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Factorization and end point singularities in heavy-to-light decays

PHYSICAL REVIEW D 67, 071502ZR) (2003

Christian W. Bauer
Department of Physics, University of California at San Diego, La Jolla, California 92093

Dan Pirjol
Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, Maryland 21218

lain W. Stewart
Institute for Nuclear Theory, University of Washington, Seattle, Washington 98195
(Received 12 November 2002; published 17 April 2003

We prove a factorization theorem for heavy-to-light form factors. Our result differs in several important
ways from previous proposals. A proper separation of scales gives hard kernels that are free of end point
singularities. A general procedure is described for including soft effects usually associated with the tail of wave
functions in hard exclusive processes. We give an operator formulation of these soft effects using the soft-
collinear effective theory, and show that they appear at the same order in the power counting as the hard
spectator contribution.

DOI: 10.1103/PhysRevD.67.071502 PACS nuniber12.39.St, 13.20.He

Exclusive hadronic form factors simplify dramatically at  In this paper we show how SCET can be used to under-
momentum transfers much larger than hadronic sc&&s, stand factorization and soft end point contributions in heavy-
> A2. Typically, they factor into nonperturbative light cone to-light form factors for decays such &—w/v, B
wave functionse, , for mesonsa andb, convoluted with a —K*e"e” and B—py, building on [4]. Here the large

calculable hard scattering kerngl[1]: scales ar®Q={m,,E}, where the final meson h&=mg/2
y —q%/(2mg). Several ideas are developed, which we now
o Talp summarize.
FQY= Q2 J’ dxdy TGy, ) éalX p) fo(ys )+ oo (1) We prove a factorization formula for heavy-to-light

(1) decays involving the LO light-cone wave functions, a jet
function, plus a reduced set of non-perturbative matrix ele-

Heref; are meson decay constants, the hard scattering kernBlents which obey form factor relations. _
T(x,y) is calculated perturbatively in an expansionda, _ (2 Cg!culable kernels are free of dlyergences. End point
and the ellipsis denotes terms suppressed by additional pov§ingularities are fake and arise from improperly matching
ers of 1Q. For example, the electromagnetic form factor of @10 T(x,y). They appear in non-factorizable operators and
a pion has a=b== and at x=Q [1] T(x,y) can be parametrized without invoking suppression from
=8mag(Q)/(9xy). For Eq.(1) to be well defined it is suf- Sudakov effects.
o x—=0 x—1 . (3) A single collinear meson state can be used to catego-
ficient that ¢;(x) ~ x%, ¢i(x) ~ (1—x)™ with any n.m yize || contributions. Soft effects associated with the tail of
>0. A linear falloff is sometimes assumed, but we will not yave functions are described by matrix elements of operators
use this assumption. _ _ _ with a definite power counting. The categories “factoriz-
Beyond leading ordefLO) in 1/Q issues arise. There are gple” and “non-factorizable” are more accurate than “hard”
soft contributions to the form factor, which arise from con- gnq “soft” contributions.
figurations where a single quark carries most of the meson (4) There are two perturbative scales in the problén:

momentum and leavgs‘~ A for the remaining constituents and uo=QA. We separate these scales by matching in two

[2], and these have been estimated using QCD sum rU|e§tages, onto a SCETat x=Q, and onto a SCET at

Furthermore, power suppressed hard exchange contributio = 0.

tend to give contributions diverging dsix/x. Examples in- (5) The LO result for heavy-to-light decays comes from

clude 1Q corrections to the pion form factor, ) correc- power suppressed operators in SGE@hich match onto LO

tions in B— 7, K decays, and one-gluon exchange foroperators in SCET.

heavy-to-light form factor$3]. Our procedure is quite general and similar analyses apply
The soft-collinear effective theorfSCET) [4-7], repro- 5 gther exclusive processes. To understand the origin of the

duces the factorization in Eq1) [8], and provides a frame- o noint divergences, we consider the spectator interaction

work to analyze power corrections based solely on QCDy, heavy-to-light decays at(g?) in Fig. 1. Takingp; ,

This theory consists of collinear fields interacting with soft .|jinear andk r ultrasoft. thex expansion of these graphs
or ultrasoft degrees of freedom. The fields are categorized by. C T — ‘A — A
the scaling of their momenta: collinegr,=(p; ,p; ,ps) gives  1A=g7un(PUXTAU,(Po)u(~ 1)V Tus(~p2) IPg

S with
=(n-pe,N-Pe,Pe)~Q(A%,1\), soft p“~Q\ and ultrasoft —
( Pe.! |0c|oc)2QL2 ), softpg~QA and Fen Tihyloy
piis~QMN°, wheren“=n“=0, n-n=2, andA<1 is the ex- (X@V)®= ——+ i + ,
pansion parameter. n-p 2m
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myv+k ;\ R myv+k C pg m elements which detgrmine the soft-, ngn-perturpative form
£ X—> S faqtorsg“k(Q,M), Igaymg the convolution integrals in the fac-
a) % AN b) 7 § torizable terms finite. There are three soft form factors
r %{’g P, r Pz S P> £ (Q,u); one for pseudoscalar, and two for vector mesons.
< D« < < We show that terms proportional t; can be absorbed into

a redefinition of{, (E, ) at any order in perturbation theory.
Our expression for the heavy-to-light form factors differs
in several important ways from previous proposals. In the
approach of Ref[10] possible non-perturbative soft contri-
]F@ v butions are dropped with thex post factoassumption that
K’ they are negligible. Furthermore, their perturbative pieces
_ _ _ contain singular terms in the hard kernels, which are then
~2n-p Iop; e pr YT @ v, b regulated by resummatiorid4]. In Ref. [9] both soft and
pqﬁ, D, 2P, n-pin-p, non-singular hard contributions were included. Uni[{€)]
the soft pieces were found to dominate, due to the fact that
T (2} the hard terms were suppressed &yVQA). However,

_ _ their soft and hard definitions do not clearly avoid double
where Pg=n-p, n-r, Pg=n-pn-r+p® and p=p;—p,.  counting. Furthermore, in order to show that these two con-
Equation(2) agrees with Refl9]. The ellipsis denotes terms  triputions are the same order imiy it was necessary to use
xp, . If one interprets Eq(2) using Eq.(1) with a=M, b assumptions about the scaling of the tails of the meson wave
=B, it is tempting to extractT(x,y) setting p; =0, functions.

(p1—p,)%=0, n- p,=—2xE, n-r=y. However, the result In contrast, in our work thé™ and pieces appear from
includes termsx1/x?> or 1k? leading to singular integrals. matrix elements of distinct operators with the same states,
Note that in full QCD there are no singularities since they areavoiding any possibility of double counting. Furthermore,
regulated by momenta of ordé. singular hard scattering kernels do not appear. We prove a
Several proposals have been made for dealing with thed@ctorization theorem to all orders in perturbation theory. Our
divergences. One approach regulates these singularities ib§sult differs from the proposed formula in RE8] because
introducing transverse parton momenta and including Sudat involves both a hard kernel and a jet function, which
kov form factors[10,11]. However, this proposal does not separate the scal€sand JQA.. This separation is necessary
include all the non-perturbative contributions, or deal withif one wants to distinguish factors of,(Q) from as(VQA),
the possibility that Sudakov suppression may not be large air more accurately resum large logarithms between these
my~5 GeV. In[11] it was shown that at LO these diver- scales. Our result differs from RdfL0] in that fNF contains
gences can be reabsorbed into “soft” form factors whichnon-perturbative matrix elements of operators widh'’s
satisfy form factor relation§4,12]. However, this analysis which do not appear ifil0], and ourf™ does not involvek,
was only performed to ordets. Furthermore, neither a rig- convolutions. The operator definitions for the various pieces
orous field theoretic definition for these soft contributionsin the factorization formula in Eqg3), (4) allow us to rig-
exists, nor does a first principle derivation of their powerorously power count the two types of contributions in a
counting. model independent way. Finally, the form of our result ap-
To fully understand these issues requires a factorizatiopears to indicate that the soft and hard contributions may
formula with the generality to account for non-perturbativeactually be comparable in size, since thg JQA) suppres-
contributions. In this paper we prove that at leading order irsion inJ could be compensated for by a similar factorZin
1/Q and all orders inxg a generic heavy-to-light form factor A complete answer to this question requires a full resumma-
F can be split into factorizable and non-factorizable compo+tion of the double Sudakov logarithms, which are known

FIG. 1. Tree level QCD graphs for heavy-to-light decays with
one perturbative gluon. Note tha§~QA.
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fNF

nentsF=f7(Q) + fNF(Q) where [15] to appear in both our factorizable and non-factorizable
1 1 o contributions. This is left to future work.
fF(Q)=NOJ dzj dxf dry T(z,Q,uo) To begin, we need a definition of the non-perturbative
o Jo Jo

hadronic states. They can be defined by any interpolating
field which has the right quantum numbers and significant
XI@X 4 Qoo ) o) Sa(r v o) () overlap with the physical state. For tBewe pick the stan-
fN(Q)=Cu(Q. 1) Zk(QA,u), (4)  dard heavy quark effective theoiHQET) state|B,,) [16],
while for the light mesorM we pick a statgM,) whose
andNy= fgf ,mg/(4E?). The hard coefficient€, andT can interpolating field is built out of two collinear quarks, and
be calculated in an expansion din(Q), the jet function] is involves all interactions in the LO collinear Lagrangian.
dominated by moment@?=QA and calculable perturba- Thus, theB/M states are generated by soft/collinear fields in
tively in as(yVQA). The functionsey, and ¢ are standard SCET, which havepZ~ p2~ A 2. Time-ordered products ac-
non-perturbative light-cone wave functions, [,13], where  count for corrections to these states. Werdd define|M )
our ¢g denotespy or ¢g . Only ¢g appears if] is calcu-  with collinear quarks in SCETsince here the off-shellness
lated at tree level. End point singularities only arise in matrixis still large.
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FIG. 2. Levels of factorization. The gray area corresponds to

gluons in SCET which are integrated out in SCET

Equations(3), (4) separate the contributions from hard +(W/2)gn-A°].

momenta p?~Q?), jet momenta H>~QA), and non-
perturbative momentap€~ A?), as illustrated in Fig. 2. In
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,C(g%])zlggn ﬁ BEWC]US'FH.C.,
E(gﬁa)=iggni_ MWqust+H.c., (7)
‘Ye
£30 = EED o 1 BSWq,+H.c
&q g n2 l(in_'Dc)z L Qus Eadl]
where igBS=[in-D%iB°] and igM=[in-DCiD "

A possible four quark operator

(£ WTAAWT ) 1/P2(£,WT g, has been eliminated us-
ing the collinear gluon equations of motion. Finally the

Fig. 1 it is the gluon that connects to the spectator whichsCET, currents we will need arf4,21,18,20,15
scales like a jet momentum. To separate these scales we

match QCD onto an intermediate effective theory SCET

valid for VQA<u<Q, which contains collinear particles
with oﬁ-shellnessp§~QA and a power counting im
=A/Q. Since the collinear particles in SCES$atisfy p§
~ QA this theory does not describe the complBte M pro-

IO=Cr(wy)(&W),, Th,,

a

IO =B w1+ 0) (W) (WD W)y, =hy (8

cess in QCD. A second step of matching is required onto

SCET,, containing collinear particles with oﬁ-shellnepé
~A? and power counting in’=X\?=A/Q. Wilson coeffi-
cients in SCET determineT,C of Eqg. (3), while those in
SCET, determinel. The ultrasoft fields in SCETare iden-
tical to soft fields in SCE|J. This two-step procedure pro-

[e3

—_— g Fb
IE=BR(@1,02) (W) o, (WD W), ooy,

where we sum ovew;,w,. Here J*®¥®) correspond to the
J(1a10) of [15] with '3, T°—Y,,0;, and are the most gen-

vides a simple and more general method of determining theral allowed operators at any orderdsg, takingv, =0.

SCET, soft-collinear operators compared to the procedure

in Ref.[7].

In matching onto SCE[ we need two collinear quarks to
give non-zero overlap withM ), so we only need operators

SCET, is defined by its Lagrangian and heavy-to-light with two collinear quarks in SCET For the graphs in

currents. The terms in the expansion of the collinear La-SCET it is necessary to haveﬂ(gn)

grangian we require arelo=LO+LP+LE+L)
+ L8+ £ 2 The superscript denotes the ordenirthat
these terms contribute in the power count[dg]. The LO
action for collinear quarks and gluons[i§,7]

5

— 1 h
O =¢ |in- iDS ——ipC |— (0)
L=¢&pin-D+iD in_-DCIDL 2§n+£cg,

with in-D,=P+gn-A;, iDi=P'+gAL, in-D=in-o

+gn-Aystgn-A.. The gluon actionc () can be found in
Ref.[7]. For the subleading action we fifd8,19,15

n
|Di§§n+H.C.,

C(l):EiDUS_
S Lin~Dc

, (6)
£8)= ;tr{[iD”,iDéy][iDﬂ,iDts I +a.f.,

with D#=n#n.D 2+Di*+n#n.-D/2 and g.f. denotes

interaction to turn the
ultrasoft spectator in thB into a collinear quark. This is the
generic reason that the form factors in the rangeton-
sidered hereg®<10 Ge\?, are suppressed relative to their
size neai?,,. More than oneﬁ(g’(}) insertion is forbidden at
this order. The relevant time-ordered products are

T5=T[J‘°),i£§ﬁ)]zf dXTIO0)i£ D] (9
as well as
TE=T[369,i£ (), TE=T[360,ic (],

TE=TI@,ic @], Ty =T@icE, 0
10

Tor=T@icPich)], Te=T@ic{)icH).

The time-ordered produdtg is enhanced by one power bf

in SCET, compared to the other terms; however, its match-
ing onto SCET, does not give rise to enhanced contributions
to form factors. Higher ordefl’s do not contribute at the

gauge fixing terms. In our proof the mixed collinear-ultrasoftorder we are working.

Lagrangian’,, will play a crucial role and was first consid-
ered in[20]. Using the label operator formalisf6] we ob-
tain the gauge invariant QCD result:

To prove the factorization formula given in Ed8), (4),
we decouple the collinear-ultrasoft interaction in the LO La-
grangianZ () using the field redefinitionf7]
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(0) vyt (0) vyt

=Y A YA, ay  TITAOT001=60c) 20 [ @] aweme
0
Y(X)=Pexp(igf_msign5 dsn-Ayg(ns+Xx) |. X JI(w, 7,k ENWE 8(5— P, )W'.
(15

While this introduces a factor of " into the leading current,

it only appears in the combinatioH, =[Y'h, ] The jet functiond(w, 7,k ") is the Wilson coefficient for this

matching step. Inserting this in E¢(L4),

IO=Cp(w)(EPW),, T'H, . (12)
T-':=f do d7 dk'T(0)I(w,7,k")O(7,k"),
The situation is similar inC ;) and £&”, where ultrasoft ' @ = (@)3(@,7.k7)O(7.KT)
fields or interactions now only appear in the combination o o (16)
0=[Y"'q,s]. On the other hand, we have O(5.k")=[EWS(n— P, )T W'l

ol o X[9°ST's8(P, —k*)S'h7],
iDyl-& +H.c.,

(1) _ O vtimL
Legg=& LY IDUSY]in_D(CO) &2

WhereO(;, k*) is the full operator in SCET. Now taking
13 the SCET, matrix element gives

1
E(gﬁa): |gg(10)w [YTMY]W(O)Q+HC
In-D¢

(Mo O(7,k")[B,)=Nfyfadu(x) bg (k),  (17)
Thus, the time-ordered products fall into two categorieswhere N is a normalization factor and= 7/(4E) +1/2.
“factorizable,” T{Fo,l,z,:}, in which the ultrasoft interactions Combining Eqs(16) and (17) reproducFes Eq3). _

all occur inH, andQ, and “nonfactorizable,'T{N4F’5'6}, with For the non-factorizable operatoT§ , it is not possible
an additiona[YTD{st] or [Y'M Y]. It can be clearly seen 1O write the matrix elements as fif. Instead when matched

that there is no double counting when the soft and hard corPnto SCET, these terms givé"" in Eq. (4) and should be
tributions are defined this way. The matching ontounderstood talefinethe soft nonperturbative effects for the

For the factorizable term§iF=T[JiF ,iEiF] eachJF ang factor relationd4,12]. Since the relevant time-ordered prod-
LF splits into collinear and ultrasoft parts in SCETI" uct[s]only contain the curredb,hthe argu:nehnt is the same Eitl)S

, — — in [4]: any Dirac structure in heavy-to-light currents can be
=T (w]-)jijHv, LF=Q J+H.c., whereJs denote prod- y y g

ft o =
ucts of collinear fields. To factorize these time-ordered prod:rl_ehdeuscee?h rtge OonIirg:g?sefggméufévg%yg@ag d B§”_>W\7 L Z‘Ed
ucts we follow Ref[7]. From momentum conservation we pe ’ I

— ) B—V, , respectively, where®, (V||, V,) denote pseudo-
have w;+w,—n-py of mesonM, so we suppress this de- gca|ar(longitudinally, transverselypolarized vector mesons.

pendence and lev=w;— w,. With this notation we can For J, this is true even in arbitrary time-ordered products

write with Lagrangian insertions, since Lagrangians are parity
even Lorentz scalars. THE term breaks these relations, but
TF=T' (> J 4TI 7 (O)T oY is calculable. At higher order ik non-factorizable contribu-
= Tile) | dXTLT, (OTH(0) Q60 J(X)] tions will also break these relations, since subleading cur-

(14 rents appear in time-ordered products with non-factorizable
Lagrangian insertions.

The matrix elements OTE2 contain only¢g to all orders
B B B - in o since inserting a projector next & in £, theqys
where T{(w) is {Cr(n-py),BF(n- Pu).BR(N- Py 1), appears ag, 1 in the Fierzed operators. On the other hand,
Cr(n-pwm)}. In the second line we performed a Fierz trans-TE [which may contribute ab(a2)] has onlyq,gh and so is
formation on the color and spin indices, absorbing pre‘caCtor%roportional togyg . However,Tg’s matrix element involves
to give T(w), and dropping a”®T* which gives no con-  J, and therefore satisfies the same symmetry relations as the
tribution in SCET,. We now lower the off-shellness of the nonfactorizable matrix elements fi" [15]. Therefore it can
external collinear particles tpZ~A2. The T} run exactly be absorbed into a redefinition of t&"’s to all orders in
like their J© currents. Since we have explicitly kept the ul- perturbation theory.
trasoft part of the momentum of collinear particles, matching The last step is to understand the power counting of the
onto SCET, amounts to settingd{ =n-p°=0 on external two contributions in Eqs(3), (4). When we expand to match
lines and expanding th§i':’s. Matching at,uoz\/Q_A the onto SCET, the new operators and coefficients scale with
ultrasoft fields become sofe.g. Y—9S), and the collinear 1/Q in the same way as those in SGETip to a global 1
T-product matches onto a bilinear collinear quark operator irfrom switching from theg;, to &) fields. The one exception is
SCET,, Th, since it is odd in the number @ derivatives and this

=Ti(w) f d*XT[ Ty (0T J(X)]T[Q(X)gH(0)],

071502-4
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J(m)

n”)
Ly

extral gets suppressed by at least one powek off here-
fore, TT and T'" contribute at the same order inQLto the
form factors. We find a generic form factor to scale as
(A/Q)*2, which is A?/Q? suppressed compared to the scal-
ing in my nearg?,,, derived from HQET[16].

We finally show that the end point singularities encoun-
tered in Eqg.(2) do not occur inff in the second
step of matching. The contributions of the time-ordered
products atO(g?) are shown in Fig. 3; we find.A4

=g%U X TAh, (pp)v (— 1)V TAu, /Py with

y"WF@yL
X0®V0:X3®V3:X6®V6:0, X1®V1:¥,
2 np
Fhyt® v, 1 —2pye
XZ®V2:#, X4®V4:—_F® h— 2L y
2mb n-p, n-r
(18)
v pit vt
)(5®V5:—LL + = L F®'yt
n-pn-r n-p. n-r

The 142, 1/ri singularities only exist in the non-factorizable
T, and Ts, while the factorizableTi2 give non-singular jet
functions. This is not surprising, since in full QCD all end
point singularities are regulated by. Thus, if (ultra)soft
operators are properly included to account for this region o
momenta end point singularities will not arise.

As an example, for the form factdr, at leading order in
1/Q and all orders inxg we find
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2E—mg
T Ta(po)Ja(Z,X, 1 4 po, 1)
B

f+=N0j dxdzdr,

dm(X, 1)

2E
+ m_bTb(Z’MO)‘]b(Zixlr+ IMOIM)

X ¢g(r+ ,/.L)"'C(Q,M)g(QA,/.L),

where Ny=fgf.mg/(4E?) and theQ dependence o,y
andJ, y, is implicit. HereTy, ,, are the Wilson coefficients of
the currents)*21°) | the jet functionsl, , are computed from

the T7 , time ordered products, and we have reabsorbed pos-
sible ¢z contributions fromT¥ into . For the jet functions

at orderag we find

(19

mCr  as(pmo)
Nc Xr,

Jp

(20

= 8(X—12).
At tree level the coefficients satis@=T,=T,=1 and us-

ing Eq. (20) the first term in Eq(19) then agrees with the
non-singular hard contribution ifl1]. This simple approxi-
mation misses double logarithms Ty (o) which may be
larger than the single logarithms resummed indéu) for
1o=+QA. The one loop expression fa€(Q,u) can be
found in Eqs.(33), (60) of [4]. The non-perturbative matrix
element{(E) is the reduced soft form factor describing de-
cays to pseudoscalar mesons.

In this paper we proved a factorization formula for heavy-
to-light decays, including spectator effects. The factorizable
pieces are finite and determined by one-dimensional convo-
lutions. The nonfactorizable pieces include non-perturbative
gluon effects and satisfy form factor relations. They are not
determined by thek, -dependent light-cone meson wave
functions, which is different from the conclusion|i]. Our
leading order analysis needed the currett&™® | unlike the
analysis in Refs[18,20 where these currents first enter at

?ubleading order.
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