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swave meson-meson scattering from unitarizedJ (3) chiral Lagrangians
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An investigation of theswave channels in meson-meson scattering is performed withi(3) chiral
unitary approach. Our calculations are based on a chiral effective Lagrangian which includg’s deean
explicit degree of freedom and incorporates important features of the underlying QCD Lagrangian such as the
axial U(1) anomaly. We employ a coupled channel Bethe-Salpeter equation to generate poles from composed
states of two pseudoscalar mesons. Our results are compared with experimental phase shifts up to 1.5 GeV and
effects of then’ within this scheme are discussed.

DOI: 10.1103/PhysRevD.67.074007 PACS nuniberl2.39.Fe, 11.10.St, 11.80.Gw, 14.40.

[. INTRODUCTION perimental data. By considering fourth order ChPT in a sub-
sequent work 4] the results were extended to account for

The SU(3), X SU(3)x chiral symmetry of QCD is spon- further resonances below 1 GeV, e.g., the lowest-lying vector
taneously broken down t8U(3)y giving rise to eight pseu- mesonsp, K*. The authors find agreement with data at en-
doscalar Goldstone bosons, the pions, kaons, and the eta. &fgies up toys=1.2 GeV.[Similar results are obtained in a
low energies the interactions among these Goldstone bosoRgily relativistic SU(2) ChPT approachs].]
are described well in chiral perturbation theof¢hPT) The 7'(958), on the other hand, cannot be generated in
which is the effective field theory of QCD. The Green func- cqupled channel approaches by these two-meson states due
tions are ordered in powers of the small meson masses anq jrs hseudoscalar nature. In fact, thé meson is consid-

mqmenta, such that they are org.anlzed as Taqur EXpansiongraq to be the singlet counterpart of the octet of Goldstone
This systematic perturbative chiral expansion is limited to, osons {r,K, 7). The extra mass of the’ is due to the axial

the low energy region. At higher energies, the accuracy o . . .
the chiral series decreases, until convergence finally fails an (1) anomaly Wh'Ch. p.revents' it from being a Go!dstone
QSon. In the larg®\, limit the axialU(1) anomaly vanishes

becomes useless. One reason for the failure of convergen _ . ) ;
is, e.g., the exchange of resonances between the mesonsYiff'ding nine Goldstone bosons. Thg' is then the ninth
scattering processes. The resonances appear as poles in ffgdstone boson with a mass comparable with the other me-
scattering amplitude and cannot be generated to any order f#PNS. It is thus possible to combine the meson with the
a plain series expansion. Nevertheless it has been shown thagtet of Goldstone bosons. To this end, we will extend the
when combined with nonperturbative methods such aghiral Lagrangian by including the’ explicitly and without
Lippmann-Schwinger equatiofsSES which are employed employing largeN, rules. We use the fourth ordey(3)
in such a way as to ensure unitarity, the chiral Lagrangian ighiral effective Lagrangian, see, e.g., R¢&9], to evaluate
able to reproduce a number of observed resonances both the interaction kernel for the BSE. All possible two-meson
the purely mesonic sector and under the inclusion of barystates are taken into account in a relativistic BSE approach to
ons, see, e.g., RefEl—7]. Within these approaches effective calculate the propagators of the pertinent quasibound states.
coupled channel potentials are derived from the chiral mesoBY restricting ourselves to conventiongdU(3) chiral
Lagrangian and iterated in Lippmann-Schwinger equationd.agrangians and neglecting the¢ we are then able to study
or in the relativistic case Bethe-Salpeter equatidBSE).  its effects in the coupled channel analysis which may offer
(For simplicity we will not distinguish between the tw@he  new insights into the importance of the axial anomaly. The
BSE generates dynamically quasibound states of the mesoiglusion of thez’ may not only produce new resonances in
and baryons and accounts for the exchange of resonancti®e spectrum due to the appearance of new channels, but can
without including them explicitly. The usefulness of this ap- in principle also destroy the agreement with the well estab-
proach lies in the fact that from a small set of parameters ¢ished resonances &U(3) coupled channel analyses below
large variety of data can be explained. 1 GeV. Even if the channels which involve thg are below
In the purely mesonic sector Oller and Oset have used théreshold and cannot contribute to physical processes di-
BSE to probe the system of two interacting mesons. Employrectly, they can have effects on channels with two Goldstone
ing the lowest ordeSU(3) chiral Lagrangian they were able bosons via mixing. Our investigation provides an important
to generate a number of scalar resonances at around 1 Gedhjeck whether a similar agreement with experiment as in the
which could be identified with the observed resonancesSU(3) case can be obtained in the presence ofsthe
f,(980) anday(980) [3]. Furthermore, the resulting scatter-  In the meson-baryon sector, ti8J(3) coupled channel
ing cross sections were matched in good agreement with eXermalism has already been extended to includestheand
meson-baryon scattering processes together with photopro-
duction ofpand%’ on the proton have been investigaf&dl
*Email address: nbeisert@physik.tu-muenchen.de Within their approach the authors find substantial changes
TEmail address: borasoy@physik.tu-muenchen.de with respect to the original work in th8U(3) sector[2].
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Even after fitting the parameters in their approach, they were k,m
not able to achieve good agreement with experimental dati, m, a5, my
in contrast to Ref[2]. Sizable effects of the;” were also
observed in the processes in which theis not an external &, apmy  g,m;
particle, but contributes via virtuaj’-baryon state$10]. It

is hence worthwhile investigating whether the inclusion of
the " in the purely mesonic sector destroys the good agree- FG. 1. Momenta and masses used in the four point scattering
ment of previous investigations with experimental data anthmplitudes and chain links. The center-of-mass momentum is de-
whether one needs to fine-tune the parameters in order {gyeq byp=gq,+g=q,+q;=k+k.

reachieve agreement. It could well be that—as in the case of

Ref.[7}—the inclusion of thep’ does not allow for an over- 4 four-point scattering process are given in Fig. 1. A general

all good description of the data, even if there is no signifi-scajar amplitudeA depends only on scalar combinations of
cantly big branching ratio to thg’ and a Goldstone boson the momenta which can be expressed in terms of the Man-

qi, My

k,m

for the resonances discussed in the present work.  delstam variables. The Mandelstam invariasts andu are
The inclusion of then' furthermore allows for a consis- gefined as the center-of-mass energy squaredq; + ;)2
tent treatment Of7]8' 7o mIXIng |I’l theSU(3) framework, = pz, the momentum transf&.:(qi_qf)zl and the Crossed
the 7 is treated as the octet sta#g with its mass being atits  momentum transfeu=(q;—q;)2. The constraints+t+u
physical valuem, =547 MeV, while some effects of thg’,  — 42152+ g2+ g2=m?+m?+m?+m? allows one to ne-

after integrating it out from the theory, are hidden in cou-gject the combination+ u in favor of t—u. The scalar am-
pling constants of the effective Lagrangian at next-to-leadlnq)”tude can be written aA(s,t—u). Since we are only in-
order[11,12. In Ref.[9] it was shown thatys-7o MiXiNg  terested in scalar, i.eswave orl =0, resonances, we must
does not follow the usually assumed One'm'X'm~:]""‘ngle'separate channels of different total angular momentum. The

scheme, but must be parametrized in terms of two anglegmpjitudeA in our approach is a fourth order polynomial in
even at leading order, if largd; counting rules are not im-  na momenta. Hence can be decomposed as
posed. In order to account for this unusual behavior, one

needs to include the’ field explicitly.

Two-meson systems consisting of gh and a Goldstone A=2| Adi=Asdst ApdptAgda, @
boson will lead to contributions in meson-meson scattering,
e.g., themy' decay mode of the-wave resonancey(1450)  here the partial wave operatdyis a polynomial of degree
is seen by the Crystal Barrel experim¢h8] and the experi- | in t— . The J, read
mentally well studiedfy(1500) has any#’ decay mode
[14]. In Ref.[15] the possibility that thel”“=1"" exotics J=1,
observed at BNI[16,17 and CERN 18] may be resonances
in 7 and ' 7 scattering was investigated. The authors t—u (qz_az)(q]g_af)
come to the conclusion that it is indeed possible to describe J,=h  qfq;= + - ,

the appearance of exotics by means of a coupled channel 4 4s

treatment of thenm and ' = systems. Within that work, , ”

however, it was not checked whether the inclusionof Ju=D oYl — 32— h., a1 a’h,0aF s @
channels destroys the overall agreement of the coupled chan-¢ wrpo @i A rGe = Jp d-1 '

nel analysis folp-wave meson-meson scattering at energies
below 1.2 GeV. Our investigation will shed some light on theand ind=4 space-time dimensions they are proportional to
importance of thep’ channels within coupled channel ap- Legendre polynomials in the cosine of the scattering angle.
proaches fors-wave resonances and can be extendeg-to The metrich of the (d— 1)-dimensional space transversepto
waves. This may help to understand the role of the axials given by
anomaly and gluons in the structure of these resonances.

This work is organized as follows. In Sec. Il we introduce h,=—0,+ pMpV/pz. (3)
the kinematics and solve the Bethe-Salpeter equation. The
identification of poles in the complex continuation of the The partial wave operatod can be given in terms of spin
two-particle propagator is discussed in Secs. Il and IV con{projectors, e.g., the spin-2 projector
tains the results of the analysis. L L

D;‘;=§hgh;+ Ehgh;—hf“’hpgl(d—l). 4
Il. BETHE-SALPETER EQUATION

The spin projectors are totally symmetric in the upper
(lowern) indices, orthogonal t@ and have the property that

In this section we introduce our notation for the kinemat-every pair of uppeflower) indices is traceless; they project
ics of the Bethe-Salpeter equation. We will work in the rela-to the spinn components of a general tensor of rankT his
tivistic framework, restrict ourselves ®waves and put all formalism allows us to extract thewave part of the ampli-
momenta on-shellsee beloyw. The momenta and masses of tudeA.

A. Kinematics
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S=1-iCTC with C?=-2ImG 8
= +
which is unitary due to the identity 2 Ifi=—TC?T*. The
phase of the unit complex numb8ris parametrized by the

scattering phasé defined byS=exp(246). For an ideal reso-
nanced increases by 180°.

The generalization to coupled channels is achieved by
promotingA, T, G, C, andSto nXn matrices. The matriA
contains the interaction kernels among the chanr@lss

The Bethe-Salpeter equation for the two-particle propagagdiagonal with the loop integrals for the channels as elements.
tor T from a local interactiorA is given by[5] The unitary scattering matri$ can be given in terms of
. eigenvectors and eigenphases.

id% T(piqlrk)A(pi f)

k,q
d
(27m) (kz—mz)(kz—mz)(S) IIl. PROPAGATOR IN THE COMPLEX PLANE

or diagrammatically in Fig. 2. Combinatorial factors for two

identical particles in the loop have to be taken into account\,/ ISlnce ftgei ?_te%:lal \r/]vﬁls rp?yrsicalths |gn|f![ca][1(;eaclyznly f?r: real
but we prefer to keep this form of the BSE and modify the“aue.S OTE= VS, f’ eler to e set o reak as ne
physical real axis.” In the coupled channel analysis, how-

amplitudes accordingly. In that caemust be the four-point . . X :
amplitude from ChPT multiplied by-3 in order forT to be ever, we would like to !dentlfy stru_cturgs on the real axis
proportional to a bubble chain with the correct factors fromf[';’]Ith poIeT of tlhe an%I]ync cc>|nt!nu;91t|ont_|n ”f‘ lower E?If of
perturbation theory. The factor gfis the symmetry factor of . e complex plane. The analytical continua '.On%ﬁ ) .
inherits several branch cuts from its constituent functions

two identical particle multiplets in a loop andl stems from . )
factors ofi in Ft)he vertices gnd propaga?ors and we use the following conventions. The branch cutof
; is just below the negative real axis, the branch cuts of

We can further simplify the integral in the BSB), since , !
we are only interested in the physically relevant piece of thé'ctanix are below the negative real axis frol and above
the real axis from+1. The resulting branch cut inis below

solution T with all momenta put on the mass shell. The am- c X : )
plitude A contains in general off-shell parts which deliver via (e Positive real axis of starting at the threshold poimd

the integral a contribution even to the on-shell part of the.” M- This Riemann sheet is commonly referred to as the

solution T. However, these off-shell parts yield exclusively Physical” sheet. _ o _

chiral logarithms which—in addition to being numerically ~ Unfortunately, it is not well suited for finding physically

small—can be absorbed by redefining the regularizatioﬁelevam poles. This can be seen as follows: a relevant pole is
scale of the loop integral. Furthermore the off-shell parts aré POl€ in the lower half of the complex plane and close to the

not uniquely defined in ChPT. We will therefore set all the Physical real axis which has a strong influence on observ-
momenta in the amplitudes in E¢) on shell® The BSE ables. Point€E in the upper half of the complex plane or

FIG. 2. Bethe-Salpeter equation for the interaction kerfel
(empty circle and solutionT (shaded circle

B. Bethe-Salpeter equation

T(prqi !qf):A(p!qi iqf)+f

A. Branch cuts

then simplifies to the arithmetic equation below thresholde.g.,E1,E;,E; in Fig. 3 lefy can be con-
nected with a straight vertical lines (yq,v,,y3) to the
T=A+TGA, (6)  physical real axis. The length ofis |Im p| andE is as close

to the physical real axis as possible. PoiBtén the lower
with G being the scalar loop integral in dimensional regular-half of the complex plane above threshétlg.,E}), on the
ization other hand, are not close to the physical real axis, because
the length of the paths connectiigto the physical real axis

iqd
G _(pz):f id kd 1 (such asy,,y,) exceeddImE|. The vertical path towards
m (2m)° (k*=m?)((k—p)*—m?) the real axis §/) crosses the branch cut and ends in an
mm m—m2 m unphysical real axis.
=—|—1+In—+ —In= As a matter of fact, the region below the physical real axis
167w p m and above threshold turns out to be the most interesting of
o o all, because here physically relevant poles occur. Therefore it
2 Km;m(p ) arctanh )‘mﬁ(zp ) . is better to consider the “physical” sheet with the branch cut
(m+m)“—p rotated down by 90¢Fig. 3 righ). Every point in that rotated
5 y y sheet is as close as possible to the physical real axis and the
AP =[(m—=m)*=p~J[(m+m)*—p-]. () loop integral function defined on the rotated sheet is
The scattering matri§ is given by N
G E2)> G E7) — =)
87E
This was also done in other work such as R8&f. For a discus-
sion of off-shell effects see Re]. X 6(—ImE)f[REE—m—m)], 9
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Im F,

E;

FIG. 3. Branch cuts in “physical” shedteft) and our choice of Riemann sheeight). Shown are paths from poinE to the physical
real axiskE € R. The branching poinin+m is moved slightly down for reasons of presentation.

with 6(x) being the unit step function witl#(0)=0. With  tween two poles and a branch cut. It is even more instructive
this choice for the analytic continuation of the loop integralto consider both poles as manifestations of the same pole
most poles that are relevant for the physical real axis—disturbed by the branch cut singularity: At a pole the de-
except those which are related to cusfsee the next nominator is zero. Going from one sheet to another corre-
section—are in the same sheet, whereas other investigationsponds to adding some function to the propagator integral in
have to take several sheets into account, in order to obsentke denominator. Assuming this function to be small, the root

the physically relevant poles. will be shifted by a small amount giving rise to a nearby pole
on the new sheet. Whelg; andE, are considered one, the
B. Cusps cusp can be considered as a common resonance with the

e : . middle part removed by the branch cut. In the scattering
When the modified integraP) is used for all channels in hase a cusp will correspond to an increase of considerably

;;?Jﬂglﬁgoﬁr;?nn’\?é\?eﬁ?ggiiecshs’ rggriteolceﬁkéiﬂle;ginmb: S:iifbs thansr as for usual resonances, because the sharp in-
Y. ! P y rease at the center is eliminated.

be hidden behind a branch cut. This is the case if there are
cusp resonances in the spectrum. Cusps are discontinuities of
the derivative of the full amplitude and they occur at the

threshold energy of each channel. Cusp resonances can bewe can now employ the Bethe-Salpeter equation as pre-
generated by the configuration of poles as shown in Fig. 4. IRented in Sec. II, in order to fit to scattering data of two
the rotated Riemann sheet no poles are seen, but there is 0pgeudoscalar mesons. U(3) ChPT the fundamental pseu-
pOle jUSt behind the branch cut on either side. When th@oscajar mesons are the Goldstone bOSOﬂﬂS((ﬂ) with
branch cut is moved around these two poles the situatioheir singlet counterpart, thg’ (958). The potentiah is de-
becomes clearer. The real axis below threshold is close to th@ed from the chiralU(3) Lagrangian by calculating the
pole atE;. The amplitude will therefore have a peak at tree diagrams up to fourth chiral order and takipg;’ mix-
ReE;,, but only the increase on the right of the resonance i$ng into account where we employ the two-mixing angle
below threshold and phySICaI, the peak itself lies on an UNgcheme as described in Réﬁ] Tadpo|es and crossed dia-
phySical real axis. Above threshold it is jUSt the Opposite, th%rams Wh|Ch are not inc|uded in our approach have been
peak at Ré&; is hidden and only the decline on the left is shown to yield numerically small effects in scattering pro-
physical. The cusp resonance is therefore the interplay bewesses in the physical region and can furthermore be partially
absorbed by redefining chiral parameters. We have therefore
neglected both tadpoles and crossed diagrams and restrict
ourselves to the tree diagrams in the calculation of the po-
tential A.

We work with the Lagrangian found in Ref®,19]

IV. RESULTS AND COMPARISON

I 3

do/dE

L=%f¥9*UTa,U)+ 12 ReUTx) +i%\6v s

X (IndetU)Im(UTy)+ 3 f2m3(In detU)?+ B

x(a*UT9*Ua,u’a,Uu)+ YN (*u%a,ua"u’a,U)

+2BY Re(d#UTd,UUTx)+ 280 RgUTYUTx)+- -+,
(10

—ImFE

v

FIG. 4. A cusp at threshold and the corresponding pair of poleswhere y=2B diag(n,m,my) is the quark mass matrix in the
The branch cut can be perturbed so that both poles reside on thgospin limit andmy denotes the mass of thg in the chiral
same Riemann sheet. limit. We have omitted all terms that are irrelevant or are not
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considered here, in particular we have only taken the most TABLE I. Pole positions(MeV) of scalar channels from the
relevant terms from the fourth chiral order Lagrangian ac-SU(3) chiral Lagrangian and using the parameter set in(Ed).

cording to the Okubo-Zweig-lizukéOZI) rule. We replace
the quark masseé,mg, and the constant by the fourth | resonance pole
chiral order expressiongvithout loops for the pion, kaon

. 0 f,(400— 1200) 448-263

massedM =138 MeV, M =496 MeV and the pion decay .

; . 0 f5(980) 983- 14i

constantF .=92.4 MeV. The interaction kerneA for the 1 K (900) 740- 246

Bethe-Salpeter equation are the tree level amplitudes from i a ?980)< 1081 36
: . ; . o -

the Lagrangian separated in angular momentum and isospin 1 2,(980)" 79175

channels. As an example we state the vertex withJ=0,
[=2:

therefore consider the reduced set of parameggts B,

s—2M2 4P 45 0 ©) i i i
- F‘? (s—2M2)2— 3|:34 (4M* —2M2s s, andBg”’ with their values given by
g 7 T BY'=(0.6+0.1)x103, BY=(-0.5+0.1)x10 3,
,. ABIM2Zs  168M7 (12)
TS+ R BY=(1.4+0.2x 103, Y =(0.2-0.2x10 3,

For the particle propagators we use the standard propagatoféile neglecting the remaining LEGS, . Using this set of

for scalar particles with the physical masses of the particleg?@rameters we will compare the results for the phase shifts
In this section we present a fit to scattering data fromWith available experimental data. The results presented in the

Refs.[20] (K ), [21,29 (w1 =2), and[23]. Reference Paper have been obtained by employing the central values
[23] is a collection of w7 scattering data from Refs. for the LECs in Eq.(11), but variations within the given
[21,22,24-38 and K scattering data from Ref§39,40.  'anges for the parameters do not lead to substantial differ-
Ha\’/ingi replaced the quark masses &bgl the meson n;asses ences in the results. We furthermore restricted ourselves first
andF, as described above, the only free parameters left arl® @ Single scale parametgr=1 GeV for all channels and

the regularization scalg in G and the coupling constants of Energies. However, with such a simplified choice the calcu-

the effective Lagrangian. lated phase in thé=3 channel turned out to be slightly
above the data points. This feature can also be seen in Refs.
[4,42]. By lowering the scale down ta.=0.8 GeV in that
A. SU(3) ChPT particular channel we are easily able to improve the fit. This
We first restrict ourselves to the conventional chiralindicates that our approach neglects further contributions in
SU(3) Lagrangian. This is done by omitting all possible thel =z channel which we mimic by fine-tuning the scale
vertices which include they’ field. Later on we will proceed The results are summarized in Table | and Fig. 5. .
by including thes’ field explicitly. By comparison we can  In thel=0 channel matching is remarkable up to energies
then pin down the effects of the’ within this approach. The arounde;,=1.2 GeV, the linear increase from threshold to
parameters entering in the puBdJ(3) case are besides the just below 1 GeV is due to the or f,(400-1200) reso-
regularization scalew only the known parameterg,, k  nance and thé,(980) resonance can be clearly seen by a
=0,...,8, fromSU(3) ChPT. However, there is a slight dif- Sudden phase shift of 180°. These resonances are associated
ference in so far as that we keep the low-energy constartith poles at (448 263) MeV and (983-14i) MeV. This
(LEC) B, from the fourth order Lagrangian explicitly. Usu- 1S In reasonal_ale agreement with recent results for light scalar
ally this contact term is absorbed into other terms of themesons obtained from Dalitz plot analyses of charm decays
Lagrangian by employing a Cayley-Hamilton matrix identity in the Fermilab experiment E7943]. By analyzing the de-
[19], but for processes including thg it seems to be more €@yD"— ™ @ 7" [44] strong evidence of the was found
convenient to keep this terfd1]. The values of some of the With @ mass of 478 17 MeV and a width of 324 21 MeV
LECs By, involved in the Cayley-Hamilton identity change which corresponds to twice the imaginary part of the pole
accordingly. The LECS,, 8., Ba, Bs, and B, are then position. From the analysis of thB; — =~ 77" decay
compatible with zero within their phenomenologically deter-[45] the mass and the width of ttfg(980) were remeasured
mined error bars and we neglect them as an approximatiofio be 9753 MeV and 444 MeV, respectively.
This estimate for the LECs has been proven to be quite suc- Our results start deviating from the experimental phase
cessful in Refs[9,41] and suggests that the important phys-shifts at arounde. ,=1.2 GeV, however, this is not very
ics for the considered processes is included in the remainingurprising since higher particle effects which are omitted in
parameters8,, B3, Bs, and Bg. The omission of the first this scheme, in particular themdchannel, will become im-
parameters is also motivated by the observation that they capprtant at these energi¢46]. In thel=3 channel a broad
be interpreted as OZI violating corrections of the latter onesresonance, the or K (900), can be seen extending from
Of course, an improved fit to data might be obtained bythreshold to about 1 GeV, which is related to a pole at
fine-tuning these suppressed parameters, but no addition@f40—246) MeV. Again, we have good agreement with
insight is gained and none of our conclusions change. Welata up to energies &_,,=1.3 GeV. In thel =1 channel a
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FIG. 5. Scattering data frorBU(3) chiral Lagrangians and experimental data from REg8] (all plots), [20] (K ), [21,22 (7,
=2). TheSmatrix elements are parametrized%s y2/e? where s is the phase and the magnitude.

sharp increase just below 1 GeV is due to #3€é980) reso-

with the pureSU(3) analysis we make theamechoice for

nance, yvhich manifests as a cusp in the scattering amplitudgse parameterél1), while the additional LECs of th&J(3)

A possible cusp interpretation of the, has already been | agrangian are set to zero. This approximation yields good
given in Ref.[47]. In our analysis it corresponds to poles at results and we refrain from performing a better fit to existing

(1081-36i) MeV and (791 75) MeV (see the discussion data by fine-tuning the new couplings. The resulting scatter-
about cusps in Sec. )ll These poles are both hidden on ouring phases are shown in Fig. 6 and the pole positions are
standard Riemann sheet, the first pole lies on the Riemangiven in Table Il. We note that up to 1.5 GeV there are no

sheet corresponding to the physical region between theonsiderable differences 8U(3) ChPT. In particular, the

branching points ofry at 682 MeV andKK at 988 MeV and

inclusion of then’ channels does not yield any new reso-

the second one corresponding to the Riemann sheet abow@nces in the considered energy range up to 1.5 GeV.

the KK branching point. Therefore, the appears as a reso-

This is a nontrivial observation, since the inclusionsgf

nance with its central part cut away and the phase shift is lesshannels might have disturbed the agreement with experi-
than 180°. For thé=3$ andl =2 channels reasonable agree- mental data of the purU(3) case via coupling between the
ment with experiment is achieved for center-of mass energieshannels as has been observed in the meson-baryon sector
up toE. m=1.5 GeV and no significant increase of the phasg7]. In the purely mesonic sector, on the other hand, the

shifts is observed.

B. U(3) ChPT

We now extend the chiral Lagrangian to ig¢3) form by

effects of then’ decouple to a large extent from the interac-
tions of the Goldstone bosons. Remarkably, the results are
insensitive to the value ob{M=2%f2—1/6v{" which is
mainly responsible fory " mixing [9]. Variation of its value

including the »’ explicitly. In order to compare the results from 7$Y=2%f2 with omitted 1N.-suppressed piece"
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FIG. 6. Scattering data fror/(3) chiral Lagrangians with experimental data points from REZS] (all plots), [20] (K ), [21,22
(wm,1=2). TheSmatrix elements are parametrized$s \27e?? where § is the phase and the magnitude.

down to’ﬁ(zl)zo for suppressed mixing does not alter our Our choice of setting the new parametgrs, ...,B15 t0 zero

results considerably.
The similarity of theSU(3) andU(3) results with the

does not change the results with respect to the SU(3) case,
since we kepiB, explicitly. If, on the other hand, we would

same set of parameters depends on a Cayley-Hamilton ideRave preferred to absoriB,, the equivalence of both

tity which can be utilized to absorb the paramefgy by
some of the other LECs. In th8U(3) case this identity
involves the parametergy,...,83, Whereas forU(3) the
additional parameterg;s,...,B1¢ are included, see Re#1].

TABLE Il. Pole positions(MeV) of scalar channels from the
U(3) chiral Lagrangian and using the parameter set in(ED.

I resonance pole
0 fo(400—1200) 459-233
0 f0(980) 994-10i
3 K% (900) 737248
1 a,(980)° 1061-55i
1 a,(980)” 761-62i

schemes could have only been restored by taking nonvanish-
ing values forB3,...,B1 in the U(3) Lagrangian as given
by the Cayley-Hamilton identity.

There are, however, small differences between3hé3)
andU(3) results, if the same set of parameters is employed,
and they are most easily seen in the positions of the poles in
Tables | and Il which change by up to 30 MeV. These
changes give a measure for the importance ofztheontri-
butions within this approach. In tHeU(3) framework some
effects of then’ are hidden in the coupling constants of the
fourth order chiral Lagrangia9,11,14, whereas in the
U(3) theory they’ is treated as a dynamical degree of free-
dom. Hence, in order to reproduce tB&J(3) results more
accurately, the coupling constants would have to be modified
slightly compensating thep’ contributions in theU(3)
framework.
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C. Comparison with previous work V. CONCLUSIONS

It is instructive to compare the present investigation with  In this work we have analyzed meson-meson scattering
previous work on coupled meson channels. In R&f.the  from theSU(3) andU(3) chiral effective Lagrangians in the
second ordeBU(3) Lagrangian was sufficient to reproduce s-wave channel by means of a coupled channel Bethe-
the measured scattering data below 1 GeV. This work waSalpeter equation. We have presented the Bethe-Salpeter

done in cutoff regularization and with a reduced set of Chanequation and solved it for a local interaction kernel. Reso-

nels. When setting all fourth order couplings to zero in ourN@nces are identified by relating them to poles in the analyti-

approach we obtain very similar scattering data, with orcal continuation of the scattering cross section and multiplets

without the " channels, which shows that at leading orderOf composed state/s of fwo fundamental pseudoscalar me-
, : sons, i.e., {r,K,»n,7n"), are discussed.

the »" has hardly any effect on low energy physics. We first investigated th&U(3) case. The fourth order

In Ref. [4], for example, the approach was extended by| agrangian was simplified by taking only the most relevant
including the fourth order Lagrangian and a full analysis ofparameters according to the OZI rule into account, which are
the scalar and vector channels 8U(3) ChPT was per- 1380), (30), ,3(50), and ,3:(30)- In the isospinl=0 and| =1
formed. By adjusting the LECs the authors were able to obehannels we were able to fit the scattering phases up to about
tain good agreement for all presented data. The main differ.2—1.3 GeV, in analogy to results found, e.g., in Réi.
ence to our scheme is the expansion of the scatteringbove 1.2 GeV deviations from the experimental phase
amplitude. For the amplituda at a vertex we use the sum of shift.s are observed as expected due to the omissi.on of higher
the second and fourth order amplitudes A,+A,, whereas Particle states, e.g., therhannel should become important

in Ref. [4] the inverse amplituddAM ) expansion in the =0 channel at these energies. qu thes ar]d I .
=2 channels reasonable agreement with experiment is

A=Ay (A= Ag) A=At Ayt AA AL (12) achieved for center-of mass energies up to 1.5 GeV and no
significant increase of the phase shifts is observed.

In a second step, the analysis was extendad(®) ChPT
was used which s equal in fourth order. Both approacheg Cy el I Py ST ICEI ST
d!ffer significantly at energies well aboﬁ;m_z_ 1 Gey. Thls plings of they’ which are also OZI suppresséhore gen-
difference can be easily understood by investigating thgajly, the 1N, suppressed couplingghe results in this en-
asymptotic dependence @& with respect to the energy ergy region were not altered considerably and again the
squareds. The amplitude#\, andA, are linear and quadratic spectrum could be reproduced. This is a nontrivial statement,
in s, respectively. While in our scheme the introduction of since the coupling between thg channels with the other
fourth order couplings increases the asymptotic poweh of ones may have destroyed the agreement of the PUKS)
to two, it is decreased to zero in the other scheme. case, and is in contradistinction to the results recently ob-

In a couple of papers on this subject the results werdained in the meson-baryon sec{dt]. Nevertheless, small
refined. In Ref[48] a full IAM analysis with manifest regu- effects from the inclusion of the;” are observed which

larization independence, but without manifest unitarity isWould require a slight readjustment of the coupling con-

performed. The main advantage of this approach is the dire&tants’ in order to reproduce the results of$4(3) case. In

. : . . . our approach and with our choice of the parameter values the
compatibility with chiral perturbation theory from which the inclusion of they' does not yield new resonances below 1.5

: : o :
one-loop amplitude is taken. Here, ther, 1 =3, scattering ey that could be interpreted as quasi-bound states ofthe
phase agrees with the experimental data. This is possibly dygith a Goldstone boson.

to thet.andu channel |OOpS that are in.C|Uded in the full IAM We should mention that our fit to the phase shifts is not
analysis. When they are dropped as in Réf.or our analy-  unique. The OZI violating parameters which we have ne-
sis the scattering phase is increased. The effect of those loogtected here do not necessarily need to be small and can
can be simulated by a change of renormalization scale, this igontribute to meson-meson scattering. However, a small
what we did by loweringu to 0.8 GeV in this particular Vvariation of these parameters could always be compensated
channel. by small variations ofg”, g, Y, and 8. The
Finally, we would like to comment on a possible exten-choice of the parameters made in the present investigation is
sion to SU(3) or U(3) of the SU(2) analysis described in 1N SO far appealing as it takes only a minimal set of four
Ref. [5] where emphasis was put on renormalization. For-ECs into account while setting the remaining OZI violated
each channel a separate counterterm polynomial was intr¢PUPIiNgs to zero. Further phenomenological input such as

duced to account for the infinities of the loop integral. Theth€ three pion decays of thg and ' [49] may help to
success of this method relies on the fact that there are onfgXtract the values of some of the LECs more precisely and

three channels iBU(2), m with (1, J) equals(0, 0), (1, 1), larify if this simplifying assumption for the LECs was jus-

and(2, 0. In SU(3) or U(3) ChPT, however, more than ten tf€d-
channels exist and each of them would require different co-
efficients for the polynomials. With such a large number of
coefficients agreement with experimental data is easily We are grateful to E. Marco for useful discussions. This
achieved without constraining most of the parameters andvork was supported in part by the Deutsche Forschungsge-
the method would lose its predictive power. meinschaft.
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