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Warped compactifications with branes provide a new approach to the hierarchy problem and generate a
diversity of four-dimensional thresholds. We investigate the relationships between these scales, which fall into
two classes. Geometrical scales, such as thresholds for Kaluza-Klein, excited string, and black hole production,
are generically determined solely by the spacetime geometry. Dynamical scales, notably the scale of super-
symmetry breaking and moduli masses, depend on other details of the model. We illustrate these relationships
in a class of solutions of type IIB string theory with imaginary self-dual fluxes. After identifying the geometri-
cal scales and the resulting hierarchy, we determine the gravitino and moduli masses through explicit dimen-
sional reduction, and estimate their value to be near the four-dimensional Planck scale. In the process we obtain
expressions for the superpotential anchkéa potential, including the effects of warping. We identify matter
living on certain branes to be effectivebequesteredrom the supersymmetry breaking fluxes: specifically,
such “visible sector” fields receive no tree-level masses from the supersymmetry breaking. However, loop
corrections are expected to generate masses, at the phenomenologically viable TeV scale.
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I. INTRODUCTION string states or microscopic black holes, and the supersym-
metry breaking scale. We will discuss the emergence of these
Recent years have opened up a new universe of stringy general warped compactifications or brane worlds that oc-
compactifications. Much of the work done on string phenom-cur in string or M-theory.
enology after the “first superstring revolution” of 1984 had  Models exhibiting these phenomena include the large ex-
focused on traditional Kaluza-Klein compactifications of tra dimensions scenario f] and the warped model ¢2].
string theory to four dimensions. However, we now see aAlthough inspired by stringy developments, the original pro-
great range of extensions of this picture: one may first of alposals were not directly related to an underlying microscopic
consider more generallywarped compactificationsand sec-  theory, but were solutions of effective theories capturing es-
ond one may havbrane worldscenarios in which branes— sential ideas. Large extra dimensions were subsequently dis-
wrapped or otherwise—are present. This leads to a wide newussed in the context of string theory[i8], and more com-
spectrum of possibilities for reproducing four-dimensionalplete embeddings of warped scenarios have emerged. As a
Poincareinvariant physics from higher-dimensional string or specific example[4] provides a string solution that geo-
M theory. Particularly interesting are the resulting geometri-metrically realizes a hierarchically low fundamental string
cal or dynamical mechanisms that allow the string scale to bgcale via warping, along the lines [&]. A warped geometry
many orders of magnitude lower than the traditional valueis created within a Calabi-Yau threefold by fluxes in the
~10"° GeV—and perhaps even as low &1 TeV), pro- spirit of [5—7], with a throat that comes to a smooth end
viding a completely new potential resolution of the hierarchyplaying the role of an infrared brane, while the Calabi-Yau
problem. We still seem only to have scratched the surface imanifold itself plays the role of an ultraviolet brane by ter-
exploring this new universe. minating the throat at the top. Since the total space is com-
The added complexities of these models imply the possipact, this picture bears similarities to bdth] and[2]. In
bility of various new phenomena taking place at differing these theories, the fluxes have the additional benefit of freez-
scales. In the case where some of these thresholds are loig many geometric moduli of the Calabi-Yau background,
ered toO(1 TeV)—or even lower—clearly it is especially as well as the dilaton. The “Gukov-Vafa-Witten(lGVW)
interesting to understand what they are, and how they arsuperpotentia[8] that freezes these moduli also can break
related to the geometry and fields on the internal manifoldsupersymmetry spontaneously.
The diversity of possible scales include the natural scale for In this paper we study the relationship of the various
scalar masses, the apparent and fundamental Planck scalgsesholds of physical phenomena in a warped or brane
thresholds for production of Kaluza-Klein states, excitedworld compactification, both to each other, and to properties
of the underlying geometry. Several of these scales rely only
on simple properties of the geometry, and very general state-
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refer to these adynamical scalesWe will illustrate some of whereg,,, is the metric in the extra dimensions. However,

this model dependence in the context of the modé#ipind  we have increasingly realized the potential importance of

the GVW superpotential. compactifications in which this geometry is extended to the
In outline, we begin with a brief general discussion of most general 4D Poincaiavariant form:

warped compactifications and brane worlds. We follow this

by discussing the general relationships between geometrical ds?=e?AWy  dx*dX" + gma(y)dy™dy". 2

scales: the fundamental and apparent four-dimensional

Planck scales, the string scale, and the typical mass scales foHch a compactification is known asvarped compactifica-

brane matter. This is essentially a simple extension of knowtion, and the functiore** as awarp factor[11-14.

results. We then discuss the more model-dependeritstill A second important extension, following from the “sec-

geometrica)| question of the thresholds for Kaluza-Klein ond SUperString reVOlUtion,", is the inclusion of branes. In

modes. We next turn to dynamical scales, particularly theédrder to preserve 4D Poincamvariance, these should be

supersymmetry breaking scale. Here the observed scales délly extended over the dimensions of observed four-

pend sensitively both on thierm of supersymmetry break- dimensional spacetime. Their configuration in the extra di-

ing (e.g., gravity mediated from the moduli sector or a hid-mensions is more flexible. Simplest is the case of D3-branes,

den brane sector, or gauge mediated from extended gaugﬂ]iCh then are pOlntllke in the extra dimensions. But more

dynamics on the brangsand on the warping in the region generally, the compact geometry can have non-trivial closed

where it is localized. cycles on which some of the dimensions of p-Brane, with
We then give an extensive illustration of our comments inP>3, can wrap. _ _
the context of the compactifications [af]. With a moderate Within the context of string theory, there are also higher-

choice of discrete fluxes, these solutions generate a hierarcigrm antisymmetric tensor fields that can acquire vacuum
between the weak and Planck scales, while at the same tingxpectation value$VEVs) in the compact directions, with-
breaking supersymmetry and fixing many of the problematicout spoiling Poincarénvariance.

moduli familiar from traditional Calabi-Yau compactifica-  D-branes, fluxes, and warping are of course in general
tions. After outlining properties of these solutions, we deriverelated, since D-branes serve as sources for fluxes, and both
expressions for the gravitino mass and for the potential foP-branes and fluxes may serve as sources of non-trivial warp
moduli. While not essential for the derivation, these can bdactors. It is also possible for D-branes and fluxes to trans-
thought of as arising from a four-dimensional effective su-mute into one another.

pergravity action, and we exhibit the correspondinghiéa Our interest is in string or M theory propagating on the
and superpotentials, explicitly including the effects of warp-spacetime?2). As long as geometrical features are larger than
ing. Generically the gravitino and moduli masses are estithe fundamental Planck length, the dynamics is well de-
mated to be large, of ordél ,~ 10'° GeV, an apparent phe- Scribed in terms of a low-energy effective action of the form
nomenological disaster. However, as a result of no-scale VD2

structure, the tree level masses for scalars living on an IR D 1

brane vanish. Moreover, fermion masses also vanish at the S= Wf de\/—_g ER“LJ de\/—_gE, ©)

tree level[9], producing a close analogue of teequestered

scenarios of10]. To our knowledge this is the first realiza- whereM,, is the fundamental Planck maéa the phenom-
tion of sequestering in a string theory background. The S€anologically useful conventions $15]), R is the Ricci sca-
questered form persists even incorporating brane back '3y and £ is the Lagrangian for other fields and sources,
tion, although it may not survivex’ corrections. These including matter, fluxes, and branes.

“visible sector” masses receive contributions from loops; the  \y.e would like to determine the parameters that govern

warped structure of the solution indicates that these COITeGy r-dimensional phenomenology, in terms of the parameters

tions should be of orde© (TeV) for solutions where the ¢ the underlying fundamental theory. In the example of a
hierarchy is indeed generated by warping. Section V is ratheétring compactification of the type Il string, for whidh
long and technical, but the reader interested in a brief over— 14" {he string frame Lagrangian takes the form

view is directed to a summary in Sec. VF.

SocMSf di%\—ge 2R+ .-, (4)
Il. WARPED GEOMETRIES, BRANE WORLDS, AND THE

HIERARCHY up to a numerical constant, whegeis the dilaton and the

In traditional Kaluza-Klein compactifications, the extra String coupling isgs=e®". The relation between the funda-
dimensionsy™, m=1,... D—4, of D-dimensional space- Mmental string scale and the Planck scale immediately fol-
time (or more generally, in string theory the extra- lows:
dimensional conformal field theonare taken to form a di- s
rect product geometry with the visible dimensiox$, u Mi0=0gs ~ Ms. )

=0,1,2,3:
The relation between the fundamental and apparent

4-dimensional Planck scales is nearly as simple. Indeed, re-
ds?= 7, dXHAX"+ gmn(y)dy™dy", (1)  place the metri¢2) by one including 4D fluctuations
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ds’=e?"Wg,,, dx*dX"+gma(y)dy™dy", (6) e?Asm=1, (13)

and substitute into the actidd). We find that fluctuations of In these unitgbarring a large ratio of the different averages
the 4D metric about internal geometries obeying the equathat enter in Eq(9)], the fundamental Planck scale and the

tions of motion are governed by an effective action Higgs boson mass are both naturally comparable, and we
M2 therefore have a choice.
4 (1) Conventional Planck-scale compactificatioake
S z—f d*x\V—0g4(X)Ry4, 7 _ , ,
“2 940 R4 @) Mp~M,~10'° GeV, and find a mechanism, such as super-

_ _ _ symmetry, to suppress the Higgs boson mass to a far smaller
with the four- and D-dimensional Planck masses related bygqgje.

M3 (Mp|P~* M. |D—4 (2) TeV-scale gravity scenarioTakeMp~ 1 TeV, which
4 _ b D-4 2A_ b . L —D_a
M2 (217 f d™ "yvgp-.€ (277 Vi then requires/,,>1/MB3 4.

®) From the definition(8) of the warped volume and the
convention(13) we see that the latter choice results from
This equation defines the “warped volum’, . either large volume or a large warp factor away from the
Next consider mass scales for matter fields. In particularof@ne, or some combination of the two; in the barred vari-
if fermion masses are generated by a Higgs sddldn the  ables, these two effects are on the same footing.

absence of a protection mechanism, radiative corrections are 1huS o summarize there are two possible conventions
expected to generate scalar maskhs of the order of the from which to understand the physics of the hlerarchy in the
cutoff, which here is expected to I6(M ), in the Lagrang- context of a TfeV—scaIe ggrawty model. In the first, the funda-
ian £. In the general brane world scenario, where fermionmental scale ip~10'° GeV, and scalar masses are sup-
and Higgs fields propagate on a “standard modebrane pressgd toa TeV. The seconq corresponds to a defmmon of
with coordinates, this results in a contribution to the action foUr dimensional energy relative to an observer localized on
of the form the brane; for such an observer, the fundamental scale is
reached at four-dimensional energids,~ TeV, and this is
1 also the natural scale for scalar masses. The four-dimensional
Sh=-— Ef d“xf P42/ Gbrand €A(V,H)?+ Mz H?], Planck scaleM, is enhanced relative to these by the large
(99  warp factor in Eq(8). We will find the barred variables to be
convenient for most the the following sections, although we
wheregyaneis the induced metric on the brane. From this wewill revert to the unbarred variables for the purposes of cal-
find that the Higgs boson mass scale is given in terms o€ulating masses of bulk fields in Sec. V.
averages of the warp factor over the standard-model brane,

by Ill. GEOMETRICAL SCALES AND THRESHOLDS
In conventional Planck-scale compactifications, many of
f dP~*Z\gprane™ the new phenomena resulting from the compactification are
M3= MZ~e?AsuM 3 (10)  only accessible in the vicinity of the four-dimensional Planck
J dp*ﬁ@(&e% scale,M,~10'° GeV. One of the reasons for the great inter-
est in warped compactifications is the much greater latitude

in the possible scales at which observable phenomena may
Beeur. Many of these scales are determined purely from the
geometryof the warped compactification, as opposed to
other dynamical information. We have just seen two ex-
e2ASM:f dP 4z \Gprane?”. (11) amples: the relationships between the fundamental Planck
scale, the apparent four-dimensional Planck scale, and the

where we denote the average of the warp factor on the sta
dard model(SM) or visible brane by

Thi kes it cl that fields localized i . h naturalness scale for scalar masses are determined through
A'S makes It clear that Tields localized in regions w ererelations(8) and(10) and depend only on the warp factor and
e"<1 have their masses suppressed relative to the fund

i e geometry of the internal manifold. In this section we will
mental scaldlp ; natural TeV scale masses can be generate xtend this discussion of physical scales and the correspond-
by the warp fa}ctor._ . . . ing thresholds for other physical phenomena.

An alternative viewpoint of this mechanism comes from
zzlvr\;gvg;;llll\fsyl symmetry of the actior), (9). Define the A. Strings and black holes
o o o The most exciting possibility raised by warped compacti-

g=\%g, (Mp,Mgy)=(Mp,Mp)/\, H=H/\, (12) fication is that, as outlined above, the fundamental Planck
scale may be much lower than the apparent four-dimensional
with corresponding scalings for other fields and dimensionfuPlanck scale. This means that we may begin to experimen-
parameters. This choice of scale may be used to set the atally access the dynamics of quantum gravity much sooner

erage than previously anticipated.
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For example, it is believed that the generic high-energy 1 )
physics of gravity is the production of black holes. If, as in  Se=— Ej d®xy=g[(V®)?+Mgd?]
the preceding section, we work in units where the warping is

unity on the IR brane, the fundamental Planck sdﬁ[emay Y — (s AAF - 2A v
be as low as a TeV. Of course, the fundamental Planck scale ~ 2 d*xV-g,| d y@e e = n" VM(I)VV(D

generically represents the threshold for production of micro-
scopic black holes, so above this energy collisions of par- + gV ® VD + MG D?]. (16)
ticles on the SM brane can produce black holes; this corre- = , ,
sponding phenomenology is discussedi6—18.* This gives an equation of motion
In the context of string theory, this threshold may be —2Ar UM/ o4A M2 AAF T —

pushed up to make room for an intermediate regime where Ha®+e TV Vn®) ~Mye®]=0. - (17)
string states are produced. This depends on the valge.of  Therefore the masses of Kaluza-Klein states will be given
string production is below the Planck energy. At the same
time, the string length exceeds the Planck length, e 2ALVM(e* AV, Y (y)) —MZe* Y (y)]1= — MY (y).
ls~gs V). (14

The size of these masses for Kaluza-Klein modes localized
Objects smaller than this will explicitly exhibit behavior in the vicinity of the SM brane is generically determined by
characterized by non-local string dynamics, and classicahe scales on which the 6D metric and warp fackovary.
black holes will only begin to exist once their radii exceed For example, in an unwarped compactification, the lightest

this value, at theorrespondencscale[31] scale is roughly 1/, wherelL is the size of the largest di-
mension. In the case of the model [&], the Kaluza-Klein
Mg masses are of sizeR/ whereR is the AdS radius, in other
Mc~—. (15  words the scale of variation of the warp factor which in this
9s case is just
BetweenMg and M, we expect perturbative string states A=—VyIR; (19

gradually to become more strongly coupled and morph into
black hole states, perhaps with intermediate states best da-similar result is found for the string solutions [dff which
scribed as “string balls32,33. have an approximately AdS region. Either kind of geometri-
So, to summarize the results of this subsection, for weaklgal scale will typically be larger than the fundamental length
coupled string theory, we should start seeing perturbativécale(otherwise a geometrical description may not apgyp
string states at the threshoti}’"M,; these become more the Kaluza-Klein(KK) masses will typically be below the
strongly coupled, and evolve into the generic gra\,itationarundamental scale, even far below as in the extreme case of
physics of black holes above the threshMQ/gﬁ. Some of

the phenomenology of the initial perturbative string regime Of course, there may be more complicated scenarios
has been discussed [i84]. where contributions of the warp factor relative to that on the

SM brane rescale these masses. Kaluza-K(Kik) modes
localized in a region with warp factoA will have their
masses scaled bg*. For example, Ref[36] investigates
Another generic phenomenon is production of Kaluza-scenarios with multiple throats that are approximately
Klein modes. For simplicity we just discuss these in the casanti—de Sitter; if we consider the KK modes localized in
of scalar fields, although results for higher-spin fields shouldhroatj in a vicinity with warp factorA;, then the corre-

B. Kaluza-Klein modes

be qualitatively similar. sponding masses will be renormalized by the faetbras
Specifically, consider @-dimensional scalar fieldpb, seen by an observer on the SM brane. Of course couplings of
with action such modes in a distinct throat to those of the visible sector

are expected to be correspondingly suppressed.

1t has long been believed that collisions above the Planck energy C. Summary of geometric thresholds

should create black holes. An early concrete statement is Thorne’s T ize th Its of thi fi . TeV. |
hoop conjecturd19], and such processes were further studied in 0 summarize the results or this section, in a 1ev-scale

[20] and[21-23. Referencé?24] pointed out the relevance of such gravity scenario with hlgrarchy gengrated by warping, the
black hole formation within the TeV-scale gravity models[af, sequence of thresholds is as f_olloW‘Ehl§ summary IS given
and discussed some aspects of the phenomenology. Other aspectdbine “brane-based” conventions outlined in the preceding
black holes in these models were discussd@8, and their evapo-  Section) The lowest energy threshold is generically that for
ration in[26]. The experimental relevance of black hole formation Kaluza-Klein states,

in warped scenarios was pointed ouf16]. A general argument for

classical black hole formation at high energies appeaf27h For Mo~
reviews, se¢28-30. KK

KK
R 1

(20

066008-4



SCALES AND HIERARCHIES IN WARPED . . . PHYSICAL REVIEW 7, 066008 (2003

whereAg is the warp factor in the region where the state ismetry breaking scale i&, we expect that the splittings in the
localized, andR is a characteristic proper geometrical scale.standard model sector are given by
Next, in the case of a string scenario, and at least for mod-

erately weak string coupling, comes the threshold for pro- A?
: - . Mg~ (24)
ducing string states: Mg
Mg~g¥*M . (21)  where hereM ,~Mp~1 TeV if the branes are separated on

scales small as compared to the curvature scales or radii of
For the possibly more realistic case of strong string couplingthe extra dimensions, ankl o~M, if the branes are sepa-
this is degenerate with the fundamental Planck scale, whickated on larger scales. Foxr~ TeV this can produce the
as measured by observers on the standard model brane dgrrect splittings if the effective gravitational mediation scale
Mp~ TeV; this is the approximate threshold for producingis M, . However, this produces splittings that are far too low,
black holes. Scalar masses are also naturally of this size: ©(107%) eV, if the mediation scale goes likd ,.
_ Different scales may, moreover, be generated depending
Mo~Mp. (22 on thelocation of the supersymmetry breaking in the extra

_ . _ dimensions; we expect a general relationship
The four-dimensional Planck scale lies far beyond, at

o4 A~efsusvAgsy (25
M3 B
:; = ( %) V. (23)  whereAgysyis theproperscale for supersymmetiggUSY)
Mp 2m breaking(as measured by a higher-dimensional observer in

the supersymmetry breaking regjeande”susvis the corre-
sponding warp factor of that region. For example, one may
consider supersymmetry breaking on some branes that have
been raised some distance up an AdS throat relative to the

. . . standard model branes—although a critical question is how
Certain physical thresholds are determined by more de- o . ; .
. I . . ; to stabilize such branes. Alternatively, as mentioned previ-
tailed dynamical information than that contained in the met- ; o
o . . .ously, one may generically have warped compactifications
ric; these are the dynamical scales. An obvious example is

that of supersymmetry breaking mass scales: the mass of tr\]/vith more than one region with strong warp factor; standard
ravitino pandyof su )(/er artnergs Moreover .eneric Calabip%del branes could be in one region and the supersymmetry
9 ' ) Of SUperp ’ ' 9 : breaking sector in another. A large relative warp factor be-
Yau compactifications suffer from a plethora of moduli, but

: ween the two regions can generate a large variation in the
these typically also get masses upon supersymmetry break- .
. . " supersymmetry breaking scdl@®©f course one expects that
ing. Details of these scales depend sensitively on the dynam)- L
the proper scale of supersymmetry breaking is bounded by

ics; we will exhibit the mechanism of flux-generated masses ,
in the next section. the fundamental scalé\sysys <Mp . But the relative fac-

There are two broad classes of relevant supersymmetif" in EQ. (25) can easily produce a sufficiently large grav-

IV. DYNAMICAL SCALES; SUPERSYMMETRY
BREAKING

breaking mechanismgauge mediatedndgravity mediateg ~ 'INO Mass,

and in particular the latter appears to offer the possibility of e2AsusYA 2

a large range of scales. Map susy (260)
In gauge-mediated supersymmetry breaking, we imagine My

that in addition to the standard model dynamics, the infrared Indeed. th " lso i ice b

branes produce other dynamics that breaks supersymmet hdeed, the gravitino mass can aiso in Pfac“ce e too

and is conveyed to the standard model fields via a gaugggh' For example, SUSY breaking in the vicinity of the UV

theory messenger. Such mechanisms have been widely st rane could produce a scale

ied; for a review and references 9§65]. It should be noted Mao~M,; (27)

that while many of their features are not necessarily modified

by virtue of the warped setting, a TeV-scale gravity scenariave will see a similar phenomenon in models which produce

does apparently put one strong constraint on allowed sceSUSY breaking through flux in the next section. However,

narios since the highest allowed scale in the gauge theomhere is one other interesting caveat: supersymmetry break-

near the SM brane is the TeV scale. This is problematic ifnng does not always generate tree-level masses for superpart-

view of the need for SUSY breaking scales of order 100 Te\hers. This may for example happen if theter and super-

to avoid flavor problems. We will not explore further aspectspotentials of the visible and hidden sectors completely

of these scenarios in this paper. separate. Such a mechanism was proposed in the “seques-
In gravity-mediated scenarios, it appears that there can bered” scenario of{10]. In this case the splittings will be

a much richer interplay between the supersymmetry-

breaking dynamics and the warping. For example, first con=——

sider supersymmetry breaking produced by gauge dynamics’Reference[36] proposed a different mechanistunneling me-

on other IR branes that are only coupled to standard modeliation, for supersymmetry breaking in such scenarios, although for

fields via gravity. In this case, if the hidden-sector supersyma large range of parameters gravity mediation dominates.
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produced by loop corrections. If the gravitino has a massvhere we have
given by Eq.(27), it is effectively removed from the theory

on scales smaller thaM,. One might think this leads to G)=F(@)~7H@), 7=Ctie (29
loop corrections of ordeM , to scalar masses in the visible
sector, but note that when one computes the divergent dia- F)=dC), HE=dBy,

grams that give such masses, the cutoff should actually be

the fundamental Planck scaM. The important point is
that as seen from the perspective of an observer on the stan-
dard model brane, she lives in a theory that is not supersym-
metric, but in which the fundamental scale and cutoff isHere R is the Ricci scalarg is the dilaton,C g, is the
Mp~ TeV. Quantum corrections should thus produce scalaRamond-RamondRR) scalar,B(,) andC,) are the Neveu-
masses of TeV size. Similar, though less general, observaxchwarz—Neveu-SchwardSNS and RR 2-form poten-
tions were made ifi37]. tials, andC 4 is the RR 4-form potential. The five-form field

strengthF s, is self-dual:

1

1

F5=dC)— 5

V. A STRING THEORY EXAMPLE: HIERARCHIES FROM
FLUXES Fi5)=*Fs). (30)

A concrete realization of many of these ideas is provide
by the warped compactification solutions described4h
These exhibit some of the basic ideas of the two-brane sc
nario of[2] in a known microscopic theory, namely type 1B action in a background 5-form field must be done with care
string theory. They also have other appealing features, a3 we discuss in Sec. V C. '
they improve on a standard phenomenological difficulty of It is familiar that a four-dimensional\’=2 supersymmet-

string theory by stabilizing many of the moduli fields. Super- ic solution may be obtained from a type Il theory by con-

symmetry is generically broken, but both the cosmqlogicalgidering a background geometry of the foRfix M, where
cor:s'tant a.nq, as we discuss below, masses for. v.|5|ble S€C%41 is a Calabi-Yau threefold. However, there is a much
tor” fields living on a brane are zero at tree level; this can be

related to a “pseudo Bogomol’nyi-Prasad-SommerfieIdWid,er class of warped compactifications preserving the Poin-
(BPS” condition on the branes, which we describe shortly. caresymmetry. The general Poincaresariant configuration

o . . llows the axion-dilaton scalar to vary over the compact

Specifically, quantized three-form fluxes are introduce anifold
inside a compact six-dimensional manifold, warping a region '
of the space into an approximately AdS throat. The throat is r=1(y), (31)
terminated smoothly at the infrared end by a geometry that is
an appropriate analogue of the Klebanov-Strassler solutiogng allows components of the three- and five-form fluxes in
[7], while the unwarped region of the manifold plays the rolenq compact directions:
of an ultraviolet brane, much as jB].

Mobile branes that fill the non-compact directions are ge- 1
nerically required to be present. Some of these branes are G)= iGmnp(y)dymdy”dyp, (32
taken to reside in the throat region, where the warping in- '
duces a hierarchy of scales for the “visible sector” fields on ~
these branes. In principle one would like these to be the F(5)= dma(y) (1+*)dymdx’dx dx?dx’.
standard model fields, which could perhaps be realized by (33
placing an additional singularityor more generally brane
intersections at the base of the throat, but we will for the
moment content ourselves with the simpler case otifi)
spectrum of D3-branes at a generic point.

q/vhich does not follow from the actio(28); rather, Eq.(28)
is understood to produce the correct equations of motion
Svhen supplemented by E0). Dimensionally reducing the

The expression for the five-form is manifestly consistent
with self-duality (30), and is the most general form consis-
tent with the Bianchi identity. Poincar@variance also al-
lows D3-branes, which will be pointlike in the extra dimen-
sions, 5-branes wrapped on two-cycles, D7-branes wrapped

] . ] ) _on four-cycles, and D9-branes. The metric in general takes
We begin by describing these solutions in more detailthe warped form

The bosonic low-energy action for type IIB supergravity in
the Einstein frame can be writtéwe use the conventions of  ds?=G,,dxMdxN=e?A) 7,,dX4dX + gon(y) dy™dy".

A. Solutions and geometric scales

[4]) (34)
1 Int™Mr Gz G, With a typical configuration of branes and fluxes,, is no
b _ M (3)"~®) n
51|B—2K2 dlox\/—g|R— 2(m 7)2_ 12Imr longer Calabi-Yau.
10 Referencd 4] considers a very general class of string so-
E2 1 CiAGAG, lutions that are obtained by making an additional assump-
_ (5)|] -— f @y =6y 26 (28  tion, and this class will be the focus of our description for the
4-5! 8ik1p Im 7 rest of the paper. The assumption is that localized sources
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such as branes and orientifold planes must satisfy a BPS-likiions of theF-theory examples, we will often keep the ori-
condition relating their stress-energy to their D3-braneentifold case in mind, but it should be remembered that both
charge: are possible.

The underlying Calabi-Ya@CY) manifold in general has
a large collection of both Kaer and complex structure
moduli, and this is typically a problem for string phenom-
enology. However, for given quantized fluxes, the ISD con-
Here ps is the D3-brane charge density of the localizeddition (38) fixes many of these modul#]. This condition
sources, and the constanj is the D3-brane tension. This can be reexpressed in terms of the Dolbault cohomology of
“pseudo—BPS” condition roughly states thafc negative-tensionthe CY manifold, as permitting only a primitive (2,1) form
sourcegwhich are of course allowed in string theory, as for (ie., aGyj satisfying gjkGijFZO) and a (0,3) form. The

example orientifold plangscannot be too strong. former preserves\N'=1 supersymmetry, while the latter
Under these added assumptiop#, finds the general so- pyeaks all SUSY. Generically, one expects both types to be
lutions in terms of an underlying Calabi-Yau geometoy  resent in a given compact background, and so SUSY is
more generally, in the case with 7-branes Fatheory back-  generally broken. These models are found classically to be
ground. The warp factor and five-form are related by no-scale model$38,39, and in particular the cosmological
constant vanishes despite supersymmetry breaking.
The 3-form fluxes must satisfy quantization conditions

the internal metric izonformalto a Calabi-Yau(or F-theory ‘t’)"ith_ r?spercl:t to thel 3-cycles aiv; if C; form a homology
base metricg, asis for three cycles,

1
Z(Tm_Tﬁ)IOCZTsps- (39

e*hA=q, (36)

gmnzeizA’émna (37 fc F(3)=(27T)2a/’|\/|| ) jc Hs)= _(ZW)ZCU'K| .
! I

the flux must be imaginary self-duéliSD) in the compact 47
dimensions,
Consequently they are fixed and do not fluctuate. A particu-
*6G(3)=iG 3, (38 larly interesting case, which we will bear in mind as an ex-
o . _ample, arises if we work in the vicinity of a conifold point in
where *; denotes the six dimensional Hodge dual, and fi-the Calabi-Yau moduli space. Call the degenerating cycle
nally, the BPS-like conditiori35) is in fact saturated for all 5n4 its dual cycleB, and suppose we have turned on a flux

sources. _ _ _ .configuration with
The presence of localized sources is not an option, but is

forced on us by flux conservation. Becauselthg) andF s,
fluxes participate in the 5-form Bianchi identity, J Fs=(2m)%a'M, J Hy=—(27)%a'K. (42
A B

As [4] found, this generates an approximately AdS region,
together they produce a source of D3-brane charge. Addiocally resembling the Klebanov-Strassler geoméily
tional sinks of D3-brane flux must then be introduced on the These particular solutions exemplify the features of
compact manifold to cancel this charge. Two options weravarped compactifications that we have discussed in earlier
discussed in Refi4]: one may quotient the space by a dis- Sections. The most fundamental is the warping that arises in
crete symmetry so as to introduce orientifold 3-planes, othe AdS-like region. The fluxe@2) produce a relative warp
one may add 7-branes wrapped on four-cycles, both of whicfactor
carry a D3-brane chargén the latter case the charge is in-
duced by the curvature of the four-cytl@he 7-branes re- e'min~exp( — 27K/3M g) (43
quire a non-Ricci-flat unwarped geometry as well as a vary-
ing axion-dilaton 7, all of which is summarized as an between the unwarped region and the bottom of the throat.
F-theory compactification on a Calabi-Yau fourfoxd The Since the gravitational potential is minimized at the bot-
total charge that must vanish is then tom of the throat, and the configuration is not truly BPS, a
reasonable hypothesis is that a potential for the position of
the branes is generated at loop level and has a minimum
f H(3)/\F(5,)=0. when they are at the bottom of the throét/e will return to
M related comments when we discuss generating masses for
(40 brane matte). Fields living on branes at the bottom of the
¥(X) is the Euler number oX, andNps andNg denote the throat will perceive a hierarchy of scaleibetween the appar-
numbers of D3-branes and O3-planes, respectively. NoticentM,4 and the fundamental Planck scall, ; realistic val-
that with a general choice of fluxes, satisfying this constrainues of M,~10'° GeV, Mp~1 TeV may be generated
requiresthe presence of some number of explicit D3-branesthrough Eqs(8),(43) with quite modest values for the flux
on which gauge dynamics may live. To avoid the complica-quanta.

B N X(X) 1
Qo3=Np3z—zNoz— WJF?OB
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The rest of the discussion of geometrical scales of Sec. llwhere ¥, is Weyl but not MajoranaQy is a composite
also directly applies. If the fundamental Planck scale hagonnection composed of derivatives o{see[41]), and the
been lowered ta® (TeV), black holes may of course be supercovariantizations dre
produced above this threshold on the SM brane. Likewise,
string states may be produced, at comparable or lower

[ ~
- Mq---M

thresholds depending on the value of the string coupling Ru= 16.5!(F ! 5FM1-~'M5)F'V"
[thus to agree with phenomenological bounds, weakly
coupled models should instead haVie set toO (TeV) or 1
higher]. Furthermore, the lightest Kaluza-Klein modes will Sy=———(Ty PQGNPQ_ arNPGynp)-

. . . 1/2
have masses given by the approximate geometrical scales at 96(Im 7)
the bottom of the throat; frorfi7] we find (46)

The supersymmetry variation of the gravitino is

i

e+Rye+Sye*, 47

] ) ] ) where the supersymmetry parameteis a 10D Weyl spinor
This exhausts the discussion of the geometrical scales.  fig|qg.

An important question is to determine the corresponding \we must first identify the 4DV=1 gravitino as a particu-
dynamical scales, in particular the scale of supersymmetryy, component of the 10D field. In a warped background
breaking, the magnitude of the resulting splittings in SUpersatisfying Eqs(33),(34),(36) without 3-form fluxes, the pre-

multiplets in the visible sector, and the masses of the modulieyed 4D supersymmetries are associated with Killing
fields. We turn to this task in the coming sections. We Calcu'spinors(for more detail, se@42]°):

late the mass of the gravitino broken by (0,3) flux as a mea-
sure of supersymmetry breaking, as well as determining the = 7(x) @ P2 D v=0 48
potential for the modulf.We also comment on how super- e={x)® x(y), Dmx=0, “8)

symmetry breaking is not communicated to the visible sectof,here we use the tilde to denote the CY metritle normal-

fields at the tree level, a phenomenon analogous (&€ ;¢ the covariantly constant spinor on the unwarped compact
questeredscenarios 0f10]. In the process, we develop ex- spacey asy y=1.

pressions for the Kaer and superpotentials for such warped Knowing the preserved supersymmetry, we can easily de-

compactifications, which heretofore have not been calculategymine the associated gravitino as the SUSY partner of the
with the warping taken into account. 4D graviton. The supersymmetry variation of the 4D metric

Ouv IS
B. The gravitino

) 5g/LVOC§7;LwV+ g’)/Vlr///.L ’ (49)
In the absence of (0,3) fluYy=1 supersymmetry is pre-
served in four dimensions. Correspondingly there is a massand its 10D counterpart is analogous. One then finds the 4D
less gravitino. When SUSY is broken by the flux, the masgyravitino ¢, embedded in the 10D gravitino as
My, Of this gravitino is a useful measure of the breaking. We
shall begin by computing this quantity by dimensional reduc- v, =,0eN%y. (50)
tion of the 10D theory, and in the process relate this to the
expressions for the superpotential andhkéa potential in- It is straightforward to see that under dimensional reduction,
cluding the effects of warping. the Einstein and Rarita-Schwinger terms for the 4D metric
The equations of motion for the 1IB fermions are given ing,, and gravitinoy;, match the standard form:
Appendix B. We find it convenient to work in terms of an
action from which these equations can be derived, and to 1 1 —
determine the gravitino mass it is sufficient to consider the S= K_if d*xV=gu{3Ratigy,y*"*D ¥}, (5D
gravitino squared terms:
] with the 4D gravitational constam, given in terms of the
Kiz leX\/—_g(i‘FMFMNP( Do IEQN‘PP— ReW ), 10D gravitational constant;y and the warped volum¥,,:
10

“The G field picks up an additionat-dependent phase in trans-
forming from the conventions d#1], which we absorb into a re-
definition of W.

5The five-form in[42] is related to oufE s by Fgp=—Fs.

3Related work involving partial SUSY breaking in the unwarped °In the case of aiF-theory compactificationy is covariantly con-
case appeared {#0]. stant with respect t® ,,— (i/2)Q,y,.

i
E\PMI’MNPSP‘PK,wLH.C.

] ) (49)
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Ma=(IMp) ~ A Vy0,) Y4 Im T)_llz(%f Q/\G).

e [ st
(57)

The 4D gravitinoy,, is massless as Iong_ as supersymmetry ISn the absence 060 3 flux, my,—0 and 4DN=1 super-
preserved. Th&p term in the action vanishes, and a possiblegy mmetry is restored. This suggests that the supersymmetry
mass contribution from thRp term is canceled by the term breaking can be captured in aki=1 language, where a

in the spin connection containing a derivativeAof gravitino mass can be expressed in terms of thiléapo-
However, in the presence of 3-form fluxes, supersymmesqniial k and superpotentiaV as

try is generically broken and the graviting, acquires a
mass. For a pseudo-BPS solution, the 5-form/warp factor
relation (36) persists and th&® and spin connection terms
continue to cancel. The mass term gy, is then generated After discussing the moduli in the next subsection, we will
solely from theSy term in the 10D action. Its reduction is present values for the éer and superpotentials, and dem-

(52

Mgy k5€/2W. (58)

straightforward, and one obtains

1 1 _
— d4XV—94—|(¢ YHU)
Ko (Imp)¥2| "
i 1 ~
I 6yt mnp*
X 48Jd y gG(Im 7)1/2)( ’y X Gmnp +HC]5
(53

where in the above we included thelidar modulusp con-
trolling the overall scale of the compact directions; we dis-
cussp in the next subsection. This is the proper form for a
gravitino mass termwith

1
" (m ) (m ) A,

( 2%1J de@XT’;’man* Gmnp) .
(54

Taking a complex basis j,k,1,J,k for the Calabi-Yau met-

ric, we may define the covariantly constant spinor to be the

“lowest weight” for the Clifford algebra:y'y=0. One then
sees immediately that only the (0,3) piece®f, contrib-
utes to the gravitino mass, as expected.

Given our normalization foy, we have the relation

~|J_k

Qvk
x"y

k=
el

X" =e (55)
up to an undetermined phase, whelg is the holomorphic
3form of the Calabi-Yau manifold and BQ|J?

= Qljk@Jk USing

lolPv=lof [ ay\Ge 50

Wy,

= J' e AONQ
we then obtain
The bilinearEMy’”z/fj may seem unfamiliar if one is used to 4D

gravitini written in Majorana form, but it is the correct expression
for a Weyl gravitino, which arises naturally from our reduction.

onstrate that Eq57) can be written in the fornts8). We will
estimate the value ahg, in Sec. VD.

C. The moduli

Ordinary Calabi-Yau compactifications possess a large
number of moduli, massless fields corresponding to the de-
formations of the compact manifold consistent with the
Calabi-Yau condition, as well as the axion-dilaton. Since our
solutions have an underlying Calabi-Yau space, in the ab-
sence of fluxes such moduli would also be present there.
Specifically, the corresponding light fields are the complex
structure moduliz¥(x), the Kzhler moduli p'(x), and the
axion-dilaton 7(x). However, an advantage of the pseudo-
BPS warped compactifications, beyond their original motiva-
tion of solving the hierarchy problem, is that many of the
moduli are fixed by the fluxes, including the dilaton. This
was understood if4]; one explanation follows from the as-
sumption of a superpotential of the Gukov-Vafa-Witten form

(8l,

a
W= ﬂgf QNG (59)
K4 M

(where a is a convention-dependent numerical constant
which is believed to arise in a wide variety of compactifica-
tions of string or M theory with fluxes turned on threading
calibrated submanifolds. The flux is fixed, and the moduli
this case the complex structure and axion-dilatadjust to
minimize F terms arising from Eq(59).

In order to give a more complete treatment of these
moduli, in this section we turn to the problem of working out
their 4D effective action and in particular their potential. The
Appendix of[4] began the process of explicitly demonstrat-
ing this action, by working out the kinetic terms and poten-
tial, together with their connection with the superpotential
(59), in the limit where warping can be neglected. The pur-
pose of the present section is to give a more complete deri-
vation, and in particular to find the effective action and
Kahler and superpotentials in the presence of non-trivial
warping. This means not just including the warp factor in the
terms studied in4], but also incorporating the contributions
from the Einstein and five-form terms, which vanished there.
We proceed by fixing the fluxes—in accord with the quanti-
zation condition (41)—and investigating the action for
slowly varying fieldsz*(x), p'(x), and 7(x).
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First we calculate the moduli kinetic terms including the responding to Kaler moduli with a set ofp-form modes into

warping, and derive the corresponding warpedhliéapoten-
tial. The geometrical moduli fields arise in the metric as

ds?=e*We 0uNg  dx“dx’+e” 2ANe2M (g (y)
+T'(X) 8gimn(y))dy™dy", (60)
where thedg, are tracelessg™8g,,,,=0, so that fluctua-

tions of e scale the total volume, while th€', which in
principle include both the remaining Kker structure moduli

complex pairs, but thesg-form fields do not appear in the
Kahler potential.

The Kéhler potential(63) has a form quite similar to that
which arises in the unwarped case, with a correction due to
the warp factor inserted to the volume integrals. The coeffi-
cient of thep term identifies this Kialer potential as being of
the no-scale form, as noticed [id]. As a result the tree-level
cosmological constant will vanish despite supersymmetry
breaking. The resuli63) is valid only to leading order ia';
some next-to-leading-order results were examined4i]

and the complex structure moduli, are volume preserving afneglecting warping We will comment more on these cor-
linear order. The factoe ®“ on the 4D part must be intro- rections later.

duced to decouple(x) from the 4D graviton.

A general flux configuration will lift the complex-

The kinetic terms for the moduli fields are found by ex- structure modulz® and fix the dilatonr. In order to find this
tracting the quadratic order terms in an expansion of thepotential, we assume a general metric thatdasstantin X,

Einstein-Hilbert term in the Lagrangiaf28) using the de-
composition(60). These are calculated to be

Smod :2_ d%x /_—g4d6y\/re 4A(__e Bu( g, )2
K10
1 I J mn
- Z&MT I*T~ 09 mnd9;
3,p3"p
lp—pl?

1
= —2] d4X\/—_g4[ -
Ka

——a TaMTJf 4%y Vgee A 6g)mndgT } (61)

where we have defined the complex figldsuch that Imp
=e™: the real part is a form field that was discussed4h

ds?=e?AWg , dx*dx’+e 2 AWg, (y)dy™dy"; (65

the moduli potential is exhibited from dependence of the
action on the Calabi-Yau metrw,,,, as well as the dilaton.
Specifically, the effective potential for these is computed
from theR, |G(3)|?, andFy, terms in the actiori28); these
are terms with explicit dependence on the metric in the com-
pact directiong.

For the metric(65), the Einstein-Hilbert term can be
shown to give

f dlox\/ngzf d4x\/—g4f d®x\/ge[ — 8(VA)2e*A].
(66)

The action forF5 is more subtle: for a self-dual field, it
vanishes. This is part of the usual problem for formulating an

The moduli space metric for the remaining fields is seen taction for self-duap-form field strengths. One way to obtain
be a suitably warped version of the Weil-Petersson metrica consistent dimensionally reduced action is to double the
From Eq.(28), one easily calculates the 4D dilaton kinetic coefficient on the 5-form term, but restrict to components of

term to be

(62

Syir= zfd x\/—_g4{

077'&7']
| 7= 7]?

The kinetic terms(61),(62) are consistent with the Kder
potential

K=-3 |Og:—i(p—;)]—|og( — I_Gf dee—AA\/a>
Kq
i — _
—|°9<_—6f e4AQ/\Q)—|Og[—i(7——7-)], (63)
Kq

where the volume piece is computed using the metric

9(X,Y) =Tmn(Y) + T'(X) g oY) (64)

with the overall scale piece removed, as in Ef). Notice
that A’=1 supersymmetry will match the redl fields cor-

F(5) with indices alongR* (or equivalently, restricting it only

to components with no indices along?. It is readily
checked that this prescription yields the correct dimension-
ally reduced equations of motion for the metric. Using the
expression33), we find

f 10W_4 51

d*xy~ g4 f dﬁyf

ma)z
(67)

Then from the relatior{36), we find a contribution equiva-
lent to Eq.(66). This can be rewritten in terms of the fluxes
using the Bianchi identity39), which takes the form

iG gt G™P
A= —" 7 4ocal

48Imr (€8)

8As usual, in theF-theory case the dilaton term must be added to
the Ricci term to get the desired result.
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[the localized source terms cancel for sources saturating th3,0) and (1,2) forms have the correct self-duality properties

pseudo-BPS conditiof85)]. The first term is a total deriva-
tive when integrated. We therefore find

fwx@[ 45|

ie4AG % Emnp
_ 4 — 6 mnp 6
fd Xy g4f d y@s—lzlm

(69

Combining this with theG; term then gives

1 _
Sv:; d4x\/—g4f mG(s)/\(*ee(a)“Gw))-
10

(70

Defining imaginary self- and anti-self-dual parts of the flux
Ga).

Gé):%(G(B)ii*GG(S))y *6G(t3)::iG(t3), (71
we can write the potentidl70) as
1 4
Sy=s—5 | XV 04 G(s)AG(a)
2K7o
= d4x\/—g4j G(3) 66?3),

K10

(72)

to appear in the expansion, so we find

1 — -
eAAGa):w_W(QJ G(3)/\Q+g“ﬂ)(gf G(3)/\Xa)!
(76)

where we used G3,/\Q=[G3/\Q and an analogous ex-

pression for the basis @®,1) forms y,, and whereg*# is
the inverse to the metric

1 4A
Gap=——| € X \X5, (77)
Wy
which follows from the Kaler potential(63).
Hence the potential i&estoring factors op)
e74A
212, _Zf N mp)® )3f imr | QJG“)

/\5] E(g)Am(g-lw?(g—l)ﬁ??;maf G

/\X(sf 6(3)/\;4

1
(Im p)3 Imr

— [ ana——

f G(s)

/\(_zf 6(3)/\Q+(g*1)a5f G/\Xaf GA\x5|-

2K4 wOw

(78

where in the second line we used the self- dua||ty propertleﬁ is not hard to show that this form can be derived from the

(71) to reIateG(3) to 6G(3) and to showG(S)/\G(g)
The potential(72) has the form anticipated if¥], but Wlth
warping included.

We also anticipate that we should be able to write thi
potential in terms of the Kaer potential(63) and a super-
potential via the usuaN'=1 formula

V= K4f d*x /= g2€"{(G ~1)ABD ,WD W~ 3|W|2},
(73

and it is interesting to check whether the Gukov-Vafa-Witten

form (59) persists in the presence of warping. For simplicity
we specialize to the case=const. The equation of motion
for Gz is [4]

i
dA + W_dT/\ReAZO, AEe4A* 66(3)_iafG(3),
(74)
which then becomes

de* G (3 =0=d*se*G3). (79)

Consequentlg**G 3, is harmonic on the Calabi-Yau metric,
and we can expand it in a basis of harmonic three-forms. Th
analysis now proceeds analogously to thaf4h Only the

Kahler potential(63), together with an unwarped GVW su-
perpotential of the GVW forn{59). Using the identityd ()
k,Q+x,., wherek, is a moduli-dependent constant, one

Smay show that

D W= — Q/\G D W= fxa/\G D,W
K4

(7— T) K4

3w

- (79
p—p

The potential(73) may then be computed. As in the large-

volume case, theD ,W|? term cancels- 3|W|?, producing a

no-scale potential. The other terms then reproduce(H),

with the overall factors arising from the Kker potential.

Notice that the subtlety of distinguishing,, (which de-
pends on the complex structure modiditom V,, (which de-
pends on the Kaler modul) was essential in making this
identification. In the large-volume case [id] this subtlety
was not clearly treated.

A check of our derivation of the Kder potential(63) and
superpotentia(59) can be obtained by reproducing the grav-
itino mass(57) from the formula(58). We indeed reproduce
the correct form. This gives us confidence in our results, as
well as reinforcing the ubiquity of the Gukov-Vafa-Witten
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superpotential. Although it is generally believed not to re-Hence the potential for the moduli is also generically of the
ceive corrections from the warp factor, this is to our knowl-scaleM,.

edge the first demonstration that this is the case. The supersymmetry breaking may be heuristically thought
of as coming from the region around the top of the throat.
D. Estimating gravitino and moduli masses The G flux vanishes when the warp factor stops varying, so

. . . , . _the source of SUSY breaking is concentrated in the throat;
Having thalned an analytic Expression for the grav't'nohowever it is not localized at the bottom of the throat, but
and moduli masses, we would like to estimate their values.

One might intuit that a bulk field like the gravitino gaining instead receives its dominant contribution where the warp
S . factor is largest, which is near the top. From the point of

mass from SUSY breaking in the bulk will have a mass of . ! : . :
the same order as the effective scale of gravity, narvly view of the earlier discussion on supersymmetry brgakmg,
Indeed this proves generally to be the case. In calculatingne may interpret our resutts; M, as Eqs(24),(25) with
bulk quantities it is more convenient to use the conventiond'susy- M4 since the breaking is fundamental scalé,
where the warp factor is 1 at the top of the throat rather thari- M4 Since the SUSY breaking is well separated from the
at the bottom, which we shall do below. visible sector, ana”susv~1 since it is near the top of the

Having succeeded in expressing the gravitino nga@sin  throat.
terms of a topological integral independent of the warping, One may be puzzled that the gravitino mass rises so far
we can evaluate it in terms of the moduli of the Calabi-Yauabove the scale of bulk KK excitatiori¢4). However, since
space in straightforward fashion. For the Klebanov-Strasslethe massless graviton stays massless even with the addition
fluxes (42) this was already done if#], with the resultlus-  of G flux, the higher excitations of the graviton are protected
ing, in our conventionsf ,Q = V% wherev=fd6y\@ is by 4D general covariance from receiving mass corrections
the unwarped volume from the fluxes, and consequently get mass only from their
shape in the compact geometry. The gravitini have no such
protection.

Note that the broken gravitino will also generically re-
ceive mixing terms with the other 7 massive gravitini; for the

where G(z)=zlogZ/(2mi) + holomorphic. Although the case we have outlined all will have masses kg, the (0,3)
complex structure modulusis the source of the hierarchy flux will be just as large as the (2,1) flux, and there will not
and is fixed to be exponentially small, the holomorphic partbe a region of energies wher®=1 supersymmetry is a
of G(0) is genericallyO(1). Consequently Eq(80) is just good description. One can speculate as to whether one of
(a")VY¥2 times factors of order unity. Cases with more gen-these other IIB gravitini could come down in mass as the
eral flux configurations will behave similarly: exponentially contribution from the Calabi-Yau compactification is can-
small terms inW(z,7) will be washed out byO(1) terms, celed by the contribution from fluxe®r more generally,
and the overall dimensionful constants will not change. whether an eigenvalue of the gravitino mass matrix might be

The expression(57) for my, also involves background particularly small. Although such a cancellation could con-
values of the moduli Inr and Imp. The axion-dilaton Im  ceivably be engineered at tree level, there is no reason why
is fixed by the superpotential to be of order urfiffhe vol-  the mass should remain small once quantum corrections are
ume modulus Inp has a flat potential at tree level. We have included.
chosen units, however, where the background value is All our results hold at leading order in the’ expansion.
(Imp)=1; the overall size of the compact manifold is then It is likely thata" corrections will destroy the no-scale struc-
given by values for the integrals such\aandV,,. Thus we ture, giving a potential to the overall volunpe A computa-
see that tion of the first subleading order was performed by Becker

et al. [43], where a correction to the Kér potential was

(a')VV2 found (neglecting warping The leading order correction
_ (81 was not enough to isolate an extremum of phgotential, but

Vy, . . "

the corrections involve additional factors of the superpoten-

tial and the volume, which presumably becomes warped. The
When the volume and the warped volume are of the fundacorrections to the potential are of order
mental scaleMp~M,, we find thatmg,~M,.

One can estimate the moduli masses in similar fashion.

f QNG=(2m)?%(a’)VY{Krz—MG(2)], (80)

M3/~

From Eq.(73) we read off the form for the moduli potential EWE ,
o oV~ M2 ~ms,My. (83
Vv m2 gIJ D'WD?N (82) ’
2 M2 |W|2

This suggests that the induced potential 4dds also of order
M ,; whether there is any regime where the no-scale structure
%0One needs a slightly more involved set of fluxes than(8).to  is approximately preserved is not known and would be an
fix the dilaton; seg4]. important question to answer.
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E. Brane matter and sequestering K=—=310g fisipe( X, X) + Gnidded Pr) 1, (86)
We have estimated the value of the gravitino masg to

be of the order of the 4D Planck scale or slightly less. Atwhere X are visible sector fields and are hidden-sector
first, this seems to be a phenomenological disaster, sindglds; supersymmetry breaking in the hidden sector will not
symmetry breaking effects in visible sector fields might bebe communicated to the visible sector scalars at tree level.
expected to be as large. Indeed, it is easy to see that generic Referencq 10] suggested the naturalness of sequestering
scalar fieldsp with canonical Kaler potentialC 4~ ¢ ¢ and when the visible sector lives on a brane and the SUSY-
no quadratic contribution to the superpotential receivedreaking sector is physically separated from it in a higher-
masses from supersymmetry breaking on the order of théimensional space. However, Anisimov, Dine, Graesser, and

gravitino mass: Thomas(ADGT) [44,45 have pointed out several examples
L o from string and M theory, including type |, Hava-Witten,
D ,W~W¢+ O(p*)— VD eX|W|%p . (84 and Dp-D p’ systems, where sequestering is not generic de-

spite the physical separation of sectors on two different
One might naively believe that brane matter will couple inPranes. The reason can be traced to the exchange of bulk
this fashion, in which case bulk supersymmetry breaking byclosed-string modes at tree level, which can generate con-
ISD fluxes in the pseudo-BPS spacetimes, despite other nid8Ct terms between the sectors of the order of the gravitino

features, would not be a viable candidate for phenomenolMass. o ) )
ogy. Our scenario is the first example we know of sequestering

However, one may explicitly calculate the mass inducedn & string theory background, at least to leading order in the
by the fluxes for brane fields. The action for a D-brane is®_ €Xpansion. ADGT[44,45 were aware of the no-scale

given by the sum of Born-Infeld and Wess-Zumino actions Kahler potential of the pseudo-BPS solutions [@ff, but
given here in the string frame, speculated that even were sequestering to arise in such mod-

els with brane back reaction neglected, such back reaction
would destroy the sequestered form. This is not the case for
Sps= _T3J d*xe”?\Jdef{P(Gap+ Bap) +27a’ F 4] our scenario. As remarked previously, the pseudo-BPS solu-
tions can include the presence of certain localized sources—
) including D3-branes—in the background. Hence, although
+,u3f 2 P[CINe?™F B, (85  the back reaction of the D3-branes in the throat will locally
: change the specific form of the solution, it will not bring it
outside the pseudo-BPS class, and our conclusions about the
whereP denotes the pullback of a spacetime quantity to thqack of tree level masses will persist.
brane,F is the worldvolume gauge field and; and T are This raises the question as to whether another type of
the D3-brane charge and tension. In the absen€& gf, the  prane known to sit in the almost-BPS class of objects, such
D3-brane preserves the same supersymmetries as the warpggithe 7-brane wrapped on a 4-cycle, also has worldvolume
geometry, and thus there is no potential generated; any p@xcitations sequestered from bulk supersymmetry breaking.
tential must appear with the SUSY breaking. Howe&gs,  If so, it would provide a richer set of possibilities for engi-
appears in the D3-brane action solely through the pullback ofieering visible sector matter, with the wealth of possible
the potentialB,) andC,. Since neither potential is polar- cycles in the compact space to wrap. We leave this question
ized along the D3-brane, it is not hard to convince oneselfor the future.
that all nonvanishing terms in their pullbacks involve at least |n previous sections, we established the warpéetléta
one derivative of the brane fields, and hence cannot generagwtential(63) for the bulk moduli. The D3-brane matter must
a potential. Indeed, one may explicitly check by examiningenter into the Khler potential as well, and owing to the

the three-brane actiof85) that the relatior(36) between the  sequestered form it must enter in a nontrivial fashion. A natu-
warp factor and five-form guarantees a no-force condition onal guess is something of the form

D3-branes, with gravitational and RR 5-form potentials can-
celing. __ Y iva - =

Furthermore, it was found by Graf9] that the D3-brane K 3log—i(p=p) +K(X. X))+ K(r,7)+ K(2,2) ,(87)
fermionic terms do not couple to the imaginary self-dual part
of G(g). Although other kinds of5 5 flux can lead to vari-

ous masses and couplings for brane fermions, the brane / X i~ .
pnd or the Calabi-Yau space. This modified iar potential pre-

entirely insensitive to ISD flux. Consequently, we arrive at h | ] i that f bi
the result that supersymmetry breaking by (0,3) fluxes inS€rves the no-scale structure: one may verify that for arbi-

duces no tree level masses at all for D3-brane fields. trary K, the contributions td’DW'_Z from p andX (includir;g
Vanishing of scalar masses arises from the no-scale stru@ff-diagonal termsalways combine to give precisely\w/|”.

ture of the theory: the additional feature of vanishing fermion | "€ expressiorig7) also leads to a coupling to the radial

masses is analogous to the sequestered structure proposed'Adulus, at leading order, of the form

[10], and we shall refer to it as sequestering in what follows.

. . . .- _ 1 - ) -
';li-zle no-scale structure is characterized by thél&apoten TDsJ' d“x\/—_g4 |mp92Agi7‘9uX|’9MXJ' 89)

hereK(X,X) is related to the spacetime”Kar potential
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which is the correct power of Im arising in the Born-Infeld String theory solutions found ifp4] provide a non-trivial
(BI) action. The lack of coupling of the dilaton that appearsexample_ of many of the warped compa.ctificatilon ideas dis-
is also correct for the Einstein-frame action. We leave furthecussed in the first four sections, and in particular can be
exploration of this Kaler potential, including the coupling arranged to generate a hierarchy through warping and thus
of the complex structure moduli, for future work. produce a TeV-scale gravity scenario. This means that geo-
Spartner masses vanish at tree level, but as discussed fetrical scales will be realized as was discussed in Secs. |l
Sec. IV, should receive corrections at loop level. From the2nd lll. In particular, for an observer on the IR brane where
point of view of an observer on the brane, supersymmetry i¥/€ imagine standard model physics residing, the fundamen-
broken — the gravitino is eliminated from the low energy tal Planck scale will be. .reach(.ad at scattering energies
spectrum. Thus generic loop corrections are expected to raigg (T€Y), and we can envision string and black hole produc-
mass scales to the cutoff scale. However, as we have emphi2" 1aking place at such energies. Kaluza-Klein masses are
sized, for an observer on an IR brane in a TeV-scale gravit ve)n lighter, and are given in terms of the flux quanta by Eq.
- oo 44).
scenario, the fundamental scale @&(TeV), and this is These solutions arise by considering close analogues of
where the cutoff on loop momenta should be placed: abO\;&

. o alabi-Yau manifolds with three-form fluxes frozen into
this scale, one encounters strongly coupled gravitationaheir geometry. These fluxes break supersymmetry. They also

physics. Thus spartner masses are generically expected to Bgnerate a potential for many of the moduli fields that would
around a TeV in such a scenario, which is a reasonable anstherwise be massless in a standard Calabi-Yau compactifi-
swer for phenomenology. cation. The gravitino mass is given in E&7), and can be

Note that part of the original motivation for the seques-estimated to be of the order of the four-dimensional Planck
tered scenarios of10] was to have a situation where the scale, 18° GeV. The moduli kinetic terms are given in Eq.
dominant contribution to spartner masses was througli6l), and the potential for moduli in Eq72). This lifts the
anomaly mediated supersymmetry breakindAMSB) complex structure moduli and the dilaton to have masses also
[10,46), with mass scale generically of the order of 8 GeV. The action for the

moduli, and for the gravitino, can be conveniently summa-
9° rized in supergravity language in terms of ahiex potential,
MamsE™ bo(m) Mg, (89  Eq.(63), and a superpotential, given by E&9). These ex-
plicitly include the effects of the warping.

Although supersymmetry is broken at a high scale, at the
tree level the cosmological constant vanishes and matter
) . . : 12104 |ds on an IR brane have vanishing masses. For scalars, this
dimensions Given that in the present case the gravitinogaiement corresponds to the fact that we are dealing with a
mass is far above the effective cutoff scale®@f(TeV), it  no_scalemodel. This structure also extends to fermion mat-
seems that this formula cannot give the correct masses hergyy resulting in asequesteredtructure. This structure sur-
rather it appears that the masses arise from generic loop cQjjyes prane back reaction. Spartners are however expected to
rections. A better understanding of the role of AMSB in this get masses from loop corrections, but since the fundamental
model could be of interest. scale for brane matter, and hence the relevant cutoff, lies at

Another possible way to exploit the no-scale structure ispe Tev scale, these masses are expected to be TeV size.
to find a background in which th@®,3) component ofG 3,

where b, is the one-loop beta function coefficietfor the

can be switched off, and to break SUSY on another set of
branes situated in the middle of the throat. Thehl€a po- VI- CONCLUSIONS
tential becomes We have discussed a number of generic features of the
scales and thresholds in warped compactifications, and illus-
K==3log(—i(p—p)+F(X,X)+g(Y,Y)+K(r,7) trated them in the special case of the solutions of type 1B
o string theory given iff4]. The latter solutions in particular
+K(z,2), (90)  offer possible solutions to some of the difficult problems of

string phenomenology. Supersymmetry is broken by three-

whereY are the hidden sector fields. Again, as far as Susyorm fluxes frozen into the geometry, and a potential for a
breaking is concerned this has the no-scale form. The locdarge number of otherwise problematic moduli is generated
tion of the hidden sector brane could be tuned to provide thé@t the same time. Spartner masses are not generated at tree
right amount of SUSY breaking; this is a fine-tuning, but it level, but in such a TeV-scale gravity scenario are expected
preserves the other advantage of AMSB, that it addresses tfi@ receive loop corrections of TeV magnitude.

Supersymmetric flavor prob]em_ This sort of “brane” SUSY While these Certainly seem like interesting successes, it
breaking is much more prevalent in the literature than theshould be borne in mind that there are a number of other

“pbulk” SUSY breaking we have examined for much of this Problems that must be resolved in order to find solutions of
paper. string theory that realize TeV-scale gravity and reproduce a

realistic phenomenology including the standard mog&v-
eral of these are also problems also for more traditional
Planck-scale compactifications of string theory, so do not
Since this section has been rather long and technical, wediscriminate against TeV-scale scenani@ne obvious ques-
give an overview of its essential results here. tion is how to realize the structure of the standard model

F. Summary of phenomenology
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within the general framework of this kind of solution. Many  The ten-dimensional gravitin®,, is Weyl (but not Ma-
ideas have occurred in the literature, involving intersectingorana:

branes and branes at singularities, and it may be possible to

combine these scenarios with a framework like that pre- ryWwuy=-vyu. (A3)
sented here, but clearly there is some non-trivial work to be

done; some interesting recent progress in this direction ink decomposes into the 4D gravitino d5,= ¢, ® e?2y, for
cludes[47,48. Particularly challenging issues include repro- which we have for our class of solution

ducing the gauge groups and matter representations, with
reasonable couplings, of the standard model; addressing
baryon and lepton number violation, and reproducing the re-
lation between the gauge coupling constants that can other-
wise be taken to indicate matching via renormalization group APPENDIX B: FERMIONIC EQUATIONS OF MOTION
running to a grand unified scale. A second problem is that of FOR TYPE IIB SUPERGRAVITY

the remaining moduli; in particular, Kéer moduli are not
stabilized by the fluxes we consider, and thus must be fixe
by another mechanism. This is a generic problem, since th%
overall scale of the compact manifold is generically @ka
modulus. (For another approach, s¢d9].) Corrections at
higher order in string loops at’ (see e.g.[43]) may play a

role, but it is difficult to see they do sand mair_1tain reason- i< however implicit in other expressions given[#i], nota-
able mass scales. In particular, we must ult|mat(_aly face thﬁly the supersymmetric variations of the fermionic equations
thorny problem of the cosmological constant, which here a%f motion (4.7), (4.10, (4.13, and (4.15, and can be de-

in other scenarios W'.th broken supersymmetry would apPPeYced from these. We collect the complete equations here for
to take a value that is far too large. future convenience

In this appendix we use the conventions[df] for the
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Ysu=W, Ymx=—Xx (A4)

The fermionic equations of motion for type IIB super-
ravity (to linear order in fermionsare presented in Egs.
4.6),(4.12 of [41] with coefficients given by Egs.
(4.8),(4.14). However, the derivative in these equations con-
tains supercovariantizations involving three- and five-form
fluxes not explicitly recorded there. The complete definition
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T:_ﬂrMNPGMNP, U—_FMPM
APPENDIX A: CONVENTIONS
(B3)

We work in mostly plus signature in both ten and four _ ' _ _
dimensions. We usM,N for 10D indicesu,v for 4D indi- ~ HereDy =V —(i/2)Qu contains the ordinary covariant de-
ces, andn,n for generic 6D indices; the last can in turn be rivative including the spin connectiov, , and a composite
divided into holomorphid,j and antiholomorphia,; indi- ~ connectiorQy composed of the complex scalar, whitg, is
ces with respect to the complex structure of the Calabi-Yadhe field strength for the complex scalar. The gravitino equa-
threefold. tion of motion is

Ten dimensional gamma matric&€®! are 32x 32 matri- ] )

; ; R i i K
ces. They decomposeJnto a product of 4 4D matricesy” TMNPD W o= — S TPIMA* Pp— - TNPOTMAGY L
and 8x8 6D matricesy' as follows: 2 48
3
It=e Ayrel, TIM=elysey™, (A1) +O¥), (B4
where where the supercovariant derivative acting on the gravitino is
{y*,y}=2g*", {y™y"=2g™. (A2) D\ p=DyWp—kRpW\— kSp ¥}, (B5)

The chirality matrices are related 8g,= yS"&M, and obey [

_ - M- Mg
Ye=ya’=T’=1. Ru= 280" Fug g
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1 N=Te+Use*. (B8)
SM:9_6(FMNPQGNPQ_9FNPGMNP)-
(B6) _
_ o _ In our conventions, Schwarz’s constant 1, and should not
A supercovariant dgnvatwe ina genergl supergravity theorpe confused with ouk;, which is an overall coefficient in
consists of the ordinary covariant derivative supplementeghe action and does not appear in the equations of motion.
with terms mvolvmg the gravitino such that the SUPErsyM-he rejations between SchwarEsandG and theF s andGs
metry variation of the combined terms does not contain any hig paper are
derivatives of the supersymmetry parameteihese expres-
sions arise naturally in supergravity equations of motion, as

the variation of a one-derivative fermionic equation must be 1 g 14072
a bosonic equation with two derivatives on the fields, and g_ __ ~F G :LG elf= _'ﬂ

. . . Sch 5 Sch 3 i .
hence a derivative may not be spared to actofcquations 4 Vim 7 1-i7
(B2),(B5) constitute the general form for supercovariantiza- (B9)

tion of the derivative in an arbitrary supergravity theory with

fermionic supersymmetry variations

For relations involving the complex scalar, $4&]; note that
the authors 0f42] use anF=4F.,,, and consequently for

1
— *
SV KDM8+RM8+SM8 ) (B7) them a= — e®A.
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