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Infrared renormalons and analyticity structure in perturbative QCD
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The relation between the infrared renormalons, the Borel resummation prescriptions, and the analyticity
structure of Green'’s functions in perturbative QCD is investigated. A specific recently suggested Borel resum-
mation prescription resulted in a principal value and an additional power-suppressed correction that is consis-
tent with operator product expansion. Arguments requiring the finiteness of the result for any power coefficient
of the leading infrared renormalon, and consistency in the case of the absence of that renormalon, require that
this prescription be modified. The apparently most natural modification leads to the result represented by the
principal value. The analytic structure of the amplitude in the complex coupling plane, obtained in this way, is
consistent with that obtained in the literature by other methods.
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Green'’s functions in QCD are quantities which, in gen-the Borel integration minus the aforementioned term. A
eral, are known to possess renormalons, i.e., singularities slomewhat speculative interpretation of this result suggests
the Borel transform on the real axig¢]. They appear as a that in this way the dominant part of the genuine nonpertur-
consequence of the specific asymptotic behavior of the highPative higher-twist effect is obtaingthe correction term to
order perturbation coefficients. The singularities on the posithe principal valug although the method is based on pertur-
tive axis, called infraredIR) renormalons, represent an ob- bative (PQCD+renormalons knowledge only. A more con-
stacle to the Borel integration and lead to the well-knownservative rephrasing of this would be that this result repre-
renormalon-induced ambiguity for the observable. The mos$ents “the most that we can get” out of PQCD, i.e., the
widely used prescription for fixing this ambiguity has been tonatural basis to which one should eventually add other con-
perform the Borel integration parallel to the positive real axistributions to the aforementioned higher-twist term; such
and take the real part of the resulting integfptincipal ~ genuine nonperturbative contributions would involve the
value; see, e.g., Reff2,3]). This prescription in perturbative vacuum .expectation values of the higher-twist operators ap-
QCD (PQCD was shown to be favored by or to be consis-pearing in OPE.
tent with analyticity requirements in the momentum plane In the present work, the aforementioned method is scruti-
[4] and in the coupling parameter plafi®]. Further, this hized. As a result, more support is given to the second of the
prescription is attractive due to its mathematical simplicity. Iftwo mentioned interpretations of the PQCD renormalon re-
the QCD quantity under consideration can be presented vigummation results. Even more, the results suggest that the
operator product expansid®PB), then any additional, non- natural resummed perturbative contribution is just the prin-
perturbative, terms are expected to have the powercipal value of the Borel integral, without the aforementioned
suppressed form of the higher-twist terms. Perturbative QCIigher-twist term. As a by-product, some insights into the
involving the quark and gluon degrees of freedom is usuallyole of the IR renormalons in the analyticity structure of the
expected to be unable to predict the strength of such ttrmsPQCD amplitudes in the coupling plane are obtained.

Recently, a specific prescription, based on IR renormalon Let us consider a Euclidean QCD amplitud¢a(Q)],
considerations, has been propo$6étito fix the strength of ~Wwhere the quark mass effects are neglected. Therefore, it can
such higher-twist terms, and this method gave encouraginge regarded as depending on the ene@gy \/— g? of the
numerical results in the case of the resummation of theorresponding process only via the QCD coupling parameter
Gross—Lewellyn-Smith sum rule and of the heavy-quark poa(Q)= a4(Q;MS)/7 whose running is determined by the
tential[7]. The main observation was that the IR renormalon/modified minimal subtraction schem&18)] renormaliza-
induces in the Borel-integrated quantity a nonphysical cution group equation
along the positive axis in the complex plane of the coupling
parameteg, and that this cut structure can be naturally elimi-

. : . . da(u)
nated by subtracting a cut function proportional te ) =— Boa®(1l+cja+cra’+cza+---). )
wherev is related to the power coefficient of the renormalon dln u?
singularity. Further, the energy dependence of the subtraction
term, when the coupling parameteis positive, is consistent For simplicity of argument, we will consider only the effects
with the predictions of OPE for the corresponding higher-of the leading IR renormalon and will neglect the subleading
twist term. For positivez, the result is the principal value of IR renormalons. We will also assume that such an amplitude

can be described by OPE.
First, let us review the method of RdB6] in detail. The

*Electronic address: gorazd.cvetic@fis.utfsm.cl presentation of the method is here somewhat different. The
The IR renormalons predict the energy dependence of sucBorel transformB(b) of A[a(Q)] has a singularity ab
terms. =n (n=1, or 2, or 3,...) of thdorm
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t—plane
B(b)= —————[1+k;(1—b/n)+ k(1—b/n)?. -
(b)= el )+ Kol )21
+analytic part. (2
Here v=(nc;— y,n)/ Bo, Where y,, is the one-loop coeffi- ol honiiaiaieini ==
cient of the anomalous dimension of the corresponding L]
e - - ——mmm e — - - - -

higher-twist operato(with dimensiond=2n) in OPE for
Ala(Q)]. In the following, we will ignore the contributions
of the terms with coefficients; (j=1), since their inclusion

is straightforward ¢— v— ) and does not affect the conclu-
sions. For definiteness, the renormalization sgals taken

to beu=Q, and the renormalization scheme is also regarded
as fixed, e.g.MS. We will regard the coupling to be complex
in general, z=B,a(Q)/n=|z|expi¢), corresponding to

FIG. 1. The patlC; in the integralg5) and (6).

i o
gg?npézxa?oment@. Then the Borel integrahg (z) can be T'(s)sin(ms)= s
1
B 1 [+ expid) b :+EJ dte“(—t)‘“s (|S|<OO) (6)
AB'(Z)_EL dbexp(—n—Z)B(b) Gy
(z=|z|e'%,b=|ble'?). (3) in the special cases=—v,—v+1,.... Because {|z|

Fie)=|zlexp(im) and thus ¢|z|Fie)  "=|z| " *[cos(v)

For z near the positive real axisz=|z|*is [|Z]
= Boa(Q)/n>0], it is straightforward to show from Eg3),
with the help of the Cauchy theorem, the following formula:

*isin(mv)], Eq. (5) leads to

ABI(Z)|Z=|z|ii.e

1 erooiie % b
=— dbexpg — ==
IBO *ie n|Z|

(e—+0).

(4)

AB.<z>=—c[%efl’zn—v)(—z)*”+ZB.<z>, @

where A (2) is a function without cuts in the complex
plane since the first expression on the right-hand side absorbs
the renormalon-induced c() atz=0. The first expression,
whenz=|z|+ie=Bya(Q)/n+is is at the real positive axis,
has theQ dependenceQ ?"ay(Q)”2/Po[1+O(ag)], the
same as the corresponding power-suppresbagher-twis)

The real part of this is the principal value. As a consequencgerm ((,,)(?/(Q?)" in OPE. The imaginary part of this

of the IR singularity(2) at b=n, the integral(3) has a dis-
continuity (cuf) at the positive real axig=0; namely, the

expression, i.e., expressid), must be identified as the
imaginary part of the contribution from the leading IR renor-

quantity (4) is not real and its discontinuity shows up in its malon (2). The central assumption of the method is that the
imaginary part. This can be seen by introducing in the inte+y|| first expression on the right-hand side of Ed), which

grand of Eq.(4) the new complex integration variablevia

b=n(1+]z|t):

1 b
ImAg(z=|z|xie)=F— f dbex;{——)
Bi( | | €) 2i B, M n|z|

C
X—
(1—b/n)tt”

n
=3 C—e Y (—p)sin(mwv)|z "
Bo

©)

contains the full nonphysical cib) alongz>0 and no cut
alongz<0, represents the nonphysical cut function which is
to be eliminated:

n
Acun)(2) = _C_e_llzr(_ v)(—2)7"
(cutl) Bo
=C£e_1/2
0

B (=27 (8

T
I'(1+v)sin(m7v)

This same cut contribution, far=|z| = ie at the positive real
axis, can be obtained also by Borel-integrating the nonana-
lytic part of the Borel transforni2) along its cuto>n above

or below the real axis, in analogy with the full Borel-

The (Hanke) contourC; is depicted in Fig. 1, and the expres- integrated quantity4). To show this, we use the new real
sion (5) is obtained from the known Hankel contour form of integration variableg such thato=n(1+zt), and therefore

the gamma functioiisee, for exampl€,8])

b>n=*ie corresponds t6>0:
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A(Br;onan{zz|z|iis;b>n) A(Cutl)(2=|2|ii8)
1 (==ie b n [—7cotlmv)Finm]
- _ _ | p(nonan — _C_efl/\2| i
Bojnﬂe dbeXp( nZ>B &) © Bo I'(1+v) 2
(13
= +Cﬂzeﬂ/ZJ+wdteft(_z)71*vrl*v (100 The central assumption of the method, i.e., the subtraction of
0 0 the cut function(8) from the Borel-integrated value, appears

to be plausible and natural, especially because the cut func-
tion (8) [« (13)] has a simple form, and because it repre-
:_Ciefllzr(_v)(_z)fu. (11) sents precisely the contribution of the Borel integration of
Bo the nonanalytic part of the Borel transfoif®) along the cut
b=n parallel to the real axis, as explained in E3—(11).
However, there are at least two problems with this method
when we impose on it the plausible condition that it should
work for any (real value of the power coefficient.
(1) When v is a non-negative integer vEk; k
. =0,1,2...), the cutfunction (13 is infinite, because
(<1% ?enp?re%l;ﬁtss ttui ;iiﬁ'ﬁ?'cgmﬁzaﬁggfo’ the result cot(wv) diverges there. This would not present a problem if
the residueC of the renormalon disappeared, making this cut

e nton . Thisappears o be ke s agued above
the positive real value=|z| = Boa(Q)/n>0: in particular, for the Adler function in the large,; approxi-

mation (h=2,c,=0,y,=0) this would mean the disappear-
ance of the leading IR renormalon. Note that, in contrast to

For z away from the real positive axis, the analytic continu-
ation of this expression iz keeps its form(11) unchanged,
i.e., precisely the cut functio(8). The Borel integration over
t>0 (&b>n=ieg) in Eq. (10) converges only when Rej

Alz=Boa(Q)/n]=Ag(|z| ie) — Acuny|z[ = ie) cot(v), the factor 1F'(1+ ») in Eq. (13) is an analytic func-
_ tion in the entire complex plane.
=Ag[z=Boa(Q)/n] (2) Whenv is a negative integes=—1,—2, ..., the IR

renormalon singularity(2) with the cut disappeargeven
whenC+#0), and the Borel transform is analytic. This means
that A u1)(2) must be zero. However, according to Ef3)
A (cuny(2) # 0—note thatw cot(wy)/f(1+ »)=(—1)k—-1)=0
R(b) whenv=—k=—-1,—2,....Again, it is the poles of cotfv)
(1—b/n)r that cause the problems, but this timevat —1,—-2, .. ..
If we take the viewpoint that the method should be taken
(12 as the starting point nonetheless, because of the mentioned
plausibility and naturalness of the choice of H&), we
In the Borel integration here, the exactly known IR renorma-Should definitely modify it so that the aforementioned two
lon singularity has been factored out explicitly. The functionProblematic points are eliminated. This can be done in a
R(b)=(1—b/n)***B(b) (whose truncated perturbation se- natural way, by inspecting again the expressi@B). The
ries up to~b? is known exactly in the case of several QCD two problematic aspects arose because of the poles of the

observableshas a much weaker singularity bt=n than €M cotrv), at »=02+1,22, etc. The functionf(»)
B(b). In Eq. (12, the equality Raguy|z|*ie)= =cot(mv) should thus be regularized in order to eliminate
. . y u -

+ cot(mr) ImA(cutl)(|Z| +is) was taken into account, a direct both problems. The apparently most natural regularization is
consequence of Egs.(5, (7), and (—|z/Fie) " obtained by subtracting simple pole functions with the coef-
= |z~ "[cos@v)*isin(m)]. The results(8) and (12) are ficients equal to the residues &{») at those poles. This

those arrived at in Ref6]. gives
The renormalon power coefficient=(nc,— v,,)/Bo "
should be regarded as a general parameter which can take on, 1 1
in principle, any(rea) value. For example, when varying the ~ ~ 7COlm¥)—>—mcot(my)+ ,Zfl ( KUK
number of effectively active quark flavons continuously,y (14)
changes continuously. Yet another example is given by the
largeB, approximation, wheig;—0 andv—0. The residue P
. L 1 1
C of the renormalon in general does not vanish in the large- = —mcol(mv)+ —+2v>,
Bo limit. v k=1 2—k?
The cut function(8), as a function of general and when (15
the coupling parameter is near the positive real axis
=|z| xie=Bya(Q)/nxie, can be rewritten in the following We see that the function cet¢) is identical to the sum of the
form: corresponding simple pole functions. Only some of the

oxiedp
=[ReIcol(m/)Im]f —
0

*ie ,B

« p[_ b
PR~ BealQ)

=0.
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meromorphic functions have this remarkable property. Thevalue and a higher-twist term proportional ¢¢»), where
procedure(14),(15) therefore eliminates the real part of the g(v) is nonsingular inv. We stress that any such choice is
cut function (13) at the real axiz=|z|*is; the modified physically acceptable, the principal value choice being dis-
expression there is purely imaginary. The final result of theinguished in this context only by the mathematical simplic-
modified method is then just the principal val(RV) of the ity of the corresponding regularization(14),(15).
Borel integral, whera(Q)>0, The main idea behind the result E@8),(12), as stressed
_ B . in Ref. [6], was that the cut function which is to be sub-
Alz=poa(Q)/n]=Redg(z*ie) tracted from a Borel-resummed QCD amplitude with an IR
wxisdp b renormalon has a cut only along the positive axis in the
=Ref+' ,B_eXF{_ Boa(Q) coupling planez=a(Q). In the two exactly solvable non-
wle PO 0 QCD examples presented in RE8] this idea was shown to

R(b) hold. Here we showed that the requirement of finiteness with
—, (16) respect to the IR renormalon power parametein QCD
(1=b/n)="" amplitudes, and their consistency in the absence of the IR

) ) renormalon, imply that the cut function must contain, in ad-
and the new cut function can be written for a general coMition to the cut along the positive axis, a cut along the

plexzas negativez axis also. This, in turn, implies that the amplitude
n - A(2)=Ag(2) —Au(2), while having no cut on the>0
APV Z)=+C—e VP axis in accordance with the unitarity and causality conditions
Bo F(1+w)sin(7v) [9], does have a cut along tzec0 axis(Landau regiohas a
X[(—2)""—cod 7v)z""]. (17) consequence of the IR renormaldithis somewhat counter-

intuitive conclusion was also obtained in Ref4,5] by sub-

It can be checked explicitly that this function is finite for any stantially different approaches, where the principal value pre-
finite complexw, includingv=0,£1,%2, . ... It is anana- scription was adopted. If the considered amplitude has
lytic function of z outside the real axis, with the cut along the ultraviolet (UV) renormalons, it should have a cut along
real axis. The subtraction of the poles of eaif (15) intro- <0 evenifithas no IR re_ngrmalons.zlf the coupliaQ) is
duced in Eq(17) terms proportional ta~”. The consistency ~regularized so that it is finite for aR“=0 (see, e.g.[12-
of the results fo=0,+1, . . . thus introduced an additional 16)), i.e., in contrast to the PQCRB(Q) it has no Landau
cut along the negative real axis. singularities, the conclusions about the analyticity of the con-
In general, any regularization in of the singular cotfy) ~ sidered amplitude in the complex coupling plane probably
factor in Eq.(13), not just the simplest regularizatiqa4), ~ change singnificantly. . _
would give an acceptable result. The factoF (+ v) is The IR renormalons also play an important role in the
already nonsingulafeven analytig for all ». The factor resummations using modified Borel transforms where the en-
exp(=1/z|)|z] =" in Eq. (13) cannot be modified because it tire integrand in the Borel integration is renormalization
reflects the correct) dependence of the aforementioned Scale (RS invariant. Such transforms were introduced by
higher-twist term(©,,)@/(Q?)" in OPE. The imaginary Grunberg[17] on the basis of a larger class of transforms
part in Eq.(13) cannot be modified because it is needed toProposed in Ref18] in a somewhat different context. Such
make the amplitudeA (z)=Ag(2) —Aq(2) real for real RS-invariant Borel transform resummations were applied in
positivez. Therefore, the most generaregularization of the ~ Refs.[19,20, by either evaluating the principal value of the
cut function (13) for z=|z|+ie is represented by a simple B_orel mtt_agral [19] or adding to .the principal value the
substitution cotfrv)—g(v), whereg(v) is an arbitrary non- higher-twist OPE term$20]. The discussed method of Ref.

singular (possibly analytit function of » which is real for L6} for the ordinary Borel transform$), can be adapted to
real v: the method of RS-invariant Borel transforms. The problems
(divergencepsappearing in this case are similar to those dis-
_ n [—wg(v)Fiw] cussed here, but algebraically more complicated. It is not
Acl(z=|2xie)= _C,B_ _1’|Z|WIZI_” clear whether in such cases an analogous regularization pro-
0 (19) cedure as the one presented here would lead naturally to the
principal value of the RS-invariant Borel resummation.
This cut function then has the following form in the complex  In the present work, the method of subtracting a power-
coupling plane: suppressed term from the principal value of the Borel inte-
gral for QCD amplitudes with IR renormalons, recently pro-
A B n ., T , posed in Ref[6] and applied in Refd.7], was scrutinized. It
wl2)= +CEG m{(—z) —[cogmv)
—g(v)sin(mv)]z""}. (19 2According to Ref[9], the physical singularities in confined theo-
ries are generated by the physical hadron states. The peifitis
Again, as in Eq(17), we see that the regularization intro-  an essential singularity10,11. The confinement is not seen by
duces an additional cut along the negative as0. The  PQCD; thus the cut along<0 (Landau regiopis not physical but
amplitudeA=Ag,— A, is now represented by the principal must appear in quantities involving PQCD coupliaQ).
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was pointed out that the result becomes physically untenablealues of higher-twist operators and can theoretically be ob-
for specific values of the renormalon power coefficienfis  tained or estimated only by genuinely nonperturbative meth-
a consequence of the divergences of the tgeot(7v)] ap-  ods. Phenomenologically, such additional OPE terms can be
pearing in the result. When these divergences are removed tietermined by fitting them to the corresponding experimental
apparently the most natural way, the power-suppressed tergata. However, in such a procedure, it is important to keep
of the method disappears and the modified result becomegr the leading-twist term in OPE a specific resummed
the principal value. Any removal of the aforementioned di-pQCD expression, most naturally the principal value of the
vergences r_esults in an IF_Q-re_normann-in_duced cut along thg el integral, i.e., Eq.16). On the other hand, if the
negative axislLandau regionin the coupling plane. These |gading-twist term is taken to be a truncated perturbation
conclusions suggest, among other things, that the most natdg iag (TPS, the strength of the higher-twist terms will

ral PQQD. Borel integration of a .Q.CD observable remains, ometimes dramatically change when the order of the TPS is
the principal value. The additional power-suppresse hanged 21,27

(higher-twist, higher-dimensionaterms cannot be inferred
from PQCD (+renormalon methods in any natural way. This work was supported by FONDECY(Thile) Grant
Such additional(OPE) terms involve vacuum expectation No. 1010094.
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