PHYSICAL REVIEW D 67, 065021 (2003

Noncommutative electrodynamics
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In this paper we define a causal Lorentz covariant noncommutéil@ classical electrodynamics. We
obtain an explicit realization of the NC theory by solving perturbatively the Seiberg-Witten map. The action is
polynomial in the field strengtk, allowing us to preserve both causality and Lorentz covariance. The general
structure of the Lagrangian is studied to all orders in the perturbative expansion in the NC parariéer
show that monochromatic plane waves are solutions of the equations of motion to all orders. An iterative
method has been developed to solve the equations of motion and has been applied to the study of the
corrections to the superposition law and to the Coulomb law.
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[. INTRODUCTION polynomial to all orders in the perturbative parameter so that
causality is preserved. The equations of motion are derived
Suggestions on the possibility that nature could allow forin Sec. IV where evidence is also given of the mentioned
noncommuting spatial coordinates came both from the pastuality.
[1] and more recently in the realm of superstring theory In Sec.V a general iterative method of solving the equa-
studying low energy excitations d-branes in a magnetic tions of motion is outlined.
field [2]. After proving that plane waves are solutions, the method
This has stimulated investigations on the noncommutativéS applied to the problem of plane wave superposition and to
(NC) versions of gauge field theories and on the behavior oflerive corrections to the Coulomb law.
their quantized counterparts. Among these, Maxwell theory The paper ends with some comments on the results found
is perhaps the easiest example and one where a possible é@ad on possible experimental settings aimed to directly mea-
perimental test of this hypothesis could be realizable. NeverSureé noncommutativity.
theless, two main problems arise when one tries to imple-
ment electromagnetism in a noncommutative geometry: the [I. SW MAP AND SECOND ORDER EXPANTIONS
loss of causality due to the appearance of derivative cou- _ ) -
plings in the Lagrangian and, more fundamentally, the viola- N the following, a caret over a classical symbol will in-
tion of Lorentz invariance exhibited by plane wave solutionsdicaté the same quantity in its NC version. In this fashion,
[3]. These problems have been discussed with a diﬁererﬁ‘?ord'”ates of flat nor_lcommutatlve Minkowsky spacetime
approach in the framework of NC QE[3,5]. will be assumed to satisfy
In this paper we show that both these problems may be om v i uv
avoided if one allows a nonzero “electrical” component into (X% =107, 2.1
the tensoré of the noncommutation relation so including where g

time as a NC coordinate. After application of the Seiberg- Is a real skew tensor whose components are set as

Witten (SW) map [2] the theory is perturbative i and follows:
classical plane waves turn out to be exact solutions. They no Qi = gi
longer obey a superposition principle. Finally, a sort of '
electric-magnetic duality comprehendimgand reminiscent T
0'=e€ Bk' (22)

of the known one in commutative Maxwell theory appears
between the fields in the equations of motion, reinforcing th
interpretation off as a sort of background primordial elec-
tromagnetic field.

In Sec. Il we fix notations and conventions, recall the
definition of the SW map2] and show the explicit solution
to second order irg.

%\Iote that we do not impose = 0. This means that time does
not commute with spatial coordinates afdds a constant
tensor field. Beside8 we consider the usual electromagnetic
field whose NC action is given by

In Sec. Il we prove that the Lagrangian of the theory is S=— %J d4x |”:uv*|”:W: _%f d*x f:uv,”:w_ (2.3
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F.=a,A,—aA,~i[A,ALl.

(2.9

Here the star product) between NC quantities is defined as
usual:

(F+8) () =€ """ F G)OG(X) = - (2.6
Also, the following conventions will be used for electromag-
netic fields:

Ei:FOi,

5 (2.7

Bk: Eiijij.

Now, according to Seiberg and Witt¢8], every NC gauge
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Similarly, via the relation F{?)=
—(u<v) one also computes

A 4 gvog A
9,AP+ 0709 ADg A,

(2)=0"POYF , F 5uF g, — 07°A,0F )

1
—3 0*FO07°A (9 A5t ALIs)IgF . (2.13

Ill. GENERAL STRUCTURE

We discuss some properties valid to all order® iof the
perturbative action obtained by means of the SW map.

Proposition 3.1 The Lagrangian’ corresponding to the
action Eq.(2.3) via the SW map is a polynomial i& only
(that is, it does not contain derivativesf; furthermore, the

termsZ(™ of ordern in 6 form a homogeneous polynomial

theoryA has a perturbative description in terms of the non-of degreen+2 in F.

commuting parameteff and another commutative theoy,

Proof. From the SW equatiof2.8) we have

possessing the same degrees of freedom as the NC one. The

relation between them is established by means of the5|:

Seiberg-Witten map:

dA, 1 . R R
&gaB: — g{Aa '&BA/L—’_ FB/‘L}* _(CZ(—)B),
Aulo=0=A,. (2.8

1

50(1/3 {Aa!aﬁA +F/.LV}* MHV)+ 8{{Aa1aBAp,

. - i .
+ Fﬁ,u}* ’AV}* + g[A,u y{Aa 1aBAv+ FBV}* ]*

— (e B) + 5+ (3.0

Solving the above equations means determining each piedgere 6+ is supposed to include all the terms arising when-

of the perturbative expansions:

A=A +AD+AD ... (2.9

Fo=F,+FL+F2+- (2.10
relating at every order i¥ the NC quantities with their re-
spective classical counterparts. As is well knoj@j, one

obtains, to first order,

. 1
_— _ = pa
Ay==—50 PALIsA,TF g,

FU=07(F o F o= ALdsF ). (2.11)

wrFo

Considering the second order corrections, we assaffie

=30%67°n 5,5 and substitute the whole expansion&f
into Eqs.(2.8). We realize that differentiating and then evalu-

ating até=0, we end with a recursive relation between sec-

ond order and first order corrections and thenlerivatives.
This leads to computation of the term After careful rear-
rangements, the expression for the second order correction
A,is

ya

1
A2)_ T paBayé
AZ=5 00" [Ayé’(;Aa(?BAM-i-A,/F(gaFﬁM—I—AaAyﬁﬁFBM

1
+ ZaM(AaAyﬂ,SAB)]. (2.12

ever the derivation acts on tt@s appearing in the of the*
product; they always give rise to total derivatives in the La-
grangian density and so may be neglected. As a consequence,
performing an arbitrary number of derivations and then put-
ting =0 shows that commutators of the type present in Eq.
(3.1) give vanishing contributions.

Then all significant contributions are seen to come from

the termg g, {A,,,d5A,,+F ..}, , which, evaluated at 0 after
k derivations, produces an homogeneous polynomial of order
k+1 in A with k+ 1 derivatives(with respect to spacetime
coordinates equally distributed on each monomial. Finally,

considering=#"x IEMV at ordernin 6, by the same argument,
one obtains an homogeneous polynomial of orerR2 in A
with n+2 spacetime derivatives comparing in each mono-
mial.

Now, since the Lagrangian densiiybtained from the SW
map is certainly invariant under the usual1) gauge trans-
formations, every monomial can be rearranged, modulo inte-
gration by parts, so as to depend only erand possibly its
derivatives. But being the number of derivatives exactly
equal to the number dksin every monomial, it follows that
genvatlves ofF cannot appear at all. Q.E.D.

Corollary 3.1 The equations of motion of the(l) theory
take the form

a9, FHr=

0, (3.2

whereF#” is the sum of homogeneous polynomials of de-
green+1 in F and ordem in 6 (i.e., written symbolically:
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- . 1
F=> 6"F"*L (3.3 L<2>:—Za“ﬂm5 FHFY R o F st 2FHF  F g F 5,

n

As we will see, this property helps to derive a recursive , 1 , 1 )
algorithm for their resolution. FEOF PR oyt g FpaF o/ P 7 FpyFasftS
The main consequence of the struct83) evidenced
above is that the equations of motion for the field strength
are of first order. This seems to suggest that the theory i
causal even though not requiring time commutativity. In the

literature, it is suspected that causality does not survive norid®

commutativity [7]. In our model though, after undertaking N

the SW map, the action has been manipulated and integrated £?=(&-E—B-B)(B-E+¢-B)(E-B)

by parts to render all terms explicitly gauge invariant. As a 1

by-product, all higher order time derivatives have disap- +=[(&-E— B-B)2(E2—B2?)+ (&- B)(E*—B?)
peared. In effect, this task is equivalent to add boundary 2

terms to the Lagrangian: exactly those capable of giving
causal consistency to the theory.

Probably this should be the right procedure to follow gen- .
erally. Furthermore, the fact that preserving causality is nd\s already remarked, the second variation/ofyields the
more consequence of imposing zero temporal components i#sual equations of motion
0 allows us to require that it can transform like a tensor in
respect to the Lorentz group. It descends that Lorentz cova- a,Frr=0 (4.6
riance is also preserved.

(4.4

F—|ere again, after substitution and accurate computation, you

X (E-B)—(E-B)*(&*~ B)]. (4.5

and Eq.(3.3) leads us to writd=F + FW)+F@+... where
IV. EQUATIONS OF MOTION UP TO SECOND ORDER

’I‘:’(n)E enFn+l_
Let us expand also the NC Lagrangian densgity) into It is now tempting to regard each piece like this as a
pieces of increasing order i1 correction to the classical field strenghtdue to NC geom-
etry. This is more properly done here than on the expansion
L=L+ LV + L@ 4. (4.1)  (2.10 because we are referring to the equations of motion.

_ o _ _ Furthermore, the interesting thiri@] is that denoting the
The first term here coincides with the classical Maxwell La'content of the NC field® with an electric displacement and

grangian v_vhlle the other terms are its various Co”eCt'onsmagnetic inductioriD, H) and restating the above expansion
More precisely, as

1
L=—ZFMF,, D=E+DW+D®@+---,
H=B+HM+H@+...,

X 1.
1) _ (1l
L )__EF,LL ( )FMW
where the classical field€, B) in F are recaptured as their

) 1. - o zeroth order correctionsD(?,H(®), then the equations of
LP=— Z{F“V(l)FLV)+2F“”FLV)}- motion take the usual Maxwell form
Recall[8] that up to first order irg, the NC Lagrangian has JB VXE—0
the following form: ot TYXE=O0,
7 1 1 af 2 af=uv —
L==Z|| 1= 5 6°FF 1 |F2+20°FFF , F 5 V.B=0, (4.7)
(4.2
dD
or, upon substitution according to our conventi¢@<), we E_VXHZO,

have
L1 V.-D=0. (4.9
L=5(1+pB-e E)(E?—B?)—(B-E+e&-B)(E-B).
(4.3  Note that the first two are simply the Bianchi identities; the
other two really describe the behavior of NC electromagne-

Next, looking for the second order term, one finds, with atism in empty space. Working with the first order correction
little effort, to F, which is
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~ 1 1 H=(1+8-B—¢ E)B+(B-E+&-B)E
F/.Lv(l):_z(eF)FMV_ZaMVFZ_l_ GaﬂF”aF"B+(0"BF“” ( B ) (B )

1
— BRam)E, 4.9 —5(E*~B*)B+(E-B)e. (4.10

we obtain for the NC fields the approximated expressions
D=(1+B-B—¢-E)E—(B-E+¢-B)B
Here the NC tensof has been assumed to represent a couple

of fields (g, B) in agreement with the conventio®.2). The

1
— Z(E2-R?%)e—(E. . ..
2 (E°=BYe—(E-B)B, second order correction te reads, explicitly,

- 1 1
F’”(z):Z 0" PFJF 50 F4— 01°F ) + Z{aaﬁ 07 FUF 4F o5 0°PF g F 5,( 07 FFY— 0FOF YY)+ 0HP OV FOF 5 F o}
L B v vB BEv B prvE ad 1 2 v
— SUOF)(07PFLF ot 0PI p— 04PRE ) + 07POH R OOF 5 F g+ 2 (0F){ 077 F2+ (6F) P17}

1
+ Z(HQM0V§FQ§F2+ 0aB0¢5Fa§FB'yFMV)' (4.11

This rather involved formula, when reexpressed in terms of the classical fields, gives us the second ordeterins added
to the above:

(B-E)(e-E—B-B)—(&-B)(B-B)+B*(E-B)

D@P=[(e-E— B-B)°— £°B?+(&£-B)?+(&- B)(E-B)]E+

B+[(e-E— B-B)E?+(B-E)(E-B)+(B-B)B?]e+(e-E— B-B)(E-B)B+[E-(£XB)]BXE,

(4.12

3 (e BE- B

while for the magnetic induction we get

E+[(e-E-B-B)’~ F°E*+(B-E)*+ (e B)

H?) = 82<E-B)—<s~B)(s-E—ﬁ-B)—(s~E)<ﬁ-E)—%(aﬁ)(EZ—B)Z

X(E-B)]B—(&-E—B-B)(E-B)(E-B)e+[B-(BXE)]exB+[(&-E)E2+(&-B)(E-B)—(&-E— B-B)B?] 8.
(4.13

We end this section observing that applying an electric- V. EXACT SOLUTIONS AND AN ITERATIVE METHOD

magnetic duality directly on the classical fields and reversely

on the noncommuting parameter in this way, We seek solutions to the equations of motion

E—-—-B, &-8 NoF =0,
B—E, B¢, (4.14 3L, F ]=0, CR)
induces, up to second order, an “electric-magnetic duality”where
on the NC field94.10: - - ~
F=F+FY+F@+... (5.2

D——H,
with the structurd=("W= g"F"*2 already evident for example
H—D. (4.15 in Egs. (4.9 and(4.11).
The most natural thing to suppose is that also a solution
At present, the meaning of this symmetry is unclear and weahould be written as a sum:

suspect it remains true to all orders in the perturbative
expansion. F=FO+FD+F@ ... (5.3

065021-4



NONCOMMUTATIVE ELECTRODYNAMICS PHYSICAL REVIEW D67, 065021 (2003

with piecesF® now understood to be corrections to a solu-with k,k*={,k*=0 in the Lorentz gauge),A"=0. We
tion F(® to the classical Maxwell equations: i.e., have

8, FO#*=0 plus the Bianchi identities. We will briefly state

this asgF (9=0. Furthermore, ldk be the operation of keep- FO=i(k,¢,—k,¢,)e > (5.12
ing, in a generic expression, all terms up to a given okdar - g g
0, neglecting the others. Then extractikiy order from Eg.

(5.2) terms like this This is a particular case because we will now show that it is

an exactsolution of Eq.(5.1).
K Lemma 5.1 Given an antisymmetric matrig*”, a null
Fle=> FD (5.4)  Vvectork®, and a family of vector$§ﬁ)}ie| orthogonal tck?,
i=0 then any combination of n copies é6f”, (n+1) vectors of
. i the given family andif+2) copies ok® in which all indices
will be present. Accounting for that, hypotess3), and the  pyt one are saturated, vanish.
structure(3.3), we get Proof Try to build a nonvanishing combination. In so
. doing, you cannot saturate thevectors with thel vectors
F|k:F|k+H(FF)|/<*1+'"+U(F"'F)|0' (5.5  due to ortogonality. Neither you can saturate two of them
k k+l with one  matrix due to its antisimmetry. You are obliged to
use one onhk vector for each matrix, spendingof them.
Our purpose is to write down a recursive method of solvingof the two remaining, one can be chosen as the free index
the noncommutative Maxwell equatiefr =0 having a clas- but the other must necessarily be saturated with one of the
sical solutionF(?). This is realized order by order noting that vectors or one of thed matrices giving a vanishing re-

(9F)|,=dF|c. Then, taking first order into the recursive re- sult. ~ Q.E.D.

lation (5.5), we have Proposition 5.1 Monochromatic plane waves solve the

field equationg5.1) to every order ind.
JF|1= a(FO+FD+ 9(FF)|y) =0. (5.6) Proof. Let us write the general monochromatic plane

wave as

Now, beingF(® a classical solution, we are led to solve the

equation: A,=d,(K-x), (5.13

(1= _ (O ={(V] .
IF == d(FFT). (57 with k2=0 andK*®, (K-x)=0 so that
In exactly the same way, solutions correct up to second order , ,
come from F=K,®,(K-x) =K, P (K-X). (5.14

2 _ (1) 4 £(1)E(0) (0 (0E(0) - , - _
JF JLO(FTF 2+ FHET)+ 00FTF TR, Let F(M~” be the term of orden in 6; then,d,F(M~" is the

58 sum of terms obtained by contraction mfcopies of 6#”, n
Generally, obtaining théth term in the expansiotb.3 al-  copies of®,, one copy ofd);, andn+2 copies ofK, .
ways reduces to solving an equation of the form From the Lemma it follows that,F(M“*=0.  Q.E.D.
The previous property of monochromatic plane waves
g, FROmr=Jr @D Fk-D] (5.9  holds for any Lagrangian having the assumed polynomial

structure, independently of the fact that it has been derived
where the right membel* only involves all thek—1 solu-  from a NC theory using the SW map.
tions computed in the previous steps. Now, deciding that
each two forrF ) comes from a potentigd® satisfying the

P A. Pl iti
Lorentz gauge constramtd,AK*=0, then Eq.(5.9) be- ane wave stiperposttion

comes While single plane waves turn out to be exact solutions of
the field equations, this is no longer valid even for a simple
—OA#*=J*, (5.10  superposition like this,
This is immediately solved employing the Lienard-Wickert A= gﬁeik.x_i_{;Leik'.x, (5.15
potentials. Then in principle we have got an authomatic tool
capable of solving the equations of motion in full. corresponding to the classical solutiy linearity):
Let us focus, for example, on the single plane wave solu-
tion

| FO =ik, L=k, L) e +i(k g~k g)e ™,
A,=,e%% (5.11) (5.16

To find out its first order correction in the NC framework we
U1t is easy to show that this can always be done order by order. must solve Eq(5.7), yielding
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9, F DBy =if[(KK') o(£L) = (£L") o(KK) (K —K'#) so that &' is the radial versor
~L(KE) (k)= (2K ) o(kE)](KH+K' %) FO—— S sinir—ry). 5.23
+2[(kg") o(KK") = (KK") o(kZ") 18# '
22K (kK ) — (kK ) (k)1 eyl ke kx, -  Atirstorder,
(5.17) g,FHHr=—3,GH", (5.24
where the following antisymmetric inner product has beenwith
defined: ¢w)y=v*6,,w". This equation can be solved 1 1
assuming GHi=— E(eF)F’“’— 2 0*"(FF)+ 0,5F“*F P+ (9HPF”
Fl=g,A—g,AD 5.1
uv pn v (5.18 —GVﬁFa'“)FaB. (5.29
3n§é)vzs(;|ll satisfying an extended Lorentz gauge constralntA direct computation gives, for the tensGs
In fact, rewriting Eq.(5.17) in the form _ e2 1
o G¥=— (e )X+ 5€|0(r=r0), (526
—~OAP=iJ ek (5.19
; . ’ ; . 82 o - 1
we reahzeT thatd is t_ra.nsverse. tk+k’ as can be easily Gil= | (Ko — 5 elk)s‘(k_i__alj}e(r_ro)’
proved using the defining relations r 2
(5.27
k?=k'?2=0, k-¢=k'-¢'=0. (5.20
so that
This means that if we put, abruptly,
9, Frr=7v, (5.29
iJ, .
(DM Li(k+k')- .
A= o gl (kri)x, (5.2)  with
2 2
this solves Eq.(5.17), being also compatible with the ex- Jze_(4».r»;m[§)9(r_r )+ e_(3/2g.r»;_1/2m'[§)
tended Lorentz gauge. r R
Note that this corrected version of the superposition law X 8(r—To). (5.29

could be used to reveal a refraction effect suffered by a ray

of light in passing from an empty region to one in which a\ys have solved numerically E5.28, and we show in Fig.
background static and uniform magnetic or electric field is1 the equipotential level of the zeroth componentAé?
presen(3,9]. The incoming and reflected rays propagating iy yicp, is'symmetrical under rotations about the direction of

the empty region S.hOUId be described by a superposition dg The other components have a similar angular behavior,
waves agreeing with the refracted one in the transition re

and their precise values depend on the direction and magni-

gron. tude of 8.
The corrections in Fig. 1 give the modification of the
B. Coulomb law Coulomb law in the case of a charged sphere. This interpre-

All NC theories are characterized by a parameterhich  tation would be well defined withy>\/6, being the pertur-
defines a natural scale of length. From a dimensional analyeative solution valid almost everywhere, even inside the con-
sis, the corrections to the Coulomb law are of ordef 1but ~ ducting sphere. But in the specific example considered in
a complete power series expansionéir? is expected, so Fig. 1 the sphere coincides with the excluded region, where
that if L is its convergence ratitplausibely finit¢, then non-  the perturbative approach fails. This case suggests a different
perturbative contributions should become relevant in the reinterpretation, as the NC correction to the Coulomb potential
gion r<\/6/L where the perturbative description fails. We Of & point charge. In fact, in NC theories it is intuitive to
can make a sensible study of the NC corrections to the CoUeplace pointlike with extended object, whose typical length

lomb law, considering the potential generated by a charget$ V0. _ o
conducting sphere of radius. The corrections to the potential violate the Gauss law and

At zeroth order the classical potential is spherical symmetry of the classical solution. As a conse-
guence, we observe in the case of a conducting macroscopic

e sphere that the potential inside the conductor is not constant.
—rdy, r=ro, This remark suggests a way to test NC electrodynamics ef-
AQ = (5.22  fects. In Fig. 2 we show the relative contribution of the cor-
_ Edt, r<ro, rectionsA™) to the classical Coulomb potentia(®). The
Mo size of the corrections is already relevaetg., greater than
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100t

501

100

FIG. 2. RatioAM/A®, which shows the effect of the NC cor-
rections to the Coulomb law, in th&,2 plane. We have chosen
oriented along the axis,e=1, e=1, andr,=1. The length unit is
ro.

We have studied the general structure of the Lagrangian to
all orders in the perturbative expansion. We have shown that

=50+t

-100¢

-100 -50 0 50 100 the monochromatic plane wave is solution of the equations
) H omb law due &6Y. The fi of motion to first[9] and even to all orders.
FIG. 1. Correction to the Coulomb law due A6™". The figure We developed an iterative method to solve the equations

shows the equipotential levels in the2 plane, assuming thatis . \ntion |n particular, we applied this method to study the
32?;23:1 along the axis. We have chosee=1,ro=1. The length corrections to the superposition law of plane waves and to
o the electrostatic potential of a spherically symmetric charge

. istribution. The most relevant qualitative feature of the NC
#o;g)m?é dae I\(/evri]t%thress(;)aggt k:l)g%ﬁ; zﬁemggem&megnsyo{gsrNopprrections that we calculated is that th_ey h_avg a pe_cu_liar
parameter Signature which makes t_hem, at least in principle, distin-
' guishable from the classical corresponding effects. A pos-

sible test of the superposition law could be done by studying

VI. CONCLUSIONS the reflection and rifraction of light on a magnetic field, us-

ing, for instance, the experimental setting describefl .

Furthermore, the deviations from the Coulomb law could be
videnced by measuring the charge distribution on the sur-
pe and the electric field inside an empty conducting sphere.

In this work we have formulated an explicit perturbative
realization of NC electrodynamics, which turns out to be
causal and Lorentz invariant. The basic steps to obtain this
result have been the use of the SW map and a rearrangemeﬁ
pf thg action aimed to repder every term explicitly gauge ACKNOWLEDGMENTS
invariant by use of careful integration by parts. The resulting
expressions do not contain time derivatives of order higher We are grateful to D. Klemm for his participation in the
than 2, yielding authomatically a causal theory. This latterinitial stage of this work. This work was partially supported
property is obtained without imposing any constraint on theby INFN, MURST and by the European Commision RTN
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