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Spectral quark model and low-energy hadron phenomenology
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We propose a spectral quark model which can be applied to low energy hadronic physics. The approach is
based on a generalization of the Lehmann representation of the quark propagator. We work at the one-quark-
loop level. Electromagnetic and chiral invariance are ensured with the help of the gauge technique which
provides particular solutions to the Ward-Takahashi identities. General conditions on the quark spectral func-
tion follow from natural physical requirements. In particular, the function is normalized, its all positive mo-
ments must vanish, while the physical observables depend on negative moments and the so-called log mo-
ments. As a consequence, the model is made finite, dispersion relations hold, chiral anomalies are preserved,
and the twist expansion is free from logarithmic scaling violations, as requested of a low-energy model. We
study a variety of processes and show that the framework is very simple and practical. Finally, incorporating
the idea of vector-meson dominance, we present an explicit construction of the quark spectral function which
satisfies all the requirements. The corresponding momentum representation of the resulting quark propagator
exhibits only cuts on the physical axis, with no poles present anywhere in the complex momentum space. The
momentum-dependent quark mass compares very well with recent lattice calculations. A large number of
predictions and relations, valid at the low-energy scale of the model, can be deduced from our approach for
such quantities as the pion light-cone wave function, non-local quark condensate, pion transition form factor,
pion valence parton distribution function, etc. These quantities, obtained at a low-energy scale of the model,
have the correct properties, as requested by symmetries and anomalies. They also have pure twist expansion,
free of logarithmic corrections, as requested by the QCD factorization property.
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[. INTRODUCTION straints can be imposed on the basis of the relativistic and
gauge invariance. For a discussion of various popular ap-
The termchiral quark modehas become a generic name proaches and associated problems see, [8].,
for any relativistic field theory aiming at the description of  In this work we introduce a novel approach, tgectral
the non-perturbative features of QCD. Numerous approachdggularizationof the chiral quark model, based on the formal
(for reviews see, e.g[1-8], and references thereishare a introduction of the Lehmann representat{®j for the quark
number of common features. Firstly, they incorporate dy-Propagator,
namical quarks as the only explicit degrees of freedom. Sec-
ondly, they provide particular solutions to the chiral and elec- S(p)= f dw@
tromagnetic Ward-Takahashi identities. Although there is no c  p- ®
doubt that chiral quark models provide a reasonably accurate
guantitative description of hadronic properties, there is a lackvherep(w) is the spectral function an@ denotes a contour
of systematics in the construction of any particular dynami-in the complexw plane chosen in a suitable way. As will
cal model. A source of ambiguity is the fact that chiral quarkbecome clear in Sec. Ill, the spectral regularization allows us
models are, supposedly, an approximation to the low-energio explicitly solve the chiral and electromagnetic Ward-
non-perturbative QCD dynamics. In this regard, an essentialfakahashi identities in a rather simple manner, through the
ingredient is the introduction of a practical suppression ofuse of the so-calledauge techniqugl0,11]. The method has
high-energy degrees of freedom, necessary in order to sepakeady been sketched in a previous work by one dfl23
rate the low-energy regime, where the model is supposed tOf course, any solution of the Ward-Takahashi identities can-
work, and the high-energy regime, where the genuine QCot be complete due to the existence of transverse terms,
dynamics, in terms of explicit quarks and gluons, should setvhich necessarily appear in the underlying theory, and which
in. This defines a certain scale, or cutoff, which acquires a&an only be uniquely determined in QCD. In fact, any pos-
physical meaning and which should be kept throughout thaible realization of a chiral quark model, if properly regular-
calculation. The precise way how this high-energy cutoffized, represents in a sense a particular solution to the Ward-
should be introduced is not at all clear, although some confakahashi identities. This point is not fully appreciated. In
Sec. lll we will provide a minimal set of solutions to the
Ward-Takahashi identities and study their consequences.
*Electronic address: earriola@ugr.es Throughout the paper the model is considered at the one-
TElectronic address: Wojciech.Broniowski@ifj.edu.pl quark-loop level and in the chiral limit of the vanishing cur-
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rent quark masses. Therefore our present predictions awd the advantages of our regularization is that all calculations
made at the leadindy}; level and in the chiral limit. can be directly undertaken in the Minkowski space, although
The proper normalization and the conditions of finitenessiothing prevents us from working in the Euclidean space.
of hadronic observables are achieved by requesting what w&/hen dealing with bound-state problems, the continuum Eu-
call the spectral conditionsfor the moments of the quark clidean formulation encounters practical difficulties in mo-
spectral functionp(w), namely, mentum space since going to the bound state pole requires a
continuation to the Minkowski region, and hence a continu-

_ _ ation of the quark propagator to the complex plane is re-
Po—f dop(w)=1, (1.2 quired. This is a problem since much of our phenomenologi-
cal insight is based on the behavior of the quark propagator
= | dow"p(w)=0 in the Euclidean region. In our approach the analytic con-
Pn= ww'p(w tinuation from the Euclidean to the Minkowski space can be
done in a straightforvard manner because the generalized
for n=123.... (1.3  Lehmann representatiofil.1) implies a definite analytic
structure.
It will be shown that the physical observables are propor- |, the Janguage of the practitioners of chiral quark models
tional to the inverse moments, such as the Nambu—Jona-Lasinio model, the regularization
introduced by the gauge technique is very special because
p_ksf doo *p(w) for k=1,2,3..., (1.4 not only does it make the theory finite, but it also corre-

sponds to taking the infinite cutoff limit in those observables
which do not depend on the constituent quark mass. This
includes the proper fulfilment of the anomalies. As we will
see below, this is a very rewarding aspect of the present
PGEJ’ dw log(w?/ u?) 0"p(w) investigation, which avoids the artificial separation between
the real and imaginary parts in the Euclidean action, or,

as well as to the fog moments

equivalently, the normal and abnormal parity processes in the

ZJ dw log(®?) 0"p(w) Minkowski space. At the same time, the study of several
processes in the high-energy limit turns out to be compatible

for n=23.4 .. .. (1.5 with factorization of amplitudes into hard and soft pieces in

the twist expansion precisely because of the regularization
Note that the conditionél.3) remove the dependence on the and the set of conditiond..2), (1.3) imposed upon the spec-
scaleu in Eq. (1.5, thus we can drop it. No standard re- tral functionp(w). Although such a behavior is expected in
quirement of positivity for the spectral strength(w), is  Pperturbative QCD, it is very difficult to comply to it in tra-
made(see Sec. Il . ditional chiral quark models. This point has been recently
In the present work we do not intend to determine thediscussed by one of us in R¢8], where it is pointed out that
quark spectral function from “first principles,” but rather for the procesg* — 7°y, which involves the transition form
look for general consequences and implicit relations whicHactor F_x« .0.(Q?), there is a conflict between the chiral

follow from the approach. anomaly  normalization  condition  for F «0,(0)

The model with the spectral regularizatigh.1), (1.2), =1/(4mf ), and the expected QCD factorization at large
(1.3), supplied with couplings obtained via the gauge tech-momentaQ?F .« ,0,(Q% — 2f .. The conflict persists in any
nigue, possessesmultaneouslyhe following features: standard approach; to fulfill the anomaly the absence of a

. . . . regulator is required, but to achieve factorization an explicit
(1) Gives finite yalues _for hadronic observables, which Car}egulc';\rization must be considered. Our model is free of such
be used to fix the inverse momentd,4), and the log  ntradictions, and both conditions turn out to be satisfied
moments (1.5). _ _ ~ simultaneously. Actually, as we show in Secs. VI and VI, for
(2) Satisfies by construction the electromagnetic and chirgjne pion the leading twist contribution to the parton distribu-
Ward-Takahashi identiFies, thus reproducing all the nectjon function (PDP), V,.(x), and the parton distribution am-
essary symmetry requirements. plitude (PDA), ¢.(x), the following remarkable relation
(3) Satisfies the anomaly conditions. holds at the model’s scal@,:
(4) Complies to the QCD factorization property, in the sense
that the expansion of a correlator in a large-momentum 1
Q is a pure twist-expansion involving only the inverse ¢x(X,Qo)= 5 Vx(x,Qo)=1. (1.6
powers ofQ?, without the logQ? corrections. Thus, the
model can be used to compute the soft matrix elements e stress that the interpretation of results of low-energy
needed to describe the deep inelastic inclusive and exnodels in the context of the high-energy processes necessar-
clusive processes and to analyze the pion structure fundly involves QCD evolution to account for logarithmic per-
tion, pion distribution amplitude, etc. turbative radiative corrections. The soft matrix elements
The fact that all the above features can be satisfied simutomputed in the model are obtained at therking energy
taneously in a chiral quark model is far from trivi{@]. One  scale of the modelQ,, typically quite low, and have to be
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evolved to the scales realized experimentally with the help ofvhere the vector and scalar spectral functions
the QCD evolution. Only then can the comparison to data be

made[13,14]. In that sense, chiral quark models provide the pv(w)=p(w)+p(—w),
initial conditions for the QCD evolution. The phenomeno-
logical success of Eq(1.6) after evolutionhas been de- ps(w)=p(w)=p(— o), (2.4

scribed elsewherg8,15-11. are defined fow=0, respectively. Notice that the functions

In Sec. IX we provide a model for the momertis4) of . -
the spectral function based on the vector-meson dominancfg‘;](t‘;)) tﬁgdvg ISU(;)S) o%r(ew;n% ?p%ns?tfvnet z;)r: der?eChag;[/hee\I;alllEJ gz'\é?
(VMD) in the pion electromagnetic form factor. Actually, Y P 9

: . are also independent of each other. The quark propagator
only the even and negative moments are determined by suc . :
o . in the standard Lehmann representation has an analytic struc-
a method. Remarkably, the positive moments obtained b

analytic continuation automatically fulfill the spectral condi- ure of poles and CUFS. on the r_e'al axis of the compéx
tions, Egs(1.2), (1.3), and the log momentd..5) can also be plane, where the positivity conditions,(»)=0 andpy(w)
determined. Interestingly, the inverse-moment problem for” Ps(®) for @=0 hold. With Eqs.(2.4), the positivity con-

the VMD-inspired model can be solved, yielding a simpledmo.r?S are equn/_alent to saying tha{w)=0 fo_r any o,
function with a certain cut structure in the complexplane. positive or negative. They follow from the requirement of a

As a result, the model becomes fully explicit and some fur_physical Hilbert space. We will see in Sec. Il D that chiral

ther results can be obtained. Using the insight provided b>§ymmetry breaking, together with the finiteness of hadronic

the VMD model we work out in Sec. X the quark propagator, °PS€rvables, implies that in our caseeal p(w) cannot be
which possesses a certain cut structure butragpoles in positive definite, which is a simple consequence of the con-

the whole complex pland@he quark mass function agrees ditions (1.2), (1.3) if the contour is taken to be the standard

remarkably well with recent lattice daft48,19. We illustrate one. Actually, the particular realization p_roposed below in
y a 9 Sec. IX based on the vector-meson dominance of the elec-

the power of the method in Sec. XI by presenting some fur-r maanetic pion form factor shows that one needs in fact
ther predictions based on the VMD model, namely, the piont 0 ?_g 'el ¢ p;) Ot ac_g sdo S ta_o el g:_e S Wi acta
transition form factor, the pion light cone wave function, the non- fr|V|a con olurt_ 0 avotlh en -p%lln sihgu at.” |es.f th'e fre-t
non-local quark condensate, and the unintegrated parton di%r—":lln rom specuiating on the possible connection ot this Tac
A : . 0 an indication of quark confinement; nevertheless, it is cer-
tribution function of the pion. . " )
tainly true that a non-positive spectral function cannot be
understood in terms of physical particles on the mass shell.
IIl. QUARK PROPAGATOR On the other hand, a non-trivial quark propagator must de-
pend non-trivially on momentum if it is defined in the whole
complex plane. As will become clear in Sec. X, a VMD-
. o N based model produces a complex spectral fungiian) on a
Our starting point is the definition of the quark propaga-complexcontourC, which results in a quark propagator with
tor. In the momentum space we have cuts only.

o In a model without confinement the spectral representa-
S(p)=—if d*xePX(0|T{q(x)q(0)}|0).  (2.1)  tion of a propagator is a well defined concept. In a gauge
theory, like QED, the spectral representation depends on the
particular gauge, because the two-point function does. In a
theory with confinement not much is known about the ana-
lytic properties of the quark propagator, except for the fact
that poles at real positive values pf with positive residues
are certainly excluded. In QCD such a representation cer-
tainly exists in perturbation theory where confinement is not

A. Generalized spectral representation for the quark
propagator

We assume the spectral representatibrl) for the quark
propagator, where(w) is the spectral function, an@ is a
contour in the complew plane chosen in a suitable way. We
do not specify explicitly what the contout is, hence the
representatioril.1) is a generalization of the standard Leh-

mann representatiof®]. To see the connection, let us con- manifest. The study op(w) within QCD yields at leading

sider the special example of a contd@irunning from — oo : : ]
under the real negative axis and crossing through zero abo\})erder(LO), for m—0, the following expressiof20]:

the real positive axis going te-«, yielding the form pro- aCr 1—¢
posed in Ref[10] plw)= 5(w—m)+sigr(w)ﬁ Ta(wz—mz),
2.
B p(w) @3
S(p)= e b—w+ie(w) ' (2.2 where¢ is the gauge parameter. However, if the general rep-

resentation is valid, its detailed properties may be quite dif-
ferent in the non-perturbative regime.

As will become clear below, the real strength of the ansatz
(1.2) relies on the fact that having assumed certain properties
of p(w) reduces the calculations of physical observables to
= Bpy(@)+ ops(©) nothing more than the ;tandard one-loop a.nalysis. In addi-
S(p):f de PV psi@l (2.3  tion, it allows for going from the Euclidean to the

0 p2—w?+i0* Minkowski space, back and forth. Thus, our assumption is

where €(w)=0"sgn(w). Squaring the denominator in Eq.
(2.2) yields a more customary form of the Lehmann repre-
sentation 9],
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essentially that of analyticity of the quark propaga$gp), B. Quark condensate

and the possibility to analytically continue it in the whole  \yjith the help of the representatidd.l) the quark con-

complex plane. This looks, in principle, very different from densate(for a single flavoy may be straightforwardly com-
the approach invoked in non-local models, where only theputed yielding

Euclidean region is used to justify the propagator. Neverthe-
less, the calculation of physical observables requires in prac- d*p 1
tice an extrapolation into the complgé plane, which by <qq>=—ich dwp(w)f g Ir—
itself can only be justified through analytic continuation. The 2" p-w
previous argument does not justify Ed..1), but it shows 4
that we are not making any additional assumptions as com- — _4iN f do (“’)J d*p ©
pared to those implied in non-local models. ¢ P (2m)* pz—wz’

Although in perturbation theory the integration contour (2.10
may be kept on the real axis, there are cases where singulari- ) ) )
ties may pinch the integration path. This circumstance bewhere the trace is over the Dirac space, &d=3 is the
comes a problem, since either analyticity or relativistic in-number of colors. The integral over the momentpiis qua-
variance may be spoiled. In this regard a number 0]dratlcal_ly qllvergent. This requires the use of an auxlllary
prescriptions have been devised in order to avoid such Eegularization methodemovedat the end of the calculation.
situation[21—23. Thus, in general, we will assume that the With a three-dimensional cutoffy, one gets for large\

integration path is an arbitrary contour chosen in a conve- 5

nient way. This contour integration requires effectively con (@)= — ~% | dowp(w)| 242+ w?log el
sidering complex masses. Genuine non-local models formu- 47 AA2
lated in the Minkowski space also require a specification of (2.1

the integration contour in momentum space in order to keep
relativistic invariance[24]. An example of a definite pre- The finiteness of the result dt— o« requires the conditions
scription of the choice of such a contour is given in Sect. IX.

The quark propagatofl.1) may be parametrized in the p1=0, p3=0, (212

standard form
and thus

p+M(p)
=A(p)p+B(p)=Z(p) ———,
S(p)=A(p)p+B(p)=Z(p) 2 M2(p)

c

N,
(2.6 (qa)="— mj dw log(w?) w’p(w) == 7—p.
(2.13

Exactly the same conclusions are reached if the four-
momentum auxiliary regularization is introduced. Note that
p(w) the p3;=0 spectral condition allowed for rewriting
7 o log(w?A?) as log@?), henceno scale dependendao “di-
prrow mensional transmutation’is present in the final expression.
The dimensional regularization in+4e dimensions, gives

with

A(p)ZJ do

p(w)w
B(p)= | do—, 2.7)
» f o= w2 —|og(w2/ﬂ2)—§+1.

N,
(qay= 4—772f dop(w)w®

and the mass and wave function renormalization functiong, ..« or the dimensional regularization “hides” some con-

given by ditions; for instance, here it leads only to thg=0 condi-
tion, and does not require tlprg=0 condition. This is due to
M( D)= B(p) 28 the fact that in the dimensional regularization the power di-
(P)= A(p)’ 2.8 vergences have a fixed ratio.

Finally, we remark that in the perturbative phase with no

g 2 spontaneous symmetry breaking, whepw)=p(— )

Z(p)=[p"=M=(p)JA(p), (2.9 —5(w), we have(qg)=0. With the accepted value of
respectively. Let us note that if we hadw)=p(— ), then (qg)=(uuy=(dd)=—(243 MeV)* (2.14

the quark mass would vanisM (p?)=0, and spontaneous ) .

breaking of the chiral symmetry would then be precluded (at the typical hadronic scale of G:3. GeV) [25] we can
Thus, in general, we expep{w) not to be an even function. infer the value of the third log momenig . The sign of the
In the following sections we will compute one by one the quark condensate shows that

physical observables and accumulate conditions that have to

be satisfied by the moments of the spectral funcji¢m). p3>0. (2.19
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C. Non-local quark condensate

In various QCD studiessee, e.g., Ref$26-29 and ref-
erences therejrthe non-local quark condensate,

~ {a(0)q(x))
Q= {q0)a(0) (2.16
plays an important role. In our approach
(9(0)q(x)) = —4iN, fdwp(@f o S,
(2.17

PHYSICAL REVIEW D57, 074021 (2003

At the one-quark-loop level

d4
<0#’V>:—iNCfo dwp(w)f—(zwlj)4Tr—p_

w

1
X5 (yp "+ y'p*) —g* (p—w)

p p“p’—g*"(p*— w?)
p—w

—4iN N fdwp(w)f(z

=Bg-"+(6""),, (2.24

and, consequently, after performing the Fourier-Bessel transvhereN; is the number of flavors an*"), is the energy-

form,

Ki(V—o*X?)
NEPLY
wherex denotes the Minkowski coordinate. A related quan-

tity is the average vacuum virtuality of the quarks,, de-
fined through

. (218

Q(x)=— f dwp(w)dw’———m=—
P3

(a(4%)q)
(qo)

I

(2.19

2
q
With our spectral regularization method we find that

<a(a2)nq>: f dwp(w)fd4p(_p2)nw/(p2_w2)

(qo) fdwp(w)fd“pw/(pz—wz)
_(- )nP2n+3 (2.20
P3
in particular
ae=—22, (2.2
P3

while the QCD sum rule estimates suggest the va{lje
=0.5+0.1 GeV [30]. The positivity of)\ andpj; (see Sec.
Il B) enforces

pt<0. (2.22

D. Vacuum energy density

momentum tensor for the free theory, i.e. evaluated with
p(w)=86(w). The quantityB is the vacuum energy density
given by

d4p w2

B=—iNCij dwp(w) (2.25

where in the subtraction of the free part we have used the
spectral conditior(1.2). The integral ovep is quadratically
divergent, but there is an additional power#fis compared

to the case of the quark condensate. Hence, the conditions
that have to be fulfilled foB to be finite arep,=0 andp,

=0. Then

NcNf f
16772 Pa=—

3N
16’7T2p4

B=- (2.26

for three flavorsN¢= 3, used from now on.

Interestingly, the even conditionéhere quadratic and
quartig imply that p(w) cannot be positive definitether-
wise the even moments could not vanish.

An alternative expression fd can be obtained from in-
tegrating by parts in the variabfeand using the conditions

p2=ps=0,

d4
B=2iNCNfJ da)p(w)Jﬁlog(pz—wz),
(2.27

which reminds us of the vacuum energy density calculated in
the effective action formalism. Another interesting version of
B is obtained by integrating Eq2.25 with respect to the
variablep, first, when we get

B=—2N:N jdwp w)

(2.28

Continuing the quest for the conditions on the spectrallThe interpretation of this equation is obviouB: is a

functionp(w) we now study the vacuum energy density. The

weighted integral of negative energy quarks with constituent

energy-momentum tensor for a purely quark model is define@hassw. Upon imposing the,=0 andp,=0 conditions the

as

6*7(x)=q(x) gurL(X).

(2.23

[
S 1Y+ y"arta(x) -

07402

integration of the three-momentum integral yields E426).

In the case of spontaneous chiral symmetry breaking one
expects | 0gg) <(bog)o, Or B<O0. According to the most re-
cent QCD sum rules analysis for charmoni{i#b,31, one
has, for three flavors,

1-5
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9 Ill. GAUGE TECHNIQUE AND THE VERTEX FUNCTIONS

B="%

o
—G?)=— (2243 MeV)*.  (2.29
™ Up to now we have accumulated the lowest spectral con-

ditions (1.2), (1.3), up ton=4. Higher conditions will ap-
Note the large uncertainty in this result. The negative sign opear in the next sections by requesting the twist expansion of

B enforces correlation functions. First, however, we need to introduce
the coupling of currents to quarks.
p4>0. (2.30 In QCD, the vector and axial currents are defined as
E. L d high behavi p.a Tix) e
. Low- and high-momentum behavior JEA(x)=q(x)y 7q(x), (3.0

At low momenta we may formally expand the quark
propagaton(2.2) to obtain

< plo)[p\F < )
S(p)——gofdw—w (5) ——go p-k-1b".
(2.3)

_ \a
H 00 =007 75 a(x). (32

Although our formulas below are valid for tt&U(N;) flavor

symmetry, in this paper we will be concerned mainly with

Hence the low-momentum expansion involves the invers&gon propertles.. This will be unde_rstood_ by replacing the
ell-Mann matrices) ,, by the Pauli matrices;,. Conser-

moments(1.4). In particular, forM andZ of Egs.(2.8), (2.9 vation of the vector currenCVC) and partial conservation

we find of the axial vector currenfPCAC) implies that
M(0)="-2 3, 32(x)=0, (33
p-2
.2 — i Ma
dM(pz) P-3 P-1P-24 aM‘]AY (X)ZQ(X)MO| ')/5?(:]()(), (34)
dp2 p2_o p-2 p2—2 ,
(2.32  with My=diag(m,,my,ms) denoting the quark mass matrix.
Obviously, any effective theory of QCD must incorporate
p2 1 these constraints. CVC and PCAC imply a set of flavor-
Z(0)=—. gauge and chiral Ward-Takahashi identities among correla-

el
N

tion functions involving vector currents, axial currents, and

. . ._quark field operators, which are based on the local current-
A knowledge of these quantities, for instance from Iattlceﬁe|d commutation rule$32];

calculations, would help to determine the inverse moments
(1.4) and constrain the spectral function. According to Egs. N
(2.32), the positivity of Z(0) leads top_,>0, while com- [3%3(%),q(X" ) ]x ' = — Y5 q(X) S(X—X'),
bined with the positivity oM (0) givesp_,>0. oo 2
In the limit of large momentunp— <, we formally have
A
) . [IA%(0), a0 ) xymny= = Y57 GO0 X=X). (35
S(p)~— f dop(w)+— f dowp(w)
b P A number of results are then obtained essentially for free. In
1 the low-energy regime pions arise as Goldstone bosons, and
+—3f dow’p(w)+ .. .. (2.33 the standard current algebra properties hold. In the high-
p energy regime, parton model features such as scaling and the
spin-1/2 nature of hadronic constituents may be recovered. If
Normalization of the quark propagator in the asymptotic re-one restricts to the one-quark-loop approximation, the results
gion to 1 leads to the conditiopo=1. Furthermore, since also provide a particular solution to the larjg-counting
M(p?) should vanish asymptotically, we conclude thgt rules at the leading order.
=0. To solve the Ward-Takahashi identities we follow the
Note also that if all spectral conditiond.2), (1.3) are  gauge techniquproposed in Ref.10] (see also Ref.11,33))
assumed then the asymptotic large momentum expansiomhich has the nice feature of linearizing the equations, since
would yield a trivial free massless quark propagator. Thusthey deal withunamputatedsreen functions. This is in con-
the high-momentum expansion cannot represent thédoll  trast to the more standard approach of writing the Ward-
non-trivial) propagator. This indicates some non- Takahashi identities faxmputatedGreen functions, in which
meromorphic structure ip at infinity. In Secs. IX and X we case non-linear equations arise. The gauge technique has
will present a particular realization of this situation. been mostly used in the past as a way to obtain solutions to
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the Schwinger-Dyson equations, both in QFID,34 and in  Near the pion pole we get
QCD [20]. Only recently has it been used to study hadron
phenomenology12]. A a* .

AR (p+q,p)—>—?/\w(p+q,p), (3.13
A. Vertices with one current

The vector and axial unamputated vertex functions arévhere the pion wave function is given by

defined as
as 7 : ’ as 7 : 20 )\a i
AGA(p",p)=iS(p" )T{(p’,p)iS(p) A%(p+q,p)= | dwp(w)

pqwf”"pr

_ 3.1
=f d*xd*x’(0|T{IE*(0)q(x")q(x)}|0) o

We recognize in our formulation the Goldberger-Treiman re-

x glP’ X =ipx (3.6) lation for quarks; under the spectral integral ouethe pseu-
doscalar coupling of a pion to the quarks is the ratio of the
AR3(p’,p)=iS(p")T4A*(p’,p)iS(p) spectral quark mass to the pion weak decay constant,
— 4y, 441 u,a I\
f d*xd*x’(0|T{I&*(0)a(x")q(x)}|0) gw(w):fi_ (3.15
x gl X' =ipex, (3.7

. , . B. Vertices with two currents
respectively. Here thE’s represent the corresponding ampu-

tated vertex functionf35]. The Ward-Takahashi identity for ~ The vertices with two currents, axial or vector, will be
the full vector-quark-quark vertex reads needed below when computing form factors. We define the

axial-axial vertex(other vertices can be done in a similar
fashion by

Ao Ag
(p’—p)#A(,‘*a(p’,p):S(p’)?—7S(p), (3.9
(2m)* 8 (p’+q' —p— ) ALZ" (p',q";p,q)

Likewise, for the axial-quark-quark vertex we have
\ \ :f d4xd4xld4y/d4yei(q’-x’+p’~y’—q'x—p~y)
(P’ —P) AL (P P)=S(P") 5 ¥+ 7575 S(P). i _

(3.9 X(OT{IL (0325 )ay)aly )}0),  (3.16

The gauge technique, introduced in Rf0], consists of  which in SU2) fulfills the Ward-Takahashi identity
writing a solution for the vector unamputated vertex in the

form _IqMAMavb(pI,q/;p,q)
a )\a I . V,Cf it Ta vb, A
AYH(P! p)—f dop(w) Ly - (310 =i€pachy (P",P)+ 5 ysAA(P'—0,p)
lb —0o 2 p-ow
i T,
The axial-vertex ansatz reads +A,Kb(p’,p+q)?a ve. (3.17
s, i B 209" Ng
ARH(p',p)= dwp(“’)p T Y- 92 Y55 o Up to transverse pieces one gets the solution
(3.1 .
AKR"(p',a";p,0)
In this way the Ward-Takahashi identities are linearized. It
can be readily verified that these atzsafulfill the identities _ [ , 20q""
(3.9, (3.9, respectively, up toundetermined transverse dop(w) ' Y q'2
pieces A consequence of the axial Ward-Takahashi identity
is the occurrence of a massless pseudoscalar pole identified Th i 20qt| 7,
with the pion, which takes place only () # 6(w). X% +—( Y= 7 )75 >
The pion wave function, corresponding to the-qq ver- pri-o
tex, is defined as ©q’ "
+crossed- 3.1
2q2 ab p » ( &

A%(p+a,p) =i | dixe PO T{a(0)a(0} mal@).
(3.12  Thewqg— wg unamputated scattering amplitude is defined as
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(2m)*6(p'+q' —p—aA22(p’,q";p,q)

_ j dxd*’ &P X PR () T{q()q(x )} ma( ).

(3.19
At the pion polesg?,q'?—0, we get
, 9’9" .
ARRP(p',q"5p,a)— qzq,szA?ﬁ‘T(p .q':p.9),
(3.20

where

AR2 d O Sapt
=(P',a"p,a)= | dwp(w)—— 5w T Sapt T Y57

i D) i
X—— — ye17,+Crossed ——.
¢)+¢]—w f V5Ta %p_w
(3.21)

IV. TWO-POINT FUNCTIONS

A. Vacuum polarization

The vacuum polarization is obtained from the vector-
vector correlation function, which is constructed by closing

the quark line in the unamputated vector vert8x.0, with
the result

G = [ dixe (0TI 032(0)}]0)

d*p
- _NCJ 2m A

N dwp<w>f(24—p)4

Ap
*(pta, p)nz}

<7 i Na | Np .1
el
We use the dimensional regularizatif®6] and obtain
/.La vb wv ql“q” T 2
(A)=6ap| —9*"+ ——~|1Iy(q), (4.2
with
T 2 NC 21 (2
IIy(a%) =75 | ple)dw) —2071(q%,w)
2 1 2
SCHESICINE 43

where the one-loop functions(g? ») and1(g?,») are in-

troduced in Appendix A. We note that the vector wave func-

tion renormalization,

PHYSICAL REVIEW D67, 074021 (2003

Nc 1
Z=H’(O)=?J' plw)dw §—|(0,w)], (4.4

diverges, which is the case of perturbative theories, like
QED, as well.
The one loop integral satisfies the twice-subtracted disper-
sion relation(see Appendix A
o dt  ImILy(t
Ty(e?)= @t (- dt imihv® 45
0o t? t—g®—i0
This is in contrast to non-local quark models formulated in
the Euclidean space, where the dispersion relation is postu-
lated, but never deduced. As a matter of fact, even in local
models, such as in those with the proper-time regularization,
dispersion relations do not ho[@7] due to the presence of
essential singularities generating non-analytic structure in the
complexg? plane.

To end this section, we compute the cross section for the
reactione”e” — hadrons. This quantity is proportional to
the imaginary part of the vacuum charge polarization opera-
tor. Asymptotically, at larges, we find

Ao
%(2‘ eiz)f dwp(w),

(4.9

o(ete”—hadrong—

wheree; is the electric charge of the quark of spedieBhus,
the proper QCD asymptotic result is obtained when the spec-
tral normalization conditiorf1.2) is imposed.

B. Pion weak decay

The pion weak-decay constant, defined as
(0[32%00) (@) =if 0, 84 p€'T %, (4.7)

can be computed from the axial-axial correlation function.
We insert a complete set of eigenstates into the correlator,

-z (@)= [ atxe O 0I(0)]0)

qﬂq
_|f 5ab q

+ ..., (4.8

and recover the pion pole, with the dots indicating pieces
regular in the limitq>—0. The procedure of closing the
quark line in the unamputated axial vert€k11) results in

— i [I430(q) = f Trl A%(k+0,K) v,y Mo
(2 )4 v 52

d*k

:_ch dwp(w) 27

i 2wq,,
P y#_ >
kK—g-w q
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sopeha 1L Mo (4.9 1{Imﬁv(cJ)—lrrﬁA(tq)}
Ys 2 k—(,u Y Vs 20 . ar
. N¢ 4w?
Note that the above expression involves only one full ver- = —zj doo?p(w)\/1- —50(q*— 4w?).
tex, (yﬂ—qu”/qz) vs\a/2, and one bare vertexy,, ys\ /2. m q
This is needed to avoid double counting, and complies to the (4.15

method of Pagels and Stokg88]: in a two-point correlator

all diagrams of the underlying theof@CD) can be grouped next, we integrate with respect @7, and use the spectral

in such a way as to dress the quark propagatset-energy  ongitions and the definition df, to get
renormalization, and one of the vertices, while the other

vertex remains in the form from the underlying theory. If 2
both vertices were dressed and no additional subtractions 1 d_q . —ImIl
: - : 7ImITy(q)—ImIIa(q)}
were introduced, double counting of the diagrams of the un- wJo {
derlying theory would result.

With the dimensional regularization EG}.9) becomes Ne 5 A2
= lim | dowp(w)ilog——2
272 A w?
I3 (0) = 0| 0+ o | (@D, (410
AA q ab g qZ A q ’ . :ffr, (416)
with which coincides with the first Weinberg sum rule. Now, if we
compute the left-hand side of the second Weinberg sum rule,

_ _ we get
T =TT+ 4N, | doa?p(o)l(@%,0). (@19

1 (= — —
—| dg¥ImIly(q)—ImII
As we can see, spontaneous breaking of chiral symmetry Wfo ot v A}

implies a pole in the axial-axial correlator, with the residue
proportional to the squared pion weak decay constant. The _
result is 2

N, 4 5 8
5 | dow’p(w)logw =—§B. (4.17)

The result, according to the second Weinberg sum rule,

should involve on the right-hand side the quantityqq)
=f2m?2, which vanishes in the chiral limit. Instead, our for-

m !

A finite value forf . requires the conditiop,=0. Then mula involves the vacuum energy densBy,which does not
vanish. This violation of the second Weinberg sum rule is

N N similar to findings in other chiral quark models, and reflects,
ff,= - 4—°2J dw log(w?) w?p(w)=— —Czpé. (4.13 in this regard, a deficiency of those models as well as of the
™ 4m present approactsee, e.g., the discussion in Rg41]). A
. N study, to be presented elsewhere, reveals that this should not
Again, the spectral conditiop,=0 guarantees the absence he considered a drawback of the spectral representation

of dimensional transmutation for this log moment. The valueémethod, but rather a feature of the particular solution of the
of the pion decay constant can thus be used to deterpdine  axial Ward-Takahashi identity42].

The sign is, obviously,

f§T=4ch dop(w)w?l(0,w). (4.12

V. PION ELECTROMAGNETIC FORM FACTOR
p)<0. (4.14)

A. Form factor

C. Weinberg sum rules The electromagnetic form factor for a positively charged

. N . .
The basic idea behind the Weinberg sum rgg,4q is ~ P'o™ 7 =ud, is defined as

that at high energies chl_ral symmetry breal_<|ng should. be (w*(p’)IJZ"‘(O)Iw*(p))zel“im(p’,p)

small. There are two equivalent ways to derive expressions

for these sum rules in our model: from the absorptive parts, , emy 2

or from the dispersive parts of the correlators. Both are =(p*+p*)eF; (a9, (5.1

equivalent due to the dispersion relations, which we have

shown to hold in Sec. IV A. Here we present the derivationwith q=p’ —p. Following the method of Sec. Ill, we com-

from the absorptive parts. The vector-vector and axial-axiapute the form factor by using theq— 7rq scattering ampli-

correlation functions can be subtracted from each othetude, closing the fermion line, and tracing with an electro-

yielding for the imaginary parts magnetic vertex:
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4

, dk TR N 1
refp ,p)=—ch WTr[A?ﬁ‘T(kw,p k,p)Qy,]. FemM(q?)~ 2°2f dwp(w)w?{ 2— =—log(g?)
4t €
(5.2 m
Through the use of Eq3.21) we get 20° 2/ )2 20"
g - g +—[log(— g% w) +1]+—
V2w \? [ d%
refp’,p)=—N fdwp(w)(— Yoy 1
a ¢ fr (2m)* x| log(— g%/ w?) — E} ot (5.9
i i i
T ko k) With help of the spectral conditiorid..3) for n=2,4,6 . ..
we can rewrite this expansion in the form
(5.3
- - Ne |2ps  2pg  4pg
For on-shell massless pions the electromagnetic form factor FeM(g?)~ — e SR I ST
reads G 4772@ 9 T q°
4N '
F‘;m(qz)=—2°j dwp(w) (o) (5.4 __ 8B  Ne |2p5 4pg 1
o 32Q? 4#%f2| Q* Q°
which, due to Eq(4.12), is obviously normalized to unity at (5.10
q°=0, F$™(0)=1. With the help of Appendix A we derive with Q2= —q2. Note the very interesting feature: the impo-
the low-momentum expansion, sition of the spectral conditiond..3) removedall the loga-
rithms of g% from the expansioii5.9), leaving a pure expan-
e 9%p0 A%p_» a%p_4 sion in inverse powers af’>. Thus, factorization has been
Fr(a7)=1+ 472F2\ 6 60 240 te ] achievedwhich in our opinion is one of the major successes

(5.5 of the present approach. Conversely, in order to obtain fac-
' torization, the conditiong1.3) must be assumed. In the

The mean square radius reads present calculation only even moments of the spectral func-
tion p(w) appeared. To involve the odd moments one needs

) dF N, N to consider a different quantity, for instance the scalar pion
<r7r>:6d_qZ|q2=0: WJ dop(w)= 4722 form factor. We recall that the odd spectral conditions were

(5.6) also needeo! in Sec.lIC. _ _
The leading-twist coefficient in expansids.10 has a
which coincides with the unregularized-quark-loop resultvery simple physical interpretation: it involves the ratio of
[43] and also shows that in the present framework the pion ighe vacuum energy densit®, and f%. Finally, we remark

an extended object. The numerical value is that the pure power behavior of E¢.10 is characteristic of
a bound-state object, and was obtained in non-local models

(r3)2M,=0.34 f?, (r?)®M,,=0.44 fnf, (5.7  [38] and more recently in the instanton modfig] and the
Nambu—Jona-Lasinio mod§gs].

which is a reasonable agreement. One should not expect a It is worth stressing thaall spectral condition$1.3) are
perfect agreement since from the chiral perturbation theory ineeded. If we just impose a finite number of them, say up to
is well known that pion-loop corrections provide a sizableorderN, then there appear logarithmic corrections starting at
enhancement fofr?)®™. We note that the knowledge of the orderN+2, of the form logQ?)/Q*"*2. This is what happens
pion electromagnetic form factor allows us to determine thégn the Nambu-Jona-Lasinio model when a Pauli-Villars
even negative moments of the spectral function, cf.(Bdp).  regularization with quadratic subtractions is used; the pion
This will be used in Sec. IX to build a vector-meson domi- form factor has proper leading twist behavior but a logarith-
nance model. Based on the properties of the one loop integranic contribution at subleading twi$8].

1(g?,w) (see Appendix A the pion form factor also fulfills a Plugging the numbers fd andf , we get for the leading
dispersion relation in our formalism twist contribution
qzjmdt Im FI) ) 8B
MNgd)=1+—| — ————— FEMQ?)|wisto= — —5 =(0.78+0.61) Ge\?,
P =1+ T Cgnior 69 QR Nz~ 57 = 3
(5.1)

B. Twist expansion and spectral conditions where the uncertainty in the model value comes from the

In the limit of large momentum we find, according to Eq. uncertainty inB. The experimental result for thill form
(A7), factor is Q?FS™(Q?)=0.38+0.04 Gef as taken averaging
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some old[45] and recenf46] data as compiled in Ref47]
in the region 2 Ge¥<Q?<6 Ge\?. On the other hand, a

PHYSICAL REVIEW D57, 074021 (2003

The amplitude for the neutral pion decayr®(p)
—v(q1,4)+ v(g2,v), can be directly computed from the

remarkable finding from the data is that a vector mesorformer expression by taking the on-shell photoq§,= q§
dominance monopole model obeying the pion charge radius-0, and the soft pion conditiom?=0. We find

up to Q?~ 1.6 GeV [48],

2

FQ%) = (5.12

Q2+ AZ'
This yields Q?F™(Q?%)=0.41-0.45 Ge¥, depending on
whether one takes\ = (6/(r?))?=0.73 GeV or A=M,
=0.77 GeV, respectively.  This  corresponds t
Q% FM(Q?)|wisto=A?=0.53-0.59 GeV for the same range
of A values, to be compared with our estimate, Eg11).
Motivated by the VMD success in describing the pion form
factor in the space-like region, we will study further conse-
guences of this scheme in Sec. IX.

(6]

VI. ANOMALOUS FORM FACTOR
A. Vertex function and neutral pion decay

The axial-vector-vectofAVV ) vertex is defined as

(2m)*8(p—ay+az) A

.G a,a;B,b
AVV

(pvqliqZ)

=i f d*x; d*x,d*x(0| T{I&(x) I%3(x1) IEP(x,) 1| 0)

X @l (P X~ a1 X1+azXp) 6.9
whereq; is ingoing, whilep andq, are outgoing. The solu-
tion fulfilling the relevant Ward-Takahashi identities can be
written. Going to the pion polgy?—0, yields

c;a,a;8,b
7VV

el pH
ARR ’a'ﬁ’b(p1Q11Q2)HFF (p,01,02). (6.2

For a neutral pionz°, and two photons one gets

v d*k )
mey(Qlqu):—ch de(W)fWTF T Y57
y i Q " i Q i
i iQy”
Kt ko ° Kkty—w
+crossed, (6.3

whereQ=B/2+1;=1/2N.+ 73/2 is the quark charge opera-
tor. Straightforward calculation of the traces yields

Fig}/y(plql 1q2) = 6uvaﬁqu'BFﬂ'7y( P.q1 qu)! (64)

where the pion transition form factor,

8
Fryy(P,d1,02) = — f—f dop(w)w’K(p?,qf,03,),
(6.5

has been introduced, and the three-point loop functgns
presented in Appendix A.

1

.J(d4k 1

8
Fm(o,o,O):—Ef dop(w)w? o)

1

472f

(6.6

fdwp(w)=

472f

which, when the spectral conditial.2) is used, coincides
with the standard result expected from the QCD chiral
anomaly.

B. Transition form factor

For two off-shell photons with momenty andq, it is
convenient to define the photon asymmetkyand the total
virtuality, Q2,

2_ 2
A=%, —1=<A=<1
g:+0z
Q®=—(d7+a3) 6.7
or, equivalently,
(1+A) (1-A)
gi=-—5—Q%, w=-—%5-Q (68
At the soft pion point we find
8 (1+A)
Fwy*y*(szA):_Ef dWP(W)W2K<O,_T 2,
1-A
—( 5 )Qz,w). (6.9

Through the use of expansi@dA18) and the spectral condi-
tions (1.3) for n=2,4,6 ... we maywrite, after straightfor-
ward manipulations,
1
f dx
0

8pi[1+A%(2x—1)?]
QY[1-A%(2x-1)%]

2p,
QY1 A%(2x—1)?]

]

(6.10

F'n'y* y*(QzlA): -

272

We can now confront this expression to the standard twist

decomposition of the pion transition form fac{et9],

1 1
F o ,/*,,(QZ,A)=J(2)(A)§+J(4)(A)§+ e
(6.11)

which via Egs.(4.13), (2.26) yields
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J@(A)= &Jldx& (6.12 ¥(x,0)= —— (0,0,0= —. (6.20
NeJo "1—(2x—1)2A?’ ' ’ Py 32
8f A2 (1 ¢(4)(X)[1+(2x—1)2A2] !n QCD one has a similar relation_ h_oIging for .quantities
JH(A)= —Z J dx— integrated ovek [49]. In our model this is inessential due to
c Jo [1-(2x—1)*A%)? the fact that thex dependence is constant. This triple identity,
(6.13 although it comes out easily in our model, is difficult to get
. in local chiral models since there is a conflict between recov-
with ering the proper anomaly and obtaining factorization of the
form factor at high photon virtualitiesee a detailed discus-
2_ _ S_B (6.14 sion in Ref.[8]).
Sfi' .

Note that this is exactly the same combinatioBandf , as

in Eq. (5.12). Numerically, we get
=(0.78+0.61) Ge\~. (6.15

An estimate made in a non-local quark model of R&@,51]

providesA?=0.29 GeV.

The form of the expansion coefficient$.12, (6.13
shows that the twist-2 and twist-4 distribution amplitudes for
the pion are, at the model working scdlg, constant and
equal to unity.

C. QCD evolution

The results of the previous section referred to the soft
energy scale of the model. In order to compare to experimen-
tal results, obtained at large scales, the QCD evolution must
be performed. The procedure has been discussed in detail in
Ref.[17], hence here we only sketch the method and men-
tion, for completeness, the most important outcomes. For the
twist-2 pion distribution amplitude the leading-order QCD
evolution is made in terms of the Gegenbauer polynomials.
One begins by interpreting our result as the initial condition,

(2) = —
It is interesting to look at higher-order twist coefficients. ¢7(X,Qo) = 600 6(1=x). 6.2
With help of Appendix A and with the spectral conditions Then the evolved distribution amplitude red&]
(1.3 we get
, V80302 ¢@(x,Q1)=6x(1-x) X CaA2x—1)ay(Q),
FQ ’A):_ 2 5 n!IT(1/2—n) n=0 6.22
6.2
1 1| with
1 TTAu-1) &) ' .18 o
' . B 2 2n+3 (X(Qz) Yn 1(2Bo)
This yields the result a,(Q)= 3 N+ 1)(n+2) a(QS)
eW(x)=6(x)8(1—x) for n=2,4,6.... (6.17 L
X f dxCYA2x—1)e@(x,Qf),  (6.23
All these amplitudes are by convention normalized to unity. 0
The prediction of the model is that they do not depend on the
Bjorken x variable at the scal®,. whereC> are the Gegenbauer polynomials, and
In the I|m|tq1 q2, or A=0, we get i1
(0)__ 8 3+ - 42 E
, af 2A2 n n+1)(n+2) & k|’
x 4% (Q%,0)= S|+ —+ (6.18
N.Q Q
11 2
An analogous calculation to the one presented in Refs. ﬁ°:§NC_§Nf:9' (6.24
[17,8] produces the following light-cone pion wave function
in the present model: With our initial amplitude we immediately get
Nc w? ! 3205 — 1)o@ 2y
W(x,k, )= 7 da)p(w) 20(x) 6(1—x). . dxCr(2x—1)¢*(x,Qp) =1. (6.29

(6.19

What actually matters in this analysis is the evolution ratio

Again, this form corresponds to the low-energy scale of theu(Qz)/a(QS). With the help of Eqs(6.22), (6.23), (6.25

model. The pion light-cone wave functidf.19 satisfies at
k, =0 the following condition:

we may compute the distribution amplitude for any value of
Q2. The result extracted in Reff53] and confirmed in Ref.

074021-12



SPECTRAL QUARK MODEL AND LOW-ENERGY HADRON . .. PHYSICAL REVIEW D57, 074021 (2003

[54] from experimental datgd55] provides a,(2.4 GeV) This is a cumbersome situation. Experimental data are di-
=0.12+0.03, hence we can fix the evolution ratio to the rectly obtained in thex space, but structure functions are
value difficult to pin down for large values ok (typically x
>0.65). That means systematic uncertainties for higher-
a(Q=2.4 GeV)/a(Qq)=0.15+0.06,  (6.26  order moments.
Our following calculation also illustrates an interesting

which reproducesa, obtained in our model. Then we can point |n the Bjorken limit it is assumed that integrals are

predict convergent fast enough to allow to convert the forward
_ . Compton amplitude to a quark-target scattering amplitude

= -+ — +
3(2:4 GeV=0.06-0.02 (exp—0.14+0.0370.09, [14]. We note here that while the former corresponds to a
ag(2.4 GeV)=0.02+0.01. (6.27) closed quark line, the latter refers to a quark propagator, i.e.,

an open quark line. In local models, such as the Nambu—
The overall picture at the leading twist and with leading-Jona-Lasinio model, the difference becomes sulste, e.g.,
order QCD evolution is very encouraging. For further detailsthe discussion in Ref8]) because it is not obvious how to

the reader is referred to RéfL7]. regulate open quark lines. As we show below, a rewarding
feature of the present approach is that the connection from
D. The y—a*#%=~ decay the forward Compton scattering amplitude to the quark-

) ) ) target scattering formula prevails, due to the spectral regular-
In this section we consider an example of a low-energyzation of the vertex functions. As a result, the relation be-

process involving a quark box diagram, which similarly 10 tyeen gauge invariance and proper normalization of the PDF
the neutral pion decay is related to the QCD anomaly in thgsmains valid.

soft pion limit. The amplitude for the decay of the photon of
momentumg and polarizatiore into three pions of momenta

: A. Derivation from the forward Compton amplitude
pi, ¥(a,8)— 7" (p1)m(p2) ™ (ps), is equal to

The hadronic tensor for inclusive electroproduction on the

Tya.e) 7+ (p) 70pp) 7 (p3) pion reads
d*k 1
=6if fdwp(w) W,,(p,@)= 5~ ImT,,(p,q)
(2m)*
. 4.9,
i 1 | :Wl(qzip'q)<_gp.v+ MZ )
XTriy,e" 5N q
c/k=p1—po—Ps—Ww Wa( Q2
>(q%,p-q) p-q p-q
T T gl
X —f—T D — —f—T O —
7 k=P po—w 7 Jk=p—w (7.1
w | i 8ot where the forward virtual Compton scattering amplitude on
o I =F(P1,P2,P3)&4ps-€“P1P2P3-  the pion is defined as

628 1,p.0)=1 | a0 7(p)).
In the limit of all momenta going to zero we get, with the (7.2

dition(1.2), . . . .
condition (1.2 The amplitude can be obtained by taking the residue of the

1 1 double pion pole in théAV— AV amplitude. The gauge in-
F(0,0,0= TJ dop(w)= ——, (6.29  variance requires considering not or_1|y the box-like diagrams
4t 4wty but also the processy— 7— my. This process may be rel-

evant at low energies; however, it does not contribute at high
energies since it provides higher twist contributions. The
hand-bag diagrams yield

which is the correct resu[66-5¢.

VIl. PION STRUCTURE FUNCTION

20 d%
As we have said in the Introduction, one of the advan- iT,,(p,q)= —ch dop()| | | 52
. . f. (2m)
tages of our model over other formulations is that calcula-
tions can be undertaken both in Minkowski and Euclidean 1 1

space. This proves crucial in the calculation of the pion XTr
structure function. We recall here that a Euclidean formula-
tion allows only for the calculation of a finite number of
moments of the structure functiofx™), for integemn, requir-

ing a subsequent reconstruction of the distribution function.

Qv,

ysTak—waﬂk+q—w kK—w

« 1
.
Vs bp—af]—w

+ crossed. (7.3
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In the Bjorken limit we can make the customary approxima- As one can see, the normalization integral coincides with
tion, the normalization of the pion electromagnetic form factor,

'y”“;y”e'y""zy” jldXQ(X):J’ldXE(X)ZFiWO)Zl. (7.10
kK+q—w q 0 0

q® In addition, we have the crossing property,
= —2[S”V“B'yﬁ+ie'“mﬁ'yﬁ'ys]. (7.9 B
q a0 =q(1-x). (7.10

The hadronic tensor is obtained as the imaginary part in the

(p+q)? channel. The Cutkosky rules amount to making the The k, -unintegrated parton distribution can be shown to

replacements be equal to
_ . . N w?
pz_w2—>(—2m)9(po)5(p —w?)=(-27i)é.(p,w), a(x,k. )= mf dwp(w)me(xw(l—xx
(7.5 (7.12
hence which is the same form as in E(.19, hence at the working
20 gtk scale of the modelQ,, one has the interesting relation
w
WH=—N. [ d — ———(—2mi)? —
Cf “’p(‘”)( i) ) @mz(72™) gk ) =q(1—x.k, ) =T (x,k,), (7.13

valid in our model in the chiral limit. A similar identity has
also been found in the Nambu-Jona-Lasinio modd].
Combining Eq(7.13 with the anomaly conditio6.20), we
XQ’y“(k-l—ﬂ-l—w)Q’yv(k-l— )ysTh(p—h—w)]. get the following normalization for the unintegrated parton
7.6 distribution atk, =0:

y 5T (p—k,w)d"(q+k,w)

(k2_w2)2

Tr y57a(k+ w)

The calculation of the traces is straightforward and the q(x,0,)= N (7.14
Bjorken limit of the discontinuity can be found in Appendix P TE I '
B. The result is rather simple, 7

Finally, via integrating with respect to, the following iden-

W,.,(p,q)= %ImTM(p,q) tity. between the PDF and the PDA is obtained at the scale

Qo:
quV 1 q,u, X)= X). 7.1
SF00| g, % _?( — 400 = 9(x) (7.19
This relation holds also in the Nambu—Jona-Lasinio model
x| p,— a4 (7.7 with the Pauli-Villars regularizatiofl7].
voo2x) |’ '
. B. Momentum sum rule
with
In our formalism the pion expectation value of the energy-
1 _ momentum tensof2.23 is
Foo=5 2 elat)+a0]. (7.8
s (m(Q)] 6°7(0)|m(a))
We taken™" for definiteness and get w\? d*k
O “onf doniol 7] |
Ur(X)=d,(1-x)=6(x)(1—X), (7.9
_ _ 1 1 (1
independent of the spectral functigi{w). Thus we have XTr| y57a Y5Th [E(k/"’yv-f' K”v*)
recovered scaling in the Bjorken limit, the Callan-Gross re- k+d—w k—w

lation, the proper support, and the correct normalization.

This is the same result as found by one of [@&] when —g"”(k—w)]
computing the structure function from the forward quark-

pion scattering amplitude, E¢3.21), in the light-cone coor-

dinates. The result has also been obtained previously by serhough the use of the spectral conditions we get, for on-shell
eral means within the Nambu—Jona-Lasinio mddél,59. massless pions,

—. (7.19

—w
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(w0 7°(q)) =2 q"0|”+g’”,\]3ff—2 °
(7.17
The connected piece becomes
(m ()| 0#"|7°(q))c=29"q". (7.18

Thus, the quarks carry all momentum of the pion, as it
should be, since there are no other degrees of freedom in the
model. As is well knowr{ 14,60, the matrix element of the
energy momentum tensor coincides with the first moment of

the PDF

1 1 _ 1
Jo dqu(x)—JO dxxc(x)—i. (7.19

PHYSICAL REVIEW D57, 074021 (2003

processes with closed quark lines. For such a situation the
effective action approach provides a much more efficient cal-
culational tool. It also yields a closer connection to previous
approaches such as bosonized versions of the Nambu—Jona-
Lasinio model. The one-quark-loop effective action that in-
corporates the quark-pion coupling obeying the Goldberger-
Treiman relation(3.14) can be written in the form

S=—ich d4xf dwp(w)Trlog{id— w exp

X[1ysTapa(X)/f]}. (8.2)
This form is manifestly chirally symmetric, witlh denoting
the non-linearly realized pion field. Note the formal similar-
ity with a generalized Pauli-Villars regulator. One may
evaluate the Gasser-Leutwyler coefficien®3,64 through

Actually, this property is a simple consequence of the crossthe use of standard derivative expansion techniiégkin a
ing property q(x)=q(1—x) and the normalization condi- similar fashion as done in Ref66,67. With the (1.2) con-

tion.

C. QCD evolution

The QCD evolution of the constant pion structure func-

tion has been treated in detail in previous wofk§,16 at

dition imposed, the calculation is equivalent to standard
quark-model calculations with the cutoff removed. The re-
sulting values of the Gasser-Leutwyler coefficients are

|_1:_N01

LO and NLO order. Nevertheless, in order to make the paper

more self-contained we present here the main points arising
from that discussion. Sections VII A and VII B yield the form
of the leading-twist contribution to the pion structure func-
tion at a given renormalization poir®,. The QCD radiative
corrections generate logarithmic scaling violations, which
can be included in our model by the Dokshitzer-Gribov-

Lipatov-Altarelli-Parisi(DGLAP) equationg61]. In particu-

lar, the non-singlet contribution to the energy momentu

tensor evolves as

dxxqx,Q) ©)(280)
j ( a(Q) )’ 0 | (7.20

f dxxq(x,Qq) #(Qo)

wherey{?) and 3, are given in Eq(6.24). In Ref.[62] it was

found that atQ?=4 Ge\? the valence quarks carry 47
+0.02% of the total momentum fraction in the pion. Down-

ward LO evolution yields that at the scale

0=313"% MeV (7.21)

the quarks carry 100% of the momentum. The agreement of |

the evolved PDHF 15,16 with the data analysig52] is quite
impressive. Equatiofi7.15 has been shown in Reff17] to

To=N,. ©.2
Other low energy constants, such ks and |, require a

specification of explicit chiral symmetry breaking within the
quark model. External gauge fieys may also be coupled re-

sulting in predictions forls and g, although any choice
eflects a particular selection of transverse pieces. This and
related issues are postponed for future studies. It is, never-
theless, interesting to anticipate here a dimensional argument
which shows why the relevant spectral condition for the
terms involving fourth-order derivatives is, precisefy,
=[dwp(w)=1. In the case of ther7 scattering in the chi-

ral limit, we have a box diagram with four quark propaga-
tors,i/(p— w), and four external pion lines, each contribut-
ing a factor ofw/f ., due to the Goldberger-Treiman relation
(3.15. If we are after the coefficient with four derivatives we
need four additional powers of momenta in the denominator,
which we may account for by squaring the fermion propaga-
tor. Thus, in obvious dimensional notation we have, after
adjusting the dimensions,

4

d o \* i N
f7(8¢)4~fp(w)dwj (2;;4(?#) <p2_lw2) (‘9¢)4

produce a very interesting integral equation relating the

evolved PDF and PDA, valid at the leading order QCD evo-

lution.

VIIl. GASSER-LEUTWYLER COEFFICIENTS

1
- f plo)do - (10)° 83

w

due to the fact that the dimensions of the convergent integral

The gauge technique provides a way to deal with operare set by the spectral mass This shows that the terms of
quark lines, an advantage over traditional chiral quark moddimension four in the effective Lagrangian are proportional
els, but it is unnecessarily complicated when dealing withto pg.
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IX. VECTOR-MESON DOMINANCE 247722
2 ko
ME=—— (9.5
C

Up to now, our considerations have been made fgem-
eral spectral function fulfilling a set of properties regarding
their moments and log moments. It is quite natural to askl'his relation is usually obtained when matching chiral quark
whether such a function exists and what are the phenomen#iodels to the vector-meson dominance and appears all over
logical consequences of making specific ‘amsafor this the literature, yielding a quite reasonable estimate forgthe
function. In this section we construct explicitly the spectralmeson massM, =826 MeV with f =93 MeV, andM,,
function using the phenomenological guidance of the previ="764 MeV with f_ =86 MeV in the chiral limit.
ous sections. The interesting and remarkable point about E%4) is

Some interesting consequences and insight may be ofthat even though we have determined the negative even mo-
tained in the present chiral quark model if the vector-mesorinents of the spectral function, the positive even moments,

dominance of the pion form factor is assumed, obtained by analytic continuation in the indax unexpect-
edly but most desirably, fulfill the spectral conditiofs3)

|\/|\2/ for the positive moments due to the fact thgin) has single
Fy(t)= Mot (9.)  poles at non-positive integens=0,—1,— 2, .... Hence,
\%
=0, n=123... (9.6

with M\, denoting thep-meson mass. This form fits the re-
cent datg 46] remarkably well. As will be shown below, the Thys, it makes sense to evaluate the log mom@n, since
model for the spectral function becomes explicit and furtheihe apsence of dimensional transmutation is guaranteed. The
interesting results may be obtained. log moments are most easily evaluated by analytically con-
tinuing the moments to the complexplane. We then have
A. Vector-meson dominance in the spectral approach

The vector form factor obtained in Eq5.4) reads,

d
'= | dwo"log(w?) (w)=2—j doow’p(w)|,-
through the use of the Feynman parametrizatié), P j glenp dz p(@)]z=n

Fy(h=FZ(t) d
:2d_2p2|z:na 9.7
= T zf dwp(w)w j dxlog[ w?+ x(1—x)t]. and
(9.2 5
M2 nF(n) I E —Nn
If we make a series expansion inthe integral inx can be Y. :( _ _V) n=123...
carried out order by order, hence 2n 4 - 5 ’ ’ :
2

(9.9

Fu(t)=

E fdwpm)w

2 W22
477 = where we have used E¢R.5. The first few values are
f dx[x(1— x)]”( 2 , AfPm?
wZ p2_ - N ’
Cc
E 2 2 al(n+1) 212M3
47T2f2 P2-2n nr(n+3/2) [ Nc , (99)
-t)" 9.3
As one can see, in our model the pion form factor is encoded Pe Nc

in the negative even moments. Through vector meson domi-

nance we get immediately, by comparing E§.3) to the
expansion of Eq(9.1), the following identification:

2243581262 1 T (k+3/2)

Prak™ N MZ< T(k+1)
k=1,23.... 9.9
In particular, the normalization conditiopy=1, yields

Sincep, and p, determinef . and B, respectively, see Egs.
(4.13, (2.26, we may wnte the following interesting rela-
tion coming from the vector-dominance model and the spec-
tral approach:

N.MY,
64772

9m?f4

N¢

= —(202-217 MeV*. (9.10
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w-Complex Plane ute. One may explicitly verify with no difficulty that the use
of Eq. (9.12 in Eq. (9.1 with the contour of Fig. 1 repro-
duces Eq(9.4).

With help of the explicit formuld9.12 several interesting
features may be pointed out. The spectral function is genu-
inely complex and it is defined on a complex cont@uIThis
precludes positivity condition68].

) { It is also interesting to note that in the linf,— > one
-M/2 M/2 gets
11
Pv(w)ﬁﬁ;, (9.15

i.e. the massless free theory. This suggests a multiplicative

effect of chiral symmetry breaking on the spectral function.
FIG. 1. The contour in the complex plane for the spectral  Finally, Eq. (9.12) cannot be interpreted as a constituent

functions in the meson dominance model. The quamMitdenotes ~Model for which one essentially has a pole«st M in the

the generic meson maé, for the vector channel ankllg for the ~ complex plandor, equivalently, &(w—M)], with M denot-

scalar channel. The branch cuts starwat = M/2. The pole atw  ing the constituent quark mass.

=0 occurs for the vector case only.

X. QUARK PROPAGATOR IN THE MESON DOMINANCE

The uncertainty stems only fro_m using eitﬁa,r or My as MODEL
input. Our value agrees within errors with the estimate
(2.29. A. Scalar spectral function

In the construction of the vector spectral function we have
B. Inverse problem used the vector-meson dominance principle, which has a firm

Although for practical calculations the moments seem toohenomenological just_ification. For the case of the spa_lar
contain the relevant information that can be used in practicaffpﬁ(:tr"",I function YI\Ile wil proqee? differently, molre heu”ﬂ"
applications, it is nevertheless very interesting to write dowrfaly- First, we will propose its form in an analogy to the

an explicit formula for the spectral function. The mathemati-orm Of py. Then, in Sec. X C we will confront our hypoth-
cal problem is then to invert the formula esis to the recent lattice data on the quark propadgai 9.
The scalar function has to satisfy the conditidais3) at

on odd positive values afi. The analysis of the previous section
pan= dew pv(w), (91D suggests the following form:
where the moments are given by H§.4). The solution to pe(@)= i 16(ds—1)(ds=2)py (10.1)
the problem is given by the following surprisingly simple 2w MY(1-40%M3)%s
function:
where the normalization is chosen in such a way that the
11 1 01 third log moment,ps=—47%(qq)/N,, is reproduced. In
o= 5w (1-402IM2)’ 912 Gther words, we fix the normalization with the quark conden-
v sate. The admissible values af are half-integer, since only
with then the integration around the half-circles at the branch
points in Fig. 1 vanishes. In Sec. X C the preferred value will
dy="5/2, (9.13  turnoutto be
at which case we have ds=5/2. (10.2
1 3,”-2M~\3/f2 1 1 One may verify that the integration with the prescription
py(w)= > an, - (M\2,/4— D)5 (9.149 of Fig. 1 yields

The function py(w) has a single pole at the origin and pzk,l=f dwo® 1oy w)
branch cuts starting att half the meson massw= ¢

*+M,/2. The contour for computing the spectral moments is T'(ds—k)
depicted in Fig. 1. The contributions encircling the branch =~ 43 kz2(qg)yMs "N, Fde—2) T 1=K
points cancel provided,, is half-integer. The contribution at S

infinity cancels, and only the residues at the origin contrib- (10.3
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and conditions(1.3) become satisfied for odd positive Alternatively, instead ofA and B one may consider the
=2k—1. The analytic structure gfs(w) is similar to the more customary mass functiokl(p?), and the wave func-
case ofpy(w), except for the absence of the polewst 0. tion renormalizationZ(p?), given by Eq.(2.6). They can be

For completeness, we list the result for even and oddvritten as
negative moments,

M2 |%
M@)‘” T'(dy+n) —
=7 FaorreaT M(p?) 4dyp? | ME—4p?
Mo M2 Mz o\ .
_[M§)"4rXqg)  T(dstn) M2—4p?
P—2n-1 4 N. T(ds—2)T(n+1)’
¢ 2 dy 2 2,2
(10.4 ) M2 16d2M(0)p
Z(p)=1~- vZ—ao?] T T
n=012... vTap v
M2 ZdS
and for the positive even and odd log moments, 5 S 5
Ms—4p
, ( M\Z,)”I‘(dv—n)l“(n) NFERNL VI (10.8
Pon=\ " | T T v
4 rdd -1
( V) M2—4p2
2\ n—2 2 /= .
o :_< — M_S) 4m*(qq) I'(ds—mT'(n) whereM,=M(0) is the value of the mass at the origin. We
2t 4 Ne  T(ds—2) find
(10.5 o
123 " 16(ds—1)(ds—2)M{7*(qq)
n=12,3... 0o~ — )
dyMEN,
The valued,,=5/2 should be used for the vector dominance )
model. 4dyM (0)
Z(0)= ———. (10.9
MV

B. Quark propagator

. . 2_ 2 .
A straightforward calculation with Eqgs(9.12), (10.1) At high Euclidean moment&®= —p“—c, we obtain
yields theA(p?) andB(p?) functions of Eq.(2.7), namely,

L dWMoM2[ ME| %7

1 1 M(Q%)= vz | 7202 :
A(p?)=—|1— 1 Vv Q

p (1-4p?IM{H N d 2dg—1

B 2(0%)=1- My | 4diM(0)°ME[ ME) T )
B(p?)= 64(ds—2)(ds—1) 7*(qq) (108 a2 M 4Q2 T
MEN(1—4pZMEds ' (10.10

We note that the apparent poleAp?) is canceled when the V\é?,vg?;ec}?gt for the half-integexs the tail ofM contains odd
expression in brackets is expanded, and both functiave P '
no poles in the whole complex plarnEhe functions(10.6
have branch cuts starting pf=4M?2, whereM is the rel- M(Q2)~T, (10.1)
evant mass. (Q*)%s7t

The absence of poles, achieved in a rather natural fashion
in our approach, is very appealing, but not completely surand fords=5/2 drops as 1p°, for ds=7/2 as 1Q°, etc. The
prising a posteriori In local chiral quark models, where the wave-function normalization, Z(Q), has the correct
propagator is usually assumed to be a meromorphic functioasymptotic behavioZ(Q)~1.
(with a pole at the constituent quark masmeson vertex Given the cut structure of the functiodgp?) andB(p?)
functions naturally inherit the discontinuity structure implied we may look back at the high energy expans{@r83. Ac-
by the Cutkosky rules and unitarity. In our case, it is thecording to the spectral conditiond.3 one would deduce
meson form factor which is taken to be a meromorphic funcfrom the high energy behavior that the full propagator coin-
tion through the VMD model; unavoidably, the quark propa-cides with the free one. The puzzle is resolved by realizing
gator must have no poles and a certain cut structure conspithat the branch cut running fromt M/2 to = implies a
ing with the unitarity at the one-loop level in order to fractional power behavior, and hence the function cannot be
produce such a form factor with no cuts. represented by a power series expansion around infinity.
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From this point of view, Eq(2.33 just expresses the fact

PHYSICAL REVIEW D57, 074021 (2003

The functionsM(Q) and Z(Q), evaluated at optimum pa-

that the integer power coefficients are exactly zero, as clearlyameters, are shown in Fig. 2 with thick lines. The thin lines

follows from Eq.(10.6.

C. Comparison to the lattice data

The decrease of the quark mass a3%4t large Euclidean
momenta is favored by recent lattice calculatidds,19,
where the fit to the functional form/[ (Q?%)°+ (A?)P] is best
when the parametdr is close to 369]. We have performed
a x?2 fit for M(Q) of Eq. (10.9 to the data of Refd.18,19.
These data, for the case BF, have been extrapolated to the
chiral limit. We have treatet g andM as free parameters.
The x? fit results in the following optimum values:

Mo=303+24 MeV,
Mg=970+21 MeV, (10.12

with the optimum value o%? per degree of freedom equal to
0.72. The corresponding value of the quark condensate is

(qa)y=—(243.0°53 MeV)>. (10.13

03
%o.zs
= 02
0.15
0.1

0.05

0.25

1 2 3 Q[GeV] 4

FIG. 2. The dependence of the quark misls&op) and the wave
function normalizatiorZ (bottom on the Euclidean momentu@
obtained from the meson dominance model vdtj+5/2. The lat-
tice data, extrapolated to the chiral limit for the caseMyf and
taken at the current quark mass59 MeV for the case of, are
taken from Refs[18,19. The thicker lines correspond to optimum
parameters of Eq10.12, while the thin lines indicate the uncer-
tainty at the one-standard-deviation level.

indicate the uncertainty at the one-standard-deviation level.
The agreement with the data is very good for the cadd,of
and the 103 falloff is clearly seen. In fact, fitting of the
model with values ofdg higher than 5/2, which results in
faster asymptotic decrease, results in a much worse agree-
ment with the data. As seen from the bottom part of Fig. 2,
for the case ofZ the agreement is not very good, but we
should keep in mind the simplicity of the present model and
the freedom in the scalar channel. For instance, the scalar
spectral function can be multiplied, without losing any of the
general requirements, by an entire function. We also wish to
stress that the optimum value ¢fq) obtained by fitting the
model formulas to the lattice data agrees with the estimate
(10.13.

It is interesting to note that even though the mass func-
tion, M(p?), presents a pole for time-like momenta, i.e. there
exists a solution to the equatidv(p?) — p?=0, it does not
correspond to a physical particle. This is because the normal-
izationZ(p?) also vanishes for the same valuepst This in
fact is just a manifestation of the analyticity properties of
A(p) andB(p) discussed above. Figure 3 shows the behav-
ior of M and Z at low momenta. Arrows indicate the posi-
tions of the alleged pole i, canceled by the zero &.

Xl. OTHER PREDICTIONS

The explicit model for the quark spectral functipiiw)
allows for very simple and efficient evaluation of further
interesting quantities. There is a whole bunch of predictions,
from which we only list a few. The results decouple into
those involving the vector spectral functign,(w), and the
scalar spectral functiompg(w). As stressed throughout the
paper, all predictions are made for the model working scale
Qp, and the QCD evolution is needed if a comparison to
high-energy data is desired.

-0.1 008 006 004  -002 Yol 002
Q? [GeV?]

FIG. 3. Square of the quark ma#s? (solid line), minus the
square of the Euclidean momentu®? (dotted ling, and the wave
function normalizatiorZ (dashed ling plotted as functions of the
square of Euclidean momentu®?. The arrow indicates the point
where M?= —Q?, but where als&Z=0. As the result, the quark
propagator has no pole. From the analyticity propertied ahd B
it follows that the quark propagator has no poles in the whole
complexQ? plane.
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A. Pion transition form factor Villars regularization, which produceék?)= (613 MeV)

According to the vector meson dominance model of thd17]. The estimates from QCD sum rules yield smaller val-

pion form factor, the transition form fact@6.9) becomes ues: one gets (316 MeV)based on Ref[70], and (333
+40 MeV)? based on Ref.30]. One should note that these

. (Q%.A) 2f, 1 2M\2,+(1+A)Q2 estimates are d, of the order of 1 GeV, hence the QCD
Tk s = —I10g —————— i i )
ey AN, Q2 g OM2+(1-A)Q? evolution is needed to compare to our model requl@
n 16fwM\2/ C. Unintegrated pion structure function
N[4MY+4Q2ME+(1-A%) Q4 Due to relation(7.15, exactly the same formulas as in the

previous section hold for the unintegrated quark distribution

(11.1

function in the pion. Hence, we find

As discussed in Sec. VI, this expression provides the twist

expansion, with the result of E¢6.17), but with VMD the

log moments of Eq(9.8). The analysis and comparison to
the data of Ref[55] requires the QCD evolution of the
higher twist components. This point will be analyzed else-

where.

B. Pion light-cone wave function

Next, we use EQq(9.14) in the expression for the pion

light-cone wave functiori6.19, with the result

My

167 (k% + MZ/4)5

T(x,k, )= 0(x)0(1—x). (11.2

q(x,k ) =q(1—x,k,)

My

16m(K2 + M2/4)52

0(x)0(1—x), (11.8

and the analogs of Eq§11.3—(11.5.

D. Non-local quark condensate

The applications of Secs. XIB and XIC involved the

vector spectral density. The scalar spectral der{didyl) en-
ters the evaluation of the nonlocal condensate of (Bd.9.

For ds=5/2 we find immediately the interesting and simple
Passing to the impact-parameter space with the Fourieresult
Bessel transform yields

[ y2
MSTX) (11.7)

® Q(x)=exy{ -
\I’(X,b)EZ’ﬂJ’O k, dk, W (x,k, )Jo(k, b)

wherex denotes the Minkowski coordinate. For higher val-
ues ofdg the expression is multiplied by a polynomial in the
x? variable. Note the nonanalyticity in thé variable in Eq.
(11.7 asx>—0. In the present model the moments of the
qguark condensate, E@2.20, are well defined fom<2dg

5 )exp(—7> 0(x)0(1—x). (11.3

1+

The expansion at smatl yields

M2b%2  M3bd —4, which means that for the preferred valuedaf=5/2 we
Pxb)=|1-—g—+——+... [0(X)6(1—X). may only consider the quark condensate itself, but not its
(11.4 moments. Nevertheless, the coordinate representation of the

non-local condensate makes sense and can be given for the

The average transverse momentum squared is equal to ~ Whole range of?.

f d?k, K2W(xk,)

E. Quark propagator in the coordinate representation

(kf>E One may also pass to the coordinate representation for the
f d?k, ¥ (x,k,) A andB functions of Eq.(2.7), introducing
4p )
_ _4&1@ —iXA<x>=f oS T PAP),
db beo

M2 4
~2 (115 B(x =f P_e-ipg(p).

2 (X) (2m) (p)

which numerically gives(k?)=(544 MeVy (all at the (11.8

model working scaleQg). This value is not far from the
result of the Nambu—Jona-Lasinio model with the Pauli-With straightforward algebra one finds
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A8+ 2AM /=2 — BM2x2+ M3( — x2)32 malization pointQg. Thus, our model results should be con-
A(X)= v v v ) sidered as an initial condition for the QCD evolution, hence
96m2x* automatically incorporating the correct high energy radiative

corrections to hadronic observables. The low renormalization
point Q, is determined by the analysis of two different pro-
. cesses: the pion transition form factor and the pion structure
28-2d functions. We find compatible values in the ran@k
B(x)= WS@%(MSV_XZ)%ZKz—dS(Ms\/_XZ/Z), ~300 MeV, corresponding tax(Qq)/(27)~0.3. For the
s (11.9  Model scale, the leading twist contribution for the pion struc-
ture function and the pion distribution amplitude coincide
where x denotes the Minkowski coordinate. We have usedand are equal to oney(x)=¢,.(X)=1, regardless of the
dy=5/2. In the limit of lowx one recovers the result of the spectral function. At the same time the correct anomalous
free theory,A(x)=1/(2m°x%). For the preferred value of form factor for the processr®— yy is obtained. This re-
ds=5/2 we find that solves the conflict between proper low-energy and high-
_ energy normalization of the pion transition form factor. The
B(x)=(qq)/(4Nc)exp(—Mgy—x?/2), (11.10  QCD evolution of both the PDF and PDA has been shown to
provide a very reasonable agreement with the data analysis.

% e—MVV—xZ/zy

in agreement with Eq(11.7. The pion form factor does depend on the spectral func-
tion. Further interesting analytic relations can be obtained by
XIl. CONCLUSION AND FINAL REMARKS determining the even contribution to the spectral function

In the present work we have developed a chiral quarlIrom the requirement that the pion form factor has the vector
model, which tries to incorporate as many known feature% gﬁg} 32{2 I&at?l(;ez;\?arlwe{b\f\éh:ﬁgrlr?eﬁ?l?r\;\l?atr? ie\?grnbv?/e?lx%esné
based on chiral symmetry and the partonic quark S’Ubs’truc'esult the vector meson mass becomes gro ort)ilonal .to the
ture of hadrons as possible. This approach, first unveiled inesuiL Proporti

Ref.[12], should be considered as a simple prototype of ion weak de_cay constant. The vector cont_npunon to the
construction which may be certainly improved in many re-sagciglguggfcnh e)(;?r:?sltsata IEglir%i::; E]Zgg]ec’ctlg;j n:]:snc;n
spects. Taking into account the fact that the emerging picturg] 9 b P . .

is very encouraging, economic, and predictive, we belieyd2SS- As a consequence the spectral function must be inter-

that applications and extensions of the model deserve a thop—re.Fig ?osrri gﬁﬂgfl%ltﬁ:r ;ﬁ:]i(tjioar;[ tsrl.e b;i?ecg l?ol[rr]ltes.vector
ough further investigation. X 99 y

The key ingredient is the use of a generalized spectra‘fhannel can be also used with minor modifications for the

representation for the quark propagator combined with thefiEd TRIEEL (A0 Ay (8 0 e e ol
gauge technique for constructing the vertices involving y yzed. P

guarks and currents. The generalized Lehmann represent%l—I over the complex plane, only cuts located at the branch

e - : oints of the spectral function. Moreover, the asymptotic be-
tion implies analyticity properties of the_quark propagator OnEavior in the EFL)JcIidean region reflects this cut s'xucp':ure by a
the _complex plane b.UI positivity or reality are abandoned. Ir]’nalf—integer power falloff of the quark mass function in the
particular, the analytic continuation from the Euclidean to the

Minkowski space back and forth becomes straightforward[sfgi%ad Etut(P:]lildel‘?r}f rir;](:mer;tuQW. :—?e é/ezcentitlattlﬁer:;ta i
We note that this continuation is explicitly used when com--=" Set this ha eger power 1o quite unambigu

puting hadronic matrix elements in momentum space. Thé;;Jtsr?g gz('?ritréscgzvgstzfﬁvejaiﬂI?ﬂg;gg":rr]l;ms;fkﬂégﬁt_'on
possibility of doing this continuation becomes eXtreme'ydensate gs free arametersq The fit to the dat?:\ for the mass
convenient when dealing with calculations of soft matrix el- P '

B 2 .
ements of high-energy processes. In a purely Euclidean foJ—unCt'on' M(p®), is very good and the values for both the

H 2
mulation one stays in the coordinate space and the extractio(f?t?]deﬁsate ::nd tthe _T_?]nsft_lgtzer:;[] quark kmasp a;to a}[gree
of the parton distribution functions or amplitudes is often W1t ONer estimates. The it 1o the quark wave-iunction nor-

limited in practice to the few lowest moments. malization,Z(p?), is not nearly as good as ft (p?), leav-

The conditions used to constrain the spectral function ard19 room for improvement.

collected in Table I. Finiteness and factorization enforce theI P_ossm:ce extensions olf th? generalf r?r?devlvln\éo_ll\_/ektf%e '?]T
vanishing of the positive moments, while a number of avail-cusion of more general solutions ot the Vvard-iakahashi

able experimental observables can be used to fix the valuégent'f"es' The meson-dominance model can be improved by
and signs of the negative moments and the log moments. studying more general forms of the scalar quark spectral

Instead of making a specific model for the propagatorfunCtion' Moreover, thg inclusion of finite quark masses
based on extrapolations from the Euclidean region to '[hg"OUId allow the extension of the present model to the com-

complex plane we devise an infinite set of spectral conditionfIEte pseudoscalar octet. These issues are under investiga-

based on the requirement that our model produces finite ha fon.
ronic observables. As a result the high energy behavior of
certain matrix elements corresponds to a pure twist expan-
sion, with no logarithmic behavior. This is consistent with  We are grateful to the authors of Ref$8,19 for provid-

the interpretation that the model is defined at a low renoring their state-of-the art data for the quark propagator on the
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TABLE |. Summary of conditions for the quark spectral functiefw).

Spectral condition Physical significance

Normalization

po=1 proper normalization of the quark propagator
preservation of anomalies
proper normalization of the pion distribution
amplitude
proper normalization of the pion structure function
reproduction of the largé, quark-model values of
the Gasser-Leutwyler coefficients
relation MZ2=247%f2/N, in the vector-meson
dominance model

Positive moments

p1=0 vanishing quark mass at asymptotic Euclidean
momentaM (Q?)—0

po=0 finiteness of the pion decay constah,

p3=0 finiteness of the quark condensateq)

pa=0 finiteness of the vacuum energy densBy,

pn=0, n=24,... factorization in the twist expansion of vector
amplitudes

pn=0, Nn=57,... finiteness of q(4%) "~ "q)

factorization in the twist expansion of the scalar pion
form factor

Negative moments

p_»>0 positive value of the quark wave-function
normalization at vanishing momentu(0)>0

p_1lp_»>0 positive value of the quark mass at vanishing
momentumM (0)>0

Pon low-momentum expansion of correlators

Positive log moments

p2<0 f2=—Nc/(47%)p;
p3>0 negative value of the quark condensate,q)=
—Nc/(472) ps
ps>0 negative value of the vacuum energy densBy:
- Nc/(4772)P4/1
ps<0 positive value of the squared vacuum virtuality of the
quark,\5=—p&/p}
Pn high-momentunitwist) expansion of correlators
lattice. We thank Alexandr E. Dorokhov for a discussion on 1 d* 1 1
the pion electromagnetic form factor. This work is supported |(g? )= ._j
in part by funds provided by the Spanish DGI with grant no. 1) (27)% K= w?+i0" (q—k)?>— w?+i0"

BFM2002-03218, and Junta de Andalugrant no. FQM-
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q2 4w?

search, grant number 07/2001-2002 is also gratefully ac- _

knowledged. 1672
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APPENDIX A: ONE-LOOP INTEGRALS

1. Two-point integral +1(0,0), (AL)

The two-point one-loop integral regularized int+4 di-
mensions is with
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[(0,w)= ol [ 2/ 2) A2
( ,w)——lew2 Z Tlog(w™/u) |. (A2)

We also introduce
1(9%,0)=1(9%,0)—1(0,). (A3)

In the Feynman parametric form we equivalently have

1
X f dxlog[ w2+ x(1—x)g?].
0
(A4)

()= — —
J0)=—
a (4m)2

The imaginary part yields

L (o) = — \/1 —wza( 2_402). (A5)
—1Im ,W)= —_ — 4w .
a q 16,772 4q2 q

Thus the once-subtracted dispersion relation,

2 ro
I_(qz,w)=q— dt Iml(t,w)

_ A6
mJa?t t—g2—i0" (46)

holds. The asymptotic behavior for large Euclidean? is

(@)= —— ] 2- 2 log(— g2 + 22
(q 'w)_16772 — <~ log(=q%/u?) ra

X[log(— g% w?)+1]

(1)4
+_
4
q

log(— g% w?) — %} .. ] . (A7)

At low g? we have

o 1 q2 q4 q6
(g% w)= —+ + +... 1.
(@) 16772[6w2 60w*  4200°
(A8)
2. Three-point integral

The three-point one-loop integral is defined as

K((9:—92)%,92,03,0)

1 d% 1 1
i) 2mF K= 0?+i0" (k—qp)2—w?+i0"

1
X .
(k—y)%— w2+i0*

(A9)

We analyze it with the dimensional regularization, and for
the case where the virtuality of one of the external line van-

ishes, €;—0,)2=0 (massless pion We immediately find
the result

K(0,0,0w)=—

1
—_. A10
1672 2w? (AL0)

PHYSICAL REVIEW 57, 074021 (2003
The following Feynman parametrization is useful:
X

1 1d ld
—— —9 :
abc fo Xfo y[xyaer(l—y)bJr(l—X)C]3
(A11)

Carrying the momentum integration and introducing 2y
—1 yields

1+A ,1-A
K O,Tq ,Tq , W
1 1 1 X
= fdxf dz .
16m2Jo -1 (1-x)x(1+A2)q°—2w?
(A12)
At A=0 we find
1 21 2
K 0!_ 1_ 1
p 44
1 2 1+V1-8w?/qg? L3
= log . (A13
1672 g>V1-8w?/g® 1—+1—8w?/qg?
At low g? the expansion is
1.1
T2 2
K(O,Zq ,2q , 0
1 1 2 4
S B SR B (AL
1672 | 20? 240* 2400*
and a highg?
1.1 1
A2 A2 = _ 2142\
K| 05054 ) = 2 log(—2w?lq )q2
wz
—8[log(—2w?/q*) +1]— + ... |.
q
(A15)

The integral ovex in Eq. (A12) yields

1+A

2
0,—2 q

2
) 2 q:w

1-A )

1 (1
= f dz
1672) -1 (1+A2)q%s

1+s
Iogl_s, (Al6)

s=1-8w?/[q*(1+A2)].

At low g° we have
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01+A 21—A 2
,—2 q ,—2 g%, w

1
1672

1 2 (A*+3)g*
L q +( )q N
2w% 240" 720w*

(A17)

The largeg? expansion produces

o

1 (1
=- J dz
16m2) -1

4w?

+—
q*(1+Az2)?

1+A

1-A
2
’ 2 q )

2
1 2 qyw

2w?

[ S —
[q2(1+Az) Og( g%(1+A2)

(A18)

| Gl +1|+
o N —
9 q?(1+Az)

The integral overz in Eq. (A16) gives finally the simple
general result

K Ol-I—A ,1-A
|Tq 5Tq

1+s,
g1—s+

! Hl i (I 1+Sﬂ (A19)
= 0 —|log——| |
327%Ag? 91-s

s.=V1-8w?[q’(1=A)].
APPENDIX B: DISCONTINUITY IN THE BJORKEN
LIMIT

Let us consider the one-loop function

T __f d*k 1
(PO= ] G [(—pP= w510
1 1
K= wZri0" (q—K—p)Z—w?ti0""
(B1)

The discontinuity in thes=(p+q)? channel may be com-
puted through the Cutkosky rules,

d*k 1

(2m)* [(k—p)?— w?+i0"]?
X (—2mi)28" (kK?— w?) 5"
X[(g—k=p)*~?].

DiscT(p,q)=i

(B2)

PHYSICAL REVIEW D67, 074021 (2003

We choose the reference frame of the target at rest

p=(m,0,,0), q=(do,0, .q3), 0°=—Q*=q5— 0.
(B3)
One gets then
Q2
9= o2m x’
Q? am’x? Q2
g;= m X + o2 m X +m X+ .. (B4)

In the light-cone coordinates, defined as

K =Ko+K3, k=K"= K%, k, =(kLK?),

1
dkOdk3=§dk+dk‘, (B5)
one obtains
Q2
+— 04 g3
qg =g +q m.x’
q =9°-g>*——-m_x, (B6)
and also
m_X
5*[(k—p—q)2—w2]—>Q—Zé[k’—(l—X)mw],
1 K2 + w2
frp2_ 2 +__ L "
Sk~ w ]Hmw(l—x)5 m(1—x)|' (B7)
Thus finally we get
x(l—x)f d%k, 1
ImT(p,q)— .
(p.) Q? (27)? [K? + 0?—m2x(1-x)]?
(B8)
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