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Factorization and end point singularities in heavy-to-light decays
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We prove a factorization theorem for heavy-to-light form factors. Our result differs in several important
ways from previous proposals. A proper separation of scales gives hard kernels that are free of end point
singularities. A general procedure is described for including soft effects usually associated with the tail of wave
functions in hard exclusive processes. We give an operator formulation of these soft effects using the soft-
collinear effective theory, and show that they appear at the same order in the power counting as the hard
spectator contribution.
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Exclusive hadronic form factors simplify dramatically
momentum transfers much larger than hadronic scales,Q2

@L2. Typically, they factor into nonperturbative light con
wave functionsfa,b for mesonsa andb, convoluted with a
calculable hard scattering kernelT @1#:

F~Q2!5
f af b

Q2 E dxdyT~x,y,m!fa~x,m!fb~y,m!1 . . . .

~1!

Here f i are meson decay constants, the hard scattering ke
T(x,y) is calculated perturbatively in an expansion inas ,
and the ellipsis denotes terms suppressed by additional p
ers of 1/Q. For example, the electromagnetic form factor
a pion has a5b5p and at m5Q @1# T(x,y)
58pas(Q)/(9xy). For Eq.~1! to be well defined it is suf-

ficient that f i(x) ;
x→0

xn, f i(x) ;
x→1

(12x)m with any n,m
.0. A linear falloff is sometimes assumed, but we will n
use this assumption.

Beyond leading order~LO! in 1/Q issues arise. There ar
soft contributions to the form factor, which arise from co
figurations where a single quark carries most of the me
momentum and leavespm;L for the remaining constituent
@2#, and these have been estimated using QCD sum ru
Furthermore, power suppressed hard exchange contribu
tend to give contributions diverging as*dx/x. Examples in-
clude 1/Q corrections to the pion form factor, 1/mb correc-
tions in B→pp, Kp decays, and one-gluon exchange f
heavy-to-light form factors@3#.

The soft-collinear effective theory~SCET! @4–7#, repro-
duces the factorization in Eq.~1! @8#, and provides a frame
work to analyze power corrections based solely on QC
This theory consists of collinear fields interacting with s
or ultrasoft degrees of freedom. The fields are categorize
the scaling of their momenta: collinearpc5(pc

1 ,pc
2 ,pc

')

5(n•pc ,n̄•pc ,pc
');Q(l2,1,l), soft ps

m;Ql and ultrasoft

pus
m ;Ql2, wheren25n̄250, n•n̄52, andl!1 is the ex-

pansion parameter.
0556-2821/2003/67~7!/071502~5!/$20.00 67 0715
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In this paper we show how SCET can be used to und
stand factorization and soft end point contributions in hea
to-light form factors for decays such asB→pl n, B
→K* e1e2 and B→rg, building on @4#. Here the large
scales areQ5$mb ,E%, where the final meson hasE5mB/2
2q2/(2mB). Several ideas are developed, which we n
summarize.

~1! We prove a factorization formula for heavy-to-ligh
decays involving the LO light-cone wave functions, a
function, plus a reduced set of non-perturbative matrix e
ments which obey form factor relations.

~2! Calculable kernels are free of divergences. End po
singularities are fake and arise from improperly match
onto T(x,y). They appear in non-factorizable operators a
can be parametrized without invoking suppression fr
Sudakov effects.

~3! A single collinear meson state can be used to cate
rize all contributions. Soft effects associated with the tail
wave functions are described by matrix elements of opera
with a definite power counting. The categories ‘‘factori
able’’ and ‘‘non-factorizable’’ are more accurate than ‘‘hard
and ‘‘soft’’ contributions.

~4! There are two perturbative scales in the problem:Q
andm0.AQL. We separate these scales by matching in t
stages, onto a SCETI at m5Q, and onto a SCETII at
m5m0.

~5! The LO result for heavy-to-light decays comes fro
power suppressed operators in SCETI , which match onto LO
operators in SCETII .

Our procedure is quite general and similar analyses ap
to other exclusive processes. To understand the origin of
end point divergences, we consider the spectator interac
for heavy-to-light decays atO(g2) in Fig. 1. Taking p1,2
collinear andk,r ultrasoft, thel expansion of these graph
gives iA5g2ūn(p1)XTAuv(pb) v̄(2r )VTAvn(2p2) /Pg
with

~X^ V!(a)5
G ^ n”̄

n̄•p2

1
Gn”gm

'
^ g'

m

2mb
1 . . . ,
©2003 The American Physical Society02-1
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~X^ V!(b)5H p” 1
'g'

mn̄•p

Pq n̄•p1

1
g'

m

Pq
S n•pn”̄

2
1r” D J G ^ gm

'

2
2n̄•p G ^ p” 2

'

Pqn̄•p2

1
n̄•p p” 1

'g'
mG ^ gm

'p” 2
'n”̄

2Pq n̄•p1n̄•p2

1 . . . , ~2!

where Pg5n̄•p2 n•r , Pq5n̄•pn•r 1p2 and p5p12p2.
Equation~2! agrees with Ref.@9#. The ellipsis denotes term
}p' . If one interprets Eq.~2! using Eq.~1! with a5M , b
5B, it is tempting to extractT(x,y) setting pi

'50,

(p12p2)250, n̄•p2522xE, n•r 5y. However, the result
includes terms}1/x2 or 1/y2 leading to singular integrals
Note that in full QCD there are no singularities since they
regulated by momenta of orderL.

Several proposals have been made for dealing with th
divergences. One approach regulates these singularitie
introducing transverse parton momenta and including Su
kov form factors@10,11#. However, this proposal does no
include all the non-perturbative contributions, or deal w
the possibility that Sudakov suppression may not be larg
mb'5 GeV. In @11# it was shown that at LO these dive
gences can be reabsorbed into ‘‘soft’’ form factors whi
satisfy form factor relations@4,12#. However, this analysis
was only performed to orderas . Furthermore, neither a rig
orous field theoretic definition for these soft contributio
exists, nor does a first principle derivation of their pow
counting.

To fully understand these issues requires a factoriza
formula with the generality to account for non-perturbati
contributions. In this paper we prove that at leading orde
1/Q and all orders inas a generic heavy-to-light form facto
F can be split into factorizable and non-factorizable com
nentsF5 f F(Q)1 f NF(Q) where

f F~Q!5N0E
0

1

dzE
0

1

dxE
0

`

dr1 T~z,Q,m0!

3J~z,x,r 1 ,Q,m0 ,m!fM~x,m!fB~r 1 ,m!, ~3!

f NF~Q!5Ck~Q,m! zk~QL,m!, ~4!

andN05 f Bf pmB /(4E2). The hard coefficientsCk andT can
be calculated in an expansion inas(Q), the jet functionJ is
dominated by momentap2.QL and calculable perturba
tively in as(AQL). The functionsfM andfB are standard
non-perturbative light-cone wave functions, cf.@9,13#, where
our fB denotesfB

1 or fB
2 . Only fB

1 appears ifJ is calcu-
lated at tree level. End point singularities only arise in mat

FIG. 1. Tree level QCD graphs for heavy-to-light decays w
one perturbative gluon. Note thatpg

2;QL.
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elements which determine the soft, non-perturbative fo
factorszk(Q,m), leaving the convolution integrals in the fac
torizable terms finite. There are three soft form facto
zk(Q,m); one for pseudoscalar, and two for vector meso
We show that terms proportional tofB

2 can be absorbed into
a redefinition ofzk(E,m) at any order in perturbation theory

Our expression for the heavy-to-light form factors diffe
in several important ways from previous proposals. In
approach of Ref.@10# possible non-perturbative soft contr
butions are dropped with theex post factoassumption that
they are negligible. Furthermore, their perturbative pie
contain singular terms in the hard kernels, which are th
regulated by resummations@14#. In Ref. @9# both soft and
non-singular hard contributions were included. Unlike@10#
the soft pieces were found to dominate, due to the fact
the hard terms were suppressed byas(AQL). However,
their soft and hard definitions do not clearly avoid doub
counting. Furthermore, in order to show that these two c
tributions are the same order in 1/mb it was necessary to us
assumptions about the scaling of the tails of the meson w
functions.

In contrast, in our work thef F and f NF pieces appear from
matrix elements of distinct operators with the same sta
avoiding any possibility of double counting. Furthermor
singular hard scattering kernels do not appear. We prov
factorization theorem to all orders in perturbation theory. O
result differs from the proposed formula in Ref.@9# because
it involves both a hard kernelT and a jet functionJ, which
separate the scalesQ andAQL. This separation is necessa
if one wants to distinguish factors ofas(Q) from as(AQL),
or more accurately resum large logarithms between th
scales. Our result differs from Ref.@10# in that f NF contains
non-perturbative matrix elements of operators withD'’s
which do not appear in@10#, and ourf F does not involvek'

convolutions. The operator definitions for the various piec
in the factorization formula in Eqs.~3!, ~4! allow us to rig-
orously power count the two types of contributions in
model independent way. Finally, the form of our result a
pears to indicate that the soft and hard contributions m
actually be comparable in size, since theas(AQL) suppres-
sion inJ could be compensated for by a similar factor inzk .
A complete answer to this question requires a full resumm
tion of the double Sudakov logarithms, which are know
@15# to appear in both our factorizable and non-factoriza
contributions. This is left to future work.

To begin, we need a definition of the non-perturbati
hadronic states. They can be defined by any interpola
field which has the right quantum numbers and signific
overlap with the physical state. For theB we pick the stan-
dard heavy quark effective theory~HQET! stateuBv& @16#,
while for the light mesonM we pick a stateuMn& whose
interpolating field is built out of two collinear quarks, an
involves all interactions in the LO collinear Lagrangia
Thus, theB/M states are generated by soft/collinear fields
SCETII which haveps

2;pc
2;L2. Time-ordered products ac

count for corrections to these states. We donot defineuMn&
with collinear quarks in SCETI since here the off-shellnes
is still large.
2-2
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Equations~3!, ~4! separate the contributions from ha
momenta (p2;Q2), jet momenta (p2;QL), and non-
perturbative momenta (p2;L2), as illustrated in Fig. 2. In
Fig. 1 it is the gluon that connects to the spectator wh
scales like a jet momentum. To separate these scales
match QCD onto an intermediate effective theory SCEI ,
valid for AQL,m,Q, which contains collinear particle
with off-shellnesspc

2;QL and a power counting inl
5AL/Q. Since the collinear particles in SCETI satisfy pc

2

;QL this theory does not describe the completeB→M pro-
cess in QCD. A second step of matching is required o
SCETII , containing collinear particles with off-shellnesspc

2

;L2 and power counting inl85l25L/Q. Wilson coeffi-
cients in SCETI determineT,C of Eq. ~3!, while those in
SCETII determineJ. The ultrasoft fields in SCETI are iden-
tical to soft fields in SCETII . This two-step procedure pro
vides a simple and more general method of determining
SCETII soft-collinear operators compared to the proced
in Ref. @7#.

SCETI is defined by its Lagrangian and heavy-to-lig
currents. The terms in the expansion of the collinear
grangian we require areLc5L c

(0)1L jq
(1)1L jj

(1)1L cg
(1)

1L jq
(2a)1L jq

(2b) . The superscript denotes the order inl that
these terms contribute in the power counting@17#. The LO
action for collinear quarks and gluons is@4,7#

L c
(0)5 j̄nF in•D1 iD”'

c 1

i n̄•Dc

iD”'
c Gn”̄

2
jn1L cg

(0) , ~5!

with i n̄•Dc5P̄1gn̄•Ac , iD c
'5P'1gAc

' , in•D5 in•]
1gn•Aus1gn•Ac . The gluon actionL cg

(0) can be found in
Ref. @7#. For the subleading action we find@18,19,15#

L jj
(1)5 j̄niD”'

us 1

i n̄•Dc

iD”'
c n”̄

2
jn1H.c.,

~6!

L cg
(1)5

2

g2
tr$@ iD m,iD c

'n#@ iDm ,iD us n
' #%1g.f.,

with D m5nmn̄•Dc/21Dc
'm1n̄mn•D/2 and g.f. denotes

gauge fixing terms. In our proof the mixed collinear-ultras
LagrangianLjq will play a crucial role and was first consid
ered in@20#. Using the label operator formalism@6# we ob-
tain the gauge invariant QCD result:

FIG. 2. Levels of factorization. The gray area corresponds
gluons in SCETI which are integrated out in SCETII .
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L jq
(1)5 ig j̄n

1

i n̄•Dc

B”'
c Wqus1H.c.,

L jq
(2a)5 ig j̄n

1

i n̄•Dc

M” Wqus1H.c., ~7!

L jq
(2b)5 ig j̄n

n”̄

2
iD”'

c 1

~ i n̄•Dc!
2

B”'
c Wqus1H.c.,

where igB”'
c 5@ i n̄•Dc,iD”'

c # and igM” 5@ i n̄•Dc,iD” us

1(n”̄ /2)gn•Ac#. A possible four quark operato
( j̄nWTAn”̄W†jn)1/P̄2( j̄nWTAn”̄qus) has been eliminated us
ing the collinear gluon equations of motion. Finally th
SCETI currents we will need are@4,21,18,20,15#

J(0)5CG~v1!~ j̄nW!v1
Ghv ,

J(1a)5BG
a~v11v2!~ j̄nW!v1

~W†iDQ ca
' W!v2

Ga
a

P̄†
hv , ~8!

J(1b)5BG
b~v1 ,v2!~ j̄nW!v1

~W†iDW ca
' W!v2

Gb
a

mb
hv ,

where we sum overv1 ,v2. HereJ(1a,1b) correspond to the
Ji

(1a,1b) of @15# with Ga,Gb→Y i ,U i , and are the most gen
eral allowed operators at any order inas , takingv'50.

In matching onto SCETII we need two collinear quarks t
give non-zero overlap withuMn&, so we only need operator
with two collinear quarks in SCETI . For the graphs in
SCETI it is necessary to have aL jq

(n) interaction to turn the
ultrasoft spectator in theB into a collinear quark. This is the
generic reason that the form factors in the range ofq2 con-
sidered here,q2&10 GeV2, are suppressed relative to the
size nearqmax

2 . More than oneL jq
(n) insertion is forbidden at

this order. The relevant time-ordered products are

T0
F5T@J(0),iL jq

(1)#[E d4xT@J(0)~0!iL jq
(1)~x!# ~9!

as well as

T1
F5T@J(1a),iL jq

(1)#, T2
F5T@J(1b),iL jq

(1)#,

T3
F5T@J(0),iL jq

(2b)#, T4
NF5T@J(0),iL jq

(2a)#,
~10!

T5
NF5T@J(0),iL jj

(1) ,iL jq
(1)#, T6

NF5T@J(0),iL cg
(1) ,iL jq

(1)#.

The time-ordered productT0
F is enhanced by one power ofl

in SCETI compared to the other terms; however, its matc
ing onto SCETII does not give rise to enhanced contributio
to form factors. Higher orderT’s do not contribute at the
order we are working.

To prove the factorization formula given in Eqs.~3!, ~4!,
we decouple the collinear-ultrasoft interaction in the LO L
grangianL c

(0) using the field redefinitions@7#

o

2-3
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jn
(0)5Y†jn , An

(0)5Y†AnY,
~11!

Y~x!5P expS igE
2` signP̄

0

dsn•Aus~ns1x! D .

While this introduces a factor ofY† into the leading current
it only appears in the combinationHv5@Y†hv#

J(0)5CG~v1!~ j̄n
(0)W(0)!v1

GHv . ~12!

The situation is similar inL jq
(1) and L jq

(2b) , where ultrasoft
fields or interactions now only appear in the combinat
Q5@Y†qus#. On the other hand, we have

L jj
(1)5 j̄n

(0)@Y†iD” us
' Y#

1

i n̄•Dc
(0)

iD” c,'
(0) n”̄

2
jn

(0)1H.c.,

~13!

L jq
(2a)5 ig j̄n

(0) 1

i n̄•Dc
(0) @Y†M” Y#W(0)Q1H.c..

Thus, the time-ordered products fall into two categori
‘‘factorizable,’’ T$0,1,2,3%

F , in which the ultrasoft interactions
all occur inHv andQ, and ‘‘nonfactorizable,’’T$4,5,6%

NF , with
an additional@Y†Dus

m Y# or @Y†M” Y#. It can be clearly seen
that there is no double counting when the soft and hard c
tributions are defined this way. The matching on
SCETII for these two cases is discussed separately.

For the factorizable termsTi
F5T@Ji

F ,iL i
F# eachJF and

L F splits into collinear and ultrasoft parts in SCETI , JF

5T8(v j )J̄v j
GHv , L F5Q̄ J1H.c., whereJ’s denote prod-

ucts of collinear fields. To factorize these time-ordered pr
ucts we follow Ref.@7#. From momentum conservation w
havev11v2→n̄•pM of mesonM, so we suppress this de
pendence and letv̄5v12v2. With this notation we can
write

Ti
F5Ti8~v̄ !E d4xT@J̄v̄ ~0!GH~0! Q̄~x!J~x!#

~14!

5Ti~v̄ !E d4xT@ J̄v̄ ~0!GcJ~x!#T@Q̄~x!GsH~0!#,

where Ti8(v̄) is $CG(n̄•pM),BG
a(n̄•pM),BG

b(n̄•pM ,v̄),

CG(n̄•pM)%. In the second line we performed a Fierz tran
formation on the color and spin indices, absorbing prefac
to give T(v̄), and dropping aTA

^ TA which gives no con-
tribution in SCETII . We now lower the off-shellness of th
external collinear particles topc

2;L2. The Ti
F run exactly

like their Ji
F currents. Since we have explicitly kept the u

trasoft part of the momentum of collinear particles, match
onto SCETII amounts to settingp'

c 5n•pc50 on external
lines and expanding theTi

F’s. Matching atm0.AQL the
ultrasoft fields become soft~e.g. Y→S), and the collinear
T-product matches onto a bilinear collinear quark operato
SCETII ,
07150
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T@J̄v̄~0!J~x!#5d~x1!d2~x'!E dh̄E dk1e( i /2)k1x2

3J~v̄,h̄,k1!@ j̄n
IIWGcd~h̄2P̄1!W†jn

II#.

~15!

The jet functionJ(v̄,h̄,k1) is the Wilson coefficient for this
matching step. Inserting this in Eq.~14!,

Ti
F5E dv̄ dh̄ dk1T~v̄ !J~v̄,h̄,k1!O~ h̄,k1!,

~16!
O~ h̄,k1!5@ j̄n

IIWd~h̄2P̄1!GcW
†jn

II#

3@ q̄sSGsd~P12k1!S†hv
s#,

whereO(h̄,k1) is the full operator in SCETII . Now taking
the SCETII matrix element gives

^MnuO~ h̄,k1!uBv&5N fM f BfM~x!fB
1~k1!, ~17!

where N is a normalization factor andx5h̄/(4E)11/2.
Combining Eqs.~16! and ~17! reproduces Eq.~3!.

For the non-factorizable operatorsTi
NF , it is not possible

to write the matrix elements as inf F. Instead when matched
onto SCETII these terms givef NF in Eq. ~4! and should be
understood todefinethe soft nonperturbative effects for th
form factors. It remains to show that they satisfy the fo
factor relations@4,12#. Since the relevant time-ordered pro
ucts only contain the currentJ0, the argument is the same a
in @4#: any Dirac structure in heavy-to-light currents can
reduced to only three,j̄nWhv , j̄nWg5hv and j̄nWg'

mhv .
These three operators contribute only toB→P, B→Vuu and
B→V' , respectively, whereP, (Vuu , V') denote pseudo-
scalar~longitudinally, transversely! polarized vector mesons
For J0 this is true even in arbitrary time-ordered produc
with Lagrangian insertions, since Lagrangians are pa
even Lorentz scalars. Thef F term breaks these relations, b
is calculable. At higher order inl non-factorizable contribu-
tions will also break these relations, since subleading c
rents appear in time-ordered products with non-factoriza
Lagrangian insertions.

The matrix elements ofT1,2
F contain onlyfB

1 to all orders
in as since inserting a projector next tojn in L jq

(1) , the qus

appears asq̄usn”n”̄ in the Fierzed operators. On the other han
T3

F @which may contribute atO(as
2)] has onlyq̄usn”̄ and so is

proportional tofB
2 . However,T3

F’s matrix element involves
J0 and therefore satisfies the same symmetry relations as
nonfactorizable matrix elements inf NF @15#. Therefore it can
be absorbed into a redefinition of thezk

M ’s to all orders in
perturbation theory.

The last step is to understand the power counting of
two contributions in Eqs.~3!, ~4!. When we expand to match
onto SCETII the new operators and coefficients scale w
1/Q in the same way as those in SCETI , up to a global 1/Q
from switching from thejn

I to jn
II fields. The one exception is

T0
F , since it is odd in the number ofDc

' derivatives and this
2-4
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extra' gets suppressed by at least one power ofl. There-
fore, Ti

F andTi
NF contribute at the same order in 1/Q to the

form factors. We find a generic form factor to scale
(L/Q)3/2, which isL2/Q2 suppressed compared to the sc
ing in mb nearqmax

2 derived from HQET@16#.
We finally show that the end point singularities encou

tered in Eq. ~2! do not occur in f F in the second
step of matching. The contributions of the time-order
products at O(g2) are shown in Fig. 3; we findiAi

5g2ūnXiT
Ahv(pb) v̄(2r )ViT

Avn/Pg with

X0^ V05X3^ V35X6^ V650, X1^ V15
g'

mn”̄G ^ gm
'

2 n̄•p
,

X2^ V25
Gn”g'

m
^ gm

'

2mb
, X4^ V45

1

n̄•p2

G ^ Fn”̄ 2
2p” 2'

us

n•r G ,
~18!

X5^ V55F g'
mr”'

n̄•pn•r
1

p” 1'
us g'

m

n̄•p1 n•r
GG ^ gm

' .

The 1/x2, 1/r 1
2 singularities only exist in the non-factorizab

T4 and T5, while the factorizableT1,2
F give non-singular jet

functions. This is not surprising, since in full QCD all en
point singularities are regulated byL. Thus, if ~ultra!soft
operators are properly included to account for this region
momenta end point singularities will not arise.

As an example, for the form factorf 1 at leading order in
1/Q and all orders inas we find

FIG. 3. Tree level graphs in SCETI . The graphs in~a! are from
T1,2,4, while those in~b! are fromT0,1,3,4,5,6.
,
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mB
Ta~m0!Ja~z,x,r 1 ,m0 ,m!

1
2E

mb
Tb~z,m0!Jb~z,x,r 1 ,m0 ,m!GfM~x,m!

3fB
1~r 1 ,m!1C~Q,m!z~QL,m!, ~19!

where N05 f Bf pmB /(4E2) and theQ dependence ofTa,b
andJa,b is implicit. HereT$a,b% are the Wilson coefficients o
the currentsJ(1a,1b), the jet functionsJa,b are computed from
theT1,2

F time ordered products, and we have reabsorbed p
sible fB

2 contributions fromT3
F into z. For the jet functions

at orderas we find

Ja5Jb5
pCF

Nc

as~m0!

xr1
d~x2z!. ~20!

At tree level the coefficients satisfyC5Ta5Tb51 and us-
ing Eq. ~20! the first term in Eq.~19! then agrees with the
non-singular hard contribution in@11#. This simple approxi-
mation misses double logarithms inTa,b(m0) which may be
larger than the single logarithms resummed in theas(m0) for
m0.AQL. The one loop expression forC(Q,m) can be
found in Eqs.~33!, ~60! of @4#. The non-perturbative matrix
elementz(E) is the reduced soft form factor describing d
cays to pseudoscalar mesons.

In this paper we proved a factorization formula for heav
to-light decays, including spectator effects. The factoriza
pieces are finite and determined by one-dimensional con
lutions. The nonfactorizable pieces include non-perturba
gluon effects and satisfy form factor relations. They are
determined by thek'-dependent light-cone meson wav
functions, which is different from the conclusion in@2#. Our
leading order analysis needed the currentsJ(1a,1b), unlike the
analysis in Refs.@18,20# where these currents first enter
subleading order.
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