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Resummation of transverse momentum and mass logarithms in DIS heavy-quark production
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Differential distributions for heavy quark production depend on the heavy quark mass and other momentum
scales, which can yield additional large logarithms and inhibit accurate predictions. Logarithms involving the
heavy quark mass can be summed in heavy quark parton distribution functions in the Aivazis-Collins-Olness-
Tung ~ACOT! factorization scheme. A second class of logarithms involving the heavy-quark transverse mo-
mentum can be summed using an extension of the Collins-Soper-Sterman~CSS! formalism. We perform a
systematic summation of logarithms of both types, thereby obtaining an accurate description of heavy-quark
differential distributions at all energies. Our method essentially combines the ACOT and CSS approaches. As
an example, we present angular distributions for bottom quarks produced in parity-conserving events at large
momentum transfersQ at the DESYep collider HERA.
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I. INTRODUCTION

In recent years, significant attention has been dedicate
exploring the properties of heavy-flavor hadrons produce
lepton-nucleon deep inelastic scattering~DIS!. On the ex-
perimental side, the Hadron-Electron Ring Accelera
~HERA! at DESY has generated a large amount of data
the production of charmed@1–5# and bottom mesons@6–10#.
At present energies~of order 300 GeV in theep center-of-
mass frame!, a substantial charm production cross section
observed in a wide range of Bjorkenx and photon virtualities
Q2, and charm quarks contribute up to 30% to the DIS str
ture functions.

On the theory side, perturbative quantum chromodyna
ics ~PQCD! provides a natural framework for the descriptio
of heavy-flavor production. Because of the large massesM of
the charm and bottom quarks (M2@LQCD

2 ), the renormaliza-
tion scale can be always chosen in a region where the e
tive QCD couplingaS is small. Despite the smallness ofaS ,
perturbative calculations in the presence of heavy flavors
not without intricacies. In particular, care in the choice o
factorization scheme is essential for the efficient separa
of the short- and long-distance contributions to the hea
quark cross section. This choice depends on the value ofQ as
compared to the heavy quark massM. The key issue here is
whether, for a given renormalization and factorization sc
mF;Q, the heavy quarks of theNth flavor are treated a
partons in the incoming proton, i.e., whether one calcula
the QCD beta function usingN active quark flavors and in
troduces a parton distribution function~PDF! for the Nth
flavor. A related, but separate, issue is whether the mas
the heavy quark can be neglected in the hard cross se
without ruining the accuracy of the calculation.

Currently, several factorization schemes are available
provide different approaches to the treatment of these iss
Among the mass-retaining factorization schemes, we wo
like to single out the fixed flavor number~FFN! factorization
scheme, which includes the heavy-quark contributions ex
sively in the hard cross section@11–16#; and massive vari-
0556-2821/2003/67~7!/074015~21!/$20.00 67 0740
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able flavor number~VFN! schemes, which introduce th
PDFs for the heavy quarks and change the number of ac
flavors by one unit when a heavy quark threshold is cros
@17–25#. Further details on these schemes can be found l
in the paper. Here we would like to point out that, were t
calculation done to all orders ofaS , the FFN and massive
VFN schemes would be exactly equivalent. However, in
finite-order calculation the perturbative series in one sche
may converge faster than that in the other scheme. In
ticular, the FFN scheme presents the most economic wa
organize the perturbative calculation near the heavy qu
threshold, i.e., whenQ2'M2. At the same time, it become
inappropriate atQ2@M2 due to powers of large logarithm
ln(Q2/M2) in the hard cross section. In the VFN schem
these logarithms are summed through all orders in the he
quark PDF with the help of the Dokshitzer-Gribov-Lipato
Altarelli-Parisi ~DGLAP! equations@26–28#; hence the per-
turbative convergence in the high-energy limit is preserv
In their turn, the VFN schemes may converge slower
Q2'M2, mostly because of the violation of energy cons
vation in the heavy-quark PDFs in that region. Recently
optimal VFN scheme was proposed that compensates for
effect @29#.

In this paper, we would like to concentrate on the analy
of semi-inclusive differential distributions~i.e., distributions
depending on additional kinematical variables besidesx and
Q). We will argue that finite-order calculations in any fa
torization scheme do not satisfactorily describe such dis
butions due to additional large logarithms besides the lo
rithms ln(Q2/M2). To obtain stable predictions, all-orde
summation of these extra logarithmic terms is necessary

The extra logarithms are of the form (aS
n/qT

2)lnm(qT
2/Q2),

0<m<2n21, whereqT5pT /z denotes the transverse mo
mentum pT of the heavy hadron in theg* p center-of-
mass ~c.m.! reference frame rescaled by the variab
z[(pA•pH)/(pA•q). HerepA

m , qm, andpH
m are the momenta

of the initial-state proton, virtual photon, and heavy hadro
respectively. Our definitions for theg* p c.m. frame and had-
©2003 The American Physical Society15-1
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ron momenta are illustrated by Fig. 1. The resummation
these logarithms is needed when the final-state hadron
capes in the current fragmentation region~i.e., close the di-
rection of the virtual photon in theg* p c.m. frame, where
the rate is the largest!. In the current fragmentation region
the ratioqT

2/Q2 is small; therefore, the terms lnm(qT
2/Q2) com-

pensate for the smallness ofaS at each order of the pertur
bative expansion. If hadronic masses are neglected,
logarithms can be summed through all orders in the imp
parameter space resummation formalism@30–33#, which was
originally introduced to describe angular correlations
e1e2 hadroproduction@34,35# and transverse momentum
distributions in the Drell-Yan process@36#.1 Here the impact
parameterb is conjugate toqT . The results of Refs.@30–33#
are immediately valid for semi-inclusive DIS~SIDIS! pro-
duction of light hadrons (p,K, . . . ) at Q of a few GeV or
higher, and for semi-inclusive heavy quark production
Q2@M2. To describe heavy-flavor production atQ2;M2,
the masslessqT-resummation formalism must be extended
include the dependence on the heavy-quark massM.

In this paper, we perform such extension in the Aivaz
Collins-Olness-Tung~ACOT! massive VFN scheme@18#
with the optimized treatment of the threshold region@29#. We
adopt a ‘‘bottom-up’’ approach to the development of su
mass-dependent resummation.2 We start by separately re
viewing the massive VFN scheme in the inclusive DIS a
qT resummation in the massless SIDIS. We then discus
combination of these two frameworks in a joint resummat

1The similarity between the multiple parton radiation in sem
inclusive DIS and the other two processes has been known f
long time; see, for instance, the early paper@37#.

2An alternative ‘‘top-down’’ approach will require the analysis
leading regions in the high-energy limit and derivation of the e
lution equations that retain terms with positive powers ofM /Q.
Such analysis could involve methods similar to those discusse
Ref. @38#.

FIG. 1. The parity-conserving semi-inclusive productione1p
→e1H1X of heavy hadrons in theg* p c.m. reference frame. The
resummation effects considered here are important in the cu
fragmentation regionuH→0, i.e., when the final-state heavy qua
h closely follows the direction of its escape in theO(aS

0) flavor-
excitation processg* 1h→h.
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of the logarithms ln(Q2/M2) and ln(qT
2/Q2). As a result, we

obtain a unified description of fully differential heavy-hadro
distributions at allQ2 above the heavy quark threshold. It
well known that the finite-order calculation does not satisf
torily treat the current fragmentation region for any choice
the factorization scheme. In contrast, the proposed mas
extension of theqT resummation accurately describes t
current fragmentation region in the whole rangeQ2.M2.

The present study is interesting for two phenomenolog
reasons. Firstly, the quality of the differential data will im
prove greatly within the next few years. By 2006, the u
graded collider HERA will accumulate an integrated lum
nosity of 1 fb21 @39#, i.e., more than eight times the fina
integrated luminosity from its previous runs. Studies of t
heavy quarks in DIS are also envisioned at the propo
high-luminosity Electron Ion Collider@40# and THERA@41#.
Eventually these experiments will present detailed distri
tions both at small (Q2'M2) and large (Q2@M2) momen-
tum transfers.

Secondly, the knowledge of the differential distributio
is essential for the accurate reconstruction of inclusive
servables, such as the charm component of the struc
function F2(x,Q2). At HERA, 40–60 % of the charm pro
duction events occur outside the detector acceptance reg
notably at small transverse momenta of the heavy quarks
determineF2

c(x,Q2), those events should be reconstruct
with the help of some theoretical model, which so far w
theO(aS

2) calculation in the FFN scheme@15,16,42–44# in-
corporated in a massless parton showering generator
mentioned above, for inclusive observables the FFN sche
works the best not far from the threshold and becomes
stable atQ2@M2, where the VFN scheme is more approp
ate. In more detail, the VFN scheme describesF2

c(x,Q2)
better than the FFN scheme whenQ2 exceeds 20 (GeV/c)2,
i.e., roughly whenQ2/M2.10 @20#. The transition to the
VFN scheme occurs faster at smallerx, where the c.m. en-
ergy of theg* p collision is much larger thanM. For bottom
quark production, the estimateQ2/M2*10 corresponds to
Q2*200 (GeV/c)2. The VFN calculation can also be ex
tended down to the mass threshold to uniformly describe
whole rangeQ2.M2. Since the proposed resummation ca
culation is formulated in the VFN scheme, it provides a b
ter alternative to the finite-order calculation in the FF
scheme due to its correct treatment of differential distrib
tions at all values ofQ2.

As an example, we apply the developed method to
leading-order flavor-creation and flavor-excitation proces
in the production of bottom mesons at HERA. We find th
the resummed cross section for this process can be desc
purely by means of perturbation theory due to the large m
of the bottom quark. Our predictions can be tested in the n
few years once the integrated luminosity at HERA a
proaches 1 fb21. Essentially the same method can be a
plied to charm production. In that case, however, the
summed cross section is sensitive to the nonperturba
large-b contributions due to the smaller mass of the cha
quarks, and the analysis is more involved. Since the goa
this paper is to discuss the basic principles of the massiveqT
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resummation, we leave the study of the charm produc
and other phenomenological aspects for future publicatio

The paper has the following structure. Section II revie
the application of the ACOT factorization scheme@18# and
its simplified version@17,25# to the description of the inclu
sive DIS structure functions. Section III recaps basic featu
of the b-space resummation formalism inmasslessSIDIS.
Section IV discusses modifications in the resummed cr
section to incorporate the dependence on the heavy-q
massM. In Sec. V, we present a detailed calculation of t
mass-dependent resummed cross sections in the lea
order flavor-creation and flavor-excitation processes. Sec
VI presents numerical results for polar angle distributions
the production of bottom quarks at HERA. Appendix A co
tains details on the calculation of theO(aS) mass-dependen
part of the resummed cross section. In Appendix B,
present explicit expressions for theO(aS) finite-order con-
tributions from the photon-gluon channel. Finally, Append
C discusses in detail the optimization of the ACOT sche
when it is applied to the differential distributions in the v
cinity of the threshold region.

II. OVERVIEW OF THE FACTORIZATION SCHEME

A. Factorization in the presence of heavy quarks

In this section, we discuss the application of the ACO
factorization scheme@18# to inclusive DIS observables, fo
which this scheme yields accurate predictions both at asy
totically high energies and near the heavy-quark thresho

In the inclusive DIS, the factorization in the presence
heavy flavors is established by a factorization theorem@17#,
which we review under a simplifying assumption that on
one heavy flavorh with the massM is present. LetA denote
the incident hadron. According to the theorem, the contri
tion Fh/A(x,Q2) of h to a DIS structure functionF(x,Q2)
@where F(x,Q2) is one of the functionsF1(x,Q2) or
F2(x,Q2) in parity-conserving DIS# can be written as

Fh/A~x,Q2!5(
a
E

xa

1 dj

j
Ch/aS xa

j
,
mF

Q
,
M

Q D f a/AS j,H mF

mq
J D

1OS LQCD

Q D . ~1!

Here the summation over the internal indexa includes both
light partons ~gluons G and light quarks!, as well as the
heavy quarkh. This representation is accurate up to the no
factorizable terms that do not depend onM and can be ig-
nored whenQ@LQCD. The nonvanishing term on the righ
hand side~RHS! is written as a convolution integral o
parton distribution functionsf a/A(j, $mF /mq%) and coeffi-
cient functionsCh/a(xa /j, mF /Q, M /Q). The convolution
is realized over the hadron light-cone momentum fractioj
carried by the partona. The coefficient function depends o
the flavor-dependent ‘‘scaling variable’’xa discussed below
The parton distributions and coefficient functions are se
rated by an arbitrary factorization scalemF such that
f a/A depends only on mF and quark masses$mq%
[mu ,md , . . . ,M ; and Ch/a depends only onmF , M , and
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Q. As a result of this separation, all logarithmic term
aS

nlnk(mF /mq) with light-quark massesare included in the
PDFs, where they are summed through all orders using
DGLAP equation. Note that in the massless approximat
such logarithms appear in the guise of collinear poles 1/ek in
the procedure of dimensional regularization. The logarith
lnk(mF /M) with the heavy-quark mass Mare included either
in Ch/a or f a/A depending on the factorization scheme in u

In the reference frame where the momentum of the in
dent hadronA in the light-cone coordinates is

pA
m5H pA

1 ,
mA

2

2pA
1

,0TJ
@wherep6[(p06p3)/A2], the quark PDF can be defined i
terms of the quark field operatorscq(x) as @45#

f q/AS j,H mF

mq
J D5(

spin
(
color

E dy2

2p
e2 i jpA

1y2

3^pAuc q̄~0,y2,0T!

3P expH 2 igE
0

y2

dz2A 1~0,z2,0T!J
3

g1

2
cq~0!upA&. ~2!

HereP exp$•••% is the path-ordered exponential of the gluo
field An(x) in the gaugeh•A50. The RHS is averaged
over the spin and color ofA and summed over the spin an
color of q. A similar definition exists for the gluon PDF. Th
dependence off a/A(j,$mF /mq%) on mF is induced in the
process of renormalization of ultraviolet~UV! singularities
that appear in the bilocal operator on the RHS of Eq.~2!. In
general, the PDF is a nonperturbative object; however, it
be calculated in PQCD whenmF@LQCD, and the incident
hadronA is replaced by a parton. This feature opens the d
for the calculation ofFh/A(x,Q2) for any hadronA through
the conventional sequence of calculatingCh/a(xa /j,mF /
Q,M /Q) in parton-level DIS and convolving it with the phe
nomenological parametrization of the nonperturbative P
f a/A(j,$mF /mq%). In the inclusive DIS, it is convenient to
choosemF;Q to avoid the appearance of the large log
rithm ln(mF /Q) in Ch/a(xa /j,mF /Q,M /Q).

The factorized representation~1! is valid in all factoriza-
tion schemes. The specific factorization scheme is de
mined by~a! the procedure for the renormalization of the U
singularities and~b! the prescription for keeping or discard
ing terms with positive powers ofM /Q in the coefficient
function Ch/a . The choice~a! determines if the logarithms
lnk(mF /M) are resummed in the heavy-flavor PDF or n
With respect to each of two issues, the choice can be d
independently. For instance, theMS factorization scheme
uses the dimensional regularization to handle the UV sin
larities, but does not uniquely determine the choice~b!.
Hence, it is not necessary in this scheme to always negleM
5-3
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in the coefficient function and expose the heavy-quark m
singularities as poles in the dimensional regularization.

The ACOT scheme belongs to the class of the varia
flavor number~VFN! factorization schemes@46# that change
the renormalization prescription whenmF crosses a threshol
valuem thr . It is convenient to choosem thr for the flavorh to
be equal toM, since the logarithms lnk(mF /M) vanish at that
point. If mF,M , all graphs with internal heavy-quark line
are renormalized by zero-momentum subtraction. IfmF
.M , these graphs are renormalized in the modified minim
subtraction (MS) scheme. The masses of the light quarks
neglected everywhere, and graphs with only light par
lines are always renormalized in theMS scheme.

The physical picture behind the ACOT prescription
simple: the heavy quark is excluded as a constituent of
hadron for sufficiently low energy~an N21 flavor sub-
scheme!, but the heavy quark is included as a constituent
sufficiently high energies~an N flavor subscheme!. The
renormalization by zero-momentum subtraction below
threshold leads to the explicit decoupling of the heavy-qu
contributions from light parton lines. As one consequence
the decoupling, all perturbative components of the hea
quark PDF vanish atmF,M , so that a nonzero heavy-qua
PDF may appear only through nonperturbative chann
such as the ‘‘intrinsic heavy quark mechanism’’@47#. Since
the size of such nonperturbative contributions remains un
tain, they are not considered in this study. AtmF.M , a
nonzero heavy-quark PDFf h/A is introduced, which is
evolved together with the rest of the PDFs with the help
the mass-independentMS splitting kernels. The initial con-
dition for f h/A(j,mF) is obtained by matching the factoriza
tion subschemes atmF5M . At order aS , this condition is
trivial:

f h/A~j,mF5M !50. ~3!

At higher orders, the initial value off h/A(j,mF) is given by
a superposition of light-flavor PDFs@20#. A simple illustra-
tion of these issues is given in Appendix A.

The ACOT scheme possesses another important prop
the coefficient functionCh/a in this scheme has a finite limi
asQ→`, which coincides with the expression for the coe
ficient function obtained in the masslessMS scheme withN
active flavors. This happens because the mass-depen
terms inCh/a contain only positive powers ofM /Q, while
the quasicollinear logarithms ln(mF /M) are resummed in
f h/A(j,mF). As a consequence of the introduction
f h/A(j,mF), the coefficient functionCh/a includes subpro-
cesses of three classes:

~1! Flavor excitation, where the partona is a heavy quark.
~2! Gluon flavor creation, wherea is a gluon.
~3! Light-quark flavor creation, wherea is a light quark.

In contrast, in the FFN scheme@11–16# only the flavor-
creation processes are present. The lowest-order diagram
each class are shown in Fig. 2.

The subsequent parts of the paper consider the proce
shown in Figs. 2~a! and 2~b!. Note that we count the order o
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diagrams according to the explicit power ofaS in the coef-
ficient function, i.e.,O(aS

0) in Fig. 2~a!, O(aS
1) in Fig. 2~b!,

andO(aS
2) in Fig. 2~c!. This counting does not apply to th

whole structure functionFh/A(x,Q2) in Eq. ~1! when the
heavy-quark PDF is itself suppressed byaS /p near the mass
threshold@48–50#. In that region, anO(aS

n) flavor-excitation
contribution has roughly the same order of magnitude as
O(aS

n11) flavor-creation contribution. We return to this issu
in the discussion of numerical results in Sec. VI, where
interpret the combination of theO(aS

0) flavor-excitation con-
tribution @Fig. 2~a!# and O(aS

1) flavor-creation contribution
@Fig. 2~b!# as a first approximation atQ'M .

B. Simplified ACOT Formalism

Of several available versions of the ACOT scheme, o
calculation utilizes its modification advocated by Collin
@17#, which we identify as the simplified ACOT~S-ACOT!
formalism @25#. It has the advantage of being easy to st
and of allowing relatively simple calculations. This simpli
ity could be crucial for implementing the massive VFN pr
scription at the next-to-leading order in the global analysis
parton distributions. In brief, this prescription is stated
follows.

Simplified ACOT ~S-ACOT! prescription: SetM to zero
in the calculation of the coefficient functionsCh/a for the
incoming heavy quarks; that is,

Ch/hS xh

j
,
mF

Q
,
M

Q D→Ch/hS xh

j
,
mF

Q
,0D .

It is important to note that this prescription is not an appro
mation; it correctly accounts for the full mass dependen
@17#. It also tremendously reduces the complexity of flav
excitation structure functions, as they are given by the lig
quark result. In the specific case considered here, the he
quark mass in the S-ACOT scheme should be retained o
in theg* 1G→h1h̄ subprocess@Fig. 2~b!#. Another impor-
tant consequence will be discussed in Sec. IV, where
show that the S-ACOT scheme leads to a simpler gene
zation of theqT resummation to the mass-dependent cas

C. The scaling variable

Finally, we address the issue of the most appropriate v
ablesxa (a5G,u,d,s, . . . ) in theconvolution integral~1!.
In a massless calculation,xa are just equal to Bjorkenx,

FIG. 2. Basic subprocesses in the ACOT scheme:~a! flavor
excitationg* 1h→h at O(aS

0), ~b! gluon flavor creation~photon-

gluon fusion! g* 1G→h1h̄ at O(aS
1), and ~c! light-quark flavor

creationg* 1q→(g* 1G)1q→(h1h̄)1q at O(aS
2). The thick

and thin solid lines correspond to the heavy quarkh and light
quarksq5u,d,s, respectively.
5-4



e
e

e
d

re

re

ua
g

ne

li

u

ie
an
-

e
-

u-
ar

o
l-
f
s

lly
be

y-
u

u
n

le
-
el

ver

in-
on

the
s

s

gh-

gy
of

ear
er,
d
it
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since all momentum fractionsj betweenx and unity are
allowed by energy conservation. This simple relation do
not hold in the massive case. For instance, in the charg
current heavy quark productionW61q→h, where h is
present in the final, but not the initial, state, a simple kin
matical argument leads to the conclusion that the longitu
nal variable in the flavor-excitation processes should be
caled by a mass-dependent factor, asxh5x(11M2/Q2)
@49#.

In the flavor-excitation subprocesses of the neutral-cur
heavy quark production~e.g.,g* 1h→h), typically no res-
caling correction was made. The presence of a heavy q
in both the initial and final states of the hard scattering su
gested that no kinematical shift was necessary, i.e.,xh5x.
This assumption has been recently questioned by a
analysis@29#. Specifically, Tunget al. note that the heavy
quarks in the hadron come predominantly from gluons sp
ting into quark-antiquark pairs. Hence the heavy quarkh
initiating the hard process must be accompanied by the

observedh̄ in the beam remnant. When bothh and h̄ are
present, the hadron’s light-cone momentum fraction carr
by the incoming parton cannot be smaller th
x(114M2/Q2), which is larger than the minimal momen
tum fractionjmin5x allowed by the single-particle inclusiv
kinematics. The factor of 4M2 arises from the threshold con

dition for h andh̄. This effect can be accounted for by eval
ating the flavor-excitation cross sections at the scaling v
ablexh5x(114M2/Q2).

In brief, the rule proposed in Ref.@29# is to use xa

5x(114M2/Q2) in flavor-excitation processes@Fig. 2~a!#
andxa5x in flavor-creation processes@Figs. 2~b! and 2~c!#
when calculating inclusive cross sections. However, to c
rectly describe the differential distributions of the fina
state hadron, we have to generalize the above rule
semi-inclusive observables. This generalization is discus
in Appendix C, where the proper scaling variable for fu
differential finite-order cross sections is found to
xh5x$11M2/@z(12z)Q2#% @cf. Eq. ~C11!#.

III. MASSLESS TRANSVERSE
MOMENTUM RESUMMATION

We now turn to the differential distributions of the heav
flavor cross sections. Specifically, we consider the prod
tion of a heavy-quark hadronH via the process
e(,)1A(pA)→H(pH)1e(,8)1X. This reaction is illus-
trated in Fig. 1 for the specific case whenA is a proton. In
much of the discussion, we will find it convenient to amp
tate the external lepton legs and work with the photo
hadron processg* (q)1A(pA)→H(pH)1X in the photon-
hadron c.m. frame. Given the conventional DIS variab
Q252q2 and x5Q2/(2pA•q), as well as the Lorentz in
variant SeA[(,1pA)2, we decompose the electron-lev
cross section into a sum over the functionsAr(c,w) of the
lepton azimuthal angle w and boost parameterc
[cosh21(2xSeAQ

2221) @32,51#:
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ds~e1A→e1H1X!

dxdQ2dpH

}(
r

Vr~q,pA ,pH!Ar~c,w!. ~4!

This procedure is nothing else but the decomposition o
the virtual photon’s helicities@52–54#; hence it is completely
analogous to the tensor decomposition familiar from the
clusive DIS. As a result of this procedure, the dependence
the kinematics of the final-state lepton is factorized into
functions Ar(c,w), while the hadronic dynamics affect
only the functionsVr . In parity-conserving SIDIS, the only
contributing angular functions are

A1~c,w!511cosh2c,

A2~c,w!522,

A3~c,w!52cosw sinh 2c,

A4~c,w!5cos 2w sinh2c. ~5!

In Sec. II we found that the ACOT prescription resum
logarithms of the form ln(M2/Q2). For the inclusive observ-
ables, this procedure provides accurate predictions throu
out the full range ofx andQ2. More differential observables
may contain additional large logarithms in the high-ener
limit. In particular, we already mentioned the logarithms
the type (qT

22)aS
nlnm(qT

2/Q2), 0<m<2n21, which appear
when the polar angleuH of the heavy hadronH in the g* A
c.m. frame becomes small~see Fig. 1!. Here we chose thez
axis to be directed along the momentumq of the virtual
photong* . WhenM2!Q2, the scaleqT is related touH as

qT
25Q2S 1

x
21D12cosuH

11cosuH
; ~6!

hence

lim
uH→0

qT
25Q2S 1

x
21D S uH

2

4
1••• D→0. ~7!

The resummation of these logarithms of soft and collin
origin can be realized in the formalism by Collins, Sop
and Sterman~CSS! @34–36,55#. The result can be expresse
as a factorization theorem, which states that in the lim
Q2@qT

2 ,$mq
2%,LQCD

2 the cross section is

ds~e1A→e1H1X!

dF U
q

T
2!Q2

5
s0Fl

2SeA
A1~c,w!E d2b

~2p!2
eiqT•bW̃HA~b,Q,x,z!

1OS qT

Q
,H mq

Q J ,
LQCD

Q D . ~8!

In this equation,b is the impact parameter~conjugate toqT),
dF[dxdQ2dzdqT

2dw, z[(pA•pH)/(pA•q), ands0 andFl

are constant factors given in Eq.~B2!. As before,$mq% col-
lectively denotes all quark masses$mq%[mu ,md , . . . ,M ,
5-5
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At large Q2, theb-space integral in Eq.~8! is dominated by
contributions from the regionb2&1/Q2. In this region, the
hadronic form factorW̃HA(b,Q,x,z) can be factorized in a
combination of parton distribution functionsf a/A(ja ,mF),
fragmentation functionsDH/b(jb ,mF), and the partonic form

factor Ŵ̃ba :

W̃HA~b,Q,x,z!5(
a,b

E
x

1dja

ja
E

z

1djb

jb
DH/b~jb ,mF!

3Ŵ̃ba~b,Q,x̂,ẑ,mF! f a/A~ja ,mF!, ~9!

where

Ŵ̃ba~b,Q,x̂,ẑ,mF!5(
j

ej
2 e2S(b,Q,C1 ,C2)

3Cb/ j
outS ẑ,mFb;

C1

C2
D Cj /a

in S x̂,mFb;
C1

C2
D .

~10!

Here x̂[x/ja , ẑ[z/jb . The indicesa,b in Eq. ~9! are
summed over all quark flavors and gluons; the summa
over j in Eq. ~10! is over the quarks only. The fractiona
charge of a quarkj is denoted ase2ej

2 . The parton distribu-
tions and fragmentation functions are separated from
partonic form factorŴ̃ba at the factorization scalemF . The
Sudakov factorS(b,Q,C1 ,C2) is an all-order sum of loga
rithms lnm(qT

2/Q2). It is given by an integral between scale

C1
2/b2 andC2

2Q2 ~whereC1 andC2 are constants of order 1!

of two functions A„aS(m̄);C1… and B„aS(m̄);C1 ,C2… ap-
pearing in the solution of equations for renormalization- a
gauge-group invariance:

S5E
C1

2/b2

C2
2Q2dm̄2

m̄2 F lnS C2
2Q2

m̄2 DA„aS~m̄ !;C1…

1B„aS~m̄ !;C1 ,C2…G . ~11!

The functionsC in, C out contain perturbative corrections t
contributions from the incoming and outgoing hadronic je
respectively. To evaluate the Fourier-Bessel transform in
gral, W̃HA(b,Q,x,z) should be also defined atb
*1 GeV21, where the perturbative methods are not tru
worthy. The continuation ofW̃HA(b,Q,x,z) to the large-b
region is realized with the help of some phenomenolog
model, as discussed, e.g., in Refs.@36,56,57#.

As noted above, the resummed cross section in Eq.~8!,
which we shall label assW̃ , is derived in the limit
qT

2!Q2. In the region qT
2*Q2, the standard finite-orde

~FO! perturbative resultsFO is appropriate. WhilesW̃ and
sFO represent the correct limiting behavior, we cannot si
ply add these two terms to obtain the total cross sec
sTOT , as we would be ‘‘double counting’’ the contribution
common to both terms.
07401
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The solution is to subtract the overlapping contributio
betweensW̃ and sFO. This overlapping contribution~the
asymptotic piecesASY) is obtained by expanding theb-space
integral insW̃ out to the finite order ofsFO. Thus, the com-
plete result is given by

dsTOT

dF
5

dsW̃

dF
1

dsFO

dF
2

dsASY

dF
. ~12!

At small qT , where terms lnm(qT
2/Q2) are large,sFO cancels

well with sASY , so that the total cross section is approx
mated well by theb-space integral:sTOT'sW̃ . At qT

2

*Q2, where the logarithms are no longer dominant, t
b-space integralsW̃ cancels withsASY , so that the total
cross section is equal tosFO up to higher order correction
sTOT'sFO. This interplay ofsW̃ , sFO, andsASY in sTOT
is illustrated in Fig. 3~a!.

As we will be referring to these different terms frequen
throughout the rest of the paper, let us present a recap of
roles.

~1! sW̃ is the small-qT resummed term as given by the CS
formalism in Eq.~8!; sometimes called ‘‘the CSS term
@58#. This expression contains the all-order sum of lar
logarithms of the form lnm(qT

2/Q2), which is presented as
a Fourier-Bessel transform of theb-space form factor
W̃(b,Q,x,z). It is a good approximation in the regio
qT

2!Q2.
~2! sFO is the finite-order~FO! term; sometimes called ‘‘the

perturbative term.’’ It contains the complete perturbati
expression computed to the relevant order of the ca
lation n. As such, this term contains logarithms of th
form lnm(qT

2/Q2) only out tom52n21. It also contains
terms that are not important in the limitqT

2/Q2→0, but
dominate whenqT

2;Q2. Hence, it provides a good ap
proximation in the regionqT

2*Q2.
~3! sASY is the asymptotic~ASY! term. It contains the ex-

pansion ofsW̃ out to the same ordern as in sFO. As
such, this term contains logarithms of the for
lnm(qT

2/Q2) only out tom52n21. It is precisely what is
needed to eliminate the ‘‘double-counting’’ between t
sW̃ andsFO terms in Eq.~12!.

~4! sTOT is the total~TOT! resummed cross section; som
times called ‘‘the resummed term.’’ It is constructed
sTOT5sW̃1sFO2sASY . In the regionqT

2!Q2, sASY

precisely cancels the large terms present in thesFO con-
tribution, so thatsTOT'sW̃ . In the region qT

2*Q2,
sASY approximately cancels thesW̃ term leavingsFO as
the dominant representation of the total cross sect
sTOT'sFO. Hence, when calculated to a sufficient
high order ofaS , sTOT serves as a good approximatio
at all qT .

In a practical calculation in low orders of PQCD, one m
want to further improve the cancellation betweensW̃ and
sASY at qT

2*Q2. This improvement can be achieved by i
troducing a kinematical correction in these terms that
counts for the reduction of the allowed phase space for
5-6
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FIG. 3. Balance of various terms in the total resummed cross sectiondsTOT /dqT : ~a! away from the threshold (Q@M ), ~b! near the
threshold (Q'M ). In each plot the thick curves correspond to the ‘‘active’’ cross section~TOT, FO, W, or ASY!, and the thin curves
correspond to the other three cross sections.
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longitudinal variablesx andz at nonzeroqT . The purpose of
this kinematical correction is quite similar to the purpose
the inclusive scaling variable discussed in Sec. II C: it
moves contributions from the unphysically smallx andz that
make the differencesW̃2sASY non-negligible as compare
to sFO. Note that the resummed cross sections with a
without the kinematical correction are formally equivalent
one another up to higher-order corrections. Further disc
sion of this issue can be found in Appendix C, which intr
duces the kinematical correction for the resummed hea
quarkqT distributions.

IV. EXTENSION OF THE CSS FORMALISM
TO HEAVY-QUARK PRODUCTION

In the previous section, we presented a procedure for
resummation of distributionsds/dqT

2 in the limit whenQ2 is
much larger than all other momentum scale
Q2@qT

2 , $mq
2%. We now are ready to discuss its extension

the case when the heavy-quark mass is not negligible.
simplicity, we again assume that only one heavy flavorh has
the massM comparable withQ: Q2;M2@LQCD

2 . The gen-
eralization for several heavy flavors can be realized thro
the conventional sequence of factorization subschemes
which the heavy quarks become active partons at ene
scales above their mass and are treated as nonpartonic
ticles at energy scales below their mass.

We start by rewriting Eq.~9! in a form analogous to Eq
07401
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~4.3! of Ref. @36#, where the form factorW̃ was given for the
Drell-Yan process:

W̃HA~b,Q,x,z!

5(
j

ej
2

P̄ H/ j
out S z,b,$mq%,

C1

C2
D

3P̄ j /A
in S x,b,$mq%,

C1

C2
DexpS 2E

C1
2/b2

C2
2Q2dm̄2

m̄2

3F lnS C2
2Q2

m̄2 DAS aS~m̄ !;H m̄

mq
J ;C1D

1BS aS~m̄ !;H m̄

mq
J ;C1 ,C2D G D . ~13!

Here the functionP̄ j /A
in (x,b,$mq%,C1 /C2) describes con-

tributions associated with the incoming hadronic jet.

illustrated in Appendix A,P̄ j /A
in (x,b,$mq%,C1 /C2) is related

to the kT-dependent parton distributionP j /A
in (x,kT ,$mq%).

Similarly, the function P̄ H/ j
out (z,b,$mq%,C1 /C2) describes

contributions associated with the outgoing hadronic jet@35#.
It is related to thekT-dependent fragmentation functio
P H/ j

out (z,kT ,$mq%). The functionsA andB are the same as in
5-7
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Eq. ~11!, except that now they retain the dependence on
quark masses$mq%5mu ,md ,ms , . . . ,M .

Equation~9! presents a special case of Eq.~13!. It is valid
at short distances, i.e., when 1/b is much larger than any o
the quark massesmq . In contrast, Eq.~13! is valid at all b
@36#. As shown in Ref.@45#, the transition from Eq.~13! to

Eq. ~9! is possible because the functionsP̄ j /A
in andP̄ H/ j

out fac-
torize whenb0

2/b2@$mq
2%:

P̄ j /A
in S x,b,$mq%,

C1

C2
D

→(
a
E

x

1dja

ja
Cj /a

in S x̂,mFb;
C1

C2
D f a/AS ja ,H mF

mq
J D ;

P̄ H/ j
out S z,b,$mq%,

C1

C2
D

→(
b
E

z

1djb

jb
DH/bS jb ,H mF

mq
J D Cb/ j

outS ẑ,mFb;
C1

C2
D .

~14!

Here we introduced a frequently encountered cons
b0[2e2gE'1.123. We see that the form factorW̃HA is well-
defined both for nonzero quark masses and in the mas
limit. Hence, it does not contain negative powers of t
quark masses or logarithms ln(mq /Q), with the exception of
the collinear logarithms resummed in the parton distributio
and fragmentation functions.

We will now argue that the factorization rule similar
Eq. ~14! should also apply in heavy-flavor production wh
M2 is not negligible compared tob0

2/b2. Indeed, the factor-

ization of the functions P̄ j /A
in and P̄ H/ j

out in the limit
b0

2/b2@$mq
2% @45# closely resembles the factorization of th

inclusive DIS structure functions in the limitQ2@$mq
2% @59–

63#. In both cases the factorization occurs because the do
nant contributions to the cross section come from ‘‘ladde
cut diagrams with subgraphs containing lines of drastica
different virtualities. More precisely, the leading regions
such diagrams can be decomposed into hard subgra
which contain highly off-shell parton lines; and quasico
linear subgraphs, which contain lines with much lower v
tualities and momenta approximately collinear topA

m @in the

case ofFh/A(x,Q2) or P̄ j /A
in ] or pH

m ~in the case ofP̄ H/ j
out ). In

the functionsP̄ j /A
in and P̄ H/ j

out , additional soft gluon sub-
graphs are present, but they eventually do not affect
proof of the factorization@45#. The hard subgraphs contrib
ute to the inclusive coefficient functionCh/a in Eq. ~1!, as
well as functionsCj /a

in or Cb/ j
out in Eq. ~14!. The quasicollinear

subgraphs, which are connected to the hard subgra
through one on-shell parton on each side of the momen
cut, contribute to the PDFs~in the inclusive DIS and SIDIS!
or FFs~in SIDIS!.

The hard subgraphs are characterized by typical tra
verse momentakT

2*mF
2@LQCD

2 , while the PDFs and FFs ar
characterized by transverse momentakT

2&mF
2 . The factoriza-
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tion scalemF is of order Q in the inclusive DIS structure

functions andb0 /b in the functionsP̄ j /A
in andP̄ H/ j

out . As dis-
cussed in Sec. II, the factorization in the inclusive DIS c
be extended to the case whenQ is comparable to the heavy
flavor massM, Q2;M2@LQCD

2 . Given the close analogy
between the inclusive DIS structure functions and the fu

tions P̄ j /A
in , P̄ H/ j

out , it is natural to assume that the latte
factorize whenb0

2/b2;M2@LQCD
2 as well:

P̄ j /A
in S x,b,$mq%,

C1

C2
D

5(
a
E

x

1dja

ja
Cj /a

in S x̂,mFb,bM,
C1

C2
D f a/AS ja ,H mF

mq
J D ;

P̄ H/ j
out S z,b,$mq%,

C1

C2
D

5(
b
E

z

1djb

jb
DH/bS jb ,H mF

mq
J D Cb/ j

outS ẑ,mFb,bM,
C1

C2
D .

~15!

The main difference between Eqs.~14! and~15! is contained
in the functionsC j /a

in andCb/ j
out , which now explicitly depend

on M. These functions can be calculated according to th
definitions given in Ref.@34#. The unrenormalized expres
sions for theC functions contain ultraviolet singularities. T
cancel these singularities, we introduce counterterms acc
ing to the procedure described in Sec. II: that is, graphs w
internal heavy-quark lines are renormalized in theMS
scheme, ifmF;b0 /b.M , and by zero-momentum subtrac
tion, if b0 /b,M . This choice leads to the explicit decou
pling of diagrams with heavy quark lines atb*b0 /M . In
particular, the decoupling implies that contributions to E
~15! with j ,a, or b equal to h are power suppressed a
b.b0 /M .

We now consider other sources of the dependence onM in
ds/dF. First, according to Eq.~13!, there is a dependenc
on M in the Sudakov functionsA„aS(m̄);m̄/M ;C1… and
B„aS(m̄);m̄/M ;C1 ,C2…. Due to the decoupling, the mas
dependent terms in the Sudakov factor vanish atb*b0 /M ,
except for perhaps terms of truly nonperturbative natu
such as the intrinsic heavy quark component@47#. As men-
tioned above, in this paper such nonperturbative compon
is ignored. Secondly, there may also be mass-depen
terms in the finite-order cross section, which are not ass
ated with the leading contributions resummed in theW̃ term:
those are the terms that contribute to the remainder
Eq. ~8!. The terms of both types are correctly included
dsTOT /dF. Indeed, the terms of the first type appear in
three termsdsW̃ /dF, dsFO/dF, anddsASY /dF. Two out
of three contributions~in dsW̃ /dF and dsASY /dF, or
dsFO/dF, anddsASY /dF) cancel with one another, leavin
the third contribution uncancelled indsTOT /dF. The terms
5-8
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of the second type are contained only indsFO/dF, so that
they are automatically included indsTOT /dF.

The treatment of the massive terms simplifies more if
adapt the S-ACOT factorization scheme, in which the he
quark mass is set to zero in the hard parts of the flav
excitation subprocesses. As a result,M is neglected in the
flavor-excitation contributions to the hard cross sectionsFO,
asymptotic termsASY , andC functions in theW̃ term. The
mass-dependent terms are further omitted in the perturba
Sudakov factorS. At the same time, all mass-depende
terms are kept insFO, sASY , and C functions for gluon-
initiated subprocesses.

As we will demonstrate in the next section, in this pr
scription the cross sectionsTOT resums the soft and collinea
logarithms, when these logarithms are large, and reduce
the finite-order cross section, when these logarithms
small. In particular, atQ;M the finite-order flavor-creation
terms approximate well the heavy-quark cross section. He
we expect thatsTOT reproduces the finite-order flavo
creation part atQ;M @Fig. 3~b!#. For this to happen, the
flavor-excitation cross section should cancel well with t
subtraction} ln(mF /M) from the flavor-creation cross sec
tion; and sW̃ should cancel well withsASY . We find that
s
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these cancellations indeed occur in the numerical calculat
so that atQ'M sTOT agrees well with the flavor-creatio
contribution tosFO. Similarly, sTOT reproduces the massles
resummed cross section whenQ@M @Fig. 3~a!#. It also
smoothly interpolates between the two regions ofQ.

To summarize our method, the total resummed cross
tion in the presence of heavy quarks is calculated as

dsTOT

dF
5

dsW̃

dF
1

dsFO

dF
2

dsASY

dF
, ~16!

i.e., using the same combination of theW̃-term, finite-order
cross section, and asymptotic cross section as in the mas
case. All three terms on the RHS of Eq.~16! are calculated in
the S-ACOT scheme. TheW̃ term is calculated as

S ds~e1A→e1H1X!

dF D
W̃

5
s0Fl

SeA

A1~c,w!

2 E d2b

~2p!2

3eiqT•bW̃HA~b,Q,M ,x,z!,

~17!

where the form factorW̃HA(b,Q,M ,x,z) is
W̃HA~b,Q,M ,x,z!5(
a,b

E
xa

1 dja

ja
E

z

1djb

jb
DH/bS jb ,H mF

mq
J D f a/AS ja ,H mF

mq
J D

3 (
j 5u,ū,d,d̄, . . .

ej
2Cb/ j

outS ẑ,mFb,bM;
C1

C2
D Cj /a

in S xa

ja
,mFb,bM;

C1

C2
De2Sba(b,Q,M ) ~18!
to
m-

oss

,
rk
ex-

n

p-

al
‘re-
and

Sba~b,Q,M ![E
C1

2/b2

C2
2Q2dm̄2

m̄2 FA„aS~m̄ !;C1…lnS C2
2Q2

m̄2 D
1B„aS~m̄ !;C1 ,C2…G1Sba

NP~b,Q,M !.

~19!

As in the factorization of inclusive DIS structure function
~see Sec. II!, we find it useful to replace Bjorkenx by scaling
variables

xh5xS 11
M2

z~12z!Q2D ~20!

in sFO for the flavor-excitation subprocesses and

xh85xS 11
M21z2qT

2

z~12z!Q2D ~21!
in sW̃ andsASY . The purpose of these scaling variables is
enforce the correct threshold behavior of terms with inco
ing heavy quarks. Equations~20! and ~21! are derived in
detail in Appendix C.

V. MASSIVE RESUMMATION FOR PHOTON-GLUON
FUSION

We now analyze contributions to the total resummed cr
sectiondsTOT /dF from the O(aS

0) heavy-flavor excitation
subprocessg* (q)1h(pa)→h(pb) @Fig. 2~a!# and O(aS)
photon-gluon fusion subprocessg* (q)1G(pa)→h(pb)
1h̄(ps) @Fig. 2~b!#. Since we work in the S-ACOT scheme
only the O(aS) fusion subprocess retains the heavy qua
mass, so that we concentrate on that process first. The
pression for theg* h contribution, which is the same as i
the massless case, is given in Eq.~B1!. In the following we
outline the main results, while details are relegated to A
pendixes.

A. Mass-generalized kinematical variables

Our approach will be to first generalize the kinematic
variables from the massless resummation formalism to ‘
5-9
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cycle’’ as much of the results from Refs.@31,32,51# as pos-
sible. Throughout the derivation, the mass of the incid
hadron will be neglected:pA

250. We will use the standard
DIS variablesx, Q2, andz, defined by

x[
Q2

2pA•q
, Q2[2q2, z[

pA•pH

pA•q
. ~22!

Since we will be interested in the transverse momentum
tributions~or equivalently, the angular distributions!, we next
define the transverse momentum in a frame-invariant m
ner. The four-vectorqt

m of the transverse momentum must
orthogonal to both of the hadrons, so that we have the c
ditions qt•pA50 andqt•pH50. In the massless case,qt

m is
simply defined by subtracting off the projections of the ph
ton’s momentumqm onto pA andpH . This is slightly modi-
fied in the massive case to become

qt
m5qm2S pH•q

pA•pH
2MH

2 pA•q

~pA•pH!2D pA
m2

pA•q

pA•pH
pH

m .

~23!

HereMH denotes the mass of the heavy hadron. We find,
qT

2[2qt
mqtm ,

qT
25Q212

pH•q

z
2

MH
2

z2
. ~24!

The kinematical variables at the parton level can be in
duced in an analogous manner. Letja denote the fraction of
the large ‘‘2 ’’ component of the incoming hadron’s momen
tum pA carried by the initial-state partona ~i.e.,
ja[pa

2/pA
2);3 and jb denote the fraction of the large ‘‘1 ’’

component of the final-state parton’s momentumpb carried
by the outgoing hadronH ~i.e.,jb[pH

1/pb
1). We also assume

that jb relates the transverse momenta ofb and H, as
(pT)H5jb(pT)b . Since all incoming partons are massless
the S-ACOT factorization scheme, we find the following r
lations between the hadron-level variablesx, z, qT and their
parton-level analogsx̂,ẑ,q̂T :

x̂[
Q2

2~pa•q!
5

x

ja
, ~25!

ẑ[
~pa•pb!

~pa•q!
5

z

jb
, ~26!

q̂T5qT , ~27!

where in the derivation of Eq.~27! we used the first equality
in Eq. ~40!.

If we introduce a massive extension ofq̂T
2 called q̃T

2 and
defined by

3We remind the reader that the analysis is performed in theg* A
c.m. frame, where the incident hadron moves in the2z direction.
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q̃T
2[q̂T

21
M2

ẑ2
, ~28!

then the form ofq̃T
2 in terms of the Lorentz invariants i

identical to the massless case

q̃T
25Q212

ph•q

ẑ
. ~29!

We also generalize the usual Mandelstam variables$ŝ, t̂ ,û%
to what we label the ‘‘mass-dependent’’ Mandelstam va
ables$ŝ, t̂1 ,û1%

ŝ5~q1pa!2, ~30!

t̂1[ t̂2M25~q2ph!22M2, ~31!

û1[û2M25~pa2ph!22M2. ~32!

By using the variablesq̃T
2 , ŝ, t̂1, and û1 instead of their

counterpartsqT
2 , ŝ, t̂ , and û, we shall be able to cast man

of the massive relations in the form of the massless ones.
example, the expressions for the ‘‘mass-dependent’’ Mand
stam variables$ŝ, t̂1 ,û1% in terms of the DIS variables can b
written as

ŝ5Q2
~12 x̂!

x̂
, ~33!

t̂152Q2
ẑ

x̂
, ~34!

û15Q2~ ẑ21!2q̃T
2ẑ52Q2

~12 ẑ!

x̂
. ~35!

Note how we made use of the generalized transverse
mentum variableq̃T

2 . These relationships have the same fo
as their massless counterparts. As a result, the denomin
of the mass-dependent propagators, which are formed f
the invariantsŝ, t̂1, and û1, retain the same form as th
denominators of the massless propagators, which are for
from the invariantsŝ, t̂ , andû.

B. Relations between̂ EH ,cosuH‰ in the g* A c.m. frame
and ˆz,qT

2
‰

It is useful to convert between the final-state energyEH ,
polar angleuH , and the Lorentz invariants$z,qT

2%. Given the
g* A c.m. energyW2[(q1pA)25Q2(12x)/x andp[upHu
5AEH

2 2MH
2 , one easily finds the following constraints o

EH , p, and cosuH :

MH<EH<
W

2 S 11
MH

2

W2 D , ~36!
5-10
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0<p<
W

2 S 12
MH

2

W2 D , ~37!

and

21<cosuH<1. ~38!

Given EH and cosuH , we can determinez andqT
2 as

z5
1

W
~EH1p cosuH!, ~39!

qT
25

~pT
2!H

z2
5W2

p2~12cos2uH!

~EH1p cosuH!2
. ~40!

From Eqs.~36!–~38! the bounds onz can be found as

MH
2

W2
<z<1. ~41!

Note that the first equality in Eq.~40! identifiesqT as the
transverse momentum ofH rescaled by the final-state frag
mentation variablez. HenceqT can be also interpreted as th
leading-order transverse momentum of the fragmenting
ton. Similarly, q̃T5MT / ẑ can be interpreted as the rescal
transverse massMT of the heavy quark. It also follows from
Eqs.~39!, ~40! that the two-variable distribution with respe
to the variablesz and qT coincides with the two-variable
distribution with respect toEH anduH :

ds

dxdQ2dzdqT

5
ds

dxdQ2dEHduH

. ~42!

As a result, the distributions in the theoretical variablesz and
qT are directly related to the distributions inEH and uH
measured in the experiment.

Despite the simplicity of the relation~42!, z and qT are
quite complicated functions ofEH and cosuH individually.
This feature is different from the massless case, where t
exists a one-to-one correspondence betweenqT and cosuH
for the fixedg* A c.m. energyW:

cosuHuMH505
W22qT

2

W21qT
2

. ~43!

This relationship does not hold in the massive case, in wh
onevalue ofqT corresponds totwo values of cosuH . Indeed,
Eq. ~40! can be expressed as

qT
2

W2
5

~12l2!~12cos2uH!

~11A12l2 cosuH!2
, ~44!

where, according to Eq.~36!, the variablel[MH /EH varies
in the following range:
07401
r-

re

h

2MH

W~11MH
2 /W2!

<l<1. ~45!

Equation~44! can be solved for cosuH as

cosuH5
1

~qT
21W2!A12l2

3~2qT
26WA~12l2!~qT

21W2!2qT
2!. ~46!

When the energyEH is much larger thanMH (l→0) the
solution with the ‘‘1 ’’ sign in Eq. ~46! turns into the mass-
less solution~43!. The solution with the ‘‘2 ’’ sign reduces to
cosuH521.

The physical meaning of the relationship betweenqT and
cosuH can be understood by considering plots ofqT /W vs
uH for various values ofl ~Fig. 4!. Let us identify the cur-
rent fragmentation region as that where cosuH is close to11
(uH50) and the target fragmentation region as that wh
cosuH is close to21 (uH5p). First, qT50 if cosuH51 or
cosuH521. Secondly, near the threshold (l→1) the ratio
qT /W is vanishingly small and symmetric with respect to t
replacement ofuH by (p2uH). Thirdly, asl decreases, the
distribution qT /W vs uH develops a peak nearuH5180°.
This peak is positioned at cosuH52A12l2, and its height
is qT /W5(12l2)1/2/l2. For uH!180°, the distribution
rapidly becomes insensitive tol; more so for smalleruH .

In the limit l→0, the peak atuH5180° turns into a
singularity. This singularity resides at the pointz50 and
corresponds to hard diffractive hadroproduction. The ana
sis of this region requires diffractive parton distribution fun
tions @64–68# and will not be considered here. Fo
uHÞ180°, one recovers a one-to-one correspondence
tween qT /W and cosuH of the massless case. We see th
there is a natural relationship betweenqT and cosuH , which
becomes especially simple in the massless limit. In the
lowing, we concentrate on the limitqT→0 and zÞ0, which
corresponds to the current fragmentation regionuH→0.

FIG. 4. Plots ofqT /W vs uH at various values ofl[MH /EH

50.999~lower curve!, l50.5 ~middle curve!, andl50.001~upper
curve!.
5-11
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C. Factorized cross sections

Next, we consider the factorization of the hadronic cro
section. Given the hadron-level phase space elementdF

[dxdQ2dzdqT
2dw and its parton-level analogdF̂

[dx̂dQ2dẑdq̂T
2dŵ, all three terms on the RHS of Eq.~16!

can be written as

ds

dF
5(

a,b
E

z

1djb

jb
E

xa

1 dja

ja
DH/bS jb ,H mF

mq
J D

3 f a/AS ja ,H mF

mq
J D dŝ

dF̂
S xa

ja
,

z

jb
,
qT

Q
,
mF

Q
,
M

Q D .

~47!

Let us first consider the finite-order cross secti
dŝFO/dF̂. The explicit expression for this cross section
the lepton level can be found in Appendix B. We are int
ested in extracting the leading contribution in this cross s
tion in the limit Q→` with other scales fixed. Specifically
we concentrate on the behavior of the phase-space d
function that multiplies the matrix elementuMu2:

dŝFO

dF̂
}d~ ŝ1 t̂1û1Q222M2!uMu2

5d~ ŝ1 t̂11û11Q2!uMu2

5dF S 1

x̂
21D S 1

ẑ
21D 2

q̃T
2

Q2G uMu2. ~48!

Here we used the mass-generalized variableq̃T
2 introduced in

Eq. ~29!. Note that in terms of the variablesx̂, ẑ, andq̃T
2 this

expression takes the same form as its massless version. I
limit Q→`, andx̂, ẑ, andq̃T fixed, the delta function can b
transformed using the relationship

lim
«→0

d~y1y22«!'
d~y1!

@y2#1
1

d~y2!

@y1#1
2 log~«!d~y1!d~y2!.

~49!

This transformation yields

lim
Q→`

d~ ŝ1 t̂1û1Q222M2!

}
d~12 x̂!

@12 ẑ#1

1
d~12 ẑ!

@12 x̂#1

~50!

2 logS q̃T
2

Q2D d~12 x̂!d~12 ẑ!. ~51!

This asymptotic expression for the delta function is exac
of the same form as in the massless case up to the rep
ment q̃T

2→qT
2 .
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Furthermore, in the above limit the matrix elementuMu2

itself contains singularities whenQ2@q̃T
2 . In particular, the

largest structure functionV̂1 in the g* G-fusion subprocess
@see Eq.~B4!# contains contributions proportional to

1

~M22 t̂ !~M22û!
}

1

t1u1
}

1

q̃T
2

~52!

and

M2

t̂1
2û1

2
}

M2

q̃T
4

5
ẑ4M2

~ ẑ2qT
21M2!2

. ~53!

WhenM is not negligible, these contributions are finite a
comparable with other terms. However, in the limit wh
both M and qT are much less thanQ, the terms of the first
type diverge as 1/qT

2 . The terms of the second type vanish
qTÞ0 and yield a finite contribution atqT50. These nonva-
nishing contributions are precisely the ones that are
summed in theW̃ term; in the total resummed cross secti
sTOT , they have to be subtracted in the form of th
asymptotic cross sectionsASY to avoid the double counting
betweensFO andsW̃ .

To precisely identify these terms, we calculate them fro
their definitions, as described in Appendix A. Since t
O(aS) g* G subprocess is finite in the soft limit, it contrib
utes only to the functionC h/G

in (x,mFb,bM) and not to the
Sudakov factor. TheO(aS /p) coefficient in this function is

Ch/G
in(1)~ x̂,mFb,bM!5TRx~12x!@11c1~bM!#1Ph/G

(1) ~x!

3Fc0~bM!2 lnS mFb

b0
D G ~54!

if mF>M , and

Ch/G
in(1)~ x̂,mFb,bM!5Ch/G

in(1)~ x̂,mFb,bM!umF>M

1Ph/G
(1) ~ x̂!ln

mF

M
~55!

if mF,M . Here Ph/G
(1) (j) is the MS splitting function,

Ph/G
(1) (j)5TR(122j12j2), with TR51/2. The functions

c0(bM) andc1(bM) denote the parts of the modified Bess
functions K0(bM) and bMK1(bM) that vanish when
b!1/M . They are defined in Eqs.~A18! and ~A19!, respec-
tively.

We now have all terms necessary to calculate the com
nation (C h/h

in(0)
^ f h/A)(x)1(C h/G

in(1)
^ f G/A)(x), which serves as

the first approximation to the functionP̄ h/A
in (x,b,M ,C1 /C2).

We find that this combination possesses two remarka
properties: it smoothly vanishes atmF

25b0
2/b2!M2 and is

differentiable with respect to ln(mF /M) at the point
mF5M . As a result, the form factorW̃(b,Q,x,z) for the
combinedO(aS

0) flavor-excitation andO(aS
1) flavor-creation

channels is a smooth function at allb, which is strongly
suppressed atb2@b0

2/M2. We emphasize that this large-b
5-12
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suppresion results from the mass dependence in the gen

ized PDFP̄ h/A
in (x,b,M ,C1 /C2) and is not associated wit

the perturbative Sudakov factor. The physical consequen
that, for a sufficiently heavy quark, theb-space integral can
be performed over the large-b region without introducing an
additional suppression of the integrand by nonperturba
contributions. We use this feature in Sec. VI, where we c
culate the resummed cross section for bottom quark prod
tion, which does not depend on the nonperturbative Suda
factor.

Finally, by expanding the form factorW̃HA in a series of
aS /p and calculating the Fourier-Bessel transform integ
in Eq. ~17!, we find the following asymptotic piece for th
g* G fusion channel:

S dŝ~e1G→e1h1h̄!

dF̂
D

ASY

5
s0Fl

4pSeA

aS

p
A1~c,w!d~12 ẑ!

3F Ph/G
(1) ~ x̂!

q̂̃T
2

1
M2x̂~12 x̂!

q̂̃T
4 G .

~56!

WhenQ;M , dŝASY /dF̂, which is a regular function at al
qT , cancels well with dŝW̃ /dF̂. In the limit Q→`,
dŝASY /dF̂ precisely cancels the asymptotic terms that
pear in the finite-order cross sectiondŝFO/dF̂.

VI. NUMERICAL RESULTS

In this section, we apply the resummation formalism
the production of bottom quarks at HERA. The calculation
done for the electron-proton c.m. energy of 300 GeV a
bottom quark massM54.5 GeV. For simplicity we assum
that the masses of theB hadrons coincide with the mass o
the bottom quarkM. We also neglect the mixing of photon
with Z0 bosons at largeQ.

In the following, we discuss polar angle distributions
the g* p frame for x50.05 and various values ofQ. The
cross section is calculated in the lowest-order approxima
as discussed in Sec. V.4 The calculation was realized usin
the CTEQ5HQ PDFs@69# and Peterson fragmentation fun
tions @70# with «50.0033@8#. The finite-order cross sectio
dsFO/dF and asymptotic cross sectiondsASY /dF were
calculated at the factorization scalemF5Q. The scale-
related constants in theW̃ term were chosen to beC1
52e2gE5b0 and C251, and the factorization scale wa
mF5b0 /b. The W̃ term included theO(aS

0) C functions

Ch/h
in(0)( x̂,mFb,C1 /C2), Ch/h

out(0)( ẑ,mFb,C1 /C2), and O(aS
1)

4The generalization of our approach to higher orders is strai
forward. The next-order calculation should include theO(aS)
flavor-excitation andO(aS

2) flavor-creation channels, which shou
appear together to ensure the smoothness of the form fa

W̃(b,Q,M ,x,z) and its suppression atb*1/M .
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initial-state functionCh/G
in(1)( x̂,mFb,bM). In addition, it in-

cluded the perturbative Sudakov factor~11!, unless stated
otherwise. The Sudakov factor was evaluated at or
O(aS), which was sufficient for this calculation given th
order of other terms. The functions in the Sudakov fac
were evaluated as

A~m;C1!5CF

aS~m!

p
~57!

and

B~m;C1 ,C2!52
3CF

2

aS~m!

p
. ~58!

According to the discussion in Sec. V, our calculation
nores unknown nonperturbative contributions in theW̃ term.
In the numerical calculation, we also need to define the
havior of the light-quark PDFs at scalesmF5b0 /b
,1 GeV. Due to the strong suppression of the large-b re-
gion by theM-dependent terms in theC functions @see the
discussion after Eq.~A12!#, the exact procedure for the con
tinuation of the PDFs to smallmF has a small numerica
effect. We found it convenient to ‘‘freeze’’ the scalemF at a
value of about 1 GeV by introducing the variableb*
5b/A11(b/bmax)

2 @36# with bmax5b0 GeV21

'1.123 GeV21. Other procedures@56,57# for continuation
of W̃HA(b,Q,x,z) to large values ofb may be used as well
Due to the small sensitivity of the resummed cross sectio
the region b2@b0

2/M2, all these continuation procedure
should yield essentially identical predictions.

Figure 5 demonstrates how various terms in Eq.~16! are
balanced in an actual numerical calculation. Near the thre
old @Q55 GeV, Fig. 5~a!# the cross section
dsTOT /(dxdQ2duH) should be well approximated by th
O(aS) flavor-creation diagramg* 1G→h1h̄. We find that
this is indeed the case, since theW̃ term, which does not
contain large logarithms, cancels well with its perturbati
expansiondsASY /dF. As a result, the full cross section i
practically indistinguishable from the finite-order term.

At higher values ofQ, we start seeing deviations from th
finite-order result. Figure 5~b! shows the differential distri-
bution atQ515 GeV, i.e., approximately atQ2/M2510. At
this energy, dsTOT /(dxdQ2duH) still agrees with
dsFO/(dxdQ2duH) at uH*10°, but is above
dsFO/(dxdQ2duH) at uH&10°. The excess is due to th
difference dsW̃ /(dxdQ2duH)2dsASY /(dxdQ2duH), i.e.,
due to the higher-order logarithms.

Away from the threshold (Q550 GeV),
dsTOT /(dxdQ2duH) is substantially larger than the finite
order term at uH&10°, where it is dominated by
dsW̃ /(dxdQ2duH). In this region,dsFO/(dxdQ2duH) is
canceled well bydsASY /(dxdQ2duH). Note, however, that
contrary to the experience from the massless c
dsFO/(dxdQ2duH) anddsASY /(dxdQ2duH) are not singu-
lar atuH→0 due to the regularizing effect of the heavy qua
mass in the heavy-quark propagator atuH&3°. Figures 5~c!

t-

tor
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FIG. 5. The angular distributions of the bottom hadrons in theg* p c.m. frame at~a! Q55 GeV, ~b! Q515 GeV, ~c! Q550 GeV
without the Sudakov factor, and~d! Q550 GeV with the Sudakov factor. AtQ550 GeV, an additional cutEH.0.1(W/2) is made to
suppress contributions atz,0.1, i.e., from the region where the conventional factorization may be inapplicable. The plots sho
finite-order cross sectionsFO ~long-dashed line!, theb-space integralsW̃ ~dot-dashed line!, the asymptotic piecesASY ~dotted line!, and the
full resummed cross sectionsTOT ~solid line!.
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and 5~d! also compare the distributions with and without t
O(aS

1) perturbative Sudakov factor, respectively. Note tha
the threshold the flavor-excitation terms responsible forS are
of a higher order as compared to theO(aS

0) flavor-excitation
andO(aS

1) flavor-creation terms. Correspondingly, near t
threshold the impact ofS is expected to be minimal. Thi
expectation is supported by the numerical calculation,
which the difference between the curves with and with
the O(aS) perturbative Sudakov factor is negligible
Q55 GeV and is less than a few percent a
Q515 GeV. In contrast, atQ550 GeV the distribution with
the O(aS) Sudakov factor is noticeably lower and broad
than the distribution without it: at some values ofuH , the
difference in cross sections reaches 40%. The influenc
the Sudakov factor on the integrated rate is mild: the inc
sive cross sectionds/(dxdQ2) calculated without and with
theO(aS) Sudakov factor is equal to 330 and 320 fb/GeV2,
respectively. Due to the enhancement at smalluH , these re-
summed inclusive cross sections are larger than the fin
order ratedsFO/(dxdQ2)'260 fb/GeV2 by about 25%.

It is interesting to compare our calculation with the ma
less approximation for theg* G contribution. Figure 6 shows
the finite-order and resummed cross sections calculate
the massive and massless approaches. In contrast to the
sivesTOT , the masslesssTOT must include the nonperturba
tive Sudakov factorSNP, which is not knowna priori and is
usually found by fitting to the data. To have some refere
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point, we plot the masslesssTOT with SNP(b)5b2M2/b0
2

'16b2, so that, in analogy to the massive case, the region

b*b0 /M in the masslessW̃(b,Q,x,z) is suppressed. Sinc
the heavy-quark mass has other effects on the shap

W̃(b,Q,x,z) in addition to the cutoff in theb space, we
expect the shape of the massless and massive resum
curves be somewhat different. This feature is indeed s
ported by Fig. 6~b!, where at smalluH both resummed curve
are of the same order of magnitude, but differ in detail. F
thermore, the shape of the masslesssTOT can be varied by
adjusting SNP. At the same time, the massive resumm
cross section is uniquely determined by our calculation.

At sufficiently largeuH , both the massless and massi
resummed cross sections reduce to their correspon
finite-order counterparts. The massless cross section sig
cantly overestimates the massive result near the thres
and at intermediate values ofQ. For instance, at
Q515 GeV @Fig. 6~a!# the massless cross section is seve
times larger than the massive cross section in the wh
range ofuH . In contrast, atQ550 GeV@Fig. 6~b!# the mass-
lesssFO agrees well with the massivesFO at uH*20° and
overestimates the massivesFO at uH&20°. The massive
sTOT is above the masslesssFO at 3°&uH&10° and below it
at uH&3°.

The presence of two critical angles (uH;3° and;10°)
in sTOT can be qualitatively understood from the followin
5-14
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argument. The rapid rise ofsTOT over the massivesFO be-
gins when the small-qT logarithms lnm(q̃T

2/Q2) become
large—say, whenq̃T

2 is less than one tenth ofQ2. Given that
the Peterson fragmentation function peaks at ab
z;0.95, and thatQ550 GeV, M54.5 GeV, the condition
q̃T

2;0.1 Q2 corresponds touH;8°, which is close to the
observed critical angle of 10°. Note that in that regi
qT

2@M2/z2. On the other hand, whenqT
2 is of orderM2/z2,

the growth of the logarithms ln(q̃T
2/Q2) is inhibited by the

nonzero mass termM2/z2 in q̃T
2 . The conditionqT

2;M2/z2

corresponds touH;2.5°, which is approximately where th
mass-dependent cross section turns down.

VII. CONCLUSION AND OUTLOOK

In this paper, we presented a method to describe p
angle distributions in heavy quark production in deep inel
tic scattering. This method is realized in the simplifi
ACOT factorization scheme@17,25# and uses the impact pa
rameter space (b-space! formalism @34–36# to resum trans-
verse momentum logarithms in the current fragmentation
gion. We discussed general features of this formalism
performed an explicit calculation of the resummed cross s
tion for the O(aS

0) flavor excitation andO(aS
1) flavor-

creation subprocesses in bottom quark production. Accord
to the numerical results in Sec. VI, the multiple part

FIG. 6. Comparison of the massive and massless cross sec
at ~a! Q515 GeV and~b! Q550 GeV. The plots show the massiv
resummed cross sectionsTOT ~thick solid line!, the massless re
summed cross sectionsTOT ~thin solid line!, the massive finite-
order cross sectionsFO ~thick dashed line!, and the massless finite
order cross sectionsFO ~thin dot-dashed line!.
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radiation effects in this process become important
Q*15 GeV ~or approximately at Q2/M2*10). At
Q550 GeV, the multiple parton radiation increases the
clusive cross section by about 25% as compared to the fin
order flavor-creation cross section.

Many aspects of the resummation in the presence of
heavy quarks are similar to those in the massless resum
tion. In particular, it is possible to organize the calculation
the massive case in a close analogy to the massless ca
properly redefining the Lorentz invariants~e.g., by replacing
the Lorentz-invariant transverse momentumqT in the loga-

rithms by the rescaled transverse massq̃T5AqT
21M2/ ẑ2).

The total resummed cross section is presented as a su
the b-space integralsW̃ and the finite-order cross sectio
sFO, from which we subtract the asymptotic piecesASY .
Constructed in this way, the resummed cross section red
to the finite-order cross section atQ'M and reproduces the
massless resummed cross section atQ@M .

At the same time, there are important differences betw
the light- and heavy-hadron cases. For instance, the l
hadron production is sensitive to the coherent QCD radia
with a wavelength of order 1/LQCD, which is poorly known
and has to be modeled by the phenomenological ‘‘nonper
bative Sudakov factor.’’ In contrast, in the heavy-hadron c
such long-distance radiation is suppressed by the large v
of M. Note that this suppression arises from the perturba
part Ch/a(x,b,M ,mF) of the b-dependent parton distributio
function and not from the soft~Sudakov! factor. Hence, for a
sufficiently heavyM, as in bottom quark production, the re
summed cross section can be calculated without introduc
the nonperturbative large-b contributions. It will be interest-
ing to test the hypothesis about the absence of such lo
distance contributions experimentally. Given the size of
differential cross sections obtained in Sec. VI, accurate t
of this approach will be feasible once the integrated lumin
ity of the HERA II run approaches 1 fb21. The same calcu-
lation can be done for charm production. However, in th
case the regionb*1 GeV21 is not as suppressed, and th
nonperturbative Sudakov factor has to be included.

Another important improvement in our calculation
more accurate treatment of threshold effects in fully diffe
ential cross sections. The accuracy in the threshold regio
improved by introducing scaling variables~20! and ~21! in
finite-order and resummed differential cross sections. Th
scaling variables generalize the scaling variable propose
Ref. @29# for inclusive structure functions. They lead t
stable theoretical predictions at all values ofQ and agree-
ment with the massless result at high energies.

The extension of our calculation to higher orders is fe
sible in the near future, since many of its ingredients
already available in the literature@32,43,71#. Furthermore, in
a forthcoming paper we will study the additional effects
threshold resummation@72–77# in DIS heavy-quark produc-
tion, so that both transverse momentum and threshold lo
rithms are taken into account. We conclude that the co
bined resummation of the mass-dependent logarith
ln(M2/Q2) and transverse momentum logarithms ln(qT

2/Q2) is
an important ingredient of the theoretical framework th

ns
5-15
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aims at matching the growing precision of the world hea
flavor data.
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APPENDIX A: CALCULATION
OF THE MASS-DEPENDENT C FUNCTION

In this appendix, we derive theO(aS) part of the function
C h/G

in (x,mFb,bM). This is the only O(aS) term in the

heavy-quarkW̃ term that explicitly depends on the heav
quark massM. This function appears in the factorize
small-b expression for the ‘‘b-dependent PDF’’

P̄ h/A
in (x,b,$mq%,C1 /C2):

P̄ h/A
in S x,b,$mq%,

C1

C2
D5E

x

1dja

ja
Ch/a

in S x̂,mFb,bM;
C1

C2
D

3 f a/AS ja ,H mF

mq
J D . ~A1!

To perform this calculation, we consider a more elem
tary form of Eq.~A1!, which represents the leading regio
in Feynman graphs in the limitQ→`. This elementary form
can be found in Ref.@35#, where it was derived in the case o

e1e2 hadroproduction. The functionP̄ j /A
in (x,b,$mq%,

C1 /C2) is decomposed as

P̄ j /A
in S x,b,$mq%,

C1

C2
D5UHj S C1

C2bD UŨ~b!1/2

3P̂ j /A
in S x,b,$mq%,m,

C1

C2
D .

~A2!

Here H j denotes the ‘‘hard vertex,’’ which contains high
off-shell subgraphs.Ũ denotes soft subgraphs attached toH j

through gluon lines.P̂ j /A
in (x,b,$mq%,C1 /C2) consists of sub-

graphs corresponding to the propagation of the incom

hadronic jet. The jet partP̂ j /A
in (x,b,$mq%,C1 /C2) is related

to thekT-dependent PDFP j /A
in (x,kT ,$mq%,zA), defined as
07401
-

h
,
p-
.
k
in
r-
.
y,
a-
ie

-
ed
-

-

g

P j /A
in ~x,kT ,$mq%,zA!5(

spin
(
color

E dy2d2yT

~2p!3

3e2 ixpA
1y21 ikT•yT

3^pAuc̄ j~0,y2,yT!
g1

2
c j~0!upA&

~A3!

in the frame wherepA
m5$pA

1,0,0T%,

pa
m5$xpA

1 ,M2/~2xpA
1!,kT%,

and pA
1→`. This definition is given in a gaugeh•A50

with h2,0. The kT-dependent PDF depends on the gau
through the parameter

zA[~pA•h!/uh2u.

Let P̃ j /A
in (x,b,$mq%,zA) be the b-space transform of

P j /A
in (x,kT ,$mq%,zA) taken ind dimensions:

P̃ j /A
in ~x,b,zA ,$mq%![E dd22kTeikT•b

3P j /A
in ~x,kT ,zA ,$mq%!. ~A4!

Note that our definition forP̃ j /A
in (x,b,zA ,$mq%) differs from

the definition in Ref.@45# by a factor (2p)22d. The jet part

P̂ a/A
in (x,b,$mq%,C1 /C2) is related toP̃ j /A

in (x,b,$mq%,zA) in
the limit zA→`:

P̂ j /A
in S x,b,$mq%,

C1

C2
D5 lim

zA→`
$eS8(b,zA ;C1 /C2)

3P̃ j /A
in ~x,b,$mq%,zA!%, ~A5!

whereS8(b,zA ;C1 /C2) is a partial Sudakov factor,

S8~b,zA ;C1 /C2![E
C1 /b

C2zA
1/2dm̄

m̄
F lnS C2z1/2

m̄
D gK@aS~m̄ !#

2K S b;aSS C1

b D ,
C1

b D
2G S m̄

C2
;aS~m̄ !,m̄ D G . ~A6!

The definitions of the functionsgK , K , and G can be
found in Ref.@34#.

We now have all necessary ingredients for the calculat
of the O(aS /p) function C h/G

in(1)(x,mFb,bM). Setting j 5h
andA5G, and expanding Eqs.~A1!, ~A2!, ~A5!, and~A6! in
powers ofaS /p, we find
5-16
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C h/G
in(1)~x,mFb,bM!5 lim

zA→`
$P̃ h/G

in(1)~x,b,M ,zA!%

2 f h/G
(1) ~x,mF /M !, ~A7!

where the superscript in parentheses denotes the orde
aS /p. In the derivation of this equation, we used the follo
ing easily deducible equalities:

H h
(0)5Ũ (0)51, ~A8!

~S 8!(0)5P̃ h/G
in(0)5Ch/G

in(0)5 f h/G
(0) 50, ~A9!

Ch/h
in(0)~x!5 f G/G

(0) ~x!5d~x21!. ~A10!

The RHS of Eq.~A7! can be calculated with the help o

the definitions forf h/G
(1) (x,mF /M ) and P̃ h/G

in(1)(x,b,M ,zA) in
Eqs.~2! and~A3!, ~A4!, respectively. A further simplification
can be achieved by observing that atO(aS /p) the limit

h2→0 in P̃ h/G
in(1)(x,b,M ,zA) can be safely taken before th

limit zA→`, and, furthermore, forh250 the function

P̃ h/G
in(1)(x,b,M ,zA) does not depend onzA . Correspondingly,

both objects can be derived in the lightlike gauge from
single cut diagram shown in Fig. 7, where the double l
corresponds to the factorg1d(pA

12pa
12k81)/2 in the case

of f h/G
(1) (x,mF /M ) and g1d(pA

12pa
12k81)eikT8•b/2 in the

case of limzA→`P̃ h/G
in(1)(x,b,M ,zA).

The difference between limzA→`P̃ h/G
in(1)(x,b,M ,zA)

[P̃ h/G
in(1)(x,b,M ) and f h/G

(1) (x,mF /M ) resides in the extra ex

ponential factoreikT8•b in P̃ h/G
in(1)(x,b,M ). Remarkably, this

factor strongly affects the nature ofP̃ h/G
in(1)(x,b,M ). The loop

integral overkT8 in f h/G
(1) (x,mF /M ) contains a UV singularity,

which is regularized by an appropriate counterterm. In
ACOT scheme, the UV singularity is regularized in theMS
scheme, ifmF>M , and by zero-momentum subtraction,
mF,M . The result for the heavy-quark PDFf h/G

(1) (x,mF /M )
is

f h/G
(1) S x,

mF

M D5H Ph/G
(1) ~x!ln~mF /M !, mF>M ,

0, mF,M .
~A11!

FIG. 7. The Feynman diagram for theO(aS /p) contributions

f h/G
(1) (x,mF /M ) and limzA→`P̃ h/G

in(1)(x,b,M ,zA).
07401
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As expected,f h/G
(1) (x,mF /M ) exhibits the threshold behavio

at mF5M .
In contrast, the UV limit in the loop integral o

P̃ h/G
in(1)(x,b,M ) is regularized by the oscillating expone

eikT8•b. Since no UV singularity is present inP̃ h/G
in(1)(x,b,M ),

it does not depend onmF and, therefore, does not change
the threshold. It is given by

P̃ h/G
in(1)~x,b,M !5Ph/G

(1) ~x!K0~bM!1TRx~1

2x!bMK1~bM!. ~A12!

Here K0(bM) and K1(bM) are the modified Bessel func
tions @78#, which satisfy the following useful properties:

lim
bM→`

K0~bM!5 lim
bM→`

bMK1~bM!50, ~A13!

K0~bM!→2 ln~bM/b0! as bM→0,
~A14!

bMK1~bM!→1 as bM→0. ~A15!

The ‘‘infrared-safe’’ part Ch/G
in(1)(x,mFb,bM) of

P̃ h/G
in(1)(x,b,M ) is obtained by subtractingf h/G

(1) (x,mF /M ) as
in Eq. ~A7!:

Ch/G
in(1)~x,mFb,bM!umF>M5TRx~12x!@11c1~bM!#

1Ph/G
(1) ~x!Fc0~bM!2 lnS mFb

b0
D G ,

~A16!

Ch/G
in(1)~x,mFb,bM!umF,M5P̃ h/G

in(1)~x,b,M !

5Ch/G
in(1)~x,mFb,bM!umF>M

1Ph/G
(1) ~x!ln

mF

M
. ~A17!

In these equations,c0(bM) and c1(bM) are the parts of
K0(bM) and bMK1(bM) that vanish atbM→0 @see Eqs.
~A13!–~A15!#:

c0~bM![K0~bM!1 ln
bM

b0
, ~A18!

c1~bM![bMK1~bM!21. ~A19!

If mF is chosen to be of orderb0 /b, no large logarithms
appear inCh/G

in(1)(x,mFb,bM) at b→0. At largeQ, the small-
b region dominates the integration in Eq.~17!, so that
Ch/G

in ( x̂,mFb,bM) effectively reduces to its massless expre
sion @31,32#:

Ch/G
in(1)~x,mFb,bM!ub→05TRx~12x!2Ph/G

(1) ~x!lnS mFb

b0
D .

~A20!
5-17
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The above manipulations can be interpreted in the follo
ing way. At smallb (b5b0 /mF<b0 /M ), we subtract from

P̃ h/G
in(1)(x,b,M ) its infrared-divergent partPh/G

(1) (x)ln(mF /M),
which is then included and resummed in the heavy-qu
PDF f h/G(x,mF /M ). The convolution of the resultingC
function with the PDF remains equal toP̃ h/G

in(1)(x,b,M ) up to
higher-order corrections:

(
a5h,G

C h/a
in

^ f a/G5P̄ h/G
in(1)~x,mFb,bM!1O~aS

2!.

~A21!

At large b (b.b0 /M ), the heavy-quark PDFf h/G is identi-
cally equal to zero. To preserve the relationship~A21! below
the threshold, one should include the above logarithmic te
in the functionCh/G

in(1)(x,mFb,bM), as shown in Eq.~A17!.
The addition of an extra termPh/G

(1) (x)ln(mF /M) to
Ch/G

in(1) (x,mFb,bM) at mF,M enforces the smoothness of th

form factorW̃(b,Q,x,z) in the threshold region, which, in it
turn, is needed to avoid unphysical oscillations of the cr
sectionds/dqT

2 .

APPENDIX B: THE FINITE-ORDER CROSS SECTION

This appendix discusses the finite-order cross sec
dŝFO/dF̂ that appears in the factorized hadronic cross s
tion ~47!. For theO(aS

0) subprocesse1h→e1h, this cross
section is the same as in the massless case:

S dŝ~e1h→e1h!

dF̂
D

FO

5
s0Fl

SeA

A1~c,w!

2
ej

2d~qT!

3d~12 x̂!d~12 ẑ!, ~B1!

where, in accordance with the notations of Ref.@32#,

s0[
Q2

4pSeAx2 S e2

2 D ,

Fl[
e2

2

1

Q2
. ~B2!

The contribution of the gluon-photon fusion channel is

S dŝ~e1G→e1h1h̄!

dF̂
D

FO

5
s0Fl

4pSeA

aS

p
eQ

2 dF S 1

x̂
21D S 1

ẑ
21D 2

q̃T
2

Q2G
3

x̂~12 x̂!

ẑ2
TR(

r51

4

V̂r~ x̂,Q2,ẑ,qT
2 ,M2!Ar~c,w!,

~B3!
07401
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whereAr(c,w) denote orthonormal functions of the lepton
azimuthal anglew and boost parameterc given in Eq.~5!.
The structure functionsV̂r( x̂,Q2,ẑ,qT

2 ,M2) are calculated to
be

V̂15
1

x̂2q̃T
2 S 122x̂ẑ12x̂2ẑ224

M2x̂2

Q2 D 1
2ẑ

x̂

1

Q2

3~5x̂ẑ2 x̂2 ẑ!1k1S 4
q̃T

2

Q2
ẑ21228ẑ18ẑ224

M2

Q2 D ,

~B4!

V̂258
1

Q2
ẑ224

M2

Q2

1

q̃T
2

14k1~211 ẑ!ẑ, ~B5!

V̂35
2ẑ

x̂

qT

Qq̃T
2 F2112S 11

q̃T
2

Q2D x̂ẑG14k1ẑ~2112ẑ!
qT

Q
,

~B6!

V̂454
qT

2

Q2q̃T
2

ẑ214
qT

2

Q2
ẑ2k1 . ~B7!

In Eqs.~B4!–~B7!,

k1[
M2~12 x̂!

ẑ2x̂q̃T
4

. ~B8!

APPENDIX C: KINEMATICAL CORRECTION

In this appendix, we derive the kinematical correctio
~20! and~21! that are introduced in the flavor-excitation co
tributions tosFO, as well as insW̃ and sASY . Let us first
consider theO(aS) cross section for the photon-gluon fu
sion, which we write as

S ds~e1A→e1H1X!

dF D
g* G,FO

5E djb

jb
E dja

ja
DH/h~jb! f G/A~ja!

3dF S 1

x̂
21D S 1

ẑ
21D 2

q̃T
2

Q2Gb~F!. ~C1!

Hereb(F̂) includes all terms in the parton-level cross se
tion (dŝ/dF̂)FO except for thed function @see Eq.~B3!#:

b~F̂!5
s0Fl

4pSeA

aS

p
eh

2 x̂~12 x̂!

ẑ2
TR

3 (
r51

4

V̂r~ x̂,Q2,ẑ,qT
2 ,M2!Ar~c,w!. ~C2!

The delta function in Eq.~C1! can be reorganized as
5-18
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dF S 1

x̂
21D S 1

ẑ
21D 2

q̃T
2

Q2G5
zQ2

AŴ424M2~qT
21Ŵ2!

3@d~jb2jb
1!1d~jb2jb

2!#,

~C3!

where

jb
6[z

Ŵ26AŴ424M2~qT
21Ŵ2!

2M2
, ~C4!

and Ŵ2[Q2(12 x̂)/ x̂. We see that the mass-depende
phase space element contains two delta functions,d(jb

2jb
1) andd(jb2jb

2), which can be used to integrate out th
dependence onjb in Eq. ~C1!.

It can be further shown that in the massless limit the
lutions jb5jb

2 and jb5jb
1 correspond to the heavy quark

produced in the current and target fragmentation regions
spectively. WhenM→0, the relationship~C3! simplifies to

dF S 1

x̂
21D S 1

ẑ
21D 2

qT
2

Q2G
5

zQ2

Ŵ2
@d~jb2jb

01!1d~jb2jb
02!#, ~C5!

where

jb
015zS Ŵ2

M2
2

qT
21Ŵ2

Ŵ2
1O~M2!D , ~C6!

jb
025zS qT

21Ŵ2

Ŵ2
1O~M2!D . ~C7!

In this limit, the solutionjb
01 diverges~and, therefore, will

not contribute! unlessz is identically zero. However, accord
ing to Eq.~39! and the last paragraph in Sec. V B, atz50 the
observed final-state hadron appears among remnants o
target (uH'180° in theg* A c.m. frame!, i.e.,awayfrom the
region of our primary interest~small and intermediateuH).
Hence, in the limituH→0 all dominant logarithmic contri-
butions as well as their all-order sums~the flavor-excitation
cross section andW̃ term! arise only from terms proportiona
to d(jb2jb

2). The contributions proportional tod(jb2jb
1)

in the current fragmentation region are suppressed.
The integration overjb with the help of Eq.~C3! leads to

the following expression for the cross section~C1!:
07401
t

-

e-
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S ds~e1A→e1H1X!

dxdQ2dzdqT
2dw

D
g* G

5E
ja

min

ja
maxdja

ja
f G/A~ja ,mF!

Q2

AŴ424M2~qT
21Ŵ2!

3@ ẑDH/h~jb ,mF!b~F̂!ujb5j
b
1

1 ẑDH/h~jb ,mF!b~F̂!ujb5j
b
2#. ~C8!

Here the lower and upper integration limitsja
min andja

max are
determined by demanding the argument of the square roo
Eq. ~C8! be non-negative andjb<1; that is,

ja
min5xS 11

2M ~M1AM21qT
2!

Q2 D ,

ja
max5minF xS 11

M21z2qT
2

z~12z!Q2D ,1G ~C9!

for jb5jb
1 , and

ja
min5xS 11

1

z~12z!

M21z2qT
2

Q2 D ,

ja
max51 ~C10!

for jb5jb
2 . We see that, according to the exact kinemat

of heavy flavor production, the heavy quark pairs are p
duced only when the light-cone momentum fractionja is not
less thanja

min ~whereja
min>x) and not more thanja

max ~where
ja

max<1). The exact values ofja
min andja

max are different for
the branches withjb5jb

1 andjb5jb
2 .

Turning now to the flavor-excitation contribution
g* 1h→h1X, we find that in those the integration ove
ja a priori covers the whole rangex<ja<1. Indeed, in
those contributions the heavy antiquark in the remnants
the incident hadron is ignored, so that the reaction can g
a lower c.m. energyŴ than it is allowed by the exact kine
matics. Since the PDFs grow rapidly at smallx, the naively
calculated total cross sectionsTOT tends to contain large con
tributions from the unphysical region of smallx and disagree
with the data. To fix this problem, we use Eq.~C10! to derive
the following scaling variable in the finite-order flavo
excitation contributions:

xh5xS 11
1

z~12z!

M2

Q2 D . ~C11!

This variable takes into account the fact that the incom
heavy quark in the flavor-excitation process appears from
contributions withjb5jb

2 in the flavor-creation process, an
that the transverse momentumzqT of this quark in the finite-
order cross section is identically zero.
5-19
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Similarly, we notice that theW̃ term sW̃ and its finite-
order expansionsASY contain the ‘‘b-dependent PDFs’

P̄ h/A
in (x,b,M ,C1 /C2), which correspond to the incomin

heavy quarks with a nonzero transverse momentum. Acc
ing to Eq.~C10!, the available phase space in the longitu
nal direction is a decreasing function of the transverse m
mentumzqT , and it is desirable to implement this phas
space reduction to improve the cancellation betweensW̃ and
sASY at largeqT . In our calculation, this feature is imple
mented by evaluatingsW̃ andsASY at the scaling variable

xh85xS 11
1

z~12z!

M21z2qT
2

Q2 D , ~C12!

which immediately follows from Eq.~C10!.
Despite the apparent complexity of the scaling variab

~C11! and ~C12!, they satisfy the following important prop
erties:

~1! They are straightforwardly derived from the exact kin
matical constraints on the variableja in Eqs. ~C9! and
~C10!;

~2! they remove contributions from unphysical values ox
at all values ofQ andqT , thus leading to better agree
ment with the data;

~3! in the limit Q2@M2, the variablexh in sFO reduces to
x @see Eq.~C11!#, so that the standard factorization fo
the massless finite-order cross sections is reproduce

~4! in the limit Q2@M2 andQ2@qT
2 , the variablexh8 in sW̃

andsASY reduces tox @see Eq.~C12!#, so that the exac
resummed cross section is reproduced.
t-

2

in

pe

c-
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Finally, consider the integration of the cross section~C8!
over z, qT

2 , andw to obtain theO(aS) g* G contribution to
an inclusive DIS functionF(x,Q2). We find that

F~x,Q2!ug* G,O(aS)5E
ja8

1 dja

ja
CH/G

(1) S x

ja
,
mF

Q
,
M

Q D
3 f G/AS ja , H mF

mq
J D , ~C13!

where the lower limit of the integral overja is given by

ja85xS 11
4M2

Q2 D ~C14!

for both solutionsjb5jb
1 andjb5jb

2 . This value ofja8 can
be easily found from Eqs.~C9! and ~C10!, given that
qT>0, 0<z<1, and z(12z)<1/4 in the interval
0<z<1. Since in theg* G contribution the integration ove
ja is constrained from below byja8.x, it makes sense to
implement a similar constraint in the flavor-excitation cont
butions by introducing the scaling variablexh5x(1
14M2/Q2). This variable is precisely the one that appea
in the recent version of the ACOT scheme with the optimiz
treatment of the inclusive structure functions in the thresh
region @29#. Our scaling variables extend the idea of R
@29# to the semi-inclusive and resummed cross sections.
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