to CIPT. The uncertainty in the value af corresponds to changing

the normalization poinju as foIIows:,u2/M§=0.4—2. The entry
with a question mark means that the equationdg(M ) does not
have a solution for some value gf within the interval.

T o s
27 0.256+0.007 145 0.256:0.003
0.262+0.004 0.2610.002
43 0.256+0.007 245 0.254 0.003
0.26+0.004 0.259-0.002
11 0.257-0.006 45 0.258 0.005
0.264+0.003 0.2630.001
100 0.253-0.008 100 0.2490.004
0.255+0.008 0.254-0.002

—100 0.264-0.01 —100 0.27%"?
0.279+0.02 0.28-0.002

pendent contribution.
(3) At O(a‘s‘) the exact result for the full coefficient

AP dgh+ o+ o + Ay

is unknown, apart from its leading and subleading terms in
ny. The prediction for the subleading coefficiedtf)'=9.0
is larger by 50% than the exact value 6.07. The predicted
values ford(z‘:’())4 and d(z?%“ are very large. In view of this
largeness, the estimatd$)*|cxac— d55% ac) n? (=30,50,80
for n;=3,4,5, respectivelylooks somewhat too optimistic.
Therefore we assign a conservative 30% uncertainty to the
fixed n; predictions listed in the fifth column of Table V.
Finally, we repeat the analysis for the functiBi§® . The
results of FAC and PMS optimization methods are given in
Table VI. Using the values ok;™* from the table forn;
=3,4,5 we reconstruct the corresponding fulldependence:
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TABLE V. Estimations of the coefficientsl;=d{¥® and d, TABLE VI. Estimates of the coefficient&;=k{* and k,
=d{®* in the functionD{? based on the FAC and PMS optimiza- =k{™* in the functionII{? based on the FAC and PMS optimiza-
tions. The estimation of{?* employs the exact value af¥*. tions. The estimate d€{* employs the predicted value fég; the

corresponding uncertainties include only the ones induceki;by
nf ngaCt dgAC dgMS dzACIPMS
N kgAC k3PMS kEMS

3 107.5 89.86 91.17 1266400

4 94.37 79.13 80.11 950300 3 199.1 20&:60 2200+ 1500

5 81.54 68.66 69.33 750200 4 171.2 17650 180G+ 1100

5 144.7 14540 140G+ 900
k{93=294.472-33.242%+0.6965987 . 5

~ m
520 ,= —8M—52[1.44+ 3.65,+30.92+72.223+ 1.183Kk{? 3

The comparison with the known terms of ordgrand nf
(—32.0843),0.464668 %) demonstrates a remarkably
good agreement for the subleadimgcontribution. The 50% 5

error in the predicted value of tmf contribution looks natu- _ —8E(1 44+ 0.389+0.349+ 0.371+0.403
ral as the corresponding coefficient is small. Following the 20 ' ' ' '
same line of reasoning as above we have assigned a 30%

+a2(0.67&819%+ 1.0&{V%) ]

T

uncertainty to theD(a?) fixed n; result. m?2
To get a general idea about the size of #fecontribution =T 8W(3-0i 0.4). (46)
to Eq. (14) we used FAC and PMS and the predicte@ T
coefficient. The results are listed in the fourth column of Now we consider the contributions of spin 1 and spin 0
Table VI. separately. The lowest momentd £0) of the spin-

Let us now consider the effect @nf and a‘s" corrections  dependent functions depend on a nonperturbative quantity
on the determination of the strange quark nta¥fe mass and thus cannot be treated perturbatively in princile

correction toR, depends on both the functiori3{¥ and For the spin one part and fok{)=(0,1) we find
I, Let us use the central ALEPH value afy(M,) ,

=0.334 when estimating the size of the perturbative correc- S0L —Sm—sz[1+4.8:h+35.7a§+276a§
tions. For fixed order one finds the mass correction to the ’ "

total rate:

+a2(1350+dP%)]

2 2

ms =—5—(1+0.514+ 0.404+ 0.331+ 0.32
800 ,= 8 5[1+53%+ 46.0a2+ 284a3+0.753ki"? M2 ( 9
+ad(723+0.25P%+ 9.84& 3+ 0.7% )] m2
=—5—(2.6+0.3 (47)
m?2 M
=—8—(1+0.567+0.520+ 0.521+0.593
M2 and
2 2
My (1)01 Ms 2 3
= —SW(&Zi 0.6), (45) 5= _SW(1'37+ 2.55+16.1a%+ 1357

+0.8932d9%)
where in the last equality we have assumed (imexima)
value of theO(a?) term as an estimate of the theoretical
uncertainty(this convention will also be used belpw
For the “contour improved” series one obtains

2
m
= —5M—52(1.37+ 0.271+0.182+0.163+0.137

T

2
mS
=5 S 0.15. (49)

T

°For a recent review of various attempts to extract the strangéNote that the spin 1 contribution is determined by the com-
quark mass fronr data, see Ref10]. ponentII¥ alone and is known up to third order. Clearly,
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this series is decreasing in a reasonable yeaynparable to the 7 decay are presented. Arguments are presented in sup-
the behavior of&ooz) and, at the same time, is only moder- port of predictions for the remaining terms of ordgin; and
ately dependent on the improvement prescription W|tha wh|ch are based on FAC or PMS optimization. The
gls)gl/(sgls)gl 0.82. On the basis of Eq48) this moment complete calculation will lead to a reduction of the theory
might well serve for a reliableng determination, with a suf- uncertainty within the frameworks of FOPT or CIPT down to
ficiently careful interpretation of the theoretical uncertainty. a negligible amount. However, an irreducible difference be-
The corresponding spin zero part [gr se proportional tween the results from these two schemes dofy(M ;)
to m§ (not counting nonperturbative, so-called condensate=0.02 corresponding téag(M7)~0.002 persists even after
contributiong and thus could be considered as ideal for ainclusion of O(«2) [and evend(«2) termg. Similar inves-
measurement ahs. However, the behavior of the perturba- tigations based on data up to higher enerdies., for a

tive series fictitious heavy lepton of 3 GeV for sum rules based on
e’e” datg would lead to significantly smaller errors.
5&05)31 3m 2[1+9 33+ 11082 + 13233+ a%(12200 New contributions of order®(m2a2n?) and O(«2n?) to

(axial) vector correlators relevant for the QCD description of

()4 (@3 the semileptonie- decay into hadrons are obtained. The mo-

+d94417.53%)] mentsR(®? and R are evaluated separately for spin zero

and spin 1 final statd$]. The results are tested against pre-

dictions of FAC and PMS optimization methods. Good
agreement is found. This has motivated us to take the full set

2
m
=M—52(1+ 0.992+ 1.24+ 1.59+ 2.16)

! of FAC and PMS predictions as the basis for a new extrac-
3 m§ tion of g andmg from 7 decays Witr(’)(a‘s‘) accuracy. Using
=3 W(mi 2) (49 62%'=0.203 we find 0.326 and 0.1188 farz°" (M) and
T atOP(M,), respectively. In the framework of contour im-
and proved evaluation these values increase to 0.349 and 0.1213,
respectively
0)0L_ 2 5 5 aL(0)3 In contrast to the massless result, the PT series contribut-
52t= [3 19+ 11.22+ 12685+ 28% +6.63a.k; ing to them?2-dependent part seem to be barely convergent
and the additional higher order terms seemingly do not lead
+ as(2.71d(29)4+ 7.760%) ] to any significant improvement of the theoretical accuracy in
the determination of the strange quark mass frodecays. A
3 m§ slightly more favorable pattern of convergence is observed
=3 W(3-19+ 1.19+1.42+1.94+2.6) for the moments of the spin 1 contribution separately.
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