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Refinements in electroweak contributions to the muon anomalous magnetic moment
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The effects of strong interactions on the two-loop electroweak radiative corrections to the muon anomalous
magnetic moment,am5(gm22)/2, are examined. Short-distance logarithms are shown to be unaffected. The
computation of long-distance contributions is improved by the use of an effective field theory approach that
preserves the chiral properties of QCD and accounts for constraints from the operator product expansion.
Small, previously neglected, two-loop contributions, suppressed by a 124 sin2uW factor, are computed and the
complete three-loop leading short-distance logarithms are reevaluated. These refinements lead to a reduction in
uncertainties and a slight shift in the total electroweak contribution toam

EW5154(1)(2)310211 where the first
error corresponds to hadronic uncertainties and the second is primarily due to the allowed Higgs boson mass
range.
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I. INTRODUCTION

Recently, experiment E821 at Brookhaven National La
ratory achieved an order of magnitude improvement~relative
to the classic CERN experiments! in the determination of the
muon anomalous magnetic moment,am5(gm22)/2. The
new world-average value for that fundamental quantity is@1#

am5116 592 030~80!310211. ~1!

Additional data currently being analyzed should further
duce the uncertainty.

At the present level of precision, a comparison with t
theoretical prediction foram from the standard model re
quires knowledge of hadronic vacuum polarization effe
with an accuracy of 1%. The most recent dispersion integ
analysis @2# ~see also@3#! based on data from electron
positron annihilation into hadrons and hadronict decays
demonstrates that the issue is unsettled:e1e2 annihilation
leads to a prediction lower by about 3s than the value~1!
while the prediction based on thet data is lower only by
about 1s. Moreover, the vector spectral functions deriv
from e1e2 annihilation and fromt decays differ signifi-
cantly for energies beyond ther resonance peak~by more
than 10% in some regions!. It seems very difficult to explain
such a large difference by isospin breaking effects. Thus
appears that the data frome1e2 annihilation and fromt
decays are incompatible: so, no conclusion can be der
yet about a deviation from the standard model prediction

Since a real deviation from theory would signal the pr
ence of ‘‘new physics,’’ with supersymmetry the leading ca
didate, it is extremely important that all such hadronic unc
tainties be thoroughly scrutinized and eliminated as much
possible before implications are drawn. Toward that e
0556-2821/2003/67~7!/073006~20!/$20.00 67 0730
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new e1e2 andt data from Frascati and theB factories will
hopefully help to resolve this puzzling difference.

Beyond the leading hadronic vacuum polarization effec
strong interaction uncertainties also enteram via higher or-
ders that involve quark loops. Quark loops appear in lig
by-light scattering contributing in three loops as well as
two-loop electroweak corrections. The latter are the sub
of this paper although the hadronic uncertainties there
certainly much smaller than those induced by light-by-lig
scattering.

At the two loop electroweak level, hadronic uncertainti
arise from two types of diagrams, quark triangle diagra
related to the anomaly and hadronic photon-Z mixing. The
first category has been previously studied in a free qu
approximation and the more general operator product exp
sion. Although phenomenologically both approaches prod
very close numbers they differ: particularly with regard
their explicit short distance dependence, i.e., logmZ terms.
Here, we show that this difference is due to an incompl
operator product analysis in the second approach. When
rected, unambiguous short-distance contributions result.
also take this opportunity to update the long distance
total electroweak contributions.

In the case of photon-Z mixing, its two loop contribution
to am is suppressed by a factor 124 sin2uW;0.1; so, it is not
as important. It can be evaluated either in the free qu
approximation~sufficient for logarithmic accuracy! or via a
dispersion relation using data frome1e2 annihilation into
hadrons. The difference is shown to be numerically insign
cant.

Finally, having clarified the leading short-distance beha
ior of the two loop electroweak radiative corrections toam ,
we can use the renormalization group to estimate higher
©2003 The American Physical Society06-1
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FIG. 1. One-loop electroweak
contributions toam .
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der leading logarithm contributions which, due to an int
esting cancellation, turn out to be very small.

In the end, our analysis leads to a new, not very differe
but more precise and better founded prediction for the e
troweak contributions toam .

II. ELECTROWEAK CONTRIBUTIONS TO aµ

In the standard model~SM! the one-loop electrowea
contributions toam , illustrated in Fig. 1, were compute
about 30 years ago@4–8#. They have the relatively simple
form

am
EW ~1-loop!5

5Gmmm
2

24A2p2 F11
1

5
~124 sin2uW!2

1OS mm
2

mW,H
2 D G , ~2!

whereGm51.16637(1)31025 GeV22 is the Fermi constan
obtained from the muon lifetime anduW is the weak mixing
angle. For sin2uW we employ the on-shell renormalized de
nition

sin2uW[sW
2 512

mW
2

mZ
2 , ~3!

wheremZ591.1875(21) GeV and theW mass is correlated
with the Higgs scalar mass,mH , via loop corrections~for
mt5174.3 GeV)@9#

mW5S 80.37320.05719 ln
mH

150 GeV

20.00898 ln2
mH

150 GeVD GeV. ~4!

For mH5150 GeV, the central value employed in this pap
we must usemW580.373 GeV~rather than the direct exper
mental value,mW580.451(33) GeV, which corresponds
a very smallmH), for SM loop consistency. That implies

sW
2 50.2231 ~5!

and

am
EW~1-loop!5194.8310211. ~6!

The calculation of two-loop electroweak contributions
am

EW was more recent and considerably more involved
started with the observation by Kukhtoet al. @10# that some
07300
-

t,
c-

,

It

two-loop electroweak diagrams were enhanced by la
logarithms of the form ln(mZ /mm). Those authors carried ou
detailed calculations for a number of such enhanced
grams. They did not account, however, for closed qu
loops. At about the same time, in Ref.@11# it was shown that
for superheavy fermions, like the top quark, logarithms
their mass appear in corrections to magnetic moments du
triangle anomaly diagrams. Detailed studies of all clos
quark loops were included in the calculation ofam

EW in Refs.
@12,13#. Finally, in Ref.@14#, the two-loop calculation of all
logarithms as well as constant terms was completed.

Two-loop corrections toam
EW naturally divide into leading

logarithms ~LL !, i.e., terms enhanced by a factor
ln(mZ /mf) wheremf is a fermion mass scale much small
than mZ , and everything else, which we call nonleadin
logarithms~NLL !. The two-loop leading logarithms are@see
Eq. ~76! below#

am
EW~2-loop!LL5

5Gmmm
2

24A2p2
•

a

p H 2
43

3 F11
31

215
~124sW

2 !2G
3 ln

mZ

mm
1

36

5 (
f PF

NfQfF I f
3Qf

2
2

27
~ I f

322QfsW
2 !~124sW

2 !G ln mZ

mf
J , ~7!

wherea.1/137.036, Nf53 for quarks and 1 for leptons,I f
3

is the third component of weak isospin andQf is electric
charge. Electron and muon loops as well as nonfermio
loops produce the ln(mZ /mm) terms in this expression~the
first line! while the sum runs overF5t,u,d,s,c,b. The
logarithm ln(mZ /mf) in the sum implies that the fermion
massmf is larger thanmm . For the light quarks, such asu
andd, whose current masses are very small,mf has a mean-
ing of some effective hadronic mass scale.

In Eq. ~7! we have retained for completeness small co
tributions from theg-Z mixing diagrams in Fig. 2 which

FIG. 2. Contribution toam
EW from theg-Z mixing induced by a

fermion f.
6-2
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were previously excluded because they are suppresse
(124sW

2 ) for quarks and (124sW
2 )2 for leptons.

The more important terms in Eq.~7!, those not suppresse
by (124sW

2 ), were checked by Degrassi and Giudice@15#.
They used knowledge of well studied QCD corrections
b→sg decay and translated them into into QED correctio
to am

EW via appropriate coupling changes. The only place t
they erred was for the small2 2

27 (I f
322QfsW

2 )(1
24sW

2 )ln(mZ /mf) terms coming from quark loops. Techn
cally the difference is due tog-Z mixing ~Fig. 2! which is
proportional toQfQm ~electric charges of the loop fermio
and the muon!: in @15# it was given asQf

2 .
In addition to leading logarithms, the NLL two-loop con

tributions have also been computed@14#. They depend on
known constants, the top quark mass~here taken to be 174.3
GeV!, ln(mZ /mW) terms, and the as yet unknown Higgs b
son mass,mH . For mH.150 GeV, those corrections are n
merically given by@14#

am
EW~2-loop!NLL526.061.8310211, ~8!

where the error allowsmH to range frommH.114 GeV~its
experimental lower bound! to about 250 GeV. We have in
cluded in Eq.~8! small NLL contributions,20.2310211,
proportional to (124sW

2 )mt
2/mW

2 induced by the renormal
ization of the weak mixing angle.

When evaluating Eq.~7!, one is confronted by the pres
ence of lightu, d, ands quark masses in the logarithms. The
were used to crudely regulate long distance loop contri
tions in Figs. 2 and 3, where QCD effects were ignored@13#.
For mu,d5300 MeV, ms5500 MeV, mc51.5 GeV, and
mb54.5 GeV, one finds

am
EW~2-loop!LL52~36.762!310211, ~9!

where the error is meant to roughly reflect low-moment
hadronic loop uncertainties for theu, d, ands quarks in Fig.
3. Together, Eqs.~8! and~9! provide the two-loop total elec
troweak correctionam

EW(2-loop)5242.7(2)(1.8)310211,
which together with Eq.~6! leads to the generally quote
standard model prediction@16#,

am
EW5152~4!310211, ~10!

FIG. 3. EffectiveZgg* coupling induced by a fermion triangle
contributing toam

EW .
07300
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where the error of64310211 is meant to reflect the tota
uncertainties coming from hadronic loop effects, the u
known Higgs mass, and uncalculated higher order~three-
loop! contributions.

Refinements in the above analysis are possible on
fronts: improvement in the low-momentum contribution
hadronic loops and an estimation of the leading three-lo
electroweak contribution~which is part of the overall uncer
tainty!. The Higgs mass uncertainty will be overcome wi
its discovery.

The easiest hadronic loop improvement can be made
the quark contributions tog-Z mixing pictured in Fig. 2.
Those effects, embodied in the last part of the bracke
terms in Eq.~7! can be obtained via a dispersion relatio
using s(e1e2→hadrons) data. Such an analysis has be
performed for various low energy processes. It effectiv
leads to the replacement@17#

2
2

3 (
q5u,d,s,c,b

Nq~ I q
3Qq22Qq

2sW
2 !ln

mZ

mq
→26.8860.50

~11!

which is somewhat larger than the value (25.95) obtained in
logarithmic approximation with constituentu, d, ands quark
masses.~It suggests that smaller quark masses might be m
appropriate.! Because thoseg-Z mixing effects are sup-
pressed by 124sW

2 , the shift inam
EW from this modification

is tiny, 20.02310211, and can be safely neglected.
Low momentum loop effects in the light quark triang

diagrams of Fig. 3 are more important. It is clear that the
of an effective quark mass as an infrared cutoff is in cont
diction with the chiral properties of QCD in the case of lig
quarks. Indeed, in the chiral limit the infrared singularity
the quark triangle does not go away: it matches the Go
stone pole in hadronic terms. This refers to the anomal
part of the triangle, i.e., to the longitudinal part of the ax
current.

The issue of how to properly treat light quark triang
diagrams was addressed originally in a study by Peris, P
rotet, and de Rafael@12# within a low-energy effective field
theory approach forp, h, and h8 mesons. More recently
Knecht, Peris, Perrotet and de Rafael@18# have reexamined
the issue using an operator product expansion~OPE! and
Ward identities as guidance. We find their approach to
anomaly related longitudinal part of quark triangles to be
valid improvement over the naive constituent quark m
cutoff of Eq. ~7!.

Unfortunately, their rather sophisticated OPE analy
failed to properly address the short-distance behavior
nonanomalous, i.e., transversal, part of the light quark
angles in Fig. 3. In particular, they do not reproduce t
complete lnmZ terms in Eq.~7!. That difference was attrib-
uted to QCD damping effects in@18# which were claimed to
eliminate the nonanomalous lnmZ light quark contributions.
However, in our opinion, it points to a shortcoming in the
analysis.

In Sec. III we address in some detail what modificatio
to the study in@18# are required to restore the proper sho
distance behavior. We then employ the effective field the
6-3
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approach to improve the evaluation of light quark diagra
in Fig. 3, thus refining their contribution toam

EW.
Having verified the short-distance behavior of Eq.~3! we

are also in a position to evaluate higher order leading lo
rithms via the renormalization group. That analysis is carr
out in Sec. IV, where the leading logarithm three-loop co
tributions to am

EW are determined. Such a study was pre
ously undertaken by Degrassi and Giudice@15#. Although we
find small differences with their analysis, in the end we a
obtain a very small leading logarithm three-loop contributi
to am

EW. In fact, the result is consistent with zero, to our lev
of accuracy, due to an interesting cancellation betw
anomalous dimensions and beta function effects.

Finally, in Sec. V, we give a refined determination ofam
EW

for which the errors are reduced and the central value
slightly shifted due to improvements in our analysis.

III. HADRONIC EFFECTS IN QUARK TRIANGLES

An interesting subset of the two-loop contributions toam
EW

are those containing fermionic triangles of quarks and l
tons, see Fig. 3. The internal triangles define the one-l
Z* gg* amplitude where theZ and one photon are virtua
while the other photon is real and soft. Those same trian
produce the well-known anomaly part of theZ boson axial
current. For cancellation of the anomaly, one needs to s
over all fermions in a given generation.

In the case ofam
EW, the cancellation between quarks a

leptons in Fig. 3 is not complete because of their differ
masses and interactions. In this section we give a deta
analysis of the general structure of theZ* gg* amplitude,
paying particular attention to the effect of strong interactio
on the quark diagrams. Perturbative QCD corrections
short-distance logarithms are shown to vanish and have
overall negligible effect for heavy quark diagrams. In t
case of light quarks, an operator product expansion and
fective field theory approach are used to improve the ev
ation of long-distance QCD effects. These refinements l
to an update of the fermionic triangle loop contributions
am

EW.

A. Structure of the Z* gg* interaction

We begin our general analysis by introducing some d
nitions. The interaction Lagrangian for the electromagne
andZ-boson fields,Am andZn , is

Lint5eAm j m2
g

4 cosuW
Zn j n

5 ,

~12!

j m5(
f

Qf f̄ gm f , j n
55(

f
2I f

3 f̄ gng5f ,

whereQf and I f
3 are the electric charge and the third com

ponent of weak isospin and we retain only the axial part
theZ-boson current.~The weak vector current contribution i
Fig. 3 vanishes by Furry’s theorem.!

The Z* gg* amplitudeTmn is defined as
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Tmn5 i E d4xeiqx^0uT$ j m~x! j n
5~0!%ug~k!&. ~13!

That is equivalent to

Tmn5eegTmgn ,
~14!

Tmgn52E d4x d4y eiqx2 iky^0uT$ j m~x! j g~y! j n
5~0!%u0&,

whereeg is the photon polarization vector. We consider t
limit of small photon momentumk. The expansion ofTmn in
k starts with linear terms and we neglect quadratic and hig
powers ofk. In this approximation there are two Loren
structures forTmn consistent with electromagnetic curre
conservation,

Tmn52
ie

4p2
@wT~q2!~2q2 f̃ mn1qmqs f̃ sn2qnqs f̃ sm!

1wL~q2!qnqs f̃ sm#,
~15!

f̃ mn5
1

2
emngd f gd, f mn5kmen2knem .

The first structure is transversal with respect to the ax
current indexn, the second is longitudinal.

The contribution ofZ* gg* to the muon anomalous mag
netic momentam

EW in the unitary gauge where theZ propa-
gator is i (2gmn1qmqn /mZ

2)/(q22mZ
2), can be written in

terms ofwT,L(q2) as

Dam
EW5

a

p
2A2Gmmm

2 i E d4q

~2p!4

1

q212qp
F1

3 S 11
2~qp!2

q2mm
2 D

3S wL2
mZ

2

mZ
22q2

wTD 1
mZ

2

mZ
22q2

wTG . ~16!

Here p is the four-momentum of the external muon. F
logarithmic estimates, a much simpler expression is su
cient:

Dam
EW5

a

p

Gmmm
2

8p2A2
E

mm
2

`

dQ2S wL1
mZ

2

mZ
21Q2

wTD , ~17!

where Q252q2. Moreover, the same expression with th
lower limit of integration set to zero works with a powe
accuracy~in mm

2 /mf
2) in the case of a heavy fermion in th

loop, mf@mm .
The one-loop results forZ* gg* can be taken from the

classic papers by Adler@19# and Rosenberg@20#. In Ref.@10#
they were considerably simplified in the limit of small exte
nal photon momentum. One then finds the following on
loop expressions for invariant functionswL,T ,
6-4
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wL
1-loop52wT

1-loop5(
f

4I f
3NfQf

2E
0

1 daa~12a!

a~12a!Q21mf
2

,

~18!

where the factorNf accounts for colors in the case of quark
We also independently calculatedTmn using Schwinger

operator methods for the fermionic loop. It can be presen
as the polarization operator describing the mixing of t
currents,j m and j n

5 , but with the fermion propagators take
in the external field with the constant field strength. In t
fixed point gaugexmAm50 this propagator has the form@21#

S~p!5
1

p”2m
1

1

~p22m2!2
eQF̃rdS prgd2

i

2
msrdDg5

1O~F2!. ~19!

Then straightforward calculations lead to the above exp
sions~18! for the invariant functionswT,L(q2).

The corresponding two-loop contributions toam
EW were

calculated in Refs.@12,13#. According to Eq.~16! one needs
to integrate using thewT,L given in Eq.~18!. Let us consider
the partwT,L@ f # which is due to the loop of a given fermio
f with the massmf at the range ofQ2@mf

2 . The asymptotic
behavior ofwT,L@ f # at largeQ2 is

wL
1-loop@ f #52wT

1-loop@ f #

54I f
3NfQf

2F 1

Q2
2

2mf
2

Q4
ln

Q2

mf
2

1OS 1

Q6D G .

~20!

At largeQ2 we can use the simpler form~17! for integration.
It is clear then that for the individual fermion loop the int
gral *dQ2wL is divergent. This reflects the fact that th
theory is inconsistent unless the condition of anomaly c
cellation between leptons and quarks is fulfilled. This con
tion has the form

(
f

I f
3NfQf

250 ~21!

within every generation. It means that atQ2@mf
2 the leading

terms 1/Q2 cancel out after summing over fermions andwL

;(ln Q2)/Q4 implying convergence foram
EW.

Note the difference between thewL and wT parts in the
integral ~17!. The first one does not depend onmZ at all
while for the second we have a cutoff factor 1/(Q21mZ

2).
Therefore, thewT part is never divergent, instead individu
fermion loops produce log(mZ /mf) terms in am

EW when mf

!mZ . On the other hand, the one-loop relationwT5wL/2
means the anomaly cancellation condition~21! leads to can-
cellation of the leading 1/Q2 terms inwT as well. It results in
the absence of logmZ terms whenmf!mZ for all fermions in
the given generation.
07300
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B. Hadronic corrections for quark triangles

How good is the one-loop approximation forwL andwT?
This question pertains to strong interaction effects for qu
loops. As characterized in@12# this issue brings about a new
class of hadronic contributions to the muon anomalous m
netic moment.

Let us first discuss perturbative corrections to theZgg*
amplitude atQ@mq due to gluon exchange in quark loop
The longitudinal functionwL is protected against these co
rections by a nonrenormalization theorem@22# for the
anomaly. What about the transversal functionwT? If the as
corrections were present forwT then after summing over the
fermion generation, the leading term would becom
as(Q)/Q2;1/(Q2 logQ/LQCD). According to Eq.~17! this
leads to terms inam

EW which are parametrically enhanced b
log(logmZ /LQCD).

It turns out, however, that theas corrections inwT are
also absent atQ@mq due to the new nonrenormalizatio
theorem proved in Ref.@23#. The proof, stimulated by the
present study, is based on preservation of the relationwT
5wL/2 beyond the one loop, i.e., in the presence of QC
interactions. This relation holds only for the specific kin
matics we consider in which the external photon moment
is vanishing.

Our above discussion means thatas corrections are absen
for both wL andwT in the chiral limit mq50. When quarks
are heavy theas corrections can appear but with a suppre
sion factormq

2/Q2 at Q@mq . In application toam
EW it im-

plies that perturbativeas corrections are absent for ligh
quarks. For heavy quarks, the logarithmic terms which
due toQ@mq are not renormalized but nonlogarithmic term
regulated byas(mq) could appear due to the range of m
mentaQ;mq .

Next comes the question of nonperturbative correctio
For the heavy quarks these corrections, given by some po
of LQCD

2 /mq
2 , are small. As discussed above, the perturbat

strong interaction corrections governed byas(mq) are also
small for heavy quarks. In particular, this argument is app
cable to the third generation,t, b, and t loops, so the free
quark computational results obtained in Refs.@12,13,18# are
very much under theoretical control.

The first and the second generations contain light qua
u,d,s for which the momentum range ofQ spans the had-
ronic scale LQCD where nonperturbative effects ar
O(100%) and give unsuppressed contributions toam

EW. This
problem has been addressed in the literature and two
proaches were suggested. In Ref.@13# effective quark masse
for light quarks in one-loop expressions were introduced a
simple way to account for strong interactions. This ma
plays the role of an infrared cutoff in the integral overQ. A
more realistic approach to the relevant hadronic dynam
was worked out in Refs.@12,18#. Unfortunately, some con
ceptual mistakes in applying the OPE~we are going to com-
ment on them in more detail in Sec. III E! led to incorrect
results. This is immediately obvious in the ultraviolet sen
tivity of the results in Ref.@18#: the dependence on lnmZ is
not suppressed for the first and the second generations w
all the masses are much less thanmZ .
6-5
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For light quarks nonperturbative corrections toZgg* are
given by powers ofLQCD

2 /Q2 while perturbative ones ar
absent as we discussed above. Thus, in the range ofQ of
order mZ the one-loop perturbative approach applies a
suppression of the dependence onmZ due to the cancellation
of the logmZ terms foram

EW between leptons and quarks
the first two generations is guaranteed.

The actual interplay of nonperturbative effects for lig
quark contributions toam

EW represents an interesting pictu
very different for the longitudinalwL and transversalwT
parts. For the first generation, in the chiral limit (mu,d50)
nonperturbative effects are absent inwL and the 1/Q2 one-
loop behavior in hadronic terms matches the massless
pole. This is the ’t Hooft matching condition@24#, as was
pointed out in@12,18#. However, nonperturbative effects a
crucial for wT , where they are responsible for a transform
tion of the 1/Q2 singularity at smallQ into r anda1 meson
poles.

The situation is similar but somewhat more cumberso
for the s quark in the second generation due to the U~1!
anomaly~the h8 meson should be included together withh
meson!. Also chiral breaking effects due toms are more im-
portant.

Below we present a detailed discussion of perturba
and nonperturbative effects for different generations.

C. Third generation effect for aµ
EW

As we discussed above the one-loop expressions in
~18! work very well for the third generation where both pe
turbative and nonperturbative corrections due to strong in
actions are small. SubstitutingwL,T from Eq. ~18! into Eq.
~17! we get, for the sum oft, b, andt contributions toam

EW,
the following result@12,13,18#:

Dam
EW@t,b,t#52

a

p

Gmmm
2

8p2A2
F8

3
ln

mt
2

mZ
2

2
2

9

mZ
2

mt
2 S ln

mt
2

mZ
2

1
5

3D
14 ln

mZ
2

mb
2

13 ln
mb

2

mt
2

2
8

3G , ~22!

where we neglected small corrections of ordermm
2 /mt,b,t,Z

2 ,
mt,b

2 /mZ
2 , andmZ

4/mt
4 . Numerically,

Dam
EW@t,b,t#52

a

p

Gmmm
2

8p2A2
•30.3528.21310211,

~23!

which is properly included in the results of Eqs.~7! and~8!.
Following the discussion in Sec. III B, we estimate a p

turbative uncertainty by adding terms of order ofas(mq)/p
to logmq . It gives for the uncertainty

2
a

p

Gmmm
2

8p2A2
H 16

3
Ct

as~mt!

p
22Cb

as~mb!

p J , ~24!

whereCt and Cb are numbers of order61. Usingas(mZ)
50.11, we come to an estimate
07300
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e

q.

r-

-

6
a

p

Gmmm
2

8p2A2
•0.3'60.1310211. ~25!

D. First and second generations: logarithmic estimates

In the case of the first generation, i.e.,u andd quark loops
together with the electron loop, the characteristic hadro
scales are provided by ther meson mass,mr5770 MeV~for
the vector current! and by the a1 meson mass,ma1

51260 MeV, ~for the transversal part of the axial curren!.
Therefore, forQ below mr , only the electron loop contrib-
utes towT .

On the other hand, the longitudinal part of the axial c
rent is dominated by thep meson whose mass is small. Th
dominance means that the one-loop expression~18! for
wL@e,u,d# ~but not forwT@e,u,d#) works all the way down
up toQ;mp . Thus, the contribution ofwL@e,u,d# in am

EW is
strongly suppressed.

Considering ln(mr
2/mm

2) as a large parameter we see th
with logarithmic accuracy the first generation gives foram

EW

Dam
EW@e,u,d#5

a

p

Gmmm
2

8p2A2
E

mm
2

mr
2

dQ2wT
e

52
a

p

Gmmm
2

8p2A2
ln

mr
2

mm
2

521.08310211,

~26!

where we do not differentiate betweenmr andma1
.

The case of the second generation,m,c,s, is more in-
volved. The cancellation of fermion loops takes place atQ2

.4mc
2 ; so, we takemJ/c53097 MeV as an upper limit of

integration, andmf51019 MeV plays the role ofmr for the
strange quark. In the interval betweenmf andmJ/c the muon
ands quark loops should be included in the integration ov
Q. In the interval betweenmh5547 MeV andmf only the
muon loop contributes towT but we need to account for th
pseudo Goldstone nature of theh meson. In contrast to the
first generation where the longitudinal part of the axial c
rent had the same quantum numbers as thep meson, we
need to reexpress the axial current of the strange quark
combination of the SU~3! singlet and octet,

j n
5@s#52 s̄gng5s52

1

3
~ ūgng5u1d̄gng5d1 s̄gng5s!

1
1

3
~ ūgng5u1d̄gng5d22s̄gng5s!. ~27!

The singlet part associated withh8 does not contribute towL
below mh8 ~which is of the same order asmf) but the octet
part does, sou, d, and s loops should be taken with octe
weights. In the last range, betweenmm and mh , only the
muon loop should be counted. Thus, we arrive at
6-6
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Dam
EW@m,s,c#5

a

p

Gmmm
2

8p2A2 H E
mf

2

mJ/c
2

dQ2~wL@m,s#

1wT@m,s# !1E
mh

2

mf
2

dQ2S 2

3
wL@s#1

wL@u#

3

2
wL@d#

3
1wL@m#1wT@m# D

1E
mm

2

mh
2

dQ2~wL@m#1wT@m#!J
52

a

p

Gmmm
2

8p2A2

3S 4 ln
mJ/c

2

mf
2

1
5

3
ln

mf
2

mh
2

13 ln
mh

2

mm
2 D

525.64310211. ~28!

To go beyond the logarithmic approximation, we mu
account for higher powers of 1/Q2 for the light quarks. The
operator product expansion~OPE!, which we next discuss
provides a systematic approach for computing them. It le
to refined estimates of hadronic effects.

E. OPE considerations

At large Euclideanq2 one can use the OPE for th
T-product of electromagnetic and axial currents,

T̂mn5 i E d4x eiqxT$ j m~x! j n
5~0!%

5(
i

cmna1 . . . a i

i ~q!O i
a1 . . . a i , ~29!

where the local operatorsO i
a1 . . . a i are constructed from the

light fields. A normalization pointm, which the operators
and coefficients implicitly depend on, separates short
tances~accounted for in the coefficientsci) and large dis-
tances~in matrix elements ofOi). The field is light if its
mass is less thanm. In the problem under consideration th
includes the electromagnetic field of the soft photon wh
can enter local operators in the form of its gauge invari
field strengthFab5]aAb2]bAa . It also includes gluonic
fields as well as lepton and quark fields~with masses less
thanm).

The amplitudeTmn is given by the matrix element ofT̂mn

between the photon and vacuum states,

Tmn5^0uT̂mnug~k!&5(
i

cmna1 . . . a i

i ~q!^0uO i
a1 . . . a iug~k!&.

~30!

Since our approximation retains only terms linear ink, the
matrix elements are linear inf mn5kmen2knem . This means
that only Oi transforming under Lorentz rotations as (1,
07300
t

s

s-

h
t

and (0,1) contribute. In other words, the contributing ope
tors should have a pair of antisymmetric indices,O i

ab5

2O i
ba . The amplitudeTmn is a pseudotensor so it is conve

nient to chooseO i
ab to be a pseudotensor as well, which

always possible using a convolution withemngd . Moreover,
the C-parity of O ab should be21. Retaining only the con-
tributing operators we can write the OPE expansion as

T̂mn5(
i

$cT
i ~q2!~2q2O mn

i 1qmqsO sn
i 2qnqsO sm

i !

1cL
i ~q2!qnqsO sm

i %. ~31!

Parametrizing the matrix elements as

^0uO i
abug~k!&52

ie

4p2
k i f̃

ab, ~32!

where the constantsk i depend on the normalization pointm,
we get for the invariant functionswT,L

wT,L~q2!5( cT,L
i ~q2!k i . ~33!

1. The leading dÄ2 operator

Operators are ordered by their canonical dimensionsdi
which define the inverse power ofq in the OPE coefficients.
The leading operators have minimal dimensions. In our pr
lem the leading operator dimension isd52,

O F
ab5

e

4p2
F̃ab5

e

4p2
eabrd]rAd , ~34!

where the operatorF̃ab is the dual of the electromagneti
field strength, and the numerical factor is chosen in suc
way that kF51. Its OPE coefficients appear at one loo
Note that this operator corresponds to the unit operator in
product of the three currents in Eq.~14!.

In considering the third generation, the normalizati
point m can be chosen well below all the massesmt,b,t , such
that the coefficientscT,L

F are given by a one-loop calculation

cT,L
F @t,b,t#5wT,L@t,b,t#, ~35!

where wL,T@t,b,t# are given by Eq.~18! with summation
only over f 5t,b,t. Indeed, taking matrix element ofT̂mn we
are back to the one-loop expression for the amplitudeTmn .
Perturbative corrections are governed byas(mb), nonpertur-
bative ones are of order;(LQCD/mb)4 ~due to the operator
FGG of dimension 6, see the discussion below!.

Such a choice of the normalization point is not possi
for the light quarksu,d,s: to apply the perturbative analysi
to OPE coefficients we should choosem@LQCD, i.e., the
normalization pointm is certainly much higher than the ligh
quark masses. On the other hand, forQ@LQCD we can
choosem!Q. For this rangeLQCD!m!Q we can use per-
turbation theory to calculate the OPE coefficients. In parti
lar, for the leading operator~34! the OPE coefficientscT,L

F @ f #
6-7
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in the chiral limit mf50 are given by the one-loop expre
sions forwT,L@mf50# @see Eq.~20! at mf50]. An interest-
ing point here refers to dependence onm for cT,L

F @mf50#.
This dependence is absent not only at the simple leve
logarithmic corrections but also at the level of power corr
tions in m2/Q2.

To demonstrate this let us consider the one-loop calc
tion of T̂mn in the background field method. Using the prop
gator~19! at m50 and doing the spinorial trace we come
the following expression:

E d4p

p4~p1q!2
@~p1q!mprF̃rn1~p1q!nprF̃rm#, ~36!

where we have omitted an unimportant overall factor. T
integral over Euclidean virtual momentump is well defined
both in infrared and in ultraviolet domains~the logarithmic
divergence at largep drops out because of antisymmetry
Fmn). It means that the dominant contribution comes fro
the range ofp;q, since there is no other scale. A simp
integration results in

1

q2
@qmqrF̃rn1qnqrF̃rm#. ~37!

To this one has to add the loop with the massive Pauli-Vil
regulators which is simple to calculate using the propaga
~19!. This contribution adds a polynomial term2F̃mn to the
expression~37! that restores the transversality for the ele
tromagnetic currentj m and leads to the results~20! for wT,L
at mf50.

The calculation above proves that up to power accur
the OPE coefficientscT,L

F @mf50#5wT,L@mf50#. The por-
tion of the integral~36! which comes from the rangeupu
,m constitutes a correction of orderm2/Q2. However, even
this correction is absent if the symmetry features of
theory are preserved. Indeed, the polynomial part2F̃mn

which came from the regulator loop is due to arbitrary sh
distances so it does not depend onm at all. The conservation
of the electromagnetic current fixes the coefficient betw
the polynomial regulator part and the dispersive part~37!.
Separating the part of the integral~36! with upu,m we break
the conservation. Moreover, due to chiral symmetry there
no other kinds of corrections, perturbative or nonpertur
tive, to the one-loop result for the longitudinal coefficie
cL

F@mf50#. That property is completely valid when we de

with the flavor nonsinglet axial current, likeūgng5u

2d̄gng5d in the first generation, which has no gluonic U~1!
anomaly. For the invariant functionwL@mf50# that feature
follows from the Adler-Bardeen theorem@22# and the
’t Hooft matching condition@24#. In terms of the OPE coef
ficients it translates in the equality ofcL

F@mf50# and
wL@mf50# because all other OPE coefficients vanish atmf
50 for the longitudinal part.

For the transversal coefficientcT
F@mf50# the situation is

more subtle. As shown in@23# the symmetry of the disper
sive part~37! under them, n permutation leads to the pe
07300
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turbatively exact relation 2cT
F@mf50#5cL

F@mf50#. Nonper-
turbatively this relation is broken at the level ofLQCD

4 /Q4

terms as we will see from the OPE analysis.
We can also account for corrections tocT,L

F due to fermion
masses which break the chiral symmetry. They can be r
off Eq. ~20! for wT,L . The corrections are of the second ord
in mf but logarithmically sensitive to the normalization poi
m which replacesmf under the logarithm in Eq.~20! when
we translate tocT,L

F ,

cL
F@ f #52cT

F@ f #5
4I f

3NfQf
2

Q2 F12
2mf

2

Q2
ln

Q2

m2
1OS mf

4

Q4D G .

~38!

Summation overf, say for the first generatione,u,d, leads to
the lepton-quark cancellation of the leading 1/Q2 terms and
we must consider operators of higher dimensions.

2. Operators of higher dimension

The next operators, by dimension, are those ofd53

O f
ab52 i f̄ sabg5f [

1

2
eabgdq̄fsgdqf . ~39!

Chirality arguments show that their OPE coefficientscf con-
tain massmf as a factor, so by dimension,cf}mf /Q4. To
calculate these coefficients it is sufficient to consider t
diagrams of the Compton scattering type,

cL
f 52cT

f 5
8I f

3Qfmf

Q4
. ~40!

Taking matrix elements between the soft photon and vacu
states we produce the following terms in the invariant fun
tions wT,L(q2):

D (d53)wL52D (d53)wT5
8

Q4 (
f

I f
3Qfmfk f . ~41!

If we neglect effects of strong interactions, it is simple
calculatek f in one loop with logarithmic accuracy using
e.g., the propagator~19! in the external field and the norma
ization pointm as the UV regulator,

k f52QfNfmf ln
m2

mf
2

. ~42!

Substituting thisk f in Eq. ~41! we observe the full match
with the 1/Q4 term in Eq. ~38!, together thed52 and d
53 operators reproduce the one-loopwL,T in Eq. ~20!.

Note that this match is for the terms of second order
mass. In QCD due to spontaneous breaking of chiral sym
try the matrix elements of quark operators~39! are not van-
ishing atmq50, instead they are proportional to the qua
condensate ^q̄q&052(240 MeV)3. The operators ~39!
played an important role in the analysis by Ioffe and Smi
6-8
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REFINEMENTS IN ELECTROWEAK CONTRIBUTIONS TO . . . PHYSICAL REVIEW D67, 073006 ~2003!
of nucleon magnetic moments with QCD sum rules@25#.
They determined by a sum rule fit the quantity

x52
kq

4p2Qq^q̄q&0

52
1

~350650 MeV!2
~43!

dubbed as the quark condensate magnetic susceptibility
Actually, the OPE analysis together with the pion dom

nance in the longitudinal part leads to a relation for magn
susceptibility similar to the Gell-Mann–Oakes–Renn
~GMOR! relation for the pion mass@26#. This relation de-
rived in Ref.@23# has the form

~mu1md!kq52mp
2 NcQq . ~44!

The GMOR relationFp
2 mp

2 52(mu1md)^q̄q&0 allows us to
rewrite ~44! as

kq524p2Qq^q̄q&0x,
~45!

x52
Nc

4p2Fp
2

52
1

~335 MeV!2
.

Although this value ofx is in a good agreement with th
QCD sum rule fit ~43! its magnitude is about two time
higher than results of other approaches, see@23# for refer-
ences and discussion.

Let us go further by operator dimensions. Nothing n
appears ford54: all operators of dimension 4 are reducib
to thed53 operators due to the following relation:

f̄ ~Dmgn2Dngm!g5f 52mf f̄ smng5f . ~46!

For d55 we have operatorsf̄ f F̃ab and f̄ g5f F̃ab ~with
factorsmf again! and atd56 there are many operators of th
type (f̄ sabg5f )( f̄ f ), F̃ab Tr GmnGmn, and so on. Thesed
55,6 operators produce 1/Q6 terms inTmn . A particular ex-
ample is the following four-fermion operator which appea
due to diagrams in Fig. 4:

O 6
ab5q̄gag5Qtaqq̄gbI 3taq2~a↔b!, ~47!

where the quark fieldq has color and flavor indices, th
matrices of color generatorsta, a51, . . . ,8 act oncolor
indices, and the weak isospinI 3 and electric chargeQ are the
diagonal matrices in the flavor space. This operator enter
the OPE~30! with the following coefficients:

cT
652

16pas~Q!

Q6
, cL

650. ~48!

FIG. 4. Diagrams for four-fermion operatorO6.
07300
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Note that our consideration of four-fermion operators
similar to Ref.@18#. Note also that the operatorO6 contrib-
utes only to the transversal functionwT —consistent with the
absence of nonperturbative corrections towL in the chiral
limit. Moreover, in the chiral limit, thed56 operators are
next to leading after the leadingd52 operator, showing tha
parametrically the leading nonperturbative corrections are
orderLQCD

4 /Q4.
The matrix element of Eq.~47! between the vacuum an

the photon states can be found assuming factorization
terms of the quark condensate^q̄q&0 and the magnetic sus
ceptibility kq given in Eq. ~45!. It results in the following
piece inwT for the light quarks in the first (u,d) and second
~s! generations,

D (d56)wT@u,d#523D (d56)wT@s#

52
32pas

9Q6

^q̄q&0
2

Fp
2

52as

~0.71 GeV!4

Q6
.

~49!

We can use this as an estimate for the 1/Q6 terms in wT
neglecting theFGG operators which enter with smaller co
efficients ~they appear in one loop whileO6 is due to tree
level diagrams!. We also neglect the anomalous dimension
O6. However, we have in mind that this anomalous dime
sion is rather large and positive and considerably comp
sates the running ofas which therefore can be taken close
1 for estimates.

Summarizing the consequences of OPE for theu, d, ands
quark loops in the chiral limit we get

wL@u,d#mu,d50523wL@s#ms505
2

Q2
,

wT@u,d#mu,d50523wT@s#ms50

5
1

Q2
2

~0.71 GeV!4

Q6
1OS 1

Q8D . ~50!

The longitudinal part given by the leadingd52 operator
F̃mn has neither perturbativeas corrections nor nonperturba
tive ones, and the pole 1/Q2 matches the massless pion. S
the cancellation ofwL

u,d and wL
e in the first generation is

exact in the chiral limitmu,d5me50.
As we discussed above the leading operator contribu

to the transversal part has no perturbative corrections ei
@23#; however, nonperturbative corrections are present. T
signal in the chiral limit is very clean: the lowest masses
the vector and axial vector channels are nonvanishing in c
trast with the pion in the longitudinal part. In Sec. III F b
low we present a resonance model forwT@u,d# consistent
with the OPE constraints. Thus, there is no complete can
lation in the sum ofwT

u,d andwT
e although this sum decrease

as 1/Q6 at largeQ.
6-9
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3. Comparison with the OPE analysis in Ref. [18]

It is convenient at this point to discuss a comparison
our approach with the analysis of theu, d quark loops of
Ref. @18#. In essence, it is claimed there that the leading la
Q behavior of the transversal partwT@u,d# ~and wT@s# as
well! is

wT@u,d#}
1

Q6
~51!

in the chiral limit in contrast with the 1/Q2 perturbative be-
havior. As a result, the 1/Q2 part ofwT@u,d# is absent while
the 1/Q2 part of wT@e# is present, so the quark-lepton ca
cellation is destroyed and, consequently, spurious logmZ

terms appear inam
EW.

To pinpoint the origin for such a dramatic difference b
tween our approaches let us notice first that in@18# the au-
thors considerTmgn , the vacuum average of the product
three currents defined in Eq.~14!, as a primary object. In this
approach they do not have the electromagnetic field ente
into local operators and our leading operatorF̃ab does not
appear. However, they have to consider the OPE for
product of three currents instead of two. ForTmgn one can
derive the following expansion:

Tmgn5^0u(
i

cmgna1 . . . a i

i (q,k)O i
a1 . . . a i~0!

1 i E d4y e2 ikyT$T̂mn~0! j g~y!%u0&. ~52!

The first part, which contains the local operators, accou
for emission of the soft photon from short distances. T
second bilocal part, which contains the operatorT̂mn defined
in Eq. ~29! and the soft momentum currentj g , accounts for
the soft photon emission from large distances. Our rela
~30! conveniently includes both parts in the local form: t
first one is due to operatorsOi containing the electromag
netic field strengthFab explicitly and the second is due t
the operators withoutFab . Moreover, our leading operato
F̃ab corresponds to the unit operator in the first, local, p
on the right-hand side~RHS! of Eq. ~52!.

Once we have established this correspondence it is sim
to see what is missing in the analysis of@18#: they did not
account for the local part in Eq.~52!. It is the unit operator in
this part (F̃ab in our formalism! which gives the leading
1/Q2 contribution and its coefficient follows from the pertu
bative triangle. This corresponds to soft photon emiss
from short distances as we discussed above.

Note that the unit operator in the local part of Eq.~52! is
leading for both longitudinal and transversal structures in
amplitudeTmgn , so its omission should result in an error f
the longitudinal contribution as well. This did not happen
@18# because they did not apply the OPE analysis to
longitudinal part of the amplitude, instead fixing it by th
anomaly. A comparison with the expansion~52! is particu-
larly simple for the longitudinal part atmf50: the second
07300
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bilocal term containingT̂mn vanishes and the only survivin
operator is the unit operator in the first term.

All the OPE subtleties discussed above should not scr
a conceptually very simple situation: the short distance
havior given by free quark loops should not be changed
QCD by large distance effects.

F. First generation

We are now well prepared to calculate the contribution
the first generation toam

EW with an accurate account of had
ronic effects. The invariant functionswT,L for the first gen-
eration is the sum ofwT,L@e#, wT,L@u#, andwT,L@d#. For the
electron

wL@e#52wT@e#52
2

Q2
, ~53!

where we neglected the electron mass. Expansions at l
Q2 in the chiral limit for wT,L@u,d# are given in Eq.~50!.
Hadronic effects modifywT,L@u,d#. Modifications are mini-
mal for the longitudinal functionwL@u,d#: the position of
the pole is shifted tomp

2 due to the explicit breaking of the
chiral symmetry by quark masses,1

wL@u,d#5
2

Q21mp
2

. ~54!

To find the contribution ofwL@u,d# to am
EW one needs to use

the more accurate Eq.~16!, rather than Eq.~17!, because the
integral is dominated by momentaQ;mp comparable with
mm ,

Dam
L @e,u,d#52

a

p

Gmmm
2

8p2A2
H 2 ln

mp
2

mm
2

1
8

3
1

4

3E0

1

da~11a!

3 ln A14
mp

2

mm
2 F E

0

1

da~12a!2 ln A

2
1

3
ln

mp
2

mm
2

1
2

9G J , ~55!

whereA5a1(12a)2(mm
2 /mp

2 ). Numerically it gives

Dam
L @e,u,d#52

a

p

Gmmm
2

8p2A2
•2.58520.7310211. ~56!

The transversal functionwT@u,d# can be modeled as
linear combination of two pole terms: one is due to t
r(770) and v~782! vector mesons, another due to th
a1(1260) axial vector meson,

1It is just this shift which allows one to derive@23# the expression
in Eq. ~44! by comparison of the 1/Q4 terms with the OPE.
6-10
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wT@u,d#5
1

ma1

2 2mr
2 Fma1

2 2mp
2

Q21mr
2

2
mr

22mp
2

Q21ma1

2 G . ~57!

The residues in this expression are fixed by two condition
largeQ which follow from the OPE expression~50! plus the
d53 terms~41! breaking chiral symmetry. The first cond
tion is on the coefficient of the leading 1/Q2 term, the second
condition is for the coefficient of 1/Q4. The term 1/Q6 in Eq.
~50! allows for an extra test of the model. The express
~57! gives 2(0.96 GeV)4 to be compared with
2(0.71 GeV)4 in the OPE-based equation~50!. Agreement
is not extremely good but the right sign and order of mag
tude are encouraging. Since the OPE 1/Q6 estimate is very
approximate, we use Eq.~57! for numerical estimates.

For the integral overQ defining the contribution of
wT@u,d#, we can use the simpler expression~17! neglecting
mm

2 /mr
2 corrections,

Dam
T@e,u,d#52

a

p

Gmmm
2

8p2A2

3H ln
mr

2

mm
2

2
mr

2

ma1

2 2mr
2

ln
ma1

2

mr
2

1
3

2J ,

~58!

which gives numerically

Dam
T@e,u,d#52

a

p

Gmmm
2

8p2A2
•4.88521.32310211.

~59!

Overall, the first generation contributes toam
EW

Dam
EW@e,u,d#52

a

p

Gmmm
2

8p2A2
•7.46522.02310211,

~60!

which is to be compared with the constituent quark mo
result @13#,

Dam
EW@e,u,d# free quarks52

a

p

Gmmm
2

8p2A2
F ln

mu
8

mm
6 md

2
1

17

2 G
524.0310211. ~61!

The refined result is about 1/2 of the constituent quark mo
value. It represents our main phenomenological finding. T
primary reason for the shift is a deeper extension into
infrared due to quark-hadron duality for the longitudin
functionwL@u,d#. It leads to a stronger quark-lepton canc
lation for wL—the effect noted in Ref.@18#.

What is the accuracy of the result~60!? Most of the model
dependence is related to the description of the transve
function wT@u,d#. For the longitudinal contribution, the
analysis is rather solid. To get an idea of the accuracy,
consider variations when ther and a1 masses are in the
07300
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intervals 500–1000 MeV and 900–2000 MeV. We found th
deviations from the result~60! are within 10%, i.e., of order
of 60.2310211. This high level of stability is related to the
fact that the main contribution toDam

T@e,u,d# in Eq. ~58!
comes from the unambiguous logarithmic term ln(mr

2/mm
2); it

gives21.08310211 out of 21.32310211.
So, in total, this analysis increasesam

EW by 2310211 rela-
tive to the free quark calculation and significantly improv
its reliability.

G. Second generation

The second generation contains both lights and heavyc
quarks which should be treated differently. For the lighs
quark we use the approach similar to the case ofu,d quarks.
For the longitudinal functionwL@s#, as it was explained
above in Sec. III D, one must include both singlet,h8(960),
and octet,h(550), pseudoscalar mesons,

wL@s#52
2

3 F 2

Q21mh8
2 2

1

Q21mh
2G . ~62!

For the transversal function the model is

wT@s#52
1

3

1

mf 1

2 2mf
2 Fmf 1

2 2mh
2

Q21mf
2

2
mf

2 2mh
2

Q21mf 1

2 G , ~63!

wheref(1019) andf 1(1426) are isoscalar vector and axi
vector mesons relevant to thes̄s channel. IntegratingwL,T@s#
and adding the known expression for thec quark and muon
contribution we get for the second generation

Dam
EW@m,s,c#52

a

p

Gmmm
2

8p2A2 H 2

3
ln

mf
2

mh8
2 2

2

3
ln

mh8
2

mh
2

1
1

3

mf
2 2mh

2

mf 1

2 2mf
2

ln
mf 1

2

mf
2

14 ln
mc

2

mf
2

13 ln
mf

2

mm
2

2
8p2

9
1

56

9 J . ~64!

Numerically it constitutes~at mc51.5 GeV)

Dam
EW@m,s,c#52

a

p

Gmmm
2

8p2A2
•17.1524.63310211.

~65!

This numerical value practically coincides with the fre
quark calculation@13#,
6-11
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Dam
EW@m,c,s# free quarks

52
a

p

Gmmm
2

8p2A2
F ln

mc
8

mm
6 ms

2
1

47

6
2

8p2

9 G
524.65310211. ~66!

Two reasons exist for such a good agreement. First is
smallness of the strange quark contribution—its elec
charge is smaller—so, hadronic details are not so import
Second is that the effect of cancellation between leptons
hadrons in the longitudinal invariant functionwL is much
less pronounced than in the first generation because of la
masses ofh andh8.

The result is more sensitive to thec quark parameters. I
we take 1.3 GeV for its mass instead of 1.5 we g
(24.32)310211, i.e., a change by 0.3310211. Another
source of the QCD corrections for the heavy quarks is p
turbative gluon exchanges in the quark triangles. This e
mation is similar to to one we did in Sec. III C; we substitu
logmc by as(mc)/p,

a

p

Gmmm
2

8p2A2
•8

as~mc!

p
'0.2310211, ~67!

where we usedas(mc)'0.3.
We conclude that the uncertainty coming from the seco

generation is small, about60.3310211, and related mainly
to charm quark parameters. Overall, the total hadronic l
uncertainties inam

EW are well accounted for by an error o
61310211.

IV. LEADING LOGARITHMS: RENORMALIZATION
GROUP ANALYSIS

It was pointed out in@14# that once the leading logarithm
short-distance two-loop corrections toam

EW of order
ln (mW/mm) are completely known, a renormalization grou
~RG! analysis can provide all leading logarithm terms of t
form @a ln (mW/mm)#n, n52,3, . . . , coming fromn11 loop
effects. Such an analysis was carried out in Ref.@15# for the
leading logarithm three-loop contribution. Since we ha
now clarified the short-distance two-loop behavior ofam

EW, it
is appropriate for us to revisit the issue of higher orders
refine the previous study.

FIG. 5. Mixing of four-fermion operatorsVm f , Am f with H. The
labeling of diagrams follows Ref.@31#.
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An interesting subtle feature that enters this RG analy
is the mixing of operators. We are interested in the O
coefficient of the dimension 5 dipole operatorm̄sabmFab.
Leading logarithms contribute at the two-loop level due
QED corrections to the dipole operator~its anomalous di-
mension! as well as from two-loop mixing between the d
pole operator andd56, four-fermion operators. A carefu
treatment of their mixing is important for the RG analysis

Before addressing the details ofam
EW, it is useful to recall

that a related QCD study was carried out about 25 years
@27,28# for the case of weak radiative decays which invol
flavor-changing gluomagnetic and electromagnetic dip
operators. Indeed, there QCD effects are very large and a
analysis is essential. Later, because of the phenomenolo
importance ofb→sg, interest in such transition dipole op
erators increased, generating many studies and some co
versies involving subtle issues regarding renormalizat
scheme dependence,g5 definition, operator set complete
ness, etc. A brief discussion of those issues will prov
guidance for ouram

EW three-loop analysis.
To discuss the issues that confronted radiative quark

cays, we consider the two-loop Feynman diagrams in Fig
These graphs describe mixing of the four-fermion operato
designated bŷ , with the dipole operator. Originally@28#
only P2,3 andF2,3 type diagrams were accounted for.P7 and
F7 were later calculated in Refs.@29,30# ~those authors also
accounted for one-loop mixing between gluomagnetic a
electromagnetic dipole operators!. Numerically, they did not
cause much of an effect: about 7% in the mixing coe
cients. The smallness ofP7 , F7 is related to the smallnes
of the internal fermion loop entering as a subgraph, which
basically a part of the photon vacuum polarization opera
~it is also nonleading in a 1/Nc expansion!. The smallness of
this fermion loop was used both in@28# and @29,30# to limit
the number of four-fermion operators considered to a
duced set. The full set~originally introduced in@28#! con-
tains penguin operators with right-handed fermions that a
from left-handed ones due to the same fermion loop, see
6. So, their coefficients are also correspondingly small a
could be neglected in early studies.

The full operator basis was considered in later publi
tions and we refer to@31# for a discussion of results an
references to the literature. There, the renormalizat
scheme dependence and definition ofg5 were shown to lead
to different four-fermion operators. As explained in@31#, to
make the definition unambiguous, one has to redefine
four-fermion operators by adding to them dipole operat

FIG. 6. Renormalization of four-fermion operators: annihilati
diagrams.
6-12



b
er
.
p

u
o
n
.

ing
el
n
in

tio
a

r
fu

gs
t
m
.

t

-
d

f

n

en-

r,
ive

the

ps.

h-
in

to

e
e

ed
n-

s.
a-
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with appropriate coefficients. Those coefficients are fixed
the requirement that matrix elements of the redefined op
tors between fermion and fermion plusg states must vanish
In that way, consistency among different calculational a
proaches was restored.2

Here, we note that the scheme independence can be
derstood in a simpler way. The basic point is that one-lo
subgraphs for the two-loop diagrams in Fig. 5 are finite a
unambiguously fixed by the use of gauge Ward identities
good example is the anomalous fermion triangle involv
one axial-vector and two vector vertices where it is w
known that the anomaly does not depend on the definitio
g5. The logarithmic dependence on the normalization po
~scale! which comes about due to the second loop integra
is then clearly scheme independent. Below, we use this
proach, originating from Ref.@28#, to calculate all two-loop
mixing. The results are consistent with those in Ref.@31# and
with the explicit two-loop leading logarithm calculations fo
am

EW given in Sec. II. These consistencies provide a use
check on the analysis.

Our calculation of the two- and three-loop leading lo
differ, however, from the results in@15#. The disagreemen
can be traced to differences in the one- and two-loop ano
lous dimension matrix elements. Details are given below

A. One- and two-loop results

As we discussed in Sec. II the electroweak contribution
the muon magnetic anomaly,am5(gm22)/2, can be repre-
sented as a sum overW, Z, and Higgs bosons. In the one
loop results the Higgs contribution is negligible an
am

EW(1-loop) given in Eq.~2! is a sum ofam
(W)(1-loop) and

am
(Z)(1-loop),

am
(W)~1-loop!5

Gmmm
2

8p2A2
•

10

3
,

~68!

am
(Z)~1-loop!5

Gmmm
2

8p2A2
•F2

5

3
~gA

m!21
1

3
~gV

m!2G ,
where we denote the axial-vector and vector couplings oZ
to the muon bygA

m andgV
m . In the standard model,

gA
m52I m

3 521, gV
m52I m

3 24QmsW
2 54sW

2 21, ~69!

andgV
m is numerically very small.

At the two-loop level electromagnetic corrections are e
hanced by logmZ /mm . For am

(W) , the logarithmic part of the
full two-loop result@14# is particularly simple,

am
(W)~2-loop!LL524

a

p
ln

mZ

mm
am

(W)~1-loop!. ~70!

2We disagree, however, with the statement in@31# about scheme
dependence in case of the reduced set of four-fermion operator
our view it is again related to the definition of four-fermion oper
tors in the full set.
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As we discuss below, it just reflects the anomalous dim
sion of the corresponding dipole operator. In the case ofam

(W)

it is the only source of the logarithm at two loops.
For am

(Z) the situation is more complicated. In particula
Feynman diagrams without closed fermion loops g
@10,14#

am
(Z) ~2-loop; no ferm. loops!LL

5
Gmmm

2

8p2A2
•

a

p
ln

mZ

mm
F13

9
~gA

m!22
23

9
~gV

m!2G
524

a

p
ln

mZ

mm
am

(Z)~1-loop!1
Gmmm

2

8p2A2
•

a

p
ln

mZ

mm

3F2
47

9
~gA

m!22
11

9
~gV

m!2G . ~71!

In the second line we separated out the piece due to
anomalous dimension.

We also have to add diagrams with closed fermion loo
The diagrams with the muon loops give

am
(Z)~2-loop; muon loops!LL

5
Gmmm

2

8p2A2
•

a

p
ln

mZ

mm
•F26Nm~gA

m!22
4

9
Nm~gV

m!2G ,
~72!

where we introduced the factorNm equal to 1 for the muon
loop just to distinguish between contributions with and wit
out closed fermion loops. This generalizes calculations
@10,12,13# by including the second term proportional
(gV

m)2 in Eq. ~72!. This term vanishes atsW
2 51/4. In Eq.~72!

the first term proportional to (gA
m)2 arises from the induced

coupling of aZ with two photons via triangle diagrams, se
the diagramsF2 , F3 in Fig. 5. The second term, from th
vector coupling, corresponds to theg-Z mixing via a muon
loop, see the diagramF7 in Fig. 5.

Fermions other than muons contribute only via clos
loops in two-loop order. Including their effect leads to a ge
eralization of Eq.~72! to

am
(Z) ~2-loop; ferm. loops!LL

5
Gmmm

2

8p2A2
•

a

p (
f

ln
mZ

$mf ,mm%

3F26gA
mgA

f NfQf
21

4

9
gV

mgV
f NfQf G , ~73!

where we introduced the notation

$mf ,mm%[max$mf ,mm%. ~74!

Moreover,Qf is the electric charge of the fermion,Nf51 for
leptons, andNf5Nc53 for quarks, and

In
6-13
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gA
f 52I f

3 , gV
f 52I f

324sW
2 Qf . ~75!

It is implied thatmf!mZ in Eq. ~73!; so, it does not include
the top quark contribution which is part of the nonlogarit
mic, NLL, terms.

The closed loop contribution~73! and the last term in the
second line of Eq.~71! are due to the two-loop mixing with
four-fermion operators to be discussed below. Overall,
two-loop result for the sum ofam

(W) andam
(Z) is @the form is

slightly different than Eq.~7! in Sec. II, but equivalent#

am
(W,Z)~2-loop!LL5

Gmmm
2

8p2A2
•

a

p H 2F215

9
1

31

9
~gV

m!2G ln mZ

mm

1 (
f 5u,d,s,c,t,b

F6gA
f NfQf

2

1
4

9
gV

mgV
f NfQf G ln mZ

mf
J , ~76!

where we neglected the mass difference betweenW and Z
@the ln(mZ /mW) terms are put into NLL contributions#. The
first term in Eq.~76! accounts for diagrams with muons an
electrons and in the second term the sum is over all o
fermions except the top. The dependence onsW

2 enters via
gV

m , gV
f . Our Eq. ~76! differs somewhat from Eq.~25! in

@15#, as explained at the end of Sec. IV C.

B. Effective Lagrangian

In the effective Lagrangian, represented as a sum o
local operators normalized at a pointm, the anomalous mag
netic moment of the fermionf is associated with the operato
Fab f̄ sab f of dimension 5. Because of a chirality flip it en
ters with a coefficient proportional to the fermion massmf ,
and it is convenient to includemf in the definition of the
operator,

H~m!52
mm~m!

16p2 @eFabm̄sabm#m , ~77!

where the electric chargee5A4pa is another factor in-
cluded in the operator definition. Both the massmm and the
electric chargee arem-dependent quantities in Eq.~77! but
the running of the electric chargee is canceled by the wave
function renormalization of the electromagnetic strength t
sor Fab . The producteFab is RG invariant.

The effective Lagrangian for flavor and parity preservi
transitions can be written as

Leff~m!52
Gm

2A2
H h~m!H~m!1(

i
ci~m!Oi~m!J ,

~78!
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where the second sum extends overd56 four-fermion
operators.3 The observable value ofam

EW is related to the
coefficienth at the low normalization pointm5mm ,

am
EW5

Gmmm
2

8p2A2
h~mm!. ~79!

The relation~79! implies that only the operatorH contributes
to the matrix elementŝmuLeff(mm)umg&—a condition that
we discussed above.

The one-loop results~68! refer to the range of virtua
momenta of ordermW andmZ , thus fixing the value ofh at
the high normalization point,

h(W)~mW!5
10

3
, h(Z)~mZ!52

5

3
~gA

m!21
1

3
~gV

m!2.

~80!

We choose the basis for the four-fermion operators de
ing them as

OV; f g5
1

2
f̄ gn f ḡgng, OA; f g5

1

2
f̄ gng5f ḡgng5g. ~81!

The d56 part of the effective Lagrangian can be written

L d56~m!52
Gm

2A2
(

f ,g,G5V,A
cG; f g~m!OG; f g ,

~82!
cG; f g~m![c(Z)

G; f g~m!1c(W)
G; f g~m!,

whereOG; f g5OG;g f ; so, the OPE coefficientscG; f g are sym-
metric under permutation off and g. The tree-levelZ ex-
change gives the initial data for the OPE coefficients,

c(Z)
G; f g~mZ!5gG

f gG
g ~G5V,A!, ~83!

where the vector and axial-vector couplingsgV,A
f are given in

Eq. ~75!.
In the case ofW exchange the tree-level effective La

grangian is

3We omit here thed55 dipole operators for other fermions a
well as chromomagnetic dipole operators for quarks, since they
not mix with H.

FIG. 7. Contribution toam
EW from operators inL W

d56(mW). Both
fermionsf and f 8 must be charged so leptons do not contribute.
6-14
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FIG. 8. Anomalous dimension of the dipol
operatorH.
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L W
d56~mW!52

Gm

A2
@ ūgn~12g5!dd̄gn~12g5!u

1~u→c,d→s!#, ~84!

where we neglect Cabibbo-Kobayashi-Maskawa~CKM!
mixing. Such operators contribute toh only if all fermions
are charged, so we can omit the leptonic part~see Fig. 7!.
One can use the Fierz transformation to put the operato
the following form:

ūgn~12g5!dd̄gn~12g5!u

5
1

Nc
ūgn~12g5!ud̄gn~12g5!d

12ūtagn~12g5!ud̄tagn~12g5!d, ~85!

whereta are matrices of the color generators. The part w
ta does not contribute to the magnetic moment~up to gluon
corrections which we do not consider here! and neither does
the parity breaking part, soL W

d56 reduces to the form~82!
with the initial data

c(W)
G;ud~mW!5c(W)

G;du~mW!5
1

Nc
~G5V,A!. ~86!

There are similar operators and coefficients foru,d substi-
tuted byc,s. These are the only operators that contribute
three loop leading logarithm mixing in theW sector.

The renormalization group~RG! equations which allow
us to calculate the running ofh(m) are

m
dh~m!

dm
52

a~m!

2p

3FgHh~m!1 (
G, f ,g

bG; f gcG; f g~m!u~m2mf g!G ,
~87!

m
dcG; f g~m!

dm
52

a~m!

2p

3 (
G8, f 8,g8

gG8; f 8g8
G; f g cG8; f 8g8~m!u~m2mf 8g8!,

~88!

m
da~m!

dm
52

a2~m!

2p (
f

bfu~m2mf !, bf52
4

3
NfQf

2 .

~89!
07300
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HeregH , bG; f g , andgG8; f 8g8
G; f g form the matrix of anomalous

dimensions for operatorsH andOG; f g . That matrix is ‘‘block
triangular’’: H does not mix with thed56 operators but the
operatorsO f g

G do mix with H. ThebG; f g correspond to these
mixings.4 The u functions in the RHS count only active fer
mions at the givenm, with mf g denoting the maximal fer-
mion mass in the operatorOf g ,

mf g5$mf ,mg%[max$mf ,mg%. ~90!

Perturbativelyh5h(1)1h(2)1h(3)1••• where the raised
index denotes the number of loops. In one-loop approxim
tion h(1)(m)5h(M ) where h(M ) is given in Eq.~80!. In
two-loop order one can neglect in the RHS of Eq.~87! the
running ofa, cH , andcG; f g, and get

h(2)~m!5
a~M !

2p FgHh~M !ln
M

m

1 (
G, f ,g

bG; f gcG; f g~M !ln
M

$m,mf g%
G . ~91!

Below we will computegH and bG; f g and then verify as a
check that Eq.~91! matches the explicit two-loop calcula
tions. We will then use the RG equations~87!–~89! to deter-
mine h in three loops.

C. Anomalous dimensions and mixing of effective operators

First, consider the anomalous dimensiongH of the dipole
operatorH. It is conveniently computed in the Landau gaug
with a photon propagator2 i (gmn2kmkn /k2)/k2, since in
this gauge there are no logs inZ factors. Thus,gH is given by
the sum of three diagrams in Fig. 8 minus anomalous dim
sion gm53 of the massmm(m) included into the definition
~77! of H. The result is

gH521222223528, ~92!

where the numbers correspond to diagramsa, b, c, and
(2gm).

More involved two-loop calculations are needed to det
mine the mixingsbG; f g of the four-operators~81! with H.
The relevant diagrams are shown in Fig. 5. It is clear that
operatorOG; f g mixes with H only when at least one of its
fermionic indices coincides with the muonic one.

Let us start with operatorOV;m f with f 5” m. It is the dia-
gramF7 ~plus, of course, a similar diagram where the virtu

4Note that our definition of anomalous dimensions differs fro
that in Refs.@31,15# by a factor (21/2). Also the normalization of
four-fermion operators withf 5” g is different.
6-15
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CZARNECKI, MARCIANO, AND VAINSHTEIN PHYSICAL REVIEW D 67, 073006 ~2003!
photon is coupled to the incoming muon leg! which defines
bV;m f . The fermion loop in this diagram~which is the same
as in the photon polarization operator! produces

eNfQf

Q2

12p2
ln

M2

Q2
, ~93!

whereQ is the Euclidean momentum of the virtual photo
TheQ2 factor in Eq.~93! cancels the photon propagator a
for the second loop integration we get an expression sim
to the one-loopZ boson exchange with the pure vector co
pling, gV51, gA50, up to the substitution

mZ
2

mZ
21Q2

⇒ e2NfQf

24p2
ln

M2

Q2
. ~94!

The ln (M2/Q2) can be represented as

ln
M2

Q2
5E

m2

M2 dM̃2

M̃21Q2
~95!

with the rangem2!Q2!M2. That allows us to get the two
loop result from the one-loop one. From Eq.~80! we see that
h(Z)51/3 atgV51, gA50. Thus, the diagramF7 produce

e2NfQf

24p2
•

1

3Em2

M2dM̃2

M̃2
5

2

9
•

e2NfQf

16p2
ln

M2

m2
~96!

in h(Z). It gives forbV;m f

bV;m f5
4

9
NfQf , f 5” m, ~97!

where we accounted for another diagram similar toF7.
For the operatorOA;m f with f 5” m its mixing with H is

given by the diagramsF2 andF3. The fermion loop in this
case is the anomalous triangle with one axial-vector and
vector vertices. We need its kinematics when the momen
of the external photon tends to zero. The triangle then
duces to@see Eqs.~15! and ~20!#

e2NfQf
2

2p2 F F̃mn2
qmqs

q2
F̃sn2

qnqs

q2
F̃smG , ~98!

where q is the momentum of virtual photon andF̃mn

5(1/2)emnsdFsd is the dual of the external electromagne
field Fmn . Integration overq in the second loop is logarith
mic and produces

bA;m f526NfQf
2 , f 5” m. ~99!

For the pure muonic operatorsOG;mm their mixing withH
results from diagramsF2,3,7 as well as diagramsP2,3,7 in Fig.
5. TheF diagrams which are due to pairing of fermions fro
the same current in the four-fermion operators coincide~up
to substitutionsNf→Nm51, Qf→Qm521 and the combi-
natorial factor two due to two ways of pairing! with those of
the OG;m f operators, discussed above.
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We can transform theP diagrams, which are due to pai
ing of fermions from different currents, intoF-type diagrams
with closed fermionic loops using Fierz transformations,

c̄1gnc2c̄3gnc45
1

2
c̄1gnc4c̄3gnc2

1
1

2
c̄1gng5c4c̄3gng5c2

2c̄1c4c̄3c21c̄1g5c4c̄3g5c2 ,
~100!

c̄1gng5c2c̄3gng5c45
1

2
c̄1gnc4c̄3gnc2

1
1

2
c̄1gng5c4c̄3gng5c2

1c̄1c4c̄3c22c̄1g5c4c̄3g5c2 .

We see that theP diagrams can be reduced to already calc
latedF ones@first two terms in the rhs of Eqs.~100!# and to
diagrams of theF2,3 type where instead of products of axia
vector currents in the four-fermion operators we have sc
or pseudoscalar ones.

Taken separately, the fermion triangles with the scalar
pseudoscalar vertices contain logarithms and produce do
logarithms in the anomalous magnetic moment. But for
difference of scalar and pseudoscalar operators entering
~100! these double logarithm terms cancel. What remains
this combination can be presented as a piece in the pse
scalar triangle of the form

2
mm

2p2q2
qsF̃sm . ~101!

The second loop integration is then simple.
Altogether, it results in the following mixings ofOG;mm

with H

bV;mm52
4

9
261412NmS 2

4

9D52
22

9
2

8

9
Nm ,

~102!

bA;mm52
4

9
262412Nm~26!52

94

9
212Nm .

The numbers written after the first equality signs display
decomposition in terms of closed loops: vector, axial-vec
and scalar plus pseudoscalar loops. The latter piece has
ferent signs forbV;mm andbA;mm . We can unify the expres
sions~97!, ~99!, and~102! as

bV; f g5d f
m
•

4

9
NgQg1dg

m
•

4

9
NfQf1d f

mdg
m
•S 2

22

9 D ,

~103!
bA; f g5d f

m
•~26NgQg

2!1dg
m
•~26NfQf

2!

1d f
mdg

m
•S 2

94

9 D .
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Now we are well prepared to compare the RG analy
with the explicit calculations of two-loop effects. For theW
exchange the two-loop expression~91! reduces to the term
with the anomalous dimensiongH528 which matches the
result ~70!. In the case ofam

(Z) , inputting in Eq. ~91! the
initial data ~80!, ~83! and the mixings~103! we observe at
m5mm full agreement with the sum of Eqs.~71! and ~73!.

The total two-loop result foram
(W)1am

(Z) given in Eq.~76!
differs from that in Ref.@15# in the term (4/9)gV

mgV
f NfQf . In

@15# it is multiplied by a factor (2Qf). This error originated
in Eq. ~23! of @15# for the two-loop mixing of the operator
Vm f with H. In accordance with the diagramF7 in Fig. 5, the
factorQf

2 in that equation should be substituted withQfQm .

D. The third loop effect

To determineh at the three-loop level from Eq.~87! we
have to account for the running ofa(m) andcG; f g(m) up to
the first loop:

a~m!5a~M !F11
a~M !

2p (
f

bf ln
M

$m,mf%
G , ~104!

cG; f g~m!52
a~m!

2p (
G8, f 8,g8

gG8; f 8g8
G; f g cG8; f 8g8~M !

3 ln
M

$m,mf 8g8%
. ~105!

Using this expressions as well as the two-loop solution~91!
for h(m) we find

h(3)~mm!5
a2~M !

8p2 H gHh~M !FgH ln2
M

mm
1(

f
bfL f G

1 (
f ,g,G

bG; f gcG; f g~M !FgH ln2
M

$mf g ,mm%

1(
l

blLl f gG
1( bG; f ggG8; f 8g8

G; f g cG8; f 8g8~M !L f 8g8
f g J .

~106!

Here

L f5 ln2
M

$mf ,mm%
12u~mf2mm!ln

mf

mm
ln

M

mf
,

Ll f g5 ln2
M

$ml ,mf g ,mm%
12u~ml2$mf g ,mm%!

3 ln
ml

$mf g ,mm%
ln

M

ml
,

07300
is

L f 8g8
f g

5 ln2
M

$mf g ,mf 8g8 ,mm%
12u~mf 8g8

2$mf g ,mm%!ln
mf 8g8

$mf g ,mm%
ln

M

mf 8g8

. ~107!

Additional input, needed for the calculation ofcH
(3) , is the

anomalous dimension matrix for four-fermion operators. T

anomalous dimension matrixgG; f 8g8
G8; f g is determined from the

one-loop diagrams in Fig. 9 and Fig. 6. The calculations
relatively straightforward: the diagram Fig. 9~b! produces no
logarithms in the Landau gauge and can be omitted; the
gram Fig. 6~a! reduces to Fig. 6~b! by means of the Fierz
transformations~100!. The result for nonvanishing entries i

gG; f 8g8
G8; f g is

gA; f 8g8
V; f g

526QfQgd f 8
f dg8

g
2

2

3
QfQg8d

f gd f 8
f

2
2

3
QfQf 8d

f gdg8
f ,

gV; f 8g8
A; f g

526QfQgd f 8
f dg8

g , ~108!

gV; f 8g8
V; f g

52
2

3
@NfQfQf 8dg8

g
1NfQfQg8d f 8

g

1NgQgQg8d f 8
f

1NgQgQf 8dg8
f

1QfQg8d
f gd f 8

f
1QfQf 8d

f gdg8
f

#.

Let us now use the expression~106! to calculate the third
loop for theW exchange. In this case the effective Lagran
ian ~84! at m5mW contains only quark operators. They d
not mix directly withH so the second term in Eq.~106! does
not contribute. In the last term it is the mixing of qua
operators withOV;qm which provides a nonvanishing contr
bution. Another contribution comes from the first term in E
~106!, associated with the anomalous dimension ofH. Using
the initial data~86! for cG; f g(M ) after some simple algebr
we arrive at

FIG. 9. Renormalization of four-fermion operators: without a
nihilation.
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h(W)~mm!LL5h(W)
(1) 1h(W)

(2) 1h(W)
(3) 5

10

3
2

40

3

a~mW!

p
ln

mW

mm

1
a2

p2 H 10

3 F8 ln2
mW

mm
2(

f
bfL f~M5mW!G

2
32

81
ln

mW

mQ
ln

mW

mc
2

32

81
ln2

mW

mQ
J , ~109!

where we introducedmQ as an effective IR cutoff for the
light quark loops,q5u,d,s, implying mQ is larger then
mm .5 We also added the first and second loop to mak
easier to follow a numerical comparison. TakingmQ
50.3 GeV, mc51.5 GeV, mb54.5 GeV, we get numeri-
cally

h(W)~mm!LL5h(W)
(1) F1226.5

a~mW!

p
1

a2

p2
~352135926!G

5h(W)
(1) @120.06710.0038#, ~110!

showing that the third loop effect is quite small. It is dom
nated by the the anomalous dimension term}gH

2 ~the first
number 352 ina2 term! and by the cross term}gHb be-
tween the anomalous dimension and running ofa ~the num-
ber 359!, the four-fermion operators contribute very littl
(26). Moreover, the effect of the third loop becomes ev
smaller if we usea(mm) instead ofa(mW) in the second
loop: this changes thegHb term in the third loop, 359→
2252.

Finally, we note that if we shift to the usual fine structu
constant,a51/137.036, via the full leading logarithm rela
tion

a~mW!5a1
2a2

3p (
f

NfQf
2 ln

mW

mf
.1/129, ~111!

it generates from theO„a(mW)… terms in Eqs.~109! and
~110! additionalO(a2) contributions that amazingly cance
~numerically! the 0.0038 in Eq.~110!. So, in terms of the
expansion parametera, the leading logarithm three-loop co
rections are essentially zero. Such a complete cancella
appears to be a numerical coincidence.

The algebra is more tedious in the case of theZ exchange.
We setsW

2 51/4 which is a very good approximation nume
cally. It simplifies the analytic result due to vanishing of t
leptonic vector couplingsgV

e,m,t at this value ofsW
2 , leaving

us with fewer operators. We also combine theW and Z ex-
changes neglecting themW , mZ mass difference—again
quite a good approximation.~The difference will be in the
three-loop NLL.!

We present the final result for the three-loop part ofam
EW

in the form similar to that used in Ref.@15#,

5Note that in Secs. II and III we usedms50.5 GeV different from
mu5md50.3 GeV but here we make the simplificationmu5md

5ms5mQ . That difference has no numerical impact.
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am
W,Z~3-loop!LL5

Gmmm
2

8p2A2
•

5

3

a2

p2
~Al1Aq1B11B2!,

~112!

whereAl ,q come from lepton and quark terms in Eq.~106!
containinggH

2 , bg

Al5
2789

90
ln2

mZ

mm
2

302

45
ln2

mZ

mt
1

72

5
ln

mZ

mt
ln

mZ

mm
,

~113!

Aq52
2662

1215
ln2

mZ

mb
1

11216

1215
ln2

mZ

mc
1

1964

405
ln2

mZ

mQ

1
24

5
ln

mZ

mb
ln

mZ

mm
2

96

5
ln

mZ

mc
ln

mZ

mm

2
48

5
ln

mZ

mQ
ln

mZ

mm
1

32

405
ln

mZ

mb
ln

mZ

mc

1
32

135
ln

mZ

mb
ln

mZ

mQ
,

andB1,2 are due to thegHb, bb terms involving running of
a,

B152
179

45 S 1

3
ln2

mZ

mb
1 ln2

mZ

mt
1

4

3
ln2

mZ

mc
12 ln2

mZ

mQ

12 ln 2
mZ

mm
D1

2

5 S ln2
mb

mt
1

4

3
ln2

mb

mc
12 ln2

mb

mQ

12 ln2
mb

mm
D2

8

5 S 2 ln2
mc

mQ
12 ln2

mc

mm
D

1
6

5S 4

3
ln2

mt

mc
12 ln2

mt

mQ
12 ln2

mt

mm
D2

8

5
ln2

mQ

mm
,

~114!

B25
2

5 F2 ln
mZ

mm
12 ln

mZ

mQ
1

4

3
ln

mZ

mc
1 ln

mZ

mt
1

1

3
ln

mZ

mb
G

3F215

9
ln

mZ

mm
24 ln

mZ

mQ
28 ln

mZ

mc
16 ln

mZ

mt

12 ln
mZ

mb
G .

The B2 term can be fully absorbed into the two-loop part
am

EW given in Eq. ~76! if a there is substituted bya(mm)
instead ofa(mZ) which we used in our derivation above.

Comparing with the results in Ref.@15# we see that ourB1
coincides with theirB but the sumAl1Aq is somewhat dif-
ferent fromA in @15#. This is due to a few reasons. One w
already discussed: in Eq.~23! of @15# for the two-loop mix-
ing of the operatorsVm f with H the factorQf

2 should be
changed toQfQm . In addition, there is a difference in th
6-18
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REFINEMENTS IN ELECTROWEAK CONTRIBUTIONS TO . . . PHYSICAL REVIEW D67, 073006 ~2003!
one-loop anomalous dimensions of four-fermion operato
In @15# an extra factor 2 is ascribed to the penguin diagra
in Fig. 6. To correct this the factor 1/2 should be introduc
in Eqs.~33!, ~36!, ~38–41! of @15# and in Eq.~35! the 52/3
should be changed to 44/3.

Numerically,

Al51696, Aq52507, B152774, B251916,
~115!

where we used the same values for the quark masse
above. Altogether, the three-loop correction is

am
EW~3-loop!5am

EW~1-loop!S a

p D 2

~Al1Aq1B1!

.0.4310211, ~116!

where it is implied thata(mm) is used for the two-loop part
The numerical value is close to that given in@15#. The reason
for this final agreement is that theA part of the three-loop
result is numerically dominated bygH

2 and large mixing of
axial operators with the dipole operator, followed by the ru
ning of the dipole. These pieces, as well as theB part, are
correct in @15#. If a(mZ) is used in the two-loop part th
third loop is somewhat larger,am

EW(3-loop).2.4310211.
Of course, in both cases one must reevaluateam

EW ~2-loop!
with the shifted coupling at scalemm or mZ . In that way,
scale insensitivity is restored. In addition, because the ef
tive couplings are larger than the usual fine structure c
stant,a, a transition to thisa in the two-loop part ofam

EW

induces additional negative contributions. Remarkably, th
negative contributions cancel with the above explicit thr
loop results to about 0.1310211. ~The cancellation is similar
and of course related to the even more complete cancella
pointed out for theW contribution alone.! Hence, to a good
approximation, the leading-logarithm higher order contrib
tion is zero or at least negligible.

V. SUMMARY

Having addressed a variety of computational issues
cluding small, previously neglected, two-loop contributio
suppressed by factors of (124sW

2 ) that come fromg-Z mix-
ing and the renormalization ofuW , strong interaction modi-
fications of quark loop diagrams, and leading logarith
three-loop effects, we are now in a position to update
standard model prediction foram

EW and assess its degree
uncertainty.

Small effects due tog-Z mixing and our choice ofuW
renormalization have now been included in Eqs.~7! and~8!.
Because of the (124sW

2 ) suppression factor, their total im
pact is rather small, shifting the value ofam

EW down by about
0.4310211.

More important are strong interaction effects on the qu
triangle diagrams in Fig. 3, particularly in the case of lig
quarks. It was shown that short distance contributions
unmodified ~thereby, hopefully, eliminating controversy i
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the literature!. However, QCD can affect their long-distanc
properties. In the case of the first generation of fermion
detailed operator product expansion analysis and effec
field theory calculation led to a shift relative to the free qua
calculation~with constituent quark mass! by

Dam
EW@e,u,d#QCD2Dam

EW@e,u,d# free quarks512310211.
~117!

For the second generation, comparison of the free quark
culation with the more precise evaluation in Eq.~65! shows
no significant numerical difference. However, the more
fined analysis now indicates very little theoretical unc
tainty. So, the total hadronic uncertainties inam

EW would
seem to be well covered by an uncertainty of61310211 or
even less.

Finally, after a detailed renormalization group analys
the leading logarithm three-loop contributions turned out
be extremely small. In fact, they are consistent with zero
our level of accuracy;0.1310211, due to a remarkable can
cellation between anomalous dimensions and running c
pling effects. Uncalculated three-loop NLL contributions a
expected to be of order

Gmmm
2

8A2p2 S a

p D 2

ln
mZ

2

mm
2 .8310214, ~118!

which is negligible unless enhanced by an enormous fac
Nevertheless, we assign an overall uncertainty of60.2
310211 to am

EW for uncalculated three-loop NLL contribu
tions.

So, in total we find a small shift inam
EW ~for mH

.150 GeV) from the previously quoted value of 152(4
310211 to a slightly larger~but consistent! value

am
EW5154~1!~2!310211 ~119!

where the first error corresponds to hadronic loop uncert
ties and the second to an allowed Higgs boson mass rang
114 GeV&mH&250 GeV, the current top mass uncertain
and unknown three-loop effects.
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