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String amplitudes from Moyal string field theory

I. Bars*
Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089-0484

I. Kishimoto† and Y. Matsuo‡

Department of Physics, Faculty of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
~Received 20 November 2002; published 14 March 2003!

We illustrate a basic framework for analytic computations of Feynman graphs using the Moyal star formu-
lation of string field theory. We present efficient methods of computation based on~a! the monoid algebra in
noncommutative space and~b! the conventional Feynman rules in Fourier space. The methods apply equally
well to perturbative string states or nonperturbative string states involving D-branes. The ghost sector is
formulated using Moyal products with fermionic~b,c! ghosts. We also provide a short account on how the
purely cubic theory and/or vaccum string field theory proposals may receive some clarification of their mid-
point structures in our regularized framework.
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I. INTRODUCTION

During the past two years there has been a remark
conceptual and technical progress in string field theory~SFT!
which was stimulated by its application@1# to tachyon con-
densation, and the prospect of further applications to m
general physics of D-branes. The numerical computation
the D-brane tension, for example, has reached a rather a
rate estimate@2#.

The role of SFT@3# as a method to analyze nonperturb
tive string phenomena has by now become rather evid
Consequently, efficient computational tools to achieve a
lytic understanding of nonperturbative string physics are n
needed. Toward this goal, a new computational technique
been developing over the past two years, starting with
discovery @4# of a direct connection between Witten’s st
product and the usual Moyal star product that is well kno
in noncommutative geometry. The new Moyal star! is ap-
plied on string fieldsA( x̄,xe ,pe) in the phase space ofeven
string modes, independently for eache. The product is local
in the string midpointx̄. Some basic numerical infinite ma
tricesTeo ,Roe ,we ,vo ,

Teo5
4o~ i !o2e11

p~e22o2!
, Roe5

4e2~ i !o2e11

po~e22o2!
,

we5A2~ i !2e12, vo5
2A2

p

~ i !o21

o
~1!

labeled by even or odd integers (e52,4,6, . . . , and o
51,3,5, . . . ) were needed to disentangle the Witten star i
independent Moyal stars for each modee. These matrices
enter in a fundamental way in all string computations in
Moyal star formulation of string field theory~MSFT!.
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In subsequent work@5,6# MSFT was developed into as
precise definition of string field theory, by resolving all mid
point issues, formulating a consistent cutoff method in
number of string modes 2N, and developing a monoid alge
bra as an efficient and basic computational tool.

Computations in MSFT are based only on the use of
Moyal star product. The new star provides an alternative
the oscillator tool or the conformal field theory tool as
method of computation. In particular, cumbersome Neum
coefficients or conformal maps that appear in the other
proaches to SFT are not needed, since they follow corre
from the Moyal star@6#.1

A cutoff is needed in all formulations of SFT to resolv
associativity anomalies@5#. The cutoff consists of working
with a finite number of string modesn51,2, . . . ,2N that
have oscillator frequencieskn , and introducing finiteN3N
matrices Teo ,Roe ,we ,vo that are uniquely determined a
functions of a diagonal matrixk5diag(ke ,ko) which repre-
sents arbitrary frequencies. Thekn5(ke ,ko) are any reason-
able functions ofn5(e,o), including the possible choice o
the usual oscillator frequencieskn5n, even at finiteN. The
finite matricesT,R,w,v are introduced through the following
defining relations~a bar means transpose!:

R5~ko!22T̄~ke!
2, R5T̄1vw̄, v5T̄w, w5R̄v.

~2!

The same relations are satisfied by the infinite matrices
Eq. ~1! that have the usual frequencieskn5n and N→`.
These equations were uniquely solved in terms of arbitr
kn ,N @6#:

Teo5
wevoko

2

ke
22ko

2
, Roe5

wevoke
2

ke
22ko

2
, ~3!

1Subsequent proposals of Moyal star products equivalent to
one in@4# have appeared@7–9#. They all become discrete and we
defined with the same cutoff method, and remain related to th!
which we use here.
©2003 The American Physical Society02-1
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we5 i 22e

)
o8

uke
2/ko8

2
21u1/2

)
e8Þe

uke
2/ke8

2
21u1/2

,

~4!

vo5 i o21

)
e8

u12ko
2/ke8

2 u1/2

)
o8Þo

u12ko
2/ko8

2 u1/2

.

For kn5n andN5`, these reduce to the expressions in E
~1!. Although the finite matrices are given quite explicitl
most computations are done by using simple matrix relati
among them without the need for their explicit form. Th
following matrix relations are derived@6# from Eq. ~2!:

TR51e , RT51o , R̄R511ww̄, T̄T512vv̄,

TT̄512
ww̄

11w̄w
, Tv5

w

11w̄w
, v̄v5

w̄w

11w̄w
, ~5!

Rw5v~11w̄w!, RR̄511vv̄~11w̄w!.

It is important to emphasize that in our formalism computi
with arbitrary frequencieskn and finite number of modes 2N
is as easy as working directly in the limit.2

For example, as a test of MSFT, Neumann coefficients
any number of strings were computed in@6# with arbitrary
oscillator frequencieskn and cutoffN. The cutoff version of
Neumann coefficientsNmn

rs (t),N0n
rs (t,w),N00

rs(t,w), were
found to be simple analytic expressions that depend o
single N3N matrix teo5ke

1/2Teoko
21/2 and anN-vector we .

These explicitly satisfy the Gross-Jevicki nonlinear relatio
for any kn ,N @6#. It is then evident thatT and w ~which
follow from Eq. ~2! as functions ofk) are more fundamenta
than the Neumann coefficients. As a corollary of this res
by diagonalizing the matrixt @6# one can easily understand
once why there is a Neumann spectroscopy for the 3-p
vertex @11# or more generally then-point vertex@6#.

Such explicit analytic results, especially at finiteN, are
new, and not obtained consistently in any other approach

2The infinite matrices in Eq.~1! have well defined products whe

multiplied two at a time, e.g.TR51e , TT̄51e , etc. However they
give ambiguous results in multiple matrix products due to asso
tivity anomalies@5# that arise from marginally convergent infinit
sums. For example, (RT)v5v, but R(Tv)50. The unregulated
Neumann coefficients suffer from the same anomaly@10,6#. The
finite matrices resolve all ambiguities. One can follow how t

anomaly occurs by noting from Eq.~1! that w̄w→` asN→`. For

example, the zero inTv5w(11w̄w)21→0 gets multiplied by an

infinity that comes from the productRw5v(11w̄w)→`. A
unique answer is obtained for any association,RTv5v, by doing
all computations at finiteN and taking the limit only at the end.
06600
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finite N the MSFT results could be used in numerical as w
as analytic computations as a more consistent method
level truncation.

In this paper we give a brief report on explicit comput
tions of string Feynman diagrams in MSFT. Related wo
but in the oscillator formalism, is pursued in@12#. Our for-
malism, with the finiteN regularization, has the advantag
that it applies in a straightforward manner when the exter
states are either perturbative string states or non-perturba
D-brane type states. So we can perform computations w
the same ease when nonperturbative states are involved
regularization plays a role similar to that of lattice regula
ization in defining nonperturbative QCD. Any string amp
tude is analytically defined in this finite scheme. Furth
more, we emphasize that to recover correctly the usual st
amplitudes in the largeN limit, it is essential that associativ
ity anomalies are resolved in the algebraic manipulations
T,R,w,v in these computations~see footnote 2!. In this pa-
per, we only present the basic ideas and the important s
of the computation. The details will appear in a series
related publications@13#.

The organization of this paper is as follows. In Sec. II, w
define the regularized action for Witten’s string field theo
In this paper we will work in the Siegel gauge where expli
realization of the finiteN regularization is possible. In Sec
III, we present Feynman diagram computations in coordin
representation in noncommutative space. This is an effec
framework closely related to the methods in@6#. In Sec. IV,
we define systematically Feynman rules in the Fourier ba
This is useful to see the connection with the conventio
Feynman rules in quantum field theory in noncommutat
space@14#. We present a few examples of scattering amp
tudes computed in both frameworks. In Sec. V we conside
reorganization of Feynman rules in Fourier space to giv
direct relation with the computations in Sec. III. In Sec. V
we briefly outline the definition of Moyal product for th
~fermionic! ghost system. In Sec. VII we consider a possib
relation with vacuum string field theory~VSFT!.

II. REGULARIZED ACTION

The starting point of our study is Witten’s action@3# for
the open bosonic string, taken in the Siegel gauge, and
written in the Moyal basis:

S52E ddx̄TrS 1

2a8
A!~L021!A1

1

3
gA!A!AD . ~6!

The field A( x̄,j) depends on the noncommutative coord
nates j i

m5(x2
m ,x4

m . . . ,x2N
m ,p2

m ,p4
m . . . ,p2N

m ). The j i
m may

include ghosts in either the bosonic or the fermionic versi
The bosonized ghost was discussed in@6# as a 27th bosonic
coordinatej i

275(fe ,pe), while the fermionic case will be
discussed in a later section in this paper. In the followi
sections, however, we concentrate basically on the ma

a-
2-2
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sector for the simplicity of argument. The Moyal product!

and the trace Tr are defined at fixedx̄ as3

~A!B!~ x̄,j!5A~ x̄,j!e(1/2)hmn]m
iQ s i j ]n

jW

B~ x̄,j!,

Tr@A~ x̄!#5E ~dj!

~det 2ps!d/2
A~ x̄,j!. ~7!

The string field lives in the direct product of the Moy
planes, with@j i

m ,j j
n#!5s i j h

mn, where

s i j 5 iuS 0 1e

21e 0 D . ~8!

The parameteru absorbs units and could be mapped to 1
a rescaling of the units ofpe .

The kinetic term is given by the Virasoro operatorL0
which was computed in Moyal space in@6#. Here we rewrite
it in the form of a differential operator

L05
1

2
b0

22
d

2
Tr~ k̃ !2

1

4
D̄j~M0

21k̃ !Dj1 j̄~ k̃M0!j, ~9!

whereb052 i l s(]/] x̄),

Dj5$@~]/]xe!2 i ~b0 / l s!we#,~]/]pe!%,

and l s is the string length. The (2N)3(2N) matrices

k̃5S ke 0

0 TkoRD ,M05S ke

2l s
2

0

0
2l s

2

u2
Tko

21T̄
D , ~10!

give the block diagonal forms M0
21k̃

5diag(2l s
21e ,(u2/2l s

2)ke
2) and k̃M05diag@(ke

2/2l s
2),

3(2l s
2/u2)(TT̄)ee8# after using Eqs.~2!,~5!. We note thatTT̄

in k̃M0 is almost diagonal, sinceTT̄512ww̄/(11w̄w),
and the second term becomes naively negligible in the la
N limit since w̄w→`. A major simplification would occur if
one could neglect this term. However, with this simplific
tion one cannot recover the string one-loop amplitude
other quantities correctly, as we will see below in Eq.~46!,
because of the anomalies discussed in footnote 2. The le
is that one should not take the largeN limit at the level of the
Lagrangian.4 One should do it only after performing all th
algebraic manipulations that define the string diagram. C
sequently all of the following expressions are at finiteN
unless specified otherwise.

3In the following, we denoteddj1•••ddj2N as (dj).
4This term inL0 was missed in@7# in their attempt to compare th

discrete Moyal!e of @4# to the continuous Moyal!k directly atN
5`, and erroneously concluded that there was a discrepanc
fact, there is full agreement.
06600
y

e

r

on

n-

The string field that represents the perturbative vacuum
given by the GaussianA0;exp(2j̄M0j) ~for any kn ,N).
The on-shell tachyon state (L021)At50 is given by
A0eik•x0, which is

At~ x̄,j!5N 0e2 j̄M0j2 j̄l0eik• x̄, ~l0! i
m52 ikm~we,0!,

N05~det 4sM0!d/4,l s
2k252. ~11!

The form of (l0) i
m for the tachyon follows fromeik•x0 after

rewriting the center of mass coordinatex0 in terms of the
midpoint x̄, i.e., x05 x̄1wexe . The normN0 is fixed by
requiringTr(At* !At)51.

All perturbative string states with definite center of ma
momentumkm are represented by polynomials inj multiply-
ing the tachyon field. All of them can be obtained from t
following generating field by taking derivatives with respe
to a generall:

A~ x̄,j!5Ne2 j̄M0j2 j̄leik• x̄, ~12!

and settingl→l052 ikm(we,0) at the end.
Nonperturbative string fields that describe D-branes

volve projectors in VSFT conjecture@1#. A general class is
@6#

AD,l~j!5Nexp~2 j̄Dj2 j̄l!,N52dNexpS 2
1

4
l̄sDsl D ,

D5S a ab

ba
1

au2
1babD . ~13!

For anyl, and symmetrica,b, these satisfyA!A5A, and
TrA51. For a D-brane the components ofl parallel to the
brane vanish,l i50, while those perpendicular to the bran
are nonzero as a function of the midpointl'( x̄')Þ0. Ex-
amples such as the sliver field, butterfly field, etc., are spe
cases of these formulas with specific forms of the matrixD
@6#.

It appears that for all computations of external states
interest we should consider the field configurations that c
tain the general parametersN,Mi j ,l i

m ,km

AN,M ,l,k5N exp~2 j̄Mj2 j̄l1 ik• x̄!, ~14!

where for perturbative statesN is a constant, but for D-brane
states it may depend onx̄. These fields form a closed algeb
under the star

@N1exp~2 j̄M1j2 j̄l11 ik1• x̄!#

!@N2exp~2 j̄M2j2 j̄l21 ik2• x̄!# ~15!

5$N12exp@2 j̄M12j2 j̄l121 i ~k11k2!• x̄#% ~16!

where the structure ofN12,(M12) i j ,(l12) i
m is given as~de-

fine m15M1s,m25M2s,m125M12s)
In
2-3
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m125~m11m2m1!~11m2m1!21

1~m22m1m2!~11m1m2!21, ~17!

l125~12m1!~11m2m1!21l2

1~11m2!~11m1m2!21l1 , ~18!

N125
N1N2

det~11m2m1!d/2

3e(1/4)[(l̄11l̄2)s(m11m2)21(l11l2)2l̄12s(m12)
21l12] . ~19!

This algebra is a monoid, which means it is associat
closed, and includes the identity element~number 1!. It is
short of being a group since some elements~in particular
projectors! do not have an inverse, although the generic e
ment does have an inverse. The trace of a monoid is g
through Eq.~7! ~assuming a decaying exponential inj)

Tr~AN,M ,l,k!5
Neik• x̄e(1/4)l̄M21l

det~2Ms!d/2
. ~20!

Building on the computations in@6#, this monoid algebra will
be used as a basic computational tool in evaluating st
field theory diagrams.

III. FEYNMAN GRAPHS IN j BASIS

In this section we discuss Feynman graphs in the nonc
mutativej basis and in the next section we formulate them
q.

u

or
FT

06600
,
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n

g

-

the Fourier transformed basis. In a Feynman diagram an

ternal string state will be represented by a monoidA( x̄,j)
that corresponds to a perturbative string state or nonpe
bative D-brane state as discussed in the previous sec
This corresponds to a boundary condition in the language
a worldsheet representation of the Feynman diagram.
propagator is given as an integral using a Schwinger par
eter (L021)215*0

`dtetexp(2tL0). This corresponds to the
free propagation of the string as represented by the wo
sheet between the boundaries.

To evaluate Feynman diagrams we will need t
t-evolved monoid element

e2tL0~Ne2 j̄Mj2 j̄leip• x̄!5N~t!e2 j̄M (t)j2 j̄l(t)eip• x̄.
~21!

Both sides must be annihilated by the Schro¨dinger operator
(]t1L0). The result of the computation is given by

M ~t!5@sinhtk̃1~sinhtk̃1M0M 21coshtk̃ !21#

3~coshtk̃ !21M0 , ~22!

l~t!5@~coshtk̃1MM0
21sinhtk̃ !21~l1 iwp!#2 iwp,

~23!
l

g

N~t!5

N e2(1/2)l s
2p2texpF1

4
~ l̄1 ipw̄!~M1cothtk̃M0!21~l1 iwp!G

detF1

2
~11MM0

21!1
1

2
~12MM0

21!e22tk̃Gd/2 . ~24!

For the tachyon in Eq.~11! this simplifies greatlyM0(t)5M0 , l0(t)5l0 , N0(t)5N 0e2t. Note that even in the genera
case the evolved monoid is also a monoid that can be star multiplied easily with other monoids.

The diagrams below will be given as a function of the Schwinger parameterst i . The function should be integrated usin
the measure*0

`dt ie
t i for each propagator. We now give some examples of tree diagrams.

The diagram 1-2 for two external statesA1 ,A2 joined by a propagator is given by

E ddx̄Tr~A1!e2tL0A2!5

N1N2~t!expH 1

4
@ l̄11l̄2~t!#@M11M2~t!#21@l11l2~t!#J
„det$2@M11M2~t!#s%…d/2

~2p!ddd,~p! ~25!
ate
wherepm5k1
m1k2

m . To evaluate it we used Eqs.~21!–~24!,
and the trace in Eq.~20!. For tachyon external states of E
~11! this expression collapses to juste2t(2p)ddd(p), which
is the expected result. For more general states our form
provides an explicit analytic result.

The 4 point function is computed from the diagram f

1
2&2^4

3 and its various permutations of (1,2,3,4). The MS
la

expression for this diagram is

12A345E ddx̄Tr@e2tL0~A1!A2!!A3!A4#. ~26!

The two external lines (1,2) are joined to the resulting st
by the productA125A1!A2 , which is a monoid as given in
2-4
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Eq. ~16!. This monoid is propagated toA12(t)
5e2tL0(A1!A2) by using Eqs.~21!–~24!, and then traced
with the monoid A345A3!A4. Then the computation o
the four point function is completed by using the formu
in Eq. ~25!. That is, replace the monoidA1 by the monoid
A34, and similarly A2 by A12, and apply Eqs.~22!–~24!
ch
th

e
n
te

06600
for the monoid A12. The remainder of the computatio
is straightforward algebra and those details will be pu
lished in a future paper@13#. We emphasize that the
external states can be nonperturbative. For the case
perturbative tachyon scattering, foroff-shell tachyons, the
result is
12A345
det~2m0!d/2

det~11m0
2!d

~2p!ddd~p11p21p31p4!
e2(1/2)l s

2(p11p2)2[ t1a(t)] el s
2(p11p3)2b(t)e(1/2)l s

2(
i 51

4

pi
2g(t)

$det@2Ge~t!etke#%2d/2$det@2Go~t!etko#%2d/2
~27!
lds
re-

er-

d

ds

ier
cor-

t

ex-
where

a~t!5 z̄@ t̄Ge~Ee21!t1Go~Eo21!#z, ~28!

b~t!5 z̄Goz,g~t!5 z̄Go~Eo21!z2 z̄~11 t̄ t !z ~29!

are given in terms of the following definitions:

z5~11 t̄ t !21 t̄ke
21/2w,t5ke

1/2Tko
21/2,m05M0s, ~30!

Ee~t!5cosh~ket!1
2

11t t̄
sinh~ket!, ~31!

Eo~t!5cosh~kot!1
2

11 t̄ t
sinh~kot!,

Se,o~t!5sinh~ke,ot!, Ge,o~t!52Se,o~Ee,o
2 21!21.

~32!

Before integrating with the measure*0
`dtet we also need to

multiply this expression by the ghost contribution, whi
will appear in our future paper. This should reproduce
Veneziano formula when all tachyons are put on shelll s

2pi
2

52, and we take the largeN limit with kn5n.
Similarly, the diagram1

2&2
3u2^5

4 involves

E ddx̄Tr@A12~t1!!A3!A45~t2!#

5E ddx̄Tr@e2t1L0~A1!A2!!A3!e2t2L0~A4!A5!#.

~33!

The diagram1
2&2

3u2
4u2^6

5 involves

E ddx̄Tr$A12~t1!!A3!e2t2L0@A4!A56~t3!#%. ~34!

Next we consider loop diagrams. We start from an expr
sion given above for a tree diagram and then identify a
two external lines to make a closed loop. Suppose the ex
e

s-
y
r-

nal legs that are identified were represented by the fie
Ai ,Aj in the tree diagram. In the loop these fields are
placed by

Ai→e2t i L0~ei j̄heip• x̄!, Aj→e2 i j̄he2 ip• x̄ ~35!

and the integral overh is performed~the Fourier basis is a
complete set of states to sum over in the propagation!. Here
t i is the modulus of the new propagator andpm becomes the
momentum flowing in this propagator by momentum cons
vation. Some examples of loops follow.

The one loop diagrams with no external legs is obtaine
from the 2-point vertex Tr(A1!A2) by identifying legs 1,2.
This leads to the integral

E ddx̄E ddp

~2p!d

~dh!

~2p!2dN
Tr

3$~e2 i j̄he2 ip• x̄!!@e2tL0~ei j̄heip• x̄!#%. ~36!

It is a simple exercise to compute by using the metho
above. The result is given below in Eq.~46! where it is in
agreement with our next method of computation in Four
space. This computation illustrates the importance of the
rect treatment of the anomaly~see footnote 2! as will be
emphasized following Eq.~46!.

The tadpole diagram1—s is obtained from the 3-poin
vertex Tr(A1!A2!A3) by identifying legs 2,3. This leads to
the expression

E ddx̄E ddp

~2p!d

~dh!

~2p!2dN
Tr$A1!~e2 i j̄he2 ip• x̄!

3!@e2tL0~ei j̄heip• x̄!#%

which is again straightforward to evaluate.
The one loop correction to the propagator attached to

ternal states12 ù 24 is obtained by identifying legs 2,3 in
the 4-point function above. This leads to
2-5
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E ddx̄E ddp

~2p!d

~dh!

~2p!2dN
Tr$e2t1L0@A1!~e2 i j̄he2 ip• x̄!#!@e2t2L0~ei j̄heip• x̄!#!A4%

5~2p!ddd~k11k4!E ddp

~2p!d

~dh!

~2p!2dN
Tr$@e2t1L0(k12p)~A1!e2 i j̄h!#!~e2t2L0(p)ei j̄h!!A4%
o

in

h

ne
t

g

ne
ld

ta

-

qs

o-
the

n a
ue
-

q.
its
where in the last line the momentum-dependent part
A1 ,A4 has already been peeled off, and thex̄ integral per-
formed. Thenb0 in L0(b0) has been replaced byk12p and
p as appropriate for the propagator with the correspond
momentum.

These examples are sufficient to illustrate our approac
such computations.

IV. FEYNMAN RULES IN THE FOURIER BASIS

The definition of the action in Sec. II is enough to defi
the Feynman rules for the open string diagram. Note tha
the absence of the last term inL0 of Eq. ~9! the kinetic term
becomes basically the same as the conventional Lagran
of the f3 theory on the noncommutative plane@14#.

Vertex.The remark above implies that if we take the pla
wavesei h̄j as the basis to expand the noncommutative fie
then then-string interaction vertex in this basis is

Tr~eih1j̄!•••!ei h̄nj!5S det
s

2p D 2d/2

3expS 2
1

2 (
i , j

h̄ ish j D d2dN

3~h11•••1hn!, ~37!

which is identical to the interaction vertex for noncommu
tive field theory.

Propagator.The simplification of the vertex is compen
sated by the complication of the propagator. NowL0 is not
diagonal. It is still easily computable, however, by using E
~21!–~24! for M50, N51, l52 ih8, and inserting them in
Eq. ~25!

D~h,h8,t,p![E ~dj!

~2p!2dN
e2 i h̄je2tL0ei h̄8j ~38!

5g~t,p!exp@2h̄F~t!h2h̄8

3F~t!h812h̄G~t!h8

1~ h̄1h̄8!H~t,p!#, ~39!

where
06600
f

g

to

in

ian

,

-

.

g~t,p!5S u

2p D dN

~11w̄w!d/4

3S )
e.0

~12e22tke!)
o.0

~12e22tko! D 2d/2

3expF2S t

2
1w̄

tanhS tke

2 D
ke

wD l s
2p2G , ~40!

F~t!5
1

4
M0

21@ tanh~tk̃ !#21

5S l s
2

2ke
@ tanh~tke!#

21 0

0
u2

8l s
2
R̄ko@ tanh~tko!#21R

D ,

~41!

G~t!5
1

4
M0

21@sinh~tk̃ !#21

5S l s
2

2ke
@sinh~tke!#

21 0

0
u2

8l s
2
R̄ko@sinh~tko!#21R

D ,

~42!

H~t,p!5
tanh~tke/2!

ke
wls

2p. ~43!

A critical difference from the conventional propagator in m
mentum representation is that the propagator depends on
momentum variables at both ends of the propagator i
nontrivial fashion~because momentum is not conserved d
to the potential term inL0). Therefore in the Feynman dia
gram computation, the momentum integrationdh is per-
formed at both ends of each propagator.

External state.We note also that the external state in E
~14! is not diagonal in the momentum basis. We need
Fourier transform

ÃN,M ,l5Ñe2(1/4)h̄M21h1( i /2)l̄M21heip• x̄,

Ñ5N~4p!2dN~detM !2d/2e(1/4)l̄M21l. ~44!
2-6
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For comparison to the oscillator approach, such monoids
responds to shifted squeezed states exp(21

2a
†Sa†

2ma†)up&, with momentumpm. For the general case th
relation between oscillator and MSFT parameters is given
Eqs. ~3.4!–~3.6! of @6#. For perturbative states withS50
these reduce to coherent states exp((nmna2n)up&, with a cor-
responding Moyal field that contains theM0 of Eq. ~10! and
N,l given by

N5@det~4ko!/det~ke!#
d/4e(1/2)(m̄eme2m̄omo),

l5 i S 2
A2

l s
Akeme2wep

2A2i l s

u
Tko

21/2mo

D . ~45!

To summarize all, the Feynman diagram computation
MSFT reduces to the following simple prescriptions. As
the conventional field theory, we decompose the string d
gram into the vertex, the propagator and the external sta
We need to perform the momentum integrations attache
each junction of the components. All integrals are Gauss
Therefore the computation of any string amplitude reduce
the computation of the determinant and the inverse of
large matrix which describes the connections among th
components~the external states, propagator, vertex!. Since
the matrices which appear in our computation are explic
given and finite dimensional, we obtain a finite and we
defined quantity for any string diagram.

In order to illustrate our Feynman rule, we present so
examples of the string amplitudes restricted to the ma
sector contribution.5
06600
r-

in

f

-
s.

to
n.
to
e
e

y
-

e
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1-loop vacuum amplitude.One of the simplest graphs i
the 1-loop vacuum amplitude. It can be computed direc
from Eqs. ~21!–~24!, which amounts to integrating
D(h,h8,t,p) ~38!:

E ddpTr~e2tL0(p)!5E ddpE ~dh!D~h,h,t,p! ~46!

5~2p!(d/2)l s
2dt2(d/2)

3)
e.0

~12e2tke!2d)
o.0

~12e2tko!2d.

~47!

We see that the correct spectrum (ke ,ko) is read off from the
1-loop graph at anykn ,N. By taking ke5e,ko5o and N
5`, we reproduce the standard perturbative string spectr
Although this graph does not include any interaction, t
coincidence of the spectrum implies the correctness of
propagator. It is essential tokeep the term (1
1w̄w)21((e.0wepe)

2 in L0 which convertske into ko .6 In
fact, if one takes thew̄w5` limit first, this term drops out
and one ends up with the wrong spectrum (ke ,ke) instead of
(ke ,ko), as happened in Ref.@7# ~see footnote 4!.

4-tachyon amplitude at the tree level:1
2&2522262 ^4

3. As a
simple example including interaction, we consider the p
turbative 4-tachyon amplitude1

2&2522262 ^4
3 that we dis-

cussed in Eq.~26!. Following our Feynman rules in the Fou
rier basis, we assign the momentum variableh i ( i
51,2, . . . ,6) toeach junction of the components. The am
plitude is represented by
the
aining

effort.
E ~dh1!•••~dh6!e2(1/2)(h̄1sh21h̄2sh51h̄1sh5)21/2(h̄3sh41h̄4sh61h̄3sh6)

3d2dN~h11h21h5!d2dN~h31h41h6!D~h5 ,2h6 ,t,p!Ãp1
~h1!Ãp2

~h2!Ãp3
~h3!Ãp4

~h4!, ~48!

Ãpi
~h!5N0~4p!2dN~detM0!2(d/2)eipi x̄e2(1/4)(h̄2pi w̄)M0

21(h2piw),

wheret is the length of the propagator andp5p11p22p32p4 is the zero mode transfer momentum. We first perform
momentum integrations overh5 ,h6 to cancel the delta functions which represent the momentum conservations. The rem
integrations are Gaussian and the above expression reduces to

N 0
4detM0

22dS 2p

44u
D dN

g~t,p!•~detA!2d/2
•e(1/4)B̄A 21Be2(1/4)(p1

2
1p2

2
1p3

2
1p4

2)w̄M0
21w, ~49!

with

5Although these amplitudes are similar to some of those in Ref.@12#, our formulas are more general since they all contain theke ,ko which
are arbitrary frequencies at finiteN. Furthermore, we can apply them to nonperturbative external states as they stand, with no more

To obtain the ordinary perturbative string amplitude, we setke5e,ko5o and takeN→` limit ~which corresponds tow̄w→`) at the last
stage of computations.

6This contribution comes from the off-diagonal part ofTT̄ in Eq. ~9!.
2-7



A5S F~t!1
1

4
M0

21 F~t!1
1

4
s G~t! G~t!

F~t!2
1

4
s F~t!1

1

4
M0

21 G~t! G~t!

G~t! G~t! F~t!1
1

4
M0

21 F~t!1
1

4
s D , ~50!

e
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G~t! G~t! F~t!2
1

4
s F~t!1

1

4
M0

21

B̄5S 2H̄1
1

2
p1w̄M0

21 ,2H̄1
1

2
p2w̄M0

21 ,H̄1
1

2
p3w̄M0

21 ,H̄1
1

2
p4w̄M0

21D . ~51!

In the matrixA, M0 comes from the external tachyons,F,G from the propagator ands from the Moyal! product. On the
other hand,B̄ originates from zero-mode momentum-dependent terms. The appearances ofF at the off-diagonal parts inA
come from the mixing induced from the momentum integrations overh5,6.

This formula looks more complicated than the expression given in Eq.~27! since it involves the matrices of larger size. Th
reduction to Eq.~27! can be proved by the reorganization of the Gaussian integrations which is outlined in the next s

2-loop vacuum amplitude:

1
2
3
K 222b22

222a22
L 5

6
4

.

As a next example, we consider one of the 2-loop vacuum graphs: Two 3-string vertices are connected by three pro
which have momentapa ,pb ,pc and lengthsta ,tb ,tc . We assign the momentum variablesh i ( i 51, . . . ,6) asdepicted in the
figure,

E ~dh1!•••~dh6!e2(1/2)(h̄1sh21h̄1sh31h̄2sh3)2(1/2)(h̄4sh61h̄4sh51h̄6sh5)d2dN~h11h21h3!d2dN~h41h51h6!

3D~h3 ,2h4 ,ta ,pa!D~h1 ,2h5 ,tb ,pb!D~h2 ,2h6 ,tc ,pc!

5g~ta ,pa!g~tb ,pb!g~tc ,pc!@det~p21M!#2d/2E ~dx1!

~2p!2dN

~dx2!

~2p!2dN
e(1/4)K̄M 21K ~52!

where, after denotingH(ta ,pa) asHa , the quantitiesM,K are given by

M5

¨

F~tb!
1

4
s

1

4
s 0 G~tb! 0

2
1

4
s F~tc!

1

4
s 0 0 G~tc!

2
1

4
s 2

1

4
s F~ta! G~ta! 0 0

0 0 G~ta! F~ta!
1

4
s

1

4
s

G~tb! 0 0 2
1

4
s F~tb! 2

1

4
s

0 G~tc! 0 2
1

4
s

1

4
s F~tc!

©
, ~53!

K̄5~ i x̄11H̄b ,i x̄11H̄c ,i x̄11H̄a ,i x̄22H̄a ,i x̄22H̄b ,i x̄22H̄c!. ~54!
066002-8
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In passing from the first to the second line in Eq.~52!, we rewrote the delta functions at the vertices by

d2dN~h11h21h3!5E ~dx1!

~2p!2dN
ei x̄1(h11h21h3), ~55!

and performed theh i integrations.
We are now ready to write down the explicit form of the scattering amplitude for any Feynman diagram. We use th

Eq. ~55! to convert the delta functions at the vertices to the Gaussian integration overxs. The general formula afterh
integrations is given by

)
aP$propagators%

g~ta ,pa!• )
uP$external states%

Ñueipux̄
•@det~p21M!#2d/2

•E )
i P$vertices%

~dx i !

~2p!2dN
e(1/4)K̄M21K ~56!

where the matrixM is

MII 55
F~ta!, I Pvertex~ i !ùpropagator~a!,

1

4
Mu

21 , I Pvertex~ i !ùexternal state~u!,

F~ta!1
1

4
Mu

21 , I Ppropagator~a!ùexternal state~u!,

~57!

MIJ5H 6
1

4
s, I ,JPvertex~ i !,

6G~ta!, I ,JPpropagator~a!, ~ IÞJ!,

0, otherwise,

~58!

and vectorK is

KI5H ix i6H~ta ,pa!, I Pvertex~ i !ùpropagator~a!,

ix i1
i

2
Mu

21lu , I Pvertex~ i !ùexternal state~u!,

0, otherwise.

~59!
s

y
th
ex

g
nc
or
rs

man

e

di-
dif-
nds

the

for
they
The indicesI ,J, . . . in the matrixM and K represent the
junctions between the arbitrary combinations of the ba
components~propagators, external states and vertices!. In
Eqs.~57!,~58!, vertex~i! @propagator (a), external state (u)]
represents the set of the boundaries of thei th vertex (ath
propagator,uth external state!. We specify the junctionI by
taking the common set among them as indicated by a Fe
man graph. In the example of the two-loop amplitude, all
indices I 51, . . . ,6 describe the junction between a vert
and a propagator. Applying the rules we obtain Eqs.~52!–
~54!. Similarly, in the example of the 4-tachyon scatterin
the indicesI 51,2,3,4 describe the vertex-external state ju
tions while the indicesI 55,6 describe the vertex-propagat
junctions. In this example, after applying these rules we fi
construct a 636 matrix M and a correspondingK. After
integrating overx1,2 we obtain the 434 matrix A and the
correspondingB given in Eqs.~50!,~51!. An example of a
06600
ic

n-
e

,
-

t

propagator-external state junction appears in the Feyn
graph considered in Eq.~25! in the preceding setion.7

The plus or minus signs in Eqs.~58!,~59! are determined
by the relative positions of the labelsI in the diagram. For
example, the sign ofMIJ→6 1

4 s at a vertex is1(2) if I is
positioned after~before! J when going clockwise around th
vertex. To figure out the signs ofG,H systematically, the
diagram may be decorated with arrows for all momenta
rected into each vertex. Recall that each propagator has
ferent momenta at each end, therefore a propagator with e
(I ,J) will have momenta (1h I ,2hJ). The sign in front of
G is given by the product of the signs of the momenta at

7Strictly speaking there are other possibilities for the junctions,
instance, propagator-propagator, vertex-vertex. However, since
can be obtained by taking the appropriate limit~for example, an
infinitely short propagator!, we do not write them explicitly.
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BARS, KISHIMOTO, AND MATSUO PHYSICAL REVIEW D67, 066002 ~2003!
two ends of the propagator, times (21). So if the arrows are
drawn as suggested, the sign is1G. Finally the sign in front
of H is determined by the sign ofh I at each end of the
propagator. If the direction of the arrows is changed acco
ing to some other convention the signs onG,H will flip
accordingly.

V. REORGANIZATION OF GAUSSIAN INTEGRATION

Our computation of Feynman diagrams in Fourier ba
reduces to the computation of the determinant and the
verse of the large matrices which connect all the exter
states. It is somehow obscure how such computation is
lated to the computation inj basis presented in Sec. III. T
see the correspondence more explicitly, it is illuminating
carry out some of the momentum integrals.

For that purpose, we dissect all the propagators wh
connect two vertices. In the following, we carry out the m
mentum integrations associated with each vertex attache
the dissected propagators. More explicitly, we consider
following integration:
h

m

on
fa
w

06600
-
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n-
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e-

h
-
to
e

Vn~t,e![E ~dh1!•••~dhn!d2dN~h11•••1hn!e2(1/2)

3(
i , j

h̄ ish j)
i 51

n

@g~t i ,pi !

3e2h̄ iF(t i )h i1 ē iG(t i )h i1(h̄ i1 ē i )H(t i ,pi )2e i F̄(t i )e i#.

~60!

The first line comes from the definition of the vertex in th
momentum basis and the second line comes from the pr
gator. We note that the second line may be written
) i ÃÑi ,Mi

˜ ,l̃ i
, where

ÃÑi ,Mi
˜ ,l̃ i

[Ñie
2h̄M̃ ih2h̄l̃ i,

Ñi5g~t i ,pi !e
ē iH(t i ,pi )2 ē iF(t i )e i,

M̃ i5F~t i !,l̃ i52G~t i !e i2H~t i ,pi !. ~61!

Actually this is nothing but the trace of the Moyal product
n Gaussian functions:
Vn~t,e!5Tr@AN1 ,M1 ,l1
~t1 ,e1!!•••!ANn ,Mn ,ln

~tn ,en!#, ~62!

Mi5@4F~t i !#
21, l i52

i

2
F~t i !

21@G~t i !e i1H~t i ,pi !#, ~63!

Ni5g~t i ,pi !p
dN@detF~t i !#

d/2eē iH(t i ,pi )2 ē iF(t i )e i1(1/4)[H̄(t i ,pi )1 ē iG(t i )]F(t i )
21[H(t i ,pi )1G(t i )e] .
as a
ost

la-
,

n
ich
Ref.

half-
While it looks complicated, the explicit evaluation of suc
expressions are given in@6#.

We note that once this expression is evaluated, one
write down any string amplitude schematically as

A;E ~de! )
vertices

Vn( i )~t ( i ),e ( i )!

3 )
external legs

ÃNi
˜ ,M̃ i ,l̃ i )

connection
d2dN~e i1e j ! ~64!

where the final factor describes the momentum integrati
for each dissection point of the propagators. The second
tor comes from the external states. As an example, the t
loop vacuum amplitude is now neatly written as

E ~de1!~de2!~de3!V3~t1 ,t2 ,t3 ;e1 ,e2 ,e3!

3V3~t18 ,t28 ,t38 ;2e1 ,2e2 ,2e3!. ~65!

Other amplitudes can be written as easily as this one.
ay

s
c-
o-

VI. MOYAL FORMULATION OF b,c GHOST SECTOR

In Ref. @6#, the Moyal formulation of thebosonizedghost
was discussed and was shown to be almost the same
matter boson. In certain explicit computations in the gh
sector, it is often convenient to use the fermionicb,c ghosts.
Becauseb(s),c(s) have cosns as well as sinns modes, we
need to develop a regularized version of half-string formu
tion for sine modes.8 In the ordinary split string formulation
we find the infinite matrix

R̃oe5
4

pE0

p/2

ds sinos sines5
4e~ i !e2o11

p~e22o2!
. ~66!

The inverse matrix is its transpose:R̃R̄̃51o ,R̄̃R̃51e . How-
ever, R̃ has a zero mode w̃o5A2(i )o21, namely
(o51

` w̃oR̃oe50. As emphasized in footnote 2, this situatio
causes an associativity anomaly of infinite matrices, wh
leads to ambiguities in computation as was discussed in

8The cosine modes were developed in Refs.@5,6#. This was
enough to discuss matter and the bosonized ghost sector. The
string formulation of theb,c ghost was developed in@15#.
2-10
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STRING AMPLITUDES FROM MOYAL STRING FIELD THEORY PHYSICAL REVIEW D67, 066002 ~2003!
@5#. To perform well-defined computations, we construc
finite N3N matrix R̃ using the arbitrary spectrumke ,ko as
we did for T,R,w,v in @6#

R̃oeª
wevokeko

ke
22ko

2
. ~67!

The originalR̃ ~66! is recovered by settingke5e,ko5o and
taking N→`.

We now follow a procedure parallel to that in@4#. Using
the finite version ofT,R,R̃,v,w, we define half-string mode
for b(s),c(s), and perform the Fourier transform with re
spect to the even modes of the full string:9

A~j0 ,xo ,po ,yo ,qo!

ªE dc0)
e.0

~dxedye!

3e2j0c01[ j01(2/g)qov] w̄ye1(2/g)poR̃xe1(2/g)qoT̄ye

3^c0 ,xn ,ynuC&, ~68!

^c0 ,xn ,ynu5^Vuĉ21ĉ0expS c0b̂01 (
n.0

~2 ĉnb̂n2 iA2ĉnxn

1A2ynb̂n1 iynxn! D . ~69!

The Grassmann oddversion of the Moyal product amon
them,10

A!B5A expFg

2 (
o.0

S ]Q

]xo

]W

]po
1

]Q

]yo

]W

]qo

1
]Q

]po

]W

]xo
1

]Q

]qo

]W

]yo
D GB, ~70!

9In the matter sector the Moyal product could be formulated
either the even or odd sectors@4,9#; in the bc sector it is more
natural to formulate it using odd modes.

10The Moyal formulation of the ghost system was discussed
Ref. @16# in the context of the continuous basis. The author a
defined the discrete Moyal star product usingevenmodes starting
from the continuous product. While our switch to odd modes
pears trivial, there are some important differences between
treatment and that of@16#. A critical point is the treatment of the
midpoint modeb(p/2) which is nontrivial in our case but vanishe
in @16#. This has an important consequence for producing the
rect Neumann coefficients. Actually we also developed theeven
mode formulation as@16# but with the proper treatment of the mid
point. It is, however, more complicated than the odd mode form
lation presented here. Another important difference is on the re
larization of the infinite matrices where our setup holds for arbitr
ke ,ko ,N. The details will be given in@13#. Also for more com-
ments on midpoint issues related to the continuous basis, see@9#.
06600
corresponds to~anti-!overlapping condition of Witten’s sta
product: b(r )(s)2b(r 21)(p2s)50,c(r )1c(r 21)(p2s)
50. Herexn ,yn ,po ,qo ,c0 ,j0 are Grassmann odd variable
A ghost zero modej0 also enters in reproducing Witten’s sta
along with the above Moyal! product. Through the oscilla
tor formalism @19# we establish the link between Witten
product and our Moyal product as follows:

E dj0
(1)dj0

(2)dj0
(3)

3Tr@A(1)~j0
(1) ,j!!A(2)~j0

(2) ,j!!A(3)~j0
(3) ,j!#

;^C (1)u^C (2)u^C (3)uV3&, ~71!

where

j5~xo ,po ,yo ,qo!, TrA~j!

ªE )
o.0

~dxodpodyodqo!A~j!. ~72!

In fact, by substituting the coherent states and their Fou
transform forC ( i ),A( i ), we have verified that the Neuman
coefficients in the above identification coincide with the on
which were defined using the 6-string vertex in thematter
sector in Ref.@6#. This provides a successful test of the gho
zero mode part.11 This coincidence holds for arbitrar
ke ,ko ,N. As usual, we reproduce the ordinary Neuma
coefficients of Witten’s string field theory by settingke
5e,ko5o and takingN→` in the last stage of computa
tions.

VII. COMMENT ON RELATION WITH VSFT

So far, we have established the utility of MSFT for com
puting Feynman graphs with perturbative as well as nonp
turbative external states. To make further progress with n
perturbative effects, it will be important to understand ho
MSFT could be used in vacuum string field theory. In th
section, we make some remarks in this direction.

The second order differential operatorL0(b0), including
the matter and ghost sectors, can be rewritten using
Moyal ! product as follows:

L0A5L0~b0!!A1A!L0~2b0!1gA,

where

L0~b0!5 (
e.0

S l s
2

u2
pe

21
ke

2

4l s
2

xe
22

l s

u
wepeb0D 1

1

4
~11w̄w!b0

2

2
d22

4 (
n.0

kn1 i (
o.0

koS 1

2
xoyo1

2

g2
poqoD ,

~73!

n
o

-
ur

r-

-
u-
y 11The coincidence of the Neumann coefficients for nonzero m
implies that our Moyal! product is essentially the same as t
reducedproduct which was introduced in the Siegel gauge@17,18#.
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g52
1

11w̄w

2l s
2

u2 S (
e.0

wepeD 2

1
4i

g2
~11w̄w!

3S (
o.0

kovopoD S (
o.0

voqoD . ~74!

TheL0 terms are star products with a field without involvin
explicit derivatives with respect toj. However, theg term is
an ordinary product, not a star product. It involv
(e.0pe

mwe which can be rewritten as

(
e.0

pe
mwe5 (

e,o.0
po

mRoewe

5~11w̄w! (
o.0

po
mvo

5~11w̄w! p̃m, ~75!

where the modep̃m[(o.0vopo
m was discussed in@5# as be-

ing closely related to associativity anomalies in string fie
theory. Also note that in the largeN limit p̃m becomes the
unpairedzero momentum mode in the continuum Moyal re
resentation of Ref.@7#: @ lim

k→0
pm(k)#; p̃m. The ghost part

has a similar structure. Evidently, these bits are closely c
nected to midpoint anomalies.

If we could neglect theg term, L0A would be given by
left ! multiplication with L0(b0) and right star multiplica-
tion with L0(2b0). The left-right splitting of the kinetic
term reminds us of the situation of the purely cubic stri
field theory @20# where the Becchi-Rouet-Stora-Tyut
~BRST! operatorQB was decomposed into the left and rig
star multiplication of the string fieldsQLI or QRI . In this
sense, purely cubic theory is essentially the matrix analo
Witten’s string field theory. In our MSFT framewor
QB ,QLI correspond toL0 andL0, respectively, because w
are in the Siegel gauge. However, we have now seen that
structure must be corrected with ourg term.

One of the lessons we learned in this paper is that
cannot neglect the gamma term because it is indispensab
reproduce the correct spectrum in the computation of 1-l
vacuum amplitude, and other quantities, in both matter
ghost sectors, even if the coefficients in front of them app
to vanish naively in the largeN limit.

The origin of the g term is a non-vanishing energy
momentum tensor at the midpoint. While the integrati
measure is zero, it still gives a finite contribution. The si
ys
n,
.

06600
-

n-

of

is

e
to

p
d

ar

-

ation is similar in the gauge covariant BRST formulatio
namely the BRST current does not vanish at the midpo
Our observation here indicates that one might need a m
careful analysis of the midpoint BRST operator in the pur
cubic theory and/or in VSFT.

We are currently in the process of solving the classi
equations of motion of the original theory12 and hope to es-
tablish a careful connection between VSFT and the origi
theory in the context of MSFT. We expect that the mo
careful treatment of this term would clarify the midpoi
structure of VSFT. The finiteN regularization which is used
in this paper will be essential in this viewpoint.

VIII. OUTLOOK

In this paper we have restricted ourselves to computati
in the Siegel gauge, and demonstrated the utility of MS
Ideally, for further insights, we would like to aim for a mor
gauge invariant approach. To achieve this carefully it is n
essary to construct the nilpotent BRST operator. We can
this in the infiniteN limit, but not yet in the finiteN case. The
reason is that the Virasoro algebra does not close with a fi
number of modes. Therefore one needs to find a finite dim
sional algebra that closes at finiteN, and becomes the Vira
soro algebra at infiniteN. With such an algebra one ca
construct a BRST operator and a gauge invariant Lagran
at finite N. This would be the analog of lattice gauge theo
for QCD. The cutoff theory we have described so far wou
correspond to the gauge fixed lattice gauge theory. It is p
sible that in this process the (ke ,ko) that have remained
arbitrary so far in our formalism would be fixed as a functi
of (e,o) at finiteN. On the other hand, if the VSFT propos
is valid, we can easily construct the midpoint nilpotent BR
operator from only midpoint degrees of freedom. In that co
text a gauge invariant theory is easily constructed with
ever encountering a restriction on the (ke ,ko) at finite N.

The clarification of such issues will be critical for th
future development of string field theory.
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