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Power-law wave functions and generalized parton distributions for the pion
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We propose a model for generalized parton distributions of the pion based on the power-lawAnsatzfor the
effective light-cone wave function.
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I. INTRODUCTION

Generalized parton distributions~GPDs! @1–3# are now
the object of intensive theoretical studies, especially wit
the context of applications to deeply virtual@4,5# ~for a de-
tailed recent review see Ref.@6#! and large momentum trans
fer processes@7,8#. The main advantage of GPDs is the
universality, allowing one to connect different hard pr
cesses, both exclusive and inclusive. The price for this is
complexity of GPDs: they are functions of three variabl
e.g., skewed parton distributions~SPDs! Fz(X,t) or
H(x,j;t) depend on the fractionX ~or x) of the momentum
carried by the active quark, the skewedness parameterz ~or
j), and the invariant momentum transfert. For this reason,
the most promising approach to disentangling GPDs fr
experimental data is to construct realistic models for GP
and fix their parameters by fitting the data. The crucial po
for the model building is that, in specific limits, GPDs redu
to more familiar functions describing the hadronic structu
such as usual parton densities, form factors, and distribu
amplitudes. The ‘‘reduction’’ relations between GPDs a
these functions have been used as a basis for building
nomenological models of GPDs@9#. Another fruitful idea
used in the model building is to construct GPDs from t
light-cone~LC! wave functions@7,8#. The most popularAn-
satz @10# assumes a Gaussian dependence of the LC w
functionsc(x,k') on the transverse momentumk' . A prag-
matic reason behind this choice is the simplicity of Gauss
integrals allowing to obtain many results in analytic form
However, there are noa priori grounds to exclude wave
functions with other types of transverse momentum dep
dence. In particular, the two-body~i.e., q̄q) component of
the pion wave function was calculated recently in a mo
@11# based on the one-gluon exchange approximation in
light-front framework. The wave function was found nume
cally, and it was observed that the fit is better if one use
power-law form rather than a Gaussian@11,12#. Furthermore,
the power-law wave functions were used some time ago
models for the nucleon form factors@13#. In the present pa-
per, we show that a simple power-lawAnsatzfor the pion LC
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wave function allows one to obtain explicit analytic expre
sions for the form factor and generalized parton distributio
To make our presentation self-contained, in Sec. II we re
basic information about generalized parton distributio
which is used in the following sections. In Sec. III, as
starting example, we consider the model with Gaussian
pendence of the LC wave functions on the transverse
mentum. In Sec. IV, we specify the explicit ‘‘toy’’ mode
expression for the effective pion wave function, which
then used in Sec. V to derive a parametric representation
the pion form factor. We show that the two parameters of t
simple model, the constituent quark mass and the wave fu
tion width, can be easily adjusted to provide a curve close
existing experimental data. In Sec. VI, we analyze t
asymptotic large-Q2 behavior of the pion form factor. We
consider both the massivemÞ0 and masslessm50 cases.
We show that, in the latter case, the pion form factor in o
model with a power-law wave functionc(x,k')
;1/$Ax(12x)„11k'

2 /@l2x(12x)#…n% has the same
asymptotic behaviorFp(Q2);1/Q2 for any powern. Al-
though this behavior is generated by the soft~Feynman!
mechanism, it formally coincides with the quark countin
law dictated by the hard one-gluon exchange mechanism.
show that the 1/Q2 behavior of the soft contribution is re
lated to the fact that the parton distributionf (x) in the mass-
less case does not vanish forx51. In the massive case
f (x)→0 as x→1 and the ultimate asymptotic behavior
ln(Q2/l2)/Q4. However, for a wide range of accessibleQ2,
the curve mimics the 1/Q2 behavior. In Sec. VII, we note tha
our parametric representation for the form factor has
form of the reduction relation connecting the pion form fa
tor and the double distribution~DD! F(x,y;t). The DD ob-
tained in this way has correct spectral and symmetry prop
ties. Moreover, it has the factorized structure proposed
Ref. @9#: it looks like a distribution amplitude with respect t
the y variable and like a parton density with respect to thex
variable. It also provides a nontrivial example of the inte
play betweenx, y, andt dependence of DDs. With an explic
model for DDs at hand, one can calculate the relev
skewed distributions: the nonforward parton distributi
Fz(X;t) or Ji’s off-forward parton distribution~OFPD!
H(x,j,t); see Sec. VIII. In the simple toy model that we u
the pion is treated as an effectively two-body system, wh
is not very realistic: one may expect that the parton densi.
©2003 The American Physical Society14-1
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MUKHERJEEet al. PHYSICAL REVIEW D 67, 073014 ~2003!
at smallx are affected by many-body components. Inde
the valence parton density obtained in our model diff
rather strongly from the phenomenologically establish
form. In Sec. IX, we propose to fix this deficiency by adop
ing a model with a more realisticx profile at t50, but pre-
serving the analytic structure of the interplay betweenx,y,
and t dependence generated by the power-lawAnsatz. We
show that by slightly changing the quark mass and the w
function width parameter it is still possible to get a go
description of the pion form factor data. We present SP
Fz(X;t) obtained from the ‘‘realistic’’ DD. In particular, we
show that in the ‘‘soft pion limit’’z51,t50, the isovector
part of the ‘‘realistic’’ SPD has a shape close to t
asymptotic form of the pion distribution amplitude. In Ap
pendix A, to demonstrate that the variablesx,y of the para-
metric representation for the form factor indeed have
meaning of the variables of double distributions, we give
covariant derivation of the toy model DD in a scalar mod
In Appendix B, we discuss the structure of model SPDs
the impact parameter representation. In particular, we s
how one can use superpositions of power-law DDs to bu
models for SPDs satisfying positivity bounds. In Append
C, using again the toy scalar model, we briefly show h
one can use our approach to build the models for two-p
distribution amplitudes that appear in theg* g→pp reac-
tion, which can be treated as the crossed-channel proce
deeply virtual Compton scattering. Our conclusions are
mulated in Sec. X.

Summarizing, in this paper we construct power-law mo
els of theC-odd double distributionsF(x,y;t) for the pion
and the relevant skewed parton distributionsFz(X;t). By
construction, the model GPDs satisfy such important c
straints as reduction relations to usual parton densities
form factors, they have correct spectral and polynomia
properties, thus providing a model that can be used in p
nomenological applications. For the simplified scalar ca
we also build models that automatically satisfy the positiv
constraints.

II. BASICS OF GENERALIZED PARTON DISTRIBUTIONS

Generalized parton distributions parametrize nonforw
matrix elements of composite operators. To define the le
ing twist GPDs for the pion, we start with

i n^P2r /2uc̄a$gmD
↔

m1
•••D

↔
mn

%cauP1r /2&

52(
k50

n
n!

2kk! ~n2k!!
Ank

(a)~ t !

3$PmPm1
•••Pmn2k

r mn2k11
•••r mn

%

1
1

2n
Dn

(a)~ t !$r mr m1
•••r mn

%, ~2.1!

whereD
↔

5(D
→

2D
←

)/2, $•••% denotes the symmetric-tracele
part of a tensor,a enumerates quark flavors, and the qua
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fields are taken at the origin. Compared to the more fami
case of forward matrix elements defining the usual par
densities, we have two four-vectorsP and r, both of which
can be used to build the tensor structure of the right h
side of Eq.~2.1!. The indexk specifies how many times th
vector r appears in a particular term of the sum. Incorpor
ing Hermiticity properties of the local operators and tim
reversal invariance, one can show@14# that k is even. Now
one can define double distributionsf (b,a;t) as functions
generatingAnk(t) through itsbn2kak moments

$16~21!n%Ank
(a)~ t !5E

21

1

dbE
211ubu

12ubu
bn2kakf a

7~b,a;t !da.

~2.2!

The spectral propertyubu1uau<1 can be proved for any
relevant diagram of perturbation theory@1,5#.

As usual, the Mellin moments define two function
f a

2(b,a;t) corresponds to evenn and f a
1(b,a;t) to odd n.

They both are even functions ofa. With respect tob,
f a

2(b,a;t) is even whilef a
1(b,a;t) is odd. Forb.0, one

can write f a
2(b,a;t) as the difference f a(b,a;t)

2 f ā(b,a;t) of quark and antiquark distributions@i.e.,
f a

2(b,a;t) corresponds to a valence quark distributio
f a

25 f a
val] and f a

1(b,a;t) as their sum f a(b,a;t)
1 f ā(b,a;t). The Polyakov-WeissD term @15# is defined as
the functionDa(a;t) whosean moments give theDn

(a)(t)
coefficients. The latter are nonzero only for oddn; hence
Da(a;t) is an odd function ofa.

We stress that this definition of double distributions
absolutely Lorentz invariant: it does not require reference
any particular frame. Moreover, the mutual orientation a
relative size of the two momentaP andr are arbitrary. If, in
some particular frame, the space part of the momentumP is
oriented in the ~longitudinal! x3 direction, the four-
momentumr may also have a nonzero longitudinal comp
nent, but it may be purely transverse as well, having nonz
components in the transversex1 ,x2 plane only. The double
distributions f (b,a;t) parametrizing the nonforward matri
element are Lorentz invariant objects and they are the s
in all cases.

Usually, to extract the symmetric-traceless part of a ten
Omm1•••mn

, it is multiplied by zmzm1
•••zmn, wherezm is a

lightlike vectorz250. This trick corresponds to a projectio
of Eq. ~2.1!:

^P2r /2uc̄aẑ~ izD
↔

!ncauP1r /2&

52~Pz!(
k50

n
n!

2kk! ~n2k!!
Ank

(a)~ t !~Pz!n2k~rz!k

1
1

2n
Dn

(a)~ t !~rz!n11 ~2.3!
4-2
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~whereẑ[gmzm). The direction ofz is arbitrary, but, to ac-
cess all the coefficientsAnk(t), one should have both
(Pz)Þ0 and (rz)Þ0. In particular, ifz has only the minus
light-cone component, bothP1 andr 1 should be nonzero to
make all the coefficientsAnk visible. Such a situation is char
acteristic for deeply virtual Compton scattering~DVCS!
where the momentum transferr must have a nonzero long
tudinal component. To study DVCS, it is convenient to tre
the ratioj5r 1/2P1 as an independent variable and defi
off-forward parton distributionsH( x̃,j;t) @2#. To this end,
one introduces the functions

M n
(a)~j;t !5 (

k50

n
n!

k! ~n2k!!
Ank

(a)~ t !jk1Dn
(a)~ t !jn11

~2.4!

and declaresM n
(a)(j;t) to be the moments ofHa( x̃,j;t):

$16~21!n%M n
(a)~j;t !5E

21

1

x̃nHa
7~ x̃,j;t !dx̃. ~2.5!

These definitions provide a formal relation betwe
H( x̃,j;t) and f (b,a;t):

Ha
6~ x̃,j;t !5E

21

1

dbE
211ubu

12ubu
f a

6~b,a;t !d~ x̃2b2ja!da

1~161!sgn~j!Da~ x̃/j;t !. ~2.6!

Combining Eqs.~2.2! and ~2.3! gives the definition of
DDs through the parametrization of nonforward matrix e
ments of nonlocal light cone operators

^P2r /2uc̄a~2z/2!ẑca~z/2!uP1r /2&uz250

5~Pz!E
21

1

dbE
211ubu

12ubu
e2 ib(Pz)2 ia(rz)/2

„f a
1~b,a;t !

1 f a
2~b,a;t !…da1~rz!E

21

1

e2 ia(rz)/2Da~a;t !da.

~2.7!

Using the symmetry off a
6(b,a;t) with respect tob and

a, one can rewrite this representation in terms of quark
antiquark DDs taken for positiveb only

^P2r /2uc̄a~2z/2!ẑca~z/2!uP1r /2&uz250

52~Pz!E
0

1

dbE
211b

12b

„f a~b,a;t !e2 ib(Pz)2 ia(rz)/2

2 f ā~b,a;t !eib(Pz)1 ia(rz)/2
…da1~rz!

3E
21

1

e2 ia(rz)/2Da~a;t !da. ~2.8!
07301
t
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In the forward limit,r 50, the left hand side of Eq.~2.8!
coincides with the matrix element defining the usual par
densitiesf a,ā(x). This gives the reduction relations

E
211x

12x

f a,ā~x,a;t50!da5 f a,ā~x!

and

Ha,ā~x,j50;t50!5 f a,ā~x!. ~2.9!

On the other hand, keepingrÞ0 but takingn50 in Eq.~2.1!
one deals with the matrix element of the vector curre
which defines thea componentFa(t) of the relevant form
factor. The reduction relations connecting GPDs with fo
factors result from

Fa~ t !5A00
(a)~ t !5M 0

(a)~ t ! ~2.10!

and are given by the expressions

E
0

1

dbE
0

12b

„f a~b,a;t !2 f ā~b,a;t !…da5Fa~ t !,

E
0

1

„Ha~ x̃,j;t !2Hā~ x̃,j;t !…dx̃5Fa~ t !

~2.11!

containing only the valence quark combinations, name
f a

val5 f a2 f ā andHa
val5Ha2Hā .

The representation~2.8! has the structure of a plane wav
decomposition, which provides the parton interpretation
DDs: the quarks carry the momentumbP1(11a)r /2 origi-
nating from both the average momentumP and the momen-
tum transferr. Another possibility~which is more convenien
in applications involving light-cone wave functions! is to
write the momenta of quarks asxp11yr, i.e., in terms ofr
and the original hadron momentump15P1r /2. The new
variablesx,y are expressed throughb,a by x5b,y5(1
1a2b)/2. The resulting DDsFa,ā(x,y;t) ‘‘live’’ on the
triangle 0<x,y,x1y<1. Sincef (b,a;t) are even functions
of a, the DDs F(x,y;t) are symmetric with respect to
y→12x2y transformation~‘‘Munich’’ symmetry @16#!. For
light-cone dominated processes, like DVCS, only the p
componentxp1

11yr1 is essential. Defining the skewedne
parameterz5r 1/p1

1 , we introduce nonforward parton dis
tributions @5#

F z
a,ā~X,t !5E

0

1

dxE
0

12x

Fa,ā~x,y;t !d~X2x2zy!dy.

~2.12!

These distributions are related to the usual parton dens
by

E
0

12x

Fa,ā~x,y;t50!dy5 f a,ā~x!,
4-3
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Fz50
a,ā ~X;t50!5 f a,ā~X! ~2.13!

and to form factors by

E
0

1

dxE
0

12x

Fa
val~x,y;t !dy5Fa~ t !,

E
0

1

F z
a,val~X,t !dX5Fa~ t !. ~2.14!

Note that the double distributionsF(x,y;t) are integrated
over y in both of the above reduction relations. Thus,
makes sense to introduce intermediate functions

Fa,ā~x,t !5E
0

12x

Fa,ā~x,y;t !dy[Fz50~x;t !. ~2.15!

They satisfy simpler reduction relations

Fa,ā~x,t50!5 f a,ā~x! and E
0

1

F a
val~x,t !dx5Fa~ t !.

~2.16!

Thus, the functionsF(x,t) are hybrids of the form factors
F(t) and the usual parton densitiesf (x); that is why we call
themnonforward parton densities~NDs! @7#.

III. GAUSSIAN WAVE FUNCTION AND NONFORWARD
PARTON DENSITIES

The concept of NDs can be easily illustrated within t
framework of the light-cone formalism. Consider a two-bo
bound state whose lowest Fock component is described
light-cone wave functionc(x,k'). In a frame where the mo
mentum transferr is purely transverser 5r' , one can write
the two-body contribution to the form factor as@17#

F (2b)~ t !5E
0

1

dxE c* „x,k'1~12x!r'…c~x,k'!d2k'

[E
0

1

F (2b)~x,t !dx, ~3.1!

whereF (2b)(x,t) is the two-body contribution into the non
forward parton density

F (2b)~x,t !5E c* „x,k'1~12x!r'…c~x,k'!d2k' .

~3.2!

Adding contributions from higher Fock components, one o
tains the total NDF(x,t) whose integral overx gives the
form factor F(t) of the bound state. As discussed in t
previous section, at zero momentum transferF(x,t) reduces
to the usual valence parton densityf (x)5F(x;t50). Fur-
thermore, there is the usual form factor normalization con
tion F(t50)51. Finally, for the valence quark distribution
the integral off (x) overx is 1. These conditions are satisfie
in the simplest way by the factorizedAnsatz F(x,t)
07301
a

-

i-

5 f (x)F(t), in which there is no interplay betweenx and t
dependence ofF(x,t). One may expect that in reality th
situation is more complicated. Consider a wave function w
a Gaussian dependence on the transverse momentumk' ~cf.
@10#!

c~x,k'!5w~x!e2k'
2 /2x(12x)L2

~3.3!

@note thatk'
2 /4x(12x) is essentiallykW2 written in the light-

cone variablesx,k']. Taking the Gaussian integral overx,k'

we get

F (2b)~x,t !5 f (2b)~x!e(12x)t/4xL2
, ~3.4!

where

f (2b)~x!5px~12x!L2w2~x!5F (tb)~x,t50! ~3.5!

is the two-body part of the relevant parton densityf (x). To
get the total result for either the usualf (x) or nonforward
parton densitiesF(x,t), one should add the contribution
due to higher Fock components. These contributions are
small, e.g., with the GaussianAnsatzthe valenced̄u contri-
bution to the normalization of thep1 form factor fort50 is
about 25%@10#. The problem is that we do not have a fo
malism providing explicit expressions for an infinite tower
light-cone wave functions. However, the parton densit
f (x) are known from experiment. In this situation, one c
treat Eq.~3.4! as a guide for fixing the interplay between th
x and t dependence of NDs and model them by

F a~x,t !5 f a~x!ex̄t/4xL2
. ~3.6!

The functionsf a(x) here are the usual valencea-quark par-
ton densities. One can take them from existing parametr
tions of parton densities such as Glu¨ck-Reya-Vogt~GRV!,
Martin-Roberts-Stirling~MRS!, CTEQ densities, etc. This
model ~originally proposed in Ref.@18#! was successfully
applied in Ref.@7# to describe the proton form factorF1(t)
in a wide region 1,2t,10 GeV2 of momentum transfer by
fitting the only parameterL2 characterizing the effective
proton size.

IV. POWER-LAW WAVE FUNCTIONS

GPDs give the most general parametrization of nonf
ward matrix elements. Furthermore, both of them, the D
F(x,y;t) and SPDsFz(X;t) are functions of three variables
in addition to the invariant momentum transfert they depend
on two ‘‘longitudinal’’ variablesx,y or X,z. However, the
Gaussian model of the previous section gives a represe
tion for the form factor in terms of a one-dimensionalx in-
tegral of the functionF(x,t) depending on only two vari-
ables,x andt. One may suspect that the GaussianAnsatzis a
degenerate case failing to reveal the richer structure pre
in more general situations. In what follows, our goal is
study a model based on power-law wave functions. As
will see, although this model is more complicated, we a
still able to get most of the results in analytic form, whic
4-4
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allows us to use it for building nontrivialAnsätze for gener-
alized parton distributions.

The qq̄ wave function of the pion found numerically i
@11# was parametrized analytically by a power-law fit

w~kW !;S 1

11k2/L2D k

, ~4.1!

with k;2 rather than by a Gaussianw(kW );exp(2k2/LG
2 ).

Here k25kz
21k'

2 is the square of the relative three
momentum andL is the parameter characterizing the wid
of thek2 distribution, i.e., the size of the system. In the ca
of equal quark masses, there is a simple relation@19# be-
tween the usual variables (kz ,k') and the infinite momentum
frame ~IMF! variables (x,k')

x5
1

2 F11
kz

Am21kz
21k'

2 G , ~4.2!

wherem is the effective quark mass. The relation betwe
w(kW ) and the IMF wave functionc(x,k') is given by

c~x,k'!5w~kW !
~11k2/m2!1/4

Ax~12x!
. ~4.3!

For light quarks, one may expect that the size parameterL is
close to the effective quark massm. Then the factor (1
1k2/m2)1/4 can be essentially absorbed into a redefinition
the powerk, whose precise value, in fact, is not critical fo
our purposes. Thus, in what follows, we will consider a si
plified power-law IMF wave function

c~x,k'!5
N

Ax~12x!@a1bk'
2 #2

, ~4.4!

wherea1bk'
2 is the IMF version of (11k2/L2) with

a511

s2S x2
1

2D 2

x~12x!
, b5

s2

4m2x~12x!
, s5

m

L
,

~4.5!

andN is the normalization constant. For the two-body Fo
component, it can be fixed from the requirement that
integral ofc(x,k') overx andk' should give the pion deca
constant

A 3

2p3E c (2b)~x,k'!dxd2k'5 f p . ~4.6!

As noted in the previous section, the knowledge of the tw
body wave function is not sufficient to calculate the pi
form factor. To get it, we should add the contribution from
higher Fock components. Just as in the case of the Gaus
wave function, the two-body component is responsible o
for some portion of ‘‘1’’ in the normalization condition
F(0)51 @10,12#. Again, the structure of higher Fock com
07301
e

n
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ponents can only be guessed. To avoid making too m
guesses, we will analyze the simplest ‘‘one-guess’’ mode
which a single two-body-like functionc(x,k') ~4.4! imitates
the contribution of all Fock components into the pion for
factor. Thus, we take

F~Q2!5E c„x,k'1~12x!q'…c~x,k'!dxd2k' ,

~4.7!

and normalize the effective wave functionc(x,k') by

E uc~x,k'!u2 dxd2k'51. ~4.8!

This condition~4.8! gives an explicit expression for the no
malization constantN of the effective wave function:

N25
3

4p S s

mD 2 1

A~s!
, ~4.9!

where

A~s!5E
0

1dx

a3 5E
0

1 ~12z2!3

@12~12s2!z2#3 dz. ~4.10!

Before proceeding further, we would like to make it cle
that substituting the total contribution of higher Fock com
ponents by a two-body type term is just a toy model, and
do not expect it to adequately describe all the aspects of
pion structure. In particular, the total parton density in t
toy model has the same (x→12x symmetric! shape as its
two-body part, and it vanishes atx50. One would expect,
however, that the contributions of higher Fock compone
are shifted to smaller and smallerx values, producing even
tually the experimentally observed;1/Ax behavior. We do
not know how much each term of the infinite tower of Fo
components contributes to the parton density, but we kn
~from experiment! what is the total result. Thus, our ultimat
strategy, just as in the case of the Gaussian wave functio
to calculate GPDs in the toy model, identify the factor co
responding to the usual parton density, and substitute it
the experimental one. On the other hand, one may ex
that the form factor, being an integral of the relevant GP
should not be too sensitive to the details of itsx dependence,
at least in some range of momentum transfert. Thus, we
study first the form factor in our toy model. We show tha
despite its crudeness, the toy model can easily fit the fo
factor data by adjusting the two parameters of the mod
Then we incorporate the main advantage of the toy mo
the possibility to do calculations analytically, and obtain t
representation for the form factor in terms of DDs. Final
we ‘‘correct’’ the latter in such a way that, after integratio
they produce experimental parton densities. We also sh
that this model gives DDs with a nontrivial ‘‘profile’’ depen
dence on they variable.
4-5
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V. FORM FACTOR IN TOY MODEL

The k' integral in the expression for the form factor

F~Q2!5N2E dxd2k'

x~12x!@a1b„k'1~12x!q'…
2#2@a1bk'

2 #2

~5.1!

can be done using either the Feynman parameters or
Schwingera-representation method briefly described belo
To this end, we use

1

Ak
5

1

G~k!
E

0

`

ak21e2aAda, ~5.2!

wherek52 in our case. After calculating the Gaussian in
gral over k' , we arrive at the representation for the for
factor in terms of two parametersa1 anda2:

F~Q2!5pN2E
0

`E
0

`a1da1a2da2

~a11a2!

3E
0

1

e2a(a11a2)e2b(12x)2Q2a1a2 /(a11a2)

3
dx

bx~12x!
, ~5.3!

whereQ25q'
2 . Changing the variables

a11a25l, a15gl, a25~12g!l, da1da25ldldg,
~5.4!

we obtain the parametric representation

F~Q2!5pN2E
0

1 dx

bx~12x!
E

0

1

dgg~12g!

3E
0

`

l2dle2[al1bl(12x)2g(12g)Q2] . ~5.5!

Integration overl is easily performed to give

F~Q2!52pN2E
0

1 dx

bx~12x!

3E
0

1

dg
g~12g!

@a1b~12x!2g~12g!Q2#3
. ~5.6!

Incorporating the normalization condition, we get the fin
result

Fp~Q2!5
1

A~s!
E

0

1

dxE
0

1

dg
6g~12g!

@a1b~12x!2g~12g!Q2#3
.

~5.7!
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By construction, the form factor has the correct value
Q250. However, its slope at this point depends on the v
ues of the model parametersm ands. To obtain the analytic
expression for the slope we note that, in the smallQ2 limit,
one can expand the denominator of theg integration

Fp~Q2!uQ2→05
6

A~s!
E

0

1dx

a3E
0

1

dgg~12g!

3F12
3b

a
g~12g!Q2~12x!2

1
6b2

a2 @g~12g!#2Q4~12x!41•••G .
~5.8!

Using the normalization condition~4.8! for the wave func-
tion, taking the integrals overg, and introducing the variable
z52x21 @such as in Eq.~4.10!# we obtain

Fp~Q2!uQ2→0512
3

20

Q2

m2 s2
B~s!

A~s!
1

9

280

Q4

m4 s4
C~s!

A~s!
1•••,

~5.9!

where

B~s!5E
0

1~11z2!~12z2!3

„12~12s2!z2
…

4 dz ~5.10!

and

C~s!5E
0

1~11z416z2!~12z2!3

„12~12s2!z2)5 dz. ~5.11!

The integralsA(s), B(s), andC(s) can be calculated in
elementary functions, although the results are rather leng
Figure 1 shows the plot of the combinationss2B(s)/A(s)
ands4C(s)/A(s) as functions of the parameters. The com-
binations2B(s)/A(s) is monotonically increasing from zer
to infinity. Hence, after choosing the effective massm we can
always find such a parameters that the slopedFp(Q2)/dQ2

of the pion form factor atQ250 has the experimental valu
dFp

expt(Q2)/dQ2'1/mr
2 @20#. For massesm50.2, 0.3, and

FIG. 1. Combinationss2B(s)/A(s) ~solid! and s4C(s)/A(s)
~dashed! as functions of the parameters.
4-6
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FIG. 2. ~Color online! Left: Form factorFp(Q2) for three different parametrizations of the wave function: withm50.2 GeV~solid!, 0.3
GeV ~dashed!, and 0.4 GeV~dotted!. Right: Q2Fp(Q2), with the same wave functions as in the left panel.
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0.4 GeV, the parameterss fitting the pion charge radius ar
0.56, 0.95, and 1.33, respectively.

In Fig. 2 ~left! we have plotted the form factor as a fun
tion of Q2 in the lowQ2 regionQ2,1 GeV2 for these three
different parametrizations of the wave function. Since th
have the same slope atQ250, the curves are rather close
each other. However, the difference between the curves
comes more pronounced asQ2 increases. In Fig. 2~right! the
form factor calculated with these three effective wave fu
tions is shown in theQ2 region up to 5 GeV2 relevant to
future experiments at Jefferson Lab. Among these th
choices, the closest to existing experimental data@21# is the
curve corresponding tom50.3 GeV ands50.95.

VI. ASYMPTOTIC BEHAVIOR OF THE PION FORM
FACTOR

According to Fig. 2~right! in the accessible energy rang
Q2&5 GeV2, the model curves show the behavior close
the 1/Q2 scaling. Since the mass scales involved are ra
small,m2,L2;0.1 GeV2, one may think that the form facto
is already in the asymptotic region.

To analyze the asymptotic behavior of the form factor o
can follow the approach described in Ref.@22#. The basic
idea is that in the Drell-Yan formula~4.7! we deal with an
overlap of two functionsc(x,k') and c„x,k'2(12x)q'…

whose k' arguments are separated by a gap (12x)Q in
magnitude. Furthermore,c(x,k') rapidly decreases with in
creasingk' . Hence, whenQ2 is large, the integral overk' in
the form factor expression is dominated by two regions
phase space@22#:

~1! uk'u!(12x)Q, wherec(x,k') is large;
~2! uk'1(12x)q'u!(12x)Q, where c„x,k'1(1

2x)q'… is large.
In the first case,k' can be neglected compared to (

2x)q' in the wave function. The contribution from this re
gion is then approximated by

Fp
(1)~Q2!;E

0

1

c„x,~12x!Q…dx

3E u„uk'u,~12x!Q…c~x,k'!d2k' . ~6.1!
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Since the wave function falls off rapidly at large transver
momenta, the major contribution to the integral comes fr
the region whereuk'u is much smaller than (12x)Q, and
one may hope that thek' integral of c(x,k') can be ap-
proximated by the pion distribution amplitudew(x). The
next statement usually made is that the large-Q behavior of
the function c„x,(12x)Q… is determined by the large-k'

behavior ofc(x,k') and, hence, the large-Q behavior of the
form factor just repeats the large-k' behavior of the wave
function; i.e., if c(x,k');1/k'

n , then F;1/Qn. Note that
the last statement is true only if, after these substitutions,
integral overx converges. However, it is easy to derive th
after thek' integration in Eq.~6.1!, the remaining integrand
for the x integration is proportional to

x3~12x!5Q2

@x~12x!1s2~x21/2!21~12x!2Q2/4L2#3
. ~6.2!

Neglecting thex(12x) ands2(x21/2)2 terms compared to
(12x)2Q2/4L2, one would get the integraldx/(12x) loga-
rithmically diverging in thex→1 region. Of course, this ap
proximation is only true when (12x)2Q2/4L2@1 or x!1
22L/Q. This cut-off converts the logarithmic divergenc
into ln(Q2/L2). Hence, the asymptotic behavior
; ln(Q2/L2)/Q4. This result can also be obtained from o
representation~5.7! for the form factor, which we write now
as

Fp~Q2!5
1

A~s!
E

0

1

dxE
0

1

dg

3
6 g~12g!x3~12x!3

@x~12x!1s2~x21/2!21g~12g!~12x!2Q2/4L2#3 .

~6.3!

Again, there are two regions,g!4L2/@(12x)2Q2# and 1
2g!4L2/@(12x)2Q2# producing the leading large-Q2
4-7
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contribution ;L4/@(12x)2Q2#2. Combined with other
x-dependent factors, this gives thedx/(12x) divergence or,
after a more accurate calculation, the ln(Q2/L2)/Q4

asymptotic behavior. This behavior is not yet visible in t
curves shown in Fig. 2~right!. The curves suggest, in fac
the 1/Q2 behavior. The slow approach to asymptopia can
traced to the rather small numerical factorg(12g)/4
;1/16 accompanying theQ2 term. As a result, the effective
scale governing theQ2 behavior is something like 16L2

;1.5 GeV2 rather than simplyL2. Thus, the quark mas
squaredm2;0.1 GeV2 is small compared to the effectiv
scale, and it is worth investigating what happens wh
quarks are massless, i.e., whens50. Then

Fp~Q2!us505E
0

1

dxE
0

1

dg
6g~12g!x3

@x1g~12g!~12x!Q2/4L2#3 ,

~6.4!

and the situation changes drastically: the large-Q2 behavior
is dominated by integration over the 12x!4L2/@g(1
2g)Q2# region. The remaining integral overg has no sin-
gularities, and we getFp(Q2);L2/Q2 for the asymptotic
behavior. Clearly, the asymptotic behavior for massl
quarks is governed by the soft~or Feynman! mechanism.
One can easily check that the same asymptotic power

Fp(Q2);1/Q2 holds for the c(x,k');1/@Ax(12x)(1
1bk'

2 )k# wave functions with any powerk, and also for the

exponential wave functionc(x,k');e2bk'
2
/Ax(12x). This

puzzling observation has a rather simple explanation: the
lence parton densities in these models with massless qu
are constant,f (x)51, and it is this singularf (x)ux→1
→const behavior which is responsible for the 1/Q2 contribu-
tion to the form factor. If we ‘‘corrected’’ the model so tha
f (x) has a more realistic;(12x) behavior forx close to 1,
the Feynman mechanism contribution would have a 1Q4

asymptotic behavior.
An efficient way to obtain the asymptotic expansion

powers and logarithms ofL2/Q2 is based on the Mellin rep
resentation for the denominator factor:
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Fx1g~12g!~12x!
Q2

4L2G23

5
1

2p i E2d2 i`

2d1 i`

G~2J!G~J13!

3gJ~12g!J~12x!Jx2J23S Q2

4L2D J

dJ.

~6.5!

Now, theg andx integrals can be calculated inG functions
to give

Fp~Q2!5
1

2p i E2d2 i`

2d1 i`

6
G~2J!G~12J!

~J11!G~2J15!

3G2~J12!G2~J13!S Q2

4L2D J

dJ. ~6.6!

The integrand has poles at integerJ in the left half plane. We
explicitly displayed the rightmost of these poles 1/(J11). It
corresponds tox;1 integration and gives the leadin
asymptotic contribution equal to 12L2/Q2. Expanding the
integrand in the vicinity ofJ522,23, etc., we can get sub
leading contributions. Note that the singularity atJ522 is a
double pole 1/(J12)2. Hence, this contribution will have
the (L2/Q2)2ln(Q2/L2) term. One can also close the integr
tion contour in the right half plane. This procedure gives t
small-Q2 expansion ofFp(Q2), the first terms of which are
explicitly written in Eq.~5.8!.

VII. DOUBLE DISTRIBUTIONS IN THE TOY MODEL

Let us now analyze the connection of our expression
the pion form factor
Fp~Q2!5
1

A~s!
E

0

1

dxE
0

1

dg
6g~12g!

@11s2~x21/2!2/x~12x!1g~12g!s2~12x!Q2/4m2x#3 ~7.1!

with generalized parton distributions. Introducing the variabley5(12x)g, we can rewrite this formula as

Fp~Q2!5
1

A~s!
E

0

1

dxE
0

1

dyu~x1y<1!
6y~12x2y!/~12x!3

@11s2~x21/2!2/x~12x!1y~12x2y!s2Q2/4m2x~12x!#3 . ~7.2!

It may be treated as the standard representation@3#

Fp~Q2!5E
0

1

dxE
0

12x

F~x,y;2Q2!dy ~7.3!
4-8
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of the pion form factor in terms of the double distribution1

F~x,y;t !5u~x1y<1!
6y~12x2y!/~12x!3

A~s!@11s2~x21/2!2/x~12x!2ty~12x2y!s2/4m2x~12x!#3 ~7.4!
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~we switched tot[2Q2 to conform with the standard nota
tion for generalized parton distributions!. This double distri-
bution has correct spectral properties@3,5#: it vanishes out-
side the triangle 0<x,y,x1y<1. It also satisfies the
Munich symmetry condition@16#

F~x,y;t !5F~x,12x2y;t !. ~7.5!

Furthermore, fort50, it has the factorized form suggeste
in Ref. @9#:

F~x,y;t50!5u~x1y<1!h~x,y! f ~x!, ~7.6!

in which they dependence appears only in the normaliz
profile function

h~x,y!56y~12x2y!/~12x!3 ~7.7!

satisfying

E
0

12x

h~x,y!dy51. ~7.8!

The remaining factor
r

h

se

ne
A

07301
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f ~x!5
1

A~s!@11s2~x21/2!2/x~12x!#3 ~7.9!

depends onx only, and may be interpreted as the part
distribution for the valence quarks inside the pion. For no
zero t, the profile functionh(x,y) also factorizes out in the
expression for the double distribution, Eq.~7.4!. However, it
is multiplied by a function that has a nontrivial dependen
on all three variablesx, y, andt. In Fig. 3, we plotF(x,y;t)
as a function ofx andy for a few values oft.

The form of the double distribution presented above c
responds to the parametrizationk5xp11yr of the active
quark momentumk in terms of the initial pion momentump1
and the momentum transferr 5p12p2. The final state pion
has then the momentump25p12r : the initial and final
pions are not treated symmetrically in this formalism.
reinforce the symmetry, one should introduce the aver
momentumP5(p11p2)/2 ~the initial and final pion mo-
menta are thenP6r /2; see Sec. II! and write the active
quark momentum ask5bP1(11a)r /2. To get the relevant
double distributionf (b,a;t), we write theg variable asg
5(11h)/2 and then introducea by a5(12b)h. This
gives
f ~b,a;t !5u~ uau<12b!

3

4
@~12b!22a2#/~12b!3

A~s!@11s2~b21/2!2/b~12b!2@~12b!22a2#s2t/16m2b~12b!#3
. ~7.10!
ot
al

an

, in
lay
The normalized profile function in this case is3
4 @(12b)2

2a2# /(12b)3.
Integration overk' can be performed in a similar way fo

a more general power-law LC wave functionc(x,k');
(a1bk'

2 )2k/Ax(12x). In this case, one obtains DDs wit
k-dependent profiles ;@(12b)22a2#k21/(12b)2k21.
The power of the denominator factor in Eq.~7.10! also
changes from 3 to 2k21. Note that the faster the decrea
of c(x,k') with k' , the narrower is thea profile of the
resulting DD and the faster its decrease with2t. The purely
exponential wave function (k→`) gives an infinitely nar-
row profile functiond(a) „or d@y2(x21)/2# in the case of
F(x,y;t)…. The integral overa ~or y) is trivial, and this is the
formal reason why the Gaussian model gives a o
dimensional integral representation for the form factor.

1In Appendix A, it is demonstrated that the variablesx,y in Eq.
~7.4! have the same meaning as in the DD definition.
-
s

suspected, the Gaussian model is ‘‘too narrow’’: it cann
reveal they(a) profile feature inherent to DDs in the gener
case.

VIII. SKEWED DISTRIBUTIONS IN TOY MODEL

Having the expression for the double distribution, we c
construct the nonforward distributions@5# in the standard
way from

Fz~X,t !5E
0

1

dxE
0

12x

F~x,y;t !d~X2x2zy!dy. ~8.1!

Note that forF(x,y;t) given by Eq.~7.4! the integrations
again can be performed in elementary functions. Hence
this particular model, one can analytically study the interp
4-9
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FIG. 3. ~Color online! F(x,y;t) as a function ofx andy for three values oft50, 20.5, and21 GeV2.
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betweenX, z, and t dependence of the nonforward parto
distributions ~although the expressions are now rea
lengthy!.

In Fig. 4, we plotFz(X,t) as a function ofX and t for
some values ofz. Note that for each value ofz the nonfor-
ward distributions satisfy the reduction formula

E
0

1

Fz~X,t !dX5Fp~2t !. ~8.2!

An important point is that the right hand side here has
dependence on the skewedness parameterz.

One can also use the symmetric double distribut
f (b,a;t) and the relation

Hval~ x̃,j;t !5E
0

1

dbE
211b

12b

f val~b,a;t !d~ x̃2b2ja!da

~8.3!

to obtain Ji’s off-forward parton distributionsHval( x̃,j;t).
Note that for the infinitely narrow profile function
f $`%(b,a;t)5F(b,t)d(a)corresponding to the purel
Gaussian wave function, the OFPDH( x̃,j;t) is given by the
j-independent functionH $`%( x̃,j;t)5F( x̃,t): there are no
skewedness effects. Thus, the SPDs obtained from the
based on a power-lawAnsatzhave a richer structure.

IX. ‘‘REALISTIC’’ MODEL

The functionf (x), Eq. ~7.9!, was interpreted above as th
toy model version of the valence quark distribution in t
pion. However, its form strongly differs from the usual ph
nomenological parametrizations. At a normalization po
m;1 GeV, the latter have a form close to

f R~x!5
3

4
~12x!/Ax,

with the 1/Ax reflecting the Regge behavior due to e
changes that are not taken into account in the toy mode
the latter, we assumed that the contribution from the hig
Fock components tof (x) has the same shape as the tw
body one. Also, the expression that we use for the two-b
wave function is again just a model guess. In particular,
shown in Appendix A, the double distribution of our to
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model can be obtained from the scalar triangle diagram ta
at spacelike virtualities of the external currents imitating t
pions. In the spin-1/2 case, there are extrax-dependent fac-
tors originating from the numerators of propagators. Th
one should not take thex dependence of the toy model DD
too seriously. On the other hand, we observed that thy
dependence of the model DD has a rather universal struc
for t50, it is given by the profile function;@y(12x
2y)#k21 only. For tÞ0, they dependence appears also
the denominator factor, but it has a simple structure basic
resulting from kinematics. These observations sugg
‘‘minimally correcting’’ the model DD: to change itsx shape
at t50 without changing the pattern of itsy and t depen-
dence. To preserve the analytic structure of the interplay
tween thet vs x and y dependence of DDs dictated by th
simplestAnsatz~7.4! we take the model

FR~x,y;t !5F~x,y;t !
f R~x!

f ~x!
. ~9.1!

In terms of the effective two-body-like LC wave function
this corresponds to the change

c~x,k'!→cR~x,k'!5c~x,k'!Af R~x!

f ~x
. ~9.2!

The parametersm ands of the new model should again b
fixed by fitting the slope of the pion form factor att50 and
its behavior in the2t;1 GeV2 region. In Fig. 5, we show
the curve for the pion form factor obtained with theAnsatz
~9.1! and the valuesm50.46 ands50.81. It practically co-
incides with the curve obtained within the original model f
m50.3 GeV ands50.95 in the region of ‘‘not-so-high’’
transfer.

With the new DDs, one can obtain a realistic model f
the SPDsF z

R(X,t) via Eq. ~8.1!. The SPD is presented in
Fig. 6 as a function ofX and t for some values ofz.

As a more explicit illustration of thet dependence of
SPDs, in Fig. 7 we show SPDsFz(X;t) with differentz ’s for
two different values oft, for both the original and the ‘‘real-
istic’’ model.

When z increases, the maxima of SPDs shift to high
values ofX. The rate of change is more drastic in the case
the realistic model, where the SPD changes from a mo
tonically decreasing curve forz50 ~corresponding to the
4-10
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FIG. 4. ~Color online! Fz(X,t) as a function ofX and t for three values ofz50.2, 0.4, and 0.6.
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usual parton density! to a shape resembling that of distrib
tion amplitudes, asz tends to 1. It is interesting to analyz
the limiting casez→1. As demonstrated by Polyakov@23#,
in the soft pion limit,mp

2 →0,z→1,t50, the isovector part
of the pion SPD should coincide with the pion distributio
amplitude. To check if this constraint is satisfied by our mo
els, we take the functionFz51(X;t50) and symmetrize it
with respect toX↔12X to project onto the isovector com
ponent. In Fig. 8, we show the results both for the toy mo
and the realistic model. For the toy model, we obtain
double humped curve, resembling the Chernyak-Zhitnit
~CZ! modelwCZ(X)530(122X)2X(12X). More precisely,
this curve can be fit, with good accuracy, by the su
0.43was(X)10.57wCZ(X) of the CZ and the asymptoti
distribution amplitudewas(X)56X(12X). The pion distri-
bution amplitude~DA! in the toy model can be obtaine
directly by integrating the two-body wave functionc(x,k')
over the transverse momentum. The result is close to
asymptotic amplitude, so one can say that the toy model d
not satisfy the constraint imposed by the Polyakov soft p
theorem. On the other hand, in the realistic model, the fu
tion @Fz51(X;t50)1Fz51(12X;t50)#/2 is very close to
the asymptotic form and to the distribution amplitude o
tained from the two-body wave function. Experimentally, t
pion DA is known to be rather close to the asymptotic for
Thus, the realistic modelde factosatisfies the constraint im
posed by the soft pion theorem.

X. CONCLUSIONS

In this paper, we demonstrated how to obtain a model
the valence~or C-odd! pion double distributionF(x,y;t) and
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the skewed parton distributionFz(X;t) satisfying, by con-
struction, such important constraints as reduction relation
usual parton densities and form factors and spectral
polynomiality conditions. The SPDs derived in our mod
have a nontrivial interplay betweenX, z, andt dependence.
Furthermore, they were adjusted to describe pion form f
tors for all availablet, so we expect that our model describ
the t dependence of the pion GPDs of the valence quarks
both small and larget. The ability to have a unified model fo
GPDs fromt50 to utu;10 GeV2 is especially important in
~future! applications to nucleons, for which GPDs are a
ready being studied experimentally for both small~DVCS!
and larget ~wide-angle Compton scattering!.
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APPENDIX A: DD IN A SCALAR MODEL

Our conversion of the integral representation for the fo
factor F(t) into a functionF(x,y;t) of three variables may
-
FIG. 5. ~Color online! Form factorFp(Q2) ~left! andQ2Fp(Q2) GeV2 ~right! obtained with the ‘‘realistic’’ model for double distribu
tions ~solid line!. For comparison, we present the results for the original model~dashed! and ‘‘r-meson fit’’ Q2/@11Q2/(0.77 GeV)2#
~dotted!.
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FIG. 6. ~Color online! F z
R(X,t) obtained with the ‘‘realistic’’ DD as a function ofX and t for three values ofz50.2, 0.4, and 0.6.
an
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n

r
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look like a rather ambiguous exercize. Below, by a covari
field-theoretic calculation, we demonstrate thatx andy really
have the meaning of the variables of a double distributio

First, consider a one-loop box diagram for the scalar a
logue of deeply virtual Compton scattering amplitude~see
Fig. 9!. The initial and final ‘‘pions’’ are imitated by scala
currentsP corresponding to spacelike momentap1 and p2,
the initial ‘‘photon’’ momentum isq1, and that of the final
one is q2. The momentum invariants describing this fou
point function are

p1
2 ,p2

2 ,Q252q1
2 , q2

250, s5~p11q1!2,
e

os
p

tin

07301
t

a-

t5~p12p2!2. ~A1!

Using thea representation

1

m22k22 i e
5 i E

0

`

eia(k22m21 i e)da ~A2!

for each of four scalar propagators and calculating the res
ing Gaussian integral over the loop momentumk we obtain
T~p1 ,p2 ,q1!52E
0

`

expH i Fa1~a3s2a4Q2!1a2a4t1a3~a4p1
21a2p2

2!

a11a21a31a4
2r~m22 i e!G J da1da2da3da4

r2
, ~A3!
rm

hat
c-

It is
where r[a11a21a31a4. We are interested in the
Bjorken kinematics when there are two large variabless and
Q2 which have the same order of magnitudes;(1/xB j

21)Q2, while other invariants are small. The large-Q2 as-
ymptotics in this situation is determined by integration ov
the region where the coefficients accompanyings and Q2

vanish simultaneously. Otherwise, the integrand rapidly
cillates and the result of integration is exponentially su
pressed. Integration overa1;0 region is the simplest~and,
as inspection shows, the leading! possibility. It corresponds
to hard momentum flow through the propagator connec
the photon vertices. Performing thea1;0 integration, we
obtain

T~p1 ,p2 ,q1!52 i E
0

` da2da3da4 /l2

sa3 /l2Q2a4 /l1 i e

3expH i

l
@a2a4t1a3~a4p1

21a2p2
2!#

2 il~m22 i e!J 1O~1/Q4!, ~A4!
r

-
-

g

where l[a21a31a4. Denotingn52(p1q1) and writing
s5n2Q2 (p1

2 is neglected compared toQ2), we represent
the Q2-dependent term in the denominator asna3 /l
2Q2(a31a4)/l, or finally as n@a3 /l2z(12a2 /l)#,
wherez5Q2/n. Introducing the double distribution

F~x,y;t,p1
2 ,p2

2!5 i E
0

`

dS x2
a3

l D dS y2
a2

l D
3expH i

l
@a2a4t1a3~a4p1

21a2p2
2!#

2 il~m22 i e!J da2da3da4

l2
, ~A5!

we can write the scalar DVCS amplitude in the partonic fo

T~p1 ,p2 ,q1!52
1

nE0

1E
0

1F~x,y;t,p1
2 ,p2

2!

x1yz2z1 i e
dxdy. ~A6!

A few comments are in order. First, we reemphasize t
there is noz dependence in the definition of DDs. The se
ond comment concerns the spectral properties of DDs.
4-12



POWER-LAW WAVE FUNCTIONS AND GENERALIZED . . . PHYSICAL REVIEW D67, 073014 ~2003!
FIG. 7. ~Color online! SPDs Fz(X;t) with z50.1,0.2,0.4,0.6 are shown for two different valuest50 ~solid lines! and t5
20.2 GeV2, for both the original~left! and ‘‘realistic’’ ~right! model. The curves corresponding to largerz have maxima at higherX.
.
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easy to see that both variablesx,y vary between 0 and 1
Furthermore, their sum is also confined within these lim
0<x1y<1. Finally, the hard amplitude depends on the D
variablesx,y through the combinationx1yz only, so one
can treat it as a new variableX5x1yz and use nonforward
parton distributionsFz(X;t) instead of the DDsF(x,y;t).

With the same technique, one can calculate the non
ward matrix element̂ p2uOnup1& of the composite operato
On5w( iz]W )nw and obtain itsa representation

i E
0

` S a3~p1z!1a2~rz!

l D n

3expH i

l
@a2a4t1a3~a4p1

21a2p2
2!#

2 il~m22 i e!J da2da3da4

l2
. ~A7!

Note that the derivative (iz]W ) acting on the fieldw is ex-
pected to give the factor~kz!, wherek is the momentum ofw.
Equation~A7! shows that (kz)5a3(p1z)/l1a2(rz)/l, i.e.,
a3 /l anda2 /l should be interpreted as the variablesx and
y of the double distributionF(x,y;t). Alternatively, using the
binomial expansion for the (•••)n factor, one can see that th
coefficients in front of (p1z)n2k(rz)k in this expansion are
given by thexn2kyk moments of the DD~A5!. Integrating
over l, we get the relevant DD explicitly:
07301
:

r-

F~x,y;t,p1
2 ,p2

2!52$y~12x2y!t

1x@~12x2y!p1
21yp2

2#2m2%21.

~A8!

Putting the ‘‘pions’’ on equal footing by settingp1
25p2

2

52M2, we get a DD

F (1)~x,y;t,M2!5$2y~12x2y!t1x~12x!M21m2%21

~A9!

satisfying they↔12x2y Munich symmetrycondition. This
expression can be rewritten in the form

F (1)~x,y;t,M2!5
1

x~12x!M2 H 11
m2

x~12x!M2

2
y~12x2y!t

x~12x!M2 J 21

~A10!

resembling the DDs obtained from the power-law wave fu
tion. IntroducingL25M2/41m2, we get the expression

F (1)~x,y;t,M2!uM254(L22m2)

5
1

4x~12x!L2 H 11
m2~x21/2!2

4x~12x!L2
2

y~12x2y!t

4x~12x!L2J 21

~A11!
FIG. 8. ~Color online! Left: isovector part ofFz51(X;t50) for the toy model~solid! compared to the asymptotic pion DA~dash-dotted!,
CZ distribution amplitude~dash-double-dotted!, and DA obtained from the two-body wave function~dashed!. Right: isovector part of
Fz51(X;t50) for the realistic model~solid! compared to the asymptotic pion DA~dash-dotted! and DA obtained from two-body wave
function ~dashed!.
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whose denominator factor has the structure close to tha
the DDs obtained in the model with the power-law wa
functions. However, the denominator power is (21) instead
of (23). Applying (p1

2]/]p1
2)(p2

2]/]p2
2) to F(x,y;t,p1

2 ,p2
2),

Eq. ~A8!,2 and settingp1
25p2

252M2, we obtain

F (2)~x,y;t,M2!5
2y~12x2y!

x~12x!3M2 H 11
m2

x~12x!M2

2
y~12x2y!t

x~12x!M2 J 23

. ~A12!

Now, usingL25M2/41m2, we end up with a DD differing
from the toy model DD, Eq.~7.4!, just by thex-dependent
factor 1/x and an overall normalization. Note that our toy D
was based on the formula for the vector form factor; hen
for full correspondence, we should consider a DD related

operators containing the extrai ]m
↔

derivative. This results in
the extra factor of

a3

l
~p1

m1p2
m!1

a22a4

l
~p1

m2p2
m!52xPm1~2y2x21!r m.

As expected, thePm part contains the missing factor ofx.
Since ther m part is Munich antisymmetric, it does not con
tribute to form factor and forward densities~see also@24#!. In
general, such terms are not restricted by the reduction r
tions ~2.13!,~2.14!. However, they contribute to SPDs forz
Þ0, and their modeling deserves separate consideration

APPENDIX B: SPDs IN THE IMPACT PARAMETER
REPRESENTATION

In this appendix, we investigate the properties of o
model SPDs in the impact parameter representation. For
scalar triangle diagram, such an analysis was recently
formed by Pobylitsa@25#. He also uses thea representation

2It is easy to see that thePww scalar vertex differentiated with
respect to the virtuality of the scalarP current corresponds to th
k52 power-law wave function~4.4!.

FIG. 9. Box diagram for DVCS in a scalar model.
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and double distributions for the triangle diagram, but tak
the version of double distributions in which the plus comp
nent of the momentum of the spectator system is written
up1

11vp2
1 . Instead of Eq.~A5!, we have then

P~u,v;t,p1
2 ,p2

2!5 i E
0

`

dS u2
a4

l D dS v2
a2

l D
3expH i

l
@a2a4t1a3~a4p1

21a2p2
2!#

2 il~m22 i e!J da2da3da4

l2
. ~B1!

This DD is related to the SPDH( x̃,j;t) by

H~ x̃,j;t,p1
2 ,p2

2!5E
0

1E
0

1

d„12 x̃2u~11j!2v~12j!…

3P~u,v;t,p1
2 ,p2

2!u~0<u1v<1!dudv.

~B2!

Now, one should take p1
25p2

25mp
2 , t52(uD'u2

14j2mp
2 )/(12j2) and calculate the double Fourier tran

form

B~ x̃,j;b'!5E d2D'

~2p!2
ei (D'b')HS x̃,j;2

uD'u214j2mp
2

12j2 D .

~B3!

The d function in Eq.~B2! can be rewritten asd(12u/r 1

2v/r 2)/(12 x̃), where the parametersr 1 ,r 2 given by
r 15(12 x̃)/(11j), r 25(12 x̃)/(12j) have the meaning
of the spectator’s plus momentum measured in units of
initial or final pion plus momenta. Due to thisd function, we
can write u5zr1 ,v5(12z)r 2, with 0<z<1 in the x̃.j
region. Finally, the integral overdldz can be transformed
into integration over the variabless15zl and s25(1
2z)l. A remarkable fact is that the resulting integran
I (s1 ,s2) factorizesI (s1 ,s2)5J1(s1)J2(s2). As a conse-
quence, the expression forB( x̃,j;b') also has a factorized
form @25#

B~ x̃,j;b'!5
12x

4p
V0„r 1 ,~12j!b'…V0„r 2 ,~11j!b'…,

~B4!

where the generalized impact-parameter LC wave functio

V0~r ,c'!5
1

4pr E0

`ds

s
expF2

c'
2

4sr 2
2s„m22r ~12r !mp

2
…G

5
1

2pr
K0S uc'u

r
Am22r ~12r !mp

2 D ~B5!

can be expressed through the modified Bessel functionK0.
As demonstrated in Refs.@25#, the factorized representatio
4-14
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~B4! guarantees that the positivity bounds@26,9,27,14,28–
31# for this SPD are satisfied in the model with scalar quar
The same SPD multiplied by (12 x̃) satisfies the positivity
bounds for spin-1/2 quarks.

If we proceed as in Appendix A, i.e., first differentiate E
~B1! with respect top1

2 and p2
2 and then takep1

25p2
25mp

2 ,
we get an extra factora2a4a3

2/l2. After the transformations
described above, this results in the factorr 1r 2s1s2@1
2(r 1s11r 2s2)/(s11s2)#2, and the integral overs1 ,s2
cannot be factorized into a product of two separate integ
over s1 ,s2. The unfactorizable piece comes from thea3

2

factor resulting from differentiation with respect to extern
virtualities. To avoid this factor, but still preserve the;1/k'

4

behavior of the effective IMF wave function, one can p
form differentiation with respect to the squares of the qu
masses~i.e., take all the masses different, differentiate w
respect tomi

2’s corresponding to lines 2 and 4, and then ta
all the masses equal!. This produces the factora2a4, or
eventuallyr 1r 2s1s2, which does not violate the factorize
structure of the integrand. In the impact parameter repre
tation, the result has the structure of Eq.~B4!, but with
V0(r ,c') substituted by the expression

V1~r ,c'!5
uc'um

4pA12r ~12r !mp
2 /m2

3K1S uc'um
r

A12r ~12r !mp
2 /m2D ~B6!

involving the modified Bessel functionK1. For the original
IMF wave function, differentiation with respect to the activ
quark mass is equivalent to choosing theAnsatz

c~x,k'!5
N

xAx~12x!@a1bk'
2 #2

~B7!

instead of Eq.~4.4!. It has the extra 1/x factor enhancing the
wave function at smallx. In the spirit of our discussion of the
x dependence in the main text of the paper, we may say
such a function more adequately models the contribution
higher Fock components.

The positivity bounds are satisfied also in a more gen
case whenB(x,j;b') is given by the sum@32,25#

B~ x̃,j;b'!5~12 x̃!N11(
n

Qn„r 1 ,~11j!b'…

3Qn„r 2 ,~12j!b'…, ~B8!

whereN50 for ‘‘scalar quarks’’ andN51 for the spin-1/2
case. This opens the possibility of building models for GP
consistent with both the polynomiality and positivity co
straints. The simplest idea is to start with thea representa-
tion ~A5! for the DD corresponding to the scalar triang
diagram, and modify it by multiplying the integrand by
function R(m2Aa2a4) depending only on the producta2a4

@choosing the argument asAa2a4 we get eventually a func
07301
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tion of (12 x̃); the parameterm2 was included to make the
argument ofR(a) dimensionless#. If this function can be
represented as

R~a!5(
n

Rnan ~B9!

with all Rn positive~the sum should be understood in a wid
sense, it can involve integrations!, the functionB( x̃,j;b') in
such a model has the structure of Eq.~B8!, and positivity
constraints are satisfied. The model double distribution ba
on R(a) gives the following expression forH( x̃,j;t) in the
x̃.j region:

H~ x̃,j;t !u x̃.j5~12 x̃!N21r 1r 2E
0

`

drE
0

1

dzR~rAzz̄r 1r 2!

3exp$2r@12~12zr12 z̄r 2!~zr11 z̄r 2!

3mp
2 /m22zz̄r 1r 2t/m2#% ~B10!

~we use the notationz̄[12z here, and later we also usex̄
[12x, etc.!. Note that we performed Wick rotationa j→
2 ia j in the originala representation~B1!, which is justified
if the pion stability conditionmp

2 ,4m2 is satisfied. In the
forward limit (j50,t50) this gives

f ~x!5~12x!N11E
0

1

dzE
0

`

drR~rAzz̄x̄!e2r(12xx̄mp
2 /m2).

~B11!

The function R(a) should be adjusted to fit experiment
forward distribution f expt(x), and then it can be used fo
calculation ofH( x̃,j;t). In particular, for massless pions, th
coefficientsRn can be expressed directly as

Rn5
n11

@G~n/211!#2
An111N ~B12!

in terms of the coefficients of thex̄k expansion of the for-
ward distribution

f expt~x!5(
k

Ak~12x!k. ~B13!

Note that for the simple modelf R(x)5 3
4 (12x)/Ax of Sec.

IX, all the coefficientsAk5G(k21/2)/G(1/2)(k21)! are
positive. Alternatively, since both Eqs.~B10! and ~B11! in
the t50,mp

2 50 limit involve the same integral of theR func-

tion, the only change beingx̄→Ar 1r 2, in this case we can
directly write H through f (x)
4-15



l

le

ic

r

II

-

l

u-

in

ion

to
n
to
on-
rst

r-
ion
n

n

the

the
-

of

-

MUKHERJEEet al. PHYSICAL REVIEW D 67, 073014 ~2003!
H~ x̃,j;t50!u x̃.j;m
p
2 505S 12 x̃

Ar 1r 2
D N21

f ~12Ar 1r 2!

5~12j2!(N21)/2f S 12
12 x̃

A12j2D .

~B14!

In the case of nonforward distributions, we have

F~X,z;t50!uX.z;m
p
2 505~12z!(N21)/2f S 12

12X

A12z
D .

~B15!

Taking f (x)5 f R(x) andN51 ~spinor quarks!, we get curves
that are very close to theX.z parts of the realistic mode
curves shown in Fig. 7. In the regionX<z, the functions can
be obtained only from formulas explicitly involving doub
distributions. In particular, the scalarR(a) model gives

F~x,y;t !5E
0

`

e2rp(x,y,t)R@rAy~12x2y!#dr,

~B16!

where p(x,y,t)512y(12x2y)t/m22x(12x)mp
2 /m2.

Fixing R(a), e.g., by the requirement thatf (x)5 f R(x) in the
mp→0 limit ~which allows one to get the result in analyt
form! and using Eq.~B12! we get

F~x,y;t !5(
n

An11

~n11!! @y~12x2y!#n/2

G2~n/211!@p~x,y,t !#n11
.

~B17!

This expression can also be written as

F~x,y;t !5(
n

An11h(n/2)~x,y!F ~12x!

p~x,y,t !G
n11

~B18!

whereh(n/2)(x,y) is the normalized profile function of orde
n/2. Thus, the DDF(x,y;t) in this model is given by a sum
of powerlike terms similar to those discussed in Sec. V
The main difference is that they profile now is not universal:
one should expand the forward distributionf (x) into a power
series over (12x) and supplement the (12x)n11 term by
the n-dependent profile functionh(n/2)(x,y). Because of the
correlation between the power of (12x) and the order of the
profile function, the shape of they profile of the double dis-
tribution changes withx. Since all parton distributionsf (x)
tend to infinity asx goes to 0, the small-x region is domi-
nated by terms with largen, and the profile is more narrow
whenx→0, becoming infinitely narrow asx→0. Note that
in the case when the profile is infinitely narrow for allx, i.e.,
when F(x,y;t50)5d@y2(12x)/2# f (x), the t50 skewed
distribution is given by Fz(X)5 f @(X2z/2)/(1
2z/2)#/A12z: it repeats the form of the forward distribu
tion f (x) and is infinite forX5z/2. To check if this also
happens for the model~B18! with the changing profile and
realistic ;x20.5 behavior for smallx, we took f expt(x)
07301
.

5 f R(x) @or, which is the same, An115G(n
11/2)/G(1/2)n! in Eq. ~B17!# and constructed mode
skewed distributionsFz(X) in both theX.z and X,z re-
gions~see Fig. 10!. The resulting functions are indeed sing
lar for X5z/2, but finite otherwise.

We plan to perform a more detailed study of GPDs with
the R(a) model in a separate paper.

APPENDIX C: TWO-PION DISTRIBUTION AMPLITUDE
IN SCALAR MODEL

Let us now apply our approach to processes of two-p
production ing* g→pp or gg→pp collisions. Theg* g
→pp process in the kinematics wheng* is highly virtual,
while s[mpp

2 is small@33# is the crossed-channel reaction
DVCS while gg→pp process in the kinematics whe
s,utu,uuu are large@34# is the crossed-channel reaction
wide-angle Compton scattering. Here we are going to c
sider only the simpler case of the kinematics of the fi
process.

Originally @33#, it was proposed to describe the nonpe
turbative stage of this process by the two-pion distribut
amplitude (2pDA)F(z,z;s) which describes the conversio
of two quarks with plus momentazP1 and z̄P1 into two
pions with momentap1

15zP1 andp2
15 z̄P1 ~see Fig. 11!,

whereP is the total momentum of the pion pair~recall that
the invariant mass of the pair is small:P2[s!1 GeV2).
Later, Teryaev@35# proposed to use the double distributio
description~see also Ref.@36# for further developments! cor-
responding to parametrization of the plus component of
spectator momentum asup1

12vp2
1 ~note that both momenta

are now outgoing, and this is reflected in the change of
relative sign of thep1 andp2 parts of the spectator momen
tum compared to the DVCS case!. In P1 units, the spectator
plus momentum can be written either as (z2z)P1 ~using the
2pDA variablez) or asuzP12v z̄P1 ~using the DD vari-
ablesu,v). Thus, the connection between the two sets
variables is given by

z5~12u2v !z1v.

So we can express the 2pDA F(z,z;s) in terms of the DD
M (u,v;s):

F~z,z;s!5E
0

1

duE
0

1

dvu~u1v<1!

3d„z2z~12u2v !2v…M ~u,v;s!. ~C1!

The DD representation forF(z,z;s) can be used to derive
some general properties of 2pDAs, such as the polynomial
ity condition

E
0

1

znF~z,z;s!dz5(
l 50

n

Klz
l , ~C2!

which states that thezn moment ofF(z,z;s) is thenth order
polynomial ofz.
4-16
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To model 2pDAs by superposition of perturbative contr
butions, we start with thea representation for the relevan
scalar diagram. The double distribution can be written si
larly to Eq. ~B1!:

M ~u,v;s!5 im2E
0

`

dS u2
a4

l D dS v2
a2

l D
3expH i

l
@a2a4s1a3~a41a2!mp

2 #

2 il~m22 i e!J da2da3da4

l2
. ~C3!

Here from the beginning we takep1
25p2

25mp
2 , and add the

overall factorm2 to make the function dimensionless. No
that for the triangle diagram we have (12u2v)5a3 /l
[b3. So we write the scalar triangle version of the 2pDA as

F~z,z;s!5 im2E
0

`

dlE
0

1

db2E
0

1

db3u~b21b3<1!

3d~z2zb32b2!exp$ il@~12b22b3!b2s

1b3~12b3!mp
2 2m21 i e#%. ~C4!

Integrating overl and incorporating thed function to calcu-
late theb2 integral, we get

F~z,z;s!5E
0

min$z/z,z̄/ z̄%
db3@12~z2b3z!~ z̄2b3z̄ !s/m2

2b3~12b3!mp
2 /m22 i e#21. ~C5!

This representation explicitly demonstrates the well-kno
fact ~see, e.g.,@37,36#! that F(z,z;s) is nonanalytic at the
point z5z. The integral can be taken in the general case,
it is instructive to analyze the simplest limits50, mp

2 50. In
this case, the result is the function

F~z,z;s50!m
p
2 505

z

z
u~z,z!1

12z

12z
u~z.z! ~C6!

which coincides with a part of the pion DA evolution kerne
Its eigenfunctions are the Gegenbauer polynomialsCn

3/2(2z
21) and the eigenvalues are 1/(n11)(n12) @38,39#.
Hence, we can write

F~z,z;s50!m
p
2 5054z~12z! (

n50

`
2n13

~n11!2~n12!2

3Cn
3/2~2z21!Cn

3/2~2z21!. ~C7!

It is convenient to write 2pDA as a sum overz(1
2z)Cn

3/2(2z21), since these are the eigenfunctions of t
evolution kernel. On the other hand, the combination (z
21) is related to the cosine of the angle between the pio
momenta, so it is natural to expand thez dependence o
F(z,z;s) in the Legendre polynomialsPl(2z21). Using
the formula
07301
i-

n

ut

e

s’

Cl
3/2~x!2Cl 22

3/2 ~x!5~2l 11!Pl~x!,

we can writeCn
3/2(2z21) as a sum ofPl(2z21) and obtain

F~z,z;s50!m
p
2 5054z~12z! (

n50

`
2n13

~n11!2~n12!2

3Cn
3/2~2z21!(

l 50

n

~2l 11!

3Pl~2z21!
11~21!n2 l

2
. ~C8!

This expansion has the structure of the general represent
for 2pDAs proposed by Polyakov@23#. In specific models,
only the first terms of the expansion are included. It is ea
to check that, in our case, the exact result~C6! is well ap-
proximated by the first few terms of the Gegenbauer exp
sion ~C7!, even in the vicinity of the nonanalyticity pointz
5z. Polyakov @23# considers also a more complicateds
Þ0 case, using thepp scattering information to model thes
dependence. Recently, Kivel and Polyakov@36# used chiral
perturbation theory to includeO(mp

2 ) corrections to the chi-
ral limit.

Now we want to show how one can incorporate inform
tion about the usual~forward! parton densities to build mod
els for 2pDAs. To this end, it is convenient to write the pio
momenta asp15P/21r and p25P/22r ~the plus compo-
nents are implied, but we omit the1 superscript here and
below!. The quark momenta can be written then as

k15
11a

2
P1xr, k25

12a

2
P2xr, ~C9!

where the variablesa and x are related tou,v by x512u
2v and a5v2u. The support region isuau<12x. The
2pDA F(z,z;s) is related to the double distributio
F(x,a;s) by

F~z,z;s!5E
0

1

dxE
211x

12x

dad„z21/22x~z21/2!2a/2…

3F~x,a;s!. ~C10!

In this description, the total pair momentumP is shared by
the quarks in the fractions (11a)/2 and (12a)/2, while the
relative momentumr is carried by active quarks in the frac
tions x and 2x. Hence, the relevant double distributio
F(x,a;s) is the timelike analogue of the functionf (x,a;t)
considered in Sec. II. In the forward limit, it reduces to t
usual parton densities

E
211x

12x

F~x,a;s50!da5 f ~x!. ~C11!

In the mp
2 50 case, we haveF(x,a;s50)5 1

2 u(uau<1
2x); hence the integral in Eq.~C11! gives (12x), which is
exactly the forward distribution for the scalar massless
4-17
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angle. To get a more realisticf (x), we can use theR(a)
model described in Appendix B. It gives

FR~z,z;s!5E
0

min$z/z,z̄/ z̄%
dx

3E
0

`

expH 2rF12~z2xz!~ z̄2xz̄ !

3
s

m2
2xx̄

mp
2

m2 G J R„r A~z2xz!~ z̄2xz̄ !…dr.

~C12!

According to Appendix B, theR(a) model is equivalent
to the sum of ‘‘wave function overlap’’ contributions of Eq
~B8! type, similar to those obtained within the light-con
approaches~see, e.g.,@40,31,41#!. However, theR(a) con-
struction has the advantage that it also provides a mode
2pDA. In the standard light-cone formalisms, the 2pDA
would involve theq→pq vertices which cannot be inter
preted as light-cone wave functions.

In the scalar triangle model, the 2pDA F(z,z;s50) is
obtained from the same DDF(x,a;s50)5 f (x,a;t50)
which produces thet50 OFPD H( x̃,j;t50). Comparing
Eqs.~C10! and ~8.3!, we can formally write

F~z,z;s50!5HS 2z21

2z21
,

1

2z21
; t50D . ~C13!

FIG. 10. ~Color online! SPDsFz(X;t50) with z50.2,0.4,0.6
obtained from Eqs.~B18! and ~B13!. The forward distribution was
modeled byf R(x)5(3/4)(12x)/Ax. The curves tend tò for X
5z/2.
07301
or

The relation is even simpler,

f~ x̃,j̃;s50!5H~ x̃/ j̃,1/j̃;t50! ~C14!

for the 2pDA f( x̃,j̃;s50) written in the symmetric vari-
ables x̃52z21 and j̃52z21. Since u j̃u<1, the OFPD
H( x̃/ j̃,1/j̃;t50) is taken at skewedness values with absol
magnitude larger than 1. Hence, as suggested by Tery
@35#, the 2pDA may be treated as a continuation of OFP
into theuju.1 region. More precisely,Hu t50 andFus50 may
be treated asuju,1 and uju.1 components of the sam
function.

To make parallel withI 50 and I 51 components of
2pDAs in QCD, one should take the combinations

F6~z,z;s!5
1

2
@F~z,z;s!6F~12z,z;s!#, ~C15!

which are symmetric or antisymmetric with respect to t
middle point z51/2. They are given by summation ove
even or oddn in Eq. ~C8!. Taking s50,mp

2 50 and fixing
R(a) in the same way as in Appendix B, we obtained t
curves shown in Fig. 12.

At z51/2, the symmetric function in this model is infi
nite. This result is similar to the singularity of SPDsFz(X)
for X5z/2 observed in Appendix B. It reflects the fact th
the profile ofF(x,a,s50) in theR(a) model becomes infi-
nitely narrow asx→0. Indeed, for DDs with infinitely nar-
row profile for all x, i.e., for F(x,a,s50)5 f (x)d(a), we
would haveF(z,z;s50)5 f @(z21/2)/(z21/2)#/(12z/2),

FIG. 11. Plus-momentum flux structure of the two-pion dist
bution amplitude.
r
FIG. 12. ~Color online! Two-pion distribution amplitudesF1(z,z;s50) andF2(z,z;s50) with z50.1, 0.2, 0.4 obtained in the scala
R(a) model. The forward distribution was modeled byf R(x)5(3/4)(12x)/Ax.
4-18



.
th

r-

t-

s
tri-
id-

he

POWER-LAW WAVE FUNCTIONS AND GENERALIZED . . . PHYSICAL REVIEW D67, 073014 ~2003!
which gives an infinite result forz51/2 if f (0)→`. The
curves also have cusps forz5z and z512z. They appear
because the DDF(x,a,s50) of the R(a) model does not
vanish at the upper cornerx50,a51 of the support region
This is because the profile function for the lowest term of
R(a) expansion ish(0)(x,y)51/(12x): unlike the profile
functionsh(n)(x,y) with n.0, it does not vanish at the bo
derlinesx1uau51.
ar

. C

,
l

.G
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e

Note that 2pDAs of the purely scalar model are symme
ric with respect to the change$z→12z,z→12z% while in
QCD the 2pDAs describing the transition of spin-1/2 quark
into pions changes sign after this transformation. The
angle perturbative contributions for this case were cons
ered a few years ago by Polyakov and Weiss@37#. We plan to
extend their calculation by combining it with the ideas of t
present paper.
s.

ett.

o

@1# D. Müller, D. Robaschik, B. Geyer, F.M. Dittes, and J. Horˇejšı́,
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