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Neutrino oscillations from relativistic flavor currents

Massimo Blasone
The Blackett Laboratory, Imperial College London, London SW7 2AZ, United Kingdom

and Dipartimento di Fisica and INFN, Universita` di Salerno, 84100 Salerno, Italy

Paulo Pires Pacheˆco
The Blackett Laboratory, Imperial College London, London SW7 2AZ, United Kingdom

Hok Wan Chan Tseung
Department of Physics, University of Oxford, Oxford OX1 3LB, United Kingdom

~Received 16 January 2003; published 17 April 2003!

By resorting to recent results on the relativistic currents for mixed~flavor! fields, we calculate a space-time
dependent neutrino oscillation formula in quantum field theory. Our formulation provides an alternative to
existing approaches for the derivation of space dependent oscillation formulas and it also accounts for the
corrections due to the nontrivial nature of the flavor vacuum. By exploring different limits of our formula, we
recover already known results. We study in detail the case of one-dimensional propagation with Gaussian wave
packets both in the relativistic and in the nonrelativistic regions: in the last case, numerical evaluations of our
result show significant deviations from the standard formula.

DOI: 10.1103/PhysRevD.67.073011 PACS number~s!: 14.60.Pq
-

o

b
n

,
a
i

rg

on
t

o
th
en
n

n-

o
e

c
e
n

m

ped

ms
uite
e

ave
for
cture

ed

ed

ay,
as

face
s.

ur-

FT
r
of

f.
se
of
of
vor
I. INTRODUCTION

The recent experimental evidence@1–5# of neutrino mix-
ing and oscillations@6# is the first clear sign of physics be
yond the standard model@7#. Thus much effort is currently
devoted to the full understanding of such phenomenon, fr
the issue of its origin to more phenomenological ones.

In this framework, there has been recently remarka
progress in the study of the problem of field mixing in qua
tum field theory~QFT! @8–20#. It is important to remark that
despite the fact that it is usually treated in quantum mech
ics ~QM!, the mixing between states of different masses
not even allowed in a nonrelativistic theory due to the Ba
mann superselection rules@21#. The problem of constructing
a Hilbert space for flavor states is indeed a long standing
@22# which has even been claimed to be impossible
achieve@23# ~see however Ref.@18# for a criticism of that
argument!. As first shown in Ref.@8#, the difficulty lies in the
fact that the Hilbert spaces for particles with definite flav
and those with definite mass are actually orthogonal in
infinite volume limit. This result has been subsequently g
eralized for any number of generations and for differe
types~fermionic or bosonic! of fields @16,17,10#. It has also
emerged that the use of the correct Hilbert space~i.e., the one
for the flavor fields! leads to corrections to the usual Po
tecorvo oscillation formula.

The necessity for a full QFT treatment of mixing als
stems from a more phenomenological perspective, nam
from the calculation of~flavor! oscillation formulas. The
usual treatment gives, indeed, in a very simple way an os
lation formula in time, which is actually not of great us
when discussing current experiments where the dista
source detector is measured rather than time~data being col-
lected over large time intervals! @24#. In order to derive an
oscillation formula in space, one usually converts the ti
oscillation formula by means of some assumptions~equal
0556-2821/2003/67~7!/073011~12!/$20.00 67 0730
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time assumption, classical propagation, etc.! which are how-
ever questionable in many respects~see Ref.@25# for a re-
view!. Thus several QFT approaches have been develo
@26–30#, such as theexternal wave packet modelsor the
stationary boundary conditions models, which attempt a
more realistic description of neutrino oscillations. It see
indeed that the main features of such formula are now q
well understood@25#, including the concepts of coherenc
length, localization terms, dispersion times, etc.

On the other hand, all these calculation schemes h
been developed for highly relativistic neutrinos and/or
nearly degenerate masses and in most cases the spin stru
of the wave functions was neglected~i.e., neutrinos were
treated as scalars!. Also, the identification of the Hilbert
spaces for mass and flavor neutrinos was implicitly assum
in the choice of the propagators~see Ref.@9# for a discussion
of flavor propagators!.

A completely different approach to the problem is inde
possible and was advocated in Refs.@31,32#: an oscillation
formula in space could be derived in a straightforward w
by considering the flux of neutrinos through the detector
the integral over the measurement time and detector sur
of the relativistic flavor current for the oscillating neutrino
An attempt in this direction is contained in Ref.@31#, which
however deals with QM and therefore uses a probability c
rent derived from Schro¨dinger equation. As pointed out in
Ref. @32#, the obstacle to the extension of this result to Q
lies in the difficulty of constructing a relativistic current fo
mixed particles, which boils down again to the problem
the definition of the Hilbert space for such~not on-shell!
particles.

The solution to this problem was recently given in Re
@13#: it turned out that it is indeed possible to define the
~nonconserved! flavor currents in a consistent way by use
previous results on the flavor Hilbert space. An analysis
the currents associated to mixing for the case of three fla
©2003 The American Physical Society11-1
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neutrino mixing withCP violation and for boson mixing can
be found in Refs.@10,11#.

In this paper, we calculate the oscillation formula by usi
the relativistic flavor currents above mentioned. For simp
ity, we only treat the case of mixing among two generatio
of Dirac neutrinos: the extension to Majorana fields and
three flavors will be given elsewhere. The formula we obt
in a very direct way has the full space-time dependence
contains previous results obtained by use of the fla
charges. We then obtain a general expression for the elec
neutrino flux in three dimensions with spherical symmet
Although a fully three dimensional analysis is possib
within our formulation, we study in detail the one
dimensional case with Gaussian wave packets, which is
deed the one most frequently considered in literature.
show how in the highly relativistic limit and by integratin
over an infinite time, the standard space dependent osc
tion formula @25,26# is obtained, which includes the cohe
ence length and the localization term. However our form
is also valid for nonrelativistic neutrinos and it accounts
flavor vacuum effects. Numerical evaluations of our res
show deviations from the usual formula in the nonrelativis
regime.

The paper is organized as follows: in Sec. II we presen
derivation of the flavor currents in the line of Ref.@13# and
give some details on the construction of the flavor Hilb
space. In Sec. III we first obtain the expectation value of
flavor current in the most general case and then a more
plicit expression in the case of a spherically symmetric em
sion. Then, in Sec. IV, we specialize to the one-dimensio
case and obtain the space dependent expression for the
tron neutrino flux. Further analysis is done by choos
Gaussian wave packets. Sec. V is devoted to conclusion

II. RELATIVISTIC CURRENTS FOR MIXED FIELDS

Following Ref. @13#, let us consider the following La
grangian density describing two Dirac fields with a mix
mass term:

L~x!5C̄ f~x!~ i ]”2M !C f~x!, ~1!

whereC f
T5(ne ,nm) and

M5S me mem

mem mm
D .

The mixing transformations

C f~x!5S cosu sinu

2sinu cosu DCm~x!, ~2!

with u being the mixing angle andCm
T 5(n1 ,n2), diagonal-

ize the quadratic form of Eq.~1! to the Lagrangian for two
free Dirac fields, with massesm1 andm2:

L~x!5C̄m~x!~ i ]”2Md!Cm~x!, ~3!
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where Md5diag(m1 ,m2). One also hasme5m1cos2u
1m2sin2u, mm5m1sin2u1m2cos2u, and mem5(m2
2m1)sinu cosu. We assumem2>m1 andu in @0,p/4#.

The Lagrangian Eq.~1! is invariant under globalU(1)
phase transformations of the typeCm8 5eiaCm : as a result,
we have the conservation of the Noether chargeQ

5*d3x I 0(x) @with I m(x)5C̄m(x)gmCm(x)] which is in-
deed the total charge of the system~i.e., the total lepton
number!.

Consider now theSU(2) transformations acting onCm :

Cm8 ~x!5eia jt jCm~x!, j 51,2,3, ~4!

with a j real constants,t j5s j /2 ands j being the Pauli ma-
trices.

For m1Þm2, the Lagrangian is not generally invarian
under Eq.~4! and we obtain, by use of the equations
motion,

dL~x!5 ia jC̄m~x!@t j ,Md#Cm~x!52a j]mJm, j
m ~x!,

Jm, j
m ~x!5C̄m~x!gmt jCm~x!, j 51,2,3. ~5!

The above analysis is valid at classical level. We n
quantize the free fieldsn1 and n2 in the usual way~see
Appendix A for conventions!.

Then the charge operatorsQm, j (t)[*d3x Jm, j
0 (x), satisfy

the su(2) algebra@Qm, j (t),Qm,k(t)#5 i e jklQm,l(t). The Ca-
simir operator is proportional to the total charge. From E
~5! we also see thatQm,3 is conserved asMd is diagonal. Let
us define the combinations:

Q1[
1

2
Q1Qm,3 , Q2[

1

2
Q2Qm,3 ~6!

Qi5(
r
E d3k~ak,i

r† ak,i
r 2b2k,i

r† b2k,i
r !, i 51,2, ~7!

where the last expression has been normal ordered, as u
These are nothing but the Noether charges associated
the noninteracting fieldsn1 andn2: in the absence of mixing
they are the flavor charges, separately conserved for e
generation. Observe now that the transformation

C f~x!5e22iuQm,2(t)Cm~x!e2iuQm,2(t) ~8!

is just the mixing Eq.~2!. ThusGu(t)[e2iuQm,2(t) is the gen-
erator of the mixing transformations~see Appendix A!. In
Ref. @8#, it has been shown that the action ofGu(t) on the
vacuum stateu0&1,2 results in a new vector~flavor vacuum!
u0(t)&e,m[Gu

21(t)u0&1,2, orthogonal tou0&1,2 in the infinite
volume limit.

Following Ref. @13#, in accordance with Eq.~6!, we de-
fine theflavor chargesfor mixed fields as

Qs~ t ![Gu
21~ t !QiGu~ t ! ~9!

with (s,i )5(e,1),(m,2) andQe(t)1Qm(t)5Q. They have
a simple expression in terms of the flavor ladder operato
1-2
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Qs~ t !5E d3x ns
†~x!ns~x!

5(
r
E d3k„ak,s

r† ~ t !ak,s
r ~ t !2b2k,s

r† ~ t !b2k,s
r ~ t !…,

s5e,m. ~10!

These charge operators then act on the flavor Hilbert sp
He,m ~see Appendix A!. For the single neutrino and an
tineutrino states of definite momentum and helicity:1

uns~ t !&[ak,s
r† ~ t !u0~ t !&e,m , un̄s~ t !&[bk,s

r† ~ t !u0~ t !&e,m ,

~11!

one obtains

Qs~ t !uns~ t !&5uns~ t !&, Qs~ t !un̄s~ t !&52un̄s~ t !&.
~12!

In the following, we will use the flavor currents:

Js
m~x![n̄s~x!gmns~x!5Gu

21~ t !Ji
m~x!Gu~ t !, ~13!

with (s,i )5(e,1),(m,2). From the globalU(1) invariance
follows the continuity equation:

]m@Je
m~x!1Jm

m~x!#50. ~14!

III. SPACE-TIME DEPENDENT NEUTRINO
OSCILLATION FORMULA

In this section, we consider the calculation of the gene
~i.e. space-time dependent! neutrino oscillation formula, by
use of the flavor currents introduced in Sec. II. In Sec. IV,
then extract from this the space dependent formula by i
grating over time.

As already discussed in Refs.@31,32#, although in the
context of QM, what one is ultimately interested in curre
experiments is actually the flux of neutrinos of a given flav
through the surface of the detectorV in a ~large! measure-
ment timeT. In the case of electron neutrinos, this quantity
given by

Fne→ne
~L !5E

t0

T

dtE
V

^neuJe
i ~x,t !une&dSi , ~15!

whereL is the distance source-detector. Our aim is now
calculate the expectation value of the flavor four-current d
sity on a localized neutrino state, defined as a wave pack
flavor Hilbert space.

A. Expectation value of the flavor current density

We define an initial,2 localized stateune(x0 ,t0)& with defi-
nite flavore:

1Note that there is no ambiguity here in defining the flavor n
trino states with definite momentum.

2We work in the Heisenberg picture; the time evolution is th
borne by the operators.
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une~x0 ,t0!&5AE d3ke2 i (vk,1t02k•x0) f ~k!ak,e
r† ~ t0!u0&e,m ,

~16!

whereA is a normalization constant,f (k) is the form of the
wave packet andu0&e,m the flavor vacuum at timet5t0. This
corresponds to an electron neutrino being emitted at (t0 ,x0).
For convenience we set (t0 ,x0)5(0,0,0,0) in the following.
Note that the wave packet is defined in the Hilbert space
flavor fields.

The normalization of this state is given by

15^neune&5uAu2E d3kE d3pf * ~k! f ~p!$ak,e
r ~0!,ap,e

r† ~0!%

5uAu2E d3ku f ~k!u2.

From Sec. II, the electron neutrino four-current is given a

Je
m~x,t !5 n̄e~x,t !gmne~x,t !5ne

†~x,t !Gmne~x,t !, ~17!

where Gm5g0gm. In the following we will use the chiral
representation of the Dirac matrices~see Appendix B!. The
expansion for the flavor fields given in Eq.~A9! leads to the
following explicit form of the current operator:

Je
m~x,t !5E E d3p

~2p!3/2

d3k

~2p!3/2
ei (k2p)•x

3(
r ,s

@up,1
s† ~ t !Gmuk,1

r ~ t !ap,e
s† ~ t !ak,e

r ~ t !

2v2p,1
s† ~ t !Gmv2k,1

r ~ t !b2k,e
r† ~ t !b2p,e

s ~ t !

1up,1
s† ~ t !Gmv2k,1

r ~ t !ap,e
s† ~ t !b2k,e

r† ~ t !

1v2p,1
s† ~ t !Gmuk,1

r ~ t !b2p,e
s ~ t !ak,e

r ~ t !#. ~18!

In Appendix C, we prove thate,m^0uJm(x,t)u0&e,m50. This
result leads to~see Appendix A!

^neuJe
m~x,t !une&5C†~x,t !GmS 1 1

1 1DC~x,t !, ~19!

with

C~x,t ![AE d3k

~2p!3/2
eik•xf ~k!

3S uk,1
r Xk,e~ t !

(
s

v2k,1
s ~sW •k!srYk,e~ t !D , ~20!

Xk,e~ t !5cos2ue2 ivk,1t1sin2u@e2 ivk,2tuUku21eivk,2tuVku2#,

~21!

-

1-3
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Yk,e~ t !5sin2uuUkux1x2F 1

vk,21m2
2

1

vk,11m1
G

3@e2 ivk,2t2eivk,2t#, ~22!

where

sW •k5S k3 k2

k1 2k3
D

andx i[„(vk,i1mi)/4vk,i…
1/2. We made use of the following

relations:

$ak,e
r ~ t !,ap,e

s† ~0!%5d rsXk,e~ t !eivk,1td3~k2p!,

$b2k,e
r† ~ t !,ap,e

s† ~0!%5~sW •k!rsYk,e~ t !e2 ivk,1td3~k2p!.
~23!

The expression in Eq.~19! contains the most general in
formation about neutrino oscillations and can explici
evaluated once the form of the wave packet is specified
similar expression can be easily obtained for the other qu
tity of interest, namelŷ neuJm

m(x,t)une&.
For comparison with previous results and for better u

derstanding the expression~19!, let us consider the limit situ-
ation in which the wave packet becomes a plane wave, w
definite momentum:f (k)5(2p)3/2d3(k2q). This obviously
means that we lose information about localization and
need to integrate over the entire volume to get the fla
oscillations~in time!. We indeed find (re[Je

0)

^neuQe~ t !une&5E d3x^neure~x!une&

512sin2~2u!F uUqu2sin2S vq,22vq,1

2
t D

1uVqu2sin2S vq,21vq,1

2
t D G , ~24!

which agrees with the result obtained in Refs.@9#. Notice the
presence of the nonstandard oscillation term and of the
mentum dependent amplitudes~the Bogoliubov coefficients
satisfyinguUqu21uVqu251).

We now consider the situation in which we have a sph
cally symmetric emission of the neutrinos from the source
(x0 ,t0). This allows us to limit our investigation to the radi
flux, which can be identified without loss of generality wi
thez component of the current. In this case, Eq.~19! takes it
simplest form, sinceG3 is diagonal in the chosen~chiral!
representation.

The matrixG3 can be expanded as a linear combination
spinor outer products:

G35S 1 0 0 0

0 21 0 0

0 0 21 0

0 0 0 1

D 5g0g35(
j 51

4

~21! j 11h jh j
† ,

~25!
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where

h15S 1

0

0

0

D , h25S 0

1

0

0

D , h35S 0

0

0

1

D , h45S 0

0

1

0

D .

~26!

This decomposition permits a remarkable rearrangem
since Eq.~19! then becomes

^neuJe
3~x,t !une&5(

j 51

4

~21! j 11C j
†~x,t !S 1 1

1 1DC j~x,t !

5(
j 51

4

~21! j 11uA j
r1B j

r u2, ~27!

where~see also Appendix D!

C j~x,t !5h j
†C~x,t ![S A j

r~x,t !

B j
r~x,t !

D . ~28!

Equation~27! gives a compact expression for the flav
current expectation value in the case of a spherically sy
metric emission. It can indeed be integrated to give a us
expression for the electron neutrino flux at a given dista
from the source. Although this calculation is of interest, b
cause it contains information on the three-dimensional na
of the propagation, it will be not developed further here, a
in the following section we will consider the case of on
dimensional propagation. Note that in the present c
~spherical symmetry!, the expectation values ofJe

1 andJe
2 at

any point can be obtained from the above expectation va
of Je

3 . In the general case Eq.~19!, however, the expectation
values ofJe

1 andJe
2 have to be calculated independently a

this can be done by use of the decomposition ofG1 andG2

given in Appendix B.
It remains to considerre , which is the relevant measur

able quantity for experiments without angular resolution. I
indeed easy to get its expectation value:

^neure~x,t !une&5(
j 51

4

uA j
r1B j

r u2, ~29!

which is related to the expectation value ofJe
3 as follows:

^neuJe
3~x,t !une&5^neur~x,t !une&22uA 2

r 1B 2
r u2

22uA 4
r 1B 4

r u2. ~30!

This is a significant result in the sense that it directly cont
dicts the usualx5t approach: if the neutrino really travelle
on a straight line then, for points for which the Cartesianz
direction coincides with the polar radial direction~as defined
with respect to the source!, one should have3 ^neuJe

3(x)une&
5^neur(x)une&.

3The result would be the same up to a constant if one replaced
velocity of light by the~constant! average velocity of the neutrinos
1-4
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B. One-dimensional case

Given the complexity of the three-dimensional analys
we now limit the problem to one spatial dimension~as do
most of other treatments in the literature!.

The wave packet now takes the formf (k)
5(2p)3/2d(k1)d(k2) f (k3), which corresponds to a packe
with definite momentum in thex andy direction and a mo-
mentum distributionf (k3) along thez direction. The uncer-
tainty principle then dictates that the corresponding spa
distribution is that of a beam of infinite radius and unifor
surface density moving in thez direction ~a neutrino sheet!.

In the one-dimensional case, we have~see Appendix D!
A 2

r 5A 3
r 50 andB 2

r 5B 3
r 50 for all r. In order to perform

explicit evaluations, we choose in the followingr 51: this
does not imply any loss of generality since the final resul
independent ofr. We also putA 1

11B 1
15c11c18 and A 4

1

1B 4
15c21c28 .

Equation~27! then becomes

^neuJe
3~z,t !une&5uc1~z,t !1c18 ~z,t !u2

2uc2~z,t !1c28 ~z,t !u2, ~31!

with

c1~z,t !5
A

2E0

`

dk@cos2ue2 ivk,1t1sin2ue2 ivk,2t#Tk~z!,

~32!

c18 ~z,t !5 iAE
0

`

dk sin2u sin~vk,2t !uVku

3@Tk~z!uVku2T2k~z!uUku#, ~33!

c2~z,t !5
A

2E0

`

dk@cos2ue2 ivk,1t1sin2ue2 ivk,2t#T2k~z!,

~34!

c28 ~z,t !5 iAE
0

`

dk sin2u sin~vk,2t !uVku

3@T2k~z!uVku1Tk~z!uUku# ~35!

where

Tk~z!5eikzf ~k!F S 11
m1

vk,1
D 1/2

1S 12
m1

vk,1
D 1/2G

1e2 ikzf ~2k!F S 11
m1

vk,1
D 1/2

2S 12
m1

vk,1
D 1/2G .

~36!

The above relations are the main result of this work: st
ing with an arbitrary wave packetf (k) we can now deter-
mine the expected one-dimensional flux of electron neutri
at a given distance from the source as

Fne→ne
~z!5E

0

`

dt^neuJe
3~z,t !une&. ~37!
07301
,
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Note that thec68 terms are the corrections due to the u
of the flavor Hilbert space in the definition of neutrino sta
Equation~37! is an exact expression for the space oscillat
formula in 1D and will be in the following evaluated numer
cally with the choice of a Gaussian wave packet. In the f
lowing section, however, we digress on the relativistic lim
which allows us to extract an~approximated! analytical form
of Eq. ~37! and to compare it with the existing results in th
literature.

IV. APPROXIMATIONS AND NUMERICAL ANALYSIS

In this section, we explicitly evaluate Eq.~37! by choos-
ing a Gaussian wave packet. We first consider the relativi
limit and show how the full result Eq.~37! reduces to the
standard formula given in@26,25#. Then we proceed with
numerical evaluations of the exact formula Eq.~37!, which
allow us to test the nonrelativistic regime.

We choosef (k) to be a Gaussian wave packet with m
mentum spreadsk :

f ~k!5H expF2
~k2q!2

4sk
2 G , ~38!

with H5(2psk
2)21/4.

A. Recovering the standard oscillation formula: sharp
Gaussian wave packets in relativistic limit

To recover previous results in the literature@26,25#, we
consider the case of sharp Gaussian wave packet in rel
istic limit, satisfying the following conditions:

~1! The mean momentumq of both mass species lies i
the relativistic regime such thatvq,i@mi and uVqu→0.
Hencec18 andc28 can be ignored.

~2! The Gaussian is sharply peaked,q@sk : the largest
contributions to the integrals come from around the me
momentumq, i.e., Laplace’s method@33# can be used.

Using the above conditions, one has (16mi /vk,i)
1/2'1

6mi /2vq,i . Thus, to first order inm1 /vq,1 ,

c1~z,t !'AHE
0

`

dk@cos2ue2 i (vk,1t2kz)

1sin2ue2 i (vk,2t2kz)#expF2
~k2q!2

4sk
2 G

1AH
m1

2vq,1
E

0

`

dk@cos2ue2 i (vk,1t1kz)

1sin2ue2 i (vk,2t1kz)#expF2
~k1q!2

4sk
2 G . ~39!
1-5
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For q positive, the integral on the second line can be
glected. On the other hand, we obtain forc2 the following
expression:

c2~z,t !'AH
m1

2vq,1
E

0

`

dk@cos2ue2 i (vk,1t2kz)

1sin2ue2 i (vk,2t2kz)#expF2
~k2q!2

4sk
2 G

1AHE
0

`

dk@cos2ue2 i (vk,1t1kz)

1sin2ue2 i (vk,2t1kz)#expF2
~k1q!2

4sk
2 G . ~40!

Again, the second term is exponentially suppressed and
be neglected. The first term ofc2 is also small for relativ-
istic neutrinos and will be neglected in the following. W
thus have

^neuJe
3~z,t !une&.uc1~z,t !u2. ~41!

1. Momentum integration

We now turn towards the evaluation ofc1 using
Laplace’s method. Let us first define thedispersiontimes
Ti

disp5vq,i /2sk
2 , which set the time scale for the spatial di

persion of the wave packets.
Expanding the integrand about the mean momentum

second order indk5k2q, we obtain4

c1~z,t !'AH cos2ue2 i (vq,1t2qz)expF2
~z2vq1

t !2

4S1~ t !
G

3E
2q

`

d~dk!expF2S1~ t !S dk2 i
~z2vq,1t !

2S1~ t ! D 2G

4Using the expansionvk,i'vq,i1dk2/2vq,i1vq,idk and making
a change of variablek2q5dk, we get

c1'AH cos2uei(qz2vq,1t)E
2q

`

d~dk!eidk(z2vq,1t)

3expF2dk2S 1

4sk
2

1i
t

2vq,1
D G1AH sin2uei(qz2vq,2t)

3E
2q

`

d~dk!eidk(z2vq,2t)expF2dk2S 1

4sk
2

1i
t

2vq,2
D G ,

which is brought in the given form by completing the square for
argument of the Gaussian.
07301
-

an

to

1AH sin2ue2 i (vq,2t2qz)expF2
~z2vq2

t !2

4S2~ t !
G

3E
2q

`

d~dk!expF2S2~ t !S dk2 i
~z2vq2

t !

2S2~ t !
D 2G ,

~42!

with Si(t)[sx
2(11 i t /Ti

disp). Also, sx is a spread in the con
figuration space, defined bysxsk5 1

2 andvq,i[q/vq,i . To a
good approximation we can set*2q

` '*2`
` and obtain

E
2`

`

d~dk!e2Si (t)„dk2 i [(z2vq,1t)/2Si (t)])
2

5A 4psk
2

11 i t /Ti
disp

[I i~ t !.

Following the usual treatment@25#, we now consider propa
gation for t!Ti

disp . Then I i(t) becomes a constant:I
52Apsk . For propagation times beyondTi

disp , Laplace’s
method cannot be applied and one has to resort to the me
of stationary phase@33,25#.

We are now in a position to calculate the interferen
term. We get, after some rearrangements,

^neuJe
3~z,t !une&.uAu2H2uI u2S cos4u expF2

~z2vq,1t !
2

2sx
2 G

1sin4u expF2
~z2vq,2t !

2

2sx
2 G D

12uAu2H2uI u2Re@cos2u sin2ue2 if(t)2 f (t)#,

~43!

where the phasef(t) and f (t) are given by

f~ t !5~vq,12vq,2!t,

f ~ t !5
1

4sx
2 @~z2vq,1t !

21~z2vq,2t !
2#. ~44!

We note thatf(t) and f (t) are the usual terms obtained
the external wave packet model in QFT@25,26#. We now
proceed with time integration in order to finally get an e
pression involving distance only.

2. Time average

When calculating the interference term, spatial oscil
tions results from the cross term. We show this explicitly
considering the first term in Eq.~43!: in the Laplace regime
where (t/Ti

disp)'0, if we assume that the experiment ru
for a very long time,

E
2`

`

expF2
~z2vq,i t !

2

2sx
2 Gdt5

A2p

vq,i
sx .

The first and second terms of Eq.~43! are thus merely a
collection of constants.

e

1-6



n

o

, are
ws:

.

he

-
ing

t

rve
eed
se.

This is already evident in Figs. 2,3 where we useq5100
with m151, m253 in the first case andm151, m2510 in
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Let us now turn to the oscillation term. The domina
contributions in the time integral come from exp@2f(t)#,
more precisely in the neighborhood of the maximum value
f (t), which occurs at

tmax5S vq,11vq,2

vq,1
2 1vq,2

2 D z. ~45!

Thus the integrand can be approximated as

e2 if(t)2 f (t).expF2 ifmax2 f max2 i t
df

dt U tmax

2
t2

2

d2f

dt2
U

tmax

G , ~46!

f max5 f ~ tmax!5
z2sk

2~vq,12vq,2!
2

vq,1
2 1vq,2

2
'z2S A2psk

Loscq
D 2

5S z

LcohD 2

, ~47!

fmax5f~ tmax!5
zq~vq,2

2 2vq,1
2 !

vq,1vq,2~vq,1
2 1vq,2

2 !
'22p

z

Losc
~48!

to first order.5 A coherence lengthLcoh5(Loscq)/(A2psk)
and an oscillation lengthLosc54pq/nm2 with Dm25m2

2

2m1
2, having the same form as in the standard approach

thus recovered. The other terms can be factorized as follo
07301
t

f

vq,1
2 1vq,2

2

4sx
2 S t2 i

~vq,12vq,2!

vq,1
2 1vq,2

2
2sx

2D 2

1sx
2 ~vq,12vq,2!

2

vq,1
2 1vq,2

2
.

~49!

The first term integrates to a constant:A2psx . As for the
second term, it becomes (sx

2/2)(vq,12vq,2)
2

.2p2(sx /Losc)2 which gives the localization term@25#.
Hence we can finally write down the~normalized! highly-
relativistic space oscillation formula~compare to Ref.@26#!:

Fne→ne
~z!.12

1

2
sin2~2u!H 12cosS 2p

z

LoscD
3expF2S z

LcohD 2

22p2S sx

LoscD 2G J . ~50!

Thus we have shown that the exact formula Eq.~37! repro-
duces the usual oscillation formula in the relativistic limit

B. Numerical calculations

In this section, we perform numerical evaluations of t
exact oscillation formula Eq.~37! in order to compare it with
the approximate result Eq.~50! for sample values of the pa
rameters. We plot the two expressions in the maximal mix
case for a givensk and for different values ofq and of the
masses: in the relativistic case~Fig. 1! we observe a perfec
agreement of the two formulas, as expected.

We then explore the nonrelativistic region and obse
that relevant deviations from the standard formula do ind
appear, both in the oscillation amplitude and in the pha
FIG. 1. Plot of the QFT flavor
flux ~solid line! against the stan-
dard oscillation formula~dashed
line! for u5p/4, sk510, m1

51, m253, andq51000.

5We assume thatvq,i'12mi
2/2q2. Thusvq,1

2 1vq,2
2 '2, vq,2

2 2vq,1
2 '2nm2/q2 andvq,1vq,2'1.
1-7
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FIG. 2. Plot of the QFT flavor
flux ~thick line! against the stan-
dard oscillation formula ~light
line! for u5p/4, sk510, m1

51, m253, andq5100.
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the second case. The fact that the two plots are simply sc
with respect to each other, indicates that for these value
parameters the usual relation coherence length vs oscilla
length: Lcoh5(Loscq)/(A2psk) is still valid withLosc

54pq/nm2. In Fig. 4 we useq550 with m151, m253
and as expected we observe a larger deviation from the u
formula.

Note that the value of the Bogoliubov coefficientuVku is
very small in all the considered cases,6 so the observed cor
rections originate from the ‘‘standard’’ termsc6 Eqs.
~32!,~34! in the oscillation formula Eq.~37! rather than from
the flavor vacuum contribution, which thus turns out to
very difficult to detect when considering~time-!averaged os-
07301
ed
of
on

al

cillation formulas like in the present case.
A more complete discussion of these corrections and

their possible phenomenological relevance will be giv
elsewhere@34#.

V. CONCLUSIONS

In this paper, we have for the first time derived a spa
time dependent oscillation formula directly from the relati
istic currents for flavor fields. These currents have been
cently studied in Ref.@13#, a result which served as basis fo
the present analysis, together with previous results on
Hilbert space for mixed fields@8,9#.
FIG. 3. Plot of the QFT flavor
flux ~thick line! against the stan-
dard oscillation formula ~light
line! for u5p/4, sk510, m1

51, m2510, andq5100.

6The values ofuVqu are 131023 ~Fig. 1!, 131022 ~Fig. 2!, 431022 ~Fig. 3!, and 231022 ~Fig. 4!.
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FIG. 4. Plot of the QFT flavor
flux ~thick line! against the stan-
dard oscillation formula ~light
line! for u5p/4, sk510, m1

51, m253, andq550.
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We first presented a general expression for the elec
neutrino flux in three dimensions and then specialized to
case with spherical symmetry, for which we were able to fi
a more explicit expression. In order to perform further ana
sis and numerical evaluations, we then considered the
dimensional case with Gaussian wave packets, which is
the one most frequently treated in literature.

Our formulation presents several advantages with res
to existing treatments of neutrino oscillations in quantu
field theory: it is a very straightforward approach whi
is easy to relate to practical experimental situations;
takes into account the nontrivial nature of the flav
vacuum and flavor states are thus consistently defined
takes explicitly into account the full spin structure
neutrino states and does not resort to relativistic limit and
assumption of nearly degenerate masses for the en
eigenstates.

We have shown how, in different limits, our formula r
produce existing results. Thus, in the case of relativistic n
trinos with nearly degenerate masses, we recover analytic
the standard space dependent expression for neutrino o
lations @26,25#, which is thus once again confirmed from a
independent approach. Also, previous results on the fla
charges@9# have been recovered, exhibiting the non-stand
oscillation terms.

The numerical analysis shows that in the nonrelativis
regime, our formula predicts significant deviations from t
standard oscillation formula@26,25#, which on the other hand
cannot be expected to be valid in that region. An analysis
the phenomenological implications of the results obtained
this paper will be presented elsewhere@34#.
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APPENDIX A: FLAVOR HILBERT SPACE

The free fieldsn1(x) andn2(x) are written as (t[x0)

n i~x!5 (
r 51,2

E d3k

~2p!3/2
eik•x@uk,i

r ~ t !ak,i
r

1v2k,i
r ~ t !b2k,i

r† #, i 51,2, ~A1!

where uk,i
r (t)5e2 ivk,i tuk,i

r and vk,i
r (t)5eivk,i tvk,i

r , with

vk,i5Auku21mi
2. The ak,i

r and thebk,i
r , i ,r 51,2 are the

annihilation operators for the vacuum stateu0&1,2[u0&1

^ u0&2 : ak,i
r u0&125bk,i

r u0&1250. The anticommutation rela
tions are

$n i
a~x!,n j

b†~y!% t5t85d3~x2y!dabd i j , a,b51, . . . ,4,

~A2!

$ak,i
r ,ap, j

s† %5d3~k2p!d rsd i j ,

$bk,i
r ,bp, j

s† %5d3~k2p!d rsd i j , i , j 51,2.
~A3!

All other anticommutators are zero. The orthonormality a
completeness relations are

uk,i
r† uk,i

s 5vk,i
r† vk,i

s 5d rs , uk,i
r† v2k,i

s 5v2k,i
r† uk,i

s 50,

(
r

~uk,i
r uk,i

r† 1v2k,i
r v2k,i

r† !512 . ~A4!

where1n is then3n unit matrix. Equation~2! can be recast
in the form

ns~x![Gu
21~ t !n i~x!Gu~ t !, ~A5!
1-9
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Gu~ t !5expFuE d3x„n1
†~x!n2~x!2n2

†~x!n1~x!…G , ~A6!

with (s,i )5(e,1),(m,2). The generatorGu(t) does not
leave invariant the vacuumu0&1,2:

u0~ t !&e,m5Gu
21~ t !u0&1,2. ~A7!

We will refer to u0(t)&e,m as the flavor vacuum: it is orthogo
nal to u0&1,2 in the infinite volume limit@8#. We define the
flavor annihilators, relative to the fieldsne(x) andnm(x) as7

ak,s
r ~ t ![Gu

21~ t !ak,i
r ~ t !Gu~ t !,

b2k,s
r† ~ t ![Gu

21~ t !b2k,i
r† ~ t !Gu~ t ! ~A8!

with (s,i )5(e,1),(m,2). The flavor fields can be expande
as

ns~x!5 (
r 51,2

E d3k

~2p!3/2
@uk,i

r ~ t !ak,s
r ~ t !

1v2k,i
r ~ t !b2k,s

r† ~ t !#eik•x, ~A9!

with (s,i )5(e,1),(m,2). The flavor annihilation operator
are defined as operators

ak,e
r ~ t !5cosuak,1

r 1sinu(
s

@uk,1
r† ~ t !uk,2

s ~ t !ak,2
s

1uk,1
r† ~ t !v2k,2

s ~ t !b2k,2
s† #, ~A10!

ak,m
r ~ t !5cosuak,2

r 2sinu(
s

@uk,2
r† ~ t !uk,1

s ~ t !ak,1
s

1uk,2
r† ~ t !v2k,1

s ~ t !b2k,1
s† #, ~A11!

b2k,e
r ~ t !5cosub2k,1

r 1sinu(
s

@v2k,2
s† ~ t !v2k,1

r ~ t !b2k,2
s

1uk,2
s† ~ t !v2k,1

r ~ t !ak,2
s† #, ~A12!

b2k,m
r ~ t !5cosub2k,2

r 2sinu(
s

@v2k,1
s† ~ t !v2k,2

r ~ t !b2k,1
s

1uk,1
s† ~ t !v2k,2

r ~ t !ak,1
s† #. ~A13!

In the reference frame wherek is collinear with k̂
[(0,0,1), the spins decouple and we have

ak,e
r ~ t !5cosuak,1

r 1sinu„Uk* ~ t !ak,2
r 1ek

r Vk~ t !b2k,2
r†

…,

~A14!

ak,m
r ~ t !5cosuak,2

r 2sinu„Uk~ t !ak,1
r 2ek

r Vk~ t !b2k,1
r†

…,

~A15!

7The annihilation of the flavor vacuum at each time is expres
asak,e

r (t)u0(t)&e,m5Gu
21(t)ak,1

r u0&1,250.
07301
b2k,e
r ~ t !5cosub2k,1

r 1sinu„Uk* ~ t !b2k,2
r 2ek

r Vk~ t !ak,2
r†
…,

~A16!

b2k,m
r ~ t !5cosub2k,2

r 2sinu„Uk~ t !b2k,1
r 1ek

r Vk~ t !ak,1
r†
…,

~A17!

where ek
r [(21)r 1k• k̂/uku11 and Uk(t), Vk(t) are Bogoliu-

bov coefficients given by

Uk~ t ![uk,2
r† ~ t !uk,1

r ~ t !5v2k,1
r† ~ t !v2k,2

r ~ t !5uUkuei (vk,22vk,1)t,
~A18!

Vk~ t ![ek
r uk,1

r† ~ t !v2k,2
r ~ t !52ek

r uk,2
r† ~ t !v2k,1

r ~ t !

5uVkuei (vk,21vk,1)t, ~A19!

uUku5S vk,11m1

2vk,1
D 1/2S vk,21m2

2vk,2
D 1/2

3S 11
uku2

~vk,11m1!~vk,21m2! D , ~A20!

uVku5S vk,11m1

2vk,1
D 1/2S vk,21m2

2vk,2
D 1/2

3S uku
~vk,21m2!

2
uku

~vk,11m1! D , ~A21!

satisfyinguUku21uVku251.

APPENDIX B: CHIRAL REPRESENTATION AND USEFUL
RELATIONS

uk,i
r 5x iS S 11

sW •k

vk,i1mi
D j r

S 12
sW •k

vk,i1mi
D j r

D ,

vk,i
r 5x iS S 11

sW •k

vk,i1mi
D j r

S 211
sW •k

vk,i1mi
D j r

D , r 51,2, ~B1!

j15S 1

0D , j25S 0

1D , x i[S vk,i1mi

4vk,i
D 1/2

, i 51,2,

~B2!

v2k,1
1† uk,2

1 52v2k,1
2† uk,2

2 52x1x2S 2k3

vk,11m1
1

k3

vk,21m2
D ,

~B3!

v2k,1
1† uk,2

2 5~v2k,1
2† uk,2

1 !* 52x1x2S 2k2

vk,11m1
1

k2

vk,21m2
D ,

~B4!

anduk,i
r† uk, j

s 50 for rÞs. We define
d
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G0514 , G i5S s i 0

0 2s i D , i 51,2,3. ~B5!

Notice thatG1 andG2 can be decomposed as follows:

G i5(
j 51

4

h jh j
†2l il i

†2q iq i
† , ~B6!

with

l15S 1

21

0

0

D , q15S 0

0

1

1

D , l25S 1

2 i

0

0

D , q25S 0

0

1

i

D .

~B7!

APPENDIX C: VACUUM EXPECTATION VALUE
OF THE CURRENT

We show here thate,m^0uJe
m(x,t)u0&e,m50. Let us con-

sider for example the following quantity:

e,m^0uap,e
r† ~ t !ak,e

s ~ t !u0&e,m

51,2̂ 0u Gu~0!ap,e
r† ~ t !ak,e

s ~ t !Gu
21~0!u0&1,2.

~C1!
r

07301
Now let us defineãk,e
r (t)[Gu(0)ak,e

r (t)Gu
21(0) and H.c.

Of course,ãk,e
r (0)5ak,1

r . It is easy to realize that@see Eqs.
~A11!#

$ãk,e
r ~ t !,ãp,e

s† ~ t8!%50 for kÞp, ; t,t8,r ,s. ~C2!

This in turn implies that the quantity~C1! vanishes fork
Þp. Since this is valid for any two flavor operators, we on
need to calculate the various terms for the~flavor! VEV of
the current for equal momenta. We thus write

e,m^0uJe
m~x,t !u0&e,m5E d3ke,m^0uJe

m~k,t !u0&e,m50.

~C3!

The flavor vacuum is invariant under rotations, so we c
choose without loss of generality the most suitable spa
reference frame for each of the terms in the momentum
tegration. In our case, this is the one for whichk is collinear
to (0,0,1). In this frame, we obtain the relations
e,m^0uak,e
r† ~ t !ak,e

s ~ t !u0&e,m5e,m^0ub2k,e
r† ~ t !b2k,e

s ~ t !u0&e,m5d rs4uVku2sin2uFcos2u sin2S v11v2

2
t D1sin2uuUku2sin2~v2t !G ,

~C4!

e,m^0ub2k,e
r ~ t !ak,e

s ~ t !u0&e,m5„e,m^0uak,e
r† ~ t !b2s,e

r† ~ t !u0&e,m…*

5d rsek
r sin2ue2iv1tuUkuuVku@~11e22iv1t22e22i (v11v2)t!cos2u12i sin~v2t !~e2 iv2tuUku2

1eiv2tuVku2!sin2u#. ~C5!
Because of relation~C4! and the orthonormality relations fo
the spinors, we easily realize thate,m^0uJe

0(k,t)u0&e,m50.
As for e,m^0uJe

3(k,t)u0&e,m , we need to consider

uk,i
r† ~ t !G3uk,i

s ~ t !52v2k,i
r† ~ t !G3v2k,i

s ~ t !5d rs
k3

vk,i
,

~C6!

uk,i
r† ~ t !G3v2k,i

r ~ t !5„v2k,i
r† ~ t !G3uk,i

r ~ t !…*

52~21!rd rs
mi

vk,i
e2ivk,i t. ~C7!

As a consequence of relations~C4!, ~C5! and~C6!, ~C7!, the
expectation valuee,m^0uJe

3(k,t)u0&e,m is an odd function ofk
and therefore its integral vanishes.
Note that e,m^0uJe
1,2(k,t)u0&e,m vanish identically in the

chosen reference frame, because of

uk,i
r† ~ t !G juk,i

s ~ t !52v2k,i
r† ~ t !G jv2k,i

s ~ t !

5uk,i
r† ~ t !G jv2k,i

s ~ t !50, j 51,2. ~C8!

APPENDIX D: EXPLICIT FORMS

A j
r~x,t !5AE d3k

~2p!3/2
eik•xf ~k!(

s
@h j

†uk,1
s ~ t !#dsrXk,e~ t !,

~D1!

B j
r~x,t !5AE d3k

~2p!3/2
eik•xf ~k!(

s
@h j

†v2k,1
s ~ t !#

3~s•k!srYk,e~ t !, ~D2!
1-11



l
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A 1
15AE d3k

~2p!3/2
eik•xf ~k!x1~11k3 /V1!Xk,e~ t !,

B 1
15AE d3k

~2p!3/2
eik•xf ~k!x1~k32uku2/V1!Yk,e~ t !,

A 2
152A 3

15AE d3k

~2p!3/2
eik•xf ~k!x1~k1 /V1!Xk,e~ t !,

B 2
152B 3

15AE d3k

~2p!3/2
eik•xf ~k!x1k1Yk,e~ t !,
tt

e
S

a,

e

k
9
s.
.
r-

ie
la

a-

07301
A 4
15AE d3k

~2p!
3
2

eik•xf ~k!x1~12k3 /V1!Xk,e~ t !,

B 4
152AE d3k

~2p!3/2
eik•xf ~k!x1~ uku2/V11k3!Yk,e~ t !,

~D3!

whereV1[vk,11m1 andk15k11 ik2 , k25k12 ik2.
For k collinear withk̂[(0,0,1) or in the one-dimensiona

case, we have

$b2k,e
s† ~ t !,ak,e

r† ~0!%5dsrek
r uUkuuVkusin2u@eivk,2t

2e2 ivk,2t#e2 ivk,1t. ~D4!
g
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