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Refinements in electroweak contributions to the muon anomalous magnetic moment
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The effects of strong interactions on the two-loop electroweak radiative corrections to the muon anomalous
magnetic moment,, = (g, —2)/2, are examined. Short-distance logarithms are shown to be unaffected. The
computation of long-distance contributions is improved by the use of an effective field theory approach that
preserves the chiral properties of QCD and accounts for constraints from the operator product expansion.
Small, previously neglected, two-loop contributions, suppressed by4sirf4,, factor, are computed and the
complete three-loop leading short-distance logarithms are reevaluated. These refinements lead to a reduction in
uncertainties and a slight shift in the total electroweak contributimﬁ%z 154(1)(2)x 10" 1 where the first
error corresponds to hadronic uncertainties and the second is primarily due to the allowed Higgs boson mass
range.
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. INTRODUCTION newe'e  andr data from Frascati and tH& factories will
) ) hopefully help to resolve this puzzling difference.
Recently, experiment E821 at Brookhaven National Labo-  geyond the leading hadronic vacuum polarization effects,
ratory achle_ved an order Of magnitude |mpr0\_/en(_eeiat|ve strong interaction uncertainties also enggr via higher or-
to the classic CERN expen_memis the determination of the ders that involve quark loops. Quark loops appear in light-
muon anomalous magnetic momeat, =(g,,~2)/2. _The by-light scattering contributing in three loops as well as in
new world-average value for that fundamental quantifylis ; .
two-loop electroweak corrections. The latter are the subject
of this paper although the hadronic uncertainties there are
certainly much smaller than those induced by light-by-light
scattering.
At the two loop electroweak level, hadronic uncertainties

At the present level of precision, a comparison with the2/1S€ from two types of diagrams, quark triangle diagrams
theoretical prediction form, from the standard model re- related to the anomaly and hadronic phoibmixing. The
quires knowledge of hadronic vacuum polarization effectdi'st category has been previously studied in a free quark
with an accuracy of 1%. The most recent dispersion integra®PProximation and the more general operator product expan-
analysis[2] (see also[3]) based on data from electron- Sion.Although phenomenologically both approaches produce
positron annihilation into hadrons and hadronicdecays Very close numbers they differ: particularly with regard to
demonstrates that the issue is unsettietie~ annihilation  their explicit short distance dependence, i.e.,rfggterms.
leads to a prediction lower by aboutr3han the valugl)  Here, we show that this difference is due to an incomplete
while the prediction based on thedata is lower only by operator product analysis in the second approach. When cor-
about Ir. Moreover, the vector spectral functions derivedrected, unambiguous short-distance contributions result. We
from e*e” annihilation and fromr decays differ signifi- also take this opportunity to update the long distance and
cantly for energies beyond the resonance pealby more total electroweak contributions.
than 10% in some regiopdt seems very difficult to explain In the case of photo#- mixing, its two loop contribution
such a large difference by isospin breaking effects. Thus, ito a, is suppressed by a factor-14 sirfé,y~0.1; so, it is not
appears that the data from'e™ annihilation and fromrs  as important. It can be evaluated either in the free quark
decays are incompatible: so, no conclusion can be derivedpproximation(sufficient for logarithmic accuragyor via a
yet about a deviation from the standard model prediction. dispersion relation using data froei" e~ annihilation into

Since a real deviation from theory would signal the pres-hadrons. The difference is shown to be numerically insignifi-
ence of “new physics,” with supersymmetry the leading can-cant.
didate, it is extremely important that all such hadronic uncer- Finally, having clarified the leading short-distance behav-
tainties be thoroughly scrutinized and eliminated as much a®r of the two loop electroweak radiative correctionsatp,
possible before implications are drawn. Toward that endwe can use the renormalization group to estimate higher or-

a,=11659203080) X 10" % (1)

Additional data currently being analyzed should further re-
duce the uncertainty.

0556-2821/2003/67)/07300620)/$20.00 67 073006-1 ©2003 The American Physical Society



CZARNECKI, MARCIANO, AND VAINSHTEIN PHYSICAL REVIEW D 67, 073006 (2003

FIG. 1. One-loop electroweak
contributions toa,, .

der leading logarithm contributions which, due to an inter-two-loop electroweak diagrams were enhanced by large

esting cancellation, turn out to be very small. logarithms of the form I, /m,). Those authors carried out
In the end, our analysis leads to a new, not very differentdetailed calculations for a number of such enhanced dia-

but more precise and better founded prediction for the elecgrams. They did not account, however, for closed quark

troweak contributions ta,, . loops. At about the same time, in RgL1] it was shown that
for superheavy fermions, like the top quark, logarithms of
Il. ELECTROWEAK CONTRIBUTIONS TO &, their mass appear in corrections to magnetic moments due to

triangle anomaly diagrams. Detailed studies of all closed
quark loops were included in the calculationaﬁW in Refs.
[12,13. Finally, in Ref.[14], the two-loop calculation of all
logarithms as well as constant terms was completed.

Two-loop corrections ta5" naturally divide into leading

In the standard modelSM) the one-loop electroweak
contributions toa,,, illustrated in Fig. 1, were computed
about 30 years agpt—8|. They have the relatively simple
form

5G m? 1 logarithms (LL), i.e., terms enhanced by a factor of
aEW (1-loop) = —=—£| 1+ = (1—4 sirfHy)? In(m/my) wheremy is a fermion mass scale much smaller
24\2 72 5 than m;, and everything else, which we call nonleading
5 logarithms(NLL ). The two-loop leading logarithms afeee
m Eq. (76) below]
+of ) | (o 0 (76 belowi
Mw,H

W 56,m2 af 43
whereG,=1.16637(1)< 10 ° GeV 2 is the Fermi constant ~ 2« (Z'IOOp)LL:24\/§7T2 73
obtained from the muon lifetime angly is the weak mixing

1 311422
+2—15(—3w)

apgle. For sifg, we employ the on-shell renormalized defi- | mz+36 SN 3
nition X ”—mu T AL Qs 1£Qs
2
. m 2 m
Ron=s2=1— —N _“ 3 2 a2 A
sin“Ow=sy e 3 57(17=2Qsy) (1—-4sy) |n—rnf )

wherem;=91.1875(21) GeV and th&/ mass is correlated
with the Higgs scalar massny, via loop correctiondfor
m,=174.3 GeV)[9]

wherea=1/137.036, N;=3 for quarks and 1 for Iepton!;f
is the third component of weak isospin a@ is electric
charge. Electron and muon loops as well as nonfermionic
my loops produce the Inf,/m,) terms in this expressiofthe
My, = 80.373—0.05719Inm first line) while the sum runs oveF=r,u,d,s,c,b. The
logarithm Infn,/m;) in the sum implies that the fermion
My massmy is larger thanm,, . For the light quarks, such as
—0.00898 lﬁm) GeV. (4)  andd, whose current masses are very small,has a mean-
e ; i .
ing of some effective hadronic mass scale.

Formy =150 GeV, the central value employed in this paper, [N EQ. (7) we have retained for completeness small con-
we must usen,,= 80.373 GeM(rather than the direct experi- tributions from they-Z mixing diagrams in Fig. 2 which
mental valuemy,=80.451(33) GeV, which corresponds to

a very smallmy), for SM loop consistency. That implies f
Y Z
s4,=0.2231 (5) 98 98
and
a;,"(1-loop =194.8< 10" ™. (6)

The calculation of two-loop electroweak contributions to
aﬁw was more recent and considerably more involved. It FIG. 2. Contribution toaﬁ"" from the y-Z mixing induced by a
started with the observation by Kukhét al. [10] that some  fermionf.
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18 18 where the error of-4x10 ! is meant to reflect the total
uncertainties coming from hadronic loop effects, the un-
Z Y known Higgs mass, and uncalculated higher or@aree-
loop) contributions.
Refinements in the above analysis are possible on two
f fronts: improvement in the low-momentum contribution of
hadronic loops and an estimation of the leading three-loop
v electroweak contributiofwhich is part of the overall uncer-
tainty). The Higgs mass uncertainty will be overcome with
its discovery.

The easiest hadronic loop improvement can be made in
the quark contributions tey-Z mixing pictured in Fig. 2.
Those effects, embodied in the last part of the bracketed
were previously excluded because they are suppressed B¥rms in Eq.(7) can be obtained via a dispersion relation
(1-4sy) for quarks and (% 4s3,)? for leptons. using o(e"e”—hadrons) data. Such an analysis has been

The more important terms in E(7), those not suppressed performed for various low energy processes. It effectively
by (1—4s?), were checked by Degrassi and Giud[d®].  leads to the replacemef7]

They used knowledge of well studied QCD corrections to

b—svy decay and translated them into into QED corrections 2 D N3 2022 )| m, 6.88+ 0.50

to ;" via appropriate coupling changes. The only place that ~ 3 ,_ 4 a(1gQq=2Qgsw)In mg :

they erred was for the small—%(13—2Q;s3)(1 (11)
—45\2,\,)In(mZ/mf) terms coming from quark loops. Techni-

cally the difference is due te-Z mixing (Fig. 2 which is ~ which is somewhat larger than the value §.95) obtained in
proportional toQQ,, (electric charges of the loop fermion logarithmic approximation with constituent d, ands quark

and the muon in [15] it was given asQ?. masses(It suggests that smaller quark masses might be more

In addition to leading logarithms, the NLL two-loop con- appropriate. Because thosey-Z mixing effects are sup-
tributions have also been computgt4]. They depend on pressed by 1_43\2/\/’ the shift inaﬁw from this modification
known constants, the top quark mabsre taken to be 174.3 is tiny, —0.02< 10", and can be safely neglected.

GeV), In(m;/m,) terms, and the as yet unknown Higgs bo- Low momentum loop effects in the light quark triangle
son massin, . Formy=150 GeV, those corrections are nu- diagrams of Fig. 3 are more important. It is clear that the use
merically given by[14] of an effective quark mass as an infrared cutoff is in contra-
diction with the chiral properties of QCD in the case of light
quarks. Indeed, in the chiral limit the infrared singularity in
the quark triangle does not go away: it matches the Gold-
stone pole in hadronic terms. This refers to the anomalous
where the error allowsny to range frommy=114 GeV(its  part of the triangle, i.e., to the longitudinal part of the axial
experimental lower boundo about 250 GeV. We have in- current.

FIG. 3. EffectiveZyy* coupling induced by a fermion triangle,
contributing toa;".

a;,"(2-loop)y = —6.0+1.8x107 ", (8)

cluded in Eq.(8) small NLL contributions,—0.2x 10", ~The issue of how to properly treat light quark triangle
proportional to (4s3,)m2/mZ, induced by the renormal- diagrams was addressed originally in a study by Peris, Per-
ization of the weak mixing angle. rotet, and de Rafag¢ll2] within a low-energy effective field

When evaluating Eq(7), one is confronted by the pres- theory approach forr, 7, and " mesons. More recently,
ence of lightu, d, ands quark masses in the logarithms. They Knecht, Peris, Perrotet and de Raff8] have reexamined
were used to crudely regulate long distance loop contributhe issue using an operator product expangioPE and
tions in Figs. 2 and 3, where QCD effects were igndrEg]. ~ Ward identities as guidance. We find their approach to the

For m, 4=300 MeV, m,=500 MeV, m,=1.5 GeV, and anomaly related longitudinal part of quark triangles to be a
mb:4_5' GeV, one finds valid improvement over the naive constituent quark mass

cutoff of Eq. (7).
Ew B 1 Unfortunately, their rather sophisticated OPE analysis
a, (2-loop) = —(36.7£2)x10" 9 failed to properly address the short-distance behavior of
nonanomalous, i.e., transversal, part of the light quark tri-

where the error is meant to roughly reflect low-momentumangles in Fig. 3. In particular, they do not reproduce the
hadronic loop uncertainties for the d, ands quarks in Fig.  complete Inm; terms in Eq.(7). That difference was attrib-
3. Together, Eqs(8) and (9) provide the two-loop total elec- uted to QCD damping effects {18] which were claimed to
troweak correction aEW(Z-Ioop)= —42.72)(1.8)x 1071 eliminate the nonanomalous iy light quark contributions.
which together with Eq(6) leads to the generally quoted However, in our opinion, it points to a shortcoming in their

standard model predictioi6], analysis. . _ -
In Sec. lll we address in some detail what modifications

Ew 1 to the study in[18] are required to restore the proper short-
a, =1524)x10"", (10 distance behavior. We then employ the effective field theory
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approach to improve the evaluation of light quark diagrams o o ) 5

in Fig. 3, thus refining their contribution @:" . T;w:'j d*xe€P(0[T{j ,(¥)j;(0)}|v(k)). (13
Having verified the short-distance behavior of E8). we

are also' in a position to eyaluate higher order Ie_ading Ioga—rhat is equivalent to

rithms via the renormalization group. That analysis is carried

out in Sec. IV, where the leading logarithm three-loop con- T —eeT

. . EW . . 72

tributions toa," are determined. Such a study was previ- (14)

ously undertaken by Degrassi and Giuditg]. Although we

find small differences with their analysis, in the end we also 1 — _f d*x dy €0 T{j ()], (¥)j%(0)}|0),

obtain a very small leading logarithm three-loop contribution

toa5". In fact, the result is consistent with zero, to our level _ o _

of accuracy, due to an interesting cancellation betweefivheree” is the photon polarization vector. We consider the

wyvo

anomalous dimensions and beta function effects. limit of small photon momenturk. The expansion of ,, in
Finally, in Sec. V, we give a refined determination k starts with linear terms and we neglect quadratic and higher

for which the errors are reduced and the central value i®OWers ofk. In this approximation there are two Lorentz

slightly shifted due to improvements in our analysis. structures forT,, consistent with electromagnetic current

conservation,
IIl. HADRONIC EFFECTS IN QUARK TRIANGLES

ie . ~
An interesting subset of the two-loop contributionsafg’ Tpw=— F[WT(qz)( - ,,+09,97F,,—9,0°F,,)
are those containing fermionic triangles of quarks and lep- 7
tons, see Fig. 3. The internal triangles define the one-loop
Z* yy* amplitude where th& and one photon are virtual
while the other photon is real and soft. Those same triangles
produce the well-known anomaly part of tEeboson axial ¥
current. For cancellation of the anomaly, one needs to sum
over all fermions in a given generation.
In the case ofE"Y, the cancellation between quarks and The first structure is transversal with respect to the axial
leptons in Fig. 3 is not complete because of their differentcurrent indexv, the second is longitudinal.
masses and interactions. In this section we give a detailed The contribution oZ* yy* to the muon anomalous mag-
analysis of the general structure of td& yy* amplitude, netic momentaﬁW in the unitary gauge where thé propa-
paying particular attention to the effect of strong interactionsyator iSi(—g,,+ qﬂqvlmﬁ)/(qz—mﬁ), can be written in
on the quark diagrams. Perturbative QCD corrections tQerms ofWT'L(qZ) as
2
;e 220
q my,

+WL(q2)qquTU#]7
(15

N vo - _
v Zf,wyaf v fa=ke,—ke,.

short-distance logarithms are shown to vanish and have an

overall negligible effect for heavy quark diagrams. In the "
case of light quarks, an operator product expansion and eanﬁwzﬁz\/EGMmiiJ
fective field theory approach are used to improve the evalu- ™

ation of long-distance QCD effects. These refinements lead

1
(2m)* g?+2qp

to an update of the fermionic triangle loop contributions to m3 m3
a.EW >< WL_ 2 2WT + 2 2WT . (16)
mos mz—q mz—q
A. Structure of the Z* yy* interaction Here p is the four-momentum of the external muon. For

nitions. The interaction Lagrangian for the electromagneticC'€nt:

andZ-boson fieldsA, andZ,, is
2
mz
Wi+ —WT) , (17
Q2

2
mz+

2
g9 AaEWZE—G“m" )
v:5 14 T 2 2
40030\,\,2 Jos 8m°y2Jm,

12

dQ?

l:int: EAMJ no

where Q%= —q?. Moreover, the same expression with the

j,U«:E fo_yﬂf, JE:E 2|?f_,yy’),5f' lower Iimi_t of 2inte2g]r§tion set to zero works With_ a power
f f accuracy(in me/mg) in the case of a heavy fermion in the
loop, mi>m,, .

whereQ; and|? are the electric charge and the third com-  The one-loop results foZ* yy* can be taken from the

ponent of weak isospin and we retain only the axial part ofclassic papers by Adl¢f9] and Rosenberf20]. In Ref.[10]

theZ-boson current(The weak vector current contribution in they were considerably simplified in the limit of small exter-

Fig. 3 vanishes by Furry's theorem. nal photon momentum. One then finds the following one-

The Z* yy* amplitudeT ,, is defined as loop expressions for invariant functiomg 1,
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daa(l-a) B. Hadronic corrections for quark triangles

1-loop_ 1-loop_ 3 2 . . .
Wi = 2wy —Ef: 417N Qg fo (1) Q2 me’ How good is the one-loop approximation fat andw+?
f (18) This question pertains to strong interaction effects for quark
loops. As characterized 2] this issue brings about a new

where the factoN; accounts for colors in the case of quarks. €/@ss of hadronic contributions to the muon anomalous mag-

We also independently calculatét,, using Schwinger Netic moment. . _
operator methods for the fermionic loop. It can be presented Let us first discuss perturbative corrections to fey*
as the polarization operator describing the mixing of two@mplitude atQ>m, due to gluon exchange in quark loops.
currents,j, andj>, but with the fermion propagators taken The longitudinal functiorw, is protected against these cor-
in the external field with the constant field strength. In thef€ctions by a nonrenormalization theoref2] for the

fixed point gauge“A,, =0 this propagator has the forfal] anoma!y. What about the transversal functinfr? If the aq
corrections were present far; then after summing over the

fermion generation, the leading term would become
as(Q)/Q*~1/(Q?log Q/Aqcp). According to Eq.(17) this
leads to terms iraiw which are parametrically enhanced by
log(logmz/Aqcp)-
It turns out, however, that theg corrections inwy are
) ] also absent aQ>m, due to the new nonrenormalization
Then straightforward calculations lead to the above expresheorem proved in Ref23]. The proof, stimulated by the
sions(18) for the invariant functionsvr, (¢?). present study, is based on preservation of the relatign
The corresponding two-loop contributions &5 were =, /2 beyond the one loop, i.e., in the presence of QCD
calculated in Refd.12,13. According to Eq(16) one needs interactions. This relation holds only for the specific kine-
to integrate using the/r | given in Eq.(18). Let us consider matics we consider in which the external photon momentum
the partwy [ f] which is due to the loop of a given fermion is vanishing.

1 1 ~
S(p): p_m + (pz_mz)zeQFp(S

i
pry°— Emﬂp‘s) Ys

+O(F?). (19

f with the masam; at the range of?>m? . The asymptotic Our above discussion means thagtcorrections are absent
behavior ofwy [f] at largeQ? is for bothw, andwsy in the chiral limitm,=0. When quarks
are heavy thexg corrections can appear but with a suppres-
w00 £1= 2wdloon £ sion factormg/Q? at Q>mg. In application toa%" it im-
plies that perturbativex; corrections are absent for light
3 ) 2m§ Q? 1 quarks. For heavy quarks, the logarithmic terms which are
=4IENQf| — — —In—+0| — | |. due toQ>m, are not renormalized but nonlogarithmic terms
Q2 Q4 mf2 QG q g

regulated byas(m,) could appear due to the range of mo-
(20 mentaQ~m, .
Next comes the question of nonperturbative corrections.
At large Q2 we can use the simpler forfi7) for integration.  For the heavy quarks these corrections, given by some power
It is clear then that for the individual fermion loop the inte- of AéCD/mé, are small. As discussed above, the perturbative
gral fdQ?w, is divergent. This reflects the fact that the strong interaction corrections governed by(m,) are also
theory is inconsistent unless the condition of anomaly cansmall for heavy quarks. In particular, this argument is appli-
cellation between leptons and quarks is fulfilled. This condi-cable to the third generation, b, andt loops, so the free
tion has the form quark computational results obtained in R¢f2,13,1§ are
very much under theoretical control.
5 5 The first and the second generations contain light quarks
Z I¥N:Qf=0 (21)  u,d,s for which the momentum range & spans the had-
ronic scale Aqcp Where nonperturbative effects are
o _ 5 _ 0(100%) and give unsuppressed contributionaft. This
within every generation. It means _that@%>mf the leading  roplem has been addressed in the literature and two ap-
terms %Q cancel out after summing over fermions and  hroaches were suggested. In RéB] effective quark masses
~(InQ¥)/Q" implying convergence foa,;" . for light quarks in one-loop expressions were introduced as a
Note the difference between tlvg. andwy parts in the  simple way to account for strong interactions. This mass
integral (17). The first one does not depend om, at all  plays the role of an infrared cutoff in the integral o\@rA
while for the second we have a cutoff factor Q%+ m2).  more realistic approach to the relevant hadronic dynamics
Therefore, thew; part is never divergent, instead individual was worked out in Refd.12,18. Unfortunately, some con-
fermion loops produce logt,/my) terms in aﬁW when my ceptual mistakes in applying the OREe are going to com-
<m;. On the other hand, the one-loop relater=w /2  ment on them in more detail in Sec. Il) Eed to incorrect
means the anomaly cancellation conditi@i) leads to can- results. This is immediately obvious in the ultraviolet sensi-
cellation of the leading @2 terms inwy as well. It results in  tivity of the results in Ref[18]: the dependence on i, is
the absence of logy, terms wherm;<m;, for all fermions in ~ not suppressed for the first and the second generations where
the given generation. all the masses are much less thag.

073006-5



CZARNECKI, MARCIANO, AND VAINSHTEIN PHYSICAL REVIEW D 67, 073006 (2003

For light quarks nonperturbative correctionszgy* are o G.m2
given by powers ofAéCD/Q2 while perturbative ones are t—#-o.%to.lx 104, (25
absent as we discussed above. Thus, in the rand@ of ™ 8?2

order m, the one-loop perturbative approach applies and
suppression of the dependencerndue to the cancellation
of the logm, terms foraiW between leptons and quarks in
the first two generations is guaranteed. In the case of the first generation, i.eandd quark loops
The actual interplay of nonperturbative effects for light together with the electron loop, the characteristic hadronic
quark contributions ta@5" represents an interesting picture Scales are provided by themeson massn, =770 MeV (for
very different for the longitudinalv, and transversaw,; the vector current and by the a; meson massm,,
parts. For the first generation, in the chiral limit(4=0) =1260 MeV, (for the transversal part of the axial current
nonperturbative effects are absentvip and the 102 one-  Therefore, forQ belowm,, only the electron loop contrib-
loop behavior in hadronic terms matches the massless pid#es towy.
pole. This is the 't Hooft matching conditiof24], as was On the other hand, the longitudinal part of the axial cur-
pointed out in[12,18. However, nonperturbative effects are rent is dominated by the meson whose mass is small. This
crucial forwy, where they are responsible for a transforma-dominance means that the one-loop expresgib®) for
tion of the 1Q? singularity at smalQ into p anda; meson W, [e,u,d] (but not forw[e,u,d]) works all the way down

D. First and second generations: logarithmic estimates

poles. up toQ~m,,. Thus, the contribution oft[e,u,d] in a3" is
The situation is similar but somewhat more cumbersomestrongly suppressed.
for the s quark in the second generation due to thel)u Considering Inl(rﬁ/mﬁ) as a large parameter we see that

anomaly(the ' meson should be included together with  with logarithmic accuracy the first generation gives &g
meson. Also chiral breaking effects due tog are more im-
portant. _ _ _ ) EW, Wl | my 2,0/€
Below we present a detailed discussion of perturbative A&, [e,u,d]=— 8.7 S dQwy
a m'u

and nonperturbative effects for different generations. 2
2 2
a G,m
C. Third generation effect for a5" e In—g =-1.08x10" 1,
™ 8772\/5 m,

As we discussed above the one-loop expressions in Eq.
(18) work very well for the third generation where both per- (26)
turbative and nonperturbative corrections due to strong inter-
actions are small. Substituting, + from Eqg. (18) into Eq.
(17) we get, for the sum of, b, andt contributions tca?;",
the following resulf12,13,18:

where we do not differentiate between), and My, -

The case of the second generatignc,s, is more in-
volved. The cancellation of fermion loops takes plac®at
2

. « G,m: [8 mtz 2 m% mtz 5 _>4m§; S0, we tak_emj,f 3097 MeV as an upper limit of
Aa "[7,b,t]=—— 5 zh—-5—=|Ih—= integration, andn,=1019 MeV plays the role af, for the
T 87323 mZ 9 m; m; 3 strange quark. In the interval betweer), andm;,,, the muon
) 5 ands quark loops should be included in the integration over
+4 Inﬁ+3 In—> § 22) Q. In the interval betweem, =547 MeV andm,, only the
mﬁ 3 3/ muon loop contributes tav; but we need to account for the
pseudo Goldstone nature of themeson. In contrast to the
where we neglected small corrections of ordef[/mfyb’tvz, first generation where the longitudinal part of the axial cur-
mfyb/mi, andm3/m¢ . Numerically, rent had the same quantum numbers astheneson, we

need to reexpress the axial current of the strange quark as a

2 combination of the S(B) singlet and octet,

G,m
A2 7,bt]= — = —~ Tk 30,3 ~8.21x 1071,
T 872\2
(23

_ 1 _ _
o _ _ j3ls]==s7,758= = 3(uy,ysu+dy,ysd+57,7s9)
which is properly included in the results of Eqg) and(8).
Following the discussion in Sec. Il B, we estimate a per- 1 _ . .
turbative uncertainty by adding terms of orderaf{mg)/ = + §(U‘y,,y5u+dy,,y5d— 2Sy,Y5S). (27
to logm,. It gives for the uncertainty

_a G, 16 ag(my) e as(Mp) (24 The singlet part associated witji does not contribute tev,
mgx2\2|3 " br belowm,, (which is of the same order as,) but the octet
part does, sai, d, ands loops should be taken with octet
whereC, and C,, are numbers of ordet1. Using ag(m;) weights. In the last range, betweem, and m,, only the
=0.11, we come to an estimate muon loop should be counted. Thus, we arrive at
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2 and (0,1) contribute. In other words, the contributing opera-
J ;"”dQZ(WL[,u,s] tors should have a pair of antisymmetric indic&3*#=
Mo - OF“. The amplitudeT ,, is a pseudotensor so it is conve-
m2 2 w[u] nient to choose {** to be a pseudotensor as well, which is
+WT[M,S])+J 2¢dQ2(§WL[S]+ 3 always possible using a convolution wie) ;. Moreover,
My the C-parity of © *# should be— 1. Retaining only the con-
tributing operators we can write the OPE expansion as

a G, m?
AWV u,s,c]= — —~

d
e ]+wL[u]+me])

. = Z {cH(@®)(-0?0},,+0,970,,-q,0°0},,)
+fm2”dQ2(WL[M]+WT[M])]

p +eL(09)0,070,,,.}. (31

o« G#mi Parametrizing the matrix elements as

T 8772\/5 ie

0|0 | y(k))=— — K;T*#, (32

m%/l// 5 m(Zﬁ 3] < | i |7( )> A2 i

x| 4 In—2+ §In—2+3 In—2
My My m where the constantg depend on the normalization point
=—5.64x10 1%, (28)  we get for the invariant functionsr |

To go beyond the logarithmic approximation, we must WT,L(q2)=2 CiT,L(qZ)Ki' (33)

account for higher powers of @7 for the light quarks. The
operator product expansigi®PE), which we next discuss,

provides a systematic approach for computing them. It leads 1. The leading d=2 operator
to refined estimates of hadronic effects. Operators are ordered by their canonical dimensidns
which define the inverse power dfin the OPE coefficients.
E. OPE considerations The leading operators have minimal dimensions. In our prob-

At large Euclideang? one can use the OPE for the !€m the leading operator dimensionds-2,
T-product of electromagnetic and axial currents, o o
R _ Off=——F*P=—— €% A;, (34)
i [ dxev T, 00i%0)) 4m” 4m
' where the operatoF# is the dual of the electromagnetic
=2 Chvar ... (@O, (29)  field strength, and the numerical factor is chosen in such a
! e way thatkg=1. Its OPE coefficients appear at one loop.
I Note that this operator corresponds to the unit operator in the
yvherg the local opera?to@i S .' are cohstructed from the product of the three currents in E{.4).
light fields. A normalization poinfw, which the operators In considering the third generation, the normalization
and coefficients implicitly depend on, separates short dispoint « can be chosen well below all the masses, , such

tances(accounted for in the coefficients) and large dis-  that the coefficients’., are given by a one-loop calculation,
tances(in matrix elements of;). The field is light if its

mass is less thap. In the problem under consideration this C-Fr'L[r,b,t]sz,L[r,b,t], (35

includes the electromagnetic field of the soft photon which

can enter local operators in the form of its gauge invarianwherew, [ 7,b,t] are given by Eq(18) with summation
field strengthF ,z=d,Az—dzA,. It also includes gluonic only overf=r,b,t. Indeed, taking matrix element &f,, we
fields as well as lepton and quark fieldsith masses less are back to the one-loop expression for the amplitlige.

thanu). Perturbative corrections are governeddaym,), nonpertur-
The amplitudeT ,, is given by the matrix element df,,,, bative ones are of 0rde1°(AQCD/m|D)4 (due to the operator
between the photon and vacuum states, FGG of dimension 6, see the discussion below

Such a choice of the normalization point is not possible
A i ar .. a for the light quarksu,d,s: to apply the perturbative analysis
Tuv:<O|Tuv|7(k)>:2i Cluval---ai(Q)<0|Oi E (k). to OPE coefficients we should chooge>Aqcp, i.€e., the
(30) normalization poinfu is certainly much higher than the light
quark masses. On the other hand, fQB>Aqcp We can
Since our approximation retains only terms linearkjthe  chooseu<Q. For this range\ ocp<u<Q we can use per-
matrix elements are linear if,,=k,e,—k,e,. This means turbation theory to calculate the OPE coefficients. In particu-
that only O, transforming under Lorentz rotations as (1,0) lar, for the leading operat@B4) the OPE coefficients?,_[f]
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in the chiral limitm;=0 are given by the one-loop expres- turbatively exact reIationQFr[mf:O]=cf[mf=0]. Nonper-
sions forwr ([m¢=0] [see Eq(20) atm;=0]. An interest-  turbatively this relation is broken at the level 8f-y/Q*
ing point here refers to dependence @rfor c?L[mf:O]. terms as we will see from the OPE analysis.
This dependence is absent not only at the simple level of \We can also account for correctionscfQL due to fermion
logarithmic corrections but also at the level of power correcmasses which break the chiral symmetry. They can be read
tions in u?/ Q2. off Eq. (20) for wr . The corrections are of the second order

To demonstrate this let us consider the one-loop calculain m; but logarithmically sensitive to the normalization point
tion of T ,, in the background field method. Using the propa- « which replacesn; under the logarithm in Eq20) when

f d*p ci[f1=2ck[f]= o In—+0O

gator(lglfyat m=0 and doing the spinorial trace we come to we translate ta:?L,
m?)]
————[(p+9).pF,,+(p+0q),pF,.], (36) Q* u? QY]
p*(p+q) (38)

the following expression:
where we have omitted an unimportant overall factor. Thesummation ovef, say for the first generatiogu,d, leads to
integral over Euclidean virtual momentumis well defined  the lepton-quark cancellation of the leading@1/terms and

both in infrared and in ultraviolet domairithe logarithmic e must consider operators of higher dimensions.
divergence at large drops out because of antisymmetry of

F..). It means that the dominant contribution comes from 2. Operators of higher dimension
the range ofp~q, since there is no other scale. A simple
integration results in

ani[ |zt o

The next operators, by dimension, are thoself3

— 1 _
1 = = O =—if o™ Pysf==ePrqi0,". (39)
?[quq”Fpﬁqu”FpM]- (37) f 572 17ys

] ) ] ) Chirality arguments show that their OPE coefficiectson-
To this one has to add the loop with the massive Pauli-Vilarggin massm; as a factor, so by dimensionfem;/Q* To

regulators which is simple to calculate using the propagatogaicylate these coefficients it is sufficient to consider tree

(19). This contribution adds a polynomial termF ,, to the  diagrams of the Compton scattering type,

expression37) that restores the transversality for the elec-

tromagnetic current,, and leads to the result@0) for wr

atm;=0. ¢/ =2¢ct
The calculation above proves that up to power accuracy

the OPE coefficients’; [ m;=0]=wr [m;=0]. The por-

tion of the integral(36) which comes from the ranggp|

< u constitutes a correction of ordgr’/ Q2. However, even

this correction is absent if the symmetry features of thet

817Qmy
ZfQ—4. (40)
Taking matrix elements between the soft photon and vacuum
states we produce the following terms in the invariant func-
ionswr, (g?):

theory are preserved. Indeed, the polynomial paFEM 8
which came from the regulator loop is due to arbitrary short A=3)y =2A[@=3)y = — E I?Qfmfxf. (42)
distances so it does not dependormat all. The conservation Q* T

of the electromagnetic current fixes the coefficient between

the polynomial regulator part and the dispersive {a). If we neglect effects of strong interactions, it is simple to
Separating the part of the integk&6) with |p|<u we break  calculatex; in one loop with logarithmic accuracy using,
the conservation. Moreover, due to chiral symmetry there ar€.9., the propagatdd9) in the external field and the normal-
no other kinds of corrections, perturbative or nonperturbaization pointx as the UV regulator,

tive, to the one-loop result for the longitudinal coefficient
cf[mfZO]. That property is completely valid when we deal
with the flavor nonsinglet axial current, likeiy,ysu
—dv,ysd in the first generation, which has no gluoni¢1l
anomaly. For the invariant functiow [ m;=0] that feature  Substituting thisk; in Eq. (41) we observe the full match
follows from the Adler-Bardeen theorerf22] and the with the 1Q* term in Eq.(38), together thed=2 andd
't Hooft matching conditior{24]. In terms of the OPE coef- =3 operators reproduce the one-loap 1 in Eq. (20).

/‘LZ
Kfz_Qfomf In_2 (42)
m;

ficients it translates in the equality off[m;=0] and Note that this match is for the terms of second order in
w, [m;=0] because all other OPE coefficients vanisimat mass. In QCD due to spontaneous breaking of chiral symme-
=0 for the longitudinal part. try the matrix elements of quark operatd®9) are not van-

For the transversal coefficieof[ m;=0] the situation is  ishing atm,=0, instead they are proportional to the quark
more subtle. As shown if23] the symmetry of the disper- condensate (qq)o=— (240 MeV)®. The operators (39)
sive part(37) under thew, v permutation leads to the per- played an important role in the analysis by loffe and Smilga
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q q q q Note that our consideration of four-fermion operators is
o similar to Ref.[18]. Note also that the operat@g contrib-
v 665666 Z 0 Z utes only to the transversal functin- —consistent with the
@6 absence of nonperturbative correctionswp in the chiral
limit. Moreover, in the chiral limit, thed=6 operators are

next to leading after the leadirdy=2 operator, showing that

FIG. 4. Diagrams for four-fermion operat@. parametrically the leading nonperturbative corrections are of
order Agep/ Q.
of nucleon magnetic moments with QCD sum ru[@§]. The matrix element of Eq47) between the vacuum and
They determined by a sum rule fit the quantity the photon states can be found assuming factorization in
terms of the quark condensatgq), and the magnetic sus-
_ Kq 1 43) ceptibility x4 given in Eq.(45). It results in the following

4W2Qq<EQ>o B (35050 MeV)? piece inwy for the light quarks in the firsty,d) and second
() generations,
dubbed as the quark condensate magnetic susceptibility.
Actually, the OPE analysis together with the pion domi- A=8w [u,d]=—3AE=Ow[s]

nance in the longitudinal part leads to a relation for magnetic

susceptibility similar to the Gell-Mann—Oakes—Renner 32mas (AQ)3 (0.71 GeV*
(GMOR) relation for the pion masp26]. This relation de- == 906 F2 sy -
rived in Ref.[23] has the form Q m Q
2 (49)
(my+mg) kg=—m;N:Qq. (44)

We can use this as an estimate for th@%terms inwy
neglecting the=G G operators which enter with smaller co-
efficients (they appear in one loop whil®g is due to tree
level diagrams We also neglect the anomalous dimension of
Og. However, we have in mind that this anomalous dimen-
(45) sion is rather large and positive and considerably compen-

_ N¢ __ 1 sates the running af¢ which therefore can be taken close to

4772':37 (335 MeW)?’ 1 for estimates.

Summarizing the consequences of OPE foruhd, ands

Although this value ofy is in a good agreement with the quark loops in the chiral limit we get
QCD sum rule fit(43) its magnitude is about two times
higher than results of other approaches, &% for refer- 2
ences and discussion. w, [u,d —o=—3W,[S] _o= —,

Let us go further by operator dimensions. Nothing new [ lm, g0 L3I0 oz
appears fod=4: all operators of dimension 4 are reducible
to thed=3 operators due to the following relation:

The GMOR relatiorF2m? = — (m,+mg){qq), allows us to
rewrite (44) as

Kq=—4m2Qq(aq)oX,

X=

WT[U,d]mu’d=0= - 3WT|:5:|mS=0

f(D,y,— D,y yvsf=—mifo,, yst. (46) 1 (0.71 GeV* ( 1 )
=—-——""40| —=]|. 50
For d=5 we have operator§fF*# and f ysfF*# (with Q? Q° Q® 50
factorsm; again and atd= 6 there are many operators of the

type (foPysf)(ff), F*¥TrG,,G*", and so on. Thesd ~ The longitudinal part given by the leadirdg=2 operator
=5,6 operators produceQf terms inT,,, . A particular ex- IEM,, has neither perturbativeg corrections nor nonperturba-
ample is the following four-fermion operator which appearstive ones, and the pole Q% matches the massless pion. So

due to diagrams in Fig. 4: the cancellation ofw"® and w¢ in the first generation is
B — a B3 exact in the chiral limitm, 4=m,=0.
08" =qy*ysQt?qay”1°t°q— (a < B), (47 As we discussed above the leading operator contribution

! o to the transversal part has no perturbative corrections either
where the quark fieldy has color and flavor indices, the [23]: however, nonperturbative corrections are present. Their
matrices of color generators’, a=1,...,8 act oncolor  gjgna| in the chiral limit is very clean: the lowest masses in
indices, and the weak isospifiand electric charg@ are the e yector and axial vector channels are nonvanishing in con-
diagonal matm_:es in the fIa\_/or space_._Thls operator enters iast with the pion in the longitudinal part. In Sec. Il F be-
the OPE(30) with the following coefficients: low we present a resonance model fef[u,d] consistent

with the OPE constraints. Thus, there is no complete cancel-
cf=— MLS(Q) cb=0. (48) lation in the sum ofv%9 andw¢ although this sum decreases
T Q as 10Q° at largeQ.
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3. Comparison with the OPE analysis in Ref. [18] bilocal term containingl ,, vanishes and the only surviving
It is convenient at this point to discuss a comparison ofoperator is the unit operator in the first term.
our approach with the analysis of the d quark loops of All the OPE subtleties discussed above should not screen

Ref.[18]. In essence, it is claimed there that the leading largé conceptually very simple situation: the short distance be-

Q behavior of the transversal pasi;[u,d] (andw+[s] as havior given by free quark loops should not be changed in
well) is QCD by large distance effects.

1 F. First generation
wrlu,d]ec— (51 I
Qs We are now well prepared to calculate the contribution of

the first generation ta'jw with an accurate account of had-
in the chiral limit in contrast with the @ perturbative be- ronic effects. The invariant functions | for the first gen-
havior. As a result, the ©@? part ofwy[u,d] is absent while eration is the sum ofvr  [e], wr [u], andwy, [d]. For the
the 1Q? part of wr[e] is present, so the quark-lepton can- electron
cellation is destroyed and, consequently, spuriousmpg
terms appear im," .

To pinpoint the origin for such a dramatic difference be-

tween our approaches let us notice first thaf18] the au-

thors considefT ,,, , the vacuum average of the product of \, hare we neglected the electron mass. Expansions at large
three currents defined in E@L4), as a primary object. In this 82 in the chiral limit forwy [u,d] are given in Eq(50).

approach they do not have the electromagnetic field enterin adronic effects modifyv; [u,d]. Modifications are mini-

into local operators and our leading operakqy; does not  ma| for the longitudinal functiorw,[u,d]: the position of

appear. However, they have to consider the OPE for thene pole is shifted tan? due to the explicit breaking of the
product of three currents instead of two. Ff,, one can  chjral symmetry by quark massés,

derive the following expansion:

2
w [e]=2wq[e]=— 3' (53

Tun =01 ey (AKIOT(0) wlud= e 4

w

To find the contribution ofv, [u,d] to at" one needs to use
the more accurate E¢16), rather than Eq(17), because the
integral is dominated by momen@~ m,_. comparable with
The first part, which contains the local operators, accounts,,,

for emission of the soft photon from short distances. The

second bilocal part, which contains the operétgg defined . a G Mmi me 8 41

in Eq. (29) and the soft momentum currepf, accounts for ~ Aa,[e,u,d]=—— 20 2In—+3z+ §j da(l+a)

the soft photon emission from large distances. Our relation 872 My 0

(30) conveniently includes both parts in the local form: the m?2

first one is due to operator®; containing the electromag- xIn A+4—=

netic field strengthF .z explicitly and the second is due to me

the operators withouE ,;. Moreover, our leading operator

INZQB corresponds to the unit operator in the first, local, part

on the right-hand sidéRHS) of Eq. (52). 3 m 9
Once we have established this correspondence it is simple

to see what is missing in the analysis[dB]: they did not  \yhereA=a+ (1— «)2(m?/m2). Numerically it gives

account for the local part in E€52). It is the unit operator in me

+i f dy e MT{T,(0)j,(}H0). (52

1
f da(1—a)?InA
0

this part Faﬁ in our formalism) which gives the leading o G .m?
1/Q? contribution and its coefficient follows from the pertur- AaL[e.’u,d]: __—F® o5g=_07x10" 1L (56)
bative triangle. This corresponds to soft photon emission g 7 8m?\2
from short distances as we discussed above.
Note that the unit operator in the local part of E§2) is The transversal functiom{[u,d] can be modeled as a

leading for both longitudinal and transversal structures in théinear combination of two pole terms: one is due to the
amplitudeT ,,,, so its omission should result in an error for p(770) and »(782) vector mesons, another due to the
the longitudinal contribution as well. This did not happen ina;(1260) axial vector meson,

[18] because they did not apply the OPE analysis to the

longitudinal part of the amplitude, instead fixing it by the

anomaly. A comparison with the expansit?) is particu- Lt is just this shift which allows one to derij@3] the expression
larly simple for the longitudinal part ah;=0: the second in Eq. (44) by comparison of the @* terms with the OPE.
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intervals 500—-1000 MeV and 900-2000 MeV. We found that

2 2
ms — 2_ 2
wolu,d]= 3 m M, My (57) deviations from the resulB0) are within 10%, i.e., of order
SoMa| Q7+mZ QP+mz of =0.2x10 . This high level of stability is related to the

fact that the main contribution ma;[e,u,d] in Eq. (58

The residues in this expression are fixed by two conditions atomes from the unambiguous logarithmic ternmﬁ{(rﬁ); it

large Q which follow from the OPE expressidi0) plus the  gives —1.08x 10" ! out of —1.32x 10" %

d=3 terms(41) breaking chiral symmetry. The first condi- So, in total, this analysis increase%w by 2x 10" ! rela-

tion is on the coefficient of the leadingQ? term, the second  tive to the free quark calculation and significantly improves

condition is for the coefficient of Q*. The term 1Q°%in Eq.  its reliability.

(50) allows for an extra test of the model. The expression

(57) gives —(0.96 GeVf to be compared with

—(0.71 GeVY in the OPE-based equatidf0). Agreement G. Second generation

is not extremely good but the right sign and order of magni- The second generation contains both lightnd heavyc

tude are encouraging. Since the OPB%kstimate is very quarks which should be treated differently. For the light

approximate, we use E@57) for numerical estimates. quark we use the approach similar to the case,dfquarks.
For the integral overQ defining the contribution of For the longitudinal functionw,[s], as it was explained

wy[u,d], we can use the simpler expressid?) neglecting  apove in Sec. Ill D, one must include both singlet(960),

mi/ mf, corrections, and octet,(550), pseudoscalar mesons,

Aa'[eu,d]=— > G, (s]=— 2| 2 ! 62)
u,d]j=—— w[s]=—= - .
2 7 822 ] PN
m:  omZ M 3 | |
X In—z— ﬁln—er =, For the transversal function the model is
m2 —m?> m? 2
“ a; P P
2 2
(58) 1 1 mi, =M, mi—m?

which gives numerically wis]=-3 mE —m2 | Q2+ m? - QP me , (63

2

AaT[e,u,d]=—E Cully -4.88=—1.32x10 1L, : :
2 7 872\2 where ¢(1019) andf,(1426) are isoscalar vector and axial

(590  vector mesons relevant to tee channel. Integrating/, [ s]
) ) ) W and adding the known expression for theuark and muon
Overall, the first generation contributesaf contribution we get for the second generation

a G,m?
AaiMeud]=—- = —-E.7.46=-2.02<10 Y,

2

2 2
™ 87*\2 AatY sc]z—z—G“m“ 2 e 2Ty
G0 ST e B3 e, B me
which is to be compared with the constituent quark model 5 5 2 ) 5
result[13], 1 md,—m,,I my, | ms I my,
+§ﬁ n—2+4 n—2+3 n—2
2 8 mg —my My my, m
Aag'e,u,d] & Sulllfjy M 17 1 ’
a_ |eu, =—— n—-—+—+
. S wga2 2| memg 2 g’ 56 (64)
=—4.0x10 % (61) 9 9
The refined result is about 1/2 of the constituent quark model
value. It represents our main phenomenological finding. Thélumerically it constitutegat m.=1.5 GeV)
primary reason for the shift is a deeper extension into the
infrared due to quark-hadron duality for the longitudinal
functionw/ [u,d]. It leads to a stronger quark-lepton cancel- EW a G, i .
lation for w,—the effect noted in Ref.18]. Aa,"pscl=—— 8722 17.1=—4.63x<10 ™
What is the accuracy of the res(f0)? Most of the model (65)

dependence is related to the description of the transversal
function wy[u,d]. For the longitudinal contribution, the
analysis is rather solid. To get an idea of the accuracy, w&his numerical value practically coincides with the free
consider variations when the and a; masses are in the quark calculatiorf13],
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(P2) (Ps) (Pr)

j ¢ @2}{% (@) (b)

(R (Fy) (Fy) FIG. 6. Renormalization of four-fermion operators: annihilation
diagrams.
FIG. 5. Mixing of four-fermion operator¥ ¢, A ¢ with H. The
labeling of diagrams follows Ref31]. An interesting subtle feature that enters this RG analysis
is the mixing of operators. We are interested in the OPE
AaZ " u,C,S]iee quarks coefficient of the dimension 5 dipole operajorr,, zuF ~.
8 ) Leading logarithms contribute at the two-loop level due to
__“ Gu m In Me _c 4_7_ Si QED corrections to the dipole operatGts anomalous di-
T 8772\/— 2 g 6 9 mension as well as from two-loop mixing between the di-

u pole operator andl=6, four-fermion operators. A careful
=—4.65<10 . (66)  treatment of their mixing is important for the RG analysis.
T <t 1 N q First s th Before addressing the details@f" , it is useful to recall
wo reasons exist for such a good agreement. First IS th, o 5 re|ated QCD study was carried out about 25 years ago
smallne;s of the strange qqark cqntr|but|on—|t§ electri 27,29 for the case of weak radiative decays which involve
charge is smaller—so, hadronic detalls are not so importang, vor-changing gluomagnetic and electromagnetic dipole
Second is that the effect of cancellation between leptons anggerators Indeed, there QCD effects are very large and a RG
hadrons in the longitudinal invariant functiom_ is much 55\ js is essential. Later, because of the phenomenological
less pronounced than in the first generation because of Iargﬁhportance ofb—sy, interest in such transition dipole op-
ma%s]es ofy Iar_ld 7 - . K i erators increased, generating many studies and some contro-
ekresuélsGmoref sensitive to thzequard paframeters. versies involving subtle issues regarding renormalization
We4t§28 i(.)‘ll e_V or |tsr,] massblnséfgalo_cil 1,0'\5 v;/]e 9€%cheme dependenceyg definition, operator set complete-
( )X , 1€, a change by - Another  oqs etc. A brlef dlscussmn of those issues will provide
source of the QCD corrections for the heavy quarks is per-

.guidance for ouraﬂ three-loop analysis.
trbative gluon exchanges in the quark triangles. This esti To discuss the issues that confronted radiative quark de-
mation is similar to to one we did in Sec. Ill C; we substitute

o b m)/ cays, we consider the two-loop Feynman diagrams in Fig. 5.
gme by ag(me)/ ., These graphs describe mixing of the four-fermion operators,

N G#mi a(my) designated by, with the dipole operator. Originallj28]

- ) ¢ ~0.2x10° 1t (67) only P, ;andF, 3 type diagrams were accounted fB% and
T 872\2 ™ F-, were later calculated in Reff29,3( (those authors also
accounted for one-loop mixing between gluomagnetic and
where we usedrg(m;)~0.3. electromagnetic dipole operatprdlumerically, they did not

We conclude that the uncertalnty comlng from the secondause much of an effect: about 7% in the mixing coeffi-
generation is small, about 0.3X 10", and related mainly cients. The smallness &,, F- is related to the smallness
to charm quark parameters Overall, the total hadronic loopf the internal fermion loop entering as a subgraph, which is

uncertainties mM are well accounted for by an error of basically a part of the photon vacuum polarization operator

+1x10 1, (it is also nonleading in a I, expansioh The smallness of
this fermion loop was used both i28] and[29,30 to limit
IV. LEADING LOGARITHMS: RENORMALIZATION the number of four-fermion operators considered to a re-
GROUP ANALYSIS duced set. The full setoriginally introduced in[28]) con-

tains penguin operators with right-handed fermions that arise

It was pointed out irf 14] that once the Ieadmg logarithm from left-handed ones due to the same fermion loop, see Fig.
short-distance two-loop corrections ta:" of order 6. So, their coefficients are also correspondingly small and
In (my/m,) are completely known, a renormallzation group could be neglected in early studies.
(RG) analysis can provide all leading logarithm terms of the  The full operator basis was considered in later publica-
form [« In(my/m,)]", n=2,3,...,coming fromn+1 loop  tions and we refer tg31] for a discussion of results and
effects. Such an analysis was carried out in IRES] for the  references to the literature. There, the renormalization
leading logarithm three-loop contribution. Since we havescheme dependence and definitionygfwere shown to lead
now clarified the short-distance two-loop behawoaﬁ‘l’" it  to different four-fermion operators. As explained[Bi], to
is appropriate for us to revisit the issue of higher orders ananake the definition unambiguous, one has to redefine the
refine the previous study. four-fermion operators by adding to them dipole operators
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with appropriate coefficients. Those coefficients are fixed byAs we discuss below, it just reflects the anomalous dimen-
the requirement that matrix elements of the redefined operasion of the corresponding dipole operator. In the caa(ﬁ‘ﬁﬁ‘

tors between fermion and fermion pltysstates must vanish. it is the only source of the logarithm at two loops.

In that way, consistency among different calculational ap- For a&z) the situation is more complicated. In particular,

proaches was restoréd. Feynman diagrams without closed fermion loops give
Here, we note that the scheme independence can be ut0,14

derstood in a simpler way. The basic point is that one-loop

subgraphs for the two-loop diagrams in Fig. 5 are finite and aELZ) (2-loop; no ferm. loopk |

unambiguously fixed by the use of gauge Ward identities. A

good example is the anomalous fermion triangle involving Gﬂmi a my|13 , 23 )

one axial-vector and two vector vertices where it is well =m' ;'nm—[g(gﬁ) 5 (9%
known that the anomaly does not depend on the definition of m #

vs. The logarithmic dependence on the normalization point o m Gm a m
(scale which comes about due to the second loop integration =—4—In _Za(z)(1-|oop)+ KR T n=%
is then clearly scheme independent. Below, we use this ap- mom, # gn2\2 ™ m,
proach, originating from Ref.28], to calculate all two-loop 47 11

mixing. The results are consistent with those in R&1] and x| — —(gk)2— =(gt)?|. (72)
with the explicit two-loop leading logarithm calculations for 9 9

aEW given in Sec. Il. These consistencies provide a useful _ _

check on the analysis. In the second line we separated out the piece due to the
Our calculation of the two- and three-loop leading logs@nomalous dimension. . .

differ, however, from the results ifi5]. The disagreement _ We also have to add diagrams with closed fermion loops.

can be traced to differences in the one- and two-loop anomathe diagrams with the muon loops give

lous dimension matrix elements. Details are given below. 7

a{p)(2-loop; muon loops

A. One- and two-loop results

G.m, a m o A
As we discussed in Sec. Il the electroweak contribution to =—— = —In—| =6N,(ga) = gN.(9)"|,
i 8n2\2 ™ m, 9
the muon magnetic anomaly,,=(g,,—2)/2, can be repre-
sented as a sum ovd®y, Z, and Higgs bosons. In the one- (72

loop results the Higgs contribution is negligible and
a5"(1-loop) given in Eq.(2) is a sum ofal(1-loop) and ~ Where we introduced the factdt, equal to 1 for the muon

a‘fLZ)(l_mop), loop just to distinguish between contributions with and with-
"’ out closed fermion loops. This generalizes calculations in
G m 10 [10,12,13 by including the second term proportional to
a("(1-loop = ”2 £.—, (g4)? in Eq.(72). This term vanishes af,=1/4. In Eq.(72)
8n?\2 3 . ) N2 o .
the first term proportional togi)“ arises from the induced
) (68) coupling of aZ with two photons via triangle diagrams, see
a®(1-loop = G,m, 1_ §( #)2+1( )2 the diagram¢=,, F; in Fig. 5. The second term, from the
© b 8m2./2 3 9a 3 vl vector coupling, corresponds to theZ mixing via a muon

loop, see the diagram; in Fig. 5.
where we denote the axial-vector and vector couplingg of ~ Fermions other than muons contribute only via closed
to the muon bygh andg{/. In the standard model, loops in two-loop order. Including their effect leads to a gen-
eralization of Eq(72) to
gh=210=—1, g{=21>-4Q,s{,=4s3—1, (69
al?) (2-loop; ferm. loops
andg{; is numerically very small. )
At the two-loop level electromagnetic corrections are en- B G.m, « 2 | mz
hanced by logn,/m,. Fora{"’, the logarithmic part of the Tent2 T4 Ny ,m,}
full two-loop result[14] is particularly simple,

4
w a m X| —BgAGANIQf + g OUOUNIQr|, (73
a, (2-Ioop),_,_=—4;|nm—ﬂaﬂ (1-loop). (70

where we introduced the notation
2We disagree, however, with the statemenf3d] about scheme {m¢,m t=maxme,m,}. (74
dependence in case of the reduced set of four-fermion operators. In

our view it is again related to the definition of four-fermion opera- Moreover,Q; is the electric charge of the fermioN;=1 for
tors in the full set. leptons, andN;=N;= 3 for quarks, and
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(79 f__f
Y Y
u u

gA=217, gu=21{-4s{Q;.

It is implied thatm;<m; in Eq. (73); so, it does not include
the top quark contribution which is part of the nonlogarith-
mic, NLL, terms.

The closed loop contributiofv3) and the last term in the
second line of Eq(71) are due to the two-loop mixing with
four-fermion operators to be discussed below. Overall, the
two-loop result for the sum c&" anda(?) is [the form is
slightly different than Eq(7) in Sec. Il, but equivalerjt

FIG. 7. Contribution ta5" from operators inC ;" ®(my,). Both
fermionsf andf’ must be charged so leptons do not contribute.

where the second sum extends owbs6 four-fermion
operators’. The observable value ody," is related to the

G,m, «f [215 31 m - o :
(W.2) (o _ e T ST S g2 In—2 coefficienth at the low normalization poink=m,,
aM (2 IOOp)LL 8772\/5 77[ |: 9 9 (gV) In mlu P n'& I
m2
EW M
+ 6 fN 2 aM =Th(mﬂ) (79)
f=u.d,s,c,7,b 9a fo 87 \/E
4 The relation(79) implies that only the operatdt contributes
T GOUNIQy In— (76)  to the matrix element$y|Lex(m,)|wy)—a condition that

we discussed above.

The one-loop result$68) refer to the range of virtual
momenta of ordem,, andm;, thus fixing the value oh at
the high normalization point,

where we neglected the mass difference betwéeand Z
[the Infm;/m) terms are put into NLL contributionsThe
first term in Eq.(76) accounts for diagrams with muons and
electrons and in the second term the sum is over all other
fermions except the top. The dependences@menters via
g%, g!,. Our Eq.(76) differs somewhat from Eq(25) in
[15], as explained at the end of Sec. IVC.

10
Ny = 50 (M) =~ 2 (0f)%+ 5 (66"

(80)

We choose the basis for the four-fermion operators defin-
ing them as
B. Effective Lagrangian

. . 1 _
In the effective Lagrangian, represented as a sum over =ty vsfgy,ys0. (81)
local operators normalized at a pojat the anomalous mag- 2

netic moment of the fermiohis associated with the operator
Faﬁf(r“ﬂf of dimension 5. Because of a chirality flip it en-
ters with a coefficient proportional to the fermion mass,
and it is convenient to includen; in the definition of the
operator,

1—
OV;fgzif 'yyfg?’vgv OA;fg:

The d=6 part of the effective Lagrangian can be written as

d=6 M
L£975() zﬁf FE_ o

¢ =c) % u

82
m,(u) (82

H(u)=— W[eFaﬁMU Puly, )+ cw)

(),

whereOr.¢y= Or.q1; SO, the OPE coefficients 9 are sym-
metric under permutation df and g. The tree-levelZ ex-
change gives the initial data for the OPE coefficients,

(77

where the electric charge=+4ma is another factor in-
cluded in the operator definition. Both the masg and the
electric chargee are u-dependent quantities in EGZ7) but
the running of the electric chargeis canceled by the wave
function renormalization of the electromagnetic strength ten-
sorF,z. The produceF,, is RG invariant.

cdmy)=glg} (I'=V,A), (83)

where the vector and axial-vector couphrgi;;A are givenin

: ! - Eq.(75).
Th_e_ effective Lagranglan for flavor and parity preserving In the case ofW exchange the tree-level effective La-
transitions can be written as grangian is

G )
Le(p)=— WME h(u)HmHZ c'(u)@(u)],

(78)

3We omit here thed=5 dipole operators for other fermions as
well as chromomagnetic dipole operators for quarks, since they do
not mix with H.
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% % ﬂﬁr FIG. 8. Anomalous dimension of the dipole
§ § g operatorH.

(@) (b) {)
e G, — _ Hereyy, Br.1g, and 7r' f, , form the matrix of anomalous
w o (My)=— E[UYV(l— ¥s)ddy,(1—ys)u dimensions for operatois and(’)p,fg That matrix is “block
triangular”: H does not mix with thel=6 operators but the
+(u—c,d—s)], (84) operators(’)F do mix with H. The Br.¢4 correspond to these

mixings? The 0 functions in the RHS count only active fer-
where we neglect Cabibbo-Kobayashi-Maskaw@KM)  mions at the givernu, with m¢y denoting the maximal fer-
mixing. Such operators contribute toonly if all fermions ~ mion mass in the operat@;,
are charged, so we can omit the leptonic gade Fig. 7.
One can use the Fierz transformation to put the operator in Mig={M¢, Mg} =maxms,mg}. (90)

the following form: . 1 9 3 .
Perturbativelyh=h® +h)+h()+ ... where the raised

index denotes the number of loops. In one-loop approxima-

uy"(1=ys)ddy,(1=ys)u tion hW(u)=h(M) whereh(M) is given in Eq.(80). In

1— _ two-loop order one can neglect in the RHS of E§7) the
=N (1—vys)udy,(1—-ys)d running ofe, ¢y, andc'*'9, and get
L qra _ a(M) M
+2ut®y"(1—ys)udt®y,(1-y5)d, (85 h(z)(,u)=? ,th(M)m;

wheret? are matrices of the color generators. The part with

t® does not contribute to the magnetic moméut to gluon i M
: . . . ¢l f9(M)In . 91
corrections which we do not consider heasd neither does E Brirg! 1AM {m, Mg} ®D
the parity breaking part, 363\76 reduces to the forng82)
with the initial data Below we will computeyy and Br.¢q and then verify as a
check that Eq(91) matches the explicit two-loop calcula-
ud 1 tions. We will then use the RG equatio(&/)—(89) to deter-
cony (Mw) = ciiy (my)=- (F=V,A). (86  mineh in three loops.
C
There are similar operators and coefficients tiod substi- C. Anomalous dimensions and mixing of effective operators
tuted byC s. These are the Only Operators that contribute to Fn‘st consider the anomalous dn’nensm of the d|p0|e
three loop leading logarithm mixing in th& sector. operato. It is conveniently computed in the Landau gauge,
The renormalization grougpRG) equations which allow with a photon propagato,Li(gw_kﬂky/kZ)/kZ' since in
us to calculate the running ®f(w) are this gauge there are no logsZrfactors. Thusyy, is given by
the sum of three diagrams in Fig. 8 minus anomalous dimen-
dh(p) _ a(u) sion y,=3 of the massm,(u«) included into the definition
du 2w (77) of H. The result is
yy=—1-2-2-3=-8, (92

X[ () + 2 Brirge” () (i —myg) |,

e where the numbers correspond to diagramsb, ¢, and

@7 (= ym).

More involved two-loop calculations are needed to deter-

dcO(u)  a(w) mine the mixingspr ¢, of the four-operator¢81) with H.
dpu 2 The relevant diagrams are shown in Fig. 5. It is clear that the

operatorOr.;4 mixes withH only when at least one of its
5 2 yr ifg F’;f’g’(M)a(M_mf’g ) fermionic indices coincides with the muonic one.

11 rC ')y . : . .
g ri'g Let us start with operato®,. ,; with f+ u. It is the dia-

88) gramF- (plus, of course, a similar diagram where the virtual

2
da(,u) =— ('u E biO(u—myg), bi=— foQ? “Note that our definition of anomalous dimensions differs from

# du 3 ' that in Refs[31,15 by a factor (- 1/2). Also the normalization of
(89)  four-fermion operators withi # g is different.

073006-15



CZARNECKI, MARCIANO, AND VAINSHTEIN PHYSICAL REVIEW D 67, 073006 (2003

photon is coupled to the incoming muon Jeghich defines We can transform th® diagrams, which are due to pair-
Bv: .t - The fermion loop in this diagrartwhich is the same ing of fermions from different currents, inté-type diagrams
as in the photon polarization opergt@roduces with closed fermionic loops using Fierz transformations,
2 M2 _ _ 1— _
eN;Qs In—, (93 ¢17V¢2¢37V¢4:El/fl?’vl/Mlﬂs%lﬂz
1272 Q?

. . . 1 _

whereQ is the Euclidean momentum of the virtual photon. +§llf17”751//4l/f37n’5¢2

The Q? factor in Eq.(93) cancels the photon propagator and
for the second loop integration we get an expression similar — = — —
to the one-looZ boson exchange with the pure vector cou- —haisat Y ysasysia,
pling, gy=1, ga=0, up to the substitution . (100
m2 eN,Q, M2 by 7’5‘/’2903%7’5'//425%7 bahzy, o
> 2 = 5 In - (94)
mz+Q 241 Q

1— _
ULy sy, s
The In (M%Q?) can be represented as

MZ—JMZ dvi2 + ribaibsiba— pn ysabsYsia.

W2 M2+0Q2? (99) We see that th€ diagrams can be reduced to already calcu-
latedF onesffirst two terms in the rhs of Eq$100] and to

with the rangeu?<Q?<M?2. That allows us to get the two- diagrams of theé~, 3 type where instead of products of axial-

loop result from the one-loop one. From Eg0) we see that  Vvector currents in the four-fermion operators we have scalar

h(?=1/3 atgy=1, g,=0. Thus, the diagrarf; produce  Or pseudoscalar ones.
Taken separately, the fermion triangles with the scalar and

e?N;Q; 1JMzd|V|2 2 eN{Q; M? pseudoscalar vertices contain logarithms and produce double

~ =3 In— (96) logarithms in the anomalous magnetic moment. But for the
2472 3Ju2 M2 9 167% WP g g

difference of scalar and pseudoscalar operators entering Egs.
(100 these double logarithm terms cancel. What remains in

in h@. 1t gives for By. . i o e
g Bviut this combination can be presented as a piece in the pseudo-

4 scalar triangle of the form
ﬁv;ngNfo, f#u, (97)
m ~
. . ———U,Fou- (101
where we accounted for another diagram similaFto 2m%q?

For the operatoO,. s with f# w its mixing with H is
given by the diagram&, andF5. The fermion loop in this The second loop integration is then simple.
case is the anomalous triangle with one axial-vector and two Altogether, it results in the following mixings adr.,,
vector vertices. We need its kinematics when the momenturwith H
of the external photon tends to zero. The triangle then re-

duces tosee Eqgs(15) and (20)] 4 4, 22 8
q2 Buiuu="g6+4+2N,| —g|=—5—gN,.
eszQf ~ _qp.qal': _qvqal': (98) (102)
272 124 q2 Tov q2 Toupl| B 4 _ 94
Bauu="g 8- 4+2N,(=6)=— 5 —1N,.

where q is the momentum of virtual photon anﬁw . , . .
:(1/2)6MV05FU(5 is the dual of the external electromagnetic The numbers written after the first equality signs display a

field F,,,. Integration oven in the second loop is logarith- degomplosmclm in terrgs of (l:losled Ioo_?_i: vlector, amal-xectt()jr_f
mic and produces and scalar plus pseudoscalar loops. The latter piece has dif-

ferent signs foiBy,.,,, andB,. .. We can unify the expres-
B ui= —6NfQ?, f+u. (99) sions(97), (99), and (102 as

For the pure muonic operato, ,,, their mixing withH

4 4 22
results from diagramB , 5 7 as well as diagramB;, 3 ; in Fig. Puitg= o 9 NgQqgt oy 9 NiQi+ 0t og ( 9 ) ’

5. TheF diagrams which are due to pairing of fermions from (103
the same current in the four-fermion operators coincige Batg= 8%+ (—6NyQ3) + 8% - (—6N;QF)

to substitutiondN{—N,=1, Q;—Q,=—1 and the combi-

natorial factor two due to two ways of pairihgith those of §oSHSt. ( _ %)

the Or. . operators, discussed above. %9 9
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Now we are well prepared to compare the RG analysis
with the explicit calculations of two-loop effects. For thié
exchange the two-loop expressi@®il) reduces to the term
with the anomalous dimensiop,= —8 which matches the
result (70). In the case ofal”), inputting in Eq.(91) the ® ®
initial data (80), (83) and the mixingg103) we observe at
w=m, full agreement with the sum of Eqé/1) and(73).
The total two- -loop result foa}") +a(? given in Eq.(76)
differs from that in Ref[15] in the term (4/9)¢g!N;Q; . In
[15] it is multiplied by a factor & Q;). This error originated

in Eq. (23) of [15] for the two-loop mixing of the operators (@) ®)

wf With H. In accordance with the diagrafy in Fig. 5, the FIG. 9. Renormalization of four-fermion operators: without an-
factorQf in that equation should be substituted wighQ,, . nihilation.

D. The third loop effect ; M
1 L 9 )= In2 + 20( mf/ ’

To determineh at the three-loop level from Ed87) we f'g {Mig, Mg, M} g
have to account for the running ef( ) andc'"9(w) up to g
the first loop: Mgrgr M

—{Mgg,m,})In In . (107

a(M) M {meg,m,} M¢rgr
oz(,u,)=oz(M) 1+?§f: bf'ﬂW, (104)
' Additional input, needed for the calculationdf’, is the
anomalous dimension matrix for four-fermion operators. The

1o ) = a('“) D 7,?,f;t;fl/gycr’;f’g’(M) anomalous. dimensipn matnngfg .is determined from the
rt.g' one-loop diagrams in Fig. 9 and Fig. 6. The calculations are
M relatively straightforward: the diagram Figit® produces no
Xn————— . (105  logarithms in the Landau gauge and can be omitted; the dia-
T, Mergr} gram Fig. 6a) reduces to Fig. ®) by means of the Fierz
transformationg100). The result for nonvanishing entries in
Using this expressions as well as the two-loop soluti) yg'ff s
for h(u) we find
2
Vifg f fq of
. aX(M) ,M Yaitrgr = ~6QiQqdp 8 — 3QrQq: 695,
h(m,,) = ——=1 yuh(M)] yIn® =+ 23 byl
“w
2
~7Q1Q8'95;,,
+ Z Briac  9I(M)| yy IN° ——— 3
Tt H {mfg vm,u} .
A,
Yv: f/g = 6QfQ95 /53/ ) (108)
+§|: b,L”g}
Vifg 2 g g
o o . Witrgr =~ §[NfoQf’5g’+NfoQg’5f’
+E IBF;fg"yr’r;?rng e (M)Lfgg’]' . .
106 +NgQgQq 5t +NgQgQ1 3
+QQq 8957, +QsQ 695, 1.
Here
Let us now use the expressi¢h06) to calculate the third
) m; loop for theW exchange. In this case the effective Lagrang-
Li=In fmy.m,} +29(mf_mﬂ)|”m—ﬂmﬁv ian (84) at u=myy contains only quark operators. They do
not mix directly withH so the second term in ELO6) does
not contribute. In the last term it is the mixing of quark
Lo =02 +20(m—{m;,, operators withOy,.q,, which provides a nonvanishing contri-
'fe {m,m¢g,m,} (M= {Mrg .M. }) bution. Another contribution comes from the first term in Eq.

M (106), associated with the anomalous dimensiotdofJsing
« Lm_, the initial data(86) for c"*'9(M) after some simple algebra
{meg,m,} " m, we arrive at
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10 40 a(my), my G,m’> 5 a2

—h(1) (2) @) -~ Wy W
B m)=htw +hinthtw=3-3 —7 Nq ajl#(3-400p L =5 3 (A AT Bi+By),
an v
2 (112
a“ 10 m
+—2|§ 8|n2m—W—E beL¢(M=my)
m wo whereA, ; come from lepton and quark terms in EG06)
32 my my 32 .m containingyy, By
——In—WIn—W——InZ—W}, (109
BLiMe M 817 M 2789 302 72
_ _ A:_|n22——ln2&+—lnﬁln&
where we introducedng as an effective IR cutoff for the ™ 90 m, 45 m. 5 m m,’
light quark loops,q=u,d,s, implying mq is larger then (113
5 . .
m,.> We also added the first and second loop to make it
o
easier to follow a numerical comparison. Takingq qu_@|n2E+ 11216WE 1964 ,mz

+ n
=0.3 GeV, m;=1.5 GeV, m,=4.5 GeV, we get numeri- 1215 m, 1215 m, 405 mq

= 24 mp m 96 mp m
L a(my) a? 5 mp, m, 5 mg m,

h™(m,,)  =h{R)| 1—26.5———+ —(352+ 359 6)
™ 772 48 mz mZ 32 mz mz
5 Mg, 205 m, M,
=h{j)[1-0.067+0.0034, (110 Q M b Me

showing that the third loop effect is quite small. It is domi- +—=zln—In—,
nated by the the anomalous dimension term? (the first
number 352 ina? term) and by the cross termx yyb be-
tween the anomalous dimension and runningragthe num- ~ andBj ; are due to they,b, Bb terms involving running of
ber 359, the four-fermion operators contribute very little, &

(—6). Moreover, the effect of the third loop becomes even

smaller if we usea(m,) instead ofa(my,) in the second 179(1 ,Mz ,mz 4 . m; , Mz
loop: this ch h i i Bi=———|sI"—+I"—+5In“—+2In"—
S%Féz.t is changes theyb term in the third loop, 359 1 4513 m, m. 3" m, mg
Finally, we note that if we shift to the usual fine structure 2\ 2 m, 4 .m, m,
- i - +2In2—=|+ | In*—+ ZIn>—+2In® —
constant,e=1/137.036, via the full leading logarithm rela- m 5 3 m m
tion a T ¢ Q
m 8 m, m,
2a? My +2In2—b)—§<2In2—°+2ln2—°)
a(mW)=a+¥Z N;Q? In—==1/129, (11 My Mq My
T
' 6/4 ,m, , M, ,Mm;| 8 ,mq
. . +={5zIh“*—+2In +2In"—]— =In“—,
it generates from th&(a(m,)) terms in Egs.(109 and 5|3 m, Mg m,/ 5 m,
(110 additional O(«?) contributions that amazingly cancel (114
(numerically the 0.0038 in Eq(110. So, in terms of the 5 m M 4 m m 1 m
expansion parametey, the leading logarithm three-loop cor-  g,= 2|2 In—2 42 In—+ = In— +In—+ = In—
rections are essentially zero. Such a complete cancellation 5 mg mg 3 m m, 3 m,
appears to be a numerical coincidence.
The algebra is more tedious in the case ofZlexchange. X [2_15"1& —4 InE—S In&+6 In&
We sets,= 1/4 which is a very good approximation numeri- o m, Mq me m;

cally. It simplifies the analytic result due to vanishing of the m,
leptonic vector couplinggy*” at this value ofs\z,\,, leaving +2In—
us with fewer operators. We also combine tveand Z ex- Mo
changes neglecting theny,, m, mass difference—again

quite a good approximatioriThe difference will be in the TheB, term can be fully absorbed into the two-loop part of

three-loop NLL) a;," given in Eq.(76) if « there is substituted by(m,)
We present the final result for the three-loop para§¥V instead ofa(m;) which we used in our derivation above.
in the form similar to that used in Ref15], Comparing with the results in R€fL5] we see that ouB;

coincides with theiB but the sumA,+ A, is somewhat dif-
ferent fromA in [15]. This is due to a few reasons. One was
Note that in Secs. Il and Ill we used,=0.5 GeV different from ?'ready discussed: in E(Q?’) of [15] for the tV\éo'|00p mix-
m,=my=0.3 GeV but here we make the simplificatiomp,=my  ing of the operators/,; with H the factorQf should be
=ms=mq. That difference has no numerical impact. changed toQ:Q,, . In addition, there is a difference in the
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one-loop anomalous dimensions of four-fermion operatorsthe literaturg¢. However, QCD can affect their long-distance
In [15] an extra factor 2 is ascribed to the penguin diagramproperties. In the case of the first generation of fermions a
in Fig. 6. To correct this the factor 1/2 should be introduceddetailed operator product expansion analysis and effective
in Egs. (33), (36), (38—41 of [15] and in Eq.(35) the 52/3 field theory calculation led to a shift relative to the free quark

should be changed to 44/3. calculation(with constituent quark mag®y
Numerically,
Aa; e u,dlocp—Aa"[e,u,d]fee quarks +2X 107
A=1696, A,=—507, By=—774, B,=1916, (117)
(115

For the second generation, comparison of the free quark cal-
Bdlation with the more precise evaluation in E§5) shows

no significant numerical difference. However, the more re-
fined analysis now indicates very little theoretical uncer-

where we used the same values for the quark masses
above. Altogether, the three-loop correction is

w w a2 tainty. So, the total hadronic uncertainties aj" would
a, (3-loop=a, (1-|00D)<;) (A+Aq+By1) seem to be well covered by an uncertainty-of X 10~ or
even less.
=0.4x10" 1, (116 Finally, after a detailed renormalization group analysis,

the leading logarithm three-loop contributions turned out to

where it is implied thatv(m,,) is used for the two-loop part. be extremely small. In fact, they are consistent with zero, to
The numerical value is close to that giver{ ir5]. The reason  our level of accuracy-0.1x 10" %!, due to a remarkable can-
for this final agreement is that th& part of the three-loop cellation between anomalous dimensions and running cou-
result is numerically dominated b'yﬁ| and large mixing of pling effects. Uncalculated three-loop NLL contributions are
axial operators with the dipole operator, followed by the run-expected to be of order
ning of the dipole. These pieces, as well as Bhpart, are
correct in[15]. If a(my) is used in the two-loop part the
third loop is somewhat largea;"(3-loop)=2.4x 10", G,Lmi a\? m2

Of course, in both cases one must reevalagté (2-loop) 8\2m2\ ™ N
with the shifted coupling at scal®, or mz. In that way,

scale insensitivity is restored. In addltlon because the effeGyhich is negligible unless enhanced by an enormous factor.
tive couplings are larger than the usual fine structure connevertheless, we assign an overall uncertainty 0.2

stant, @, a transition to thisx in the two-loop part ofa; x10 ™ to a;" for uncalculated three-loop NLL contribu-
induces additional negative contributions. Remarkably, thos@ons.

negative contributions cancel with the above explicit three- So, in total we find a small shift iR (for my
loop results to about 0:410~*%. (The cancellation is similar _15q GeV) from the previously quoted value of 152(4)
and of course related to the even more complete cancellatio 1o-11 5 4 slightly larger(but consistentvalue

pointed out for théW contribution along.Hence, to a good

approximation, the leading-logarithm higher order contribu-

tion is zero or at least negligible. aiwz 154(1)(2)x 10 * (119

~=8x10 4 (118

,u

V. SUMMARY where the first error corresponds to hadronic loop uncertain-
ties and the second to an allowed Higgs boson mass range of
114 GeV=my =250 GeV, the current top mass uncertainty,
and unknown three-loop effects.

Having addressed a variety of computational issues in
cluding small, previously neglected, two-loop contributions
suppressed by factors of (—143\2,\,) that come fronty-Z mix-
ing and the renormalization @,,, strong interaction modi-
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