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[. INTRODUCTION wave function allows one to obtain explicit analytic expres-
sions for the form factor and generalized parton distributions.
Generalized parton distribution&PD9 [1-3] are now To make our presentation self-contained, in Sec. Il we recall
the object of intensive theoretical studies, especially withinbasic information about generalized parton distributions
the context of app"cations to deep|y VlrtL{gl,S] (for a de- which is used in the fOIIOWing sections. In Sec. I, as a
tailed recent review see R¢6]) and large momentum trans- Starting example, we consider the model with Gaussian de-
fer processe$7,8]. The main advantage of GPDs is their Pendence of the LC wave functions on the transverse mo-
universality, allowing one to connect different hard pro- Mentum. In Sec. IV, we specify the explicit “toy” model
cesses, both exclusive and inclusive. The price for this is thEXPression for the effective pion wave function, which is
complexity of GPDs: they are functions of three variables,then }Jsed in Sec. V to derive a parametric representation for
e.g. skewed parton distribution$SPD3 F,(X.t) or the pion form factor. We show that the two parameters of this

H(x.&1t) depend on the fractioX (or x) of the momentum simple model, the constituent quark mass and the wave func-

; . tion width, can be easily adjusted to provide a curve close to
carried by the active quark, the skewedness parangeter y adl P

d the i . terror thi existing experimental data. In Sec. VI, we analyze the
¢), and the invariant momentum transferor this reason, asymptotic large®? behavior of the pion form factor. We

the most promising approach to disentangling GPDs from,qsiqer hoth the massive#0 and masslessi=0 cases.

experimental data is to construct realistic models for GPD§ye show that. in the latter case. the pion form factor in our
and fix their parameters by fitting the data. The crucial poinfygdel with a power-law wave function ¢(x,k, )

for the model building is that, in specific limits, GPDs reduce _ (1 — ). 211\ 29 (1 — n
to more familiar functions describing the hadronic structure,asyr{np):(()%ic Egﬁ;:%g?é%{ 1)(/33 }1;or 22; potvr\llgm_ s:lr_ne
such as usual parton densities, form factors, and distributiO{hough this behaviorﬁis generated by the sdfeynman
amplitudes. The “reduction” relations between GPDs andmechanism, it formally coincides with the quark counting
these functions have been used as a basis for building phesw dictated by the hard one-gluon exchange mechanism. We
nomenological models of GPD®]. Another fruitful idea  show that the 1y? behavior of the soft contribution is re-
used in the model building is to construct GPDs from the|gted to the fact that the parton distributibfx) in the mass-
light-cone(LC) wave functiong7,8]. The most populaAn-  |ess case does not vanish fee=1. In the massive case,
satz[10] assumes a Gaussian dependence of the LC wavgx)—0 asx—1 and the ultimate asymptotic behavior is
functionsy(x,k,) on the transverse momentum. Aprag-  |n(Q%\?)/Q* However, for a wide range of accessilg,
matic reason behind this choice is the simplicity of Gaussiafne curve mimics the 02 behavior. In Sec. VII, we note that
integrals allowing to obtain many results in analytic form. oyr parametric representation for the form factor has the
However, there are na priori grounds to exclude wave form of the reduction relation connecting the pion form fac-
functions with other types of transverse momentum depengr and the double distributioDD) F(x,y;t). The DD ob-
dence. In particular, the two-body.e., qq) component of tained in this way has correct spectral and symmetry proper-
the pion wave function was calculated recently in a modeties. Moreover, it has the factorized structure proposed in
[11] based on the one-gluon exchange approximation in th&ef.[9]: it looks like a distribution amplitude with respect to
light-front framework. The wave function was found numeri- they variable and like a parton density with respect to xhe
cally, and it was observed that the fit is better if one uses &ariable. It also provides a nontrivial example of the inter-
power-law form rather than a Gaussi{di,12. Furthermore, play betweerx, y, andt dependence of DDs. With an explicit
the power-law wave functions were used some time ago imodel for DDs at hand, one can calculate the relevant
models for the nucleon form factof43]. In the present pa- skewed distributions: the nonforward parton distribution
per, we show that a simple power-laAmsatzfor the pion LC FX;t) or Ji's off-forward parton distribution(OFPD
H(x,¢§,t); see Sec. VIII. In the simple toy model that we use
the pion is treated as an effectively two-body system, which
*Also at Laboratory of Theoretical Physics, JINR, Dubna, Russiais not very realistic: one may expect that the parton densities
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at smallx are affected by many-body components. Indeedfields are taken at the origin. Compared to the more familiar

the valence parton density obtained in our model differscase of forward matrix elements defining the usual parton

rather strongly from the phenomenologically establisheddensities, we have two four-vectoBsandr, both of which

form. In Sec. IX, we propose to fix this deficiency by adopt-can be used to build the tensor structure of the right hand

ing a model with a more realistix profile att=0, but pre- side of Eq.(2.1). The indexk specifies how many times the

serving the analytic structure of the interplay betweepn, vectorr appears in a particular term of the sum. Incorporat-

and t dependence generated by the power-lamsatz We  ing Hermiticity properties of the local operators and time-

show that by slightly changing the quark mass and the waveeversal invariance, one can sh¢d4] thatk is even. Now

function width parameter it is still possible to get a goodone can define double distributiori§¢B,«;t) as functions

description of the pion form factor data. We present SPDgjeneratingA,,(t) through itsg" ¥a* moments

F,(X;t) obtained from the “realistic’ DD. In particular, we

show that in the “soft pion limit"{=1t=0, the isovector

part of the “realistic” SPD has a shape close to the 1 1-18]

asymptotic form of the pion distribution amplitude. In Ap- {1i(—1)”}AEf,‘2(t)=f d'gf B" kot (B,a;t)da.

pendix A, to demonstrate that the variabley of the para- -1 —1+|4]

metric representation for the form factor indeed have the (2.2

meaning of the variables of double distributions, we give a

covariant derivation of the toy model DD in a scalar model.

In Appendix B, we discuss the structure of model SPDs inThe spectral property|+|a|<1 can be proved for any

the impact parameter representation. In particular, we shoviglevant diagram of perturbation thedr,5]. _

how one can use superpositions of power-law DDs to build As usual, the Mellin moments define two functions:

models for SPDs satisfying positivity bounds. In Appendix fa (8,a;t) corresponds to even and f; (8, a;t) to oddn.

C, using again the toy scalar model, we briefly show howThey both are even functions af. With respect tog,

one can use our approach to build the models for two-piorf, (3, a;t) is even whilef (B,a;t) is odd. For3>0, one

distribution amplitudes that appear in thé y— 77 reac- can write f_(B,a;t) as the difference f (B, a;t)

tion, which can be treated as the crossed-channel process tof ;(8,a;t) of quark and antiquark distributionsi.e.,

deeply virtual Compton scattering. Our conclusions are for{_ (g,a;t) corresponds to a valence quark distribution:

mulated in Sec. X. f,=f% and f/(B,a;t) as their sum f,(B,a;t)
Summarizing, in this paper we construct power-law mod-+ f (8 «;t). The Polyakov-Weis® term[15] is defined as

els of theC-odd double distribution&(x,y;t) for the pion  {he functionD,(a;t) whose a" moments give thed @ (t)

and the relevant skewed parton distributiaRg(X;t). By  coefficients. The latter are nonzero only for oddhence
construction, the model GPDs satisfy such important COND_(a:t) is an odd function ofr.

straints as reduction relations to usual parton densities and \y,e stress that this definition of double distributions is
form factors, they have correct spectral and polynomialityahsolytely Lorentz invariant: it does not require reference to
properties, thus providing a model that can be used in phesny particular frame. Moreover, the mutual orientation and
nomenological applications. For the simplified scalar caseyg|ative size of the two momenfandr are arbitrary. If, in
we also build models that automatically satisfy the positivity ggme particular frame, the space part of the momerfus

constraints. oriented in the (longitudina) x; direction, the four-
momentumr may also have a nonzero longitudinal compo-
Il. BASICS OF GENERALIZED PARTON DISTRIBUTIONS nent, but it may be purely transverse as well, having nonzero

) o , components in the transverse,x, plane only. The double
Generalized parton distributions parametrize ”Onforwarchistributionsf(,3,a;t) parametrizing the nonforward matrix

matrix elements of composite operators. To define the leadsiement are Lorentz invariant objects and they are the same
ing twist GPDs for the pion, we start with

in all cases.
B . . Usually, to extract the symmetric-traceless part of a tensor
i"P—r/2| Yl v,D,p, - 'Dun}’//a|P+r/2> (.)Wll_,,ﬂn, it is mult|pllefj by zFzM1. .. z¢n where z# .|s a.
] lightlike vectorz?=0. This trick corresponds to a projection
n! of Eq. (2.1):
=23 AQ) %
k=0 2k! (n—k)!
X PPy Pu T iin” ™ Tt —~ =
(P—r/2|i452(izD)"¢p | P+1/2)
1
+—D@t)fr r, -1, } (2.1 " n!
2n n Mg ppt =2 PZ —A(a) i PZ n—k - K
(P2) 2, o Ak (D(PDT(r2)
whereD=(D—D)/2, {-- -} denotes the symmetric-traceless + inﬁ‘)(t)(rz)““ (2.3
part of a tensora enumerates quark flavors, and the quark 2"
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(Wherez= v,2"). The direction ofz is arbitrary, but, to ac-
cess all the coefficient#,(t), one should have both
(P2#0 and ¢z)#0. In particular, ifz has only the minus
light-cone component, botA™ andr * should be nonzero to
make all the coefficienta,,, visible. Such a situation is char-
acteristic for deeply virtual Compton scatterif®VCS)

where the momentum transfemust have a nonzero longi-
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In the forward limit,r =0, the left hand side of Eq2.8)
coincides with the matrix element defining the usual parton
densitiesf , 3(x). This gives the reduction relations

1-x

f—l-%—x

faaX,a;t=0)da="1,3(x)

tudinal component. To study DVCS, it is convenient to treatand

the ratioé=r*/2P" as an independent variable and define

off-forward parton distributiondH (X, ;t) [2]. To this end,
one introduces the functions

i1 AR ETDP e

(2.9

n
MP(gn =2
k=0
and declares\t f{”‘)(g;t) to be the moments dfl ,(x,&;t):

1 ~ — o~ ~
{1i(—1)"}Mﬁa)(§:t)=fﬁlX”H;(x,g;t)dx. 2.5

These definitions provide a formal relation between

H(x,&t) andf(B,a;t):
s 1 -l -
H;(x,f;t)=JldBJHﬁfa‘(ﬁ,a;t)é(x—ﬂ—fa)da
+(121)sgn(&)D(X/&1). (2.6)

Combining Egs.(2.2) and (2.3 gives the definition of
DDs through the parametrization of nonforward matrix ele-
ments of nonlocal light cone operators

(P=112|ha( — 212)Z5(2/2)|P+ 1 12)| 12—
1 1-lg _
:(pz)f dﬂf eﬂﬁ(Pz)fla(rz)/Z(f;r(B,a;t)
-1 —1+|8]

+f;(ﬂ,a;t))da+(rz)fl e (2D _(a;t)da.
-1

(2.7

Using the symmetry of ; (3, a;t) with respect tg3 and

@, one can rewrite this representation in terms of quark angfarame

antiquark DDs taken for positivg only
(P=r12|ha(— 212)20p5(2/2)|P+112)| 12—
1 1-8 , .
=2(P2) f dB f (fo( B ast)e 1 APAlalra)2
0 —1+8
_ fgﬁla;t)eiB(PZ)+ia(rz)/2)da+(rz)

1 )
X J_le_'“(’z)/zDa(a;t)da. (2.9

Haa(X,§=0;t=0)="f, 5(X). (2.9

On the other hand, keepimg: 0 but takingn=0 in Eq.(2.1)
one deals with the matrix element of the vector current
which defines thea componentF,(t) of the relevant form
factor. The reduction relations connecting GPDs with form
factors result from

Fa)=AB1)=MP(1) (2.10

and are given by the expressions

1 1-8
[Cas| "t tat.ayda=F0,
0 0

f ' (Ha(% 1) — Ha(k £50))d%=Fa(t)
0
(2.11

containing only the valence quark combinations, namely,
fla=f,— fyandH@=H,— Hj.

The representatio(2.8) has the structure of a plane wave
decomposition, which provides the parton interpretation of
DDs: the quarks carry the momentys® + (1+ «)r/2 origi-
nating from both the average momentéhand the momen-
tum transfer. Another possibility(which is more convenient
in applications involving light-cone wave functions to
write the momenta of quarks a9, +yr, i.e., in terms ofr
and the original hadron momentupy=P+r/2. The new
variablesx,y are expressed througB,a by x=8,y=(1
+a—B)/2. The resulting DDsF,;(x,y;t) “live” on the
triangle O<x,y,x+y=<1. Sincef(8,a;t) are even functions
of «, the DDs F(x,y;t) are symmetric with respect to
y—1—x—Yy transformation“Munich” symmetry [16]). For
light-cone dominated processes, like DVCS, only the plus
componenixp; +yr* is essential. Defining the skewedness
teiz=r"*/p; , we introduce nonforward parton dis-
tributions[5]

— 1 1-x —
}"?'a(x,t)zjo dxfO Faa(x,y;t) 8(X—x—y)dy.
(2.12
These distributions are related to the usual parton densities
by

1-x

)

FaaX,y;t=0)dy="f,3(x),
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ch?fo(x;t:o):fa’g(x) (2.13 =f(x)F(t), in which there is no interplay bet.weena.ndt
dependence ofF(x,t). One may expect that in reality the
and to form factors by situation is more complicated. Consider a wave function with
a Gaussian dependence on the transverse momeqtuf.
1 1-x
fo oleO FYx,y;t)dy=F (1), (20D
d(xk,) = (x)e KA (33
1
val — .
fo ]:? X DAX=F4(h). (2.14 [note thatkf/4x(1—x) is essentiallyk? written in the light-

cone variableg, k| ]. Taking the Gaussian integral overk

Note that the double distributiofs(x,y;t) are integrated We get
over y in both of the above reduction relations. Thus, it o 2 A2
makes sense to introduce intermediate functions FEO(x,1)=£(20)(x) et &A%, (3.9

J’l—x where

FaalXt)= FaalX,yit)dy=F,o(x;t). (2.19

0 f20)(x) = mx(1—x)A2p2(x) = F®O)(x,t=0) (3.9

They satisfy simpler reduction relations is the two-body part of the relevant parton dendix). To
1 get the total result for either the usuix) or nonforward
Faax,t=0)=1f,3(x) andJ’ ]-"‘f'(x,t)dx=Fa(t). parton densitiesF(x,t), one should add the contributions
0 21 due to higher Fock components. These contributions are not
(2.16 small, e.g., with the Gaussiafnsatzthe valencedu contri-

Thus, the functionSF(X,t) are hybnds of the form factors bution to the normalization of the™ form factor fort=0 is
F(t) and the usual parton densitié&); that is why we call ~ about 25%410]. The problem is that we do not have a for-

themnonforward parton densitiemDs) [7] malism pI’OViding eXpliCit eXpI’eSSionS for an infinite tower of
light-cone wave functions. However, the parton densities
IIl. GAUSSIAN WAVE FUNCTION AND NONFORWARD f(x) are known from_ experiment. In t_hls situation, one can
PARTON DENSITIES treat Eq.(3.4) as a guide for fixing the interplay between the

x andt dependence of NDs and model them by

The concept of NDs can be easily illustrated within the _
framework of the light-cone formalism. Consider a two-body Fa(x,t)= fa(x)eX”“XAz_ (3.6
bound state whose lowest Fock component is described by a
light-cone wave functioy(x,k, ). In a frame where the mo- The functionsf,(x) here are the usual valeneequark par-
mentum transfer is purely transverse=r, , one can write ton densities. One can take them from existing parametriza-
the two-body contribution to the form factor pE7] tions of parton densities such as GluReya-Vogt(GRV),
Martin-Roberts-Stirling(MRS), CTEQ densities, etc. This
model (originally proposed in Ref[18]) was successfully
applied in Ref[7] to describe the proton form factét, (t)
in a wide region X —t<10 Ge\? of momentum transfer by

1
F(Zb)(t):j dXJ' (//*(Xvki+(1_X)ri)l/l(xakL)d2kL
0

1 . . 2 . . .
Ef F@)(x t)dx, (3.2) fitting thg only parameter\“ characterizing the effective
0 proton size.
whereF(Zb)(x,t) is the two-body contribution into the non- IV. POWER-LAW WAVE EUNCTIONS

forward parton density
GPDs give the most general parametrization of nonfor-

(2b) B . ) ward matrix elements. Furthermore, both of them, the DDs
FEx 0= ¢t Ok + (1= )g(xk )dk, F(x,y;t) and SPDSF/(X;t) are functions of three variables:
(3.2  in addition to the invariant momentum transfehey depend
on two “longitudinal” variablesx,y or X,{. However, the
Adding contributions from higher Fock components, one ob-Gaussian model of the previous section gives a representa-
tains the total NDF(x,t) whose integral ovex gives the tion for the form factor in terms of a one-dimensiomain-
form factor F(t) of the bound state. As discussed in thetegral of the functionF(x,t) depending on only two vari-
previous section, at zero momentum transfx,t) reduces ablesx andt. One may suspect that the Gausstarsatzis a
to the usual valence parton densit{x)=F(x;t=0). Fur-  degenerate case failing to reveal the richer structure present
thermore, there is the usual form factor normalization condiin more general situations. In what follows, our goal is to
tion F(t=0)=1. Finally, for the valence quark distributions, study a model based on power-law wave functions. As we
the integral off (x) overxis 1. These conditions are satisfied will see, although this model is more complicated, we are
in the simplest way by the factorized\nsatz F{(x,t) still able to get most of the results in analytic form, which
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allows us to use it for building nontrivigdhnsazefor gener-  ponents can only be guessed. To avoid making too many

alized parton distributions. guesses, we will analyze the simplest “one-guess” model in
The qq wave function of the pion found numerically in Which a single two-body-like functiot(x,k, ) (4.4) imitates
[11] was parametrized analytically by a power-law fit the contribution of all Fock components into the pion form
factor. Thus, we take
" 1 “
e(k)~ ﬁ) : 4.7)
LKA F(Q2>=f Pk, +(1=X)0,)p(x,k,dxdk,

with k~2 rather than by a Gaussiap(k)~exp(—k%AZ2). (4.7
Here k?=kZ+k? is the square of the relative three-

momentum and\ is the parameter characterizing the width and normalize the effective wave functigrix,k,) by

of thek? distribution, i.e., the size of the system. In the case

of equal quark masses, there is a simple relafib® be- o
tween the usual variable&(,k, ) and the infinite momentum f [9(x.k)[* dxdk, =1. (4.9
frame (IMF) variables &,k )
1 K This condition(4.8) gives an explicit expression for the nor-
x=—|14 — 2 , (4.2  malization constan of the effective wave function:
2] Ym2Kk2+K?
3 (s\? 1
wherem is the effective quark mass. The relation between N2:4—(5> AGS)" (4.9
¢(K) and the IMF wave functions(x,k, ) is given by m
k)=o) (1+Kk2/m?)t4 3 where
X,k )= —_—. :
e VX(1—X)
A —Jldx—fl 1=z d 4.1
For light quarks, one may expect that the size parametisr (s)= 0 Jo[1= (1= 7] z (410

close to the effective quark mass. Then the factor (1

+k?/m?)Y4 can be essentially absorbed into a redefinition of _ . .
the powerk, whose precise value, in fact, is not critical for ~ Before proceeding further, we would like to make it clear
our purposes. Thus, in what follows, we will consider a sim-that substituting the total contribution of higher Fock com-

plified power-law IMF wave function ponents by a two-body type term is just a toy model, and we
do not expect it to adequately describe all the aspects of the
N pion structure. In particular, the total parton density in the
P(x,k )= 75 (4.4  toy model has the same{1—x symmetri¢ shape as its
VX(1=x)[a+bk] two-body part, and it vanishes at=0. One would expect,

. . . however, that the contributions of higher Fock components
wherea-+bki s the IMF version of (1-k%A?) with are shifted to smaller and smalbewvalues, producing even-
1\2 tually the experimentally observed 1/y/x behavior. We do
sz( X— —) not know how much each term of the infinite tower of Fock
a=1+ 2 _ = — components contributes to the parton density, but we know
X(1=x) ’ 4m?x(1—x)’ A’ (from experimentwhat is the total result. Thus, our ultimate
(4.9 strategy, just as in the case of the Gaussian wave function, is
. N to calculate GPDs in the toy model, identify the factor cor-
andN is the pormahza‘uqn constant. For thg two-body FOCkresponding to the usual parton density, and substitute it by
component, it can be fixed from the requirement that the, . experimental one. On the other hand, one may expect
integral ofy(x,k, ) overxandk, should give the pion decay a1 the form factor, being an integral of the relevant GPD,

constant should not be too sensitive to the details ofktsependence,
at least in some range of momentum trangfetrhus, we
/iJ' #2) (x K, )dxdk, = . (4.6) study fir;;t the form factor in our toy model. We show that,
23 despite its crudeness, the toy model can easily fit the form
factor data by adjusting the two parameters of the model.
As noted in the previous section, the knowledge of the two-Then we incorporate the main advantage of the toy model,
body wave function is not sufficient to calculate the pionthe possibility to do calculations analytically, and obtain the
form factor. To get it, we should add the contribution from all representation for the form factor in terms of DDs. Finally,
higher Fock components. Just as in the case of the Gaussiare “correct” the latter in such a way that, after integration,
wave function, the two-body component is responsible onlythey produce experimental parton densities. We also show
for some portion of “1” in the normalization condition that this model gives DDs with a nontrivial “profile” depen-
F(0)=1 [10,17. Again, the structure of higher Fock com- dence on the variable.

s? m
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V. FORM FACTOR IN TOY MODEL
Thek, integral in the expression for the form factor
dxdPk,

x(1—x)[a+b(k, +(1-x)q,)?]a+bk?]?
(5.1)

F(Q?)=N? f

can be done using either the Feynman parameters or the

Schwingera-representation method briefly described below.
To this end, we use

oo
|
0

wherex=2 in our case. After calculating the Gaussian inte-
gral overk, , we arrive at the representation for the form
factor in terms of two parameters;, and a,:

1

Xf e alar+ay) o= b(1-x)?Q%ayaz /(g +ay)
0

1
AK

1

k—1la—aA
() e “Me,

(5.2

aldalazdaz

(a1t ay)

dx

Xm, (53)

whereQ?=q? . Changing the variables

a1t ar,=\, a;=y\, a,=(1l—vy)\, da;day,=Nd\dYy,

(5.9
we obtain the parametric representation
) , (1 dx 1
F(Q%)==N fomfo dyy(1—-vy)
Xfw)\zd)\e—[ambx(l—x)zy(l—y)QZ]_ (5.5)
0
Integration ovem is easily performed to give
1 dx
2y 2
F(Q%)=2=N fo bx(1—x)
1 1—
xf dy 1=y . (5.6
o " [atb(1-x)*y(1-y)Q%]®

PHYSICAL REVIEW D 67, 073014 (2003
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FIG. 1. Combinationss®B(s)/A(s) (solid) and s*C(s)/A(s)
(dashedl as functions of the parametsr

By construction, the form factor has the correct value at
Q?=0. However, its slope at this point depends on the val-
ues of the model parametersands. To obtain the analytic
expression for the slope we note that, in the srg&illimit,

one can expand the denominator of théntegration

6 1dx (1
FA(Q%)|g2 0= mfo gfo dyy(1—v)

3b
X| 1= —y(1-9)QA1-x)?

6b?
+ ?[y(l— Y 1PQH(1—x)*+-- - |.

(5.9

Using the normalization conditiot%.8) for the wave func-
tion, taking the integrals ovey, and introducing the variable
z=2x—1 [such as in Eq(4.10] we obtain

3Q?_B(s), 9 Q' ,Cl9)

Fr(Qle-0=1- 5572 A5 * 280m*° A T
(5.9

where

1(1+2%)(1-2%)3
B(S):fo(l—(—l—sw dz (5.10
and
1(1+24+62%)(1-2%)3

C(S):.[O (1_(1_52)22)5 dz (511)

The integralsA(s), B(s), andC(s) can be calculated in
elementary functions, although the results are rather lengthy.

Incorporating the normalization condition, we get the finalFigure 1 shows the plot of the combinatios®B(s)/A(s)

result

6y(1—7y)

[a+b(1-x)2y(1—)Q%®
(5.7)

1 (1 1
AN
F+(Q7)= A(S)Jo dXJody

ands*C(s)/A(s) as functions of the parametsr The com-
binations?B(s)/A(s) is monotonically increasing from zero
to infinity. Hence, after choosing the effective mass/e can
always find such a parametethat the slopalF_(Q?)/dQ?

of the pion form factor aQ?=0 has the experimental value
dF2P(Q?)/dQ%~1/m? [20]. For massesn=0.2, 0.3, and
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0.2 0.4 0.6 0.8 1 1 2 3 4 5

FIG. 2. (Color onling Left: Form factorF .(Q?) for three different parametrizations of the wave function: witk 0.2 GeV(solid), 0.3
GeV (dashed and 0.4 GeMdotted. Right: Q?F_(Q?), with the same wave functions as in the left panel.

0.4 GeV, the parametessfitting the pion charge radius are Since the wave function falls off rapidly at large transverse
0.56, 0.95, and 1.33, respectively. momenta, the major contribution to the integral comes from
In Fig. 2 (left) we have plotted the form factor as a func- the region wherdk, | is much smaller than (2x)Q, and

tion of Q2 in the lowQ? regionQ?<1 Ge\? for these three one may hope that thk, integral of #(x,k,) can be ap-
different parametrizations of the wave function. Since theyproximated by the pion distribution amplitude(x). The
have the same slope @ =0, the curves are rather close to next statement usually made is that the la@®&ehavior of
each other. However, the difference between the curves beke function ¢(x,(1—x)Q) is determined by the larger
comes more pronounced @ increases. In Fig. &ight) the  behavior ofy(x,k, ) and, hence, the larg@-behavior of the
form factor calculated with these three effective wave funcform factor just repeats the large- behavior of the wave
tions is shown in theQ? region up to 5 Ge¥ relevant to  function; i.e., if ¢s(x,k,)~1/k], then F~1/Q". Note that
future experiments at Jefferson Lab. Among these threene last statement is true only if, after these substitutions, the
choices, the closest to existing experimental datd is the  integral overx converges. However, it is easy to derive that,
curve corresponding tm= 0.3 GeV ands=0.95. after thek, integration in Eq(6.1), the remaining integrand
for the x integration is proportional to
VI. ASYMPTOTIC BEHAVIOR OF THE PION FORM
FACTOR

31 _v\5N2
According to Fig. 2(right) in the accessible energy range X*(1-x)°Q _
Q2<5 Ge\?, the model curves show the behavior close to [X(1—X)+s%(x—1/2)2+ (1—x)?Q?/4A?%]?
the 1Q? scaling. Since the mass scales involved are rather

2 A2 ;
_small,m A 0.1 GeV?, one may think that the form factor Neglecting thex(1—x) andsz(x—1/2)2 terms compared to
is already in the asymptotic region. 1-%)202/4A 2 Id get the intearalx/(1—x) |

To analyze the asymptotic behavior of the form factor one( x)"Q , one would get the integralx/(1~x) loga-

: . ; ithmically diverging in thex— 1 region. Of course, this ap-
can follow the approach described in RE22]. The basic rithmically di
idea is that in thngreII-Yan formuléd.7) we deal with an proximation is only true when (£x)?Q®/4A?>1 or x<1

overlap of two functionsj(x,k,) and ¥(x,k, —(1—x)q,) —2A/Q. This cut-off converts the logarithmic divergence

- into  IN(QYA?. Hence, the asymptotic behavior is

whosek, arguments are separated by a gap-¢(Q in n oS 4 . .
magnitude. Furthermore)(x,k, ) rapidly decreases with in- ~In(Q7A )/_Q - This result can also be pbtamed from our
creasingk, . Hence, whei©? is large, the integral oves, in representatiori5.7) for the form factor, which we write now
the form factor expression is dominated by two regions of'S
phase spacg2]:

(D) |k, |<(1-x)Q, wherey(x,k, ) is large; 1 1 )

2 |.kL+(1—x)qL|<(1—x)Q, where (x,k, +(1 F,T(Qz)=—f dxf dy
—x)q,) is large. A(s)Jo " Jo

In the first casek, can be neglected compared to (1
—Xx)q, in the wave function. The contribution from this re-
gion is then approximated by 6 y(1—y)x3(1—x)3

. X IX(1—x) + S2x— 122+ y(1— 7)(1—x)2QZANT]?"
FOQA)~ [ wix (1-x)Q)dx 63

(6.2

3 ) Again, there are two regiongy<4A2?/[(1—x)?Q?] and 1
XJ O(lk, [<(1=0Q)i(x.k )%k, . (6.1) — y<4A?/[(1—x)?Q?] producing the leading larg®?
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contribution ~A%/[(1—x)?Q?]?>. Combined with other
x-dependent factors, this gives tbe/(1—x) divergence or,
after a more accurate calculation, the QAN\?)/Q*

asymptotic behavior. This behavior is not yet visible in the 1

2
x+y(1=y)(1- X)QT

— S+io
curves shown in Fig. 2right). The curves suggest, in fact, — | F(—J)F(J+3)
the 1Q? behavior. The slow approach to asymptopia can be ~2mi
traced to the rather small numerical facto(1l—vy)/4 Q2|7
~1/16 accompanying th®? term. As a result, the effective Xy (1= )Y (1—x)x I~ 3( 2) dJ.
scale governing th&? behavior is something like 16’ 4A
~1.5 Ge\ rather than simplyA2. Thus, the quark mass (6.5
squaredm?~0.1 GeV\? is small compared to the effective
scale, and it is worth investigating what happens when
quarks are massless, i.e., when0. Then Now, the y andx integrals can be calculated In functions
to give
6y(1—7)x°
F.(Q%)]s- o—jdXJ'd’}’ 2IAN 273"
X+ y(1—y)(1—x)Q/4A
Dt v(1=( R (]6.4) F_(0%)= 1 (-oti= T'(=IHI'(1-I)
T 2w ) s (AT 1)T(2J45)

and the situation changes drastically: the la@febehavior

is dominated by integration over the-—k<4A?/[y(1

— ¥)Q?] region. The remaining integral over has no sin-
gularities, and we geF .(Q?%) ~A2/Q? for the asymptotic
behavior. Clearly, the asymptotic behavior for massless
quarks is governed by the softr Feynmah mechanism. The integrand has poles at integen the left half plane. We
One can easily check that the same asymptotic power lawxplicitly displayed the rightmost of these polesJt{1). It

F_(Q?)~1/Q? holds for the y(xk,)~1[VX(1—x)(1 corresponds tox~1 integration and gives the leading
+bk?)] wave functions with any power and also for the @symptotic contribution equal to 1%/Q?. Expanding the

T By integrand in the vicinity ofl=—2,— 3, etc., we can get sub-
exponential wave functiog(x,k, )~e "%/yx(1-x). This leading contributions. Note that the singularityJat —2 is a

Iouzzlmg (:bse(;vatlt_)th he_ls ?hrather s:jm||ole e;;]planatllon: the Va€§uble pole 1/§+2)?. Hence, this contribution will have
ence parton densities in these models with massIess quarig,  2/2)2in(Q¥A?) term. One can also close the integra-

are constantf(x)=1, and it is this singularf(x)[,_., tion contour in the right half plane. This procedure gives the
—const behavior which is responsible for th€#/contribu- smallQ? expansion gF (Qz)p the'first teprms of whi?:h are
tion to the form factor. If we “corrected” the model so that explicitly written in Eq (’é ) '

f(x) has a more realistie- (1 —x) behavior forx close to 1,
the Feynman mechanism contribution would have @*1/
asymptotic behavior.

An efficient way to obtain the asymptotic expansion in
powers and logarithms 0f2/Q? is based on the Mellin rep- Let us now analyze the connection of our expression for
resentation for the denominator factor: the pion form factor

2
XT?(J+2)'?(J+3) A2

J

dJ. (6.9

VIl. DOUBLE DISTRIBUTIONS IN THE TOY MODEL

6y(1—v)

FalQ= %fo dxfo VY [+ 2= 12 ZX(1=%) + 7(1— 7551 —x) QUATPxT? (-3
with generalized parton distributions. Introducing the varigbte(1—x) vy, we can rewrite this formula as
”(QZ)_A(S J dXJ dyf(x+y<1) [1+sz(x—1/2)2/x(61y£1x;:;(}:/L)i(j—_;/());QZMmzx(1—x)]3' (7.2
It may be treated as the standard represent48pn
F@0= [ax [ Fooyi-@ady 73
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of the pion form factor in terms of the double distributton

BY(1—x—Yy)/(1-x)°

FOoy:=0(xty<1) A(S)[1+5%(x—1/2)%/x(1—x) —ty(1—x—y)s?/4m?x(1—x)]® (7.4
|
(we switched ta=—Q? to conform with the standard nota- 1
tion for generalized parton distributiong'his double distri- f(x)= A(S)[1+S2(x=122Ix(1=x) ° (7.9

bution has correct spectral propertigs5]: it vanishes out-
side the triangle &x,y,x+y<1. It also satisfies the depends orx only, and may be interpreted as the parton

Munich symmetry conditiori16] distribution for the valence quarks inside the pion. For non-
zerot, the profile functionh(x,y) also factorizes out in the
F(x,y;t) =F(x,1=x=y;t). (7.5 expression for the double distribution, Bg.4). However, it

) ) is multiplied by a function that has a nontrivial dependence
in Ref. [9]: as a function ok andy for a few values ot.
o The form of the double distribution presented above cor-
F(x.y;t=0)=(x+y<1)h(x,y)f(x), (7.8 responds to the parametrizatidr=xp,+yr of the active
. ; . . uark momentunk in terms of the initial pion momentummy,
n W.hICh thgy dependence appears only in the normahzeognd the momentum transfer=p,—p,. The final state pion
profile function - i L ;
has then the momenturp,=p,—r: the initial and final
h(x,y)=6y(1—x—y)/(1—x)3 (7.7)  bpions are not treated symmetrically in this formalism. To
reinforce the symmetry, one should introduce the average
satisfying momentumP = (p;+p,)/2 (the initial and final pion mo-
menta are therP*r/2; see Sec. )l and write the active

1-x —
B quark momentum as= BP+ (1+ «)r/2. To get the relevant
fo h(x,y)dy=1. (7.8 double distributionf (8, «;t), we write they variable asy
=(1+#»)/2 and then introducex by a«=(1—p8)#n. This
The remaining factor gives

3
ZL(1=p)?=a?)(1-p)°
A(s)[1+5%(B—1/2% B(1-B)—[(1— B)?— a?]st/16m?B(1— B)]°

f(B.a;)=0(la|<1-p) (7.10

The normalized profile function in this case 3§(1—8)?>  suspected, the Gaussian model is “too narrow”: it cannot

—a?] 1(1-P)3. reveal they(«) profile feature inherent to DDs in the general
Integration ovek, can be performed in a similar way for case.

a more general power-law LC wave functiof(x,k, )~

(a+bk?) */\x(1—x). In this case, one obtains DDs with

k-dependent  profiles ~[(1— B)%— a?]< 1/(1—pB)> 1. VIIl. SKEWED DISTRIBUTIONS IN TOY MODEL

The power of the denominator factor in E¢¢.10 also

changes from 3 to 2—1. Note that the faster the decrease

of (x,k,) with k, , the narrower is thex profile of the

resulting DD and the faster its decrease with. The purely

exponential wave function{— ) gives an infinitely nar-

row profile functiond(«) (or [y—(x—1)/2] in the case of 1 1oy

F(x,y;t)). The integral over (ory) is trivial, and this is the fg(x,t):f dxf F(x,y;t)8(X—x—¢y)dy. (8.1)

formal reason why the Gaussian model gives a one- 0 0

dimensional integral representation for the form factor. As

Having the expression for the double distribution, we can
construct the nonforward distributiorj§] in the standard
way from

Note that forF(x,y;t) given by Eq.(7.4) the integrations
YIn Appendix A, it is demonstrated that the variabley in Eq.  again can be performed in elementary functions. Hence, in
(7.4 have the same meaning as in the DD definition. this particular model, one can analytically study the interplay
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FIG. 3. (Color onlina F(x,y;t) as a function ok andy for three values of=0, —0.5, and—1 Ge\?.

betweenX, ¢, andt dependence of the nonforward parton model can be obtained from the scalar triangle diagram taken
distributions (although the expressions are now really at spacelike virtgalities of the external currents imitating the
lengthy). pions. In thg spin-1/2 case, there are exti@dependent fac-

In Fig. 4, we plotF,(X,t) as a function ofX andt for tors originating from the numerators of propagators. Thus,
some values of. Note that for each value af the nonfor-  ©ne should not take the dependence of the toy model DD

ward distributions satisfy the reduction formula too seriously. On the other hand, we observed thatythe
dependence of the model DD has a rather universal structure:

1 for t=0, it is given by the profile function~[y(1—x
fo FXDdX=F7(—1). (82 —y)]*~1 only. Fort#0, they dependence appears also in
the denominator factor, but it has a simple structure basically

An important point is that the right hand side here has nd®Sulting from kinematics. These observations suggest
dependence on the skewedness paranieter “minimally correcting” the model DD: to change ite shape

One can also use the symmetric double distributior@t t=0 without changing the pattern of itsandt depen-
f(B,a:t) and the relation dence. To preserve the analytic structure of the interplay be-

tween thet vs x andy dependence of DDs dictated by the
simplestAnsatz(7.4) we take the model

Vo ! 8 v o
Hva(X,f;t)Zf dﬁf fY8(B,a;t) 6(x— B—éa)da
0 —1+8

8.3 fR(x

89 FR(x,y;t)=F(x,y;t)%X))- (9.9
to obtain Ji's off-forward parton distributionslV?/(x, £;t).
Note that for the infinitely narrow profile function In terms of the effective two-body-like LC wave function,
)8, a;t) =F(B,t) 8(a)corresponding to the purely this corresponds to the change
Gaussian wave function, the OFRXX, &;t) is given by the

&-independent functiord{*!(x,&;t)=F(x,t): there are no fR(x)
skewedness effects. Thus, the SPDs obtained from the DDs P(X, K )= (XK ) = (XK, ) Vf(_x' (9.2
based on a power-laknsatzhave a richer structure.
The parameters1 ands of the new model should again be

IX. “REALISTIC” MODEL fixed by fitting the slope of the pion form factor &0 and
its behavior in the—t~1 Ge\? region. In Fig. 5, we show
the curve for the pion form factor obtained with tAesatz
(9.1) and the valuesn=0.46 ands=0.81. It practically co-
incides with the curve obtained within the original model for
m=0.3 GeV ands=0.95 in the region of “not-so-high”
transfer.

With the new DDs, one can obtain a realistic model for
the SPDs]—‘?(X,t) via Eq. (8.1). The SPD is presented in
Fig. 6 as a function oK andt for some values of.

As a more explicit illustration of the dependence of

with the 1A/x reflecting the Regge behavior due to ex- SPDs, in Fig. 7 we show SP5(X;t) with different{’s for
changes that are not taken into account in the toy model. Itwo different values of, for both the original and the “real-
the latter, we assumed that the contribution from the higheistic” model.
Fock components td(x) has the same shape as the two- When ¢ increases, the maxima of SPDs shift to higher
body one. Also, the expression that we use for the two-bodyalues ofX. The rate of change is more drastic in the case of
wave function is again just a model guess. In particular, ashe realistic model, where the SPD changes from a mono-
shown in Appendix A, the double distribution of our toy tonically decreasing curve fof=0 (corresponding to the

The functionf(x), Eq.(7.9), was interpreted above as the
toy model version of the valence quark distribution in the
pion. However, its form strongly differs from the usual phe-
nomenological parametrizations. At a normalization point
pn~1 GeV, the latter have a form close to

fR<x>=§<1—x>/&,

073014-10



POWER-LAW WAVE FUNCTIONS AND GENERALIZED . .. PHYSICAL REVIEW 67, 073014 (2003

FIG. 4. (Color onling F,(X,t) as a function oX andt for three values ot =0.2, 0.4, and 0.6.

usual parton densiiyto a shape resembling that of distribu- the skewed parton distributioff,(X;t) satisfying, by con-
tion amplitudes, ag tends to 1. It is interesting to analyze struction, such important constraints as reduction relations to
the limiting case/— 1. As demonstrated by Polyak¢23],  usual parton densities and form factors and spectral and
in the soft pion limit,m2—0,(—1t=0, the isovector part polynomiality conditions. The SPDs derived in our model
of the pion SPD should coincide with the pion distribution have a nontrivial interplay betweefy £, andt dependence.
amplitude. To check if this constraint is satisfied by our mod-Furthermore, they were adjusted to describe pion form fac-
els, we take the functiofr,_,(X;t=0) and symmetrize it tors for all available, so we expect that our model describes
with respect taX« 1— X to project onto the isovector com- thet dependence of the pion GPDs of the valence quarks for
ponent. In Fig. 8, we show the results both for the toy modeboth small and largé The ability to have a unified model for
and the realistic model. For the toy model, we obtain aGPDs fromt=0 to |t|~10 Ge\? is especially important in
double humped curve, resembling the Chernyak-Zhitnitskyfuture) applications to nucleons, for which GPDs are al-
(CZ) model ©%(X) =30(1— 2X)2X(1—X). More precisely, ready being studied experimentally for both sm&NCS)

this curve can be fit, with good accuracy, by the sumand larget (wide-angle Compton scatteripg

0.43 ¢3(X) +0.57 ¢“%(X) of the CZ and the asymptotic

distribution amplitudep?3(X)=6X(1—X). The pion distri- ACKNOWLEDGMENTS
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X. CONCLUSIONS APPENDIX A: DD IN A SCALAR MODEL

In this paper, we demonstrated how to obtain a model for Our conversion of the integral representation for the form
the valencéor C-odd) pion double distributiori-(x,y;t) and  factor F(t) into a functionF(x,y;t) of three variables may

0.2 0.4 0.6 0.8 1 2 4 6 8 10

FIG. 5. (Color online Form factorF _(Q?) (left) and Q?F _(Q?) Ge\? (right) obtained with the “realistic” model for double distribu-
tions (solid line). For comparison, we present the results for the original médeshed and “p-meson fit” Q%/[1+ Q?/(0.77 GeVY]
(dotted.
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FIG. 6. (Color onling f?(x,t) obtained with the “realistic” DD as a function of andt for three values ot =0.2, 0.4, and 0.6.

look like a rather ambiguous exercize. Below, by a covariant t=(p,— p2)2_ (A1)

field-theoretic calculation, we demonstrate thaindy really

have the meaning of the variables of a double distribution.

First, consider a one-loop box diagram for the scalar anabsing thea representation

logue of deeply virtual Compton scattering amplitugee

Fig. 9. The initial and final “pions” are imitated by scalar

currentslI corresponding to spacelike momemaand p,, 1 .

the initial “photon” momentum isq;, and that of the final #:if glakP—m?*+ie)q o (A2)
m-—k—ie 0

one isg,. The momentum invariants describing this four-
point function are
for each of four scalar propagators and calculating the result-

pi.p5.Q%=-qf, 95=0, s=(pi+qy? ing Gaussian integral over the loop momentkwe obtain

2 2 2
ai(a3zS— asQ%) + asast+ az(aspi+ asps)

a1+ a2+ a3+ ay

—p(m?—ie) (A3)

]da’ldazda3da’4
p? ’

T(pl,pzﬂl):_f:eXp{i

We are interested in the where\=a,+ a3+ a,. Denotingv=2(p;q;) and writing

Where pE al-l— (1’2+ CY3+ ag.
s=v—Q? (p? is neglected compared 1©2?), we represent

Bjorken kinematics when there are two large varialsiesd
Q? which have the same order of magnitude- (1/Xg; the Q%-dependent term in the denominator agrg/\

—1)Q?, while other invariants are small. The lar@é-as- —Q?%(az+ay)/\, or finally as v[ag/A—{(1—ay/\)],
ymptotics in this situation is determined by integration overwhere{=Q? v. Introducing the double distribution

the region where the coefficients accompanyingnd Q?
vanish simultaneously. Otherwise, the integrand rapidly os- s o [ ag ay
cillates and the result of integration is exponentially sup- F(x,y;t,pl,p2)=|f 5<X— —) 5()’— —>
pressed. Integration over;~0 region is the simplegand,

as inspection shows, the leadjngpssibility. It corresponds i ) )
to hard momentum flow through the propagator connecting xexp -[azaat+ as(aspi+ azpy)]

the photon vertices. Performing the,~0 integration, we
obtain da,da-da
—i)\(mz—ie)]—z A; 5 (A

= daydasday/\> we can write the scalar DVCS amplitude in the partonic form

0 sas/N—QPay/N+ie 1 (1 (F(XYit,p3,p3)
T(plyPZ:Q1):_;f0f

T(pl,pg,ql):—if
i ———————dxdy. (A6)
i _
Xexp{x[a2a4t+a3(a4pf+a2p§)] 070 x+y-§ ftie _
A few comments are in order. First, we reemphasize that
there is no{ dependence in the definition of DDs. The sec-

(A4) ond comment concerns the spectral properties of DDs. It is

—iIN(mP—ie) | +0O(1/Q%),
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FIG. 7. (Color onling SPDs F,(X;t) with {=0.1,0.2,0.4,0.6 are shown for two different values0 (solid lineg and t=
—0.2 GeV, for both the originalleft) and “realistic” (right) model. The curves corresponding to largenave maxima at highex.

easy to see that both variablgsy vary between 0 and 1. F(x,y;t,pf,p§)= —{y(1—x—y)t

Furthermore, their sum is also confined within these limits:

0<x+y=1. Finally, the hard amplitude depends on the DD +x[(1=x—y)pi+yps]-m? L
variablesx,y through the combinatiox+yZ only, so one (A8)
can treat it as a new variabk¥=x+y{ and use nonforward

parton distributions7,(X;t) instead of the DD$-(x,y;t). Putting the “pions” on equal footing by setting?=p3

With the same technique, one can calculate the nonfor= _ ;2 we get a DD
ward matrix elementp,|O,|p,) of the composite operator

0,=¢(izd)"¢ and obtain itse representation FOX,y;t,M2) ={—y(1—x—y)t+x(1—-x)M2+m?} ~*
(A9)
ifx (a3(plz)+ az(rz))“ satisfying they«<s1—x—y Munich symmetrgondition. This
0 A expression can be rewritten in the form
[ ) ’ m?
xexp rlazagt+ as(aypi+ azpr)] FO(x,y:t,M2)= 11+ .
X(1—=x)M X(1-x)M
dazdagda4 _
o 2_; 1—-x—y)t
ix(m Ie)] 2 (A7) ~Y( y)2 (AL0)
X(1—=x)M

Note that the derivativeité) acting on the fieldp is ex-
pected to give the factdkz), wherek is the momentum ob.
Equation(A7) shows thatkz) = a3(p12)/\ + as(rz)/\, i.e.,
az/\ anda, /N should be interpreted as the variabieand FOX,Y:t,M2) 2= 442 mo)
y of the double distributiofr (x,y;t). Alternatively, using the

binomial expansion for the-( - )" factor, one can see that the 1
coefficients in front of p;z)" *(rz)* in this expansion are

resembling the DDs obtained from the power-law wave func-
tion. IntroducingA2=M?/4+m?, we get the expression

mi(x—1/2)2 y(1—x—y)t]

- YA 2 A2 A2
given by thex" kyk moments of the DD(A5). Integrating AX(1=x)A X(1=x)A%  4Ax(1=x)A
over\, we get the relevant DD explicitly: (A11)

1,958 - o T s 1.75 .
st N L9 \ 1.5 i,

' ' % ,//"‘ \'\.\ / : Vi \.\\
1.25 / v N \ 1.25 p N

B N ' 1 g 1

b i X SN \ 7, A\

0.75 / . . / \\'\ . 0.75 / \\\.
i, G . . .
0.54/ / s \’ /- LY | ©.5 % \\\\_
0,250/ ¢ -\ \\\. 0.25t) \\\.
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1

FIG. 8. (Color onling Left: isovector part oF ,_;(X;t=0) for the toy modelsolid) compared to the asymptotic pion Didash-dottey)
CZ distribution amplitude(dash-double-dottgd and DA obtained from the two-body wave functiodashegl Right: isovector part of
F,-1(X;t=0) for the realistic mode(solid) compared to the asymptotic pion Dilash-dottedand DA obtained from two-body wave
function (dashed
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ql q and double distributions for the triangle diagram, but takes
2 the version of double distributions in which the plus compo-
nent of the momentum of the spectator system is written as
1 up; +vp;, . Instead of Eq(A5), we have then
w2 [ Tgl,, s _*2
4 2 P(u,u,t,pl,pz)—lf0 6(u N )5(1; )\)
i
, . XeXP{x[azaﬂWL as(agpi+azps)]
'l‘ 3 ‘\~
- T da,dasda
'p . p . 2 2 3 4
f 5 iA(m us)]—)\2 . (B1)

FIG. 9. Box diagram for DVCS in a scalar model. . . ~
This DD is related to the SPBI(x,¢;t) by
whose denominator factor has the structure close to that of 11
the DDs obtained in the model with the power-law wave H(§a§?tvpi,p§):f J' S(A—X—u(l+&)—v(1—§)
functions. However, the denominator power isX) instead 0.Jo
of (—3). Applying (p7d/dp3)(p3/p3) to F(X,y;t,pi,p3), 02 02

xX P t su+v=<l .
Eq. (A8),2 and settingpi=p3=—M?, we obtain (U,31,p3,p2) 0(0<utv=<l)dudy

(B2
2y(1—x— m?
FO(x,y;t,M?)= Y . y2) . Now, one should take p?=p5=m?, t=—(|A |?
X(1=x)°M X(1=x)M +4£2m?)/(1—¢%) and calculate the double Fourier trans-
-3 form
_y(A—x=yjt (A12)
x(1—x)M? - N |A, [2+482m’
B(ng;bJ_):f —Zel( 1 L)H X’g;——z .
Now, usingA?=M?2/4+m?, we end up with a DD differing (2m) 1-¢

from the toy model DD, Eq(7.4), just by thex-dependent (B3)
factor 1k and an overall normalization. Note that our toy DD PR - _
was based on the formula for the vector form factor; hence-,rhe 9 function in Eq.(B2) can be rewritten ag(1-u/r,

for full correspondence, we should consider a DD related to v/72)/(1—X), where the parameters,,r, given by

N R . o =(1-X)/(1+¢), r,=(1-Xx)/(1—¢) have the meaning
Operators Contalnlng the extra* derivative. This results in of the Spectator’s p|us momentum measured in units of the
the extra factor of initial or final pion plus momenta. Due to th&function, we
_ can writeu=zr;,v=(1-2)r,, with 0<z=<1 in thex>¢
A3 uy oy X2 YA oypr p region. Finally, the integral oved\dz can be transformed
T(pl+p2)+ N (py—p5)=2xP*+(2y—x—1)r*. gion. Y, g

into integration over the variables;=z\ and o,=(1
—2)\. A remarkable fact is that the resulting integrand

As expected, the®* part contains the missing factor af (01, 05) factorizes! (o1, 05) = J1(01)Jo(c). AS a conse-

Since ther# part is Munich antisymmetric, it does not con- , ~ )
tribute to form factor and forward densiticsee alsg24]). In ~ duence, the expression f@(x,£;b, ) also has a factorized
general, such terms are not restricted by the reduction reldorm [25]

tions (2.13,(2.14). However, they contribute to SPDs fgr 1—x

#0, and their modeling deserves separate consideration. B(x,&b, )= ﬁVo(rl-(l—@bﬂVo(fz,(lJr b)),

APPENDIX B: SPDs IN THE IMPACT PARAMETER (B4)
REPRESENTATION where the generalized impact-parameter LC wave functions
In this appendix, we investigate the properties of our 1 q 2
model S_PDs in t_he impact parameter representanon. For t o1 CL)= exd — —* - —o(mz—r(l—r)mfr)
scalar triangle diagram, such an analysis was recently per- A7r )o o Aor
formed by Pobylits425]. He also uses the representation o,
1 (o}
- =t 2_ _ 2
o KO( p yme—r(1 r)mw) (B5)

2lt is easy to see that thH ¢ scalar vertex differentiated with
respect to the virtuality of the scal&iF current corresponds to the can be expressed through the modified Bessel fund€ign
k=2 power-law wave functiori4.4). As demonstrated in Ref§25], the factorized representation
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(B4) guarantees that the positivity bounf26,9,27,14,28—  tjon of (1—x); the parametem? was included to make the
31] for thIS SPD are Sa.tisfied in the mOdel W|th Scalar quarkSargument OfR(a) dimension'esﬁ If th|s function can be
The same SPD multiplied by (1X) satisfies the positivity represented as
bounds for spin-1/2 quarks.

If we proceed as in Appendix A, i.e., first differentiate Eq.
(B1) with respect tap? andp3 and then takep?=p3=m?, R(a)=>, R,a" (B9)
we get an extra factw2a4a§/A2. After the transformations
described above, this results in the factoyr,oq0,[1
—(ryo1+1,0,)/(0,+0,)]% and the integral over,,0,  with all R, positive (the sum should be understood in a wide
cannot be factorized into a product of two separate integralgense, it can involve integrationshe functionB(x,&;b, ) in
over o1,0,. The unfactorizable piece comes from thé  such a model has the structure of EBS), and positivity
factor resulting from differentiation with respect to external constraints are satisfied. The model double distribution based

V|rtual|_t|es. To avoid th_|s factor, but still preserve thelk]  on R(a) gives the following expression fdf (x,:t) in the
behavior of the effective IMF wave function, one can per-;(>§ reqion:
form differentiation with respect to the squares of the quark gron:
masseqdi.e., take all the masses different, differentiate with
respect tan?’s corresponding to lines 2 and 4, and then take HG £ o o= (1= TN °°d 1d \/——
all the masses equalThis produces the factot,a,, or (X&) ¢= (1=x)7 el o PJ, ZRipNZZ4r2)
eventuallyr,r,o,05, which does not violate the factorized

structure of the integrand. In the impact parameter represen- ><exp[—p[l—(l—zrl—?rz)(zrﬁ?rz)

tation, the result has the structure of E&4), but with ) _

Vo(r,c,) substituted by the expression Xm2/m?—zz i1 ,t/m?]} (B10)
[c.m (we use the notatiom=1—z here, and later we also use

Vq(r,c, )= . )
B 477\/1—r(1—r)m37/m2 =1-x, etc). Note that we performed Wick rotation; —

—ia; in the originala representatioB1), which is justified
ViI—r(i—nm2/m?| (B6) if the piqn §tabi|ity conditiqnmi<4m2 is satisfied. In the
r forward limit (§=0,t=0) this gives

e, [m

XKy

involving the modified Bessel functio;. For the original L . B
IMF wave function, differentiation with respect to the active f(x):(l_X)N+lf dzf dpR(p\/z—H)e*p(lfxxmi/mz).
quark mass is equivalent to choosing #hesatz 0 0

(B12)

N
(B7) The functionR(a) should be adjusted to fit experimental

h(x.k )= >
xyx(1—x)[a+bk?]?
( I ] forward distributionf®P{x), and then it can be used for

instead of Eq(4.4). It has the extra ¥/factor enhancing the ~calculation ofH(x,&;t). In particular, for massless pions, the

wave function at smak. In the spirit of our discussion of the coefficientsR, can be expressed directly as

x dependence in the main text of the paper, we may say that

such a function more adequately models the contribution of

higher Fock components. =
The positivity bounds are satisfied also in a more general [T'(n/2+1)]?

case wherB(x,&;b,) is given by the suni32,25

n+1
Ant1+N (B12

in terms of the coefficients of the expansion of the for-
B(X,&b)=(1-X)""' > Qu(r1,(1+&)b,) ward distribution
n

XQn(rz,(1=§)by), (B8) fexp'(x)=§k: A=k (B13)
whereN=0 for “scalar quarks” andN=1 for the spin-1/2

case. This opens the possibility of building models for GPDs

consistent with both the polynomiality and positivity con- Note that for the simple moddf(x)=3(1-x)/\x of Sec.
straints. The simplest idea is to start with therepresenta- X, all the coefficientsA,=I"(k—1/2)/T'(1/2)(k—1)! are
tion (A5) for the DD corresponding to the scalar triangle positive. Alternatively, since both Eq#B10) and (B11) in
diagram, and modify it by multiplying the integrand by a thet=0,mi:0 limit involve the same integral of the func-
function R(m?\/a,a,) depending only on the produate,  tion, the only change being— \rir,, in this case we can
[choosing the argument a&x,a, we get eventually a func- directly write H throughf(x)
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N—-1
X
— f(1—rqr
F) o)
1-X )
1-¢&)

— (1_ gZ)(Nl)/Zf( 1—
(B14)

H(;(1§?t:0)|§>§;mi=0:(

In the case of nonforward distributions, we have

1-X
1-—].
1-¢
(B15)

Taking f(x) = fR(x) andN=1 (spinor quarks we get curves

that are very close to th¥> ¢ parts of the realistic model

curves shown in Fig. 7. In the regiof= ¢, the functions can

be obtained only from formulas explicitly involving double
distributions. In particular, the scal&(a) model gives

Fouyin = [ e R yA—x=y)ld.

(B16)

f(X.Z:t=O)|x>§;mz_0=(1_§)(N—1)/2f(

where  p(x,y,t)=1—y(1—x—y)t/m?—x(1—x)m2/m?,
Fixing R(a), e.g., by the requirement thitx) = fR(x) in the
m,—0 limit (which allows one to get the result in analytic
form) and using Eq(B12) we get

(N+1)1[y(1—x—y)]"2
T2(n/2+1)[p(x,y,H)]" L’

F(x,y;t)zg Ani1

(B17)
This expression can also be written as
(1_X) n+1
FOX,y;t) =2 AnshM(x,y)| ——— B18
(Y0 =2 Anah™20y) Do sl (B18)

whereh(™?)(x,y) is the normalized profile function of order
n/2. Thus, the DDF(X,y;t) in this model is given by a sum

of powerlike terms similar to those discussed in Sec. VII.

The main difference is that theprofile now is not universal:
one should expand the forward distributibfx) into a power
series over (+x) and supplement the (x)"*! term by
the n-dependent profile functioh("?(x,y). Because of the
correlation between the power of {Ix) and the order of the
profile function, the shape of theprofile of the double dis-
tribution changes with. Since all parton distribution§(x)
tend to infinity asx goes to 0, the smak-region is domi-
nated by terms with larga, and the profile is more narrow
whenx—0, becoming infinitely narrow as—0. Note that
in the case when the profile is infinitely narrow for glli.e.,
when F(x,y;t=0)=4d[y—(1—x)/2]f(x), thet=0 skewed
distribution is  given by F/(X)=f[(X-{/2)/(1
—[2)]/1J1—¢: it repeats the form of the forward distribu-
tion f(x) and is infinite forX=¢/2. To check if this also
happens for the mod€B18) with the changing profile and
realistic ~x~%° behavior for smallx, we took f®P{x)

PHYSICAL REVIEW D 67, 073014 (2003

=fR(x) [or, which is the same, A,;;=I(n
+1/2)/T'(1/2)n! in Eq. (B17)] and constructed model
skewed distributionsF,(X) in both theX>¢ and X<{ re-
gions(see Fig. 1D The resulting functions are indeed singu-
lar for X=¢/2, but finite otherwise.

We plan to perform a more detailed study of GPDs within
the R(a) model in a separate paper.

APPENDIX C: TWO-PION DISTRIBUTION AMPLITUDE
IN SCALAR MODEL

Let us now apply our approach to processes of two-pion
production iny* y— o or yy— aa collisions. They* y
—rar process in the kinematics wheyf is highly virtual,
while s=m?_is small[33] is the crossed-channel reaction to
DVCS while yy— 77 process in the kinematics when
s,|t],|ul are large[34] is the crossed-channel reaction to
wide-angle Compton scattering. Here we are going to con-
sider only the simpler case of the kinematics of the first
process.

Originally [33], it was proposed to describe the nonper-
turbative stage of this process by the two-pion distribution
amplitude (2rDA) ®(z,¢;s) which describes the conversion
of two quarks with plus momentaP* and zP™ into two
pions with momenta; =¢P* andp, ={P* (see Fig. 11,
whereP is the total momentum of the pion pdirecall that
the invariant mass of the pair is smalP’=s<1 Ge\?).
Later, Teryae\[35] proposed to use the double distribution
description(see also Ref.36] for further developmenjscor-
responding to parametrization of the plus component of the
spectator momentum a; —vp, (note that both momenta
are now outgoing, and this is reflected in the change of the
relative sign of thep; andp, parts of the spectator momen-
tum compared to the DVCS cgsén P* units, the spectator
plus momentum can be written either @+z) P " (using the
2mDA variablez) or asu{P*—v¢P* (using the DD vari-
ablesu,v). Thus, the connection between the two sets of
variables is given by

z=(1l-u—v)l+v.

So we can express therDA ®(z,¢;s) in terms of the DD
M(u,v;s):

d(z,4;8)= Joldujoldv Alut+v=<l)

X 8(z—¢{(1—u—v)—v)M(u,v;s). (Cl1
The DD representation fob(z,{;s) can be used to derive
some general properties offDAs, such as the polynomial-
ity condition

flz”db(z,g;s)dz:lEo K,Z', (C2)
0 =

which states that the" moment of®(z,¢;s) is thenth order
polynomial of¢.
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To model 2rDAs by superposition of perturbative contri- Cx)—C¥%,(x)= (21 +1)P(x),
butions, we start with thex representation for the relevant
scalar diagram. The double distribution can be written simiwe can writeC2%(2{—1) as a sum oP,(2{—1) and obtain
larly to Eq. (B1):

o)

Y ay a ®(z,0;5=0)2_o=42(1—2) 2, _ s
M(U,v;S)=Imzfo 5(U_T o U_T) e =0 =0 (n+1)%(n+2)?
Xexp{;\—[aza4s+ az(ay+ az)mi] X Cﬁ/z(Zz— 1)20 (21+1)
1+(-n"!
—i)\(mz—ie)]%. (C3) XP(2f-1)~—5——. (C§

This expansion has the structure of the general representation
for 2wDAs proposed by Polyakop23]. In specific models,
only the first terms of the expansion are included. It is easy
to check that, in our case, the exact reg@6) is well ap-
proximated by the first few terms of the Gegenbauer expan-

Here from the beginning we tak& =p35=m?, and add the
overall factorm? to make the function dimensionless. Note
that for the triangle diagram we have {lLi—v)=a3/\

= B3. So we write the scalar triangle version of theRA as

w 1 1 sion (C7), even in the vicinity of the nonanalyticity poimt
q)(Z,{;S):isz d)\f dﬂzj dB30(By+ Bs<1) ={. Polyakov[23] considers also a more complicatsd
0 0 0 +0 case, using the 7 scattering information to model tre
X 8(z— B3~ B2)expliN[ (1— By~ B3) B2S dependence. Recently, Kivel and Polyak®] used chiral
perturbation theory to includ@(mfr) corrections to the chi-
+Ba(1—By)mZi—m’+iel}. (C4H  ral limit.

, . ) i Now we want to show how one can incorporate informa-
Integratmg_ovem and incorporating thé function to calcu- o about the usuaforward) parton densities to build mod-
late the3; integral, we get els for 2rDAs. To this end, it is convenient to write the pion

min2/ ¢ 75} L momenta agp,=P/2+r and p,=P/2—r (the plus compo-

P(z,8;8)= dBs[1—(z— B3l)(z— B3L)sIm? nents are implied, but we omit the superscript here and
0 below). The quark momenta can be written then as
—Ba(1-Bg)m>/m*—ie] ", (C5) ita l—a
) ) L. 1= P+Xr, k2: P—XI’, (Cg)
This representation explicitly demonstrates the well-known 2 2

fact (see, e.g.[37,36) that ®(z,;s) is nonanalytic at the )
pointz=¢{. The integral can be taken in the general case, bufhere the variables andx are related tai,v by x=1—-u

it is instructive to analyze the simplest linsi=0, m>=0. In  —v_and a=v—u. The support region i$0‘|$1_.x- The
this case. the result is the function 27DA ®(z,¢;s) is related to the double distribution
’ F(x,a;s) by

z

1_
B(2,4:5=0) 0= = 0(z<0) + 1 0Z>0) (CH

1 1-x
¢ 1-¢ d(2,4;9) = fo dxf |, Qadz=112-x({=1/2) = af2)
—1+x
which coincides with a part of the pion DA evolution kernel.
Its eigenfunctions are the Gegenbauer polynom@i$(2¢ XF(X,a;s). (C10
—1) and the eigenvalues are 4A1)(n+2) [38,39. , o ) i
Hence, we can write In this description, the total pair momentumis shared by
the quarks in the fractions (La)/2 and (1- «)/2, while the
2n+3 relative momentunm is carried by active quarks in the frac-

D(2,£;5=0)2-0=42(1-2) 2, — tions x and —x. Hence, the relevant double distribution

i n=0 (n+1)%(n+2) F(x,a;s) is the timelike analogue of the functidifx, a;t)
><Cﬁ’2(22— 1)Cﬁ”2(2§—1). (C7) considered in Sec_. _II. In the forward limit, it reduces to the

usual parton densities
It is convenient to write ZDA as a sum overz(1l

—27)C¥2z-1), since these are the eigenfunctions of the JH F(x,a:5=0)da=f(x) (c11)

evolution kernel. On the other hand, the combinatior (2 “1+x '

—1) is related to the cosine of the angle between the pions’

momenta, so it is natural to expand tfedependence of In the m2=0 case, we haveF(x,a;s=0)=30(|a|<1

®(z,¢;s) in the Legendre polynomial®,(2{—1). Using  —x); hence the integral in EC11) gives (1-x), which is

the formula exactly the forward distribution for the scalar massless tri-
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4
3.5 zP I} =CP
3 >
2.5
2 A UP - VP
1.5
1 .
8.3, (1-z)P p=01-0P
0.2 0.4 0.6 0.8 1
FIG. 10. (Color onling SPDsF,(X;t=0) with {=0.2,0.4,0.6 FIG. 11. Plus-momentum flux structure of the two-pion distri-

obtained from Eqs(B18) and (B13). The forward distribution was bution amplitude.
modeled byfR(x)=(3/4)(1-x)/yX. The curves tend te for X

={l2. The relation is even simpler,
angle. To get a more realisti{x), we can use thé&(a) $(x,&s=0)=H(X/& 1/;t=0) (C19
model described in Appendix B. It gives
o mini2/¢ T} for the 27DA ¢(x,&s=0) written in the symmetric vari-
Q7(z,{58)= dx ablesXx=2z-1 and€=2¢{—1. Since|¢|<1, the OFPD

H(x/£,1/&;t=0) is taken at skewedness values with absolute
% _ magnitude larger than 1. Hence, as suggested by Teryaev
XJ exp, —p| 1= (z—x{)(z—x{) [35], the 27DA may be treated as a continuation of OFPD
0 into the|&|> 1 region. More precisely |;_, and®|s_ o may
2 be treated agé|<1 and|&>1 components of the same
X— = X¥— ] R(p \(z=x0)(z=x{)dp. ~ function. |
To make parallel withl=0 and =1 components of
(€12 27DAs in QCD, one should take the combinations

According to Appendix B, thék(a) model is equivalent D (z,{;9)= %[(D(z,{;s)td)(l—z,g;s)], (C1H
to the sum of “wave function overlap” contributions of Eq.
(B8) type, similar to those obtained within the light-cone
approachessee, e.g.[40,31,47). However, theR(a) con- which are symmetric or antisymmetric with respect to the
struction has the advantage that it also provides a model fdpiddle pointz=1/2. They are given by summation over
27DA. In the standard light-cone formalisms, therRA  €even or oddn in Eq. (C8). Takings=0m2=0 and fixing
would involve theq— mrq vertices which cannot be inter- R(a) in the same way as in Appendix B we obtained the
preted as light-cone wave functions. curves shown in Fig. 12.

In the scalar triangle model, them®DA ®(z,{;s=0) is At z=1/2, the symmetric function in this model is infi-
obtained from the same DIF(X,a;s=0)=f(x,a;t=0) nite. This result is similar to the singularity of SPIF$(X)

which produces thé=0 OFPD H(X,&t=0). Comparing for X={/2 observed in Appendix B. It reflects the fact that

Egs.(C10 and(8.3), we can formally write the profile of F(x,a,s=0) in theR(a) model becomes infi-
_— . nitely narrow asx— 0. Indeed, for DDs with infinitely nar-

z- row profile for all x, i.e., for F(x,a,s=0)=f(x)8(«), we

P(285=00=H| 5777, 571 150 C13  ouid haved(z,£:5=0)=f[(z— 12)/(t 1/2)]/(1- £12),

FIG. 12. (Color online Two-pion distribution amplitude® *(z,£;s=0) and® ~(z,£;s=0) with £=0.1, 0.2, 0.4 obtained in the scalar
R(a) model. The forward distribution was modeled H§(x) = (3/4) (1—x)/x.
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which gives an infinite result foe=1/2 if f(0)—~. The Note that 2rDAs of the purely scalar model are symmet-
curves also have cusps far={ andz=1—¢. They appear ric with respect to the chandg—1—2z,{—1—{} while in
because the DIF(X,«,5=0) of the R(a) model does not QCD the 2rDAs describing the transition of spin-1/2 quarks
vanish at the upper cornar=0,a=1 of the support region. into pions changes sign after this transformation. The tri-
This is because the profile function for the lowest term of theangle perturbative contributions for this case were consid-
R(a) expansion ish(®(x,y)=1/(1—x): unlike the profile ered a few years ago by Polyakov and Wé&g. We plan to
functionsh((x,y) with n>0, it does not vanish at the bor- extend their calculation by combining it with the ideas of the
derlinesx+|a|=1. present paper.

[1] D. Miller, D. Robaschik, B. Geyer, F.M. Dittes, and J. Ejr, [20] S.R. Amendolieet al, Phys. Lett.146B, 116 (1984.

Fortschr. Phys42, 101 (1994. [21] Jefferson Lab fpi) Collaboration, J. Volmeet al, Phys. Rev.
[2] X.D. Ji, Phys. Rev. Lett78, 610(1997. Lett. 86, 1713(2001).
[3] A.V. Radyushkin, Phys. Lett. BB80, 417 (1996; 385 333  [22] S.J. Brodsky and G.P. Lepage,Rerturbative Quantum Chro-
(1996. modynamicsedited by A.H. Mueller(World Scientific, Sin-
[4] X.D. Ji, Phys. Rev. 55, 7114(1997. gapore, 1989
[5] A.V. Radyushkin, Phys. Rev. B6, 5524(1997). [23] M.V. Polyakov, Nucl. PhysB555, 231(1999.

[6] K. Goeke, M.V. Polyakov, and M. Vanderhaeghen, Prog. part[24] B.C. Tibur_zi and G.A. Miller, hep-ph/0212238.
Nucl. Phys.47, 401 (2001). [25] P.V. Pobylitsa, hep-ph/0210238.

[7] A.V. Radyushkin, Phys. Rev. B8, 114008(1998. [26] A.D. Martin and M.G. Ryskin, Phys. Rev. b7, 6692(1998.

[8] M. Diehl, T. Feldmann, R. Jakob, and P. Kroll, Eur. Phys. J. C[27] B. Pire, J. Soffer, and O. Teryaev, Eur. Phys. J8C103

(1999.
8, 409(1999. ;
' . 28] M. Diehl, T. Feldmann, R. Jakob, and P. Kroll, Nucl. Phys.
[9] A.V. Radyushkin, Phys. Rev. B9, 014030(1999. _ _[ ] B596, 33 (2001); B605, 647(E) (2001). ’
[10] G.P. Lepage, S.J. Brodsky, T. Huang, and P.B. Mackenzie, IT29] P.V. Pobylitsa, Phys. Rev. B5, 077504(2002.

Particles and Fields 2edited by A.Z. Capri and A.N. Kamal [30] P.V. Pobylitsa, Phys. Rev. B5, 114015(2002.
(Plenum Press, New York, 1981 [31] M. Diehl, Eur. Phys. J. @5, 223(2002.
[11] T. Frederico and H.C. Pauli, Phys. Rev.68, 054007(2002. [32] P.V. Pobylitsa, Phys. Rev. B7, 034009(2003.
[12] H.C. Pauli and A. Mukherjee, Int. J. Mod. Phys.18, 4351  [33] M. Diehl, T. Gousset, B. Pire, and O. Teryaev, Phys. Rev. Lett.

(2002; H.C. Pauli, Nucl. PhysA705, 73 (2002. 81, 1782(1998.
[13] F. Schlumpf, Phys. Rev. B7, 4114(1993; 48, 4478(1993.  [34] M. Diehl, P. Kroll, and C. Vogt, Phys. Lett. B32, 99 (2002.
[14] X.D. Ji, J. Phys. (24, 1181(1998. [35] O.V. Teryaev, Phys. Lett. B10, 125(2002.

[15] M.V. Polyakov and C. Weiss, Phys. Rev.dD, 114017(1999. [36] N. Kivel and M.V. Polyakov, hep-ph/0203264.
[16] L. Mankiewicz, G. Piller, and T. Weigl, Eur. Phys. J.5C119  [37] M.V. Polyakov and C. Weiss, Phys. Rev.59, 091502(1999.

(1998. [38] G.P. Lepage and S.J. Brodsky, Phys. Rex22)2157(1980.
[17] S.D. Drell and T.M. Yan, Phys. Rev. Le24, 181 (1970. [39] A.V. Efremov, V.A. Nesterenko, and A.V. Radyushkin, Nuovo
[18] V. Barone, M. Genovese, N.N. Nikolaev, E. Predazzi, and B.G. Cimento Soc. Ital. Fis., A6, 122(1983.

Zakharov, Z. Phys. G8, 541 (1993. [40] S.J. Brodsky, M. Diehl, and D.S. Hwang, Nucl. Ph596, 99
[19] M.V. Terentev, Yad. Fiz24, 207 (1976 [Sov. J. Nucl. Phys. (2001).

24, 106 (1976)]. [41] B.C. Tiburzi and G.A. Miller, hep-ph/0205109.

073014-19



