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Spectral quark model and low-energy hadron phenomenology

Enrique Ruiz Arriola*
Departamento de Fı´sica Moderna, Universidad de Granada, E-18071 Granada, Spain

Wojciech Broniowski†

The H. Niewodniczan´ski Institute of Nuclear Physics, PL-31342 Krako´w, Poland
~Received 23 January 2003; published 21 April 2003!

We propose a spectral quark model which can be applied to low energy hadronic physics. The approach is
based on a generalization of the Lehmann representation of the quark propagator. We work at the one-quark-
loop level. Electromagnetic and chiral invariance are ensured with the help of the gauge technique which
provides particular solutions to the Ward-Takahashi identities. General conditions on the quark spectral func-
tion follow from natural physical requirements. In particular, the function is normalized, its all positive mo-
ments must vanish, while the physical observables depend on negative moments and the so-called log mo-
ments. As a consequence, the model is made finite, dispersion relations hold, chiral anomalies are preserved,
and the twist expansion is free from logarithmic scaling violations, as requested of a low-energy model. We
study a variety of processes and show that the framework is very simple and practical. Finally, incorporating
the idea of vector-meson dominance, we present an explicit construction of the quark spectral function which
satisfies all the requirements. The corresponding momentum representation of the resulting quark propagator
exhibits only cuts on the physical axis, with no poles present anywhere in the complex momentum space. The
momentum-dependent quark mass compares very well with recent lattice calculations. A large number of
predictions and relations, valid at the low-energy scale of the model, can be deduced from our approach for
such quantities as the pion light-cone wave function, non-local quark condensate, pion transition form factor,
pion valence parton distribution function, etc. These quantities, obtained at a low-energy scale of the model,
have the correct properties, as requested by symmetries and anomalies. They also have pure twist expansion,
free of logarithmic corrections, as requested by the QCD factorization property.
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I. INTRODUCTION

The termchiral quark modelhas become a generic nam
for any relativistic field theory aiming at the description
the non-perturbative features of QCD. Numerous approac
~for reviews see, e.g.,@1–8#, and references therein! share a
number of common features. Firstly, they incorporate
namical quarks as the only explicit degrees of freedom. S
ondly, they provide particular solutions to the chiral and el
tromagnetic Ward-Takahashi identities. Although there is
doubt that chiral quark models provide a reasonably accu
quantitative description of hadronic properties, there is a l
of systematics in the construction of any particular dyna
cal model. A source of ambiguity is the fact that chiral qua
models are, supposedly, an approximation to the low-ene
non-perturbative QCD dynamics. In this regard, an essen
ingredient is the introduction of a practical suppression
high-energy degrees of freedom, necessary in order to s
rate the low-energy regime, where the model is suppose
work, and the high-energy regime, where the genuine Q
dynamics, in terms of explicit quarks and gluons, should
in. This defines a certain scale, or cutoff, which acquire
physical meaning and which should be kept throughout
calculation. The precise way how this high-energy cut
should be introduced is not at all clear, although some c
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straints can be imposed on the basis of the relativistic
gauge invariance. For a discussion of various popular
proaches and associated problems see, e.g.,@8#.

In this work we introduce a novel approach, thespectral
regularizationof the chiral quark model, based on the form
introduction of the Lehmann representation@9# for the quark
propagator,

S~p!5E
C
dv

r~v!

p”2v
, ~1.1!

wherer(v) is the spectral function andC denotes a contou
in the complexv plane chosen in a suitable way. As wi
become clear in Sec. III, the spectral regularization allows
to explicitly solve the chiral and electromagnetic War
Takahashi identities in a rather simple manner, through
use of the so-calledgauge technique@10,11#. The method has
already been sketched in a previous work by one of us@12#.
Of course, any solution of the Ward-Takahashi identities c
not be complete due to the existence of transverse te
which necessarily appear in the underlying theory, and wh
can only be uniquely determined in QCD. In fact, any po
sible realization of a chiral quark model, if properly regula
ized, represents in a sense a particular solution to the W
Takahashi identities. This point is not fully appreciated.
Sec. III we will provide a minimal set of solutions to th
Ward-Takahashi identities and study their consequences

Throughout the paper the model is considered at the o
quark-loop level and in the chiral limit of the vanishing cu
©2003 The American Physical Society21-1
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rent quark masses. Therefore our present predictions
made at the leading-Nc level and in the chiral limit.

The proper normalization and the conditions of finitene
of hadronic observables are achieved by requesting wha
call the spectral conditionsfor the moments of the quar
spectral function,r(v), namely,

r0[E dvr~v!51, ~1.2!

rn[E dvvnr~v!50

for n51,2,3, . . . . ~1.3!

It will be shown that the physical observables are prop
tional to the inverse moments,

r2k[E dvv2kr~v! for k51,2,3, . . . , ~1.4!

as well as to the ‘‘log moments,’’

rn8[E dv log~v2/m2!vnr~v!

5E dv log~v2!vnr~v!

for n52,3,4, . . . . ~1.5!

Note that the conditions~1.3! remove the dependence on th
scalem in Eq. ~1.5!, thus we can drop it. No standard r
quirement of positivity for the spectral strength,r(v), is
made~see Sec. II D!.

In the present work we do not intend to determine
quark spectral function from ‘‘first principles,’’ but rathe
look for general consequences and implicit relations wh
follow from the approach.

The model with the spectral regularization~1.1!, ~1.2!,
~1.3!, supplied with couplings obtained via the gauge te
nique, possessessimultaneouslythe following features:

~1! Gives finite values for hadronic observables, which c
be used to fix the inverse moments,~1.4!, and the log
moments,~1.5!.

~2! Satisfies by construction the electromagnetic and ch
Ward-Takahashi identities, thus reproducing all the n
essary symmetry requirements.

~3! Satisfies the anomaly conditions.
~4! Complies to the QCD factorization property, in the sen

that the expansion of a correlator in a large-moment
Q is a pure twist-expansion involving only the inver
powers ofQ2, without the logQ2 corrections. Thus, the
model can be used to compute the soft matrix eleme
needed to describe the deep inelastic inclusive and
clusive processes and to analyze the pion structure fu
tion, pion distribution amplitude, etc.

The fact that all the above features can be satisfied sim
taneously in a chiral quark model is far from trivial@8#. One
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of the advantages of our regularization is that all calculatio
can be directly undertaken in the Minkowski space, althou
nothing prevents us from working in the Euclidean spa
When dealing with bound-state problems, the continuum
clidean formulation encounters practical difficulties in m
mentum space since going to the bound state pole requir
continuation to the Minkowski region, and hence a contin
ation of the quark propagator to the complex plane is
quired. This is a problem since much of our phenomenolo
cal insight is based on the behavior of the quark propag
in the Euclidean region. In our approach the analytic co
tinuation from the Euclidean to the Minkowski space can
done in a straightforward manner because the general
Lehmann representation~1.1! implies a definite analytic
structure.

In the language of the practitioners of chiral quark mod
such as the Nambu–Jona-Lasinio model, the regulariza
introduced by the gauge technique is very special beca
not only does it make the theory finite, but it also corr
sponds to taking the infinite cutoff limit in those observab
which do not depend on the constituent quark mass. T
includes the proper fulfillment of the anomalies. As we w
see below, this is a very rewarding aspect of the pres
investigation, which avoids the artificial separation betwe
the real and imaginary parts in the Euclidean action,
equivalently, the normal and abnormal parity processes in
Minkowski space. At the same time, the study of seve
processes in the high-energy limit turns out to be compat
with factorization of amplitudes into hard and soft pieces
the twist expansion precisely because of the regulariza
and the set of conditions~1.2!, ~1.3! imposed upon the spec
tral functionr(v). Although such a behavior is expected
perturbative QCD, it is very difficult to comply to it in tra
ditional chiral quark models. This point has been recen
discussed by one of us in Ref.@8#, where it is pointed out tha
for the processg* →p0g, which involves the transition form
factor Fg* p0g(Q2), there is a conflict between the chira
anomaly normalization condition for Fg* p0g(0)
51/(4p f p), and the expected QCD factorization at lar
momenta,Q2Fg* p0g(Q2)→2 f p . The conflict persists in any
standard approach; to fulfill the anomaly the absence o
regulator is required, but to achieve factorization an expl
regularization must be considered. Our model is free of s
contradictions, and both conditions turn out to be satisfi
simultaneously. Actually, as we show in Secs. VI and VII, f
the pion the leading twist contribution to the parton distrib
tion function ~PDF!, Vp(x), and the parton distribution am
plitude ~PDA!, wp(x), the following remarkable relation
holds at the model’s scaleQ0:

wp~x,Q0!5
1

2
Vp~x,Q0!51. ~1.6!

We stress that the interpretation of results of low-ene
models in the context of the high-energy processes nece
ily involves QCD evolution to account for logarithmic pe
turbative radiative corrections. The soft matrix eleme
computed in the model are obtained at theworking energy
scale of the model, Q0, typically quite low, and have to be
1-2
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evolved to the scales realized experimentally with the help
the QCD evolution. Only then can the comparison to data
made@13,14#. In that sense, chiral quark models provide t
initial conditions for the QCD evolution. The phenomen
logical success of Eq.~1.6! after evolutionhas been de-
scribed elsewhere@8,15–17#.

In Sec. IX we provide a model for the moments~1.4! of
the spectral function based on the vector-meson domina
~VMD ! in the pion electromagnetic form factor. Actuall
only the even and negative moments are determined by
a method. Remarkably, the positive moments obtained
analytic continuation automatically fulfill the spectral cond
tions, Eqs.~1.2!, ~1.3!, and the log moments~1.5! can also be
determined. Interestingly, the inverse-moment problem
the VMD-inspired model can be solved, yielding a simp
function with a certain cut structure in the complexv plane.
As a result, the model becomes fully explicit and some f
ther results can be obtained. Using the insight provided
the VMD model we work out in Sec. X the quark propagat
which possesses a certain cut structure but hasno poles in
the whole complex plane. The quark mass function agree
remarkably well with recent lattice data@18,19#. We illustrate
the power of the method in Sec. XI by presenting some
ther predictions based on the VMD model, namely, the p
transition form factor, the pion light cone wave function, t
non-local quark condensate, and the unintegrated parton
tribution function of the pion.

II. QUARK PROPAGATOR

A. Generalized spectral representation for the quark
propagator

Our starting point is the definition of the quark propag
tor. In the momentum space we have

S~p!52 i E d4xeip•x^0uT$q~x!q̄~0!%u0&. ~2.1!

We assume the spectral representation~1.1! for the quark
propagator, wherer(v) is the spectral function, andC is a
contour in the complexv plane chosen in a suitable way. W
do not specify explicitly what the contourC is, hence the
representation~1.1! is a generalization of the standard Le
mann representation@9#. To see the connection, let us co
sider the special example of a contourC running from2`
under the real negative axis and crossing through zero ab
the real positive axis going to1`, yielding the form pro-
posed in Ref.@10#

S~p!5E
2`

`

dv
r~v!

p”2v1 i e~v!
, ~2.2!

where e(v)501sgn(v). Squaring the denominator in Eq
~2.2! yields a more customary form of the Lehmann rep
sentation@9#,

S~p!5E
0

`

dv
p” rV~v!1vrS~v!

p22v21 i01
, ~2.3!
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where the vector and scalar spectral functions

rV~v!5r~v!1r~2v!,

rS~v!5r~v!2r~2v!, ~2.4!

are defined forv>0, respectively. Notice that the function
rV(v) and rS(v) are independent of each other. Equiv
lently, the values ofr(v) for positive and negative values o
v are also independent of each other. The quark propag
in the standard Lehmann representation has an analytic s
ture of poles and cuts on the real axis of the complexp2

plane, where the positivity conditionsrV(v)>0 andrV(v)
>rS(v) for v>0 hold. With Eqs.~2.4!, the positivity con-
ditions are equivalent to saying thatr(v)>0 for any v,
positive or negative. They follow from the requirement of
physical Hilbert space. We will see in Sec. II D that chir
symmetry breaking, together with the finiteness of hadro
observables, implies that in our case areal r(v) cannot be
positive definite, which is a simple consequence of the c
ditions ~1.2!, ~1.3! if the contour is taken to be the standa
one. Actually, the particular realization proposed below
Sec. IX based on the vector-meson dominance of the e
tromagnetic pion form factor shows that one needs in fac
non-trivial contour to avoid end-point singularities. We r
frain from speculating on the possible connection of this f
to an indication of quark confinement; nevertheless, it is c
tainly true that a non-positive spectral function cannot
understood in terms of physical particles on the mass sh
On the other hand, a non-trivial quark propagator must
pend non-trivially on momentum if it is defined in the who
complex plane. As will become clear in Sec. X, a VMD
based model produces a complex spectral functionr(v) on a
complexcontourC, which results in a quark propagator wit
cuts only.

In a model without confinement the spectral represen
tion of a propagator is a well defined concept. In a gau
theory, like QED, the spectral representation depends on
particular gauge, because the two-point function does. I
theory with confinement not much is known about the a
lytic properties of the quark propagator, except for the f
that poles at real positive values ofp2 with positive residues
are certainly excluded. In QCD such a representation
tainly exists in perturbation theory where confinement is
manifest. The study ofr(v) within QCD yields at leading
order ~LO!, for m→0, the following expression@20#:

r~v!5d~v2m!1sign~v!
aCF

4p

12j

v
u~v22m2!,

~2.5!

wherej is the gauge parameter. However, if the general r
resentation is valid, its detailed properties may be quite
ferent in the non-perturbative regime.

As will become clear below, the real strength of the ans
~1.1! relies on the fact that having assumed certain proper
of r(w) reduces the calculations of physical observables
nothing more than the standard one-loop analysis. In a
tion, it allows for going from the Euclidean to th
Minkowski space, back and forth. Thus, our assumption
1-3
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essentially that of analyticity of the quark propagatorS(p),
and the possibility to analytically continue it in the who
complex plane. This looks, in principle, very different fro
the approach invoked in non-local models, where only
Euclidean region is used to justify the propagator. Nevert
less, the calculation of physical observables requires in p
tice an extrapolation into the complexp2 plane, which by
itself can only be justified through analytic continuation. T
previous argument does not justify Eq.~1.1!, but it shows
that we are not making any additional assumptions as c
pared to those implied in non-local models.

Although in perturbation theory the integration conto
may be kept on the real axis, there are cases where singu
ties may pinch the integration path. This circumstance
comes a problem, since either analyticity or relativistic
variance may be spoiled. In this regard a number
prescriptions have been devised in order to avoid suc
situation@21–23#. Thus, in general, we will assume that th
integration path is an arbitrary contour chosen in a con
nient way. This contour integration requires effectively co
sidering complex masses. Genuine non-local models for
lated in the Minkowski space also require a specification
the integration contour in momentum space in order to k
relativistic invariance@24#. An example of a definite pre
scription of the choice of such a contour is given in Sect.

The quark propagator~1.1! may be parametrized in th
standard form

S~p!5A~p!p”1B~p!5Z~p!
p”1M ~p!

p22M2~p!
, ~2.6!

with

A~p!5E dv
r~v!

p22v2
,

B~p!5E dv
r~v!v

p22v2
, ~2.7!

and the mass and wave function renormalization functi
given by

M ~p!5
B~p!

A~p!
, ~2.8!

Z~p!5@p22M2~p!#A~p!, ~2.9!

respectively. Let us note that if we hadr(v)5r(2v), then
the quark mass would vanish,M (p2)50, and spontaneou
breaking of the chiral symmetry would then be preclud
Thus, in general, we expectr(v) not to be an even function
In the following sections we will compute one by one t
physical observables and accumulate conditions that hav
be satisfied by the moments of the spectral functionr(v).
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B. Quark condensate

With the help of the representation~1.1! the quark con-
densate~for a single flavor! may be straightforwardly com
puted, yielding

^qq&52 iNcE dvr~v!E d4p

~2p!4 Tr
1

p”2v

524iNcE dvr~v!E d4p

~2p!4

v

p22v2 ,

~2.10!

where the trace is over the Dirac space, andNc53 is the
number of colors. The integral over the momentump is qua-
dratically divergent. This requires the use of an auxilia
regularization method,removedat the end of the calculation
With a three-dimensional cutoff,L, one gets for largeL

^qq&52
Nc

4p2E dvvr~v!F2L21v2logS v2

4L2D 1v2G .

~2.11!

The finiteness of the result atL→` requires the conditions

r150, r350, ~2.12!

and thus

^qq&52
Nc

4p2E dv log~v2!v3r~v!52
Nc

4p2 r38 .

~2.13!

Exactly the same conclusions are reached if the fo
momentum auxiliary regularization is introduced. Note th
the r350 spectral condition allowed for rewriting
log(v2/L2) as log(v2), henceno scale dependence~no ‘‘di-
mensional transmutation’’! is present in the final expression
The dimensional regularization in 41« dimensions, gives

^q̄q&5
Nc

4p2E dvr~v!v3F2 log~v2/m2!2
1

«
11G .

However, the dimensional regularization ‘‘hides’’ some co
ditions; for instance, here it leads only to ther350 condi-
tion, and does not require ther150 condition. This is due to
the fact that in the dimensional regularization the power
vergences have a fixed ratio.

Finally, we remark that in the perturbative phase with
spontaneous symmetry breaking, wherer(v)5r(2v)
5d(v), we havê qq&50. With the accepted value of

^qq&5^uu&5^dd&.2~243 MeV!3 ~2.14!

~at the typical hadronic scale of 0.521 GeV) @25# we can
infer the value of the third log moment,r38 . The sign of the
quark condensate shows that

r38.0. ~2.15!
1-4
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C. Non-local quark condensate

In various QCD studies~see, e.g., Refs.@26–29# and ref-
erences therein! the non-local quark condensate,

Q~x![
^q~0!q~x!&

^q~0!q~0!&
, ~2.16!

plays an important role. In our approach

^q̄~0!q~x!&524iNcE dvr~v!E d4p

~2p!4

v

p22v2 eip•x,

~2.17!

and, consequently, after performing the Fourier-Bessel tra
form,

Q~x!5
1

r38
E dvr~v!4v3

K1~A2v2x2!

A2v2x2
, ~2.18!

wherex denotes the Minkowski coordinate. A related qua
tity is the average vacuum virtuality of the quarks,lq , de-
fined through

lq
2[

^q̄~]2!q&

^qq&
. ~2.19!

With our spectral regularization method we find that

^q̄~]2!nq&

^qq&
[
E dvr~v!E d4p~2p2!nv/~p22v2!

E dvr~v!E d4pv/~p22v2!

5~2 !n
r2n138

r38
, ~2.20!

in particular

lq
252

r58

r38
, ~2.21!

while the QCD sum rule estimates suggest the valuelq
2

.0.560.1 GeV2 @30#. The positivity oflq
2 andr38 ~see Sec.

II B ! enforces

r58,0. ~2.22!

D. Vacuum energy density

Continuing the quest for the conditions on the spec
functionr(v) we now study the vacuum energy density. T
energy-momentum tensor for a purely quark model is defi
as

umn~x!5q̄~x!
i

2
$gm]n1gn]m%q~x!2gmnL~x!.

~2.23!
07402
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At the one-quark-loop level

^umn&52 iNcNfE dvr~v!E d4p

~2p!4 Tr
1

p”2v

3F1

2
~gmpn1gnpm!2gmn~p”2v!G

524iNcNfE dvr~v!E d4p

~2p!4

pmpn2gmn~p22v2!

p22v2

5Bgmn1^umn&0 , ~2.24!

whereNf is the number of flavors and̂umn&0 is the energy-
momentum tensor for the free theory, i.e. evaluated w
r(v)5d(v). The quantityB is the vacuum energy densit
given by

B52 iNcNfE dvr~v!E d4p

~2p!4

v2

p22v2 , ~2.25!

where in the subtraction of the free part we have used
spectral condition~1.2!. The integral overp is quadratically
divergent, but there is an additional power ofv as compared
to the case of the quark condensate. Hence, the condit
that have to be fulfilled forB to be finite arer250 andr4
50. Then

B52
NcNf

16p2 r4852
3Nc

16p2 r48 ~2.26!

for three flavors,Nf53, used from now on.
Interestingly, the even conditions~here quadratic and

quartic! imply that r(v) cannot be positive definite; other-
wise the even moments could not vanish.

An alternative expression forB can be obtained from in-
tegrating by parts in the variablep and using the conditions
r25r450,

B52iNcNfE dvr~v!E d4p

~2p!4 log~p22v2!,

~2.27!

which reminds us of the vacuum energy density calculate
the effective action formalism. Another interesting version
B is obtained by integrating Eq.~2.25! with respect to the
variablep0 first, when we get

B522NcNfE dvr~v!E d3k

~2p!3
Ak21v2. ~2.28!

The interpretation of this equation is obvious:B is a
weighted integral of negative energy quarks with constitu
massv. Upon imposing ther250 andr450 conditions the
integration of the three-momentum integral yields Eq.~2.26!.

In the case of spontaneous chiral symmetry breaking
expects,̂ u00&,^u00&0, or B,0. According to the most re-
cent QCD sum rules analysis for charmonium@25,31#, one
has, for three flavors,
1-5
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B52
9

32K a

p
G2L 52~224270

135 MeV!4. ~2.29!

Note the large uncertainty in this result. The negative sign
B enforces

r48.0. ~2.30!

E. Low- and high-momentum behavior

At low momenta we may formally expand the qua
propagator~2.2! to obtain

S~p!52 (
k50

` E dv
r~v!

v S p”

v D k

52 (
k50

`

r2k21p” k.

~2.31!

Hence the low-momentum expansion involves the inve
moments~1.4!. In particular, forM andZ of Eqs.~2.8!, ~2.9!
we find

M ~0!5
r21

r22
,

dM~p2!

dp2 U
p250

5
r23

r22
2

r21r24

r22
2

,

~2.32!

Z~0!5
r21

2

r22
.

A knowledge of these quantities, for instance from latt
calculations, would help to determine the inverse mome
~1.4! and constrain the spectral function. According to E
~2.32!, the positivity ofZ(0) leads tor22.0, while com-
bined with the positivity ofM (0) givesr21.0.

In the limit of large momentum,p→`, we formally have

S~p!;
1

p”
E dvr~w!1

1

p2E dvvr~v!

1
1

p” 3E dvv2r~v!1 . . . . ~2.33!

Normalization of the quark propagator in the asymptotic
gion to 1/p” leads to the conditionr051. Furthermore, since
M (p2) should vanish asymptotically, we conclude thatr1
50.

Note also that if all spectral conditions~1.2!, ~1.3! are
assumed then the asymptotic large momentum expan
would yield a trivial free massless quark propagator. Th
the high-momentum expansion cannot represent the full~and
non-trivial! propagator. This indicates some no
meromorphic structure inp at infinity. In Secs. IX and X we
will present a particular realization of this situation.
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III. GAUGE TECHNIQUE AND THE VERTEX FUNCTIONS

Up to now we have accumulated the lowest spectral c
ditions ~1.2!, ~1.3!, up to n54. Higher conditions will ap-
pear in the next sections by requesting the twist expansio
correlation functions. First, however, we need to introdu
the coupling of currents to quarks.

In QCD, the vector and axial currents are defined as

JV
m,a~x!5q̄~x!gm

la

2
q~x!, ~3.1!

JA
m,a~x!5q̄~x!gmg5

la

2
q~x!. ~3.2!

Although our formulas below are valid for theSU(Nf) flavor
symmetry, in this paper we will be concerned mainly wi
pion properties. This will be understood by replacing t
Gell-Mann matrices,la , by the Pauli matrices,ta . Conser-
vation of the vector current~CVC! and partial conservation
of the axial vector current~PCAC! implies that

]mJV
m,a~x!50, ~3.3!

]mJA
m,a~x!5q̄~x!M̂0ig5

la

2
q~x!, ~3.4!

with M̂05diag(mu ,md ,ms) denoting the quark mass matrix
Obviously, any effective theory of QCD must incorpora
these constraints. CVC and PCAC imply a set of flav
gauge and chiral Ward-Takahashi identities among corr
tion functions involving vector currents, axial currents, a
quark field operators, which are based on the local curre
field commutation rules@32#:

@JV
0,a~x!,q~x8!#x05x

08
52g5

la

2
q~x!d~x2x8!,

@JA
0,a~x!,q~x8!#x05x

08
52g5

la

2
q~x!d~x2x8!. ~3.5!

A number of results are then obtained essentially for free
the low-energy regime pions arise as Goldstone bosons,
the standard current algebra properties hold. In the hi
energy regime, parton model features such as scaling and
spin-1/2 nature of hadronic constituents may be recovere
one restricts to the one-quark-loop approximation, the res
also provide a particular solution to the large-Nc counting
rules at the leading order.

To solve the Ward-Takahashi identities we follow th
gauge techniqueproposed in Ref.@10# ~see also Ref.@11,33#!
which has the nice feature of linearizing the equations, si
they deal withunamputatedGreen functions. This is in con
trast to the more standard approach of writing the Wa
Takahashi identities foramputatedGreen functions, in which
case non-linear equations arise. The gauge technique
been mostly used in the past as a way to obtain solution
1-6
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the Schwinger-Dyson equations, both in QED@10,34# and in
QCD @20#. Only recently has it been used to study hadr
phenomenology@12#.

A. Vertices with one current

The vector and axial unamputated vertex functions
defined as

LV
m,a~p8,p!5 iS~p8!GV

m,a~p8,p!iS~p!

5E d4xd4x8^0uT$JV
m,a~0!q~x8!q̄~x!%u0&

3eip8•x82 ip•x, ~3.6!

LA
m,a~p8,p!5 iS~p8!GA

m,a~p8,p!iS~p!

5E d4xd4x8^0uT$JA
m,a~0!q~x8!q̄~x!%u0&

3eip8•x82 ip•x, ~3.7!

respectively. Here theG ’s represent the corresponding amp
tated vertex functions@35#. The Ward-Takahashi identity fo
the full vector-quark-quark vertex reads

~p82p!mLV
m,a~p8,p!5S~p8!

la

2
2

la

2
S~p!. ~3.8!

Likewise, for the axial-quark-quark vertex we have

~p82p!mLA
m,a~p8,p!5S~p8!

la

2
g51g5

la

2
S~p!.

~3.9!

The gauge technique, introduced in Ref.@10#, consists of
writing a solution for the vector unamputated vertex in t
form

LV
m,a~p8,p!5E dvr~v!

i

p” 82v
gm

la

2

i

p”2v
. ~3.10!

The axial-vertex ansatz reads

LA
m,a~p8,p!5E dvr~v!

i

p” 82v
S gm2

2vqm

q2 Dg5

la

2

i

p”2v
.

~3.11!

In this way the Ward-Takahashi identities are linearized
can be readily verified that these ansa¨tze fulfill the identities
~3.8!, ~3.9!, respectively, up toundetermined transvers
pieces. A consequence of the axial Ward-Takahashi iden
is the occurrence of a massless pseudoscalar pole iden
with the pion, which takes place only ifr(v)Þd(v).

The pion wave function, corresponding to thep→qq̄ ver-
tex, is defined as

Lp
a ~p1q,p!5 i E d4xe2 ip•x^0uT$q~0!q̄~x!%upa~q!&.

~3.12!
07402
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Near the pion pole we get

LA
m,a~p1q,p!→2

qm

q2 Lp
a ~p1q,p!, ~3.13!

where the pion wave function is given by

Lp
a ~p1q,p!5E dvr~v!

i

p”1q”2v

2v

f p
g5

la

2

i

p”2v
.

~3.14!

We recognize in our formulation the Goldberger-Treiman
lation for quarks; under the spectral integral overv the pseu-
doscalar coupling of a pion to the quarks is the ratio of
spectral quark mass to the pion weak decay constant,

gp~v!5
v

f p
. ~3.15!

B. Vertices with two currents

The vertices with two currents, axial or vector, will b
needed below when computing form factors. We define
axial-axial vertex~other vertices can be done in a simil
fashion! by

~2p!4d (4)~p81q82p2q!LAA
m,a;n,b~p8,q8;p,q!

5E d4xd4x8d4y8d4yei (q8•x81p8•y82q•x2p•y)

3^0uT$JA
m,a~x!JA

n,b~x8!q~y!q̄~y8!%u0&, ~3.16!

which in SU~2! fulfills the Ward-Takahashi identity

2 iqmLAA
m,a;n,b~p8,q8;p,q!

5 i ebacLV
n,c~p8,p!1

ta

2
g5LA

nb~p82q,p!

1LA
nb~p8,p1q!

ta

2
g5 . ~3.17!

Up to transverse pieces one gets the solution

LAA
m,a;n,b~p8,q8;p,q!

5E dvr~v!
i

p” 82v
H S gn2

2vq8n

q82 D
3g5

tb

2

i

p”1q”2v
S gm2

2vqm

q2 Dg5

ta

2

1crossed1
vq8nqm

q82q2
dabJ i

p”2v
. ~3.18!

Thepq→pq unamputated scattering amplitude is defined
1-7
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~2p!4d (4)~p81q82p2q!Lpp
ba ~p8,q8;p,q!

5E d4xd4x8ei (p8•x82p•x)^pb~q8!uT$q~x!q̄~x8!%upa~q!&.

~3.19!

At the pion poles,q2,q82→0, we get

LAA
m,a;n,b~p8,q8;p,q!→ q8nqm

q2q82
f p

2 Lpp
ba ~p8,q8;p,q!,

~3.20!

where

Lpp
ba ~p8,q8;p,q!5E dvr~v!

i

p” 82v
H v

f 2 dab1
v

f
g5tb

3
i

p”1q”2v

v

f
g5ta1crossedJ i

p”2v
.

~3.21!

IV. TWO-POINT FUNCTIONS

A. Vacuum polarization

The vacuum polarization is obtained from the vect
vector correlation function, which is constructed by closi
the quark line in the unamputated vector vertex~3.10!, with
the result

iPVV
ma,nb~q!5E d4xe2 iq•x^0uT$JV

ma~x!JV
nb~0!%u0&

52NcE d4p

~2p!4 TrFLV
m,a~p1q,p!gn

lb

2 G
52NcE dvr~v!E d4p

~2p!4

3TrF i

p”2q”2v
gm

la

2

i

p”2v
gn

lb

2 G . ~4.1!

We use the dimensional regularization@36# and obtain

PVV
ma,nb~q!5dabS 2gmn1

qmqn

q2 D P̄V~q2!, ~4.2!

with

P̄V~q2!5
Nc

3 E r~v!dvH 22v2 Ī ~q2,v!

1q2S 1

3
2I ~q2,v! D J , ~4.3!

where the one-loop functionsĪ (q2,v) and I (q2,v) are in-
troduced in Appendix A. We note that the vector wave fun
tion renormalization,
07402
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Z5P8~0!5
Nc

3 E r~v!dvH 1

3
2I ~0,v!J , ~4.4!

diverges, which is the case of perturbative theories, l
QED, as well.

The one loop integral satisfies the twice-subtracted disp
sion relation~see Appendix A!,

P̄V~q2!5
q4

p E
0

` dt

t2

Im P̄V~ t !

t2q22 i01
. ~4.5!

This is in contrast to non-local quark models formulated
the Euclidean space, where the dispersion relation is po
lated, but never deduced. As a matter of fact, even in lo
models, such as in those with the proper-time regularizat
dispersion relations do not hold@37# due to the presence o
essential singularities generating non-analytic structure in
complexq2 plane.

To end this section, we compute the cross section for
reactione1e2→ hadrons. This quantity is proportional t
the imaginary part of the vacuum charge polarization ope
tor. Asymptotically, at larges, we find

s~e1e2→hadrons!→
4paQED

2

3s S (
i

ei
2D E dvr~v!,

~4.6!

whereei is the electric charge of the quark of speciesi. Thus,
the proper QCD asymptotic result is obtained when the sp
tral normalization condition~1.2! is imposed.

B. Pion weak decay

The pion weak-decay constant, defined as

^0uJA
ma~x!upb~q!&5 i f pqmda,beiq•x, ~4.7!

can be computed from the axial-axial correlation functio
We insert a complete set of eigenstates into the correlato

2 iPAA
ma;nb~q!5E d4xe2 iq•x^0uT$JA

ma~x!JA
nb~0!%u0&

5 i f p
2 dab

qmqn

q2 1 . . . , ~4.8!

and recover the pion pole, with the dots indicating piec
regular in the limit q2→0. The procedure of closing th
quark line in the unamputated axial vertex~3.11! results in

2 iPAA
ma;nb~q!52NcE d4k

~2p!4 TrFLA
m~k1q,k!gng5

lb

2 G
52NcE dvr~v!E d4k

~2p!4

3TrF i

k”2q”2v
S gm2

2vqm

q2 D

1-8
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3g5

la

2

i

k”2v
gng5

lb

2 G . ~4.9!

Note that the above expression involves only one full v
tex, (gm22vqm /q2)g5la/2, and one bare vertex,gng5lb/2.
This is needed to avoid double counting, and complies to
method of Pagels and Stokar@38#: in a two-point correlator
all diagrams of the underlying theory~QCD! can be grouped
in such a way as to dress the quark propagators~self-energy
renormalization!, and one of the vertices, while the othe
vertex remains in the form from the underlying theory.
both vertices were dressed and no additional subtract
were introduced, double counting of the diagrams of the
derlying theory would result.

With the dimensional regularization Eq.~4.9! becomes

PAA
ma,nb~q!5dabS 2gmn1

qmqn

q2 D P̄A~q2!, ~4.10!

with

P̄A~q2!5P̄V~q2!14NcE dvv2r~v!I ~q2,v!. ~4.11!

As we can see, spontaneous breaking of chiral symm
implies a pole in the axial-axial correlator, with the resid
proportional to the squared pion weak decay constant.
result is

f p
2 54NcE dvr~v!v2I ~0,v!. ~4.12!

A finite value for f p requires the conditionr250. Then

f p
2 52

Nc

4p2E dv log~v2!v2r~v!52
Nc

4p2 r28 . ~4.13!

Again, the spectral conditionr250 guarantees the absen
of dimensional transmutation for this log moment. The va
of the pion decay constant can thus be used to determiner28 .
The sign is, obviously,

r28,0. ~4.14!

C. Weinberg sum rules

The basic idea behind the Weinberg sum rules@39,40# is
that at high energies chiral symmetry breaking should
small. There are two equivalent ways to derive expressi
for these sum rules in our model: from the absorptive pa
or from the dispersive parts of the correlators. Both
equivalent due to the dispersion relations, which we h
shown to hold in Sec. IV A. Here we present the derivat
from the absorptive parts. The vector-vector and axial-a
correlation functions can be subtracted from each ot
yielding for the imaginary parts
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p
$Im P̄V~q!2Im P̄A~q!%

5
Nc

p2E dvv2r~v!A12
4v2

q2 u~q224v2!.

~4.15!

Next, we integrate with respect toq2, and use the spectra
conditions and the definition off p to get

1

p
E

0

`dq2

q2 $Im P̄V~q!2Im P̄A~q!%

5
Nc

2p2
lim

L→`
E dvv2r~v!H log

L2

v2
22J

5 f p
2 , ~4.16!

which coincides with the first Weinberg sum rule. Now, if w
compute the left-hand side of the second Weinberg sum r
we get

1

pE0

`

dq2$Im P̄V~q!2Im P̄A~q!%

5
Nc

2p2E dvv4r~v!logv252
8

3
B. ~4.17!

The result, according to the second Weinberg sum r
should involve on the right-hand side the quantitym^q̄q&
5 f p

2 mp
2 , which vanishes in the chiral limit. Instead, our fo

mula involves the vacuum energy density,B, which does not
vanish. This violation of the second Weinberg sum rule
similar to findings in other chiral quark models, and reflec
in this regard, a deficiency of those models as well as of
present approach~see, e.g., the discussion in Ref.@41#!. A
study, to be presented elsewhere, reveals that this should
be considered a drawback of the spectral representa
method, but rather a feature of the particular solution of
axial Ward-Takahashi identity@42#.

V. PION ELECTROMAGNETIC FORM FACTOR

A. Form factor

The electromagnetic form factor for a positively charg
pion, p15ud̄, is defined as

^p1~p8!uJm
em~0!up1~p!&5eGm

em~p8,p!

5~pm1p8m!eFp
em~q2!, ~5.1!

with q5p82p. Following the method of Sec. III, we com
pute the form factor by using thepq→pq scattering ampli-
tude, closing the fermion line, and tracing with an elect
magnetic vertex:
1-9
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Gm
em~p8,p!52NcE d4k

~2p!4 Tr@Lpp
ba ~k1q,p8;k,p!Q̂gm#.

~5.2!

Through the use of Eq.~3.21! we get

Gm
em~p8,p!52NcE dvr~v!SA2v

f p
D 2E d4k

~2p!4

3TrFgm

i

k”2v
g5

i

p”1k”2v
g5

i

q”2k”2v
G .

~5.3!

For on-shell massless pions the electromagnetic form fa
reads

Fp
em~q2!5

4Nc

f p
2 E dwr~v!v2I ~q2,v! ~5.4!

which, due to Eq.~4.12!, is obviously normalized to unity a
q250, Fp

em(0)51. With the help of Appendix A we derive
the low-momentum expansion,

Fp
em~q2!511

1

4p2f p
2 S q2r0

6
1

q4r22

60
1

q6r24

240
1 . . . D .

~5.5!

The mean square radius reads

^r p
2 &56

dF

dq2 uq2505
Nc

4p2f p
2 E dvr~v!5

Nc

4p2f p
2 ,

~5.6!

which coincides with the unregularized-quark-loop res
@43# and also shows that in the present framework the pio
an extended object. The numerical value is

^r 2&p
emu th50.34 fm2, ^r 2&p

emuexp50.44 fm2, ~5.7!

which is a reasonable agreement. One should not expe
perfect agreement since from the chiral perturbation theo
is well known that pion-loop corrections provide a sizab
enhancement for̂r 2&p

em. We note that the knowledge of th
pion electromagnetic form factor allows us to determine
even negative moments of the spectral function, cf. Eq.~5.5!.
This will be used in Sec. IX to build a vector-meson dom
nance model. Based on the properties of the one loop inte
I (q2,w) ~see Appendix A!, the pion form factor also fulfills a
dispersion relation in our formalism

Fp
em~q2!511

q2

p E
0

`dt

t

Im Fp
em~ t !

t2q22 i01
. ~5.8!

B. Twist expansion and spectral conditions

In the limit of large momentum we find, according to E
~A7!,
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Fp
em~q2!;

Nc

4p2f p
2 E dvr~v!v2H 22

1

e
2 log~q2!

1
2v2

q2
@ log~2q2/v2!11#1

2v4

q4

3F log~2q2/v2!2
1

2G . . . J . ~5.9!

With help of the spectral conditions~1.3! for n52,4,6, . . .
we can rewrite this expansion in the form

Fp
em~q2!;2

Nc

4p2f p
2 F2r48

q2
1

2r68

q4
1

4r88

q6
1 . . . G

52
8B

3 f p
2 Q2

2
Nc

4p2f p
2 F2r68

Q4
2

4r88

Q6
1 . . . G ,

~5.10!

with Q252q2. Note the very interesting feature: the imp
sition of the spectral conditions~1.3! removedall the loga-
rithms ofq2 from the expansion~5.9!, leaving a pure expan
sion in inverse powers ofq2. Thus, factorization has been
achieved, which in our opinion is one of the major success
of the present approach. Conversely, in order to obtain
torization, the conditions~1.3! must be assumed. In th
present calculation only even moments of the spectral fu
tion r(v) appeared. To involve the odd moments one ne
to consider a different quantity, for instance the scalar p
form factor. We recall that the odd spectral conditions we
also needed in Sec. II C.

The leading-twist coefficient in expansion~5.10! has a
very simple physical interpretation: it involves the ratio
the vacuum energy density,B, and f p

2 . Finally, we remark
that the pure power behavior of Eq.~5.10! is characteristic of
a bound-state object, and was obtained in non-local mo
@38# and more recently in the instanton models@44# and the
Nambu–Jona-Lasinio model@8#.

It is worth stressing thatall spectral conditions~1.3! are
needed. If we just impose a finite number of them, say up
orderN, then there appear logarithmic corrections starting
orderN12, of the form log(Q2)/Q2N12. This is what happens
in the Nambu–Jona-Lasinio model when a Pauli-Villa
regularization with quadratic subtractions is used; the p
form factor has proper leading twist behavior but a logari
mic contribution at subleading twist@8#.

Plugging the numbers forB and f p we get for the leading
twist contribution

Q2Fp
em~Q2!u twist-252

8B

3 f p
2

5~0.7860.61! GeV2,

~5.11!

where the uncertainty in the model value comes from
uncertainty inB. The experimental result for thefull form
factor is Q2Fp

em(Q2)50.3860.04 GeV2 as taken averaging
1-10
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some old@45# and recent@46# data as compiled in Ref.@47#
in the region 2 GeV2,Q2,6 GeV2. On the other hand, a
remarkable finding from the data is that a vector mes
dominance monopole model obeying the pion charge ra
up to Q2;1.6 GeV2 @48#,

Fp
em~Q2!5

L2

Q21L2
. ~5.12!

This yields Q2Fp
em(Q2)50.41–0.45 GeV2, depending on

whether one takesL5(6/̂ r 2&)1/250.73 GeV or L5MV
50.77 GeV, respectively. This corresponds
Q2Fp

em(Q2)u twist-25L250.53–0.59 GeV2 for the same range
of L values, to be compared with our estimate, Eq.~5.11!.
Motivated by the VMD success in describing the pion fo
factor in the space-like region, we will study further cons
quences of this scheme in Sec. IX.

VI. ANOMALOUS FORM FACTOR

A. Vertex function and neutral pion decay

The axial-vector-vector~AVV ! vertex is defined as

~2p!4d~p2q11q2!LAVV
m,c;a,a;b,b~p,q1 ,q2!

5 i E d4x1d4x2d4x^0uT$JA
m,c~x!JV

a,a~x1!JV
b,b~x2!%u0&

3ei (p•x2q1•x11q2•x2), ~6.1!

whereq1 is ingoing, whilep andq2 are outgoing. The solu
tion fulfilling the relevant Ward-Takahashi identities can
written. Going to the pion pole,p2→0, yields

LAVV
m,c;a,a;b,b~p,q1 ,q2!→ pm

p2 GpVV
c;a,a;b,b~p,q1 ,q2!. ~6.2!

For a neutral pion,p0, and two photons one gets

Gp0gg
mn

~q1 ,q2!52NcE dvr~w!E d4k

~2p!4 TrF2
v

f p
g5t0

3
i

k”2q” 22v
iQ̂gm

i

k”2v
iQ̂gn

i

k”2q” 12v
G

1crossed, ~6.3!

whereQ̂5B/21I 351/2Nc1t3/2 is the quark charge opera
tor. Straightforward calculation of the traces yields

Gp0gg
mn

~p,q1 ,q2!5emnabq1
apbFpgg~p,q1 ,q2!, ~6.4!

where the pion transition form factor,

Fpgg~p,q1 ,q2!52
8

f p
E dvr~v!v2K~p2,q1

2 ,q2
2 ,v!,

~6.5!

has been introduced, and the three-point loop function,K, is
presented in Appendix A.
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The amplitude for the neutral pion decay,p0(p)
→g(q1 ,m)1g(q2 ,n), can be directly computed from th
former expression by taking the on-shell photons,q1

25q2
2

50, and the soft pion condition,p250. We find

Fpgg~0,0,0!52
8

f p
E dvr~v!v2

1

i E d4k

~2p!4

1

~k22v2!3

5
1

4p2f p

E dvr~v!5
1

4p2f p

, ~6.6!

which, when the spectral condition~1.2! is used, coincides
with the standard result expected from the QCD chi
anomaly.

B. Transition form factor

For two off-shell photons with momentaq1 and q2 it is
convenient to define the photon asymmetry,A, and the total
virtuality, Q2,

A5
q1

22q2
2

q1
21q2

2
, 21<A<1

Q252~q1
21q2

2! ~6.7!

or, equivalently,

q1
252

~11A!

2
Q2, q2

252
~12A!

2
Q2. ~6.8!

At the soft pion point we find

Fpg* g* ~Q2,A!52
8

f p
E dwr~w!w2KS 0,2

~11A!

2
Q2,

2
~12A!

2
Q2,v D . ~6.9!

Through the use of expansion~A18! and the spectral condi
tions ~1.3! for n52,4,6, . . . we maywrite, after straightfor-
ward manipulations,

Fpg* g* ~Q2,A!52
1

2p2f p

E
0

1

dxF 2r28

Q2@12A2~2x21!2#

2
8r48@11A2~2x21!2#

Q4@12A2~2x21!2#
1 . . . G .

~6.10!

We can now confront this expression to the standard tw
decomposition of the pion transition form factor@49#,

Fg* g* p~Q2,A!5J(2)~A!
1

Q2
1J(4)~A!

1

Q4
1 . . . ,

~6.11!

which via Eqs.~4.13!, ~2.26! yields
1-11
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J(2)~A!5
4 f p

Nc
E

0

1

dx
wp

(2)~x!

12~2x21!2A2
, ~6.12!

J(4)~A!5
8 f pD2

Nc
E

0

1

dx
wp

(4)~x!@11~2x21!2A2#

@12~2x21!2A2#2
,

~6.13!

with

D252
8B

3 f p
2

. ~6.14!

Note that this is exactly the same combination ofB and f p as
in Eq. ~5.11!. Numerically, we get

D25~0.7860.61! GeV2. ~6.15!

An estimate made in a non-local quark model of Ref.@50,51#
providesD250.29 GeV2.

The form of the expansion coefficients~6.12!, ~6.13!
shows that the twist-2 and twist-4 distribution amplitudes
the pion are, at the model working scaleQ0, constant and
equal to unity.

It is interesting to look at higher-order twist coefficient
With help of Appendix A and with the spectral condition
~1.3! we get

F~Q2,A!52
1

p2f p

E
0

1

du(
n50

` Ap8nr2n128

n!G~1/22n!

3S 1

11A~2u21!

1

Q2D n11

. ~6.16!

This yields the result

wp
(n)~x!5u~x!u~12x! for n52,4,6, . . . . ~6.17!

All these amplitudes are by convention normalized to un
The prediction of the model is that they do not depend on
Bjorken x variable at the scaleQ0.

In the limit q1
25q2

2, or A50, we get

Fg* g* p~Q2,0!5
4 f p

NcQ
2 F11

2D2

Q2
1 . . . G . ~6.18!

An analogous calculation to the one presented in R
@17,8# produces the following light-cone pion wave functio
in the present model:

C~x,k'!5
Nc

4p3f p
2 E dvr~v!

v2

k'
2 1v2

u~x!u~12x!.

~6.19!

Again, this form corresponds to the low-energy scale of
model. The pion light-cone wave function~6.19! satisfies at
k'50 the following condition:
07402
r

.
e

s.

e

C~x,0!5
Nc

p f p
Fpgg~0,0,0!5

Nc

4p3f p
2

. ~6.20!

In QCD one has a similar relation holding for quantiti
integrated overx @49#. In our model this is inessential due t
the fact that thex dependence is constant. This triple identi
although it comes out easily in our model, is difficult to g
in local chiral models since there is a conflict between rec
ering the proper anomaly and obtaining factorization of
form factor at high photon virtualities~see a detailed discus
sion in Ref.@8#!.

C. QCD evolution

The results of the previous section referred to the s
energy scale of the model. In order to compare to experim
tal results, obtained at large scales, the QCD evolution m
be performed. The procedure has been discussed in det
Ref. @17#, hence here we only sketch the method and m
tion, for completeness, the most important outcomes. For
twist-2 pion distribution amplitude the leading-order QC
evolution is made in terms of the Gegenbauer polynomi
One begins by interpreting our result as the initial conditio

w (2)~x,Q0!5u~x!u~12x!. ~6.21!

Then the evolved distribution amplitude reads@52#

w (2)~x,Q2!56x~12x! (
n50

`

Cn
3/2~2x21!an~Q!,

~6.22!

with

an~Q!5
2

3

2n13

~n11!~n12! S a~Q2!

a~Q0
2!
D gn

(0)/(2b0)

3E
0

1

dxCn
3/2~2x21!w (2)~x,Q0

2!, ~6.23!

whereCn
3/2 are the Gegenbauer polynomials, and

gn
(0)52

8

3 F31
2

~n11!~n12!
24(

k51

n11
1

kG ,

b05
11

3
Nc2

2

3
Nf59. ~6.24!

With our initial amplitude we immediately get

E
0

1

dxCn
3/2~2x21!w (2)~x,Q0

2!51. ~6.25!

What actually matters in this analysis is the evolution ra
a(Q2)/a(Q0

2). With the help of Eqs.~6.22!, ~6.23!, ~6.25!
we may compute the distribution amplitude for any value
Q2. The result extracted in Ref.@53# and confirmed in Ref.
1-12
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@54# from experimental data@55# provides a2(2.4 GeV)
50.1260.03, hence we can fix the evolution ratio to t
value

a~Q52.4 GeV!/a~Q0!50.1560.06, ~6.26!

which reproducesa2 obtained in our model. Then we ca
predict

a4~2.4 GeV!50.0660.02 ~exp:20.1460.0370.09!,

a6~2.4 GeV!50.0260.01. ~6.27!

The overall picture at the leading twist and with leadin
order QCD evolution is very encouraging. For further deta
the reader is referred to Ref.@17#.

D. The g\p¿p0pÀ decay

In this section we consider an example of a low-ene
process involving a quark box diagram, which similarly
the neutral pion decay is related to the QCD anomaly in
soft pion limit. The amplitude for the decay of the photon
momentumq and polarizatione into three pions of momenta
pi , g(q,e)→p1(p1)p0(p2)p2(p3), is equal to

Tg(q,«)→p1(p1)p0(p2)p2(p3)

56i E d4k

~2p!4E dvr~v!

3TrF igmemS 1

2Nc
D i

k”2p” 12p” 22p” 32w

3S 2
v

f p
t1D i

k”2p” 12p” 22w
S 2

v

f p
t0D i

k”2p” 12w

3S 2
v

f p
t2D i

k”2w
G[F~p1 ,p2 ,p3!«abste

ap1
bp2

sp3
t .

~6.28!

In the limit of all momenta going to zero we get, with th
condition ~1.2!,

F~0,0,0!5
1

4p2f p
3 E dvr~v!5

1

4p2f p
3

, ~6.29!

which is the correct result@56–58#.

VII. PION STRUCTURE FUNCTION

As we have said in the Introduction, one of the adva
tages of our model over other formulations is that calcu
tions can be undertaken both in Minkowski and Euclide
space. This proves crucial in the calculation of the p
structure function. We recall here that a Euclidean formu
tion allows only for the calculation of a finite number o
moments of the structure function,^xn&, for integern, requir-
ing a subsequent reconstruction of the distribution functi
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This is a cumbersome situation. Experimental data are
rectly obtained in thex space, but structure functions a
difficult to pin down for large values ofx ~typically x
.0.65). That means systematic uncertainties for high
order moments.

Our following calculation also illustrates an interestin
point. In the Bjorken limit it is assumed that integrals a
convergent fast enough to allow to convert the forwa
Compton amplitude to a quark-target scattering amplitu
@14#. We note here that while the former corresponds to
closed quark line, the latter refers to a quark propagator,
an open quark line. In local models, such as the Namb
Jona-Lasinio model, the difference becomes subtle~see, e.g.,
the discussion in Ref.@8#! because it is not obvious how t
regulate open quark lines. As we show below, a reward
feature of the present approach is that the connection f
the forward Compton scattering amplitude to the qua
target scattering formula prevails, due to the spectral regu
ization of the vertex functions. As a result, the relation b
tween gauge invariance and proper normalization of the P
remains valid.

A. Derivation from the forward Compton amplitude

The hadronic tensor for inclusive electroproduction on
pion reads

Wmn~p,q!5
1

2p
Im Tmn~p,q!

5W1~q2,p•q!S 2gmn1
qmqn

q2 D
1

W2~q2,p•q!

mP
2 S pm2

p•q

q2 qmD S pn2
p•q

q2 qnD ,

~7.1!

where the forward virtual Compton scattering amplitude
the pion is defined as

Tmn~p,q!5 i E d4xeiq•x^p~p!uT$Jm
em~x!Jn

em~0!%up~p!&.

~7.2!

The amplitude can be obtained by taking the residue of
double pion pole in theAV→AV amplitude. The gauge in
variance requires considering not only the box-like diagra
but also the processpg→p→pg. This process may be rel
evant at low energies; however, it does not contribute at h
energies since it provides higher twist contributions. T
hand-bag diagrams yield

iTmn~p,q!52NcE dvr~v!S v

f p
D 2E d4k

~2p!2

3TrFg5ta

1

k”2v
Q̂gm

1

k”1q”2v
Q̂gn

1

k”2v

3g5tb

1

p”2q”2v
G1crossed. ~7.3!
1-13
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In the Bjorken limit we can make the customary approxim
tion,

gm
1

k”1q”2w
gn→gm

1

q”
gn

5
qa

q2
@Smnabgb1 i emnabgbg5#. ~7.4!

The hadronic tensor is obtained as the imaginary part in
(p1q)2 channel. The Cutkosky rules amount to making t
replacements

1

p22v2 →~22p i !u~p0!d~p22v2![~22p i !d1~p,v!,

~7.5!

hence

Wmn52NcE dvr~v!S v

f p
D 2E d4k

~2p!2 ~22p i !2

3
d1~p2k,v!d1~q1k,v!

~k22v2!2
Tr@g5ta~k”1v!

3Q̂gm~k”1q”1v!Q̂gn~k”1v!g5tb~p”2q”2v!#.

~7.6!

The calculation of the traces is straightforward and
Bjorken limit of the discontinuity can be found in Append
B. The result is rather simple,

Wmn~p,q!5
1

2p
Im Tmn~p,q!

→F~x!F2gmn1
qmqn

q2 2
1

q2S pm2
qm

2xD
3S pn2

qn

2xD G , ~7.7!

with

F~x!5
1

2 (
i 5u,d,s

ei
2@ q̄i~x!1qi~x!#. ~7.8!

We takep1 for definiteness and get

up~x!5d̄p~12x!5u~x!u~12x!, ~7.9!

independent of the spectral functionr(v). Thus we have
recovered scaling in the Bjorken limit, the Callan-Gross
lation, the proper support, and the correct normalizati
This is the same result as found by one of us@12# when
computing the structure function from the forward qua
pion scattering amplitude, Eq.~3.21!, in the light-cone coor-
dinates. The result has also been obtained previously by
eral means within the Nambu–Jona-Lasinio model@15,59#.
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As one can see, the normalization integral coincides w
the normalization of the pion electromagnetic form factor

E
0

1

dxq~x!5E
0

1

dxq̄~x!5Fp
em~0!51. ~7.10!

In addition, we have the crossing property,

q̄~x!5q~12x!. ~7.11!

The k'-unintegrated parton distribution can be shown
be equal to

q~x,k'!5
Nc

4p3f p
2 E dvr~v!

v2

k'
2 1v2

u~x!u~12x!,

~7.12!

which is the same form as in Eq.~6.19!, hence at the working
scale of the model,Q0, one has the interesting relation

q~x,k'!5q̄~12x,k'!5C~x,k'!, ~7.13!

valid in our model in the chiral limit. A similar identity has
also been found in the Nambu–Jona-Lasinio model@12#.
Combining Eq.~7.13! with the anomaly condition~6.20!, we
get the following normalization for the unintegrated part
distribution atk'50:

q~x,0'!5
Nc

4p3f p
2

. ~7.14!

Finally, via integrating with respect tok' the following iden-
tity between the PDF and the PDA is obtained at the sc
Q0:

q~x!5wp~x!. ~7.15!

This relation holds also in the Nambu–Jona-Lasinio mo
with the Pauli-Villars regularization@17#.

B. Momentum sum rule

In our formalism the pion expectation value of the energ
momentum tensor~2.23! is

^pa~q!uumn~0!upb~q!&

52NcE dvr~v!S v

f p
D 2E d4k

~2p!2

3TrFg5ta

1

k”1q”2v
g5tb

1

k”2v
H 1

2
~kmgn1kngm!

2gmn~k”2v!J 1

k”2v
G . ~7.16!

Though the use of the spectral conditions we get, for on-s
massless pions,
1-14



t

t o

s
-

c

p
sin

c-

ic
v

um

7
n-

t

th
o

e
od
it

the
al-
us
ona-

in-
er-

r-
y

rd
re-

e
re-

and
ver-
ent

he

a-
t-
n
e
tor,
ga-
ter

gral
f
al

SPECTRAL QUARK MODEL AND LOW-ENERGY HADRON . . . PHYSICAL REVIEW D67, 074021 ~2003!
^pa~q!uumnupb~q!&52Fqmqn1gmn
2

Nf

B

f p
2 Gdab.

~7.17!

The connected piece becomes

^pa~q!uumnupb~q!&C52qmqn. ~7.18!

Thus, the quarks carry all momentum of the pion, as
should be, since there are no other degrees of freedom in
model. As is well known@14,60#, the matrix element of the
energy momentum tensor coincides with the first momen
the PDF

E
0

1

dxxq~x!5E
0

1

dxxq̄~x!5
1

2
. ~7.19!

Actually, this property is a simple consequence of the cro
ing property q̄(x)5q(12x) and the normalization condi
tion.

C. QCD evolution

The QCD evolution of the constant pion structure fun
tion has been treated in detail in previous works@15,16# at
LO and NLO order. Nevertheless, in order to make the pa
more self-contained we present here the main points ari
from that discussion. Sections VII A and VII B yield the form
of the leading-twist contribution to the pion structure fun
tion at a given renormalization point,Q0. The QCD radiative
corrections generate logarithmic scaling violations, wh
can be included in our model by the Dokshitzer-Gribo
Lipatov-Altarelli-Parisi~DGLAP! equations@61#. In particu-
lar, the non-singlet contribution to the energy moment
tensor evolves as

E dxxq~x,Q!

E dxxq~x,Q0!

5S a~Q!

a~Q0! D
g1

(0)/(2b0)

, ~7.20!

whereg1
(0) andb0 are given in Eq.~6.24!. In Ref.@62# it was

found that at Q254 GeV2 the valence quarks carry 4
60.02% of the total momentum fraction in the pion. Dow
ward LO evolution yields that at the scale

Q05313210
120 MeV ~7.21!

the quarks carry 100% of the momentum. The agreemen
the evolved PDF@15,16# with the data analysis@62# is quite
impressive. Equation~7.15! has been shown in Ref.@17# to
produce a very interesting integral equation relating
evolved PDF and PDA, valid at the leading order QCD ev
lution.

VIII. GASSER-LEUTWYLER COEFFICIENTS

The gauge technique provides a way to deal with op
quark lines, an advantage over traditional chiral quark m
els, but it is unnecessarily complicated when dealing w
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processes with closed quark lines. For such a situation
effective action approach provides a much more efficient c
culational tool. It also yields a closer connection to previo
approaches such as bosonized versions of the Nambu–J
Lasinio model. The one-quark-loop effective action that
corporates the quark-pion coupling obeying the Goldberg
Treiman relation~3.14! can be written in the form

S52 iNcE d4xE dvr~v!Tr log$ i ]”2v exp

3@ ig5tafa~x!/ f p#%. ~8.1!

This form is manifestly chirally symmetric, withf denoting
the non-linearly realized pion field. Note the formal simila
ity with a generalized Pauli-Villars regulator. One ma
evaluate the Gasser-Leutwyler coefficients@63,64# through
the use of standard derivative expansion techniques@65# in a
similar fashion as done in Ref.@66,67#. With the ~1.2! con-
dition imposed, the calculation is equivalent to standa
quark-model calculations with the cutoff removed. The
sulting values of the Gasser-Leutwyler coefficients are

l̄ 152Nc ,

l̄ 25Nc . ~8.2!

Other low energy constants, such asl̄ 3 and l̄ 4 require a
specification of explicit chiral symmetry breaking within th
quark model. External gauge fields may also be coupled
sulting in predictions forl̄ 5 and l̄ 6, although any choice
reflects a particular selection of transverse pieces. This
related issues are postponed for future studies. It is, ne
theless, interesting to anticipate here a dimensional argum
which shows why the relevant spectral condition for t
terms involving fourth-order derivatives is, precisely,r0
5*dvr(v)51. In the case of thepp scattering in the chi-
ral limit, we have a box diagram with four quark propag
tors, i /(p”2v), and four external pion lines, each contribu
ing a factor ofv/ f p , due to the Goldberger-Treiman relatio
~3.15!. If we are after the coefficient with four derivatives w
need four additional powers of momenta in the denomina
which we may account for by squaring the fermion propa
tor. Thus, in obvious dimensional notation we have, af
adjusting the dimensions,

l̄

f p
4 ~]f!4;E r~v!dvE d4p

~2p!4 S v

f pD 4S i

p22v2D 4

~]f!4

;E r~v!dv
1

f p
4 ~]f!4 ~8.3!

due to the fact that the dimensions of the convergent inte
are set by the spectral massv. This shows that the terms o
dimension four in the effective Lagrangian are proportion
to r0.
1-15
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IX. VECTOR-MESON DOMINANCE

Up to now, our considerations have been made for agen-
eral spectral function fulfilling a set of properties regardin
their moments and log moments. It is quite natural to a
whether such a function exists and what are the phenom
logical consequences of making specific ansa¨tze for this
function. In this section we construct explicitly the spect
function using the phenomenological guidance of the pre
ous sections.

Some interesting consequences and insight may be
tained in the present chiral quark model if the vector-me
dominance of the pion form factor is assumed,

FV~ t !5
MV

2

MV
21t

, ~9.1!

with MV denoting ther-meson mass. This form fits the re
cent data@46# remarkably well. As will be shown below, th
model for the spectral function becomes explicit and furt
interesting results may be obtained.

A. Vector-meson dominance in the spectral approach

The vector form factor obtained in Eq.~5.4! reads,
through the use of the Feynman parametrization~A4!,

FV~ t ![Fp
em~ t !

52
Nc

4p2f p
2 E dvr~v!v2E

0

1

dx log@v21x~12x!t#.

~9.2!

If we make a series expansion int, the integral inx can be
carried out order by order, hence

FV~ t !511
Nc

4p2f p
2 (

n51

` E dvr~v!v2

3E
0

1

dx@x~12x!#n
~21!n

n S t

v2D n

5
Nc

4p2f p
2 (

n51

`

r222n

222n21ApG~n11!

nG~n13/2!

~2t !n. ~9.3!

As one can see, in our model the pion form factor is enco
in the negative even moments. Through vector meson do
nance we get immediately, by comparing Eq.~9.3! to the
expansion of Eq.~9.1!, the following identification:

r222k5
22k13p3/2f p

2

NcMV
2k

k G~k13/2!

G~k11!
,

k51,2,3, . . . . ~9.4!

In particular, the normalization condition,r051, yields
07402
k
o-

l
i-

b-
n

r

d
i-

MV
25

24p2f p
2

Nc
. ~9.5!

This relation is usually obtained when matching chiral qua
models to the vector-meson dominance and appears all
the literature, yielding a quite reasonable estimate for thr
meson mass,MV5826 MeV with f p593 MeV, and MV
5764 MeV with f p586 MeV in the chiral limit.

The interesting and remarkable point about Eq.~9.4! is
that even though we have determined the negative even
ments of the spectral function, the positive even mome
obtained by analytic continuation in the indexn, unexpect-
edly but most desirably, fulfill the spectral conditions~1.3!
for the positive moments due to the fact thatG(n) has single
poles at non-positive integers,n50,21,22, . . . . Hence,

r2n50, n51,2,3 . . . ~9.6!

Thus, it makes sense to evaluate the log moments~1.5!, since
the absence of dimensional transmutation is guaranteed.
log moments are most easily evaluated by analytically c
tinuing the moments to the complexn plane. We then have

rn85E dvvnlog~v2!r~v!52
d

dzE dvvzr~v!uz5n

52
d

dz
rzuz5n , ~9.7!

and

r2n8 5S 2
MV

2

4 D nG~n! GS 5

2
2nD

GS 5

2D , n51,2,3 . . . ,

~9.8!

where we have used Eq.~9.5!. The first few values are

r2852
4 f 2p2

Nc
,

r485
2 f 2MV

2p2

Nc
, ~9.9!

r685
2 f 2MV

4p2

Nc
.

Sincer28 andr48 determinef p andB, respectively, see Eqs
~4.13!, ~2.26!, we may write the following interesting rela
tion coming from the vector-dominance model and the sp
tral approach:

B52
9p2f p

4

Nc
52

NcMV
4

64p2

52~202–217 MeV!4. ~9.10!
1-16
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The uncertainty stems only from using eitherf p or MV as
input. Our value agrees within errors with the estima
~2.29!.

B. Inverse problem

Although for practical calculations the moments seem
contain the relevant information that can be used in pract
applications, it is nevertheless very interesting to write do
an explicit formula for the spectral function. The mathema
cal problem is then to invert the formula

r2n5E
C
dvv2nrV~v!, ~9.11!

where the moments are given by Eq.~9.4!. The solution to
the problem is given by the following surprisingly simp
function:

rV~v!5
1

2p i

1

v

1

~124v2/MV
2 !dV

, ~9.12!

with

dV55/2, ~9.13!

at which case we have

rV~v!5
1

2p i

3p2MV
3 f p

2

4Nc

1

v

1

~MV
2/42v2!5/2

. ~9.14!

The function rV(v) has a single pole at the origin an
branch cuts starting at6 half the meson mass,v5
6MV/2. The contour for computing the spectral moments
depicted in Fig. 1. The contributions encircling the bran
points cancel provideddV is half-integer. The contribution a
infinity cancels, and only the residues at the origin contr

FIG. 1. The contour in the complexv plane for the spectra
functions in the meson dominance model. The quantityM denotes
the generic meson massMV for the vector channel andMS for the
scalar channel. The branch cuts start atv56M /2. The pole atv
50 occurs for the vector case only.
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ute. One may explicitly verify with no difficulty that the us
of Eq. ~9.12! in Eq. ~9.11! with the contour of Fig. 1 repro-
duces Eq.~9.4!.

With help of the explicit formula~9.12! several interesting
features may be pointed out. The spectral function is ge
inely complex and it is defined on a complex contourC. This
precludes positivity conditions@68#.

It is also interesting to note that in the limitMV→` one
gets

rV~v!→ 1

2p i

1

v
, ~9.15!

i.e. the massless free theory. This suggests a multiplica
effect of chiral symmetry breaking on the spectral functio
Finally, Eq. ~9.12! cannot be interpreted as a constitue
model for which one essentially has a pole atv5M in the
complex plane@or, equivalently, ad(v2M )], with M denot-
ing the constituent quark mass.

X. QUARK PROPAGATOR IN THE MESON DOMINANCE
MODEL

A. Scalar spectral function

In the construction of the vector spectral function we ha
used the vector-meson dominance principle, which has a
phenomenological justification. For the case of the sca
spectral function we will proceed differently, more heuris
cally. First, we will propose its form in an analogy to th
form of rV . Then, in Sec. X C we will confront our hypoth
esis to the recent lattice data on the quark propagator@18,19#.

The scalar function has to satisfy the conditions~1.3! at
odd positive values ofn. The analysis of the previous sectio
suggests the following form:

rS~v!5
1

2p i

16~dS21!~dS22!r38

MS
4~124v2/MS

2!dS
, ~10.1!

where the normalization is chosen in such a way that
third log moment,r38524p2^qq&/Nc , is reproduced. In
other words, we fix the normalization with the quark conde
sate. The admissible values ofdS are half-integer, since only
then the integration around the half-circles at the bran
points in Fig. 1 vanishes. In Sec. X C the preferred value w
turn out to be

dS55/2. ~10.2!

One may verify that the integration with the prescriptio
of Fig. 1 yields

r2k215E
C
dvv2k21rS~v!

52 432kp2^qq&MS
22k14Nc

G~ds2k!

G~dS22!G~12k!
,

~10.3!
1-17
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and conditions~1.3! become satisfied for odd positiven
52k21. The analytic structure ofrS(v) is similar to the
case ofrV(v), except for the absence of the pole atv50.

For completeness, we list the result for even and o
negative moments,

r22n5S MV
2

4 D 2n G~dV1n!

G~dV!G~n11!
,

r22n2152S MS
2

4 D 2n22 4p2^q̄q&

Nc

G~ds1n!

G~dS22!G~n11!
,

~10.4!

n50,1,2, . . .

and for the positive even and odd log moments,

r2n8 5S 2
MV

2

4 D n G~dV2n!G~n!

G~dV!
,

r2n218 52S 2
MS

2

4 D n22 4p2^q̄q&

Nc

G~dS2n!G~n!

G~dS22!
,

~10.5!

n51,2,3, . . .

The valuedV55/2 should be used for the vector dominan
model.

B. Quark propagator

A straightforward calculation with Eqs.~9.12!, ~10.1!
yields theA(p2) andB(p2) functions of Eq.~2.7!, namely,

A~p2!5
1

p2 F12
1

~124p2/MV
2 !dV

G ,

B~p2!5
64~dS22!~dS21!p2^q̄q&

MS
4Nc~124p2/MS

2!dS
. ~10.6!

We note that the apparent pole inA(p2) is canceled when the
expression in brackets is expanded, and both functionshave
no poles in the whole complex plane. The functions~10.6!
have branch cuts starting atp254M2, whereM is the rel-
evant mass.

The absence of poles, achieved in a rather natural fas
in our approach, is very appealing, but not completely s
prising a posteriori. In local chiral quark models, where th
propagator is usually assumed to be a meromorphic func
~with a pole at the constituent quark mass!, meson vertex
functions naturally inherit the discontinuity structure implie
by the Cutkosky rules and unitarity. In our case, it is t
meson form factor which is taken to be a meromorphic fu
tion through the VMD model; unavoidably, the quark prop
gator must have no poles and a certain cut structure con
ing with the unitarity at the one-loop level in order
produce such a form factor with no cuts.
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Alternatively, instead ofA and B one may consider the
more customary mass function,M (p2), and the wave func-
tion renormalization,Z(p2), given by Eq.~2.6!. They can be
written as

M ~p2!

M0
5

4dVp2

MV
2

S MS
2

MS
224p2D dS

S MV
2

MV
224p2D dV

21

~10.7!

Z~p2!512S MV
2

MV
224p2D dV

1
16dV

2M ~0!2p2

MV
4

3

S MS
2

MS
224p2D 2dS

S MV
2

MV
224p2D dV

21

, ~10.8!

whereM05M (0) is the value of the mass at the origin. W
find

M052
16~dS21!~dS22!MV

2p2^q̄q&

dVMS
4Nc

,

Z~0!5
4dVM ~0!2

MV
2

. ~10.9!

At high Euclidean momenta,Q252p2→`, we obtain

M ~Q2!5
dVM0MS

2

MV
2 S MS

2

4Q2D dS21

1 . . . ,

Z~Q2!512S MV
2

4Q2D dV

2
4dV

2M ~0!2MS
2

MV
4 S MS

2

4Q2D 2dS21

1 . . . .

~10.10!

We note that for the half-integerdS the tail ofM contains odd
powers ofQ,

M ~Q2!;
1

~Q2!dS21
, ~10.11!

and fordS55/2 drops as 1/Q3, for dS57/2 as 1/Q5, etc. The
wave-function normalization, Z(Q), has the correct
asymptotic behavior,Z(Q);1.

Given the cut structure of the functionsA(p2) andB(p2)
we may look back at the high energy expansion~2.33!. Ac-
cording to the spectral conditions~1.3! one would deduce
from the high energy behavior that the full propagator co
cides with the free one. The puzzle is resolved by realiz
that the branch cut running from6M /2 to 6` implies a
fractional power behavior, and hence the function cannot
represented by a power series expansion around infin
1-18
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From this point of view, Eq.~2.33! just expresses the fac
that the integer power coefficients are exactly zero, as cle
follows from Eq.~10.6!.

C. Comparison to the lattice data

The decrease of the quark mass as 1/Q3 at large Euclidean
momenta is favored by recent lattice calculations@18,19#,
where the fit to the functional formc/@(Q2)b1(L2)b# is best
when the parameterb is close to 3@69#. We have performed
a x2 fit for M (Q) of Eq. ~10.8! to the data of Refs.@18,19#.
These data, for the case ofM, have been extrapolated to th
chiral limit. We have treatedMS andM0 as free parameters
The x2 fit results in the following optimum values:

M05303624 MeV,

MS5970621 MeV, ~10.12!

with the optimum value ofx2 per degree of freedom equal t
0.72. The corresponding value of the quark condensate

^qq&52~243.020.8
10.1 MeV!3. ~10.13!

FIG. 2. The dependence of the quark massM ~top! and the wave
function normalizationZ ~bottom! on the Euclidean momentumQ
obtained from the meson dominance model withdS55/2. The lat-
tice data, extrapolated to the chiral limit for the case ofM, and
taken at the current quark mass.59 MeV for the case ofZ, are
taken from Refs.@18,19#. The thicker lines correspond to optimum
parameters of Eq.~10.12!, while the thin lines indicate the unce
tainty at the one-standard-deviation level.
07402
ly
The functionsM (Q) and Z(Q), evaluated at optimum pa
rameters, are shown in Fig. 2 with thick lines. The thin lin
indicate the uncertainty at the one-standard-deviation le
The agreement with the data is very good for the case ofM,
and the 1/Q3 falloff is clearly seen. In fact, fitting of the
model with values ofdS higher than 5/2, which results in
faster asymptotic decrease, results in a much worse ag
ment with the data. As seen from the bottom part of Fig.
for the case ofZ the agreement is not very good, but w
should keep in mind the simplicity of the present model a
the freedom in the scalar channel. For instance, the sc
spectral function can be multiplied, without losing any of t
general requirements, by an entire function. We also wish
stress that the optimum value of^qq& obtained by fitting the
model formulas to the lattice data agrees with the estim
~10.13!.

It is interesting to note that even though the mass fu
tion, M (p2), presents a pole for time-like momenta, i.e. the
exists a solution to the equationM (p2)2p250, it does not
correspond to a physical particle. This is because the norm
izationZ(p2) also vanishes for the same value ofp2. This in
fact is just a manifestation of the analyticity properties
A(p) andB(p) discussed above. Figure 3 shows the beh
ior of M and Z at low momenta. Arrows indicate the pos
tions of the alleged pole inM, canceled by the zero ofZ.

XI. OTHER PREDICTIONS

The explicit model for the quark spectral functionr(v)
allows for very simple and efficient evaluation of furth
interesting quantities. There is a whole bunch of predictio
from which we only list a few. The results decouple in
those involving the vector spectral function,rV(v), and the
scalar spectral function,rS(v). As stressed throughout th
paper, all predictions are made for the model working sc
Q0, and the QCD evolution is needed if a comparison
high-energy data is desired.

FIG. 3. Square of the quark massM2 ~solid line!, minus the
square of the Euclidean momentumQ2 ~dotted line!, and the wave
function normalizationZ ~dashed line!, plotted as functions of the
square of Euclidean momentum,Q2. The arrow indicates the poin
where M252Q2, but where alsoZ50. As the result, the quark
propagator has no pole. From the analyticity properties ofA andB
it follows that the quark propagator has no poles in the wh
complex-Q2 plane.
1-19



th

i

to
e
e

rie

li

al-

e

e
ion

e

le

l-
e

he

its
f the
r the

r the

E. R. ARRIOLA AND W. BRONIOWSKI PHYSICAL REVIEW D67, 074021 ~2003!
A. Pion transition form factor

According to the vector meson dominance model of
pion form factor, the transition form factor~6.9! becomes

Fpg* g* ~Q2,A!5
2 f p

ANc

1

Q2
logF2MV

21~11A!Q2

2MV
21~12A!Q2G

1
16f pMV

2

Nc@4MV
414Q2MV

21~12A2!Q4#
.

~11.1!

As discussed in Sec. VI, this expression provides the tw
expansion, with the result of Eq.~6.17!, but with VMD the
log moments of Eq.~9.8!. The analysis and comparison
the data of Ref.@55# requires the QCD evolution of th
higher twist components. This point will be analyzed els
where.

B. Pion light-cone wave function

Next, we use Eq.~9.14! in the expression for the pion
light-cone wave function~6.19!, with the result

C~x,k'!5
3MV

3

16p~k'
2 1MV

2/4!5/2
u~x!u~12x!. ~11.2!

Passing to the impact-parameter space with the Fou
Bessel transform yields

C~x,b![2pE
0

`

k'dk'C~x,k'!J0~k'b!

5S 11
bMV

2 DexpS 2
MVb

2 D u~x!u~12x!. ~11.3!

The expansion at smallb yields

C~x,b!5S 12
MV

2b2

8
1

MV
3b3

24
1 . . . D u~x!u~12x!.

~11.4!

The average transverse momentum squared is equal to

^k'
2 &[

E d2k' k'
2 C~x,k'!

E d2k'C~x,k'!

524
dC~x,b!

db2 U
b50

5
MV

2

2
, ~11.5!

which numerically gives^k'
2 &5(544 MeV)2 ~all at the

model working scaleQ0). This value is not far from the
result of the Nambu–Jona-Lasinio model with the Pau
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Villars regularization, which produceŝk'
2 &5(613 MeV)2

@17#. The estimates from QCD sum rules yield smaller v
ues: one gets (316 MeV)2 based on Ref.@70#, and (333
640 MeV)2 based on Ref.@30#. One should note that thes
estimates are atQ0 of the order of 1 GeV, hence the QCD
evolution is needed to compare to our model results@17#.

C. Unintegrated pion structure function

Due to relation~7.15!, exactly the same formulas as in th
previous section hold for the unintegrated quark distribut
function in the pion. Hence, we find

q~x,k'!5q̄~12x,k'!

5
3MV

3

16p~k'
2 1MV

2/4!5/2
u~x!u~12x!, ~11.6!

and the analogs of Eqs.~11.3!–~11.5!.

D. Non-local quark condensate

The applications of Secs. XI B and XI C involved th
vector spectral density. The scalar spectral density~10.1! en-
ters the evaluation of the nonlocal condensate of Eq.~2.18!.
For dS55/2 we find immediately the interesting and simp
result

Q~x!5expS 2
MSA2x2

2 D , ~11.7!

wherex denotes the Minkowski coordinate. For higher va
ues ofdS the expression is multiplied by a polynomial in th
x2 variable. Note the nonanalyticity in thex2 variable in Eq.
~11.7! as x2→0. In the present model the moments of t
quark condensate, Eq.~2.20!, are well defined forn,2dS
24, which means that for the preferred value ofdS55/2 we
may only consider the quark condensate itself, but not
moments. Nevertheless, the coordinate representation o
non-local condensate makes sense and can be given fo
whole range ofx2.

E. Quark propagator in the coordinate representation

One may also pass to the coordinate representation fo
A andB functions of Eq.~2.7!, introducing

2 ix”A~x!5E d4p

~2p!4
e2 ip•xp”A~p!,

B~x!5E d4p

~2p!4
e2 ip•xB~p!.

~11.8!

With straightforward algebra one finds
1-20
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A~x!5
48124MVA2x226MV

2x21MV
3~2x2!3/2

96p2x4

3e2MV
A2x2/2,

B~x!5
2322dS^q̄q&
NcG~dS22!

~MSA2x2!dS22K22dS
~MSA2x2/2!,

~11.9!

where x denotes the Minkowski coordinate. We have us
dV55/2. In the limit of lowx one recovers the result of th
free theory,A(x).1/(2p2x4). For the preferred value o
dS55/2 we find that

B~x!5^q̄q&/~4Nc!exp~2MSA2x2/2!, ~11.10!

in agreement with Eq.~11.7!.

XII. CONCLUSION AND FINAL REMARKS

In the present work we have developed a chiral qu
model, which tries to incorporate as many known featu
based on chiral symmetry and the partonic quark subst
ture of hadrons as possible. This approach, first unveile
Ref. @12#, should be considered as a simple prototype o
construction which may be certainly improved in many
spects. Taking into account the fact that the emerging pic
is very encouraging, economic, and predictive, we belie
that applications and extensions of the model deserve a t
ough further investigation.

The key ingredient is the use of a generalized spec
representation for the quark propagator combined with
gauge technique for constructing the vertices involv
quarks and currents. The generalized Lehmann represe
tion implies analyticity properties of the quark propagator
the complex plane but positivity or reality are abandoned
particular, the analytic continuation from the Euclidean to
Minkowski space back and forth becomes straightforwa
We note that this continuation is explicitly used when co
puting hadronic matrix elements in momentum space. T
possibility of doing this continuation becomes extreme
convenient when dealing with calculations of soft matrix
ements of high-energy processes. In a purely Euclidean
mulation one stays in the coordinate space and the extrac
of the parton distribution functions or amplitudes is oft
limited in practice to the few lowest moments.

The conditions used to constrain the spectral function
collected in Table I. Finiteness and factorization enforce
vanishing of the positive moments, while a number of ava
able experimental observables can be used to fix the va
and signs of the negative moments and the log moment

Instead of making a specific model for the propaga
based on extrapolations from the Euclidean region to
complex plane we devise an infinite set of spectral conditi
based on the requirement that our model produces finite
ronic observables. As a result the high energy behavio
certain matrix elements corresponds to a pure twist exp
sion, with no logarithmic behavior. This is consistent w
the interpretation that the model is defined at a low ren
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malization pointQ0. Thus, our model results should be co
sidered as an initial condition for the QCD evolution, hen
automatically incorporating the correct high energy radiat
corrections to hadronic observables. The low renormaliza
point Q0 is determined by the analysis of two different pr
cesses: the pion transition form factor and the pion struc
functions. We find compatible values in the rangeQ0
;300 MeV, corresponding toa(Q0)/(2p);0.3. For the
model scale, the leading twist contribution for the pion stru
ture function and the pion distribution amplitude coinci
and are equal to one,q(x)5wp(x)51, regardless of the
spectral function. At the same time the correct anomal
form factor for the processp0→gg is obtained. This re-
solves the conflict between proper low-energy and hi
energy normalization of the pion transition form factor. T
QCD evolution of both the PDF and PDA has been shown
provide a very reasonable agreement with the data analy

The pion form factor does depend on the spectral fu
tion. Further interesting analytic relations can be obtained
determining the even contribution to the spectral funct
from the requirement that the pion form factor has the vec
meson dominance form, which is known to describe exp
mental data in the available momentum range very well. A
result, the vector meson mass becomes proportional to
pion weak decay constant. The vector contribution to
spectral function exhibits a pole at the origin and no
integrable branch points at plus or minus the vector me
mass. As a consequence the spectral function must be i
preted as a distribution centered at the branch points.

The form of the spectral function suggested by the vec
channel can be also used with minor modifications for
scalar channel. This way the full quark propagator can
studied and its analytic structure analyzed: there are no p
all over the complex plane, only cuts located at the bran
points of the spectral function. Moreover, the asymptotic
havior in the Euclidean region reflects this cut structure b
half-integer power falloff of the quark mass function in th
squared Euclidean momentumQ2. The recent lattice data
@18,19# set this half integer power to 3/2 quite unambig
ously. Fixing this power leaves only the quark mass funct
at the origin~the constituent quark mass! and the quark con-
densate as free parameters. The fit to the data for the m
function, M (p2), is very good and the values for both th
condensate and the constituent quark mass atp250 agree
with other estimates. The fit to the quark wave-function n
malization,Z(p2), is not nearly as good as forM (p2), leav-
ing room for improvement.

Possible extensions of the general model involve the
clusion of more general solutions of the Ward-Takaha
identities. The meson-dominance model can be improved
studying more general forms of the scalar quark spec
function. Moreover, the inclusion of finite quark mass
would allow the extension of the present model to the co
plete pseudoscalar octet. These issues are under inves
tion.
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TABLE I. Summary of conditions for the quark spectral functionr(v).

Spectral condition Physical significance

Normalization
r051 proper normalization of the quark propagator

preservation of anomalies
proper normalization of the pion distribution
amplitude
proper normalization of the pion structure function
reproduction of the large-Nc quark-model values of
the Gasser-Leutwyler coefficients
relation MV

2524p2f p
2 /Nc in the vector-meson

dominance model

Positive moments
r150 vanishing quark mass at asymptotic Euclidea

momenta,M (Q2)→0
r250 finiteness of the pion decay constant,f p

r350 finiteness of the quark condensate,^qq&
r450 finiteness of the vacuum energy density,B
rn50, n52,4, . . . factorization in the twist expansion of vector

amplitudes
rn50, n55,7, . . . finiteness of̂ q̄(]2)(n23)/2q&

factorization in the twist expansion of the scalar pio
form factor

Negative moments
r22.0 positive value of the quark wave-function

normalization at vanishing momentum,Z(0).0
r21 /r22.0 positive value of the quark mass at vanishin

momentum,M (0).0
r2n low-momentum expansion of correlators

Positive log moments
r28,0 f p

2 52Nc /(4p2)r28

r38.0 negative value of the quark condensate,^qq&5

2Nc /(4p2)r38

r48.0 negative value of the vacuum energy density,B5

2Nc /(4p2)r48

r58,0 positive value of the squared vacuum virtuality of th
quark,lq

252r58/r38

rn8 high-momentum~twist! expansion of correlators
on
te
o

to
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a
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APPENDIX A: ONE-LOOP INTEGRALS

1. Two-point integral

The two-point one-loop integral regularized in 41e di-
mensions is
07402
d
.

s
-

c-

I ~q2,v!5
1

i
E d4k

~2p!4

1

k22v21 i01

1

~q2k!22v21 i01

5
1

16p2 S 21A12
4v2

q2 log

A12
4v2

q2 21

A12
4v2

q2 11
D

1I ~0,v!, ~A1!

with
1-22
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I ~0,v!52
1

16p2 S 1

e
1 log~v2/m2! D . ~A2!

We also introduce

Ī ~q2,v![I ~q2,v!2I ~0,v!. ~A3!

In the Feynman parametric form we equivalently have

I ~q2,v!52
1

~4p!2
3E

0

1

dx log@v21x~12x!q2#.

~A4!

The imaginary part yields

1

p
Im I ~q2,v!5

1

16p2
A12

v2

4q2
u~q224v2!. ~A5!

Thus the once-subtracted dispersion relation,

Ī ~q2,v!5
q2

p E
4w2

` dt

t

Im I ~ t,v!

t2q22 i01
, ~A6!

holds. The asymptotic behavior for large Euclidean2q2 is

I ~q2,v!5
1

16p2 H 22
1

e
2 log~2q2/m2!1

2v2

q2

3@ log~2q2/v2!11#

1
2v4

q4 F log~2q2/v2!2
1

2G . . . J . ~A7!

At low q2 we have

Ī ~q2,v!5
1

16p2 H q2

6v2
1

q4

60v4
1

q6

420v6
1 . . . J .

~A8!

2. Three-point integral

The three-point one-loop integral is defined as

K~~q12q2!2,q1
2 ,q2

2 ,v!

5
1

i E d4k

~2p!4

1

k22v21 i01

1

~k2q1!22v21 i01

3
1

~k2q2!22v21 i01
. ~A9!

We analyze it with the dimensional regularization, and
the case where the virtuality of one of the external line v
ishes, (q12q2)250 ~massless pion!. We immediately find
the result

K~0,0,0,v!52
1

16p2

1

2v2
. ~A10!
07402
r
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The following Feynman parametrization is useful:

1

abc
52E

0

1

dxE
0

1

dy
x

@xya1x~12y!b1~12x!c#3
.

~A11!

Carrying the momentum integration and introducingz52y
21 yields

KS 0,
11A

2
q2,

12A

2
q2,v D

5
1

16p2E0

1

dxE
21

1

dz
x

~12x!x~11Az!q222v2
.

~A12!

At A50 we find

KS 0,
1

2
q2,

1

2
q2,v D

5
1

16p2

2

q2A128v2/q2
log

11A128w2/q2

12A128w2/q2
. ~A13!

At low q2 the expansion is

KS 0,
1

2
q2,

1

2
q2,v D

52
1

16p2 F 1

2v2
1

q2

24v4
1

q4

240v4
1 . . . G , ~A14!

and a highq2

KS 0,
1

2
q2,

1

2
q2D52

1

16p2 F2 log~22v2/q2!
1

q2

28@ log~22v2/q2!11#
v2

q4
1 . . . G .

~A15!

The integral overx in Eq. ~A12! yields

KS 0,
11A

2
q2,

12A

2
q2,v D

5
1

16p2E21

1

dz
1

~11Az!q2s
log

11s

12s
, ~A16!

s5A128v2/@q2~11Az!#.

At low q2 we have
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KS 0,
11A

2
q2,

12A

2
q2,v D

52
1

16p2 F 1

2v2
1

q2

24v4
1

~A213!q4

720v4
1 . . . G .

~A17!

The large-q2 expansion produces

KS 0,
11A

2
q2,

12A

2
q2,v D

52
1

16p2E21

1

dzH 1

q2~11Az!
logS 2

2v2

q2~11Az!
D

1
4v2

q4~11Az!2 F logS 2
2v2

q2~11Az!
D 11G1 . . . J .

~A18!

The integral overz in Eq. ~A16! gives finally the simple
general result

KS 0,
11A

2
q2,

12A

2
q2D

5
1

32p2Aq2 F S log
11s1

12s1
D 2

2S log
11s2

12s2
D 2G , ~A19!

s65A128v2/@q2~16A!#.

APPENDIX B: DISCONTINUITY IN THE BJORKEN
LIMIT

Let us consider the one-loop function

T~p,q!5 i E d4k

~2p!4

1

@~k2p!22v21 i01#2

3
1

k22v21 i01

1

~q2k2p!22v21 i01 .

~B1!

The discontinuity in thes5(p1q)2 channel may be com
puted through the Cutkosky rules,

DiscT~p,q!5 i E d4k

~2p!4

1

@~k2p!22v21 i01#2

3~22p i !2d1~k22v2!d1

3@~q2k2p!22v2#. ~B2!
07402
We choose the reference frame of the target at rest

p5~m,0',0!, q5~q0 ,0' ,q3!, q252Q25q0
22q2.

~B3!

One gets then

q05
Q2

2mpx
,

q35
Q2

2mpx
A11

4mp
2 x2

Q2
→ Q2

2mpx
1mpx1 . . . . ~B4!

In the light-cone coordinates, defined as

k15k01k3, k25k02k3, k'5~k1,k2!,

dk0dk35
1

2
dk1dk2, ~B5!

one obtains

q15q01q3→ Q2

mpx
,

q25q02q3→2mpx, ~B6!

and also

d1@~k2p2q!22v2#→ mpx

Q2
d@k22~12x!mp#,

d1@k22v2#→ 1

mp~12x!
dFk12

k'
2 1v2

mp~12x!
G . ~B7!

Thus finally we get

Im T~p,q!→ x~12x!

Q2 E d2k'

~2p!2

1

@k'
2 1v22mp

2 x~12x!#2
.

~B8!
1-24



T.
cl

n

.

D

l-

g-

,

the

uge
ity
tor

.

ng
of
be

7.

o-
ce,

e

s.

lec-
77,

ys.

e

SPECTRAL QUARK MODEL AND LOW-ENERGY HADRON . . . PHYSICAL REVIEW D67, 074021 ~2003!
@1# U. Vogl and W. Weise, Prog. Part. Nucl. Phys.27, 195 ~1991!.
@2# S.P. Klevansky, Rev. Mod. Phys.64, 649 ~1992!.
@3# M.K. Volkov, Part. NucleiB24, 1 ~1993!.
@4# T. Hatsuda and T. Kunihiro, Phys. Rep.247, 221 ~1994!.
@5# C.V. Christov, A. Blotz, H.-C. Kim, P. Pobylitsa, T. Watabe,

Meissner, E. Ruiz Arriola, and K. Goeke, Prog. Part. Nu
Phys.37, 91 ~1996!.

@6# R. Alkofer, H. Reinhardt, and H. Weigel, Phys. Rep.265, 139
~1996!.

@7# G. Ripka,Quarks Bound by Chiral Fields~Clarendon, Oxford,
1997!.

@8# E. Ruiz Arriola, Acta Phys. Pol. B33, 4443~2002!.
@9# C. Itzykson and J. B. Zuber,Quantum Field Theory~McGraw-

Hill, New York, 1980!.
@10# R. Delbourgo and P.C. West, J. Phys. A10, 1049~1977!.
@11# R. Delbourgo, Nuovo Cimento A49, 484 ~1979!.
@12# E. Ruiz Arriola, in Proceedings of the Workshop on Lepto

Scattering, Hadrons and QCD, Adelaide, Australia, 2001, ed-
ited by W. Melnitchouk, A. Schreiber, P. Tandy, and A. W
Thomas~World Scientific, Singapore, 2001!.

@13# R.L. Jaffe and G.C. Ross, Phys. Lett.93B, 313 ~1980!.
@14# R. L. Jaffe, inProceedings of the Los Alamos School, 1985,

edited by M. B. Johnson and A. Picklesimer~Wiley, New York,
1986!.

@15# R.M. Davidson and E. Ruiz Arriola, Phys. Lett. B359, 273
~1995!.

@16# R.M. Davidson and E. Ruiz Arriola, Acta Phys. Pol. B33,
1791 ~2002!.

@17# E. Ruiz Arriola and W. Broniowski, Phys. Rev. D66, 094016
~2002!.

@18# P.O. Bowman, U.M. Heller, and A.G. Williams, Phys. Rev.
66, 014505~2002!.

@19# P.O. Bowman, U.M. Heller, D.B. Leinweber, and A.G. Wil
iams, hep-lat/0209129.

@20# B. Haeri, Phys. Rev. D38, 3799~1988!.
@21# T.D. Lee and G.C. Wick, Nucl. Phys.B9, 209 ~1969!.
@22# R.E. Cutkosky, P.V. Landshoff, D.I. Olive, and J. Polkin

horne, Nucl. Phys.B12, 281 ~1969!.
@23# D.G. Boulware and D.J. Gross, Nucl. Phys.B233, 1 ~1984!.
@24# M. Praszałowicz and A. Rostworowski, Phys. Rev. D64,

074003~2001!.
@25# B.L. Ioffe, Yad. Fiz. 66, 32 ~2003! @Phys. At. Nucl.66, 30

~2003!#.
@26# S.V. Mikhailov and A.V. Radyushkin, Sov. J. Nucl. Phys.49,

494 ~1989!.
@27# S.V. Mikhailov and A.V. Radyushkin, Phys. Rev. D45, 1754

~1992!.
@28# A.P. Bakulev and S.V. Mikhailov, Phys. Rev. D65, 114511

~2002!.
@29# A.E. Dorokhov and W. Broniowski, Phys. Rev. D65, 094007

~2002!.
@30# V.M. Belyaev and B.L. Ioffe, Sov. Phys. JETP56, 493~1982!.
@31# B.L. Ioffe and K.N. Zyablyuk, Technical Report, 2002

hep-ph/0207183.
@32# B. Renner,Current Algebras and Their Applications~Perga-

mon Press, New York, 1968!.
@33# R. Delbourgo, Aust. J. Phys.52, 681 ~1999!.
@34# V. Sauli, J. High Energy Phys.02, 001 ~2003!.
@35# Our conventions are as follows: We takee2 ip•x for ingoing
07402
.

andeip•x for outgoing particles. For free massless particles
irreducible functions are normalized according toGV

m,a

5gm(la/2) and GA
m,a5gmg5(la/2). The convention for the

Dirac matrices and the metric tensor is the one of Ref.@9#.
@36# The use of the dimensional regularization guarantees ga

invariance, with no further subtractions, hence for simplic
we use it throughout the paper in the applications with vec
and axial currents.

@37# W. Broniowski, G. Ripka, E.N. Nikolov, and K. Goeke, Z
Phys. A354, 421 ~1996!.

@38# H. Pagels and S. Stokar, Phys. Rev. D20, 2947~1979!.
@39# S. Weinberg, Phys. Rev. Lett.18, 507 ~1967!.
@40# J.L.C. Bernard, A. Duncan, and S. Weinberg, Phys. Rev. D12,

792 ~1975!.
@41# W. Broniowski, hep-ph/9911204.
@42# For instance, a modification of the vector vertex by providi

additional tensor coupling is capable of curing the problem
the second Weinberg sum rule. This important issue will
studied elsewhere.

@43# R. Tarrach, Z. Phys. C2, 221 ~1979!.
@44# P. Faccioli, A. Schwenk, and E.V. Shuryak, hep-ph/020202
@45# C.J. Bebeket al., Phys. Rev. Lett.37, 1326~1976!;Phys. Rev.

D 17, 1693~1978!.
@46# The Jefferson Lab F~pi!, J. Volmeret al. Phys. Rev. Lett.86,

1713 ~2001!.
@47# H.P. Blok, G.M. Huber, and D.J. Mack, nucl-ex/0208011.
@48# NA7 Collaboration, S.R. Amendoliaet al., Nucl. Phys.B277,

168 ~1986!.
@49# G.P. Lepage and S.J. Brodsky, Phys. Rev. D22, 2157~1980!.
@50# A.E. Dorokhov, talk presented at the 37th Rencontres de M

riond on QCD and Hadronic Interactions, Les Arcs, Fran
2002, hep-ph/0206088.

@51# A.E. Dorokhov, Pis’ma Zh. Eksp. Teor. Fiz.77, 68 ~2002!.
@52# D. Müller, Phys. Rev. D51, 3855~1995!.
@53# A. Schmedding and O. Yakovlev, Phys. Rev. D62, 116002

~2000!.
@54# A.P. Bakulev, S.V. Mikhailov, and N.G. Stefanis, this issu

Phys. Rev. D67, 074012~2003!.
@55# CLEO Collaboration, J. Gronberget al., Phys. Rev. D57, 33

~1998!.
@56# S.L. Adler, Phys. Rev. D4, 3497~1971!.
@57# M.V. Terent’ev, Phys. Lett.38B, 419 ~1972!.
@58# R. Aviv and A. Zee, Phys. Rev. D5, 2372~1972!.
@59# H. Weigel, E. Ruiz Arriola, and L. Gamberg, Nucl. Phy

B560, 383 ~1999!.
@60# J. R. Ellis, in Les Houches 1976, Proceedings, Weak and E

tromagnetic Interactions At High Energies, Amsterdam, 19
pp. 1–114 and report—ELLIS J~76,REC.JAN 77!.

@61# G. Altarelli and G. Parisi, Nucl. Phys.B126, 298 ~1977!.
@62# P.J. Sutton, A.D. Martin, R.G. Roberts, and W.J. Stirling, Ph

Rev. D45, 2349~1992!.
@63# J. Gasser and H. Leutwyler, Ann. Phys.~N.Y.! 158, 142

~1984!.
@64# J. Gasser and H. Leutwyler, Nucl. Phys.B250, 465 ~1985!.
@65# L.-H. Chan, Phys. Rev. Lett.57, 1199~1986!.
@66# E. Ruiz Arriola, Phys. Lett.253B, 430 ~1991!.
@67# C. Schuren, E. Ruiz Arriola, and K. Goeke, Nucl. Phys.A547,

612 ~1992!.
@68# If one extrapolatesrV(v) to the real axis, as suggested by th
1-25



ch

o

-

s.
-

ults
pic
ch:
the

alar
ese

E. R. ARRIOLA AND W. BRONIOWSKI PHYSICAL REVIEW D67, 074021 ~2003!
standard Lehmann representation, Eq.~2.2!, there appear, for
dV>1, end-point non-integrable singularities at the bran
points v56MV/2. If one insists on areal spectral function,
one may do so but then one has to proceed by analytic c
tinuation in dV , or derivation with respect toMV

2 after com-
puting thev integral. Alternatively, this is equivalent to a dis
tributional interpretation of the spectral functionr(v) and its
~generalized! derivatives using the well known distributionx1

a

~see, e.g., the classical work@71# for a rigorous discussion!.
@69# Obviously,M (p2) andZ(p2) are gauge-dependent quantitie

The data of Refs.@18,19# correspond to the Landau and La
07402
n-

placian gauges. A natural question arises where our res
incorporate the choice of the QCD gauge at the microsco
level. We notice two sources of ambiguities in our approa
the arbitrariness of the transverse terms in the solutions to
Ward-Takahashi identities, as well as the choice of the sc
quark spectral function. It remains to be seen how th
choices reflect the underlying QCD gauge.

@70# A.R. Zhitnitsky, Phys. Lett.329B, 493 ~1994!.
@71# I. M. Gel’fand and G. E. Shilov,Generalized Functions~Aca-

demic, New York, 1964!, Vol. 1.
1-26


