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Infrared renormalons and analyticity structure in perturbative QCD
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The relation between the infrared renormalons, the Borel resummation prescriptions, and the analyticity
structure of Green’s functions in perturbative QCD is investigated. A specific recently suggested Borel resum-
mation prescription resulted in a principal value and an additional power-suppressed correction that is consis-
tent with operator product expansion. Arguments requiring the finiteness of the result for any power coefficient
of the leading infrared renormalon, and consistency in the case of the absence of that renormalon, require that
this prescription be modified. The apparently most natural modification leads to the result represented by the
principal value. The analytic structure of the amplitude in the complex coupling plane, obtained in this way, is
consistent with that obtained in the literature by other methods.
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Green’s functions in QCD are quantities which, in ge
eral, are known to possess renormalons, i.e., singularitie
the Borel transform on the real axis@1#. They appear as a
consequence of the specific asymptotic behavior of the h
order perturbation coefficients. The singularities on the po
tive axis, called infrared~IR! renormalons, represent an o
stacle to the Borel integration and lead to the well-kno
renormalon-induced ambiguity for the observable. The m
widely used prescription for fixing this ambiguity has been
perform the Borel integration parallel to the positive real a
and take the real part of the resulting integral~principal
value; see, e.g., Refs.@2,3#!. This prescription in perturbative
QCD ~PQCD! was shown to be favored by or to be cons
tent with analyticity requirements in the momentum pla
@4# and in the coupling parameter plane@5#. Further, this
prescription is attractive due to its mathematical simplicity
the QCD quantity under consideration can be presented
operator product expansion~OPE!, then any additional, non
perturbative, terms are expected to have the pow
suppressed form of the higher-twist terms. Perturbative Q
involving the quark and gluon degrees of freedom is usu
expected to be unable to predict the strength of such ter1

Recently, a specific prescription, based on IR renorma
considerations, has been proposed@6# to fix the strength of
such higher-twist terms, and this method gave encourag
numerical results in the case of the resummation of
Gross–Lewellyn-Smith sum rule and of the heavy-quark
tential @7#. The main observation was that the IR renorma
induces in the Borel-integrated quantity a nonphysical
along the positive axis in the complex plane of the coupl
parameterz, and that this cut structure can be naturally elim
nated by subtracting a cut function proportional to (2z)n

wheren is related to the power coefficient of the renormal
singularity. Further, the energy dependence of the subtrac
term, when the coupling parameterz is positive, is consisten
with the predictions of OPE for the corresponding high
twist term. For positivez, the result is the principal value o
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1The IR renormalons predict the energy dependence of s
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the Borel integration minus the aforementioned term.
somewhat speculative interpretation of this result sugg
that in this way the dominant part of the genuine nonpert
bative higher-twist effect is obtained~the correction term to
the principal value!, although the method is based on pertu
bative ~PQCD1renormalons! knowledge only. A more con-
servative rephrasing of this would be that this result rep
sents ‘‘the most that we can get’’ out of PQCD, i.e., t
natural basis to which one should eventually add other c
tributions to the aforementioned higher-twist term; su
genuine nonperturbative contributions would involve t
vacuum expectation values of the higher-twist operators
pearing in OPE.

In the present work, the aforementioned method is scr
nized. As a result, more support is given to the second of
two mentioned interpretations of the PQCD renormalon
summation results. Even more, the results suggest that
natural resummed perturbative contribution is just the pr
cipal value of the Borel integral, without the aforemention
higher-twist term. As a by-product, some insights into t
role of the IR renormalons in the analyticity structure of t
PQCD amplitudes in the coupling plane are obtained.

Let us consider a Euclidean QCD amplitudeD@a(Q)#,
where the quark mass effects are neglected. Therefore, it
be regarded as depending on the energyQ[A2q2 of the
corresponding process only via the QCD coupling param
a(Q)[as(Q;MS)/p whose running is determined by th
@modified minimal subtraction scheme (MS)] renormaliza-
tion group equation

]a~m!

] ln m2
52b0a2~11c1a1c2a21c3a31••• !. ~1!

For simplicity of argument, we will consider only the effec
of the leading IR renormalon and will neglect the sublead
IR renormalons. We will also assume that such an amplit
can be described by OPE.

First, let us review the method of Ref.@6# in detail. The
presentation of the method is here somewhat different.
Borel transformB(b) of D@a(Q)# has a singularity atb
>n (n51, or 2, or 3, . . . ) of theform

ch
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B~b!5
C

~12b/n!11n
@11k1~12b/n!1k2~12b/n!2

•••#

1analytic part. ~2!

Here n5(nc12g2n)/b0, whereg2n is the one-loop coeffi-
cient of the anomalous dimension of the correspond
higher-twist operator~with dimensiond52n) in OPE for
D@a(Q)#. In the following, we will ignore the contributions
of the terms with coefficientsk j ( j >1), since their inclusion
is straightforward (n°n2 j ) and does not affect the conclu
sions. For definiteness, the renormalization scalem is taken
to bem5Q, and the renormalization scheme is also regar
as fixed, e.g.,MS. We will regard the coupling to be comple
in general, z[b0a(Q)/n5uzuexp(if), corresponding to
complex momentaQ. Then the Borel integralDBI(z) can be
defined as

DBI~z!5
1

b0
E

0

1` exp(if)

db expS 2
b

nzDB~b!

~z5uzueif,b5ubueif!. ~3!

For z near the positive real axis,z5uzu6 i« @ uzu
5b0a(Q)/n.0#, it is straightforward to show from Eq.~3!,
with the help of the Cauchy theorem, the following formu

DBI~z!uz5uzu6 i«

5
1

b0
E

6 i«

1`6 i«

db expS 2
b

nuzu DB~b!

~«→10!. ~4!

The real part of this is the principal value. As a conseque
of the IR singularity~2! at b>n, the integral~3! has a dis-
continuity ~cut! at the positive real axisz>0; namely, the
quantity ~4! is not real and its discontinuity shows up in i
imaginary part. This can be seen by introducing in the in
grand of Eq.~4! the new complex integration variablet via
b5n(11uzut):

Im DBI~z5uzu6 i«!56
1

2ib0
E

Ct

db expS 2
b

nuzu D
3

C

~12b/n!11n

57C
n

b0
e21/uzuG~2n!sin~pn!uzu2n.

~5!

The~Hankel! contourCt is depicted in Fig. 1, and the expre
sion ~5! is obtained from the known Hankel contour form
the gamma function~see, for example,@8#!
07402
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G~s!sin~ps!5
p

G~12s!

51
1

2i ECt

dte2t~2t !211s ~ usu,`! ~6!

in the special casess52n,2n11, . . . . Because (2uzu
7 i«)5uzuexp(7ip) and thus (2uzu7 i«)2n5uzu2n@cos(pn)
6i sin(pn)#, Eq. ~5! leads to

DBI~z!52C
n

b0
e21/zG~2n!~2z!2n1D̃BI~z!, ~7!

where D̃BI(z) is a function without cuts in the complexz
plane since the first expression on the right-hand side abs
the renormalon-induced cut~5! at z>0. The first expression
whenz5uzu6 i«5b0a(Q)/n6 i« is at the real positive axis
has theQ dependenceQ22nas(Q)g2n /b0@11O(as)#, the
same as the corresponding power-suppressed~higher-twist!
term ^O 2n&

(Q)/(Q2)n in OPE. The imaginary part of this
expression, i.e., expression~5!, must be identified as the
imaginary part of the contribution from the leading IR reno
malon ~2!. The central assumption of the method is that t
full first expression on the right-hand side of Eq.~7!, which
contains the full nonphysical cut~5! alongz.0 and no cut
alongz,0, represents the nonphysical cut function which
to be eliminated:

D (cut1)~z!52C
n

b0
e21/zG~2n!~2z!2n

5C
n

b0
e21/z

p

G~11n!sin~pn!
~2z!2n. ~8!

This same cut contribution, forz5uzu6 i« at the positive real
axis, can be obtained also by Borel-integrating the nona
lytic part of the Borel transform~2! along its cutb.n above
or below the real axis, in analogy with the full Bore
integrated quantity~4!. To show this, we use the new re
integration variablet such thatb5n(11zt), and therefore
b.n6 i« corresponds tot.0:

FIG. 1. The pathCt in the integrals~5! and ~6!.
2-2
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DBI
(nonan)~z5uzu6 i«;b.n!

5
1

b0
E

n6 i«

`6 i«

db expS 2
b

nzDB(nonan)~b! ~9!

51C
n

b0
ze21/zE

0

1`

dte2t~2z!212nt212n ~10!

52C
n

b0
e21/zG~2n!~2z!2n. ~11!

For z away from the real positive axis, the analytic contin
ation of this expression inz keeps its form~11! unchanged,
i.e., precisely the cut function~8!. The Borel integration over
t.0 (⇔b.n6 i«) in Eq. ~10! converges only when Re(n)
,0 and gives the result~11!. When Re(n)>0, the result
~11! represents the analytic continuation inn.

The subtraction of the cut-function contribution~8! leads
to the final result for the resummed value of the observabl
the positive real valuez5uzu5b0a(Q)/n.0:

D@z5b0a~Q!/n#5DBI~ uzu6 i«!2D (cut1)~ uzu6 i«!

5D̃BI@z5b0a~Q!/n#

5@Re7cot~pn!Im#E
6 i«

`6 i«db

b0

3expF2
b

b0a~Q!G R~b!

~12b/n!11n
.

~12!

In the Borel integration here, the exactly known IR renorm
lon singularity has been factored out explicitly. The functi
R(b)5(12b/n)11nB(b) ~whose truncated perturbation s
ries up to;b2 is known exactly in the case of several QC
observables! has a much weaker singularity atb5n than
B(b). In Eq. ~12!, the equality ReD (cut1)(uzu6 i«)5
6cot(pn) ImD (cut1)(uzu6 i«) was taken into account, a direc
consequence of Eqs.~5!, ~7!, and (2uzu7 i«)2n

5uzu2n@cos(pn)6i sin(pn)#. The results~8! and ~12! are
those arrived at in Ref.@6#.

The renormalon power coefficientn5(nc12g2n)/b0
should be regarded as a general parameter which can tak
in principle, any~real! value. For example, when varying th
number of effectively active quark flavorsnf continuously,n
changes continuously. Yet another example is given by
large-b0 approximation, whenc1→0 andn→0. The residue
C of the renormalon in general does not vanish in the lar
b0 limit.

The cut function~8!, as a function of generaln and when
the coupling parameter is near the positive real axisz6

5uzu6 i«5b0a(Q)/n6 i«, can be rewritten in the following
form:
07402
-
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-

on,

e
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D (cut1)~z5uzu6 i«!

52C
n

b0
e21/uzu @2p cot~pn!7 ip#

G~11n!
uzu2n.

~13!

The central assumption of the method, i.e., the subtractio
the cut function~8! from the Borel-integrated value, appea
to be plausible and natural, especially because the cut fu
tion ~8! @⇔ ~13!# has a simple form, and because it repr
sents precisely the contribution of the Borel integration
the nonanalytic part of the Borel transform~2! along the cut
b>n parallel to the real axis, as explained in Eqs.~9!–~11!.
However, there are at least two problems with this meth
when we impose on it the plausible condition that it shou
work for any ~real! value of the power coefficientn.

~1! When n is a non-negative integer (n5k; k
50,1,2, . . . ), the cut function ~13! is infinite, because
cot(pn) diverges there. This would not present a problem
the residueC of the renormalon disappeared, making this c
function finite. This appears to be unlikely, as argued abo
in particular, for the Adler function in the large-b0 approxi-
mation (n52,c150,g450) this would mean the disappea
ance of the leading IR renormalon. Note that, in contras
cot(pn), the factor 1/G(11n) in Eq. ~13! is an analytic func-
tion in the entire complexn plane.

~2! Whenn is a negative integern521,22, . . . , the IR
renormalon singularity~2! with the cut disappears~even
whenC5” 0), and the Borel transform is analytic. This mea
that D (cut1)(z) must be zero. However, according to Eq.~13!
D (cut1)(z)5” 0—note thatp cot(pn)/G(11n)5(21)k(k21)50
whenn52k521,22, . . . .Again, it is the poles of cot(pn)
that cause the problems, but this time atn521,22, . . . .

If we take the viewpoint that the method should be tak
as the starting point nonetheless, because of the mentio
plausibility and naturalness of the choice of Eq.~8!, we
should definitely modify it so that the aforementioned tw
problematic points are eliminated. This can be done in
natural way, by inspecting again the expression~13!. The
two problematic aspects arose because of the poles of
term cot(pn), at n50,61,62, etc. The function f (n)
5cot(pn) should thus be regularized in order to elimina
both problems. The apparently most natural regularizatio
obtained by subtracting simple pole functions with the co
ficients equal to the residues off (n) at those poles. This
gives

2pcot~pn!°2pcot~pn!1
1

n
1 (

k51

` S 1

n2k
1

1

n1kD
~14!

52p cot~pn!1
1

n
12n(

k51

`
1

n22k2
[0.

~15!

We see that the function cot(pn) is identical to the sum of the
corresponding simple pole functions. Only some of t
2-3
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meromorphic functions have this remarkable property. T
procedure~14!,~15! therefore eliminates the real part of th
cut function ~13! at the real axisz5uzu6 i«; the modified
expression there is purely imaginary. The final result of
modified method is then just the principal value~PV! of the
Borel integral, whena(Q).0,

D@z5b0a~Q!/n#5ReDBI~z6 i«!

5ReE
6 i«

`6 i«db

b0
expF2

b

b0a~Q!G
3

R~b!

~12b/n!11n
, ~16!

and the new cut function can be written for a general co
plex z as

Dcut
(PV)~z!51C

n

b0
e21/z

p

G~11n!sin~pn!

3@~2z!2n2cos~pn!z2n#. ~17!

It can be checked explicitly that this function is finite for an
finite complexn, including n50,61,62, . . . . It is anana-
lytic function of z outside the real axis, with the cut along th
real axis. The subtraction of the poles of cot(pn) ~15! intro-
duced in Eq.~17! terms proportional toz2n. The consistency
of the results forn50,61, . . . thus introduced an additiona
cut along the negative real axis.

In general, any regularization inn of the singular cot(pn)
factor in Eq.~13!, not just the simplest regularization~14!,
would give an acceptable result. The factor 1/G(11n) is
already nonsingular~even analytic! for all n. The factor
exp(21/uzu)uzu2n in Eq. ~13! cannot be modified because
reflects the correctQ dependence of the aforemention
higher-twist term^O 2n&

(Q)/(Q2)n in OPE. The imaginary
part in Eq.~13! cannot be modified because it is needed
make the amplitudeD(z)[DBI(z)2Dcut(z) real for real
positivez. Therefore, the most generaln regularization of the
cut function ~13! for z5uzu6 i« is represented by a simpl
substitution cot(pn)°g(n), whereg(n) is an arbitrary non-
singular ~possibly analytic! function of n which is real for
real n:

Dcut~z5uzu6 i«!52C
n

b0
e21/uzu @2pg~n!7 ip#

G~11n!
uzu2n.

~18!

This cut function then has the following form in the compl
coupling plane:

Dcut~z!51C
n

b0
e21/z

p

G~11n!sin~pn!
$~2z!2n2@cos~pn!

2g~n!sin~pn!#z2n%. ~19!

Again, as in Eq.~17!, we see that then regularization intro-
duces an additional cut along the negative axisz,0. The
amplitudeD[DBI2Dcut is now represented by the princip
07402
e

e

-

o

value and a higher-twist term proportional tog(n), where
g(n) is nonsingular inn. We stress that any such choice
physically acceptable, the principal value choice being d
tinguished in this context only by the mathematical simpl
ity of the correspondingn regularization~14!,~15!.

The main idea behind the result Eqs.~8!,~12!, as stressed
in Ref. @6#, was that the cut function which is to be su
tracted from a Borel-resummed QCD amplitude with an
renormalon has a cut only along the positive axis in
coupling planez[a(Q). In the two exactly solvable non
QCD examples presented in Ref.@6# this idea was shown to
hold. Here we showed that the requirement of finiteness w
respect to the IR renormalon power parametern in QCD
amplitudes, and their consistency in the absence of the
renormalon, imply that the cut function must contain, in a
dition to the cut along the positivez axis, a cut along the
negativez axis also. This, in turn, implies that the amplitud
D(z)[DBI(z)2Dcut(z), while having no cut on thez.0
axis in accordance with the unitarity and causality conditio
@9#, does have a cut along thez,0 axis~Landau region! as a
consequence of the IR renormalon.2 This somewhat counter
intuitive conclusion was also obtained in Refs.@4,5# by sub-
stantially different approaches, where the principal value p
scription was adopted. If the considered amplitude h
ultraviolet ~UV! renormalons, it should have a cut alongz
,0 even if it has no IR renormalons. If the couplinga(Q) is
regularized so that it is finite for allQ2>0 ~see, e.g.,@12–
16#!, i.e., in contrast to the PQCDa(Q) it has no Landau
singularities, the conclusions about the analyticity of the c
sidered amplitude in the complex coupling plane proba
change singnificantly.

The IR renormalons also play an important role in t
resummations using modified Borel transforms where the
tire integrand in the Borel integration is renormalizatio
scale ~RS! invariant. Such transforms were introduced
Grunberg@17# on the basis of a larger class of transform
proposed in Ref.@18# in a somewhat different context. Suc
RS-invariant Borel transform resummations were applied
Refs.@19,20#, by either evaluating the principal value of th
Borel integral @19# or adding to the principal value th
higher-twist OPE terms@20#. The discussed method of Re
@6#, for the ordinary Borel transforms~3!, can be adapted to
the method of RS-invariant Borel transforms. The proble
~divergences! appearing in this case are similar to those d
cussed here, but algebraically more complicated. It is
clear whether in such cases an analogous regularization
cedure as the one presented here would lead naturally to
principal value of the RS-invariant Borel resummation.

In the present work, the method of subtracting a pow
suppressed term from the principal value of the Borel in
gral for QCD amplitudes with IR renormalons, recently pr
posed in Ref.@6# and applied in Refs.@7#, was scrutinized. It

2According to Ref.@9#, the physical singularities in confined theo
ries are generated by the physical hadron states. The pointz50 is
an essential singularity@10,11#. The confinement is not seen b
PQCD; thus the cut alongz,0 ~Landau region! is not physical but
must appear in quantities involving PQCD couplinga(Q).
2-4
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was pointed out that the result becomes physically unten
for specific values of the renormalon power coefficientn, as
a consequence of the divergences of the term@cot(pn)# ap-
pearing in the result. When these divergences are remove
apparently the most natural way, the power-suppressed
of the method disappears and the modified result beco
the principal value. Any removal of the aforementioned
vergences results in an IR-renormalon-induced cut along
negative axis~Landau region! in the coupling plane. Thes
conclusions suggest, among other things, that the most n
ral PQCD Borel integration of a QCD observable rema
the principal value. The additional power-suppress
~higher-twist, higher-dimensional! terms cannot be inferred
from PQCD ~1renormalon! methods in any natural way
Such additional~OPE! terms involve vacuum expectatio
.
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07402
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values of higher-twist operators and can theoretically be
tained or estimated only by genuinely nonperturbative me
ods. Phenomenologically, such additional OPE terms can
determined by fitting them to the corresponding experimen
data. However, in such a procedure, it is important to ke
for the leading-twist term in OPE a specific resumm
PQCD expression, most naturally the principal value of
Borel integral, i.e., Eq.~16!. On the other hand, if the
leading-twist term is taken to be a truncated perturbat
series ~TPS!, the strength of the higher-twist terms wi
sometimes dramatically change when the order of the TP
changed@21,22#.
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