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String amplitudes from Moyal string field theory
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We illustrate a basic framework for analytic computations of Feynman graphs using the Moyal star formu-
lation of string field theory. We present efficient methods of computation baséa) ¢me monoid algebra in
noncommutative space arib) the conventional Feynman rules in Fourier space. The methods apply equally
well to perturbative string states or nonperturbative string states involving D-branes. The ghost sector is
formulated using Moyal products with fermionib,c) ghosts. We also provide a short account on how the
purely cubic theory and/or vaccum string field theory proposals may receive some clarification of their mid-
point structures in our regularized framework.
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[. INTRODUCTION In subsequent work5,6] MSFT was developed into as a
precise definition of string field theory, by resolving all mid-
During the past two years there has been a remarkableoint issues, formulating a consistent cutoff method in the
conceptual and technical progress in string field théS#yT) number of string modesN, and developing a monoid alge-
which was stimulated by its applicatidi] to tachyon con- bra as an efficient and basic computational tool.
densation, and the prospect of further applications to more Computations in MSFT are based only on the use of the
general physics of D-branes. The numerical computation oMoyal star product. The new star provides an alternative to
the D-brane tension, for example, has reached a rather accie oscillator tool or the conformal field theory tool as a
rate estimat¢?2]. method of computation. In particular, cumbersome Neumann
The role of SFT[3] as a method to analyze nonperturba- coefficients or conformal maps that appear in the other ap-
tive string phenomena has by now become rather evidenproaches to SFT are not needed, since they follow correctly
Consequently, efficient computational tools to achieve anafrom the Moyal staf6].*
lytic understanding of nonperturbative string physics are now A cutoff is needed in all formulations of SFT to resolve
needed. Toward this goal, a new computational technique hasssociativity anomalieg5]. The cutoff consists of working
been developing over the past two years, starting with thevith a finite number of string modes=1,2,...,N that
discovery[4] of a direct connection between Witten's star have oscillator frequencies,, and introducing finiteN X N
product and the usual Moyal star product that is well knownmatrices T.,,Rqe,We,v, that are uniquely determined as
in noncommutative geometry. The new Moyal stais ap-  functions of a diagonal matrix=diag(x. , x,) wWhich repre-
plied on string fieldsA(x,Xe,pe) in the phase space efren  sents arbitrary frequencies. Thg= («e,«,) are any reason-
string modes, independently for eaehThe product is local —able functions oh=(e,0), including the possible choice of

in the string midpoin. Some basic numerical infinite ma- the usual oscillator frequencias,=n, even at finiteN. The
trices Teg,Roe:We Vo, finite matricesT,R,w,v are introduced through the following

defining relationga bar means transpgse

iyo—e+1l 2/i\0—e+1 _ J— J— N J—
U . A QA R=(ko) “T(x)? R=T+ow, v=Tw, w=Ru.
m(e?—0?) wo(e’—0?) 2
2.2 (i)°-1 The same relations are satisfied by the infinite matrices in

We=12(1)"%2, v, (1) Egq. (1) that have the usual frequenciegg=n and N—=.

m o These equations were uniquely solved in terms of arbitrary
kn,N [6]:
labeled by even or odd integere<£2,4,6..., ando
=1,3,5...) were needed to disentangle the Witten star into W 2 2
. . eUoKg Wel oKe
independent Moyal stars for each modeThese matrices Teo= ' 0e= ’ ®)
enter in a fundamental way in all string computations in the Kg— Kf, Kg— Kf,

Moyal star formulation of string field theor§MSFT).

1Subsequent proposals of Moyal star products equivalent to the

*Email address: bars@usc.edu one in[4] have appearef7—9]. They all become discrete and well
TEmail address: ikishimo@hep-th.phys.s.u-tokyo.ac.jp defined with the same cutoff method, and remain related toxthe
*Email address: matsuo@phys.s.u-tokyo.ac.jp which we use here.
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finite N the MSFT results could be used in numerical as well

H |K§/K<2)r_1|1/2 as analytic computations as a more consistent method than
wo=i2"¢ ° , level trgncation. . _ N
H |K2/K2 —1|ve . In this paper we give a_brlef repprt on explicit computa-
o re e’ tions of string Feynman diagrams in MSFT. Related work,
(4) but in the oscillator formalism, is pursued [ih2]. Our for-
- malism, with the finiteN regularization, has the advantage
H 11— Ko/"er|l/2 that it applies in a straightforward manner when the external
vo=i°"t ¢ _ states are either perturbative string states or non-perturbative
H 2 212 D-brane type states. So we can perform computations with
1= wol ke the same ease i i
o %o when nonperturbative states are involved. Our

regularization plays a role similar to that of lattice regular-
For k,=n andN =, these reduce to the expressions in Eg.ization in defining nonperturbative QCD. Any string ampli-
(1). Although the finite matrices are given quite explicitly, tude is analytically defined in this finite scheme. Further-
most computations are done by using simple matrix relationsnore, we emphasize that to recover correctly the usual string
among them without the need for their explicit form. The amplitudes in the largdl limit, it is essential that associativ-

following matrix relations are derive(®] from Eq. (2): ity anomalies are resolved in the algebraic manipulations of
. L . T,R,w,v in these computationsee footnote R In this pa-
TR=1,, RT=1,, RR=1+ww, TT=1-vv, per, we only present the basic ideas and the important steps
of the computation. The details will appear in a series of
- W W - wWw related publication$13].

TT=1-——, To=——, vv=—-—, (5 The organization of this paper is as follows. In Sec. I, we
1+ww 1+ww 1+ww define the regularized action for Witten’s string field theory.

In this paper we will work in the Siegel gauge where explicit

Rw=v(l+ww), RR=1+vv(1l+ww). realization of the finiteN regularization is possible. In Sec.

I, we present Feynman diagram computations in coordinate
It is important to emphasize that in our formalism computingrepresentation in noncommutative space. This is an effective
with arbitrary frequencieg,, and finite number of modes\e ~ framework closely related to the methods[§j. In Sec. IV,
is as easy as working directly in the lindit. we define systematically Feynman rules in the Fourier basis.

For example, as a test of MSFT, Neumann coefficients forf his is useful to see the connection with the conventional

any number of Strings were Computed [@ with arbitrary Feynman rules in quantum field theory in noncommutative
oscillator frequencies,, and cutoffN. The cutoff version of ~space[14]. We present a few examples of scattering ampli-
Neumann coefficientsN™ (t),NIS (t,w),NiS(t,w), were tudes computed in both frameworks. In Sec. V we consider a

found to be simple analytic expressions that depend on Eeorganization of Feynman rules in Fourier space to give a
single NX N matrix teg= x22Toox, Y2 and anN-vectorw. direct relation with the computations in Sec. Ill. In Sec. VI

These explicitly satisfy the Gross-Jevicki nonlinear relationaVe Priefly outline the definition of Moyal product for the
for any «,,N [6]. It is then evident thaf and w (which (fermlomc)_ ghost system. In _Sec. VII we consider a possible
follow from Eq. (2) as functions of) are more fundamental "€ation with vacuum string field theor/SFT).
than the Neumann coefficients. As a corollary of this result,
by diagonalizing the matrik[6] one can easily understand at
once why there is a Neumann spectroscopy for the 3-point Il. REGULARIZED ACTION
vertex[11] or more generally th@-point vertex|6].

Such explicit analytic results, especially at finke are
new, and not obtained consistently in any other approach.

The starting point of our study is Witten’s acti¢8] for
the open bosonic string, taken in the Siegel gauge, and re-
Alvritten in the Moyal basis:

°The infinite matrices in Eq(1) have well defined products when o 1
multiplied two at a time, e.dTR=1,, TT=1,, etc. However they S= —f dder<—
give ambiguous results in multiple matrix products due to associa-
tivity anomalies[5] that arise from marginally convergent infinite
sums. For example,RT)v=v, but R(Tv)=0. The unregulated _
Neumann coefficients suffer from the same anon{d,6]. The  The field A(x,£) depends on the noncommutative coordi-
finite matrices resolve all ambiguities. One can follow how thenates &= (x4 , x4 ... X5y,P5,p4 ... .p5y). The & may
anomaly occurs by noting from E¢l) thatww—o asN—c. For include ghosts in either the bosonic or the fermionic version.
example, the zero ifv =w(1+ww) 1—0 gets multiplied by an  The bosonized ghost was discussed@has a 27th bosonic
infinity that comes from the producRw= o (1+ww)—c. A coordinate&?’= (e, 7e), While the fermionic case will be
unique answer is obtained for any associati®fip =v, by doing  discussed in a later section in this paper. In the following
all computations at finitd\ and taking the limit only at the end. sections, however, we concentrate basically on the matter

1
5o Ax(Lo—1)A+ §gA*A*A . (6
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sector for the simplicity of argument. The Moyal product The string field that represents the perturbative vacuum is

and the trace Tr are defined at fixeds given by the Gaussiat\g~exp(—&éMyé) (for any «,,N).

- The on-shell tachyon statelL{—1)A;=0 is given by

(A*B)(X,£) = A(x,£)e@D7"" 7,71 7B(x, £), Aqe’*, which is
_ CE A, €)= Nge™ Mo~ 8hoglk X, ()= —ik¥(we,0),
THA(X)]= f —— - A(X,8). Y

(det2mo) No=(detdoMy)9412k?=2, (11)

planes, with £, &7 ], = o7 7*", where rewriting the center of mass coordinatg in terms of the

0o 1 midpoint X, i.e., Xo=X+WgX.. The norm\j is fixed by

oiy=i0 e) (8)  requiring Tr(AF «A;)=1.

-1 O All perturbative string states with definite center of mass

momenturk* are represented by polynomialsgmultiply-

ing the tachyon field. All of them can be obtained from the
following generating field by taking derivatives with respect
to a generah:

The parameted absorbs units and could be mapped to 1 by.
a rescaling of the units gf,.

The kinetic term is given by the Virasoro operatiog
which was computed in Moyal spacelié]. Here we rewrite
it in the form of a differential operator A(Zg):Ne{MOg{xeik.?, (12)

1 d - 1 ~ —_— ; T
Lo== 82— —Tr(%x)— “DAMZ %D+ E(kMo)E, (9 and setting\ — N\ g= —ik*(w,,0) at the end.
0=5 807 3T = ZDe(Mo ")+ £(xMo) &, (9) Nonperturbative string fields that describe D-branes in-

. volve projectors in VSFT conjectuffel]. A general class is
where Bo= —il 4(d/9x), [6]

D ={[(d/9xe) =1(Bolls)Wel,(d/Ipe)},

_ 1
AD,A(§)=J\/'exp(—§D§—§)\),N=2d'\‘exp< . Z)\O’DO’)\),
andly is the string length. The (2) X (2N) matrices

a ab

~ 0 1 13

p— D= .
~ [Kke O 212 0 ba — +bab (13
“Tlo TiR/TOT 22 | (o o

0 G_TK T For any\, and symmetri@a,b, these satishAxA=A, and

TrA=1. For a HD-brane the components Jofparallel to the
give the block diagonal forms M517< brane vanish)\'"'=0, while those perpendicular to the brane

T 2 512y 2 ~ . 2/~ 2 are nonzero as a function of the midpoint(x,)+#0. Ex-
d|ag23(2|2 16'(0 fal5) ke) and  «Mo=diad (« /le) amples such as the sliver field, butterfly field, etc., are special

X (213/6%)(TT)¢ ] after using Eqs(2),(5). We note thal T cases of these formulas with specific forms of the maix

in kM, is almost diagonal, sincd@ T=1—ww/(1+ww), [6].

and the second term becomes naively negligible in the large It appears that for all computations of external states of

N limit sinceww—o. A major simplification would occur if interest we should consider the field configurations that con-

one could neglect this term. However, with this simplifica- tain the general parametef§ M;; A {*,k*

tion one cannot recover the string one-loop amplitude or _ _ _

other quantities correctly, as we will see below in E4f), Avma=Nexp—EME-EN+ik-x), (14

because of the anomalies discussed in footnote 2. The lesson ) )

is that one should not take the lartydimit at the level of the where for perturbatlve staté¢ is a constant, but for D-brane

Lagrangiarf One should do it only after performing all the states it may depend on These fields form a closed algebra

algebraic manipulations that define the string diagram. Conunder the star

sequently all of the following expressions are at finNe _ _ _

unless specified otherwise. [NViexp(—EM &= éNg+iky-X)]

*[Noexp( — EMoE— ENp+iky-X) ] (15
3In the following, we denotel®s; - - - d%,, as @d¢). _ _ _
“This term inL, was missed ifi7] in their attempt to compare the ={Niexd — EM (o€ — ENpot+i(ki+ ko) - x]}  (16)
discrete Moyak . of [4] to the continuous Moyak . directly atN
=, and erroneously concluded that there was a discrepancy. Iwhere the structure Ny, (M 12ij »(N12){* is given as(de-
fact, there is full agreement. fine m;=Mjo,m,=Myo,m,=M,0)
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M= (Mg +mymy)(1+mymy) 1 the Fourier transformed basis. In a Feynman diagram an ex-
_ ternal string state will be represented by a monAi, ¢)
(M= mymy) (1 mymy) 7, 17 that corresponds to a perturbative string state or nonpertur-
Aio=(1—my)(1+m,m;) 1A, bat.ive D-brane state as discussed in.the' previous section.
This corresponds to a boundary condition in the language of
+(1+my)(1+mm,) I, (18 a worldsheet representation of the Feynman diagram. The
propagator is given as an integral using a Schwinger param-
3 NN, eter Lo—1) 1= [gdre"exp(—Ly). This corresponds to the
12~ def( 1+ m,m;) %2 free propagation of the strir_lg as represented by the world-
o _ sheet between the boundaries.
X @A +Az)a(my+mg) "Ly +Az) =N ppa(myp) ~hygl (19 To evaluate Feynman diagrams we will need the

) ) ) ] o ~ 7-evolved monoid element
This algebra is a monoid, which means it is associative,

closed, and includes the identity eleménumber }. It is
short of being a group since some elemefits particular effLO(Nenggfgeip.;):MT)e{M(T)g,g(T)eip.;.
projectors do not have an inverse, although the generic ele-

ment does have an inverse. The trace of a monoid is given 2Y)
through Eq.(7) (assuming a decaying exponentialdh
Nk Xg(UARM 1 Both sides must be annihilated by the Salinger operator
TrAyma )= ———————— (200  (d:+Lo). The result of the computation is given by
o de(2M )92
Building on the computatlons |[r_6], this mon0|d algeb'ra will _ M (7)=[sinh7x + (sinh7x -+ MoM ~*coshrx) 1]
be used as a basic computational tool in evaluating string
field theory diagrams. X(coshrx) ™My, (22)

Ill. FEYNMAN GRAPHS IN & BASIS

In this section we discuss Feynman graphs in the noncom- \(7)=[(coshrx+ MM, 'sinh7x) "*(\ +iwp)]—iwp,
mutative¢ basis and in the next section we formulate them in (23

1 _ ~
N e<1’2>'§pzfexp{z(>\+ipW)(M +COthTKM0)1()\+in)}
M=

1 1 _1drz2 (24)
de{§(1+ MMy b+ 5(1—MM01)e2”‘}

For the tachyon in Eq(11) this simplifies greathMo(7)=Mg, No(7)=Ng, No(7)=Ne . Note that even in the general
case the evolved monoid is also a monoid that can be star multiplied easily with other monoids.

The diagrams below will be given as a function of the Schwinger paramegteighe function should be integrated using
the measurd jdr,e” for each propagator. We now give some examples of tree diagrams.

The diagram 1-2 for two external statds,A, joined by a propagator is given by

1 -
NlNz(T)eXD{Zp\ﬁ‘ AT IM+My(m)] [N+ )\2(7')]]

f ATRTr(Agre~ oA,) = (2m)98% (p) (25

(def2[M+My(7)]oD??

wherep#=k{+k4 . To evaluate it we used Eq21)—(24),  expression for this diagram is
and the trace in Eq20). For tachyon external states of Eq.
(11) this expression collapses to juest(2)98%(p), which
is the expected result. For more general states our formula
provides an explicit analytic result.

The 4 point function is computed from the diagram for The two external lines (1,2) are joined to the resulting state
= (3 and its various permutations of (1,2,3,4). The MSFTby the productA;,=A;*A,, which is a monoid as given in

19A%4= f dIXTrTe™ Mo(AxAy)xAgx ALl (26)
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Eq. (16). This monoid is propagated toA;x(7)

for the monoid A,,.

PHYSICAL REVIEW D57, 066002 (2003

The remainder of the computation

=e "o(A;*xA,) by using Eqs.(21)—(24), and then traced is straightforward algebra and those details will be pub-

with the monoid A3;=A;xA,. Then the computation of

lished in a future papef13]. We emphasize that the

the four point function is completed by using the formulaexternal states can be nonperturbative. For the case of

in Eq. (25). That is, replace the monoidl; by the monoid

A4, and similarly A, by Aj,, and apply Eqs(22)—(24)

dei2my) 92
34=de(1—+2®d<2w>dad<p1+ P2+ Ps+Pa)
where
a(7)=Z[1G¢(Ee— 1)t+Gy(E,— 1)1z, (28)

B(1)=2Goz,¥(7)=2Go(E,—1)z—2z(1+tt)z (29

are given in terms of the following definitions:

= (1+E)71I_K;1/2VV,|:: Ké’szgl’Z,moz Moo, (30)

Eo(7)=cosh k7)) + 2_Sin|’(Ke7'), (31
+tt
E = + %
o( T)=cosh k,7) 1+ESIHI“(KOT),
Se,o 7)=SiNN(Ke o),  GeolT)=2Seo(E o= 1) %
(32

Before integrating with the measuf§dre” we also need to
multiply this expression by the ghost contribution, which

perturbative tachyon scattering, foiff-shell tachyonsthe
result is

4

e~ (121 2(p1+po) A7+ a(7)] eli(p1+ps)2ﬁ(r)e<1/2)|§21 Py ¥(7)
=

(27)

{def2G(r)e™e]}~*{def2G(r)e™ o]}~ 92

nal legs that are identified were represented by the fields
Ai,A; in the tree diagram. In the loop these fields are re-
placed by

Ai_)e7 TiLO(eigﬂeip‘I), Ajﬁe*igﬂefip'; (35)

and the integral over is performed(the Fourier basis is a
complete set of states to sum over in the propagatidere
7; is the modulus of the new propagator gnttbecomes the
momentum flowing in this propagator by momentum conser-
vation. Some examples of loops follow.

The one loop diagrar®® with no external legs is obtained
from the 2-point vertex T;*xA,) by identifying legs 1,2.
This leads to the integral

f f ‘% (dp) _dn)
(27T)d (27T)ZdN

x{(e €7e 1P ) x[e "ho(elE7eiP )]}, (36)

will appear in our future paper. This should reproduce thdt is a simple exercise to compute by using the methods

Veneziano formula when all tachyons are put on sHgif
=2, and we take the largd limit with «,=n.

Similarly, the diagran?)—"— (¢ involves
J AT A7) *Agx Ay 75) ]

= f dIXTr e T1ho(A % A,) * Agxe™ 2R0( A xAg) .
(33

The diagram?) — "= " (2 involves

jdd;Tr{Alz(7'1)*A3*97T2L°[A4*A56(7'3)]}- (34)

above. The result is given below in E@6) where it is in
agreement with our next method of computation in Fourier
space. This computation illustrates the importance of the cor-
rect treatment of the anomalisee footnote Ras will be
emphasized following Eq46).

The tadpole diagramt—O is obtained from the 3-point
vertex Tr(A;xA,xAz) by identifying legs 2,3. This leads to
the expression

- izﬂe_ ip ;)

p
j J (2m)d 277)20"“ TriAux(e

X x[&” o(elé7elP )]}

which is again straightforward to evaluate.

Next we consider loop diagrams. We start from an expres- The one loop correction to the propagator attached to ex-

sion given above for a tree diagram and then identify anyternal states— N

—,4 is obtained by identifying legs 2,3 in

two external lines to make a closed loop. Suppose the extethe 4-point function above. This leads to
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f f (277)" - )ZdNTr{e*Tl'-O[Al*(e*‘E”e*‘p';)]*[e*TZLO(eiE”e‘p';)]*A‘l}

d (dny)

—<2w>d5d<k1+k4>f 2 2

——— Tr{[e 1ok P (A e TE7) [x (e 0P ET) R A}

where in the last line the momentum-dependent part of g \dN ———
A;,A, has already been peeled off, and théntegral per- 9(r.p)=|5-| (1+ww)
formed. ThenB, in Lo(By) has been replaced bk —p and o
p as appropriate for the propagator with the corresponding R o omen |
momentum. ~ (-:1;[0 (1-e e)ol;[o (1=
These examples are sufficient to illustrate our approach to
such computations. TKe
tanh ——
T, = 2,2
xexpg —| 5 +tw———w lsp”|, (40
IV. FEYNMAN RULES IN THE FOURIER BASIS Ke

The definition of the action in Sec. Il is enough to define 1 ~ o1
the Feynman rules for the open string diagram. Note that in F(7)= ZMO [tanf(7x)]
the absence of the last termli of Eq. (9) the kinetic term

. . . 2
becomes basically the same as the conventional Lagrangian

s -1
of the ¢* theory on the noncommutative plafi4]. T%[ta”nTKe)] 0
Vertex.The remark above implies that if we take the plane = 5 ,
wavese'7¢ as the basis to expand the noncommutative field, 0 a—zﬁxo[tanh(rxo)]*lR
then then-string interaction vertex in this basis is 8lg
(41
o _ —dr2
Tr(ei 771"::* e *ei 77n§) = de ) 1 ~
on G(7)= 7 Mg Lsinh(7x)] "
1 —
Xex;{—iz nianj)ﬁsz |§
<] ;[sinl’(me)]’l 0
e
X(771+ + nn)v (37) = 02 ’
0 —Rio[sin( 7x,)] 'R
which is identical to the interaction vertex for noncommuta- 8ls
tive field theory. (42
Propagator. The simplification of the vertex is compen-
sated by the complication of the propagator. Nbyvis not tanf(7xe/2)
diagonal. It is still easily computable, however, by using Egs.  H(7:P)= T wisp. (43
(2)—(24) for M=0,N=1, A=—i7', and inserting them in
Eq. (25 A critical difference from the conventional propagator in mo-
mentum representation is that the propagator depends on the
(dé) B B momentum variables at both ends of the propagator in a
A(,]’,,/’T’p)zf e infgThogin’é  (3g)  nontrivial fashion(because momentum is not conserved due
(277)2dN to the potential term irLy). Therefore in the Feynman dia-

gram computation, the momentum integratidmy is per-
formed at both ends of each propagator.

=g(r,p)exr[—;F(r)77—;’ External stateWe note also that the external state in Eq.
_ (14) is not diagonal in the momentum basis. We need its
XF(m)n'+27G(7)7n’ Fourier transform
+(n+n)H(7.p)], (39 ’AN’M’)\:Nef(lm);M*177+(i/2);M*17]eip.;,
where N=Mam)~IN(detM) ~92eWmM 1 (44)
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For comparison to the oscillator approach, such monoids cor- 1-loop vacuum amplitude€dne of the simplest graphs is
responds to shifted squeezed states e¥p{Sa’ the 1-loop vacuum amplitude. It can be computed directly
—pa’)|p), with momentump”. For the general case the from Egs. (21)—(24), which amounts to integrating
relation between oscillator and MSFT parameters is given i\ (%, 7', 7,p) (38):

Egs. (3.49—(3.6) of [6]. For perturbative states witl§=0

these reduce to coherent states &gpha_)|p), with a cor-
responding Moyal field that contains th, of Eq. (10) and f dder(e‘T'-O(p))=j ddpJ (d9)A(75,7,7,p) (46)
N\ given by
N=[del4k,)/de( Ke)]d/4e(1/2)(;eue*;o#o), = (277)(@2)] S_dr_(dlz)
\/E _ a—Tkg)—d _a Tkg)—d
— ket W er[O(l e~ ") 01;[0(1 e o),

S
2 3l S (45 (47)
0 © © We see that the correct spectrury(«,) is read off from the
. . . 1-loop graph at any,,N. By taking k.=e,x,=0 and N
To summarize all, the Feynman diagram computation of_ o, \ye reproduce the standard perturbative string spectrum.
MSFT reduces to the following simple prescriptions. As in pthough this graph does not include any interaction, the
the conventional field theory, we decompose the string diaggincidence of the spectrum implies the correctness of our

gram into the vertex, the propagator_and thg external StateBropagator. It is essential tokeep the term (1
We need to perform the momentum integrations attached to — ., 5. . . 6
each junction of the components. Al integrals are Gaussian, W) ~(Ze>0WePe)”in Lo Which convertsce into «,.~ In
Therefore the computation of any string amplitude reduces téact, if one takes thevw=ce limit first, this term drops out
the computation of the determinant and the inverse of th@nd one ends up with the wrong spectrurg («.) instead of
large matrix which describes the connections among threfxe. o), as happened in Reff7] (see footnote }
componentsthe external states, propagator, vejteSince 4-tachyon amplitude at the tree levél s ¢ (5. As a
the matrices which appear in our computation are explicitlysimple example including interaction, we consider the per-
given and finite dimensional, we obtain a finite and well-turbative 4-tachyon amplitudg)-s---¢- (3 that we dis-
defined quantity for any string diagram. cussed in Eq(26). Following our Feynman rules in the Fou-

In order to illustrate our Feynman rule, we present someier basis, we assign the momentum variabig (i
examples of the string amplitudes restricted to the matter 1,2, ...,6) toeach junction of the components. The am-
sector contribution. plitude is represented by

J' (dmy)---(dyg)e” (U2) (710 70+ mpo 5+ 110 m5) — U230 14+ 040 16+ 730 76)
X 3N+ mpt 15) SN Mgt mat m6) A7, — 76, 7, P)Ap (1) Ap,(172) Ap.(13)Ap,(74), (48)

Ao (7)=No(4m)~MN(detMo) ~(d12)gipixg = (1/4) (7~ pw)Mg (7~ piw)

where 7 is the length of the propagator apd=p;+ p,—p3— P4 is the zero mode transfer momentum. We first perform the
momentum integrations oveys, 75 to cancel the delta functions which represent the momentum conservations. The remaining
integrations are Gaussian and the above expression reduces to

2

dN
NédetMEZd 440) g(T’p),(detA)—d/z.e(1/4)EA*158—(1/4)(p§+p§+p§+p§)v_nglw’ (49)

with

SAlthough these amplitudes are similar to some of those in [R&l, our formulas are more general since they all contairthex, which
are arbitrary frequencies at finité Furthermore, we can apply them to nonperturbative external states as they stand, with no more effort.

To obtain the ordinary perturbative string amplitude, wersgt e, x,=0 and takeN— o limit (which corresponds tawﬂoo) at the last
stage of computations.

5This contribution comes from the off-diagonal part'b?in Eqg. (9).
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1 1
F(T)+ZM51 F(n+ g0 G(7) G(7)
1 1,
F(n-Z0 F(n+7Mg G(7) G(7)
A= 1 1 , (50
G(7) G(7) F()+ZMe™  F(n+ 70
1 1,
G(7) G(7) F(r)=z0  F(n+7Mg
7. —1_—1_1_—1_1——1_1_—1
B=| —H+5pwMg ', —H+ 5p;WMg " H+ 5pawMg " H+5pwMg . (51)

In the matrix.A, My comes from the external tachyoris,G from the propagator and from the Moyalx product. On the
other hand 3 originates from zero-mode momentum-dependent terms. The appeararieesd tife off-diagonal parts it
come from the mixing induced from the momentum integrations oxgy.
This formula looks more complicated than the expression given ifZgsince it involves the matrices of larger size. The
reduction to Eq(27) can be proved by the reorganization of the Gaussian integrations which is outlined in the next section.
2-loop vacuum amplitude:

As a next example, we consider one of the 2-loop vacuum graphs: Two 3-string vertices are connected by three propagators
which have momenta,,py,pP. and lengths,, 7, 7. . We assign the momentum variables(i=1, . . . ,6) aglepicted in the
figure,

j (dﬂl) . (d,r]6)e—(l/2)(771(r7]2+ 71013+ 720 13) — (12) (940 16+ 140 15+ 760 75) 52dN( 7]1+ 7]2+ 7]3) 52dN( 774+ 775+ 776)

XA(73,= 174,7a,Pa)A(71,— 15,7, Pp) A( 72, — 16, Tc 1 Pe)

_ _ (dx1) (dxz) g -1
— 1 d/2 A(LIHEM ~ K
_g(Taypa)g(Tbypb)g(Tc:pc)[de(ﬂ' M)] f (277)2dN (277)2ch (52)
where, after denotingfl (7,,p,) asH,, the quantitiesM, KC are given by
1 1
F(7) 2° yid 0 G(p) 0
1 1
—2° F(7c) 2° 0 0 G(7)
1 1
— Zo‘ - ZO’ F(7a) G(7a) 0 0
M= 1 1 : (53
0 0 G(ry) F(7) yid yid
1 1
G(Tb) 0 0 —ZO' F(Tb) —ZO'
1 1
0 G(r) 0 - ° 2° F(e)
K=(ix1+Hp,ixs+He,ixi+Haixo=Haixa=Hp,ixa=Ho). (54)
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In passing from the first to the second line in E§2), we rewrote the delta functions at the vertices by

(dx1)

Sy (55
T

82Ny + mp+ Us):f

and performed they; integrations.

We are now ready to write down the explicit form of the scattering amplitude for any Feynman diagram. We use the trick
Eqg. (55 to convert the delta functions at the vertices to the Gaussian integrationysverhe general formula aften
integrations is given by

(rapa)- I NP [de(r tM)] 92 f M 9 wacnic (56)

ae{propagators u e {external statgs i e{verticeg (277) 2dN

where the matrixM is

( F(7a), | e vertex(i) N propagatara),
1
Y | e vertexXi) Nexternal stat@l),
M= 4" (57
1
F(ry)+ M .1, lepropagatata) Nexternal stat@u),
\
( 1
tZa, I,Jevertexi),
=1
My +G(7,), |,Jepropagatara), (1#J), (58)
L 0, otherwise,
and vectork is
ixitH(74,pa), |evertexi)Npropagatara),
i
Ki=9 ixi+ EMu‘l)\u, | e vertexi) Nexternal stat@u), (59)
0, otherwise.
|
The indicesl,J, ... in the matrixM and K represent the propagator-external state junction appears in the Feynman
junctions between the arbitrary combinations of the basigraph considered in E¢25) in the preceding setioh.
components(propagators, external states and vericds The plus or minus signs in Eq&8),(59) are determined

Egs.(57),(58), vertex(i) [propagator &), external stateu()] by the relative_positions of tlhe labelsin the_ diagram. I_:or
represents the set of the boundaries of ittrevertex @th ~ example, the sign aM;— *zo at a vertexist+(—) if I is
propagatoruth external state We specify the junction by positioned a_ftel(before J Wh_en going clockwise around the
taking the common set among them as indicated by a Feyr!Srt€x. To figure out the signs @&,H systematically, the

man graph. In the example of the two-loop amplitude, all thediagram may be decorated with arrows for all momenta di-

indices | = 1 6 describe the junction between a vertex rected into each vertex. Recall that each propagator has dif-
and a propr;lg.]ét.o,r. Applying the rules we obtain E@)— ferent momenta at each end, therefore a propagator with ends

. : . 1,J) will have momenta ¢ #,,— »;). The sign in front of
(54). Similarly, in the example of the 4-tachyon scatterlng,( o /
the indiced = 1,2,3,4 describe the vertex-external state junc—G 's given by the product of the signs of the momenta at the

tions while the indice$=5,6 describe the vertex-propagator
junctions. In this example, after applying thes_e rules we first "strictly speaking there are other possibilities for the junctions, for
construct a &6 matrix M and a corresponding’. After  jgtance, propagator-propagator, vertex-vertex. However, since they

integrating overyy,, We obtain the &4 matrix A and the  can be obtained by taking the appropriate liffidgr example, an
corresponding3 given in Egs.(50),(51). An example of a infinitely short propagatdr we do not write them explicitly.
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two ends of the propagator, times (). So if the arrows are odN )
drawn as suggested, the signtiss. Finally the signin front ~ Vn(7, G)Ef (dm1)---(dnn) 6~ (nyt- -+ py)e
of H is determined by the sign ofy, at each end of the

propagator. If the direction of the arrows is changed accord- XE o
ing to some other convention the signs GnH will flip = Jiﬂl [9(7i,pi)
accordingly.

X e*;i':(fi)fli +€G(r) 7+ (n + €)H(7i ’pi)*ﬁ(ﬁ)fi].
(60)

o ati ¢ E i E b The first line comes from the definition of the vertex in the
ur computation of Feynman diagrams in Fourier aSISmomentum basis and the second line comes from the propa-

reduces to the computation of the determinant and the in: ator. We note that the second line may be written as
verse of the large matrices which connect all the extern
ANV X where

states. It is somehow obscure how such computation is re-i

V. REORGANIZATION OF GAUSSIAN INTEGRATION

lated to the computation ig basis presented in Sec. Ill. To = ZNe,;,:,,i,,,,TM
see the correspondence more explicitly, it is illuminating to N My AT '
carry out some of the momentum integrals. Je H(r -6 F(T.)e.
For that purpose, we dissect all the propagators which =9(7i,pi
connect two vertices. In the following, we carry out the mo- mi: F(r) Xi: —G(7)e—H(7,p) 61)

mentum integrations associated with each vertex attached to
the dissected propagators. More explicitly, we consider théctually this is nothing but the trace of the Moyal product of

following integration: n Gaussian functions:
|
Vil 7.€) =T Ay o (71, €)% %Ay s (7€), (62)
[
=[4F(7)]"Y \= _§F(Ti)_1[G(Ti)€i+ H(7,p)], (63

—g(r, ’pi),n_dN[detF(Ti)]dQe:iH(Ti P~ &R (7)€ + (U7 py) + € G(m)IF() ~MH (7 ,p) +G(r) el

While it looks complicated, the explicit evaluation of such VI. MOYAL FORMULATION OF b,c GHOST SECTOR
expressions are given [i6].

We note that once this expression is evaluated, one may
write down any string amplitude schematically as

In Ref.[6], the Moyal formulation of thdosonizedyhost
as discussed and was shown to be almost the same as a
matter boson. In certain explicit computations in the ghost
sector, it is often convenient to use the fermionjc ghosts.
W0 Becausé(o),c(o) have cosio as W_eII as simo m(_)des, we
A~ (df)vemceSVnW(T ) need to develop a regularized version of half-string formula-
tion for sine mode&.In the ordinary split string formulation,

~ we find the infinite matrix
x 11 Agmx Il &#MNMe+e) (69

externallegs =" it iconnection

Rye=—| dosinoosinec=————. (66)

4J«,n./2 4e(i)e—o+l
7)o m(e’—0?)

where the final factor describes the momentum integrations
for each dissection point of the propagators. The second fac-
tor comes from the external states. As an example, the twoFhe inverse matrix is its transposRR=1,,RR=1,. How-
loop vacuum amplitude is now neatly written as ever, R has a zero modew,=.2(i)°"%, namely
3% WoR,e=0. As emphasized in footnote 2, this situation
causes an associativity anomaly of infinite matrices, which
f (deqp)(dey)(des)Va(T1,72,73;€1,€2,€3) leads to ambiguities in computation as was discussed in Ref.

XV3(T£,T§,Té;_61,_62,_63). (65)
8The cosine modes were developed in Rdf5,6]. This was
enough to discuss matter and the bosonized ghost sector. The half-
Other amplitudes can be written as easily as this one. string formulation of theb,c ghost was developed {15].
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[5]. To perform well-defined computations, we construct acorresponds tdanti-joverlapping condition of Witten’s star
finite N N matrix R using the arbitrary spectrum,,x, as  Product: b0 (a)—b""D(m—0)=0c"+c "N (7—0)
we did for T,R,w,v in [6] =0. Herex,,Yn,Po:0o:Co, &g are Grassmann odd variables.
A ghost zero modég, also enters in reproducing Witten’s star
along with the above Moyat product. Through the oscilla-

ﬁoe:ZM, (67)  tor formalism[19] we establish the link between Witten’s
Ké— Ké product and our Moyal product as follows:
The originalR (66) is recovered by setting,=e, x,=0 and J' déPdePdel®
taking N— o,
We now follow a procedure parallel to that i4]. Using XTr[A(l)(ggl),g)*A(Z)(ggz),g)*A(3)(§g3),g)]
the finite version off,R,R,v,w, we define half-string modes
1 1 1 1 L) —~ (1) (2) (3)
for b(o),c(o), and perform the Fourier transform with re- (W), (72)
spect to the even modes of the full strihg: where
A(&9,%0+Po Yo 0o §=(X0,P0+Y0:00)s  TrA(£)
=J' dCOH (dxedye) ::J H (dX,dpedyodd,)A(S). (72)
e>0 0>0
« @ oS0t [€0+ (219)aov] WY+ (2/9)PoRXe+ (216)do Ty In fact, by substituting the coherent states and their Fourier
transform for® ) A0 we have verified that the Neumann
X{Co,Xn,Ynl V), (68)  coefficients in the above identification coincide with the ones

which were defined using the 6-string vertex in thatter
sector in Ref[6]. This provides a successful test of the ghost
(co,xn,yn|=<Q|f:160exp(c060+2 (—Cnbp—iv2CX, zero mode part! This coincidence holds for arbitrary
n=0 Ke,Ko,N. As usual, we reproduce the ordinary Neumann

R coefficients of Witten's string field theory by setting,
+ 2y by +iynx,) |- (69 =e,k,=0 and takingN—c in the last stage of computa-
tions.
The (I;Orassmann oddrersion of the Moyal product among VIl. COMMENT ON RELATION WITH VSET
them,
So far, we have established the utility of MSFT for com-
- - - - puting Feynman graphs with perturbative as well as nonper-
AxB=A exp[g E ( i i n i i turbative external states. To make further progress with non-
2530 \ Xy IPo Yo 9o perturbative effects, it will be important to understand how
L L MSFT could be used in vacuum string field theory. In this
Jd d Jd d section, we make some remarks in this direction.
+(7_p0 (9_Xo+ 0 Yo B, (70) The second order differential operatiog(8,), including

the matter and ghost sectors, can be rewritten using the

9 . Moyal x product as follows:
In the matter sector the Moyal product could be formulated in

either the even or qdd §ect0[4,9]; in the bc sector it is more LoA=Ly(Bo)*A+AxLy(— Bo) + YA,
natural to formulate it using odd modes.

0The Moyal formulation of the ghost system was discussed inwhere
Ref. [16] in the context of the continuous basis. The author also
defined the discrete Moyal star product usexgnmodes starting 2 K2 I 1 _
from the continuous product. While our switch to odd modes ap-Ly(Bg) = E ( > p§+—2x - WepeIBO) + Z(l-i—WW)B(Z)
pears trivial, there are some important differences between our 62 alg
treatment and that dfl6]. A critical point is the treatment of the
midpoint modeb(#/2) which is nontrivial in our case but vanishes
in [16]. This has an important consequence for producing the cor-
rect Neumann coefficients. Actually we also developed dglkien
mode formulation af16] but with the proper treatment of the mid- (73
point. It is, however, more complicated than the odd mode formu-
lation presented here. Another important difference is on the regu-
larization of the infinite matrices where our setup holds for arbitrary 'The coincidence of the Neumann coefficients for nonzero mode
Ke,Kq,N. The details will be given irf13]. Also for more com- implies that our Moyalx product is essentially the same as the
ments on midpoint issues related to the continuous basi§g9%ee  reducedproduct which was introduced in the Siegel galityé,18.

-2
4

n>O

1 2
2 o(zxoyo+ &poqo> ’
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1 212 2

E— w
1+ww 02(«;0 ePe

E Kovopo>(2 Voo
0>0 0

0>

y=-

4i _
+—2(1+WW)
g

X (79

The £, terms are star products with a field without involving
explicit derivatives with respect t§. However, they term is
an ordinary product, not a star product. It involves
2 e~ 0P4W,e Which can be rewritten as

E PeWe=

e>0

E péfRo eWe
e,0>0

=(1+ww) >, pLu,
0>0

= (1+ww)p*, (75)

where the mod@*“=3,- o ,p" was discussed if6] as be-
ing closely related to associativity anomalies in string field

theory. Also note that in the largh limit p* becomes the
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ation is similar in the gauge covariant BRST formulation,
namely the BRST current does not vanish at the midpoint.
Our observation here indicates that one might need a more
careful analysis of the midpoint BRST operator in the purely
cubic theory and/or in VSFT.

We are currently in the process of solving the classical
equations of motion of the original thedfand hope to es-
tablish a careful connection between VSFT and the original
theory in the context of MSFT. We expect that the more
careful treatment of this term would clarify the midpoint
structure of VSFT. The finité&\ regularization which is used
in this paper will be essential in this viewpoint.

VIIl. OUTLOOK

In this paper we have restricted ourselves to computations
in the Siegel gauge, and demonstrated the utility of MSFT.
Ideally, for further insights, we would like to aim for a more
gauge invariant approach. To achieve this carefully it is nec-
essary to construct the nilpotent BRST operator. We can do
this in the infiniteN limit, but not yet in the finiteN case. The
reason is that the Virasoro algebra does not close with a finite
number of modes. Therefore one needs to find a finite dimen-

unpairedzero momentum mode in the continuum Moyal rep-gina| algebra that closes at finiig and becomes the Vira-
resentation of Refl.7]: [lim,_ p*(k)]~p*. The ghost part soro algebra at infiniteN. With such an algebra one can
has a similar structure. Evidently, these bits are closely conconstruct a BRST operator and a gauge invariant Lagrangian
nected to midpoint anomalies. at finite N. This would be the analog of lattice gauge theory

If we could neglect they term, LA would be given by for QCD. The cutoff theory we have described so far would
left + multiplication with £o(8,) and right star multiplica- cprresponql to the gauge fixed lattice gauge theory. It. is pos-
tion with Lo(— By). The left-right splitting of the kinetic Sible that in this process thex{,«,) that have remained
term reminds us of the situation of the purely cubic string@rbitrary so_fgr in our formalism would _be fixed as a function
field theory [20] where the Becchi-Rouet-Stora-Tyutin Of (€,0) atfiniteN. On the other hand, if the VSFT proposal
(BRST) operatorQg was decomposed into the left and right IS valid, we can easny construct the midpoint nilpotent BRST
star multiplication of the string field§, | or Qgl. In this ~ Operator from only midpoint degrees of freedom. In that con-
sense, purely cubic theory is essentially the matrix analog di€Xt @ gauge invariant theory is easily constructed without
Witten's string field theory. In our MSFT framework EVer encountering a restriction on theg(«,) at finite N.
Qg,Q, | correspond td., and £,, respectively, because we The clarification of suph issues will be critical for the
are in the Siegel gauge. However, we have now seen that thfdture development of string field theory.
structure must be corrected with oyrterm.

One of the lessons we learned in this paper is that we
cannot neglect the gamma term because it is indispensable to
reproduce the correct spectrum in the computation of 1-loop I|.B. is supported in part by a DOE grant DE-FGO3-
vacuum amplitude, and other quantities, in both matter an84ER40168. 1.K. is supported in part by the JSPS. Y.M. is
ghost sectors, even if the coefficients in front of them appeasupported in part by Grant-in-AitNo. 13640267 from the
to vanish naively in the larg8l limit. Ministry of Education, Science, Sports and Culture of Japan.

The origin of they term is a non-vanishing energy-
momentum tensor at the midpoint. While the integration
measure is zero, it still gives a finite contribution. The situ- *?There are some attempts to solve it in a different schgzig
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