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Noncommutative electrodynamics
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In this paper we define a causal Lorentz covariant noncommutative~NC! classical electrodynamics. We
obtain an explicit realization of the NC theory by solving perturbatively the Seiberg-Witten map. The action is
polynomial in the field strengthF, allowing us to preserve both causality and Lorentz covariance. The general
structure of the Lagrangian is studied to all orders in the perturbative expansion in the NC parameteru. We
show that monochromatic plane waves are solutions of the equations of motion to all orders. An iterative
method has been developed to solve the equations of motion and has been applied to the study of the
corrections to the superposition law and to the Coulomb law.

DOI: 10.1103/PhysRevD.67.065021 PACS number~s!: 11.10.Nx, 11.15.Bt
fo
a
r

tiv
r o
or
e
ve
le
th
o
la
n
re

b
to
g
rg

n
o

r
th
c-

he

is

hat
ved
ed

a-

od
to

und
ea-

-
n,
e

t as

s

tic

ven
I. INTRODUCTION

Suggestions on the possibility that nature could allow
noncommuting spatial coordinates came both from the p
@1# and more recently in the realm of superstring theo
studying low energy excitations ofD-branes in a magnetic
field @2#.

This has stimulated investigations on the noncommuta
~NC! versions of gauge field theories and on the behavio
their quantized counterparts. Among these, Maxwell the
is perhaps the easiest example and one where a possibl
perimental test of this hypothesis could be realizable. Ne
theless, two main problems arise when one tries to imp
ment electromagnetism in a noncommutative geometry:
loss of causality due to the appearance of derivative c
plings in the Lagrangian and, more fundamentally, the vio
tion of Lorentz invariance exhibited by plane wave solutio
@3#. These problems have been discussed with a diffe
approach in the framework of NC QED@4,5#.

In this paper we show that both these problems may
avoided if one allows a nonzero ‘‘electrical’’ component in
the tensoru of the noncommutation relation so includin
time as a NC coordinate. After application of the Seibe
Witten ~SW! map @2# the theory is perturbative inu and
classical plane waves turn out to be exact solutions. They
longer obey a superposition principle. Finally, a sort
electric-magnetic duality comprehendingu and reminiscent
of the known one in commutative Maxwell theory appea
between the fields in the equations of motion, reinforcing
interpretation ofu as a sort of background primordial ele
tromagnetic field.

In Sec. II we fix notations and conventions, recall t
definition of the SW map@2# and show the explicit solution
to second order inu.

In Sec. III we prove that the Lagrangian of the theory
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polynomial to all orders in the perturbative parameter so t
causality is preserved. The equations of motion are deri
in Sec. IV where evidence is also given of the mention
duality.

In Sec. V a general iterative method of solving the equ
tions of motion is outlined.

After proving that plane waves are solutions, the meth
is applied to the problem of plane wave superposition and
derive corrections to the Coulomb law.

The paper ends with some comments on the results fo
and on possible experimental settings aimed to directly m
sure noncommutativity.

II. SW MAP AND SECOND ORDER EXPANTIONS

In the following, a caret over a classical symbol will in
dicate the same quantity in its NC version. In this fashio
coordinates of flat noncommutative Minkowsky spacetim
will be assumed to satisfy

@ x̂m,x̂n#* 5 iumn, ~2.1!

whereumn is a real skew tensor whose components are se
follows:

u0i5« i ,

u i j 5e i jkbk . ~2.2!

Note that we do not impose« i50. This means that time doe
not commute with spatial coordinates andu is a constant
tensor field. Besidesu we consider the usual electromagne
field whose NC action is given by

Ŝ52
1

4 E d4x F̂mn* F̂mn52
1

4 E d4x F̂mnF̂mn . ~2.3!

The corresponding Lagrangian and field strength are gi
by

L̂52
1

4
F̂mnF̂mn , ~2.4!
©2003 The American Physical Society21-1
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F̂mn5]mÂn2]nÂm2 i @Âm ,Ân#* .
~2.5!

Here the star product~* ! between NC quantities is defined a
usual:

~ f̂ * ĝ!~x!ªei /umn]m]n8 f̂ ~x!ĝ~x8!ux5x8 . ~2.6!

Also, the following conventions will be used for electroma
netic fields:

Ei5F0i ,

Bk5
1

2
e i jkFi j . ~2.7!

Now, according to Seiberg and Witten@2#, every NC gauge
theoryÂm has a perturbative description in terms of the no
commuting parameteru and another commutative theoryAm
possessing the same degrees of freedom as the NC one
relation between them is established by means of
Seiberg-Witten map:

]Âm

]uab52
1

8
$Âa ,]bÂm1F̂bm%* 2~a↔b!,

Âmuu505Am . ~2.8!

Solving the above equations means determining each p
of the perturbative expansions:

Âm5Am1Âm
~1!1Âm

~2!1¯ , ~2.9!

F̂mn5Fmn1F̂mn
~1!1F̂mn

~2!1¯ , ~2.10!

relating at every order inu the NC quantities with their re
spective classical counterparts. As is well known@6#, one
obtains, to first order,

Âm
~1!52

1

2
uabAa~]bAm1Fbm!,

F̂mn
~1!5ugd~FmgFnd2Ag]dFmn!. ~2.11!

Considering the second order corrections, we assumeÂm
(2)

5 1
2 uabugdnmabgd and substitute the whole expansion ofÂm

into Eqs.~2.8!. We realize that differentiating and then eval
ating atu50, we end with a recursive relation between se
ond order and first order corrections and theiru derivatives.
This leads to computation of the termn. After careful rear-
rangements, the expression for the second order correctio
Am is

Âm
~2!5

1

2
uabugdH Ag]dAa]bAm1AgFdaFbm1AaAg]dFbm

1
1

4
]m~AaAg]dAb!J . ~2.12!
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Similarly, via the relation F̂mn
(2)5]mÂn

(2)1ugd]gÂm
(1)]dAn

2(m↔n) one also computes

F̂mn
~2!5uabugdFmgFdaFbn2ugdAg]dF̂mn

~1!

2
1

2
uabugdAg~]aAd1Aa]d!]bFmn . ~2.13!

III. GENERAL STRUCTURE

We discuss some properties valid to all orders inu of the
perturbative action obtained by means of the SW map.

Proposition 3.1. The LagrangianL̂ corresponding to the
action Eq.~2.3! via the SW map is a polynomial inF only
~that is, it does not contain derivatives ofF!; furthermore, the
termsL̂(n) of ordern in u form a homogeneous polynomia
of degreen12 in F.

Proof. From the SW equation~2.8! we have

dF̂mn

duab 5
1

8
]n$Âa ,]bÂm1F̂mn%* 2~m↔n!1

i

8
$$Âa ,]bÂm

1F̂bm%* ,Ân%* 1
i

8
@Âm ,$Âa ,]bÂn1F̂bn%* #*

2~a↔b!1d* . ~3.1!

Here d* is supposed to include all the terms arising whe
ever the derivation acts on theus appearing in the* of the*
product; they always give rise to total derivatives in the L
grangian density and so may be neglected. As a conseque
performing an arbitrary number of derivations and then p
ting u50 shows that commutators of the type present in E
~3.1! give vanishing contributions.

Then all significant contributions are seen to come fro
the term1

8 ]n $Âa ,]bÂm1F̂mn%* , which, evaluated at 0 afte
k derivations, produces an homogeneous polynomial of or
k11 in A with k11 derivatives~with respect to spacetime
coordinates! equally distributed on each monomial. Finall
consideringF̂mn* F̂mn at ordern in u, by the same argumen
one obtains an homogeneous polynomial of ordern12 in A
with n12 spacetime derivatives comparing in each mon
mial.

Now, since the Lagrangian density~obtained from the SW
map! is certainly invariant under the usual U~1! gauge trans-
formations, every monomial can be rearranged, modulo in
gration by parts, so as to depend only onF and possibly its
derivatives. But being the number of derivatives exac
equal to the number ofAs in every monomial, it follows that
derivatives ofF cannot appear at all. Q.E.D.

Corollary 3.1. The equations of motion of the U~1! theory
take the form

]nF̃mn50, ~3.2!

where F̃mn is the sum of homogeneous polynomials of d
green11 in F and ordern in u ~i.e., written symbolically!:
1-2
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F̃5(
n

unFn11. ~3.3!

As we will see, this property helps to derive a recurs
algorithm for their resolution.

The main consequence of the structure~3.3! evidenced
above is that the equations of motion for the field stren
are of first order. This seems to suggest that the theor
causal even though not requiring time commutativity. In t
literature, it is suspected that causality does not survive n
commutativity @7#. In our model though, after undertakin
the SW map, the action has been manipulated and integr
by parts to render all terms explicitly gauge invariant. As
by-product, all higher order time derivatives have disa
peared. In effect, this task is equivalent to add bound
terms to the Lagrangian: exactly those capable of giv
causal consistency to the theory.

Probably this should be the right procedure to follow ge
erally. Furthermore, the fact that preserving causality is
more consequence of imposing zero temporal componen
u allows us to require that it can transform like a tensor
respect to the Lorentz group. It descends that Lorentz co
riance is also preserved.

IV. EQUATIONS OF MOTION UP TO SECOND ORDER

Let us expand also the NC Lagrangian density~2.4! into
pieces of increasing order inu:

L̂5L1L̂~1!1L̂~2!1¯ . ~4.1!

The first term here coincides with the classical Maxwell L
grangian while the other terms are its various correctio
More precisely,

L52
1

4
FmnFmn,

L̂~1!52
1

2
F̂mn~1!Fmn ,

L̂~2!52
1

4
$F̂mn~1!F̂mn

~1!12FmnF̂mn
~2!%.

Recall @8# that up to first order inu, the NC Lagrangian has
the following form:

L̂52
1

4 F S 12
1

2
uabFabDF212uabFmnFmaFnbG

~4.2!

or, upon substitution according to our conventions~2.2!, we
have

L̂5
1

2
~11b•B2«•E!~E22B2!2~b•E1«•B!~E•B!.

~4.3!

Next, looking for the second order term, one finds, with
little effort,
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L̂~2!52
1

4
uabugdH F a

m F b
n FmgFnd12FmnFmgFbnFda

1FmnFmaFnbFdg1
1

8
FbaFdgF21

1

4
FbgFadF2J .

~4.4!

Here again, after substitution and accurate computation,
get

L̂~2!5~«•E2b•B!~b•E1«•B!~E•B!

1
1

2
@~«•E2b•B!2~E22B2!1~«•b!~E22B2!

3~E•B!2~E•B!2~«22b2!#. ~4.5!

As already remarked, the second variation ofL̂ yields the
usual equations of motion

]nF̃mn50 ~4.6!

and Eq.~3.3! leads us to writeF̃5F1F̃ (1)1F̃ (2)1¯ where
F̃ (n)[unFn11.

It is now tempting to regard each piece like this as
correction to the classical field strenghtF due to NC geom-
etry. This is more properly done here than on the expans
~2.10! because we are referring to the equations of moti
Furthermore, the interesting thing@3# is that denoting the
content of the NC fieldF̃ with an electric displacement an
magnetic induction~D, H! and restating the above expansio
as

D5E1D~1!1D~2!1¯ ,

H5B1H~1!1H~2!1¯ ,

where the classical fields~E, B! in F are recaptured as the
zeroth order corrections (D(0),H(0)), then the equations o
motion take the usual Maxwell form

]B

]t
1“3E50,

“•B50, ~4.7!

]D

]t
2“3H50,

“•D50. ~4.8!

Note that the first two are simply the Bianchi identities; t
other two really describe the behavior of NC electromag
tism in empty space. Working with the first order correcti
to F, which is
1-3
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F̃mn~1!52
1

2
~uF !Fmn2

1

4
umnF21uabFmaFnb1~umbFan

2unbFam!Fab , ~4.9!

we obtain for the NC fields the approximated expression

D5~11b•B2«•E!E2~b•E1«•B!B

2
1

2
~E22B2!«2~E•B!b,
ric
e

ty

w

06502
H5~11b•B2«•E!B1~b•E1«•B!E

2
1

2
~E22B2!b1~E•B!«. ~4.10!

Here the NC tensoru has been assumed to represent a cou
of fields ~«, b! in agreement with the conventions~2.2!. The
second order correction toF reads, explicitly,
F̃mn~2!5
1

4
uabFd

gFgb~undFa
m2umdFa

n !1
1

4
$uabugdFg

mFb
n Fad1uabFbgFda~undFmg2umdFng!1umbugnFdaFdgFab%

2
1

2
$~uF !~ugbFg

mFb
n 1unbFmgFgb2umbFngFgb!1ugbumnFadFdgFab%1

1

8
~uF !$umnF21~uF !Fmn%

1
1

4
~uamundFadF21uabufdFadFbgFmn!. ~4.11!

This rather involved formula, when reexpressed in terms of the classical fields, gives us the second order terms inu to be added
to the above:

D~2!5@~«•E2b•B!22«2B21~«•B!21~«•b!~E•B!#E1F ~b•E!~«•E2b•B!2~«•B!~b•B!1b2~E•B!

1
1

2
~«•b!~E22B!2GB1@~«•E2b•B!E21~b•E!~E•B!1~b•B!B2#«1~«•E2b•B!~E•B!b1@E•~«3B!#b3E,

~4.12!

while for the magnetic induction we get

H~2!5F«2~E•B!2~«•B!~«•E2b•B!2~«•E!~b•E!2
1

2
~«•b!~E22B!2GE1@~«•E2b•B!22b2E21~b•E!21~«•b!

3~E•B!#B2~«•E2b•B!~E•B!~E•B!«1@B•~b3E!#«3B1@~«•E!E21~«•B!~E•B!2~«•E2b•B!B2#b.

~4.13!
tion
We end this section observing that applying an elect
magnetic duality directly on the classical fields and revers
on the noncommuting parameter in this way,

E→2B, «→b

B→E, b→2«, ~4.14!

induces, up to second order, an ‘‘electric-magnetic duali
on the NC fields~4.10!:

D→2H,

H→D. ~4.15!

At present, the meaning of this symmetry is unclear and
suspect it remains true to all orders in the perturbativeu
expansion.
-
ly

’’

e

V. EXACT SOLUTIONS AND AN ITERATIVE METHOD

We seek solutions to the equations of motion

] [nFmr]50,

]@nF̃mn#50, ~5.1!

where

F̃5F1F̃ ~1!1F̃ ~2!1¯ , ~5.2!

with the structureF̃ (n)[unFn12 already evident for example
in Eqs.~4.9! and ~4.11!.

The most natural thing to suppose is that also a solu
should be written as a sum:

FªF ~0!1F ~1!1F ~2!1¯ , ~5.3!
1-4
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with piecesF (k) now understood to be corrections to a so
tion F (0) to the classical Maxwell equations: i.e
]nF (0)mn50 plus the Bianchi identities. We will briefly stat
this as]F (0)50. Furthermore, letuk be the operation of keep
ing, in a generic expression, all terms up to a given orderk in
u, neglecting the others. Then extractingkth order from Eq.
~5.2! terms like this,

Fuk5(
i 50

k

F ~ i ! ~5.4!

will be present. Accounting for that, hypotesis~5.3!, and the
structure~3.3!, we get

~5.5!

Our purpose is to write down a recursive method of solv
the noncommutative Maxwell equation]F̃50 having a clas-
sical solutionF (0). This is realized order by order noting th
(]F̃)uk5]F̃uk . Then, taking first order into the recursive r
lation ~5.5!, we have

]F̃u15]~F ~0!1F ~1!1u~FF !u0!50. ~5.6!

Now, beingF (0) a classical solution, we are led to solve t
equation:

]F ~1!52]~uF ~0!F ~0!!. ~5.7!

In exactly the same way, solutions correct up to second o
come from

]F ~2!52]@u~F ~0!F ~1!1F ~1!F ~0!!1uuF ~0!F ~0!F ~0!#.
~5.8!

Generally, obtaining thekth term in the expansion~5.3! al-
ways reduces to solving an equation of the form

]nF ~k!mn5Jm@F ~1!,...,F ~k21!#, ~5.9!

where the right memberJm only involves all thek21 solu-
tions computed in the previous steps. Now, deciding t
each two formF (k) comes from a potentialA(k) satisfying the
Lorentz gauge constraint1 ]nA(k)n50, then Eq. ~5.9! be-
comes

2hAm5Jm. ~5.10!

This is immediately solved employing the Lienard-Wicke
potentials. Then in principle we have got an authomatic t
capable of solving the equations of motion in full.

Let us focus, for example, on the single plane wave so
tion

Am5zmeik•x, ~5.11!

1It is easy to show that this can always be done order by ord
06502
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with kmkm5zmkm50 in the Lorentz gauge]nAn50. We
have

Fmn
~0!5 i ~kmzn2knzm!eik•x. ~5.12!

This is a particular case because we will now show that i
an exactsolution of Eq.~5.1!.

Lemma 5.1. Given an antisymmetric matrixumn, a null
vectorka, and a family of vectors$z ( i )

b % i PI orthogonal toka,
then any combination of n copies ofumn, (n11) vectors of
the given family and (n12) copies ofka in which all indices
but one are saturated, vanish.

Proof. Try to build a nonvanishing combination. In s
doing, you cannot saturate thek vectors with thez vectors
due to ortogonality. Neither you can saturate two of the
with oneu matrix due to its antisimmetry. You are obliged
use one onlyk vector for each matrix, spendingn of them.
Of the two remaining, one can be chosen as the free in
but the other must necessarily be saturated with one of thz
vectors or one of theu matrices giving a vanishing re
sult. Q.E.D.

Proposition 5.1. Monochromatic plane waves solve th
field equations~5.1! to every order inu.

Proof. Let us write the general monochromatic pla
wave as

Am5Fm~K•x!, ~5.13!

with K250 andKmFm8 (K•x)50 so that

Fmn5KmFn8~K•x!2KnFm8 ~K•x!. ~5.14!

Let F̃ (n)mn be the term of ordern in u; then,]mF̃ (n)mn is the
sum of terms obtained by contraction ofn copies ofumn, n
copies ofFa8 , one copy ofFb9 , and n12 copies ofKg .

From the Lemma it follows that]mF̃ (n)mn50. Q.E.D.
The previous property of monochromatic plane wav

holds for any Lagrangian having the assumed polynom
structure, independently of the fact that it has been deri
from a NC theory using the SW map.

A. Plane wave superposition

While single plane waves turn out to be exact solutions
the field equations, this is no longer valid even for a sim
superposition like this,

Amªzmeik•x1zm8 eik8•x, ~5.15!

corresponding to the classical solution~by linearity!:

Fmn
~0!
ª i ~kmzn2knzm!eik•x1 i ~km8 zn82kn8zm8 !eik8•x.

~5.16!

To find out its first order correction in the NC framework w
must solve Eq.~5.7!, yielding.
1-5
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]nF ~1!mn5 i $@~kk8!u~zz8!2~zz8!u~kk8!#~km2k8m!

2@~kz8!u~zk8!2~zk8!u~kz8!#~km1k8m!

12@~kz8!u~kk8!2~kk8!u~kz8!#zm

22@~zk8!u~kk8!2~kk8!u~zk8!#z8m%ei ~k1k8!•x,

~5.17!

where the following antisymmetric inner product has be
defined: (vw)uªvmumnwn. This equation can be solve
assuming

Fmn
~1!5]mAn

~1!2]nAm
~1! ~5.18!

andA(1) still satisfying an extended Lorentz gauge constra
]nA(1)n50.

In fact, rewriting Eq.~5.17! in the form

2hAm
~1!5 iJmei ~k1k8!•x, ~5.19!

we realize thatJ is transverse tok1k8 as can be easily
proved using the defining relations

k25k8250, k•z5k8•z850. ~5.20!

This means that if we put, abruptly,

Am
~1!5

iJm

2k•k8
ei ~k1k8!•x, ~5.21!

this solves Eq.~5.17!, being also compatible with the ex
tended Lorentz gauge.

Note that this corrected version of the superposition l
could be used to reveal a refraction effect suffered by a
of light in passing from an empty region to one in which
background static and uniform magnetic or electric field
present@3,9#. The incoming and reflected rays propagating
the empty region should be described by a superpositio
waves agreeing with the refracted one in the transition
gion.

B. Coulomb law

All NC theories are characterized by a parameteru which
defines a natural scale of length. From a dimensional an
sis, the corrections to the Coulomb law are of order 1/r 4, but
a complete power series expansion inu/r 2 is expected, so
that if L is its convergence ratio~plausibely finite!, then non-
perturbative contributions should become relevant in the
gion r ,Au/L where the perturbative description fails. W
can make a sensible study of the NC corrections to the C
lomb law, considering the potential generated by a char
conducting sphere of radiusr 0 .

At zeroth order the classical potential is

A~0!5H 2
e

r
dt, r .r 0 ,

2
e

r 0
dt, r<r 0 ,

~5.22!
06502
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so that (x̂i is the radial versor!

F0i
~0!52

e

r 2 x̂iu~r 2r 0!. ~5.23!

At first order,

]nF ~1!mn52]nGmn, ~5.24!

with

Gmn
ª2

1

2
~uF !Fmn2

1

4
umn~FF !1uabFmaFnb1~umbFan

2unbFam!Fab . ~5.25!

A direct computation gives, for the tensorG,

G0i52
e2

r 4 F ~e• x̂!x̂i1
1

2
e i Gu~r 2r 0!, ~5.26!

Gi j 5
e2

r 4 F ~ x̂iu jk2 x̂ ju ik!x̂k1
1

2
u i j Gu~r 2r 0!,

~5.27!

so that

]mF ~1!mn5Jn, ~5.28!

with

J5
e2

r 6 ~4eW•rW;rW∧bW !u~r 2r 0!1
e2

r 0
5 ~3/2eW•rW;21/2rW∧bW !

3d~r 2r 0!. ~5.29!

We have solved numerically Eq.~5.28!, and we show in Fig.
1 the equipotential level of the zeroth component ofA(1),
which is symmetrical under rotations about the direction
eW . The other components have a similar angular behav
and their precise values depend on the direction and ma
tude ofb.

The corrections in Fig. 1 give the modification of th
Coulomb law in the case of a charged sphere. This interp
tation would be well defined withr 0@Au, being the pertur-
bative solution valid almost everywhere, even inside the c
ducting sphere. But in the specific example considered
Fig. 1 the sphere coincides with the excluded region, wh
the perturbative approach fails. This case suggests a diffe
interpretation, as the NC correction to the Coulomb poten
of a point charge. In fact, in NC theories it is intuitive t
replace pointlike with extended object, whose typical leng
is Au.

The corrections to the potential violate the Gauss law a
spherical symmetry of the classical solution. As a con
quence, we observe in the case of a conducting macrosc
sphere that the potential inside the conductor is not const
This remark suggests a way to test NC electrodynamics
fects. In Fig. 2 we show the relative contribution of the co
rectionsA(1) to the classical Coulomb potentialA(0). The
size of the corrections is already relevant~e.g., greater than
1-6
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10%! at a length scale bigger by more than one order
magnitude with respect to the one determined by the
parameter.

VI. CONCLUSIONS

In this work we have formulated an explicit perturbati
realization of NC electrodynamics, which turns out to
causal and Lorentz invariant. The basic steps to obtain
result have been the use of the SW map and a rearrange
of the action aimed to render every term explicitly gau
invariant by use of careful integration by parts. The result
expressions do not contain time derivatives of order hig
than 2, yielding authomatically a causal theory. This lat
property is obtained without imposing any constraint on
NC parameteru, which can be chosen in full generality as
Lorentz tensor, leading to a Lorentz covariant theory.

FIG. 1. Correction to the Coulomb law due toA(1). The figure
shows the equipotential levels in the~x,z! plane, assuming thateW is
oriented along thez axis. We have chosene51, r 051. The length
unit is r 0 .
’
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We have studied the general structure of the Lagrangia
all orders in the perturbative expansion. We have shown
the monochromatic plane wave is solution of the equati
of motion to first@9# and even to all orders.

We developed an iterative method to solve the equati
of motion. In particular, we applied this method to study t
corrections to the superposition law of plane waves and
the electrostatic potential of a spherically symmetric cha
distribution. The most relevant qualitative feature of the N
corrections that we calculated is that they have a pecu
signature which makes them, at least in principle, dist
guishable from the classical corresponding effects. A p
sible test of the superposition law could be done by study
the reflection and rifraction of light on a magnetic field, u
ing, for instance, the experimental setting described in@10#.
Furthermore, the deviations from the Coulomb law could
evidenced by measuring the charge distribution on the
face and the electric field inside an empty conducting sph
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FIG. 2. RatioA(1)/A(0), which shows the effect of the NC cor
rections to the Coulomb law, in the~x,z! plane. We have choseneW
oriented along thez axis,e51, e51, andr 051. The length unit is
r 0 .
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