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Neutrino oscillations from relativistic flavor currents
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By resorting to recent results on the relativistic currents for miffledror) fields, we calculate a space-time
dependent neutrino oscillation formula in quantum field theory. Our formulation provides an alternative to
existing approaches for the derivation of space dependent oscillation formulas and it also accounts for the
corrections due to the nontrivial nature of the flavor vacuum. By exploring different limits of our formula, we
recover already known results. We study in detail the case of one-dimensional propagation with Gaussian wave
packets both in the relativistic and in the nonrelativistic regions: in the last case, numerical evaluations of our
result show significant deviations from the standard formula.
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[. INTRODUCTION time assumption, classical propagation, etchich are how-
ever questionable in many respe¢tee Ref[25] for a re-

The recent experimental evidenjde-5] of neutrino mix-  view). Thus several QFT approaches have been developed
ing and oscillationg6] is the first clear sign of physics be- [26—30, such as theexternal wave packet modets the
yond the standard mod€¥]. Thus much effort is currently stationary boundary conditions modgls/hich attempt a
devoted to the full understanding of such phenomenon, fronmore realistic description of neutrino oscillations. It seems
the issue of its origin to more phenomenological ones. indeed that the main features of such formula are now quite

In this framework, there has been recently remarkablevell understood25], including the concepts of coherence
progress in the study of the problem of field mixing in quan-length, localization terms, dispersion times, etc.
tum field theory(QFT) [8—20. It is important to remark that, On the other hand, all these calculation schemes have
despite the fact that it is usually treated in quantum mecharbeen developed for highly relativistic neutrinos and/or for
ics (QM), the mixing between states of different masses imearly degenerate masses and in most cases the spin structure
not even allowed in a nonrelativistic theory due to the Barg-of the wave functions was neglectéde., neutrinos were
mann superselection rul¢®1]. The problem of constructing treated as scalarsAlso, the identification of the Hilbert
a Hilbert space for flavor states is indeed a long standing ongpaces for mass and flavor neutrinos was implicitly assumed
[22] which has even been claimed to be impossible tan the choice of the propagatofsee Ref[9] for a discussion
achieve[23] (see however Ref.18] for a criticism of that of flavor propagatops
argumenk As first shown in Ref[8], the difficulty lies in the A completely different approach to the problem is indeed
fact that the Hilbert spaces for particles with definite flavorpossible and was advocated in Rgf31,32: an oscillation
and those with definite mass are actually orthogonal in théormula in space could be derived in a straightforward way,
infinite volume limit. This result has been subsequently genby considering the flux of neutrinos through the detector as
eralized for any number of generations and for differentthe integral over the measurement time and detector surface
types(fermionic or bosonigof fields[16,17,1Q. It has also  of the relativistic flavor current for the oscillating neutrinos.
emerged that the use of the correct Hilbert spaee, the one  An attempt in this direction is contained in Rg81], which
for the flavor field$ leads to corrections to the usual Pon- however deals with QM and therefore uses a probability cur-
tecorvo oscillation formula. rent derived from Schidinger equation. As pointed out in

The necessity for a full QFT treatment of mixing also Ref.[32], the obstacle to the extension of this result to QFT
stems from a more phenomenological perspective, namelles in the difficulty of constructing a relativistic current for
from the calculation of(flavor) oscillation formulas. The mixed particles, which boils down again to the problem of
usual treatment gives, indeed, in a very simple way an oscilthe definition of the Hilbert space for sucdhot on-shell
lation formula in time, which is actually not of great use particles.
when discussing current experiments where the distance The solution to this problem was recently given in Ref.
source detector is measured rather than tidega being col- [13]: it turned out that it is indeed possible to define these
lected over large time interval$24]. In order to derive an (nonconservedflavor currents in a consistent way by use of
oscillation formula in space, one usually converts the timeprevious results on the flavor Hilbert space. An analysis of
oscillation formula by means of some assumptidagual the currents associated to mixing for the case of three flavor
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neutrino mixing withC P violation and for boson mixing can where My=diag(m;,m,). One also hasm,=m,cosé

be found in Refs[10,11]. +msitd,  m,=mysifg+mcos’s, and  mg,=(m,
In this paper, we calculate the oscillation formula by using—m;)sin 6cosé. We assumen,=m; and @ in [0,77/4].

the relativistic flavor currents above mentioned. For simplic- The Lagrangian Eq(1) is invariant under globalU(1)

ity, we only treat the case of mixing among two generationphase transformations of the typier’n:ei“\lfm: as a result,

of Dirac neutrinos: the extension to Majorana fields and toye have the conservation of the Noether char@e

three flavors will be given elsewhere. The formula we obtaln:fdsx|o(x) [with I”(x)=‘fm(x) YA (x)] which is in-

in a very direct way has the full space-time dependence angaeq the total charge of the systdire., the total lepton
contains previous results obtained by use of the ﬂavoﬁumbeif.

charges. We then obtain a general expression for the electron ~cider now thes U(2) transformations acting oW -

neutrino flux in three dimensions with spherical symmetry. m

Although a fully three dimensional analysis is possible «pr’n(x)zeiaj LX), j=1,2,3, (4

within our formulation, we study in detail the one-

dimensional case with Gaussian wave packets, which is inwith «; real constantsr;= /2 ando; being the Pauli ma-

deed the one most frequently considered in literature. Werices.

show how in the highly relativistic limit and by integrating ~ For m;#m,, the Lagrangian is not generally invariant

over an infinite time, the standard space dependent oscillainder Eq.(4) and we obtain, by use of the equations of

tion formula[25,2€ is obtained, which includes the coher- motion,

ence length and the localization term. However our formula o

is also valid for nonrelativistic neutrinos and it accounts for  5£(x)=ia; W (X)[ 7} ,Mg]¥ n(X) = — a;j3,,If, (X),

flavor vacuum effects. Numerical evaluations of our result

fggivrxrl]g.ewatlons from the usual formula in the nonrelativistic I (0=T ()Y T W (), =123 (5)
The paper is organized as follows: in Sec. Il we presenta The above analysis is valid at classical level. We now

derivation of the flavor currents in the line of R¢L3] and quantize the free field$; and v, in the usual way(see

give some details on the construction of the flavor Hilbertappendix A for conventions

space. In Sec. Il we first obtain the expectation value of the * Thep the charge operato@nj(t)zfd3xJOm (%), satisfy

fla}vpr current in _the most general case and then a more expe sy(2) algebra Qnm (1), Qmi(t) 1=i € Qm.(t). The Ca-

plicit expression in the case of a spherically symmetric emisg;y;y operator is proportional to the total charge. From Eg.

sion. Then, in _Sec. IV, we specialize to the on_e-dimensionaQS) we also see thaD,, s is conserved adl 4 is diagonal. Let
case and obtain the space dependent expression for the elegs gefine the combinations:

tron neutrino flux. Further analysis is done by choosing

Gaussian wave packets. Sec. V is devoted to conclusions. 1 1
Q155Q+Qm,3, QzEEQ_Qm,s (6)
IIl. RELATIVISTIC CURRENTS FOR MIXED FIELDS
Fol!owing R.ef. [13], ]e_t us cons!der t.he follqwing La- Q=2 Jd3k(afkfiafk]i_lgrjk‘i;g[k]i), i=12, (7)
grangian density describing two Dirac fields with a mixed r
mass term:

where the last expression has been normal ordered, as usual.
These are nothing but the Noether charges associated with

L) =T(x)(i6=M)¥¢(x), (D) the noninteracting fields; andv,: in the absence of mixing,
T they are the flavor charges, separately conserved for each
where¥; = (ve,v,) and generation. Observe now that the transformation
. _( Me meﬂ) xpf(x):eﬂi HQm,z(t)xpm(X)eﬁ(*Qm,z(t) (8)
Mey My is just the mixing Eq(2). ThusG ,(t)=e? Om2Y is the gen-

o ) erator of the mixing transformationsee Appendix A In
The mixing transformations Ref. [8], it has been shown that the action @f,(t) on the
vacuum state0); , results in a new vectofflavor vacuum
cosf  siné |0(t))e,,=Gy '()]|0)1 2, orthogonal to|0); , in the infinite
—sing cosg YmX): @ Volume limit.
Following Ref.[13], in accordance with Eq6), we de-
fine theflavor chargedor mixed fields as

\Pf(x):(

with 6 being the mixing angle anﬂfL=(v1,vz), diagonal-
ize the quadratic form of Eq1) to the Lagrangian for two —n-1 _
free Dirac fields, with massen; and m,: Qo()=G4 (DQIGH(Y) ©
. with (o,i)=(e,1),(1,2) andQ.(t)+Q,(t)=Q. They have
LX)=V ,(X)(1d—Mg)P,(X), (3 a simple expression in terms of the flavor ladder operators:
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Qu(t)= f A v (X)v,(X) | ve(Xo,to)) =A f dke ™ (kato™DF (k) afle(t0) | 0)e
(16)
= d3k(af’ (t)al (1)— BT (DB (1)),
Z f (@io(D) ko1~ B o (VB (1) whereA is a normalization constant(k) is the form of the
wave packet an{D), , the flavor vacuum at time=t,. This
o=e,u. (10) corresponds to an electron neutrino being emitted akg) .
For convenience we sety,Xy) =(0,0,0,0) in the following.
Note that the wave packet is defined in the Hilbert space of
flavor fields.
The normalization of this state is given by

These charge operators then act on the flavor Hilbert spa
He,, (see Appendix A For the single neutrino and an-
tineutrino states of definite momentum and helidity:

[ (D)=al (D[0())e,,  [vo(D)=BL(D]O(D))e,,,
1) 1=(veve)=|Af? f d3k f d3pf* (k) f(p){af o(0), a1 (0)}
one obtains

Qu (O] (D)=vo(D), Qg(t)ljg(t»:—|7g(t)>-(12) [P [ @il

In the following, we will use the flavor currents: From Sec. I, the electron neutrino four-current is given as

) =v,(X) Y v, (X) =G, (DI (X)Gy(t), (13 JE(X ) = ve(X, 1) Y re(X, 1) = V(X DT He(x, 1), (17)
with (oi)=(e,1),(u,2). From the global(1) invariance \yhere#=+%y~, In the following we will use the chiral
follows the continuity equation: representation of the Dirac matricésee Appendix B The

E(x) 4 JH —0. expansion for the flavor fields given in EGA9) leads to the
IulJe () +3,00]=0 (14 following explicit form of the current operator:
Ill. SPACE-TIME DEPENDENT NEUTRINO 3 3
OSCILLATION FORMULA I(x t)=f f dp d Qi (k—p) X
e\ 3/2 3/2

In this section, we consider the calculation of the general (2m)™ (2m)
(i.e. space-time dependegmnteutrino oscillation formula, by st ) st )
use of the flavor currents introduced in Sec. Il. In Sec. IV, we sz [up (DT Uy 1(t) ap (D) ay (1)
then extract from this the space dependent formula by inte- S
grating over time. —oST (OTH0" ()BT (1) (1)

As already discussed in Reff31,32, although in the Pt kot e Pe
context of QM, what one is ultimately interested in current +ust (O 0" (D ()BT o(D)
experiments is actually the flux of neutrinos of a given flavor st it s ;
through the surface of the detectdrin a (large) measure- TulpaAOTH U (DB p (D ey (D] (18)
ment timeT. In the case of electron neutrinos, this quantity is
given by In Appendix C, we prove thaf ,(0|3#(x,t)|0)e ,=0. This

result leads tgsee Appendix A

T . .
cpHV(L)=f dtj (rdxDlvdS, (19
e ¢ to Q

11
<Ve|Jg(Xlt)|Ve>=‘PT(X1t)F'u<1 1)‘P(th)! (19)
wherelL is the distance source-detector. Our aim is now to
calculate the expectation value of the flavor four-current den-
sity on a localized neutrino state, defined as a wave packet ivyith

flavor Hilbert space.
3

eik'xf(k)

A. Expectation value of the flavor current density \I’(X’t)EAJ' (2m)32
v

We define an initiaf, localized statév(Xq,to)) with defi- )
nite flavore: Ug 1 Xk e(t)

X N , 20
2 02 a(0K)S Y (1) 20
INote that there is no ambiguity here in defining the flavor neu- s
trino states with definite momentum. . ) )
We work in the Heisenberg picture; the time evolution is thus X, ¢(t) =cosfe ' “ki'+sir g e~ “k2|U |+ €' 2|V, |?],

borne by the operators. (22
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2 1 1 where
Yie(t)=sir"0|Uy| x1x2 Gty ot 1 0 0 0
X[e*i‘”k,zt—ei‘”k,zt], (22) _ 0 _ 1 _ 0 0
M= O ’ 2= O ) 3= 0 ’ N4= 1
where
0 0 1 0
- (k3 k) (26)
o k=
ki —ks3 This decomposition permits a remarkable rearrangement,

112 ) since Eq.(19) then becomes
andy;=((wy i+ m)/4wy ;)< We made use of the following

relations: 4 , 1 1
_ (vel X, D) |ve) = 2, (—1>J+1\Pj*<x,t)( )wx,t)
{af o(1),aS(0)} = 6"Xy (D) ek 83 (k—p), =1 11

4
(B o(1).apl(0)} = (- K)"SYy o(t)e kil 6%k —p). 2, (—DIHA B, 27)
P

(23

The expression in Eq19) contains the most general in- Where(see also Appendix D

formation about neutrino oscillations and can explicitly Af(x,t)

evaluated once the form of the wave packet is specified. A Wi(xt)= n;r\lf(x,t)E Bixt) | (28
similar expression can be easily obtained for the other quan- (0

tity of interest, namely ve| I (x,t)|ve). Equation(27) gives a compact expression for the flavor

For comparison with previous results and for better unyrrent expectation value in the case of a spherically sym-
derstanding the expressi¢io), let us consider the limit situ- - metric emission. It can indeed be integrated to give a useful
ation in which the wave packet becomes a plane wave, witlaxpression for the electron neutrino flux at a given distance
definite momentumf (k) = (2)¥26%(k —q). This obviously  from the source. Although this calculation is of interest, be-
means that we lose information about localization and we:ause it contains information on the three-dimensional nature
need to integrate over the entire volume to get the flavopf the propagation, it will be not developed further here, and

oscillations(in time). We indeed find ge=J2) in the following section we will consider the case of one-
dimensional propagation. Note that in the present case
; ; 2
<Ve|Qe(t)|Ve>:f A3x( el pe(X)| ve) (spherlf:al symmetr)ythe expectation values dﬁ andJ_e at
any point can be obtained from the above expectation value

©g— g1 of Jg. In the general case E(L9), however, the expectation
= 1—sin2(20)[|uq|zsin2(%t) values ofJ} andJZ have to be calculated independently and
this can be done by use of the decompositiod’bfand I'?
o o @g2t ®g1 given in Appendix B.
+|Vqlsin? — 5t (24) It remains to considep,, which is the relevant measur-
able quantity for experiments without angular resolution. It is

which agrees with the result obtained in R¢f. Notice the ~ indeed easy to get its expectation value:

presence of the nonstandard oscillation term and of the mo- 4
mentum dependent amplitudése Bogoliubov coefficients v X 1) v = AT+ B2 29
SatiSfying|Uq|2+|Vq|2=1). < e|pe( ’ )| e> jzl | ] j| ’ ( )

We now consider the situation in which we have a spheri- = ) _
cally symmetric emission of the neutrinos from the source atvhich is related to the expectation valueJifas follows:
(Xg,to). This allows us to limit our investigation to the radial 3 _ r r2

. . L . : . = - +
flux, which can be identified without loss of generality with (reldex,Dlve) = (velp(xV)]ve) — 2| A2+ 55|

the z component of the current. In this case, ELP) takes it —2| AL+ B2 (30)

simplest form, sincd™ is diagonal in the chosefthiral)

representation. This is a significant result in the sense that it directly contra-
The matrixI"® can be expanded as a linear combination ofdicts the usuak=t approach: if the neutrino really travelled

spinor outer products: on a straight line then, for points for which the Cartesian

direction coincides with the polar radial directi¢es defined
1 0 0 O with respect to the sourgeone should have( vl J3(x)|ve)
0 -1 0 0 =(velp(¥)|ve)-
_ A 0.3_ _qyitl,, T
1

3The result would be the same up to a constant if one replaced the
(25 velocity of light by the(constant average velocity of the neutrinos.
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B. One-dimensional case Note that they’. terms are the corrections due to the use

Given the Comp'exity of the three-dimensional ana'ysiS,Of the flavor Hilbert Space in the definition of neutrino state.

we now limit the problem to one spatial dimensitas do Equation(37) is an exact expression for the space oscillation
most of other treatments in the literature formula in 1D and will be in the following evaluated numeri-

The wave packet now takes the formf(k)  cally with the choice of a Gaussian wave packet. In the fol-
=(2m)%25(k;) 8(k,) f(ks), which corresponds to a packet lowing section, however, we digress on the relativistic limit,
with definite momentum in th& andy direction and a mo- which allows us to extract afapproximateglanalytical form
mentum distributiorf (k3) along thez direction. The uncer- of Eq. (37) and to compare it with the existing results in the
tainty principle then dictates that the corresponding spatialiterature.
distribution is that of a beam of infinite radius and uniform
surface density moving in thedirection (a neutrino shegt

In the one-dimensional case, we hagee Appendix D | APPROXIMATIONS AND NUMERICAL ANALYSIS
AL=A5=0 andB,=B5=0 for all r. In order to perform
explicit evaluations, we choose in the followimg=1: this In this section, we explicitly evaluate E(87) by choos-

does not imply any loss of generality since the final result isg 5 Gaussian wave packet. We first consider the relativistic
independent of. We also putA;+Bi=¢.+¢. and. A3 |imit and show how the full result Eq37) reduces to the

+Bi=¢_+yl . standard formula given ifi26,25. Then we proceed with
Equation(27) then becomes numerical evaluations of the exact formula Eg7), which
3 B , 2 allow us to test the nonrelativistic regime.
(velJe(zO)]ve) =1 (2,) + ¢ (2 1)] We choosef (k) to be a Gaussian wave packet with mo-

— |y (z)+ ¢ (zt)]2, (31  Mentum spready:

with
(k—q)?
Al —iwy 1t H —iwy ot f(k):H expg — 2 ’ (38)
e(zt)=5 dk[cog e ki +sirtge k2T (2), 402
0
(32
» with H=(2ma) ¥
z//;(z,t)ziAf dk sin? 6 sinwy ot)| Vil
0
X[Tk(z)|Vk| —T,k(z)|Uk|], (33) A. Recovering the standard oscillation formula: sharp
Gaussian wave packets in relativistic limit
A (= _ .
Y_(z,t)= EJ dk[cog e 'kt +sirPge k2| T_ (2), To recover previous results in the literat|i26,25, we
0 34 consider the case of sharp Gaussian wave packet in relativ-
(34) istic limit, satisfying the following conditions:
- (1) The mean momenturg of both mass species lies in
z/;Q(z,t):iAf dksir?g sin(wy ot)| Vi the relativistic regime such thaby;>m; and [V,|—0.
0 Hencey! and ¢’ can be ignored.
STT_ DIVl +Tu(2) U 35 (2)_ Th_e Gaussian_is sharply peakeg o : the largest
[T-(2IVid+ T2 U] @9 contributions to the integrals come from around the mean
where momentumg, i.e., Laplace’s methof33] can be used.
Using the above conditions, one hasH(fh; / ;) ?~1
" m, |2 m, |12 +m/2w; . Thus, to first order imy /wq ;,
T(2)=e**f (k)| |1+ —| +|1-—— ’ ’
g1 g1
. m, |2 m, |2 z,t wAwad cogge(@kit=k2)
+e ke (k) 1+—1) —(1——1) } #e(z) o N
Wy 1 Wy 1
. k—q)2
(36 +sin26e"(“’k,2“kz)]ex;{ ¢ Cl)
The above relations are the main result of this work: start- 40
ing with an arbitrary wave packdtk) we can now deter- m, (= .
mine the expected one-dimensional flux of electron neutrinos +AHS f dk{ cog ge(@kattka)
at a given distance from the source as @aq.1J0
- e (k+a)?
@, (z)=J dt(v| 3(z,1)| ve). 37) +sir’ge ¢ “‘*kz)]exr{— 22 | 89
e Ve 0 k
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For g positive, the integral on the second line can be ne-

glected. On the other hand, we obtain for the following
expression:

m *® .
¢,(z,t)~AH—1f dk[ cogge I (@kat-k2
2(1)q’1 0

(k—q)?
40'&

+ sinzaei(“’k,ztkz)]ex;{ -

+AHJ dk[ coghe (@kittkd
0

(k+q)?

2
Ok

+ sir? 0ei(‘”k,2”kz)]ex;{ - (40)

Again, the second term is exponentially suppressed and c
be neglected. The first term @f_ is also small for relativ-
istic neutrinos and will be neglected in the following. We
thus have

(vel Az ve)=|v. (D)2 (41)

1. Momentum integration

We now turn towards the evaluation of, using
Laplace’s method. Let us first define tlspersiontimes
TP=w, /20% , which set the time scale for the spatial dis-
persion of the wave packets.

Expanding the integrand about the mean momentum to

second order irsk=k—q, we obtairt

—i(wg1t—d2) 4 (Z_Uqlt)z}

Y. (z,t)~AH cos e a.1 exp — W
” .(Z_Uq,lt) 2
X f_qd(ék)exp{ - Sl(t)( Sk—i m) }

“Using the expansiomw, ;~ wg;+ ok*/2w, i+ v,k and making
a change of variable—q= 6k, we get

Y ~AH coS6e( @ ©ar) f d( 5k) €'z va )

-q
xexp{—ékz

©

xf d(5k)ei’$k(z‘"qv2t)exp{—5k2
-q

+ AH sirfoe@% )

|

Lt
— Tl
4(7& 2wq,1

1
— +i

adt

PHYSICAL REVIEW D67, 073011 (2003

. —i(wgat—0az (Z_qut)z}
+ AH sirfge ' (@q.2~d )exp{ - W
o .(Z_qut))z
XJ'qd(é‘k)eXF{—Sz(t)(b‘k—lm )
(42)

with S;(t)=o2(1+it/TYSP). Also, o is a spread in the con-
figuration space, defined by, o = 3 andvgi=q/wg;. Toa
good approximation we can sgt ,~ [~ ., and obtain

Joc d( 5k)e_si(t)(5k_i[(Z—Uq,lt)/ZS(t)])z

4770'5
— g hi(b).
1+it/TdisP

Following the usual treatmef25], we now consider propa-

gation for t<TY P Then I;(t) becomes a constant:

=2\mwoy. For propagation times beyon'*?, Laplace’s
method cannot be applied and one has to resort to the method
of stationary phasg33,25.

We are now in a position to calculate the interference
term. We get, after some rearrangements,

(z— Uq,lt)2

2
X

<1/e|\]2(2,t)| Ve>z|A|2H2|I|2

cos o ex;{ —

20

|

+2|A|2H?|1|?Rg cog g sirfge~ ' ¢O (O],

(z— vq,2t)2

2
2073

+sint*o ex;{ —

(43
where the phasé(t) andf(t) are given by
d(1)=(wq1~ wgt,
f(t)= %[(z—vq,lt)%(z—vq,zt)z]. (44)

X

We note thate(t) and f(t) are the usual terms obtained in
the external wave packet model in QFZ5,26. We now
proceed with time integration in order to finally get an ex-
pression involving distance only.

2. Time average

When calculating the interference term, spatial oscilla-
tions results from the cross term. We show this explicitly by
considering the first term in E¢43): in the Laplace regime
where ¢/TYSP)~0, if we assume that the experiment runs
for a very long time,

_ +\2
ex;{—(z va.t) ]d

o

I

V2w

Oy
Ug,i

2
2073

which is brought in the given form by completing the square for theThe first and second terms of EG3) are thus merely a

argument of the Gaussian.

collection of constants.
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Let us now turn to the oscillation term. The dominant 2 4,2 (g 1— ©g) 2 (g 1— 0g)>
contributions in the time integral come from éxif(t)], a1 2q,2 t—i 2,1 2“'2 202 +a§qz’172’2_
more precisely in the neighborhood of the maximum value of 4o Vg1 Vg2 Vg1tvge

f(t), which occurs at

v Y]_'i‘l) 2
thmax= g g (45)
Uq’1+ Uq’Z
Thus the integrand can be approximated as
. d
e_ld)(t)_f(t)zex 7i¢’max7fmax7it j t
dt | 'max
t2 d2f 46

tmax

Zza'i(vq 1~ Uqg 2)2 \/§7TO'|< ?
fnax= f(tmad = ~7?

v tva, LOSY
2
Z
= ( Lcoh) ! (47)
Zq(vzvz—vzvl) z
Pmax= P(tmaxd) = : 2 s 2 ~=2m osc (48)
VgqVq2Avg1tvg2) L

to first order’ A coherence length ®°"=(L°%q)/(\27 o)
and an oscillation length °s°=4mg/ Am? with Am?=m3

(49

The first term integrates to a constaR@wo,. As for the
second term, it becomes af/Z)(qul— quz)z
=27m2(0/L°%9? which gives the localization terni25].
Hence we can finally write down th@ormalized highly-
relativistic space oscillation formul@ompare to Ref[26]):

LOSC

z \? o\’
Xex;{(Lcoh) 2772( LOSC) H (50)

Thus we have shown that the exact formula E3¥) repro-
duces the usual oscillation formula in the relativistic limit.

D, ., (2)=1- ;sin2(20)| 1—cos( 27

B. Numerical calculations

In this section, we perform numerical evaluations of the
exact oscillation formula E(37) in order to compare it with
the approximate result E¢g50) for sample values of the pa-
rameters. We plot the two expressions in the maximal mixing
case for a giverr, and for different values off and of the
masses: in the relativistic cageig. 1) we observe a perfect
agreement of the two formulas, as expected.

We then explore the nonrelativistic region and observe
that relevant deviations from the standard formula do indeed
appear, both in the oscillation amplitude and in the phase.

—mf, having the same form as in the standard approach, arthis is already evident in Figs. 2,3 where we wpe 100
thus recovered. The other terms can be factorized as followsvith m;=1, m,=3 in the first case anth;=1, m,=10 in

o
.

FIG. 1. Plot of the QFT flavor
flux (solid line) against the stan-
dard oscillation formula(dashed
line) for 6=w/4, o,=10, my
=1, m,=3, andq=1000.

[¢] 50000

100000

*We assume thatq;~1—m/202. Thusv],+v5~2, v, v51~—AmPlg? andvg e ~1.
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®y, e (2)

1

FIG. 2. Plot of the QFT flavor
flux (thick line) against the stan-
05 dard oscillation formula (light
line) for 6==/4, 0,=10, m;
=1, m,=3, andq=100.

[] 200 400 600 800 1000 1200

the second case. The fact that the two plots are simply scalegillation formulas like in the present case.

with respect to each other, indicates that for these values of A more complete discussion of these corrections and of
parameters the usual relation coherence length vs oscillatictheir possible phenomenological relevance will be given
length: LC°M"=(L°%%)/(V2moy) is still valid withL°®  elsewherd34].

=47q/Am?. In Fig. 4 we useq=50 with m;=1, m,=3

and as expected we observe a larger deviation from the usual V. CONCLUSIONS
formula.
Note that the value of the Bogoliubov coefficigi| is In this paper, we have for the first time derived a space-

very small in all the considered cageso the observed cor- time dependent oscillation formula directly from the relativ-
rections originate from the “standard” termg. Eqgs. istic currents for flavor fields. These currents have been re-
(32),(34) in the oscillation formula E¢(37) rather than from cently studied in Refl13], a result which served as basis for
the flavor vacuum contribution, which thus turns out to bethe present analysis, together with previous results on the
very difficult to detect when consideririime-)averaged os- Hilbert space for mixed fieldg3,9].

@y (2)

14

0.5 4

FIG. 3. Plot of the QFT flavor
flux (thick line) against the stan-
dard oscillation formula (light
line) for #=/4, o =10, m;
=1, m,=10, andg=100.

®The values of V| are 1x 1073 (Fig. 1), 110" 2 (Fig. 2, 4x 10 2 (Fig. 3), and 2<10" 2 (Fig. 4.
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@y (2)
]

FIG. 4. Plot of the QFT flavor
flux (thick line) against the stan-
05 ~—— dard oscillation formula (light
line) for #=m/4, o=10, m;
=1, m,=3, andq=50.

0 100 200 300 400
z

We first presented a general expression for the electrofitaly) and the Royal College of Science Association for fi-
neutrino flux in three dimensions and then specialized to th@ancial support.
case with spherical symmetry, for which we were able to find
a more explicit expression. In order to perform further analy- APPENDIX A: FLAVOR HILBERT SPACE
sis and numerical evaluations, we then considered the one- . .
dimensional case with Gaussian wave packets, which is also The free fieldsv;(x) and v,(x) are written as {=x)
the one most frequently treated in literature.

. . 3
Our formulation presents several advantages with respect _ E d>k iKoxr r
.. . . . . Vi(x)— 3/26 [Uk’i(t)a’k’i
to existing treatments of neutrino oscillations in quantum Si2) (2w)
field theory: it is a very straightforward approach which ; _
is easy to relate to practical experimental situations; it +ol (BNl =12, (A1)

takes into account the nontrivial nature of the flavor , ,
vacuum and flavor states are thus consistently defined. where uy;(t)=e™'“i'u;; and vy ;(t)=€'ki'v} ;, with
takes explicitly into account the full spin structure of = VIk|2+ miz. The o} ; and theg;,, i,r=1,2 are the
neutrino states and does not resort to relativistic limit and/ognnihilation operators for the vacuum std@); ,=|0),
assumption of nearly degenerate masses for the energy|o),: o} .|0);,=p};|0)1,=0. The anticommutation rela-
eigenstates. tions are '
We have shown how, in different limits, our formula re-
produce existing results. Thus, in the case of relativistic neu- {Vf*(x),yjﬁ'f(y)}t=t,= B(X—y) 8.8, a.f=1,....4,
trinos with nearly degenerate masses, we recover analytically (A2)
the standard space dependent expression for neutrino oscil-
lations[26,25, which is thus once again confirmed from an {arkyi ,a;Tj}Z 5%(k—p) Ors0ij »
independent approach. Also, previous results on the flavor
chargeg9] have been recovered, exhibiting the non-standard {BL. ,,Bgfj}: B3(k—p)8sdy, 1,j=1,2.
oscillation terms. (A3)
The numerical analysis shows that in the nonrelativistic _ _
regime, our formula predicts significant deviations from theAll other anticommutators are zero. The orthonormality and
standard oscillation formulg26,25), which on the other hand completeness relations are
cannot be expected to be valid in that region. An analysis of s orts
the phenomenological implications of the results obtained in Ui, ili,i = Uk,ilk,i =
this paper will be presented elsewhggd].

rf.. s _.rt s _
Orsy U iv” =0y iUg,i=0,

> (UL,iULTi+Ur—k,iUr—Tk,i)=12- (A4)
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Gg(t)=ex;{ 0 f d3X(I(X) vo(X) — i () v1(X)|,  (AB)

with (o,i)=(e,1),(u,2). The generatoiG,(t) does not

leave invariant the vacuun®), ,:

10(1))e,, =Gy M (1)[0)1.5. (A7)

We will refer to|0(t))e, . as the flavor vacuum: it is orthogo-
nal to |0); , in the infinite volume limit[8]. We define the

flavor annihilators, relative to the fieldg(x) andv,(x) as

(=G, (D aj (1) Gy(t),

Teo(D=G5 (OB (DG (1) X))
with (o,i)=(e,1),(x,2). The flavor fields can be expanded
as

d3k ] .
V(r( ):r=212J' (ZT)slz[uk,i(t)ak,a(t)

+o' (0BT () ]ek X, (A9)

with (o,i)=(e,1),(u,2). The flavor annihilation operators

are defined as operators
r _ r ; 2 rt s s
ay o(t)=cosbay ;tsin6 2, [uy (Duy (D) e,
S

+uk 1(t)U kz(t),B k2] (A10)

aj (1) =cosfaj ,—sin 0>, [ul(OUf (D ag,
S

ULV (0B 4], (A11)

B 1 o(1)=C0SHB" | 1+sin 923 [0S (D0 (DB 2

+uk 2(t)U kl(t)akz] (A12)

B\ u(t)=cosfp" | ,—sin 923 [0 DV A0 B%

+UR (v (D agh]. (A13)

In the reference frame wher& is collinear with k
=(0,0,1), the spins decouple and we have

aj (1) =cosay 1+ sin AU (1) af o+ e Vi(1) B o),
(A14)

ark'#(t) =cosfa ,—SinO(Uy(t) oy 1~ eLVk(t),Br_Tk’l),
(A15)

"The annihilation of the flavor vacuum at each time is expressed

asay o(1)[0(t))e,, =G G, (t) ay 4/0)1,=0.

PHYSICAL REVIEW D67, 073011 (2003
r ; * r r rt
CosOB~ 1+ sinO(U; (1) B~y o~ e Vi(t) ay o),
(A16)

By (1) =c0sOB" | ;= SinB(Uy(1) BT 1+ eVi(D afy),
(A17)

Br—k,e(t) =

where ef=(—1) "< ¥ +1 and U,(t), Vi(t) are Bogoliu-

bov coefficients given by

Ui(t)=upl3(tup () =0 (0" (1) =|U,[e' (@2 endt,
(A18)
V()= efuiy(t)o" (1) = — eui (v, 4(t)
=|Vyle!(@rat ot (A19)
U.|= wy 1T My 12 Wy T My 12
| kl_ Zwkl 2wk’2
x| 1+ ik (A20)
(01T M) (0 o+ my) )’
V (I)kyl‘i‘ml 12 a)k’z‘i‘mz 1z
| kl_ Zwm Zwk’z
L E— o)
(wgotmy) (w1 tmy))’

satisfying|U |2+ |V,|?=1

APPENDIX B: CHIRAL REPRESENTATION AND USEFUL

RELATIONS
o
(1+ &
wk'i-i—mi
urk,i:Xi _ ,
1 -k .
(I)k'i‘i‘mi g
1+ ok '
wk’i+mi
Urk,i:Xi R ’ r:1;21 (Bl)
-k
-1+ '
wk’i-l—mi
1 0 wk-+m- 1z
1_ 2_ = =
o=(o) e=(3) x=( 2™ isra
(B2)
-k k
1t 2t 2 _ 3 3
ollaUie=—v2lauie 2X1X2(wk’1+m1 wrat )’
(B3)
—k_ k_
1t 2 _ /.2t 1 \x _
= = +
vk alk 2= (05 Ui o) 2X1X2<wk,l+ml wratmy)’
(B4)

anduk,uk]—o for r #s. We define
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) o' 0
ro=1,, I'= il i=1,2,3. (B5)

0

Notice thatI'! andI'? can be decomposed as follows:

4
=121 71— NN = %]

(B6)
with
1 0 1 0
-1 0 —i 0
)\l_ 0 ’ ﬂl_ 1 ’ )\2_ 0 ’ ﬂz_ 1
0 1 0 |
(B7)

APPENDIX C: VACUUM EXPECTATION VALUE
OF THE CURRENT

We show here that ,(0|J5(x,t)[0) ,=0. Let us con-
sider for example the following quantity:

e.u{0lapl (D) e ((D)]0)e ,

=140 G,;(O)a (t)ake(t)Ga (0)[0)12.

(CD

e.u{Olale(D) g o(1)]0)e = e u (Ol B o(1) B2 (1) O, = 64| V| *sin?

6018 e(Daf o(1)]0)e = (e (O @l o(1) BT (1) 0)e, )

PHYSICAL REVIEW D 67, 073011 (2003

Now let us defineay o(t)=G4(0)a} ((t)G,*(0) and H.c.
Of course,aj (0)=aj ;. It is easy to realize thgsee Egs.
(A11)]

{of (1), a5l (t)}=0 fork#p, V tt',r,s. (C2

This in turn implies that the quantityC1) vanishes fork
#p. Since this is valid for any two flavor operators, we only
need to calculate the various terms for {lflavor) VEV of
the current for equal momenta. We thus write

e,M<O|J§(X,t)|0>e,M: f d3ke,,u<0|~]g(kat)|0>e,uz 0
(C3

The flavor vacuum is invariant under rotations, so we can
choose without loss of generality the most suitable spatial
reference frame for each of the terms in the momentum in-
tegration. In our case, this is the one for whicls collinear

to (0,0,1). In this frame, we obtain the relations

co§05|nz( 5 “2y +sirf0|U, | %sirf(w,t) |,
(C4

= 8¢l sir?9e? 1 U, | |V,|[ (1 + e Zert—2e~ 2(@1t @2t cod 4 2i sin(w,t) (e '“2!|U, |2
(CH

+e'2|V,|?)sirtg].

Because of relatiofiC4) and the orthonormality relations for

the spinors, we eaS|Iy realize thaf,(0[J2(k,t)[0),,=0
As for eM<O|Je(k t)|0),, ., we need to consider

Ks
ukl(t)rsuk,i(t)__v k|(t)F3USk|(t) & —
kl

(Co)
U (OT 30" ()= (DT 3up (D)
:_(_1)r5rsﬂe2iwk,it_ (C?)
wk,i

As a consequence of relatiof84), (C5) and(C6), (C7), the
expectation valug, ,(0[J3(k,t)|0)e,, is an odd function ok
and therefore its integral vanishes.

Note that  ,(0]J¢?(k,t)|0)e , Vvanish identically in the
chosen reference frame, because of

Ui (OTIUR (1) = — vy (T2 (1)

=ull(OIv®, (D=0, j=12.(C

APPENDIX D: EXPLICIT FORMS

r d3k ik-x TS 3
A=A 100 S [rlUE 016X,
1)

3

BI(x)=A f 0T [7]0° 0]

(2,”_)3/2

X(a-k)* Yy e(t), (D2)
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Al—AJ d3k
1 (2,”_)3/2

Bl—Af d3k
1 (277)3/2

eik‘xf(k)Xl(l"' k3 /€)Xy o(1),

e X (k) x1(ks— K2/ 1) Yy (1),

3

Az=—A3=A f X (K) xa(ky 1Q1) Xy (1),

(2,”_)3/2

Bi=—-Bi=A dk e XF (k) x 1K Y o(t)
2= 37 (2m)32 X1K+ Tkell),

PHYSICAL REVIEW D67, 073011 (2003

1 d3k
(2m)2

" Xf (k) xa(1—ka/ Q1) Xy o),

dsk ik-x 2
_AJ (27T)3/2e f(k)Xl(|k| “21 k3)kae(t)'
(D3)

where() ;= wy ;+m; andk, =Kk;+ik,, Ko =k;—iko.
Fork collinear withk=(0,0,1) or in the one-dimensional
case, we have
(B o), alo(0)} = "€ Uy [ Vi sir? o[ 2

. e* i wk,2t] e* i “)k,lt.

(D4)
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