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Resummation of transverse momentum and mass logarithms in DIS heavy-quark production
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Differential distributions for heavy quark production depend on the heavy quark mass and other momentum
scales, which can yield additional large logarithms and inhibit accurate predictions. Logarithms involving the
heavy quark mass can be summed in heavy quark parton distribution functions in the Aivazis-Collins-Olness-
Tung (ACOT) factorization scheme. A second class of logarithms involving the heavy-quark transverse mo-
mentum can be summed using an extension of the Collins-Soper-Sté@&&h formalism. We perform a
systematic summation of logarithms of both types, thereby obtaining an accurate description of heavy-quark
differential distributions at all energies. Our method essentially combines the ACOT and CSS approaches. As
an example, we present angular distributions for bottom quarks produced in parity-conserving events at large
momentum transfer® at the DESYep collider HERA.
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I. INTRODUCTION able flavor numbenVFN) schemes, which introduce the
PDFs for the heavy quarks and change the number of active
In recent years, significant attention has been dedicated titavors by one unit when a heavy quark threshold is crossed
exploring the properties of heavy-flavor hadrons produced ifil7—25. Further details on these schemes can be found later
lepton-nucleon deep inelastic scatterifilS). On the ex- in the paper. Here we would like to point out that, were the
perimental side, the Hadron-Electron Ring Acceleratorcalculation done to all orders afs, the FFN and massive
(HERA) at DESY has generated a large amount of data o/EN schemes would be exactly equivalent. However, in a
the production of charmeld 5] and bottom mesori$—10.  finjte-order calculation the perturbative series in one scheme
At present energieof order 300 GeV in theep center-of- 4y converge faster than that in the other scheme. In par-
mass fram a substantial charm production cross section ig;ejar, the FFN scheme presents the most economic way to
Ogse“’ed in a wide range of_BjorkeIrand photon virtualities organize the perturbative calculation near the heavy quark
Q<, and charm quarks contribute up to 30% to the DIS Struc’[hreshold, i.e., whe@2~M2. At the same time, it becomes

ture functions. inappropriate a?>M? due to powers of large logarithms
On the theory side, perturbative quantum chromodynam- pprop P ge ‘o9

2 2 . .
ics (PQCD provides a natural framework for the description In(Q7M?) n the hard cross section. In the VFN schemes,
of heavy-flavor production. Because of the large mabse$ these logarithms are summed through all orders in the heavy-

the charm and bottom quarkM(2>AéCD), the renormaliza- quark I?DF yv!th the help of th_e Doksh|tz?r-Gr|bov-L|patov-
tion scale can be always chosen in a region where the effeéltare.""Pa”S' (DGLAP), equathns[26—22§, hepge the per-
tive QCD couplingas is small. Despite the smallness @, turbatlye convergence in the high-energy limit is preserved.
perturbative calculations in the presence of heavy flavors ard! the|r2 turn, the VEN schemes may converge slower at
not without intricacies. In particular, care in the choice of aQ“~M?, mostly because of the violation of energy conser-
factorization scheme is essential for the efficient separatioMation in the heavy-quark PDFs in that region. Recently an
of the short- and long-distance contributions to the heavyoptimal VEN scheme was proposed that compensates for this
quark cross section. This choice depends on the val@asf effect[29].
compared to the heavy quark mads The key issue here is In this paper, we would like to concentrate on the analysis
whether, for a given renormalization and factorization scale?f semi-inclusive differential distribution§.e., distributions
ur~Q, the heavy quarks of th&ith flavor are treated as depending on additional kinematical variables besilasd
partonsin the incoming proton, i.e., whether one calculatesQ)- We will argue that finite-order calculations in any fac-
the QCD beta function usind active quark flavors and in- torization scheme do not satisfactorily describe such distri-
troduces a parton distribution functio®DF) for the Nth butions due to additional large logarithms besides the loga-
flavor. A related, but separate, issue is whether the mass éthms INQ“M?. To obtain stable predictions, all-order
the heavy quark can be neglected in the hard cross sectigimmation of these extra logarithmic terms is necessary.
without ruining the accuracy of the calculation. The extra logarithms are of the forna§/q7)In™(o7/Q?),
Currently, several factorization schemes are available thdfi<m=2n—1, whereq;=p/z denotes the transverse mo-
provide different approaches to the treatment of these issuegientum py of the heavy hadron in they*p center-of-
Among the mass-retaining factorization schemes, we wouldnass (c.m) reference frame rescaled by the variable
like to single out the fixed flavor numbéFFN) factorization  z=(pa-pu)/(Pa-q). Herepk, g*, andpf; are the momenta
scheme, which includes the heavy-quark contributions excluef the initial-state proton, virtual photon, and heavy hadron,
sively in the hard cross sectiqdil—-16; and massive vari- respectively. Our definitions for thg* p c.m. frame and had-
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ba of the logarithms INQ%M?) and In@?/Q?). As a result, we

e Y obtain a unified description of fully differential heavy-hadron
>’V“_> distributions at allQ? above the heavy quark threshold. It is

—

q well known that the finite-order calculation does not satisfac-
pH\‘\\ Oy torily treat_ thg current fragmentation region for any choice qf
; the factorization scheme. In contrast, the proposed massive
extension of thegr resummation accurately describes the
current fragmentation region in the whole rar9&>M?2.
The present study is interesting for two phenomenological
reasons. Firstly, the quality of the differential data will im-
> 5 prove greatly within the next few years. By 2006, the up-
Target fragmentation Current fragmentation graded collider HERA will accumulate an integrated lumi-
<& [ nosity of 1 fb * [39], i.e., more than eight times the final
integrated luminosity from its previous runs. Studies of the
FIG. 1. The parity-conserving semi-inclusive producte p heavy quarks in DIS are also envisioned at the proposed
—e+H+X of heavy hadrons in the* p c.m. reference frame. The  high-luminosity Electron lon Collidef40] and THERA[41].
resummation effects considered here are important in the curreityentually these experiments will present detailed distribu-
fragmentation regio,—0, i.e., when the final-state tgeavy quark tions both at small@?>~M?2) and large Q?>M2) momen-
h clpsgly follows the direction of its escape in ti¥ «g) flavor- tum transfers.
excitation procesg” +h—h. Secondly, the knowledge of the differential distributions
]15 essential for the accurate reconstruction of inclusive ob-
servables, such as the charm component of the structure
finction F,(x,Q?). At HERA, 40—60% of the charm pro-
duction events occur outside the detector acceptance region,
notably at small transverse momenta of the heavy quarks. To
' determineF$5(x,Q?), those events should be reconstructed

pensate for the smallness af, at each order of the pertur- with the help of some theoretical model, which so far was

bative expansion. If hadronic masses are neglected, suéﬂe O(ag) calculation in the FFN schenid5,16,42—44lin-

logarithms can be summed through all orders in the impac%orﬁgr?]teg 'B 3 fT;arS?'!]eTS if)/artobn SrCO\tl)vlermt% glzeglt\alrat%r. r’:S
parameter space resummation formal[&9—33, which was entioned above, 1or INClUSIVE obServables the scheme

originally introduced to describe angular correlations inWorks the best not far from the threshold_ and becomes un-
e+g‘ hgdroproduction[34,33 and trarg15verse momentum Stabl? aQ’> N(I;’ vylherr]e ﬂ:?F\l(lFN :rs]chem((-:-j IS mpre appgoprl-
distributions in the Drell-Yan proce$86].! Here the impact &t€- In more detail, the scheme escnlfeS{x,Qz)
parameteb is conjugate taj;. The results of Ref§30—33  Detter than the FEN ZSChgme wher exceeds 20 (Ge\)?,

are immediately valid for semi-inclusive DISIDIS) pro-  -€- roughly whenQ®/M=>10 [20]. The transition to the
duction of light hadrons ,K, . ..) atQ of a few GeV or VFN scheme occurs faster at smallerwhere the c.m. en-

higher, and for semi-inclusive heavy quark production ater9y of they*p collision is _muchzlar%er tham. For bottom
Q?>M?2. To describe heavy-flavor production @&~ M? qguark production, the estima®</M“=10 corresponds to

2 2 H
the masslesg-resummation formalism must be extended toQ@ =200 (GeVE)”. The VFN calculation can also be ex-
include the dependence on the heavy-quark Mass tended down to the mass threshold to uniformly describe the

In this paper, we perform such extension in the Aivazis-Vhole ra.ng@2>l\/|2_ Since the proposed resummation cal-
Collins-Olness-Tung(ACOT) massive VFN schemé1g] culation is f_ormulated m_the VEN scheme, it prqwdes a bet-
with the optimized treatment of the threshold regjaf]. We ter alternative to the finite-order calculgtlon in the_ F_FN
adopt a “bottom-up” approach to the development of SUChs.cheme due to its cozrrect treatment of differential distribu-
mass-dependent resummatfoVe start by separately re- tions at all values oQ”.
viewing the massive VFN scheme in the inclusive DIS and AS an example, we apply the developed method to the

gy resummation in the massless SIDIS. We then discuss leading-order flavor-creation and flavor-excitation processes
combination of these two frameworks in a joint resummationn the production of bottom mesons at HERA. We find that
the resummed cross section for this process can be described

purely by means of perturbation theory due to the large mass

The similarity between the multiple parton radiation in semi- of the bottom quark. Ol_” predictions can b_e tested in the next
inclusive DIS and the other two processes has been known for E?W years ong:e the |n.tegrated luminosity at HERA ap-
long time; see, for instance, the early paf@f]. proaches 1 fb*. Essentially the same method can be ap-

2An alternative “top-down” approach will require the analysis of Plied to charm production. In that case, however, the re-
leading regions in the high-energy limit and derivation of the evo-Summed cross section is sensitive to the nonperturbative

ron momenta are illustrated by Fig. 1. The resummation o
these logarithms is needed when the final-state hadron e
capes in the current fragmentation regi@e., close the di-
rection of the virtual photon in the* p c.m. frame, where
the rate is the largestin the current fragmentation region
the ratiog?/Q? is small; therefore, the terms™u/Q? com-

lution equations that retain terms with positive powersmfQ.  largeb contributions due to the smaller mass of the charm
Such analysis could involve methods similar to those discussed iquarks, and the analysis is more involved. Since the goal of
Ref. [38]. this paper is to discuss the basic principles of the masgive
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resummation, we leave the study of the charm productiol. As a result of this separation, all logarithmic terms

and other phenomenological aspects for future publicationSagln"(MF/rrh) with light-quark massesire included in the
The paper has the following structure. Section Il reviewsPDFs, where they are summed through all orders using the

the application of the ACOT factorization schei] and  DGLAP equation. Note that in the massless approximation

its simplified versior{17,25 to the description of the inclu- such logarithms appear in the guise of collinear pole ity

sive DIS structure functions. Section Il recaps basic featureghe procedure of dimensional regularization. The logarithms

of the b-space resummation formalism masslessSIDIS.  |In%(ug/M) with the heavy-quark mass Bre included either

Section IV discusses modifications in the resummed crosg C,,, or f,;» depending on the factorization scheme in use.

section to incorporate the dependence on the heavy-quark In the reference frame where the momentum of the inci-

massM. In Sec. V, we present a detailed calculation of thedent hadrom in the light-cone coordinates is

mass-dependent resummed cross sections in the leading-

order flavor-creation and flavor-excitation processes. Section 2

VI presents numerical results for polar angle distributions in pﬁz[ Py ,&,OT]

the production of bottom quarks at HERA. Appendix A con- N

tains details on the calculation of tii¥ «s5) mass-dependent

part of the rgsummed cross section. Ir_1 Appendix B, We[wherepiz(potp"‘)/\/f], the quark PDF can be defined in
present explicit expressions for thi&(as) finite-order con- o ms of the quark field operators,(x) as[45]
tributions from the photon-gluon channel. Finally, Appendix

C discusses in detail the optimization of the ACOT scheme — — rdv-
when it is applied to the differential distributions in the vi- fq/A( gl&J ) = > j Le—igp,ﬁy,
spin  color

cinity of the threshold region. mq 2
Il. OVERVIEW OF THE FACTORIZATION SCHEME X (Palr(0y~,0r)
A. Factorization in the presence of heavy quarks XPeXW’ —ig fy_dzf Z+(0z",07)
In this section, we discuss the application of the ACOT 0
factorization schemgl8] to inclusive DIS observables, for y*
which this scheme yields accurate predictions both at asymp- ><7 wq(O)l Pa)- 2

totically high energies and near the heavy-quark threshold.

In the inclusive DIS, the factorization in the presence of
heavy flavors is established by a factorization theofgi), ~ HerePexp(---} is the path-ordered exponential of the gluon
which we review under a simplifying assumption that only field . Z,(x) in the gaugern-.Z#=0. The RHS is averaged
one heavy flavoh with the massM is present. LeA denote ~ over the spin and color oA and summed over the spin and
the incident hadron. According to the theorem, the contribucolor of g. A similar definition exists for the gluon PDF. The
tion Fia(x,Q?) of h to a DIS structure functiofr(x,Q?)  dependence of ya(&,{ur/mg}) on we is induced in the
[where F(x,Q%) is one of the functionsF,(x,Q%) or  process of renormalization of ultraviolé)V) singularities

F,(x,Q?) in parity-conserving DI$can be written as that appear in the bilocal operator on the RHS of &). In
general, the PDF is a nonperturbative object; however, it can
1dé (Xa mE M

N ME be calculated in PQCD whepng>Acp, and the incident
Fra(x.Q )_é » ~ Chia €'Q'Q [EVARS Hq hadronA is replaced by a parton. This feature opens the door
: for the calculation ofF,,;5(x,Q?) for any hadronA through
Aqcp the conventional sequence of calculati@y, (xa/& ue!
Q @) Q,M/Q) in parton-level DIS and convolving it with the phe-
nomenological parametrization of the nonperturbative PDF
Here the summation over the internal indgincludes both  fya(&.{r/my}). In the inclusive DIS, it is convenient to
light partons(gluons G and light quarks as well as the chooseur~Q to avoid the appearance of the large loga-
heavy quarkh. This representation is accurate up to the non+ithm In(us/Q) in Cpja(xa/é, ur/Q,M/Q).
factorizable terms that do not depend Fhand can be ig- The factorized representatidf) is valid in all factoriza-
nored wherQ> A ocp. The nonvanishing term on the right- tion schemes. The specific factorization scheme is deter-
hand side(RHS) is written as a convolution integral of mined by(a) the procedure for the renormalization of the UV
parton distribution functions 5a(&, {r/m,}) and coeffi-  singularities andb) the prescription for keeping or discard-
cient functionsCy,,(xa/€, ur/Q, M/Q). The convolution ing terms with positive powers df1/Q in the coefficient
is realized over the hadron light-cone momentum fracjon function Cy,,. The choice(a) determines if the logarithms
carried by the partoa. The coefficient function depends on InN"(ue/M) are resummed in the heavy-flavor PDF or not.
the flavor-dependent “scaling variable(, discussed below. With respect to each of two issues, the choice can be done
The parton distributions and coefficient functions are sepaindependently. For instance, thdS factorization scheme
rated by anarbitrary factorization scaleur such that uses the dimensional regularization to handle the UV singu-

fyan depends only onug and quark massegmg} larities, but does not uniquely determine the choibe
=m,,My, ...,M; and Cy,, depends only orug, M, and  Hence, it is not necessary in this scheme to always nelylect

+0
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in the coefficient function and expose the heavy-quark mass \L \H
singularities as poles in the dimensional regularization. ——

The ACOT scheme belongs to the class of the variable 4 )
flavor number(VFN) factorization schemdg6] that change e —
the renormalization prescription whes crosses a threshold 9991 g
value uy,. It is convenient to choosgy,, for the flavorh to
be equal taV, since the logarithms fwe/M) vanish at that (a) b) ()
point. If ug<M, all graphs with internal heavy-quark lines ) _
are renormalized by zero-momentum subtraction. ukf FIG. 2. *Bas'c subproceosses in the ACOT schefae:flavor
>M, these graphs are renormalized in the modified minimaf*citationy” +h—h at 0(ag), (b) glluon flavor creatior{photon-
subtraction IS) scheme. The masses of the light quarks ar@luon fusion y*+G—h+h at O(«g), and(c) light-quark flavor
neglected everywhere, and graphs with only light partorereationy* +q—(y*+G)+q—(h+h)+q at O(«d). The thick
lines are always renormalized in S scheme. and thin solid lines cor_respond to the heavy quéarland light

The physical picture behind the ACOT prescription is duarksa=u.d.s, respectively.

simple: the heavy quark is excluded as a constituent of thgjagrams according to the explicit power @f in the coef-
hadron for sufficiently low energyfan N—1 flavor sub- ficient function, i.e.O(a?) in Fig. 2@), O(«d) in Fig. 2(b),
schemg, but the heavy quark is included as a constituent fory,q O(a?) in Fig. 2(c). This counting does not apply to the
sufficiently high energiesan N flavor subscheme The \hole structure functiorF,A(x,Q2) in Eq. (1) when the
renormalization by zero-momentum subtraction below theyeayy-quark PDF is itself suppressedday/« near the mass
threshold leads to the explicit decoupling of the heavy-quarknreshold48-50. In that region, ar(a?) flavor-excitation
contributions from light parton lines. As one consequence Otontribution has roughly the same order of magnitude as the
the decoupling, all perturbative components of the heavy(41*1) flavor-creation contribution. We return to this issue
quark PDF vanish gi.e <M, so that a nonzero heavy-quark in the discussion of numerical results in Sec. VI, where we
PDF may appear only through nonperturbative channel§nterpret the combination of th@(a2) flavor-excitation con-

such as the “intrinsic heavy quark mechanisf#7]. Since  yipytion [Fig. 2(a)] and O(ad) flavor-creation contribution
the size of such nonperturbative contributions remains UNCefrig. 2(b)] as a first approximation @~ M.

tain, they are not considered in this study. AE>M, a

nonzero heavy-quark PDF is introduced, which is B. Simplified ACOT Formalism

evolved tqgether with the re.sF of the PDFs With .the help of Of several available versions of the ACOT scheme, our

the mass-independeMS splitting kernels. The initial con-  cgiculation utilizes its modification advocated by Collins

dition for i, A(¢,¢) is obtained by matching the factoriza- [17] which we identify as the simplified ACOTS-ACOT)

tion subschemes atg=M. At order ag, this condition is  formalism[25]. It has the advantage of being easy to state

trivial: and of allowing relatively simple calculations. This simplic-
ity could be crucial for implementing the massive VFN pre-

frya(é,up=M)=0. (3 scription at the next-to-leading order in the global analysis of

parton distributions. In brief, this prescription is stated as

At higher orders, the initial value dfia(&,ue) is given by  follows.

a superposition of light-flavor PDAR0]. A simple illustra- Simplified ACOT (S-ACOT) prescription: SeM to zero

tion of these issues is given in Appendix A. in the calculation of the coefficient functiors,,, for the

The ACOT scheme possesses another important propertiicoming heavy quarks; that is,

the coefficient functiorCy,, in this scheme has a finite limit M

asQ—, which coincides with the expression for the coef- Ch/h(&a E.—)*Ch/htﬁ.ﬁ-o)-

ficient function obtained in the massldgks scheme withiN §'Q°Q §°Q

active flavors. This happens because the mass-dependgffs important to note that this prescription is not an approxi-
terms inCy, contain only positive powers df1/Q, while  mation; it correctly accounts for the full mass dependence
the quasicollinear logarithms |n¢/M) are resummed in [17] |t also tremendously reduces the complexity of flavor-
fva(é,1g). As a consequence of the introduction of eycitation structure functions, as they are given by the light-
frua(€,1ee), the coefficient functionCy, includes subpro-  gyark result. In the specific case considered here, the heavy

cesses of three classes: quark mass in the S-ACOT scheme should be retained only
(1) Flavor excitation, where the partanis a heavy quark. in the y* + G—h+h subproces§Fig. 2(b)]. Another impor-

(2) Gluon flavor creation, whera is a gluon. tant consequence will be discussed in Sec. IV, where we
(3) Light-quark flavor creation, wherais a light quark. show that the S-ACOT scheme leads to a simpler generali-

zation of theq; resummation to the mass-dependent case.

In contrast, in the FFN schenjé1-16¢ only the flavor-
creation processes are present. The lowest-order diagrams for
each class are shown in Fig. 2. Finally, we address the issue of the most appropriate vari-

The subsequent parts of the paper consider the processaslesy, (a=G,u,d,s, ...) in theconvolution integral1).
shown in Figs. £a) and 2b). Note that we count the order of In a massless calculatiory, are just equal to Bjorkerx,

C. The scaling variable
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since all momentum fractiong betweenx and unity are do(e+A—e+H+X)

allowed by energy conservation. This simple relation does dxdZdp “Ep: Vo(d,PaPH)A(P, ). (4

not hold in the massive case. For instance, in the charged- H

current heavy quark productioV=+q—h, where h is  This procedure is nothing else but the decomposition over

present in the final, but not the initial, state, a simple kine-the virtual photon’s helicitief52—54; hence it is completely

matical argument leads to the conclusion that the longitudianalogous to the tensor decomposition familiar from the in-

nal variable in the flavor-excitation processes should be reslusive DIS. As a result of this procedure, the dependence on

caled by a mass-dependent factor, gs=x(1+M?/Q?) the kinematics of the final-state lepton is factorized into the

[49]. functions A,(¢,¢), while the hadronic dynamics affects
In the flavor-excitation subprocesses of the neutral-currerenly the functionsV,,. In parity-conserving SIDIS, the only

heavy quark productiofe.g., y* +h—h), typically no res- contributing angular functions are

caling correction was made. The presence of a heavy quark

in boththe initial and final states of the hard scattering sug-

A1(if,¢)=1+coslty,

gested that no kinematical shift was necessary, yg= X. Ay 0)=—2,

This assumption has been recently questioned by a new

analysis[29]. Specifically, Tunget al. note that the heavy As(1, @)= —cose sinh 2y,

quarks in the hadron come predominantly from gluons split-

ting into quark-antiquark pairs. Hence the heavy qulark A,(, @) =cos 2p sintt . (5)

initiating the hard process must be accompanied by the un- e
b dh in the b ¢ When bothand In Sec. Il we found that the ACOT prescription resums
observedn in Ihe beam remnant. en bothandh are logarithms of the form INY1%/Q?). For the inclusive observ-

present, the had_ron’s light-cone momentum fraction Cameqables, this procedure provides accurate predictions through-
by - the ,Incoming _ parton cannot be ~smaller thang i yhe fyil range ok andQ2. More differential observables
X(1+4M%/Q%), which is larger than the minimal momen- ay contain additional large logarithms in the high-energy
tum fractionp,=x allowed by the single-particle inclusive |imit, in particular, we already mentioned the logarithms of
kinematics. The factor of MI? arises from the threshold con- e type 67 2)dn™(?/Q?), 0O<m=2n—1, which appear
dition for h andh. This effect can be accounted for by evalu- when the polar angl®,;, of the heavy hadroi in the y* A
ating the flavor-excitation cross sections at the scaling varie.m. frame becomes smd8ee Fig. 1. Here we chose the
able yp=x(1+4M?/Q?). axis to be directed along the momentumof the virtual

In brief, the rule proposed in Ref29] is to usey, photony*. WhenM?<Q?, the scaleq; is related tody, as
=x(1+4M?/Q?) in flavor-excitation processdsig. 2a)]

and y,=x in flavor-creation processéfigs. 2b) and 2c)] q$=Q2 3_1 Hﬂ; (6)
when calculating inclusive cross sections. However, to cor- X 1+cosby
rectly describe the differential distributions of the final-
. ence
state hadron, we have to generalize the above rule for
semi-inclusive observables. This generalization is discussed 1 0&,
in Appendix C, where the proper scaling variable for fully lim q$=Q2(;—1) (TJF - ')HO )
differential finite-order cross sections is found to be Or—0
Xn=x{1+M?/[2(1-2)Q*]} [cf. Eq. (C1D]. The resummation of these logarithms of soft and collinear
origin can be realized in the formalism by Collins, Soper,
lll. MASSLESS TRANSVERSE and StermariCS9 [34-36,55. The result can be expressed
MOMENTUM RESUMMATION as a factorization theorem, which states that in the limit

Q%>qf.{m:}, Adcp the cross section is
We now turn to the differential distributions of the heavy-
flavor cross sections. Specifically, we consider the produc-
tion of a heavy-quark hadronH via the process do
e(f)+A(pa)—H(py) +e(€")+X. This reaction is illus-

do(e+A—e+H+X)

q2<Q?

trated in Fig. 1 for the specific case whénis a proton. In ooF) d?b iqr-bi

much of the discussion, we will find it convenient to ampu- = EM(%QD){ (277)23 TPWia(b,Q,X,2)
tate the external lepton legs and work with the photon-

hadron process* (q) +A(pa)—H(py)+ X in the photon- ar | mMg| Agco

hadron c.m. frame. Given the conventional DIS variables +0 6(6] Q ®

Q%=—q? andx=Q%(2pa-q), as well as the Lorentz in-
variant S;p=(€+p,)?, we decompose the electron-level In this equationp is the impact parametéconjugate tajy),
cross section into a sum over the functiohg(#, ¢) of the dd=dxd@dzddde, z=(pa-pu)/(Pa-a), andoy andF,
lepton azimuthal angle¢ and boost parameteryy  are constant factors given in E@B2). As before,{my} col-
=cosh 1(2xS,Q 2—1) [32,51: lectively denotes all quark massésigj=m,,mg, ... M,
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At large Q?, theb-space integral in Eq8) is dominated by
contributions from the regiob?<1/Q?2. In this region, the
hadronic form factoMVA(b,Q,x,z) can be factorized in a
combination of parton distribution functionfa(é5,1e),

fragmentation functionB y,,( &, , £r), and the partonic form

factor \7Vb a

d§b

Wiia(b,Q,x,2) = 2 f 2 Dl b )

X Wha(0,Q.X,Z, ) faral €a ite), (9)
where
Wba(b,Q,i,i,MF)zg e? e S0QC1.C)
C, C,
><Cb/] Z:“Fb 'C, Cj/a X JEb; Cz
(10

Here Xx=x/&,, z=2/&,. The indicesa,b in Eq. (9) are

summed over all quark flavors and gluons; the summation

over j in Eqg. (10) is over the quarks only. The fractional
charge of a quarkis denoted aezejz. The parton distribu-

tions and fragmentation functions are separated from the

partonic form factor\7vba1 at the factorization scalgr . The
Sudakov factoiS(b,Q,C,,C,) is an all-order sum of loga-
rithms Irf“(qlez) It is given by an integral between scales

C2/b? andC35Q? (whereC, andC, are constants of ordej 1
of two functions A(as(1);C;) and B(as(w);C;,C,) ap-

pearing in the solution of equations for renormalization- and

gauge-group invariance:

c2Q2du? 2Q2

Joe=s

2
/6%

In

)A(Ols(#) o)

+B(ag(1);C1,Co)|. (12)

The functionsC™, C° contain perturbative corrections to

contributions from the incoming and outgoing hadronic jets,
respectively. To evaluate the Fourier-Bessel transform inte-

should be also defined ath

gral, Wya(b,Q,x,2)

=1 GeV !, where the perturbative methods are not trust-

worthy. The continuation ofV (b, Q,x,2) to the largeb

region is realized with the help of some phenomenological

model, as discussed, e.g., in R4f36,56,57.

As noted above, the resummed cross section in(8y.
which we shall label as<rW, is derived in the limit
g3<Q2 In the regiong3=Q?, the standard finite-order
(FO) perturbative resuligg is appropriate. Whilesg, and

PHYSICAL REVIEW D 67, 074015 (2003

The solution is to subtract the overlapping contributions
betweenoy, and org. This overlapping contributiorithe
asymptotic piecergy) is obtained by expanding thespace
integral ino out to the finite order ofrrg. Thus, the com-
plete result is given by

doasy
do

dUTOT_dUVv doro
db  dd  db

(12

At small g, where terms I’H(q%/QZ) are large,ogg cancels
well with gy, SO that the total cross section is approxi-
mated well by theb-space integral:orgr~oy. At q%
=Q?, where the logarithms are no longer dominant, the
b-space integrab cancels witho,sy, SO that the total
cross section is equal t@gq up to higher order corrections
o107~ 0po- This interplay ofoy, org, andoagy iN o107
is illustrated in Fig. 8a).

As we will be referring to these different terms frequently
throughout the rest of the paper, let us present a recap of their
roles.

(1) oy is the smallg resummed term as given by the CSS
formalism in Eq.(8); sometimes called “the CSS term”
[58]. This expression contains the all-order sum of large
logarithms of the form IR(g2/Q?), which is presented as
a Fourier-Bessel transform of thespace form factor
W(b,Q,x,2). It is a good approximation in the region
4f=<Q.

ogo is the finite-orde(FO) term; sometimes called “the
perturbative term.” It contains the complete perturbative
expression computed to the relevant order of the calcu-
lation n. As such, this term contains logarithms of the
form In"(g%/Q? only out tom=2n—1. It also contains
terms that are not important in the Iirrqﬁ/QZ—>O, but
dominate wherq$~Q2. Hence, it provides a good ap-
proximation in the regiomﬁz Q2.

oagy is the asymptotidASY) term. It contains the ex-
pansion ofo, out to the same ordan as in ogg. AS
such, this term contains logarithms of the form
Inm(qi/Qz) only out tom=2n—1. It is precisely what is
needed to eliminate the “double-counting” between the
oy andogg terms in Eq.(12).

oot is the total(TOT) resummed cross section; some-
times called “the resummed term.” It is constructed as
O101= 0%+ 0ro— Tasy. IN the regiong3<Q?, oasy
precisely cancels the large terms present indhg con-
tribution, so thatoror~oy. In the region q%z Q?,
oasy approximately cancels theg, term leavingorg as
the dominant representation of the total cross section:
o1o1~0Fo. Hence, when calculated to a sufficiently
high order ofag, o1o7 Serves as a good approximation
atallgr.

)

©)

(4)

In a practical calculation in low orders of PQCD, one may

oo represent the correct limiting behavior, we cannot sim-want to further improve the cancellation betweeg and
ply add these two terms to obtain the total cross sectiomasy at qT Q2. This improvement can be achieved by in-
oot, as we would be “double counting” the contributions troducing a kinematical correction in these terms that ac-

common to both terms.

counts for the reduction of the allowed phase space for the
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gror = oW + OFO - TASY
\.! A
R '
3 1
— % \
= A + \ 3 —
\ '
N N S
e . R
=" R S
@
do
qu
— _— N ™y =
N\ _ LN AN
N\ - N + 2N - A\
N\ N LN A\
eI T T -, - T 5,\.\ T T~ ',.r.'?'o‘. e .\\ =
S, s 4 i % Teal:
qT
(b)

FIG. 3. Balance of various terms in the total resummed cross sedtiog;/dqgr: (a) away from the threshold@>M), (b) near the
threshold Q=~M). In each plot the thick curves correspond to the “active” cross sedfi@dT, FO, W, or ASY), and the thin curves
correspond to the other three cross sections.

longitudinal variablesc andz at nonzerajy . The purpose of (4.3 of Ref.[36], where the form factoW was given for the
this kinematical correction is quite similar to the purpose ofpre|l-Yan process:

the inclusive scaling variable discussed in Sec. Il C: it re-

moves contributions from the unphysically smalindz that

make the differencery,— oagy NON-negligible as compared Wia(b,Q,x,2)

to ogo. Note that the resummed cross sections with and

without the kinematic_al correction are fo_rmally equivale_nt to _2 e /gt;t( z,b,{mg}, &)

one another up to higher-order corrections. Further discus- ! d

sion of this issue can be found in Appendix C, which intro- _
duces the kinematical correction for the resummed heavy- <7 [« b {mg) & _ fcgozd_MZ
quarkqgy distributions. iA a C2? 2

¢ n
IV. EXTENSION OF THE CSS FORMALISM X |n( = | Al as(w); 'C1
TO HEAVY-QUARK PRODUCTION M Ma
In the previous section, we presented a procedure for the ; cC 13
resummation of distributiongo/dg? in the limit whenQ? is B| as(u):; 12 (13

much larger than all other momentum scales,

Q%>q?, {mz} We now are ready to discuss its extension to

the case when the heavy-quark mass is not negligible. For Here the funct|on/>'” (X,b,{mq},CdCz) describes con-
simplicity, we again assume that only one heavy fldvbas tributions associated Wlth the incoming hadronic jet. As
the masdv comparable withQ: Q?~M?>Agcp. The gen- |IIustrated in Appendix A7 {}5(x,b,{mg},C1/C,) is related

eralization for several heavy flavors can be realized throu

the conventional sequenceyof factorization subschemesgltr(iJ the kr-dependent parton d'St”bUt'QWJ/A(X Ky, img}).
which the heavy quarks become active partons at energ§imilarly, the function /)OUt(Z b,{mg},C1/C;) describes
scales above their mass and are treated as nonpartonic paentributions associated Wlth the outgoing hadronid 3&f.
ticles at energy scales below their mass. It is related to theki-dependent fragmentation function

We start by rewriting Eq(9) in a form analogous to Eq. ﬁ‘}j(z kr,{mg}). The functions4 andB are the same as in
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Eq. (12), except that now they retain the dependence on thgon scaleur is of orderQ in the inclusive DIS structure
quark massegmg}=m,,mg,msg, ... ,M.

Equation(9) presents a special case of EgJ). It is valid
at short distances, i.e., wherblis much larger than any of

functions andby /b in the functionS/T}'}A andiﬂ‘}ﬁ . As dis-
cussed in Sec. Il, the factorization in the inclusive DIS can

the quark masses),. In contrast, Eq(13) is valid at allb 1E|)e extendetho ”‘icl\‘jl‘?‘;"AV';@S chmpartz;ble Ito the helavy—
[36]. As shown in Ref[45], the transition from Eq(13) to avor massM, Q°~ qcp- “lven the close analogy

. . I —out between the inclusive DIS structure functions and the func-
Eq. (9) is possible because the functldpﬁ’}A and7’y; fac- i S out i wral t that the latt
torize whenb%/b2>{m§}: ions 7jj, Yy, it is natural to assume that the latter

factorize wherbg/b?~M?> A% as well:

—; Cy
P xbtmg &)

-3 e

& a

— Cl
P xbdmg &)

R C
X,MFb;C_l)fa/A( ga,|%]>; déy o[- C,
2 q =2 f g_C'_n (X,/—LFbabM-C_)fa/A< §a,
a X Sa 2

jla

ol

— Ci
ya‘ﬁ(z,b,{mq},—c )

2 — C,
~pout =
./)ﬁl;j(z,b,{lllq}, Cz)

1d§p ME - Cy

—> f —DH/b(§b, —t|coi} Z,puebi= |-
T e i =3 F%D (5 (ﬁ])cw(i b,bM &)
(14 =, &, Drinl o m [ Con| e DML,
Here we introduced a frequently encountered constant (15)

bo=2e” YE~1.123. We see that the form factét, » is well-

defined both for nonzero quark masses and in the massleﬁ1e main difference between Eq&4) and(15) is contained
limit. Hence, it does not contain negative powers of the.n the functionsC™. and ot h'cﬁ now exolicitly depend
quark masses or logarithms inf/Q), with the exception of : uncti ila brj » WA W explicitly dep

the collinear logarithms resummed in the parton distribution$" M _These_ func_tlons can be calculated acc_ordmg to their
and fragmentation functions. definitions given in Ref[34]. The unrenormalized expres-

We will now argue that the factorization rule similar to sions for theC functions contain ultraviolet singularities. To

Eq. (14) should also apply in heavy-flavor production when cancel these singularities, we introduce counterterms accord-

MZ is not negligible compared t2/b?. Indeed, the factor- ing to the procedure described in Sec. II: that is,_grap&s with
o =i —out o internal heavy-quark lines are renormalized in tMS
lzation sz the functions.7’j, and 7y in the limit  gopeme ity ~b,/b>M, and by zero-momentum subtrac-
bg/b?>{mg} [45] closely resembles the factorization of the tion, if by/b<M. This choice leads to the explicit decou-
inclusive DIS structure functions in the Iin(@2>{m§} [59—  pling of diagrams with heavy quark lines btby/M. In

63]. In both cases the factorization occurs because the domparticular, the decoupling implies that contributions to Eq.
nant contributions to the cross section come from “ladder”(15) with j,a, or b equal toh are power suppressed at
cut diagrams with subgraphs containing lines of drasticallyy>p, /M.

different virtualities. More precisely, the leading regions in  we now consider other sources of the dependendd am
such diagrams can be decomposed into hard subgraph§e/dd®. First, according to Eq(13), there is a dependence

which contain highly off-shell parton lines; and quasicol- : ; PRYWIVE

linear subgraphs, which contain lines with much lower vir- ngalvl;l;]'g/“:/l _SCUd?:kc))v ;tzcifiﬁ(oéz(g))dgi/ri\glct;)e i?:ss
" . : . s(um); :C1,Cy). , .

tualities and mo;n entgspproxw:a.tely colllnea@05|tn the dependent terms in the Sudakov factor vanisbzab,/M,

case ofFya(x,Q%) or.7jja] or pf; (in the case of”yj5). In - except for perhaps terms of truly nonperturbative nature,

the functions’}}, and 7’}j;, additional soft gluon sub- such as the intrinsic heavy quark compong#f]. As men-

graphs are present, but they eventually do not affect théioned above, in this paper such nonperturbative component

proof of the factorizatiorj45]. The hard subgraphs contrib- is ignored. Secondly, there may also be mass-dependent

ute to the inclusive coefficient functioB,,, in Eq. (1), as terms in the finite-order cross section, which are not associ-

well as functionsvc}r}a or cg;‘; in Eq. (14). The quasicollinear ated with the leading contributions resummed inWi¢erm:

subgraphs, which are connected to the hard subgraphbose are the terms that contribute to the remainder in
through one on-shell parton on each side of the momenturizg. (8). The terms of both types are correctly included in
cut, contribute to the PDFgn the inclusive DIS and SIDIS  do1o7r/d®. Indeed, the terms of the first type appear in all
or FFs(in SIDIS). three termdoy, /d®, dopg/dd, anddoasy/dP. Two out
The hard subgraphs are characterized by typical transsf three contributions(in doy,/d® and doagy/d®, or
verse momentl?= uf>Adcp, while the PDFs and FFs are doo/d®, anddasy/d®) cancel with one another, leaving
characterized by transverse momek#a 2 . The factoriza-  the third contribution uncancelled thoror/d®. The terms
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of the second type are contained onlydno/d®, so that these cancellations indeed occur in the numerical calculation,

they are automatically included horqr/d®. so that atQ~M oot agrees well with the flavor-creation
The treatment of the massive terms simplifies more if wecontribution toogg. Similarly, oror reproduces the massless

adapt the S-ACOT factorization scheme, in which the heavyesummed cross section whep>M [Fig. 3@]. It also

quark mass is set to zero in the hard parts of the flavorsmoothly interpolates between the two regionQof

excitation subprocesses. As a resiit,is neglected in the To summarize our method, the total resummed cross sec-

flavor-excitation contributions to the hard cross sectigg,  tion in the presence of heavy quarks is calculated as

asymptotic termo sy, andC functions in theW term. The
mass-dependent terms are further omitted in the perturbative
Sudakov factorS. At the same time, all mass-dependent
terms are kept inogg, oasy, andC functions for gluon-
initiated subprocesses.

As we will demonstrate in the next section, in this pre-

dUTOT_dO'Vv+dUFo_ doasy
dd  dd do do

(16)

i.e., using the same combination of ti¢term, finite-order
cross section, and asymptotic cross section as in the massless

. . ; case. All three terms on the RHS of E6) are calculated in
scription the cross sectianrgr resums the soft and collinear ~ :
logarithms, when these logarithms are large, and reduces f§€ S-ACOT scheme. The/ term is calculated as
the finite-order cross section, when these logarithms are

2
small. In particular, aQ~ M the finite-order flavor-creation do(etA—etH+X) :UOF' A(¥. ) d’b

terms approximate well the heavy-quark cross section. Hence do W Sea 2 (2m)?

we expect thatorgr reproduces the finite-order flavor- L

creation part aQ~M [Fig. 3(b)]. For this to happen, the X €T PWA(b,Q,M,X,2),
flavor-excitation cross section should cancel well with the (17)

subtraction=In(uz /M) from the flavor-creation cross sec- ~
tion; and o, should cancel well witho,gy. We find that  where the form factoWya(b,Q,M,X,z) is

wlel2)

_ 1dg, (1d
WHA(b,Q,M,X,Z):;J i ngH/b( gbv(&]

Xa é:a z é:_b mq
- Ci\ . C
x > efcg,“;(z,ﬂpb,bm;—l) }%(E, b, bM; —1> e Sa(b.QM) (18)
j=uudd, ... Cz &a C>
|
and in oy, andoasy - The purpose of these scaling variables is to
enforce the correct threshold behavior of terms with incom-
CZdeP . C§Q2 ing he_avy quark;. Equation®0) and (21) are derived in
sba(b,Q,M)Ef 2 = | Alas(p);Cyin| —= detail in Appendix C.
b2 2 u?

V. MASSIVE RESUMMATION FOR PHOTON-GLUON
+5§aF’(b,Q,|\/|)_ FUSION
We now analyze contributions to the total resummed cross
(19 sectiondoror/dd from the O(a2) heavy-flavor excitation
subprocessy* (q) +h(p,)—h(py) [Fig. 2(@] and O(ay)
As in the factorization of inclusive DIS structure functions photon-gluon fusion subprocess* (q)+G(p,)— h(pp)
(see Sec. ) we find it useful to replace Bjorkexiby scaling +F(ps) [Fig. 2(b)]. Since we work in the S-ACOT scheme,

+B(ag(n);Cy1,Cy)

variables only the O(as) fusion subprocess retains the heavy quark
mass, so that we concentrate on that process first. The ex-
M? pression for they*h contribution, which is the same as in
Xn=x| 1+ m) (200 the massless case, is given in EB1). In the following we

outline the main results, while details are relegated to Ap-

. o pendixes.
in oo for the flavor-excitation subprocesses and

A. Mass-generalized kinematical variables

!

xh=x| 1+ (21) Our approach will be to first generalize the kinematical

variables from the massless resummation formalism to “re-

M2+22q$)
2(1-2)Q?
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cycle” as much of the results from Refi81,32,5] as pos- M2
sible. Throughout the derivation, the mass of the incident 'q$zq$+ -, (28
hadron will be neglectedbz=0. We will use the standard z

DIS variablesx, Q?, andz, defined by . o _
then the form ofgs in terms of the Lorentz invariants is

2 . identical to the massless case
N
2pa-q Pa-q
~2_ 2 2ph q 29
Since we will be interested in the transverse momentum dis- ar=Q°+ R (29

tributions(or equivalently, the angular distributionsve next
demfhthfe transvterSE rptc;]metzntum n a frame-lrtwarlant {T:)ar\Ne also generalize the usual Mandelstam variabées u}
ner. The lour-vectog; orthe transverse momentum must b€, \nat we jabel the “mass-dependent” Mandelstam vari-
orthogonal to both of the hadrons, so that we have the con-bI S
ditions ;- pa=0 andq;- py=0. In the massless casg; is ables{s,ty,us}

simply defined by subtracting off the projections of the pho-

il 2
ton’s momentung” onto p, andpy . This is slightly modi- s=(q+pa)*, (30)
fied in the massive case to become " oA ) 5 5
t;=t—M°=(q—pn°-—M*, (31)
Px-d Pa-q Pa-q ~ A
qf =g~ - M3 A Ph - U;=U—M23=(py—pp)2— M2 (32)

PaP M (pap?) A PP

23 By using the variable§?, s, t;, andu;, instead of their

HereM, denotes the mass of the heavy hadron. We find, focounterpartg?, s, t, andu, we shall be able to cast many

95=—0a!dy,, of the massive relations in the form of the massless ones. For
example, the expressions for the “mass-dependent” Mandel-
s o Pad M3 stam variable$s,t;,U,} in terms of the DIS variables can be
qr=Q°+2—— - > (24 written as

The kinematical variables at the parton level can be intro- 5= Qz(ljx)
duced in an analogous manner. légtdenote the fraction of X
the large “—” component of the incoming hadron’s momen-

tum pa carried by the initial-state partona (i.e., ) 7

£,=p,/p,);° and & denote the fraction of the large+” t,=—Q%=, (34)
component of the final-state parton’s momentpgncarried X

by the outgoing hadroH (i.e., &,=p;;/py ). We also assume .

that 53 relates thg transyerse .momenta lmfand H, as . ﬁl=Q2(2—1)—a$i=—Q2(ljz). (35)

(P H=&p(PT)p - Since all incoming partons are massless in X

the S-ACOT factorization scheme, we find the following re-

lations between the hadron-level variablesz, gt and their  Note how we made use of the generalized transverse mo-

, (33

parton-level analogg,z,qr: mentum variabl@?> . These relationships have the same form
as their massless counterparts. As a result, the denominators
fe Q? _X (25) of the mass-dependent propagators, which are formed from
T 2(pa-q) & the invariantss, t;, and u;, retain the same form as the
denominators of the massless propagators, which are formed
- (Pa-Po) _ i 26) from the invariants, t, andu.
(Pa-@) &

. B. Relations between{E ,cos@,} in the y*A c.m. frame
Gr=0r, 27) and {z,q7}
It is useful to convert between the final-state eneggy,

where in the derivation of Eq27) we used the first equality polar angleg,, , and the Lorentz invarianl{s,q%}. Given the

in Eqg. (40). o 5 =
If we introduce a massive extension @f calledg? and y*A c.m. energyV"=(q-+ pa)”=Q(1—x)/x andp=|py|
' T = \/EZH— MZH, one easily finds the following constraints on
defined by ]
Ey, p, and co9y:
. . . w M2
3We remind the reader that the analysis is performed imtha Mys<Epys=—+| 1+ — | (36)
c.m. frame, where the incident hadron moves in e direction. 2 W
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w( M3 /W
0= p= E 1- W ! (37) 10’ Current region Target region
4
and 10
10t
—1<cosfy<1. (38
-2
Given Ey and co9y, we can determine and q% as to
1 1075
z= —(Ey+pcosby), (39 =
w ol L o,,°
0 25 50 75 100 125 150 175
) (P3)y , P?(1—cosby) FIG. 4. Plots ofgr/W vs 6 at various values ok=M/E,,
ar= 72 =W (EH+pc050H)2' (40) =0.999(lower curvg, A =0.5 (middle curve, and\ =0.001(upper

curve.

From Egs.(36)—(38) the bounds orz can be found as
2My

— =8 \=1 45
W(1+MZ/W?) 43

2
IVIH
—2sz$1.

(41)

Note that the first equality in Eq40) identifiesq; as the Equation(44) can be solved for cof; as

transverse momentum &¢f rescaled by the final-state frag-
mentation variable. Henceqr can be also interpreted as the
leading-order transverse momentum of the fragmenting par-
ton. Similarly,aTzMT/E can be interpreted as the rescaled
transverse madd ; of the heavy quark. It also follows from
Egs.(39), (40) that the two-variable distribution with respect

cosfy=

1
(97+W?)1-3?

X(— 2= WA(1-A2)(q2+W?)—q2). (46)

to the variablesz and g coincides with the two-variable
distribution with respect t&y and 6y :

do 3 do
dxd@dzdg dxdQPdE,d6y

(42

As a result, the distributions in the theoretical varialdesd
gt are directly related to the distributions B, and 64
measured in the experiment.

Despite the simplicity of the relatio¥2), z and g are
quite complicated functions dE, and co9y individually.

When the energ\e, is much larger tharM, (A—0) the
solution with the “+" sign in Eq. (46) turns into the mass-
less solution(43). The solution with the " sign reduces to
cosfy=—1.

The physical meaning of the relationship betwegrand
coséy can be understood by considering plotsogf/ W vs
0y for various values ol (Fig. 4). Let us identify the cur-
rent fragmentation region as that where 6gss close to+ 1
(04=0) and the target fragmentation region as that where
cos6fy is close to—1 (6y=). First,qr=0 if cosg,=1 or
cosfy=—1. Secondly, near the threshold-G1) the ratio

This feature is different from the massless case, where ther&T/W is vanishingly small and symmetric with respect to the

exists a one-to-one correspondence betwgeand coYy
for the fixedy* A c.m. energyw.:

W2 — g}

\NZTq.ZI. . (43)

costlm,,=0=

replacement of), by (7— 6y). Thirdly, as\ decreases, the
distribution g7 /W vs 6, develops a peak neat;=180°.
This peak is positioned at c#g=—/1—\?, and its height
is qr/W=(1—-A?)Y%\2 For #,<180°, the distribution
rapidly becomes insensitive to; more so for smalleg .

In the limit A\—0, the peak at9yy=180° turns into a

This relationship does not hold in the massive case, in whic§ingularity. This singularity resides at the poirt0 and

onevalue ofgy corresponds téwo values of co9y . Indeed,
Eq. (40) can be expressed as

af _ (1-2?)(1-cogd)
W2 (1+1—AZ%coshy)?’

where, according to E¢36), the variablen=M /E,, varies
in the following range:

(44)

corresponds to hard diffractive hadroproduction. The analy-
sis of this region requires diffractive parton distribution func-
tions [64—68 and will not be considered here. For
0y #180°, one recovers a one-to-one correspondence be-
tweenqgt/W and codyy of the massless case. We see that
there is a natural relationship betwegpand co9y, which
becomes especially simple in the massless limit. In the fol-
lowing, we concentrate on the limit;— 0 and z#0, which
corresponds to the current fragmentation regignr-0.
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Furthermore, in the above limit the matrix elemém|?

) . . L. ~2 .
Next, we consider the factorization of the hadronic crosdtSelf contains singularities whe@?>s . In particular, the

section. Given the hadron-level phase space elerddnt

EdXszdquzrdgo and its parton-level analogdd®
=dxdQ?dzdo?de, all three terms on the RHS of E(L6)
1d§a

can be written as
jldfb (5 [MF])
dCD a,b fb Xa ga H/b b mq

g{wwgiﬁﬁg
& &6, Q°'Q°Q

X faL/A

(47)

largest structure functiol; in the y* G-fusion subprocess
[see Eq(B4)] contains contributions proportional to

1 1 1 52
(MP-D(M2-0) s g2

and

M2 M2 7*M?2

A, X T TR o 5 (53)
i af  (Zof+M?)?

WhenM is not negligible, these contributions are finite and
comparable with other terms. However, in the limit when

Let us first consider the finite-order cross sectionpsin M and g are much less tha®, the terms of the first
dchO/dCID The explicit expression for this cross section attype diverge as q@r The terms of the second type vanish at
the lepton level can be found in Appendix B. We are inter-q.+0 and yield a finite contribution a;=0. These nonva-
ested in eXtraCtlng the Ieadlng contribution in this cross SeCnishing contributions are precise|y the ones that are re-

tion in the limit Q— o with other scales fixed. Specifically,
we concentrate on the behavior of the phase space del'g)a

function that multiplies the matrix elemefit1|?:

do SRR
O o 5(5+T+0+Q2—2M2)| M|

=8(s+1,+ U+ Q)| M|?

(l—l)(i—l) qT]IMIZ (48)
X z Q?

=0

Here we used the mass-generalized varigBlantroduced in

Eq. (29). Note that in terms of the variablas z, andgj? this
expression takes the same form as its massless version. In thieu =

limit Q— 0, andx, z, andg fixed, the delta function can be

transformed using the relationship

o(y1)  d(ya)

AR —log(e)6(y1) 8(y2).

(49

lim &
o (Y1y2—&)=~ [YZ]+

This transformation yields

lim 8(s+t+u+Q%—2M?)

Qﬂw
5(1 X) 6(1tz) (50
[1 zl,  [1-X]4
'q2
Iog(Q )5(1 x)5(1 7). (51

summed in thé/V term; in the total resummed cross section
To1, they have to be subtracted in the form of the
asymptotic cross sectiomagy to avoid the double counting
betweenog and oy, .

To precisely identify these terms, we calculate them from
their definitions, as described in Appendix A. Since the
O(as) y*G subprocess is finite in the soft limit, it contrib-
utes only to the functiorC})s(X, ugb,bM) and not to the
Sudakov factor. Th&(ag/ ) coefficient in this function is

DX, peb,bM) = Tex(1—X)[ 1+ ¢y (bM) ]+ P{EL(x)

x co(bM)—ln<“b—Fb” (54)
0
M, and

Ciie) (X, e, bM) =S (X, b, bM) |, =
p1) -
h/G(X)In M (59

if ue<M. Here P{}L(&) is the MS splitting function,

PUL(£)=Tr(1—2£+2¢?), with Tg=1/2. The functions
Co(bM) andcy(bM) denote the parts of the modified Bessel
functions Ky(bM) and bMK;(bM) that vanish when
b<1/M. They are defined in Eq$A18) and (A19), respec-
tively.

We now have all terms necessary to calculate the combi-
nation 2@ fa) (X) + (CINE® f5/4) (X), which serves as
the first approximation to the functiaﬁmA(x,b, M,C,/Cy,).

We find that this combination possesses two remarkable
properties: it smoothly vanishes a2 =b/b><M? and is
differentiable with respect to Ipi/M) at the point
wr=M. As a result, the form factoW(b,Q,x,z) for the

This asymptotic expression for the delta function is exactlycombined(?(ag) flavor-excitation and?(aé) flavor-creation
of the same form as in the massless case up to the replacehannels is a smooth function at 4] which is strongly

mentgZ—q2.

suppressed ab?>b2/M?. We emphasize that this large-
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suppresion results from the mass dependence in the generglial-state functionci?,(é)(i,MFb,bM). In addition, it in-

ized PDF7jja(x,b,M,C;/C;) and is not associated with cluded the perturbative Sudakov factdrl), unless stated
the perturbative Sudakov factor. The physical consequence itherwise. The Sudakov factor was evaluated at order
that, for a sufficiently heavy quark, thespace integral can O(ag), which was sufficient for this calculation given the
be performed over the largeregion without introducing an order of other terms. The functions in the Sudakov factor
additional suppression of the integrand by nonperturbativevere evaluated as

contributions. We use this feature in Sec. VI, where we cal-

culate the resummed cross section for bottom quark produc- as(u)

tion, which does not depend on the nonperturbative Sudakov Al C)=Cr— (57

factor.
Finally, by expanding the form factdl,, in a series of and

ag/m and calculating the Fourier-Bessel transform integral

in Eqg. (17), we find the following asymptotic piece for the 3Ck as(p)

v*G fusion channel: B(w;Cq,Co)=— - . (58
do(e+G—e+h+h) ook According to the discussion in Sec. V, our calculation ig-

_ ag -
_47TSeA ?Al( vaD) 5(1_ Z)

Ay nores unknown nonperturbative contributions in Weerm.

In the numerical calculation, we also need to define the be-
P{L(X) |v|2§<(1—§<)] havior of the light-quark PDFs at scalegpr=by/b

dd

<1 GeV. Due to the strong suppression of the langes-
gion by theM-dependent terms in thé functions[see the
(56) discussion after EQA12)], the exact procedure for the con-
tinuation of the PDFs to smajlkg has a small numerical
effect. We found it convenient to “freeze” the scglg at a
value of about 1 GeV by introducing the variabkg,

WhenQ~M, daasy/dd, which is a regular function at all

q-[, can(EeIs We” withdo,/d®. In the _Iimit Q—o, =b/\1+ (b/bmg) [36] with Bmax=bo GeVv 1
doasy/dd precisely cancels the asymptotic terms that ap—~1.123 GeV *. Other procedure§56,57] for continuation
pear in the finite-order cross sectidiorgo/d®. of VVHA(b,Q,x,z) to large values ob may be used as well.
Due to the small sensitivity of the resummed cross section to
VI. NUMERICAL RESULTS the region b2> bg/Mz, all these continuation procedures

should yield essentially identical predictions.
In this section, we apply the resummation formalism to  Figure 5 demonstrates how various terms in Bd) are
the production of bottom quarks at HERA. The calculation ishalanced in an actual numerical calculation. Near the thresh-
done for the electron-proton c.m. energy of 300 GeV anthld [Q=5 GeV, Fig. %a] the cross section
bottom quark masM =4.5 GeV. For simplic_ity we assume dgo7/(dxd@déy) should be well approximated by the
that the masses of tH® hadrons coincide with the mass of O(ag) flavor-creation diagram* +G—h-+h. We find that

the bottom quark. We also neglect the mixing of photons this is indeed the case, since tié term, which does not

with Z° bosons at larg€. ; . L :
In the following, we discuss polar angle distributions in contain large logarithms, cancels well with its perturbative

the y*p frame for’x=0 05 and various values . The expansiondoasy/d®. As a result, the full cross section is
cross section is calculated in the lowest-order approximatior[?r""ct'cf"IIIy indistinguishable from the fmne-grder term.
as discussed in Sec.The calculation was realized using .. .At higher values QQ' we start seeing de_V|at|on_s from t_he
the CTEQ5HQ PDF$69] and Peterson fragmentation func- f|n|t-e-0rder result. Flgpre ®) shoyvs the dlffzeregtlal distri-
tions[70] with £ =0.0033[8]. The finite-order cross section ,E)huigonear;[grzyls d?rev, /'ig')’(ggg(rj%)(';natsezm Q a/g;fee:slo'wpi\tth
dopo/d® and asymptotic cross sectiato gy /dP were ) ToT H :

F0 ymproti 1 Asy OE W doro/(dxdPd6y)  at  6,=10°, but is above

calculated at the _fact0r~|zat|0n scajer=Q. The scale- dorol(dxdCPd6,) at §,=10°. The excess is due to the
relatcid constants in th&/ term were c.hoslen to b€, difference dUVV/(dXdQZdaH)_dO'ASY/(dXdQZdGH)v ie.
=2e  "E=h, and~02=1, and the factorization scale was due to the higher-order logarithms.
me=bg/b. The W term included theO(ag) C functions Away from the threshold  @=50 GeV),
MO, ueb,C1/Cy), OOz, ueb,C1/Cy), and O(ad)  doror/(dxd@déy) is substantially larger than the finite-
order term at #,=<10°, where it is dominated by
dog,/(dxdQdéy). In this region,doro/(dxdQd6,) is
“The generalization of our approach to higher orders is straightcanceled well bydoasy/(dxdQ?d6y). Note, however, that
forward. The next-order calculation should include tB¥as) contrary to the experience from the massless case
flavor-excitation and?(a?2) flavor-creation channels, which should doro/(dxd@d6,) anddoagy/(dxdQPday,) are not singu-
appear together to ensure the smoothness of the form factdar at #,— O due to the regularizing effect of the heavy quark
W(b,Q,M,x,z) and its suppression &t=1/M. mass in the heavy-quark propagatogts 3°. Figures ¥c)
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do pb do pb
dx d022d0H 'GeV2  x_0.05,Q=5GeV dx d022d9H ' GeV2 y_0.05,Q=15GeV

15}
1.f
o5} 07|

0.5
02} 03f. -\
AR 0.2
¢ IA 015}
0.05 [} 01 kEF
. L 8 —_— L — HH,O
(a) 0. 20. 40. 60. 80. 100. (b)
do- pb do pb
dx ng ?0 GeVZ 4 _0.05Q=50GeV dx dO; oy GeV? 4 _0.05Q=50GeV
0.05f 0.05[
0.02| 0.02
0.01 0.01}
0.005 0.005 [
— —— O
©) (d 0. 5. 10. 15. 20.

FIG. 5. The angular distributions of the bottom hadrons in #i@ c.m. frame atla) Q=5 GeV, (b) Q=15 GeV, (c) Q=50 GeV
without the Sudakov factor, an@) Q=50 GeV with the Sudakov factor. Ap=50 GeV, an additional cuE,>0.1(W/2) is made to
suppress contributions a<0.1, i.e., from the region where the conventional factorization may be inapplicable. The plots show the
finite-order cross sectiosieo (long-dashed ling the b-space integradr, (dot-dashed ling the asymptotic piece,gy (dotted ling, and the
full resummed cross sectiangr (solid line).

and 8d) also compare the distributions with and without the point, we plot the masslesstor with SVP(b)=b2M 2/b(2,

O(ag) perturbative Sudakov factor, respectively. Note that at~ 16b2, so that, in analogy to the massive case, the region of
the th_reshold the flavor-excitation termos respon&blgqure b=by/M in the massles§V(b,Q,x,2) is suppressed. Since

ofahlghler order as compared to W¢ag) flavor-excitation o heayy-quark mass has other effects on the shape of
and O(ag) flavor-creation terms. Correspondingly, near thez

threshold the impact of is expected to be minimal. This W(b,Q,x,2) in addition to the cutoff in theb space, we
expect the shape of the massless and massive resummed

expectation is supported by the numerical calculation, in : ) L
which the difference between the curves with and without®"V€S be somewhat different. This feature is indeed sup-

the O(as) perturbative Sudakov factor is negligible at Ported by Fig. @), where at smalby, both resummed curves
Q=5GeV and is less than a few percent and@® of the same order of magnitude, but differ in dgtall. Fur-
Q=15 GeV. In contrast, @)=50 GeV the distribution with thermore, the shape of the masslesgr can be varied by
the O(as) Sudakov factor is noticeably lower and broaderadjusting S'. At the same time, the massive resummed
than the distribution without it: at some values @f, the ~ Cross section is uniquely determined by our calculation.
difference in cross sections reaches 40%. The influence of At sufficiently large 6y, both the massless and massive
the Sudakov factor on the integrated rate is mild: the inclufésummed cross sections reduce to their corresponding
sive cross sectiodo/(dxd@?) calculated without and with ~finite-order counterparts. The massless cross section signifi-
the O(as) Sudakov factor is equal to 330 and 320 fb/GeV cantly overestimates the massive result near the threshold
respectively. Due to the enhancement at sriall these re- and at intermediate values of). For instance, at
summed inclusive cross sections are larger than the finiteQ@ =15 GeV[Fig. 6(a)] the massless cross section is several
order ratedoro/(dxd @)~ 260 fb/GeVf by about 25%. times larger than the massive cross section in the whole
It is interesting to compare our calculation with the mass—range off,, . In contrast, aQ =50 GeV[Fig. &0b)] the mass-
less approximation for the* G contribution. Figure 6 shows lessorg agrees well with the massivwerg at 4,=20° and
the finite-order and resummed cross sections calculated ioverestimates the massive-o at §,=<20°. The massive
the massive and massless approaches. In contrast to the maspy is above the masslesgg at 3°< 6 =<10° and below it
sive o1o7, the massless ot must include the nonperturba- at 6,=3°.
tive Sudakov factoS"F, which is not knowra priori and is The presence of two critical angleg,{(~3° and~10°)
usually found by fitting to the data. To have some referencén oro1 can be qualitatively understood from the following
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do pb radiation effects in this process become important at
dxdQfdo’ GeVZ 4 _ 0.05,Q=15GeV Q=15GeV (or approximately at Q¥M?=10). At
Q=50 GeV, the multiple parton radiation increases the in-
clusive cross section by about 25% as compared to the finite-
order flavor-creation cross section.

Many aspects of the resummation in the presence of the
heavy quarks are similar to those in the massless resumma-
tion. In particular, it is possible to organize the calculation in
the massive case in a close analogy to the massless case by
properly redefining the Lorentz invarianis.g., by replacing
the Lorentz-invariant transverse momentgmin the loga-

rithms by the rescaled transverse masgs- \'q3+ M?/7%).

_ G P_b2 The total resummed cross section is presented as a sum of
dxdQ”ds " GeV x = 0.05, Q =50 GeV the b-space integrabri, and the finite-order cross section

0.1 . o
\ oro, from which we subtract the asymptotic pieoggy .

005} Constructed in this way, the resummed cross section reduces
002l to the finite-order cross section @~M and reproduces the
massless resummed cross sectioQatM.
0.01 At the same time, there are important differences between
0.005 [ the light- and heavy-hadron cases. For instance, the light
hadron production is sensitive to the coherent QCD radiation
0.002 with a wavelength of order Nocp, which is poorly known
| \ s s L g0 and has to be modeled by the phenomenological “nonpertur-
® o 10. 20. 80. 40. bative Sudakov factor.” In contrast, in the heavy-hadron case

FIG. 6. Comparison of the massive and massless cross sectioﬁ%Ch long-distance radiation is suppressed by the large value
0

at(a) Q=15 GeV andb) Q=50 GeV. The plots show the massive M. Note that this suppression arises from the .per_turt?ative
resummed cross sectianyoy (thick solid ling, the massless re- PartCha(x,b,M,ug) of the b-dependent parton distribution
summed cross sectiotrror (thin solid line, the massive finite- ~ function and not from the sofSudakoy factor. Hence, for a
order cross sectiotrg, (thick dashed ling and the massless finite- Sufficiently heavyM, as in bottom quark production, the re-
order cross sectiotrgo (thin dot-dashed line summed cross section can be calculated without introducing
the nonperturbative largle-contributions. It will be interest-

ing to test the hypothesis about the absence of such long-
distance contributions experimentally. Given the size of the
large—say, whefi is less than one tenth @2 Given that differential cross sections obtained in Sec. VI, accurate tests

the Peterson fragmentation function peaks at abou_fthis approach will be feasible once the integrated luminos-
2~0.95, and thaQ=50 GeV, M=4.5 GeV, the condition |y_of the HERA Il run approaches 1 Tﬁ The same ca_lcu-
2 ~ 5 e T lation can be done for charm production. However, in that
Gr~0.1Q7 corresponds tfy~8%, which is close to the o0 o regiom=1 Gev ! is not as suppressed, and the
observed critical angle of 10°. Note that in that region

2 np 2D _ 52 nonperturbative Sudakov factor has to be included.
q7>M?/z”. On the other hand, wheg; is of orderM?/z%, Another important improvement in our calculation is

the growth of the logarithms I6§/Q?) is inhibited by the  more accurate treatment of threshold effects in fully differ-
nonzero mass ter?/z% in G . The conditiong?~M?%z*>  ential cross sections. The accuracy in the threshold region is
corresponds t@y~2.5°, which is approximately where the improved by introducing scaling variablg€20) and (21) in
mass-dependent cross section turns down. finite-order and resummed differential cross sections. These
scaling variables generalize the scaling variable proposed in
Ref. [29] for inclusive structure functions. They lead to
stable theoretical predictions at all values @fand agree-

In this paper, we presented a method to describe polanent with the massless result at high energies.
angle distributions in heavy quark production in deep inelas- The extension of our calculation to higher orders is fea-
tic scattering. This method is realized in the simplifiedsible in the near future, since many of its ingredients are
ACOT factorization schemfl7,25 and uses the impact pa- already available in the literatuf82,43,73. Furthermore, in
rameter spaceb(space formalism[34—-34 to resum trans- a forthcoming paper we will study the additional effects of
verse momentum logarithms in the current fragmentation rethreshold resummatiofy2—77 in DIS heavy-quark produc-
gion. We discussed general features of this formalism andon, so that both transverse momentum and threshold loga-
performed an explicit calculation of the resummed cross seaithms are taken into account. We conclude that the com-
tion for the O(a?) flavor excitation andO(ag) flavor-  bined resummation of the mass-dependent logarithms
creation subprocesses in bottom quark production. Accordintn(M%Q?) and transverse momentum logarithmsofiQ?) is
to the numerical results in Sec. VI, the multiple partonan important ingredient of the theoretical framework that

argument. The rapid rise afrgr over the massivergg be-
gins when the smally logarithms IM(G%/Q% become

VII. CONCLUSION AND OUTLOOK
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dy d?q

aims at matching the growing precision of the world heavy- —
f (2m)°

flavor data. 7% Kkr Mg}, 4a) = 2

spin color
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Let ?/”}’,‘A(x,b,{mq},gA) be the b-space transform of

APPENDIX A: CALCULATION f’/’ }’}A(x,kT,{mq},g“A) taken ind dimensions:

OF THE MASS-DEPENDENT C FUNCTION

~In this appendix, we derive th@(«asg) part of the function ~in =f d—21, _ikeb

N (x,eb,bM). This is the only O(ag) term in the 7in(x0, La{mg}) = | dT ke
heavy-quarkW term that explicitly depends on the heavy- « pin

quark massM. This function appears in the factorized P0Gk Eamgh). - (A4)
smallbb  expression for the W-dependent PDF”

. . ~ in .
70 (b {mg},C1/Cy): Note th_at. .our.defmltlon for”jja(X,0,¢a ,{Mg}) d|ffer§ from
the definition in Ref[45] by a factor (27)2~ 9. The jet part

= Wdéa i, |- Gy 7 (x,b,{mg},C1/C,) is related ta (x,b,{mg},Za) in

P . JA\ N My qfr 1 2 . JA\ N My Q1 5A
“’A(X b.{mah ) f g, Cva| X0 OMig the limit £,—: ’
ME C
xf : : Al 1) g, -
aA| €a {mq}) (A1) 7 }?A<X’b’{mq}’c_2)_§2Tw{es (b.2aiC1/Cy)

To perform this calculation, we consider a more elemen-
tary form of Eq.(A1), which represents the leading regions ]/A X,b,{mg},la)},  (AS)
in Feynman graphs in the lim@— . This elementary form
can be found in Ref.35], where it was derived in the case of whereS’(b,Z5;C,/C,) is a partial Sudakov factor,

e*e” hadroproduction. The functlon/I,A(x,b,{mq},

C,/C,) is decomposed as czgllzd,u

§1/2
S,(bng;C1/C2)Ef T) yolas(n)]

Cl/b M

i brad 8| S
x/’,A(xb{mq},u,gl) 'Z/(b S(b) b)

Cy
ol - o

(A6)

L

_ (/( .
(AZ) . {Czyas(lu“)uu*
Here .77, denotes the “hard vertex,” which contains highly

off-shell subgraphdJ denotes soft subgraphs attacheditp The definitions of the functionsy 5, .7, and.7" can be

S ) found in Ref.[34].
through gluon lines7’{j5(x,b,{mq},C,/C,) consists of sub- We now have all necessary ingredients for the calculation

graphs correspondlng to the propagation of the incomingf the O(ag/) function cin(x, ueb,bM). Settingj=h
hadronic jet. The jet part’; A(x b,{my},C,/C;) is related andA=G, and expanding Eq$Al), (A2), (A5), and(A6) in

to thekr-dependent PDE[A(x,kr,{mg},{a), defined as  powers ofag/, we find
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As expectedf (Ll (x, ur /M) exhibits the threshold behavior
, /pa at/.LF: M.

In contrast, the UV limit in the loop integral of
7" (x,b,M) is regularized by the oscillating exponent

P ,

<

L
ince no singularity is present x,b,M),
ﬁ kb g UV singul " (x,b,M)
< it does not depend opr and, therefore, does not change at
the threshold. It is given by
Z: N -
pA pa T80, M) = PELOOK(DM) + Tex(1
FIG. 7. The Feynman diagram for th&( s/ ) contributions —X)bMK;(bM). (A12)

Fs (e IM) and limy, . 702(x,b,M, ).
Here Ko(bM) and K;(bM) are the modified Bessel func-

tions [ 78], which satisfy the following useful properties:
COD(x,ueb M) = lim {7 (x,b,M, £} 78] fy g useful prop

A lim Ko(bM)= lim bMK;(bM)=0, (A13)
—f0G e IM), (A7) oM oM
where the superscript in parentheses denotes the order of Ko(bM)— —In(bM/bo) as bM—0, (A14)
ag/. In the derivation of this equation, we used the follow-
ing easily deducible equalities: bMK,(bM)—1 as bM—0. (A15)
a7 O=00=1, (A8)  The ‘“infrared-safe”  part CND(x,ugb,bM)  of
73 (x,b,M) is obtained by subtracting}L(x,ur/M) as
(§HO=71Q=cr@=1k=0, (A9) N Eq.(AT7):
|n (1)
(%, b, bM)[ =y =TrX(1=X)[1+C1(bM)]
00 =85 (x) = 8(x—1). (A10) s
. p) bM)— | A2
The RHS of Eq.(A7) can be calculated with the help of +Phig(X)| Co(bM) = b ||’
the definitions forf (1L (x, wr /M) and 2" (x,b,M,Z,) in (A16)
Egs.(2) and(A3), (A4), respectively. A further simplification
cazm be- acihilf(\ll)ed by observing that @{«g/ ) the limit 'r?/(é)(x 1eb, bM)|” = /}?,(é)(x,b,M)
7°—0 in 775’ (X,b,M,{,) can be safely taken before the F
Iimit {a—, and, furthermore, forp?=0 the function =N (x, ueb, bM)|,LF>M
71 (x,b,M,Z,) does not depend ofy . Correspondingly,
)72
both objects can be derived in the lightlike gauge from a +P§1}23(x)ln—F (A17)

single cut diagram shown in Fig. 7, where the double line M’

corresponds to the factor” §(p; —p, —k’*)/2 in the case _
In these equations;o(bM) and c,(bM) are the parts of

(1) + ot Lt aikr-boy
of fhe(X.ue/M) and y*o(py—pa —k'")EXT22 in the h\) and bMK,(bM) that vanish abM—0 [see Egs.

case of lim, 7D (xb,M,ZR). (A13)—(A15)]:
~The difference  between Ilgnﬁx/'g‘,(é)(x,b,M,gA) B bM
=7"(x,b,M) andf%(x we /M) resides in the extra ex- co(bM)=K0(bM)+Inb—0, (A18)
ponential factore’r? in 7"M(x,b,M). Remarkably, this
c,(bM)=bMK,(bM)— 1. (A19)

factor strongly affects the nature af"&)(x,b,M). The loop

integral overk? in f{74(x, ¢ /M) contains a UV singularity, If ur is chosen to be of ordeb,/b, no large logarithms

which is regularlzed by an appropriate counterterm. In theappear |rC'h”,(é)(x ueb,bM) atb—0. At largeQ, the small-

ACOT scheme, the UV singularity is regularized in s b reglon dominates the integration in EGL7), so that

scheme, ifug=M, and by zero-momentum subtraction, if
e<M. The result for the heavy-quark PDE/G(X e /M) h,G(x ueb,bM) effectively reduces to its massless expres-

is sion[31,32:
ueb
pel [PRELOOIN(ue M), pe=M, IO, b, bM) [ o= TrX(1—x) — PEL 00 In[ 52— |.
ARSI (A11) b
M 0, we<M. (A20)
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The above manipulations can be interpreted in the followwhereA (¢, ¢) denote orthonormal functions of the leptonic
mg way. At smallb (b=bgy/up=<bg/M), we subtract from a2|muthal anglep and boost parametef given in Eq.(5).

718 (x,b,M) its infrared-divergent pa{i1(x)In(ue/M),  The structure function¥ (x,Q?,z,5,M?) are calculated to
wh|ch is then included and resummed in the heavy-quarlbe
PDF f,,c(X,ug/M). The convolution of the resulting

~ 25,2 z
function with the PDF remains equal 18]"2)(x,b,M) up to .= 1 | 1-2%5+ 252724 M™X n z 1
higher-order corrections: NGOE Q? x Q?
2 in _ﬁn(l) b.b 2 oS5 a$ 22 Z 22 M2
e Chia® faic=7hg (X, ueb,bM) +O(ag). X (BXz—=X—2)+ k4| 4 & z°+2—-8z+8z°—4 & ,
A21
(A21) (B4)
At largeb (b>by/M), the heavy-quark PDFy,¢ is identi- L M2
cally equal to zero. To preserve the relationstfgl) below o ML PN
the threshold, one should include the above logarithmic term 2_8Q =4 qTZ Ty (=1+2)z, (B5)
in the functlonCL?,(é)(x,MFb,bM), as shown in Eq(A17).
The additon of an extra termP{L(x)IN(us/M) to 27 dr AN
Cia) (x,ueb,bM) at g <M enforces the smoothness of the V= — ——| —1+2| 1+ — | xz|+4x,2(~ 1+22)6
form factorW(b,Q,x,z) in the threshold region, which, in its x QGr Q?
. . . I (B6)
turn, is needed to avoid unphysical oscillations of the cross
sectiondo/dg?. ) )
~ qT 22 qT 22
V4:4 ~22 +4_ZZ K1. (B?)
APPENDIX B: THE FINITE-ORDER CROSS SECTION ar Q
This appendix discusses the finite-order cross sectioin Egs.(B4)—(B7),
d&Fo/d<i> that appears in the factorized hadronic cross sec- 5 R
tion (47). For theO(ag) subprocesg+h—e+h, this cross o= M*(1-x) (B8)
section is the same as in the massless case: ! 22§(a‘T1
(dU(eJrh—’eJrh) _ooFi Au(¥9) €25(qn) APPENDIX C: KINEMATICAL CORRECTION
0 S 2 ! )
do Fo oA In this appendix, we derive the kinematical corrections

(20) and(21) that are introduced in the flavor-excitation con-
tributions toorg, as well as inoy and oagy - Let us first
consider theO(ag) cross section for the photon-gluon fu-
sion, which we write as

X8(1-x)8(1-2), (Bl

where, in accordance with the notations of H&2],

Q? (62 (dcr(e+A—>e+H+X)
op=——=| =,
° 47 S, X 2 de ¥*G,FO
dép
e? 1 f j — D &o) fora(éa)
Fl=——. (B2) &a
2 Q?
1 1 Gt
The contribution of the gluon-photon fusion channel is X9 §_1 ;_1 Q2 B(®). (€Y
do(e+G—e+h+h) Here B(®) includes all terms in the parton-level cross sec-
dd o tion (do/d®) o except for thes function [see Eq(B3)]:
. Fi as ,Xx(1—X)
0'0F| aSZ 1 1 qT (D:UOI_SZ T
AmSep T Q5(§_1)(;‘1 Q? Al®) AmSep m " 2 R
4
LX) TRE Q2L MDA, (dr), X3, U, Q%205 MIAYe). (C)
7
(B3) The delta function in Eq(C1) can be reorganized as
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zQ?
VW — aM2(q2+W2)

X[8(&p— &)+ 8(ép— &)1,
(C3

0

(L

where

W2+ \/\7v4—4M2(q$+\7v2)
2M?2 ’

+

& =1

(C4

and W?=Q?(1-x)/x. We see that the mass-dependent

phase space element contains two delta functiof{g;,

- gg) anddo(ép,— &, ), which can be used to integrate out the

dependence o#y in Eq. (C1).

It can be further shown that in the massless limit the so-
lutions &,= ¢, and &,= ¢, correspond to the heavy quarks

PHYSICAL REVIEW D 67, 074015 (2003

do(e+A—e+H+X)

dxd@dzdgde .
maxd § Q?
& a

= —fenlba,me)—= K
La ga @ \/W4_4M2(q_|2_+w2)

X [EDH/h(fb :ﬂF)B((i))|§b:§;

+ZDpyn( &n ) BP) 4=, . (C8)

Here the lower and upper integration lim#&™ and £7® are
determined by demanding the argument of the square root in
Eqg. (C8) be non-negative ané,<1; that is,

. ( 2M(M+\/M2+q$))
min—x| 1+ 7 ,

produced in the current and target fragmentation regions, re-

spectively. WherM —0, the relationshigC3) simplifies to

2
CTEE:
X z Q
:%\%2[5(%_ D+ 8&—-E)1,  (CH
where
Wz q2 WZ
= e Twz +0O(M?) |, (Co)
2 A2
8 =7 T8 om?) (7

In this limit, the solution£)™ diverges(and, therefore, will
not contribute unlessz is identically zero. However, accord-

ing to Eq.(39) and the last paragraph in Sec. V Bzat0 the

M2+ 222
T¥=min x| 1+ ———|,1 (C9)
2(1-2)Q?
for &,=¢&, , and
2, 2.2
min_ | 14 1 M+z°g7
a z(1-2) Q? ’
&=l (C10

for &,=§&, . We see that, according to the exact kinematics
of heavy flavor production, the heavy quark pairs are pro-
duced only when the light-cone momentum fractigris not
less thargy" (where&y""=x) and not more thag, * (where
EM¥<1). The exact values off"" and £ are different for
the branches witlf,= &, and &,=§&, .

Turning now to the flavor-excitation contributions
v*+h—h+X, we find that in those the integration over
&, a priori covers the whole range<¢,<1. Indeed, in
those contributions the heavy antiquark in the remnants of
the incident hadron is ignored, so that the reaction can go at

a lower c.m. energyv than it is allowed by the exact kine-
matics. Since the PDFs grow rapidly at snglthe naively
calculated total cross sectionot tends to contain large con-
tributions from the unphysical region of smaland disagree
with the data. To fix this problem, we use E§.10) to derive
the following scaling variable in the finite-order flavor-

observed final-state hadron appears among remnants of tg&citation contributions:

target (@;~180° in they* A c.m. frame, i.e.,awayfrom the
region of our primary interedtsmall and intermediatéy).

M2
1+

Yn=X . (C11)

Hence, in the limitdy—0 all dominant logarithmic contri-
butions as well as their all-order surtthe flavor-excitation

cross section and/ term) arise only from terms proportional This variable takes into account the fact that the incoming

z(1-2) &

to 8(é,— &,). The contributions proportional t6(&,— &)
in the current fragmentation region are suppressed.

The integration oveg, with the help of Eq(C3) leads to
the following expression for the cross secti@il):

heavy quark in the flavor-excitation process appears from the
contributions withé,= &, in the flavor-creation process, and
that the transverse momentuwrt; of this quark in the finite-
order cross section is identically zero.
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Similarly, we notice that théV term o, and its finite- Finallg, consider the integration of the cross sectio8)
order expansionosy contain the ‘b-dependent PDFs” OVerz gt, ande to obtain theO(as) y* G contribution to

1 (x,b,M,C,/C,), which correspond to the incoming an inclusive DIS functior (x,Q%). We find that
heavy quarks with a nonzero transverse momentum. Accord-

ing to Eq.(C10), the available phase space in the longitudi- 1dé X pe M

nal direction is a decreasing function of the transverse mo- F(X!Q2)|y*G O(ag = _acﬁl)(;<_,_F,_)
mentumzg;, and it is desirable to implement this phase- ' ¢ éa §aQ°Q

space reduction to improve the cancellation betwegrand

oasy at largeqgr. In our calculation, this feature is imple- XfG/A(ga, [ﬂ]) (C13
mented by evaluating, and oasy at the scaling variable My

1 M2+7%g2
/: +
xn=x| 1 2(1-2) @2

which immediately follows from Eq(C10.

Despite the apparent complexity of the scaling variables £l=
(C11) and(C12), they satisfy the following important prop-
erties:

(1) They are straightforwardly derived from the exact kine-for poth solutionsz,= & andé,= &, . This value ofé, can
matical constraints on the variabig in Eqs.(C9) and  pe easjly found from Egs(C9 and (C10), given that
(C10; gr=0, O0<z=<1, and z(1-2z)<1/4 in the interval

(2) they remove contributions from unphysical valuesxof p<z<1. Since in they* G contribution the integration over
at all values ofQ andgr, thus leading to better agree- ¢, s constrained from below bg,>x, it makes sense to
ment with the data; implement a similar constraint in the flavor-excitation contri-

(3) in the limit Q*>M?, the variabley, in oo reduces to  putions by introducing the scaling variablg,=x(1
x [see Eq.(C1D)], so that the standard factorization for +4M?/Q?). This variable is precisely the one that appears
the massless finite-order cross sections is reproduced; in the recent version of the ACOT scheme with the optimized

(4) in the limit Q?>>M? andQ?>q3, the variabley], in o,  treatment of the inclusive structure functions in the threshold
and o gy reduces tox [see Eq(C12)], so that the exact region[29]. Our scaling variables extend the idea of Ref.

, (C12  where the lower limit of the integral ovef, is given by

4M2)
14— (C14)
Q

resummed cross section is reproduced. [29] to the semi-inclusive and resummed cross sections.
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